

1 **Digital nanoreactors for control over 2 absolute stoichiometry and spatiotemporal 3 behavior of receptors within lipid bilayers**

4
5 Vishal Maingi^{1,‡}, Zhao Zhang⁴, Chris Thachuk^{5,‡}, Namita Sarraf¹, Edwin R. Chapman^{4,‡} &
6 Paul W.K. Rothemund^{1,2,3,‡}

7
8 Interactions between membrane proteins are essential for cell survival and proper
9 function, but the structural and mechanistic details of these interactions are often
10 poorly understood. Even the biologically functional ratio of protein components
11 within a multi-subunit membrane complex—the native stoichiometry—is difficult to
12 establish. We have demonstrated digital nanoreactors that can control interactions
13 between lipid-bound molecular receptors along three key dimensions: stoichiometric,
14 spatial, and temporal. Each nanoreactor is based on a DNA origami ring, which both
15 templates the synthesis of a liposome and provides tethering sites for DNA-based
16 receptors. Receptors are released into the liposomal membrane using strand
17 displacement and a DNA logic gate measures receptor heterodimer formation. High-
18 efficiency tethering of receptors enables the kinetics of receptors in 1:1 and 2:2
19 absolute stoichiometries to be observed by bulk fluorescence in a plate reader which
20 in principle is generalizable to any ratio. Similar ‘single molecule in bulk’
21 experiments using DNA-linked membrane proteins could determine native
22 stoichiometry and the kinetics of membrane protein interactions for applications
23 ranging from signalling research to drug discovery.

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 ¹Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA. ²Department of Computation & Neural
40 Systems, California Institute of Technology, Pasadena, CA, USA. ³Department of Computation + Mathematical Sciences,
41 California Institute of Technology, Pasadena, CA, USA. ⁴Howard Hughes Medical Institute and Department of Neuroscience,
42 University of Wisconsin-Madison, Madison, WI, USA. ⁵Paul G. Allen School of Computer Science & Engineering, University of
43 Washington, Seattle, WA, USA.

44 [‡]email: thachuk@cs.washington.edu, chapman@wisc.edu, pwkr@dna.caltech.edu, maingivishal@gmail.com

45

46 Introduction

47

48 Many cellular functions are mediated by signalling events triggered by protein-protein
49 encounters occurring within lipid bilayer membranes.¹ Understanding membrane
50 protein interactions and their downstream effects often provides direct and important
51 insight into how cells function on the molecular level. Membrane protein
52 interactions trigger countless cascades of events essential to cellular function, yet for
53 many membrane proteins we lack even a basic understanding of what structural
54 arrangement is necessary to trigger these events. However, it is often difficult to
55 establish whether the active form of an integral membrane protein is a monomer or
56 oligomer (a complex containing two or more interacting partners), or which of many
57 potential homomeric or heteromeric complexes is physiologically relevant.² Basic
58 characterization of the biologically active oligomeric state of membrane proteins is a
59 prerequisite to understanding their function³⁻⁵ and is useful for drug discovery,^{6,7}
60 dissecting the molecular mechanism of pathogenic processes,⁸ and elucidating the role
61 of transient membrane protein interactions.⁹

62

63 Existing experimental approaches for characterization of the oligomeric state each
64 have their limitations: polyacrylamide gel electrophoresis cannot replicate the native
65 lipid environment and can itself introduce artifactual dimers;¹⁰ chemical cross-linking
66 can be employed to stabilize oligomers under non-native conditions at the risk of
67 introducing artifactual dimers from nonspecific reactions;¹¹ bulk Förster resonance
68 energy transfer (FRET) data is concentration sensitive, and must be carefully
69 corrected to account for potential FRET between oligomers;¹² single molecule
70 fluorescence photobleaching and FRET methods can exquisitely resolve features of
71 oligomers but are technically challenging,¹¹⁻¹⁶ and mass spectrometry requires
72 detergents for sample preparation and expensive instrumentation.¹⁷ Often, to
73 definitively characterize the oligomeric state, it is necessary to combine multiple
74 analytical approaches, adding time and complexity. An ideal experimental platform
75 for membrane protein interactions would avoid the drawbacks of the methods above,
76 enable the study of isolated proteins in a cell-free yet native lipid environment, and
77 measure real time kinetics and dynamics of their interactions. Further, the platform
78 would simultaneously provide precise *stoichiometric*, *spatial*, and *temporal* (S²T)
79 control: exact numbers of monomeric proteins would begin in a well-separated initial
80 configuration within a well-defined reaction volume, and their triggered release could
81 be used to time the beginning of the experiment.

82

83 One path to such an ideal platform is DNA nanotechnology, which has recently been
84 used to construct a number of “custom instruments for biology”¹⁸⁻²⁵ wherein DNA
85 nanostructures are designed from the beginning to ask exactly the experimental
86 question at hand. The construction of custom molecular instruments has been enabled
87 by the versatility of DNA nanotechnology: DNA can be folded²⁶ or assembled into
88 2D^{27,28} or 3D^{29,30} shapes, these shapes can be programmed to create reconfigurable
89 devices and machines³¹, and can be decorated with a variety of functional groups, *e.g.*
90 proteins³² and polymers,³³ whose position can be controlled in 0.34 nm steps. This has
91 enabled S²T control in the context of surface chemical reaction networks on DNA
92 origami³⁴⁻³⁸, where reactants hop from one periodic lattice site to the next. Critical to
93 extending S²T control to fluid bilayers are commercially available and custom-made
94 hydrophobic modifications to that interface DNA with lipid membranes: they have
95 been used by many research groups to engineer and study DNA-lipid systems³⁹⁻⁴¹

96 with applications varying from artificial nanopores,^{42,43} to membrane sculpturing,⁴⁴
97 nanodiscs,⁴⁵⁻⁴⁷ DNA circuits,⁴⁸⁻⁵¹ control of liposome fusion,⁵²⁻⁵⁷ and artificial cells.⁵⁸
98 Yet so far, no such system has achieved full S²T control on a lipid bilayer.
99

100 Here, our approach is to use DNA nanotechnology to build a hybrid DNA-lipid
101 instrument, a **DNA Origami-templated Liposome (DOL)**³⁹, which provides a generic
102 assay platform to orchestrate and measure the interactions between reacting species in
103 a single lipid bilayer. To validate our platform, we used membrane-anchored DNA
104 complexes, which we term DNA receptors, as models for membrane proteins. We
105 exploited several strategies to create the first membrane-based platform that achieves
106 full S²T control. First, we used a well-defined and addressable structure of DNA
107 origami²⁷ nanocage⁵⁹ to exert absolute stoichiometric⁶⁰⁻⁶² and spatial control over the
108 DNA receptors. Building on previous work^{39,59} that demonstrates that guest liposomes
109 of well-defined size can be templated within DNA origami cages, we arranged
110 discrete numbers (e.g. two or four) of DNA receptors at precise distances (e.g. 45 nm)
111 along the circumference of a liposome-filled cage to create a well-defined initial state
112 (Figure 1A and B, Step 1). Cholesterol on the DNA receptors bound them to the
113 liposome, and tethers between the receptors and the cage served to protect them and
114 keep them from reacting until desired. Next we used toehold-mediated strand
115 displacement (TMSD⁶³⁻⁶⁵) to both provide temporal control via triggered reaction
116 initiation (Figure 1A and B, Step 2) and to create a DNA logic gate⁶³ that outputs a
117 fluorescent signal to measure the extent of DNA receptor heterodimerization (Figure
118 1A and B, step Step 3). Because the logic gate requires simultaneous interaction of
119 both receptors with a reporter complex, our system models a ligand-induced protein
120 dimerization process. Measurement of DNA receptor interaction kinetics for two
121 different absolute stoichiometries, both on the DOL and in solution, show that: (1) we
122 achieved digital control over the number of receptor complexes localized to the DOL,
123 (2) receptors interacted primarily within a single DOL rather than between DOL, and
124 (3) DOL-bound receptors reacted with an effective rate constant that is 2800-fold
125 higher than that measured in solution. Thus, DOL can be thought of as digital
126 nanoreactors—defining, isolating, and concentrating reactions between membrane-
127 bound receptors.
128
129

130 **Synthesis and Circuit Design**

131 **The DOL platform.** Figure 1A summarizes our DOL synthesis strategy (Figure 1A
132 left) and its use for controlling DNA receptor interactions (Figure 1A right,
133 Supplementary Figure S1). A pool of staple strands, including special staples with
134 linker extensions was annealed with a circular DNA scaffold (Step A) to assemble a
135 cage-like DNA origami comprising two interconnected rings; here we refer to this
136 entire structure simply as a ring. The linker-extended staples were designed to specify
137 the number, position, and type of DNA receptors that were attached to the ring in the
138 next step. In particular, the sticky end overhangs presented by each linker determine
139 which receptor type will bind at a particular position on the ring. Two linkers are
140 shown in Figure 1A, suitable for 1:1 receptor absolute stoichiometry; four linkers
141 were used for 2:2 receptor absolute stoichiometry. To remove excess staples and
142 undesired higher-order structures, the reaction products were purified via rate-zonal
143 ultracentrifugation (separating by size, Supplementary Figure S1B). Next, preformed
144 DNA receptors were attached to the rings by an isothermal incubation (Step B);

145 excess receptors were removed in a second rate-zonal ultracentrifugation
146 (Supplementary Figure S1C). Additionally, at least thirty staples on the ring, termed
147 handles, carry extensions designed to bind complementary cholesterol-modified DNA
148 strands termed anti-handles. Anti-handles were attached to rings in a second
149 isothermal incubation (Step C). The cholesterol-modified rings, with tethered
150 receptors, were next mixed with lipids and detergents (Step D). During a follow-up
151 detergent removal process, the cholesterol modifications served as seed for the
152 formation of a liposome on each ring, creating DOL. The resultant mixture,
153 containing undesired free liposomes and DOL, were purified using isopycnic
154 ultracentrifugation (separating by density, Supplementary Figure S1D). Fractions
155 containing fully assembled DOL (see Supplementary Section 1) were used to analyze
156 DNA receptor interactions.

157
158 **DNA receptors and their interaction logic.** Figure 1B and Table 1 show the
159 domain-level representation of our two different types of DNA receptor complexes
160 (Receptor_A and Receptor_B). We explain domain level details for Receptor_A;
161 Receptor_B has the same domain level structure, but with different sequences. Here
162 and throughout, strand names are italicized, and domain names are bolded.
163 Supplementary Table S1 more extensively describes domains and their roles.
164 Sequence design and analysis were done with NUPACK⁶⁶, which employs
165 SantaLucia nearest-neighbor parameters⁶⁷, assuming 1 M Na⁺ at 25 °C and using
166 default dangle parameters.
167

168 Receptor_A is composed of two cholesterol-modified oligonucleotides, *anchor_A* and
169 *anchor_A**. Domain **A** (in *anchor_A*) is complementary to domain **A*** (the only
170 domain in *anchor_A**); together these domains serve the purpose of membrane
171 anchoring via their cholesterol modifications. In general, the use of two cholesterol
172 provides more stable association of DNA complexes with membranes than does a
173 single modification.^{49,54} **P1X2** in *anchor_A* hybridizes with **P1*X2*** in *linker_A* (an
174 extension from a staple strand in the ring) which tethers the receptor to the ring during
175 DOL assembly (Step B, Figure 1A). After synthesis, in Step 1 (Figure 1B), receptors
176 are separated on the ring by ~ 45 nm.
177

178 In Step 2, addition of *release_A* strand, results in TMSD release of Receptor_A, as
179 initiated by the hybridization of domain **T** with toehold **T*** on *linker_A*. The
180 subsequences **TP1X2** (*release_A*) and **X2*P1*T*** (*linker_A*) are fully
181 complementary, and thus their full hybridization, after TMSD of **P1X2**, is
182 thermodynamically more favorable and essentially irreversible. The released
183 Receptor_A has a free unpaired subsequence **P1X2X1** and, similarly, after the
184 addition of *release_B*, the Receptor_B has an unpaired **Y1Y2P2** subsequence. By
185 design, **P1X2X1** (NUPACK-calculated free energy $\Delta G^\circ = -0.27$ kcal mol⁻¹; shows
186 little predicted secondary structure) and **Y1Y2P2** (NUPACK-calculated free energy
187 $\Delta G^\circ = 0$; unstructured) are not predicted to hybridize (NUPACK reports no bound
188 complex at experimentally relevant concentrations); thus, released Receptor_A and
189 Receptor_B are unlikely to interact with each other.
190

191 Released receptors can only interact (Step 3) in the presence of a reporter complex
192 ('ligand'), which is a fluorophore-quenched duplex comprising a top strand
193 containing an internal quencher (black hole quencher; BHQ) and a bottom strand

194 containing an internal fluorophore (fluorescein). The bottom strand of the reporter
195 (**Y2*Y1*X1*X2***) has two five-nucleotide toeholds: **X2*** initiates binding of
196 Receptor_A to reporter via **X2** in *anchor_A* and **Y2*** initiates binding of Receptor_B
197 to reporter via **Y2** in *anchor_B*. Overall, the formation of a ternary complex by
198 Receptor_A, Receptor_B, and the reporter's bottom strand is very similar to the
199 cooperative hybridization reaction reported by Zhang.⁶⁸ Note that intermediate states
200 formed by either receptor individually with the reporter complex (*i.e.* states Aⁱ and Bⁱ
201 in Supplementary Figure S2) are thermodynamically less favorable than the reactants,
202 and thus sequester very little of either receptor.⁶⁸ Further, formation of intermediate
203 states, which are kinetically reversible, does not result in dequenching of the
204 fluorophore (Figure 4, discussed below). Successful dequenching of the reporter
205 complex (and resulting fluorescence) is only possible when both the receptors are
206 present to cooperatively displace the BHQ-containing top strand. **P1** and **P2** domains
207 of the ternary complex remain unpaired, acting as flexible hinges.

208

209

210

211 Results and Discussion

212

213 **Intra-DOL receptor interactions.** Implementing the DNA logic gate shown in
214 Figure 1B, we explain here interactions between two receptors, one Receptor_A and
215 one Receptor_B per DOL (DOL^{1A1B}), initially tethered at distal ends of the ring and
216 anchored in the liposome membrane with their cholesterol ends (Figure 2A, left). To
217 set up a plate reader experiment, the reporter complex (final concentration 4.7 nM)
218 was first mixed with purified DOL^{1A1B} fraction and then the fluorescence intensity
219 was initially measured for ~ 7 h (Figure 2D, blue curve). No increase in fluorescence
220 was observed during this phase because the lipid anchored receptors remain inactive
221 and tethered to the ring via linker strands. Note that linker strands serve the dual
222 purpose of tethering as well as protecting the reactive domains of the receptors. This
223 initial period (7 h) of measurement served as a quality check of our overall
224 purification process. If our purification method of getting rid of untethered reactive
225 receptors was not successful, we would expect to see a rise in signal during this phase.
226 Any unbound and thus active receptors, possibly in solution or on DOL, with their
227 reacting domains **P1X2X1** (in *anchor_A*) and **Y1Y2P2** (in *anchor_B*) can interact
228 with the reporter complex in solution to generate fluorescence. But no significant
229 change in fluorescence was observed, indicating that our purification protocol
230 successfully removed most of the unbound excess receptors (see related discussion in
231 Supplementary Information Section 2).

232

233 After 7 h, a mix of *release_A* and *release_B* (both at 100 nM final concentration) was
234 added, which triggered the release of both the receptors on the surface of lipid bilayer.
235 Through cooperative hybridization, both the active receptors react with the reporter
236 complex to completely displace the BHQ top strand forming one ternary complex per
237 DOL (Figure 2A, right). As a result, a quick rise in fluorescence was observed which
238 almost saturated within ~ 3.5 h of releasing the receptors. Similarly, using the same
239 DOL platform but with two additional linkers, we studied another case where two
240 Receptor_A and two Receptor_B were tethered per DOL which form two ternary
241 complexes per DOL (DOL^{2A2B}, Figure 2B). Figure 2D, orange curve, shows the
242 fluorescence kinetics for DOL^{2A2B} case. In all the cases, here and other cases
243 discussed later, to determine whether all the reporter complex has been consumed or

244 not, excess of *anchor_A* and *anchor_B* strands (without cholesterol modifications,
245 and 100 nM final concentration for each) was added and then the fluorescence was
246 measured for another 4 to 6 h. This helped us to normalize the data and also this
247 procedure provides an indirect way to measure DOL concentration by knowing the
248 fraction of reporter consumed (Supplementary Information Section 3). Thus, in all
249 these cases, the fluorescence saturation achieved at *c.a.* 36 h is related to the reporter
250 complex consumed by receptors present on DOL, and is thus dependent on the DOL
251 concentration in a particular fraction used for analyses as explained further.
252

253 After the purification step (Step D, Supplementary Figure S1D) the collected fractions
254 are expected to have different concentrations of DOL (with tethered receptors). Thus,
255 after adding *release_A* and *release_B* the maximum fluorescence intensity that can be
256 achieved in each fraction is proportional to the DOL concentration. For example,
257 electron microscope images and fluorescence intensity of DOL^{1A1B} suggested that
258 DOL concentration is higher in fractions 3 and 4 than in fraction 5 as shown in Figure
259 3 and Supplementary Figure S3 (see related discussion in Supplementary Section 1).
260 So, fractions 3 and 4 were pooled to have more volume for analyses. In Figure 2D, the
261 kinetics curve for DOL^{1A1B} is shown for the pooled fractions 3 and 4, which has
262 higher fluorescence intensity, thus higher DOL concentration, than fraction 5
263 (compared in Supplementary Figure S4A). On the other hand, in the case of DOL^{2A2B}
264 (Figure 2D) the fluorescence kinetics curve is shown for fraction 5, but the pooled
265 fractions (3+4) consumed the reporter complex completely (Supplementary Figure
266 S4A) which implies that total receptor concentration in pooled fractions (3+4) was at
267 least high as the reporter concentration (see related discussion in Supplementary
268 Information Sections 3 and 4). Thus, the fluorescence curve for combined fraction
269 (3+4) in DOL^{2A2B} case was not used to perform additional analyses (*e.g.* measuring
270 concentration or deriving rate constants).
271

272 We also explored the situation where two types of receptors were tethered to two
273 rings, which later dimerized and together templated a liposome (Supplementary
274 Information Section 5, Supplementary Figure S6 and Figure S7). Similar to the above
275 cases, both receptors were released on the template liposome bilayer and fluorescence
276 was measured in the presence of reporter complex (Figure 2C and 2D). The dimer
277 platform demonstrates that reactants can come from two different rings, which could
278 be potentially suitable for specific applications (discussed in Conclusions section).
279

280 **Inter-DOL receptor interactions.** The main purpose of the DOL platform is to
281 control and quantify single-molecule isolated interactions between receptors on the
282 same lipid bilayer surface (intra-DOL) with minimal cross-talk among the DOLs in
283 bulk solution. Thus, it is essential to determine any contribution originating from one
284 receptor interacting with the other on two different DOLs (inter-DOL). We created
285 DOL having only a single type of receptor, which allowed us to study receptor
286 interactions purely as inter-DOL reactions. For example, to evaluate possible inter-
287 DOL interactions in the case of DOL^{1A1B} (intra-DOL) we assembled DOL^{1A} and
288 DOL^{1B} individually, and then mixed (referred as interDOL^{1A1B}) equal volumes of
289 their purified fractions (pooled fractions 3+4 each case), and performed similar plate
290 reader measurements as described above for intra-DOL cases. Overall, Figure 2E
291 shows that the inter-DOL reaction rate is slower than the intra-DOL interaction. This
292 implies that most of the fluorescence signal obtained in the intra-DOL case, which has
293 faster reaction kinetics, is due to receptors anchored on the same surface. Similarly,

294 comparing inter-DOL interaction of DOL^{2A} and DOL^{2B} (interDOL^{2A2B}) with intra-
295 DOL DOL^{2A2B} faster kinetics was observed in DOL^{2A2B} (Figure 2D and 2E).
296

297 **Kinetics.** Figure 2D-F show kinetics curves for receptor interactions occurring intra-
298 DOL, inter-DOL and in solution respectively. Overall, the interaction process is a
299 trimolecular reaction where Aⁱ or Bⁱ intermediate is formed first as a bimolecular
300 reversible process between a receptor and a reporter molecule (Supplementary Figure
301 S2). Either intermediate can interact irreversibly with other complementary active
302 receptor to form a ternary complex for which the rate constant was derived from a
303 reaction between reporter complex and non-cholesterol modified receptors in solution
304 (Figure 2F, note the receptor concentration is approximately two orders of magnitude
305 higher than DOL cases in order to observe faster saturation kinetics; contrasting grey
306 curve in Figure 4B with receptors at 5 nM). Using the model described in
307 Supplementary Information Section 6 and Supplementary Figure S9, we deduce that,
308 due to high local receptor concentration and constraints on a fluid surface, the
309 effective rate constant of reaction is 2800-fold higher in DOL-bound receptors than
310 that measured in the solution case. Our model fits very well considering 1A1B and
311 2A2B stoichiometries used in our DOL-based experiments.
312

313 **Receptor tethering efficiency.** Absolute stoichiometry control requires near 100%
314 tethering efficiency of receptors. The DNA logic gate used for our DOL platforms is
315 cooperative, requiring two different receptors to react with the reporter. If the
316 tethering of receptors on the DOL ring is not 100% efficient, then it is possible to
317 have four different DOL populations in the same purified fraction: DOL with no
318 receptors, DOL with only Receptor_A, DOL with only Receptor_B, and DOL with
319 both the receptors.
320

321 To evaluate tethering efficiency in DOL^{1A1B}, we implement a DNA logic as shown in
322 Figure 4A. The logic is similar to the logic shown in Figure 1B, but in this case only
323 one receptor from DOL^{1A1B} platform was released while the other receptor remained
324 tethered to the DNA scaffold. For example, the starting reaction mixture contained
325 reporter complex (14 nM final concentration) with the purified DOL^{1A1B} along with
326 an excess of stimulant strand (200 nM final concentration, a non-cholesterol version
327 of *anchor_B*). The stimulant strand only partially triggers the reporter complex which
328 does not completely displace the BHQ top strand. No rise in fluorescence was
329 observed for the first 7 h (Figure 4B, red curve). After this, *release_A* (final
330 concentration 200 nM) was added to selectively release Receptor_A which resulted in
331 a sharp rise in fluorescence (red curve). A similar procedure was adopted to
332 selectively release Receptor_B (blue curve), or both receptors at the same time (cyan
333 curve).
334

335 Individually, completion levels of both the receptors, measured as a fraction of the
336 total reporter complex consumed after all reporter is triggered, are about the same: ~
337 4.9 nM for Receptor_A and ~ 4.7 nM for Receptor_B. Further, this indicates that the
338 tethering efficiency is similar for both the receptors. While the concentration of DOLs
339 with both receptors active is ~ 4.1 nM (completion level), assuming independence of
340 tethering efficiency the total DOL concentration is about 5.8 nM (4.9x4.7 / 4). Thus,
341 the calculated single labelling efficiency is 82-85%, and the double labelling
342 efficiency is ~71%.
343

344 We also show an example where both receptors were tethered on a ring (5 nM,
345 determined by absorption at 260 nm) without a liposome and were released together
346 in solution (Figure 4B, grey curve) containing 1% n-octyl- β -D-glucoside (OG)
347 detergent. The slower kinetics, in contrast to cases where at least one stimulant strand
348 is in excess (yellow and green curves), is expected because here both the receptors are
349 at only \sim 5 nM concentration. Interestingly, the saturation reached \sim 5 nM (almost
350 same as ring concentration) in both the cases when either of the receptors was
351 released. This could happen in a scenario where almost all the rings in the system
352 have both the receptors, indicating high efficiency for the liposome-free system.

353

354

355 **Conclusions**

356

357 Here we have shown stoichiometric, spatial and temporal (S²T) control for DNA
358 receptor complexes in membranes for two different stoichiometries, which in
359 principle could be scaled to different stoichiometries. A number of previous studies
360 have examined the reaction of DNA receptors in membranes, either for the purpose of
361 creating DNA circuits,^{48–51} studying diffusion within bilayers,⁶⁹ or creating artificial
362 signalling systems capable of transducing a DNA receptor dimerization event across a
363 membrane.^{70,71} In particular, one study⁴⁹ showed mild (75%) rate acceleration and
364 significantly decreased leak for TMSD receptor reactions confined to liposomes, in
365 the context of uncontrolled absolute stoichiometry. While none of these DNA
366 receptor systems has achieved full S²T control, they provide inspiration for future
367 uses of DOL. In the case of circuits, DOL will enable the implementation of systems
368 where exact numbers of molecular inputs are required, or where each DNA
369 computation cannot tolerate crosstalk with other copies of the DNA computation and
370 must run within its own self-contained volume.⁷² And while we have demonstrated
371 the release of up to four receptor reactants into the membrane, staple extensions on
372 our current DOL could easily support the independently triggered release of several
373 dozen different inputs, as required by a circuit, signalling cascade, or investigation of
374 a biological question.

375

376 In our current approach, the receptors' active domains (for release strand and reporter
377 binding) are positioned between the linker to the ring and the hydrophobic groups
378 (cholesterols) used as membrane anchors. This ensures that active domains are
379 positioned outside of the liposome. On the other hand, signalling transduction
380 systems^{70,71} suggest that it will be important to control the orientation of receptors
381 inserted into DOL membranes, so that signal output domains can be positioned within
382 the lumen of the DOL—*intra-liposomally*—when desired. In our system, an *intra-*
383 *liposomal* domain could be added by (1) lengthening the hydrophobic groups so that
384 they become a transmembrane domain and (2) attaching the desired domain to the
385 distal end of the hydrophobic groups, so that it extends into the liposomal lumen.
386 Ligands or auxiliary molecules meant to interact with *intraliposomal* domains could
387 be either explicitly positioned with the same strategy, or simply encapsulated during
388 the liposome formation. Where DOLs are used for membrane proteins, the position of
389 the DNA linker (whether it is attached to the cytosolic or extracellular domain) will
390 determine the orientation of the protein in the bilayer. When the linker is attached to
391 the extracellular domain, the membrane protein is expected to be oriented “normally”
392 so that the cytosolic domain is *intraliposomal*. When attached to the cytosolic domain

393 the membrane protein will be “flipped”, with the cytosolic domain on the outside,
394 where it can be studied and manipulated.

395
396 Each DOL is essentially a well-isolated reaction vessel with a controlled copy number
397 of reactants—a digital nanoreactor. A bulk sample of DOL can therefore be measured
398 without significant cross-reactions between vessels. As a result, properties which
399 have until now required sophisticated single-molecule (or single liposome)
400 techniques, can be measured using DOL via bulk fluorescence in a common plate
401 reader. Detailed variation between reaction trajectories on different liposomes is, of
402 course, averaged out by such bulk measurements, but variability in the number of
403 molecules that can participate in a reaction is tightly controlled. In contrast,
404 depending on the specific reactants and their concentrations, the extent of
405 oligomerization and resulting size of aggregates can be unlimited in bulk experiments.
406 As we have shown, bulk measurement of kinetics on DOL provides a sort of
407 “integration over digital nanoreactors” that preserves kinetics as a function of copy
408 number and maintains confinement of reactants to the restricted environment of the
409 nanoreactor. Thus, while DOL could be examined with a single molecule technique,
410 the DOL platform also enables a type of experiment whose window on the molecular
411 world lies somewhere between that of a single molecule experiment and classical bulk
412 technique (‘single molecule in bulk assay’).

413
414 We note that DNA nanostructure,^{73,74} DNA micelle,⁷⁵ protein organelle,⁷⁶ protein
415 nanopore,⁷⁷ viral,⁷⁸ vesicle,⁷⁹ MOFs⁸⁰ and polymersome⁸¹ nanoreactors or
416 zeptoreactors⁸² have been explored before, but none with the specific advantages
417 provided by DOL. Viral capsids have encapsulated single enzymes⁷⁸ and hollow
418 DNA origami have encapsulated exact numbers of enzymes within a cascade^{83,84} but
419 neither has yet enabled the exact number of reactants to be defined. DNA origami
420 with reactants constrained to remain on their surface^{34–38} provide fully digital
421 nanoreactors, with total control over the type and number of all reactants. Such
422 membrane-free platforms have even stronger spatial control than do DOL, able to
423 control local geometric configuration and reaction sequence. Especially interesting for
424 applications in signal amplification,³⁷ DNA computing³⁸ and molecular robotics,^{34–36}
425 they purchase extra spatial control at the cost of preventing reactants from diffusing
426 freely within the nanoreactor, as occurs in our DOL platform.

427
428 With respect to diffusion of reactants within the DOL, several questions remain. Here
429 we have not verified that the effective reaction area of the nanoreactors scales linearly
430 with the membrane area of the liposome (e.g., by making larger or smaller
431 liposomes). We have similarly not verified that receptors positioned away from the
432 equator of the ring (say at opposite poles) exhibit similar behavior to those
433 immobilized at the equator, to demonstrate the free diffusion of receptors from one
434 hemisphere to the other (across the liposome’s zone of contact with the ring).
435 Experiments to verify these aspects of DOL will be required to delineate the
436 conditions under which DOL can be modeled as simple nanoreactors in which the
437 membrane is homogeneous and its biophysical properties (e.g., receptor diffusion
438 constant) are independent of DOL size. For proteins whose oligomerization behavior
439 depends on membrane curvature,^{85,86} the assumption of DOL size-independent
440 behavior will likely fail, making modeling more challenging. On the positive side,
441 wherever membrane biophysics does turn out to be DOL size-dependent,
442 development of a series of DOL having a range of diameters could enable new

443 opportunities—e.g., protein sensors of membrane curvature could be studied and
444 engineered.

445
446 Because a main motivation of this work is the eventual study and control of
447 membrane protein interactions, it is important to discuss both the prospects and
448 potential challenges. In principle, using DOL with membrane proteins should be as
449 simple as replacing the DNA receptors with DNA-conjugated membrane proteins,
450 where the protein-DNA linkers carry appropriate FRET probes. DOL are currently
451 hybridized with cholesterol-modified DNA receptors in the presence of detergent, and
452 so tethering detergent-solubilized membrane proteins (conjugated to appropriate DNA
453 linkers) under similar conditions should be possible. However, as currently cast, the
454 DOL system best models ligand or chemically induced protein interactions, where the
455 reporter complex acts as the ligand to mediate receptor interactions. Such mediation
456 by the reporter complex, as well as triggered activation of the receptor toeholds for
457 the reporter complex by the release strands, provide two levels of protection against
458 any receptor interaction before it is desired. The result is that the DOL are resistant
459 against receptor-mediated inter-DOL leak reactions and DOL aggregation. In the case
460 of ligand-induced protein interactions, where the proteins under study should have
461 weak interactions before introduction of the appropriate ligand, we expect that current
462 DOL will perform adequately.

463
464 In the case of proteins with constitutive interactions⁸⁷ new techniques will be required
465 to use DOL with minimal leak and aggregation; that is to keep proteins in their
466 monomeric states. One approach may be to simply disrupt salt-sensitive constitutive
467 interactions with high salt during synthesis and purification, before performing a
468 concomitant trigger and buffer exchange step. Depending on the speed of intra-DOL
469 versus inter-DOL reactions, this approach may be sufficient. For some proteins,
470 whose interactions are denatured by detergent before the liposome forming step
471 removes the detergent, orienting their oligomerization domains to the inside of the
472 lumen may be sufficient. Overall, with just a few simple modifications in the basic
473 technique, DOL digital nanoreactors may have the potential to provide custom
474 instruments for the study and dissection of even the most complex membrane protein
475 interactions.

476

477

478 **Materials and Methods**

479

480 *Materials:* Modified and unmodified DNA strands were purchased from Integrated
481 DNA Technologies (IDT, USA). All staple strands, except those with linker
482 extensions, were obtained and used in an unpurified form. Staples with *linker_A* or
483 *linker_B* extensions were either purchased HPLC-purified or purchased unpurified
484 and PAGE-purified in-house before use. All receptor and reporter complex strands
485 were purchased HPLC-purified, dissolved in 1×TE buffer and stored at -20 °C.
486 Sequences for cholesterol-modified DNA (with a triethylene glycol linker), including
487 IDT modification codes are provided in Supplementary Table S1. Lipids were
488 purchased from Avanti Polar Lipids, USA. Gels were imaged using a ChemiDoc MP
489 instrument (Biorad, USA). In many buffers n-octyl-β-D-glucoside (OG) was added as
490 a detergent. Origami annealing buffer is 1xTE, 12.5 mM MgCl₂; TE-Mg buffer is
491 1xTE, 10 mM MgCl₂; TAE-Mg buffer is 1xTAE, 10 mM MgCl₂; TE-Mg-OG buffer
492 is 1% OG, 1xTE, 10 mM MgCl₂; HEPES-Mg-K is 10 mM MgCl₂, 25 mM HEPES,
493 100 mM KCl; HEPES-OG buffer is 1% OG in HEPES-Mg-K; in all cases 25 mM
494 HEPES buffer pH 7.4 adjusted with KOH. Where possible, final concentrations (f.c.)
495 of solution components are given.

496

497 *Ring design, assembly and purification:* We used a DNA origami ring design reported
498 earlier⁵⁹ with slight modifications for positioning linker strands. caDNAno⁸⁸ designs
499 and staple sequences are provided in the Supporting Information. DNA scaffold (8064
500 nucleotides), 100 nM f.c., was mixed with 6x excess of staple strands, including
501 linker strands in origami annealing buffer. DNA scaffold was produced from *E. coli*
502 and M13 derived bacteriophages.²⁹ Typically, 1000 μL reaction mix (scaffold and
503 staples) was prepared and divided in 20 tubes. All tubes were annealed from 95 to 20
504 °C over 36 h and then the annealed reactions were pooled and concentrated using 30
505 kDa Amicon 0.5 mL centrifugal filters. Filters were pre-wetted with TE-Mg by
506 centrifuging at 6000 RCF for 4 minutes. Afterward, pooled annealed reaction mix was
507 concentrated by loading 500 μL volume in two different filters by centrifuging at
508 8000 rpm for 8 minutes. Concentrated sample (total ~180 μL) was mixed with
509 glycerol (f.c. ~7%) and divided in two equal volumes for further purification. To
510 make a gradient, ~2.5 mL each of 15% and 45% glycerol in TE-Mg were loaded
511 initially into an ultracentrifuge tube to form two layers, which were converted into a
512 continuous gradient using Biocomp gradient station. Finally, each volume (in 7%
513 glycerol mentioned above) was loaded on top of freshly made gradient and purified
514 using rate-zonal ultracentrifugation by rotating at 304,000 RCF for 1 h at 4°C. After
515 this, ~20 fractions (200 μL each) were collected manually from the centrifuge tubes.
516 To determine the fraction containing desired product, 5 μL of each fraction was
517 loaded in 1.5 % agarose gel (prepared with TAE-Mg buffer having ethidium bromide
518 as a pre-stain) and the gel was run at room temperature by applying 60 V for 1.5 h in
519 TAE-Mg. Based on gel results (Supplementary Figure S1B) the desired fractions were
520 pooled and concentrated using 30 kDa Amicon 0.5 mL centrifugal filters (as above).
521 At the end of this step, only trace amounts of staples remained. To remove glycerol
522 from the concentrated sample, we performed one or two 400 μL TE-Mg washes; trace
523 glycerol at this step did not affect downstream steps. Ring concentration was by
524 measuring UV absorption at 260 nm using a Nanodrop spectrophotometer. Purified
525 rings were stored at 4 °C (and used within a week) or -20 °C (and used within one or
526 two months).

527

528 *Annealing reporter and receptors:* For the reporter complex, top strand (with black
529 hole quencher, see Table 1 for IDT order code) was added in 1.5 \times excess of the
530 bottom strand (with fluorescein, see Table 1 for IDT code) with f.c. 300 nM and 200
531 nM respectively. The total volume in TE-Mg buffer was ~1000 μ L. Reaction mix
532 was annealed in different tubes (each ~100 μ L) from 95 to 20 °C over 2 h. Annealed
533 reactions were pooled together, stored at 4 °C, and later used without further
534 purification. The same batch of reporter complex was used for all plate reader
535 measurements. Freshly thawed and annealed volumes of cholesterol receptor
536 complexes were used for each experiment. 10 μ M aliquots of the cholesterol-modified
537 strands stored at -20 °C were thawed at room temperature at least for 1 h. Annealing
538 was performed from 95 to 20 °C over 2 h using 2x excess of *anchor_A** or *anchor_B**
539 (f.c. 600 nM) with *anchor_A* or *anchor_B* (f.c. 300 nM) in TE-Mg-OG. Annealed
540 receptors were used further without purification.

541

542 *Tethering DNA receptors to rings and purification:* Purified rings containing linkers
543 were incubated with freshly annealed receptors at 37 °C for 1 h in TE-Mg-OG buffer
544 modified to have 1.15% OG. For DOL^{1A1B}, Receptor_A and Receptor_B (f.c. 90 nM
545 each) were added at 3 \times in excess of ring (f.c. 30 nM) containing one *linker_A* and one
546 *linker_B*. For DOL^{2A1B}, Receptor_A (f.c. 135 nM) was 4.5 \times in excess while
547 Receptor_B was 3 \times in excess of ring (f.c. 30 nM) containing two *linker_A* and one
548 *linker_B*. For DOL^{2A2B}, Receptor_A and Receptor_B (f.c. 135 nM each) were 4.5 \times in
549 excess of ring (f.c. 30 nM) containing two *linker_A* and two *linker_B*. In general, the
550 total incubation volume was ~200 μ L. To remove the excess receptors and to
551 determine the desired fractions, we followed a rate-zonal ultracentrifugation
552 purification procedure and agarose gel analysis steps similar to those described above
553 for rings, with minor differences. Here, a 15–45% glycerol gradient was prepared
554 with detergent (in TE-Mg-OG) and centrifuged at 10° C (rather than 4° C). Desired
555 fractions were pooled and concentrated using 30 kDa 0.5 mL Amicon centrifugal
556 filters, with one or two 400 μ L final TE-Mg-OG buffer washes. Ring concentration
557 was estimated by UV absorption at 260 nm using a Nanodrop spectrophotometer; the
558 purified product was stored at 4 °C and used the next day.

559 *DOL formation and purification:* Stock 10 mM lipid mixture was made with 75:20:5
560 molar ratio of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-
561 glycero-3-phospho-L-serine (DOPS), 1,2-dioleoyl-sn-glycero-3-phosphoethanol-
562 amine-N-[methoxy(polyethylene glycol)-2000] (PEG2000-PE) respectively in
563 chloroform (f.c.: 7.5 mM DOPC, 2 mM DOPS, 0.5 mM PEG2000-PE). A desired
564 volume of this stock was dried under nitrogen gas for 10–20 min and then further
565 dried for 3 h in a freeze dryer (Freezone 1, Labconco). For use, dried lipids were
566 rehydrated to a concentration of 10 mM lipids with 25 mM HEPES and 100 mM KCl
567 buffer and shaken for 0.5 h at room temperature. The ring has handles (32 staple
568 extensions in the case of two receptors and 30 for four receptors), which can hybridize
569 with antihandles made of cholesterol-modified oligonucleotides (Step C, Figure 1A).
570 These antihandles act as seeds for liposome formation. Each purified sample of ‘rings
571 with hybridized receptors’ (f.c. 30 nM) was incubated with cholesterol-containing
572 antihandles (f.c. 1.8 μ M) at 37 °C for 1 h in HEPES-OG buffer. After incubation, each
573 sample of ‘rings with hybridized receptors and antihandles’ (f.c. 15 nM) was mixed
574 with hydrated lipids (f.c. 1.5 mM) in HEPES-OG buffer to create a total volume ~150
575 μ L and was shaken gently for 0.5 h at 25 °C. To remove the detergent and to form
576 liposomes inside the rings, the mixture was transferred to Slide-A-Lyzer 0.5 mL 7

577 kDa dialysis cassette using a syringe. Dialysis was done overnight at room
578 temperature against 2 L HEPES-OG buffer.

579 To purify the dialysis mix we performed isopycnic ultracentrifugation, using 6–30%
580 iodixanol gradients in HEPES-Mg-K where less dense free liposomes float to the top,
581 and rings holding liposomes are distributed in lower fractions. After overnight
582 dialysis we typically recovered ~210 μ L per sample. For each sample, 200 μ L was
583 used and divided in two 100 μ L replicates and each replicate was mixed with 200 μ L
584 of 45% iodixanol in HEPES-Mg-K. Thus for each replicate a total of 300 μ L
585 containing 30% iodixanol was placed at the bottom of an ultracentrifuge tube, above
586 which 60 μ L each of 26%, 22%, 18%, 14%, 10%, and 6% of iodixanol were layered
587 (bottom to top) via manual pipetting. Samples were centrifuged at 280,000 RCF for
588 5 h at 4 °C and twelve or thirteen 50 μ L fractions were collected from each centrifuge
589 tube. Fractions were collected in tubes that had been pre-rinsed with a blocking
590 solution (1 μ M 15T oligonucleotides in HEPES-Mg-K buffer); all tubes used after
591 this step (for pooling or transfer) are also pre-rinsed with blocking solution. For each
592 DOL, identical fractions from replicates were pooled, and pooled fraction 3 and
593 fraction 4 were further combined. To each pooled sample 15T oligo was added to 1
594 μ M f.c.

595
596 *Fluorescence plate reader experiments:* A Biotek Cytation-1 plate reader was used for
597 real-time fluorescence measurements. Plate reader measurements were done at 25 °C
598 using a 475/20 nm excitation filter and a 530/25 nm emission filter. Samples were
599 loaded manually into Corning 384-well assay plates (black with clear flat bottoms).
600 To avoid sample evaporation, plate wells were sealed with Nunc polyolefin acrylate
601 sealing tape. Before loading samples, wells were pipette-rinsed with blocking
602 solution. To each DOL tested, reporter complex was added (4.7 or 14 nM f.c.) and
603 samples were mixed gently via manual pipetting. Next, 46.2 μ L of each sample was
604 loaded per well, making sure no air bubbles were trapped in the wells. Baseline
605 fluorescence was first measured for ~7 h. Release strands were added (0.9 μ L of a
606 stock containing 5 μ M each of *release_A* and *release_B* to create 100 nM f.c. of each
607 release strand) to initiate receptor interactions, which were measured for a further
608 ~18 h. To establish a maximum fluorescence endpoint, with which each samples trace
609 could be normalized, we triggered any remaining reporter complex by adding excess
610 *anchor_A* and *anchor_B* strands (versions without cholesterol modifications, to 100
611 nM f.c. for each) and then measured the fluorescence for another 4 to 6 h.

612
613 *TEM sample preparation:* Uranyl formate negative stain solution (1% w/v) is acidic
614 and can denature DNA nanostructures; thus one ml aliquots were neutralized by
615 adding 2.5 μ L of 5M NaOH prior to use (see guidelines for preparation and storage
616 elsewhere⁸⁹). DOL samples (5 μ L) were deposited on a glow-discharged
617 formvar/carbon coated copper grid (Ted Pella, Inc.) for 1 minute, and liquid was
618 blotted away using filter paper. Each grid was subsequently washed with 7.5 μ L of
619 HEPES-Mg-K buffer and stained with 7.5 μ L neutralized uranyl formate negative
620 stain for 1 minute. Negative-stain TEM images were acquired using an FEI Tecnai
621 T12 TEM (120 kV) equipped with an EDS detector and 4k x 4k Gatan Ultrascan
622 CCD.
623

624 *Analyses and plots:* Raw plate reader data (in text format) analyses were performed
625 using custom PERL scripts. Plots were created using XMGRACE⁹⁰ or *gnuplot*
626 (www.gnuplot.info).
627

628

629 **Author contributions**

630

631 V.M. conceived the original idea, designed, performed and analyzed most
632 experiments, and wrote the manuscript first draft. V.M., Z.Z., C.T. and P.W.K.R.
633 contributed further ideas. C.T., V.M., and P.W.K.R. designed the DNA logic circuit
634 and analyzed kinetics data. Z.Z. designed the origami, assisted in DOL synthesis, and
635 performed TEM. N.S. and C.T. modelled the DNA circuit. E.R.C. mentored and
636 hosted V.M. All authors discussed the results and participated in manuscript writing.
637

638

639 **Acknowledgements**

640

641 V.M. acknowledges Erik Winfree and Lulu Qian for both their comments and access
642 to equipment for initial experiments. V.M. thanks Human Frontier Science Program
643 (HFSP LT001164/2017-L) for a Postdoctoral Fellowship and Caltech for additional
644 support. This study was supported by National Institute of Mental Health awards
645 MH125320 (to P.W.K.R. and E.R.C.), MH061876 and NS097362 (to E.R.C.), and a
646 Faculty Early Career Development Award from NSF CCF 2143227 (to C.T.). E.R.C.
647 is an investigator of the Howard Hughes Medical Institute (HHMI). This article is
648 subject to HHMI's Open Access to Publications policy. HHMI lab heads have
649 previously granted a nonexclusive CC BY 4.0 license to the public and a
650 sublicensable license to HHMI in their research articles. Pursuant to those licenses,
651 the author-accepted manuscript of this article can be made freely available under a CC
652 BY 4.0 license immediately upon publication.
653

654

Competing interests

655

The authors declare no competing financial interests.

656

657

658 **References**

659

- 660 (1) Cho, W.; Stahelin, R. V. Membrane-Protein Interactions in Cell Signaling and Membrane
661 Trafficking. *Annu. Rev. Biophys. Biomol. Struct.* **2005**, *34*, 119–151.
- 662 (2) Khoubza, L.; Chatelain, F. C.; Feliciangeli, S.; Lesage, F.; Bichet, D. Physiological Roles of
663 Heteromerization: Focus on the Two-Pore Domain Potassium Channels. *J. Physiol.* **2021**, *599*,
664 1041–1055.
- 665 (3) Kasai, R. S.; Kusumi, A. Single-Molecule Imaging Revealed Dynamic GPCR Dimerization.
666 *Curr. Opin. Cell Biol.* **2014**, *27*, 78–86.
- 667 (4) Milligan, G.; Ward, R. J.; Marsango, S. GPCR Homo-Oligomerization. *Curr. Opin. Cell Biol.*
668 **2019**, *57*, 40–47.
- 669 (5) Singh, D. R.; King, C.; Salotto, M.; Hristova, K. Revisiting a Controversy: The Effect of EGF
670 on EGFR Dimer Stability. *Biochim. Biophys. Acta - Biomembr.* **2020**, *1862*, 183015.
- 671 (6) George, S. R.; O'Dowd, B. F.; Lee, S. P. G-Protein-Coupled Receptor Oligomerization and Its
672 Potential for Drug Discovery. *Nat. Rev. Drug Discov.* **2002**, *1*, 808–820.
- 673 (7) Yin, H.; Flynn, A. D. Drugging Membrane Protein Interactions. *Annu. Rev. Biomed. Eng.*
674 **2016**, *18*, 51–76.
- 675 (8) Tsigelny, I. F.; Crews, L.; Desplats, P.; Shaked, G. M.; Sharikov, Y.; Mizuno, H.; Spencer, B.;

676 Rockenstein, E.; Trejo, M.; Platoshyn, O.; Yuan, J. X.-J.; Masliah, E. Mechanisms of Hybrid
677 Oligomer Formation in the Pathogenesis of Combined Alzheimer's and Parkinson's Diseases.
678 *PLoS One* **2008**, 3, e3135.

679 (9) Bagheri, Y.; Ali, A. A.; You, M. Current Methods for Detecting Cell Membrane Transient
680 Interactions. *Frontiers in Chemistry* . 2020, p 1074.

681 (10) Watt, A. D.; Perez, K. A.; Rembach, A.; Sherrat, N. A.; Hung, L. W.; Johanssen, T.; McLean,
682 C. A.; Kok, W. M.; Hutton, C. A.; Fodero-Tavoletti, M.; Masters, C. L.; Villemagne, V. L.;
683 Barnham, K. J. Oligomers, Fact or Artefact? SDS-PAGE Induces Dimerization of β -Amyloid
684 in Human Brain Samples. *Acta Neuropathol.* **2013**, 125, 549–564.

685 (11) Weerasekera, R.; Schmitt-Ulms, G. Crosslinking Strategies for the Study of Membrane Protein
686 Complexes and Protein Interaction Interfaces. *Biotechnol. Genet. Eng. Rev.* **2006**, 23, 41–62.

687 (12) Sasmal, D. K.; Pulido, L. E.; Kasal, S.; Huang, J. Single-Molecule Fluorescence Resonance
688 Energy Transfer in Molecular Biology. *Nanoscale* **2016**, 8, 19928–19944.

689 (13) Stockbridge, R. B.; Robertson, J. L.; Kolmakova-Partensky, L.; Miller, C. A Family of
690 Fluoride-Specific Ion Channels with Dual-Topology Architecture. *Elife* **2013**, 2, e01084.

691 (14) Chadda, R.; Robertson, J. L. Chapter Three - Measuring Membrane Protein Dimerization
692 Equilibrium in Lipid Bilayers by Single-Molecule Fluorescence Microscopy. In *Single-
693 Molecule Enzymology: Fluorescence-Based and High-Throughput Methods*; Spies, M.,
694 Chemla, Y. R. B. T.-M. in E., Eds.; Academic Press, 2016; Vol. 581, pp 53–82.

695 (15) King, C.; Raicu, V.; Hristova, K. Understanding the FRET Signatures of Interacting Membrane
696 Proteins. *J. Biol. Chem.* **2017**, 292, 5291–5310.

697 (16) Wang, Y.; Liu, Y.; DeBerg, H. A.; Nomura, T.; Hoffman, M. T.; Rohde, P. R.; Schulten, K.;
698 Martinac, B.; Selvin, P. R. Single Molecule FRET Reveals Pore Size and Opening Mechanism
699 of a Mechano-Sensitive Ion Channel. *Elife* **2014**, 3, e01834.

700 (17) Gupta, K.; Donlan, J. A. C.; Hopper, J. T. S.; Uzdavinyi, P.; Landreh, M.; Struwe, W. B.;
701 Drew, D.; Baldwin, A. J.; Stansfeld, P. J.; Robinson, C. V. The Role of Interfacial Lipids in
702 Stabilizing Membrane Protein Oligomers. *Nature* **2017**, 541, 421–424.

703 (18) Funke, J. J.; Ketterer, P.; Lieleg, C.; Schunter, S.; Korber, P.; Dietz, H. Uncovering the Forces
704 between Nucleosomes Using DNA Origami. *Sci. Adv.* **2016**, 2, e1600974.

705 (19) Shaw, A.; Hoffecker, I. T.; Smyrlaki, I.; Rosa, J.; Grevys, A.; Bratlie, D.; Sandlie, I.;
706 Michaelsen, T. E.; Andersen, J. T.; Höglberg, B. Binding to Nanopatterned Antigens Is
707 Dominated by the Spatial Tolerance of Antibodies. *Nat. Nanotechnol.* **2019**, 14, 184–190.

708 (20) Dong, R.; Aksel, T.; Chan, W.; Germain, R. N.; Vale, R. D.; Douglas, S. M. DNA Origami
709 Patterning of Synthetic T Cell Receptors Reveals Spatial Control of the Sensitivity and
710 Kinetics of Signal Activation. *Proc. Natl. Acad. Sci.* **2021**, 118, e2109057118.

711 (21) Aksel, T.; Yu, Z.; Cheng, Y.; Douglas, S. M. Molecular Goniometers for Single-Particle Cryo-
712 Electron Microscopy of DNA-Binding Proteins. *Nat. Biotechnol.* **2021**, 39, 378–386.

713 (22) Endo, M.; Xing, X.; Zhou, X.; Emura, T.; Hidaka, K.; Tuesuwan, B.; Sugiyama, H. Single-
714 Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif
715 Site in the DNA Nanostructure. *ACS Nano* **2015**, 9, 9922–9929.

716 (23) Suzuki, Y.; Endo, M.; Katsuda, Y.; Ou, K.; Hidaka, K.; Sugiyama, H. DNA Origami Based
717 Visualization System for Studying Site-Specific Recombination Events. *J. Am. Chem. Soc.*
718 **2014**, 136, 211–218.

719 (24) Kosuri, P.; Altheimer, B. D.; Dai, M.; Yin, P.; Zhuang, X. Rotation Tracking of Genome-
720 Processing Enzymes Using DNA Origami Rotors. *Nature* **2019**, 572, 136–140.

721 (25) Cai, X.; Arias, D. S.; Velazquez, L. R.; Vexler, S.; Bevier, A. L.; Fygenson, D. K. DNA
722 Nunchucks: Nanoinstrumentation for Single-Molecule Measurement of Stiffness and Bending.
723 *Nano Lett.* **2020**, 20, 1388–1395.

724 (26) Dey, S.; Fan, C.; Gothelf, K. V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M. A. D.; Saccà, B.;
725 Simmel, F. C.; Yan, H.; Zhan, P. DNA Origami. *Nat. Rev. Methods Prim.* **2021**, 1, 13.

726 (27) Rothemund, P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns. *Nature* **2006**,
727 440, 297–302.

728 (28) Wei, B.; Dai, M.; Yin, P. Complex Shapes Self-Assembled from Single-Stranded DNA Tiles.
729 *Nature* **2012**, 485, 623–626.

730 (29) Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M. Self-Assembly of
731 DNA into Nanoscale Three-Dimensional Shapes. *Nature* **2009**, 459, 414–418.

732 (30) Ke, Y.; Ong, L. L.; Shih, W. M.; Yin, P. Three-Dimensional Structures Self-Assembled from
733 DNA Bricks. *Science (80-.)* **2012**, 338, 1177–1183.

734 (31) Ramezani, H.; Dietz, H. Building Machines with DNA Molecules. *Nat. Rev. Genet.* **2020**, 21,
735 5–26.

736 (32) Chandrasekaran, A. R. Programmable DNA Scaffolds for Spatially-Ordered Protein Assembly.
737 *Nanoscale* **2016**, *8*, 4436–4446.

738 (33) Hannewald, N.; Winterwerber, P.; Zechel, S.; Ng, D. Y. W.; Hager, M. D.; Weil, T.; Schubert,
739 U. S. DNA Origami Meets Polymers: A Powerful Tool for the Design of Defined
740 Nanostructures. *Angew. Chemie Int. Ed.* **2021**, *60*, 6218–6229.

741 (34) Lund, K.; Manzo, A. J.; Dabby, N.; Michelotti, N.; Johnson-Buck, A.; Nangreave, J.; Taylor,
742 S.; Pei, R.; Stojanovic, M. N.; Walter, N. G.; Winfree, E.; Yan, H. Molecular Robots Guided
743 by Prescriptive Landscapes. *Nature* **2010**, *465*, 206–210.

744 (35) Thubagere, A. J.; Li, W.; Johnson, R. F.; Chen, Z.; Doroudi, S.; Lee, Y. L.; Izatt, G.; Wittman,
745 S.; Srinivas, N.; Woods, D.; Winfree, E.; Qian, L. A Cargo-Sorting DNA Robot. *Science* (80-
746 J.) **2017**, *357*, eaan6558.

747 (36) Wickham, S. F. J.; Bath, J.; Katsuda, Y.; Endo, M.; Hidaka, K.; Sugiyama, H.; Turberfield, A.
748 J. A DNA-Based Molecular Motor That Can Navigate a Network of Tracks. *Nat. Nanotechnol.*
749 **2012**, *7*, 169–173.

750 (37) Bui, H.; Shah, S.; Mokhtar, R.; Song, T.; Garg, S.; Reif, J. Localized DNA Hybridization
751 Chain Reactions on DNA Origami. *ACS Nano* **2018**, *12*, 1146–1155.

752 (38) Qian, L.; Winfree, E. Parallel and Scalable Computation and Spatial Dynamics with DNA-
753 Based Chemical Reaction Networks on a Surface - DNA Computing and Molecular
754 Programming; Murata, S., Kobayashi, S., Eds.; Springer International Publishing: Cham, 2014;
755 pp 114–131.

756 (39) Yang, Y.; Wang, J.; Shigematsu, H.; Xu, W.; Shih, W. M.; Rothman, J. E.; Lin, C. Self-
757 Assembly of Size-Controlled Liposomes on DNA Nanotemplates. *Nat. Chem.* **2016**, *8*, 476.

758 (40) Darley, E.; Singh, J. K. D.; Surace, N. A.; Wickham, S. F. J.; Baker, M. A. B. The Fusion of
759 Lipid and DNA Nanotechnology. *Genes (Basel)* **2019**, *10*, 1001.

760 (41) Mognetti, B. M.; Cicuta, P.; Di Michele, L. Programmable Interactions with Biomimetic DNA
761 Linkers at Fluid Membranes and Interfaces. *Reports Prog. Phys.* **2019**, *82*, 116601.

762 (42) Burns, J. R.; Stulz, E.; Howorka, S. Self-Assembled DNA Nanopores That Span Lipid
763 Bilayers. *Nano Lett.* **2013**, *13*, 2351–2356.

764 (43) Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F.
765 C. Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures. *Sci.* **2012**,
766 *338*, 932–936.

767 (44) Franquelim, H. G.; Khmelinskaia, A.; Sobczak, J.-P.; Dietz, H.; Schwille, P. Membrane
768 Sculpting by Curved DNA Origami Scaffolds. *Nat. Commun.* **2018**, *9*, 811.

769 (45) Zhao, Z.; Zhang, M.; Hogle, J. M.; Shih, W. M.; Wagner, G.; Nasr, M. L. DNA-Corralled
770 Nanodiscs for the Structural and Functional Characterization of Membrane Proteins and Viral
771 Entry. *J. Am. Chem. Soc.* **2018**, *140*, 10639–10643.

772 (46) Iric, K.; Subramanian, M.; Oertel, J.; Agarwal, N. P.; Matthies, M.; Periole, X.; Sakmar, T. P.;
773 Huber, T.; Fahmy, K.; Schmidt, T. L. DNA-Encircled Lipid Bilayers. *Nanoscale* **2018**, *10*,
774 18463–18467.

775 (47) Zhang, Z.; Chapman, E. R. Programmable Nanodisc Patterning by DNA Origami. *Nano Lett.*
776 **2020**, *20*, 6032–6037.

777 (48) Fabry-Wood, A.; Fetrow, M. E.; Brown, C. W.; Baker, N. A.; Fernandez Oropeza, N.; Shreve,
778 A. P.; Montaño, G. A.; Stefanovic, D.; Lakin, M. R.; Graves, S. W. A Microsphere-Supported
779 Lipid Bilayer Platform for DNA Reactions on a Fluid Surface. *ACS Appl. Mater. Interfaces*
780 **2017**, *9*, 30185–30195.

781 (49) Kaufhold, W. T.; Brady, R. A.; Tuffnell, J. M.; Cicuta, P.; Di Michele, L. Membrane Scaffolds
782 Enhance the Responsiveness and Stability of DNA-Based Sensing Circuits. *Bioconjug. Chem.*
783 **2019**, *30*, 1850–1859.

784 (50) Seo, J.; Kim, S.; Park, H. H.; Choi, D. Y.; Nam, J.-M. Nano-Bio-Computing Lipid Nanotablet.
785 *Sci. Adv.* **2019**, *5*, eaau2124.

786 (51) Song, T.; Shah, S.; Bui, H.; Garg, S.; Eshra, A.; Fu, D.; Yang, M.; Mokhtar, R.; Reif, J.
787 Programming DNA-Based Biomolecular Reaction Networks on Cancer Cell Membranes. *J.
788 Am. Chem. Soc.* **2019**, *141*, 16539–16543.

789 (52) Beales, P. A.; Vanderlick, T. K. Application of Nucleic Acid–Lipid Conjugates for the
790 Programmable Organisation of Liposomal Modules. *Adv. Colloid Interface Sci.* **2014**, *207*,
791 290–305.

792 (53) Lopez, A.; Liu, J. DNA Oligonucleotide-Functionalized Liposomes: Bioconjugate Chemistry,
793 Biointerfaces, and Applications. *Langmuir* **2018**, *34*, 15000–15013.

794 (54) Pfeiffer, I.; Höök, F. Bivalent Cholesterol-Based Coupling of Oligonucleotides to Lipid
795 Membrane Assemblies. *J. Am. Chem. Soc.* **2004**, *126*, 10224–10225.

796 (55) Xu, W.; Nathwani, B.; Lin, C.; Wang, J.; Karatekin, E.; Pincet, F.; Shih, W.; Rothman, J. E. A
797 Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. *J. Am.*
798 *Chem. Soc.* **2016**, *138*, 4439–4447.

799 (56) Löffler, P. M. G.; Ries, O.; Rabe, A.; Okholm, A. H.; Thomsen, R. P.; Kjems, J.; Vogel, S. A
800 DNA-Programmed Liposome Fusion Cascade. *Angew. Chemie Int. Ed.* **2017**, *56*, 13228–
801 13231.

802 (57) Ries, O.; Löffler, P. M. G.; Rabe, A.; Malavan, J. J.; Vogel, S. Efficient Liposome Fusion
803 Mediated by Lipid–Nucleic Acid Conjugates. *Org. Biomol. Chem.* **2017**, *15*, 8936–8945.

804 (58) Göpfrich, K.; Platzman, I.; Spatz, J. P. Mastering Complexity: Towards Bottom-up
805 Construction of Multifunctional Eukaryotic Synthetic Cells. *Trends Biotechnol.* **2018**, *36*, 938–
806 951.

807 (59) Zhang, Z.; Yang, Y.; Pincet, F.; Llaguno, M. C.; Lin, C. Placing and Shaping Liposomes with
808 Reconfigurable DNA Nanocages. *Nat. Chem.* **2017**, *9*, 653–659.

809 (60) Ori, A.; Banterle, N.; Iskar, M.; Andrés-Pons, A.; Escher, C.; Khanh Bui, H.; Sparks, L.; Solis-
810 Mezarino, V.; Rinner, O.; Bork, P.; Lemke, E. A.; Beck, M. Cell Type-Specific Nuclear Pores:
811 A Case in Point for Context-Dependent Stoichiometry of Molecular Machines. *Mol. Syst. Biol.*
812 **2013**, *9*, 648.

813 (61) Akhavantabib, N.; Krzizike, D. D.; Neumann, V.; D'Arcy, S. Stoichiometry of Rtt109
814 Complexes with Vps75 and Histones H3-H4. *Life Sci. Alliance* **2020**, *3*, e202000771.

815 (62) Rajoo, S.; Vallotton, P.; Onischenko, E.; Weis, K. Stoichiometry and Compositional Plasticity
816 of the Yeast Nuclear Pore Complex Revealed by Quantitative Fluorescence Microscopy. *Proc.*
817 *Natl. Acad. Sci.* **2018**, *115*, E3969–E3977.

818 (63) Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Enzyme-Free Nucleic Acid Logic
819 Circuits. *Science (80-)* **2006**, *314*, 1585 LP – 1588.

820 (64) Zhang, D. Y.; Seelig, G. Dynamic DNA Nanotechnology Using Strand-Displacement
821 Reactions. *Nat. Chem.* **2011**, *3*, 103–113.

822 (65) Simmel, F. C.; Yurke, B.; Singh, H. R. Principles and Applications of Nucleic Acid Strand
823 Displacement Reactions. *Chem. Rev.* **2019**, *119*, 6326–6369.

824 (66) Dirks, R. M.; Bois, J. S.; Schaeffer, J. M.; Winfree, E.; Pierce, N. A. Thermodynamic Analysis
825 of Interacting Nucleic Acid Strands. *SIAM Rev.* **2007**, *49*, 65–88.

826 (67) SantaLucia, J. A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-
827 Neighbor Thermodynamics. *Proc. Natl. Acad. Sci.* **1998**, *95*, 1460 LP – 1465.

828 (68) Zhang, D. Y. Cooperative Hybridization of Oligonucleotides. *J. Am. Chem. Soc.* **2011**, *133*,
829 1077–1086.

830 (69) Dave, N.; Liu, J. Biomimetic Sensing Based on Chemically Induced Assembly of a Signaling
831 DNA Aptamer on a Fluid Bilayer Membrane. *Chem. Commun.* **2012**, *48*, 3718–3720.

832 (70) Chen, H.; Zhou, L.; Li, C.; He, X.; Huang, J.; Yang, X.; Shi, H.; Wang, K.; Liu, J. Controlled
833 Dimerization of Artificial Membrane Receptors for Transmembrane Signal Transduction.
834 *Chem. Sci.* **2021**, *12*, 8224–8230.

835 (71) Liu, G.; Huang, S.; Liu, X.; Chen, W.; Ma, X.; Cao, S.; Wang, L.; Chen, L.; Yang, H. DNA-
836 Based Artificial Signaling System Mimicking the Dimerization of Receptors for Signal
837 Transduction and Amplification. *Anal. Chem.* **2021**, *93*, 13807–13814.

838 (72) Qian, L.; Soloveichik, D.; Winfree, E. Efficient Turing-Universal Computation with DNA
839 Polymers BT - DNA Computing and Molecular Programming; Sakakibara, Y., Mi, Y., Eds.;
840 Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp 123–140.

841 (73) Liu, M.; Fu, J.; Hejlesen, C.; Yang, Y.; Woodbury, N. W.; Gothelf, K.; Liu, Y.; Yan, H. A
842 DNA Tweezer-Actuated Enzyme Nanoreactor. *Nat Commun* **2013**, *4*.

843 (74) Fu, J.; Wang, Z.; Liang, X. H.; Oh, S. W.; St. Iago-McRae, E.; Zhang, T. DNA-Scaffolded
844 Proximity Assembly and Confinement of Multienzyme Reactions. *Top. Curr. Chem.* **2020**,
845 378, 38.

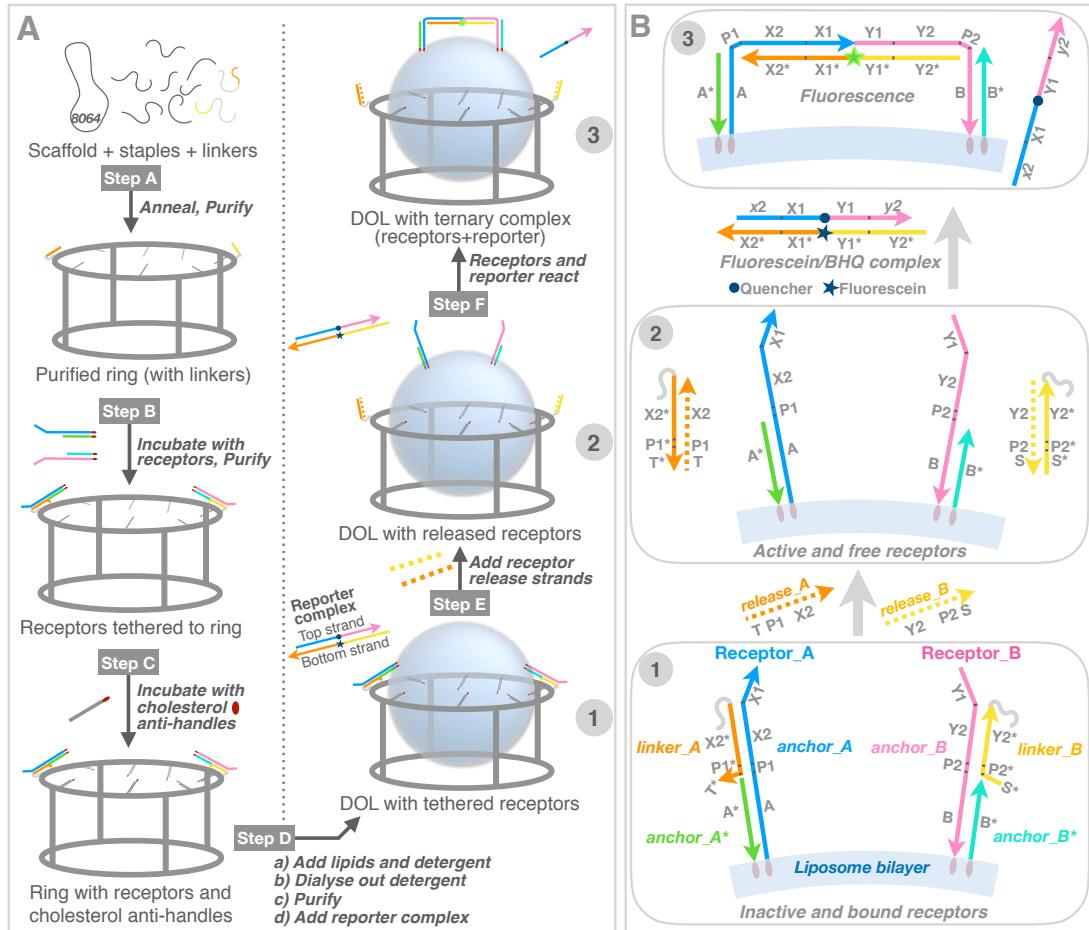
846 (75) Trinh, T.; Chidchob, P.; Bazzi, H. S.; Sleiman, H. F. DNA Micelles as Nanoreactors: Efficient
847 DNA Functionalization with Hydrophobic Organic Molecules. *Chem. Commun.* **2016**, *52*,
848 10914–10917.

849 (76) Li, T.; Jiang, Q.; Huang, J.; Aitchison, C. M.; Huang, F.; Yang, M.; Dykes, G. F.; He, H.-L.;
850 Wang, Q.; Sprick, R. S.; Cooper, A. I.; Liu, L.-N. Reprogramming Bacterial Protein Organelles
851 as a Nanoreactor for Hydrogen Production. *Nat. Commun.* **2020**, *11*, 5448.

852 (77) Jia, W.; Hu, C.; Wang, Y.; Gu, Y.; Qian, G.; Du, X.; Wang, L.; Liu, Y.; Cao, J.; Zhang, S.;
853 Yan, S.; Zhang, P.; Ma, J.; Chen, H.-Y.; Huang, S. Programmable Nano-Reactors for
854 Stochastic Sensing. *Nat. Commun.* **2021**, *12*, 5811.

855 (78) Comellas-Aragonès, M.; Engelkamp, H.; Claessen, V. I.; Sommerdijk, N. A. J. M.; Rowan, A.

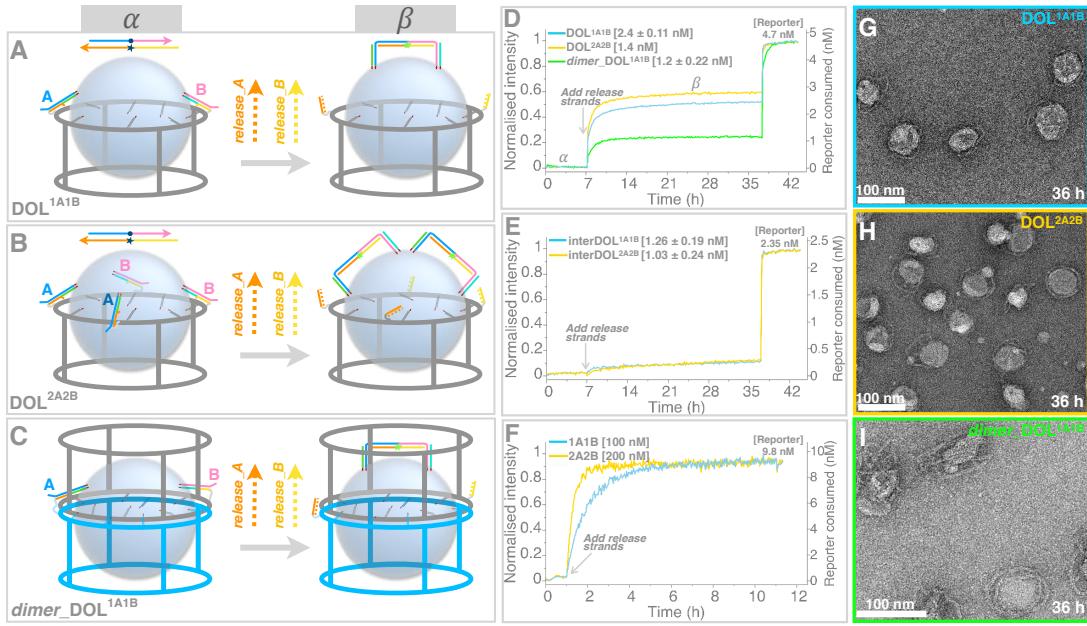
856 E.; Christianen, P. C. M.; Maan, J. C.; Verduin, B. J. M.; Cornelissen, J. J. L. M.; Nolte, R. J.
857 M. A Virus-Based Single-Enzyme Nanoreactor. *Nat. Nanotechnol.* **2007**, *2*, 635–639.
858 (79) Bolinger, P.-Y.; Stamou, D.; Vogel, H. Integrated Nanoreactor Systems: Triggering the
859 Release and Mixing of Compounds Inside Single Vesicles. *J. Am. Chem. Soc.* **2004**, *126*,
860 8594–8595.
861 (80) Man, T.; Xu, C.; Liu, X.-Y.; Li, D.; Tsung, C.-K.; Pei, H.; Wan, Y.; Li, L. Hierarchically
862 Encapsulating Enzymes with Multi-Shelled Metal-Organic Frameworks for Tandem
863 Biocatalytic Reactions. *Nat. Commun.* **2022**, *13*, 305.
864 (81) Vriezema, D. M.; Garcia, P. M. L.; Sancho Oltra, N.; Hatzakis, N. S.; Kuiper, S. M.; Nolte, R.
865 J. M.; Rowan, A. E.; van Hest, J. C. M. Positional Assembly of Enzymes in Polymericsome
866 Nanoreactors for Cascade Reactions. *Angew. Chemie Int. Ed.* **2007**, *46*, 7378–7382.
867 (82) Pandey, S.; Jonchhe, S.; Mishra, S.; Emura, T.; Sugiyama, H.; Endo, M.; Mao, H. Zeptoliter
868 DNA Origami Reactor to Reveal Cosolute Effects on Nanoconfined G-Quadruplexes. *J. Phys.*
869 *Chem. Lett.* **2022**, *13*, 8692–8698.
870 (83) Zhao, Z.; Fu, J.; Dhakal, S.; Johnson-Buck, A.; Liu, M.; Zhang, T.; Woodbury, N. W.; Liu, Y.;
871 Walter, N. G.; Yan, H. Nanocaged Enzymes with Enhanced Catalytic Activity and Increased
872 Stability against Protease Digestion. *Nat. Commun.* **2016**, *7*, 10619.
873 (84) Linko, V.; Eerikäinen, M.; Kostiainen, M. A. A Modular DNA Origami-Based Enzyme
874 Cascade Nanoreactor. *Chem. Commun.* **2015**, *51*, 5351–5354.
875 (85) Antonny, B. Mechanisms of Membrane Curvature Sensing. *Annu. Rev. Biochem.* **2011**, *80*,
876 101–123.
877 (86) Has, C.; Sivadas, P.; Das, S. L. Insights into Membrane Curvature Sensing and Membrane
878 Remodeling by Intrinsically Disordered Proteins and Protein Regions. *J. Membr. Biol.* **2022**,
879 *255*, 237–259.
880 (87) Li, C.-L.; Xue, D.-X.; Wang, Y.-H.; Xie, Z.-P.; Staehelin, C. A Method for Functional Testing
881 Constitutive and Ligand-Induced Interactions of Lysin Motif Receptor Proteins. *Plant Methods*
882 **2020**, *16*, 3.
883 (88) Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih,
884 W. M. Rapid Prototyping of 3D DNA-Origami Shapes with CaDNAno. *Nucleic Acids Res.*
885 **2009**, *37*, 5001–5006.
886 (89) Castro, C. E.; Kilchherr, F.; Kim, D.-N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.;
887 Dietz, H. A Primer to Scaffolded DNA Origami. *Nat Meth* **2011**, *8*, 221–229.
888 (90) Turner, P. J. XMGRACE, Version 5.1. 19. *Cent. Coast. Land-Margin Res. Oregon Grad. Inst.*
889 *Sci. Technol. Beaverton, OR* **2005**.
890
891


892

893 **Table 1:** Domain-level sequences (5'—3') of two different types of DNA receptor and reporter
894 complexes. See Figure 1 for domain-level diagrams of different complexes and Table S1 for more
895 extensive description of domains and their roles. iBHQ-1dT (IDT commercial code) is a black hole
896 quencher and iFluorT (IDT commercial code) is a fluorescein and both conjugated to internal T
897 nucleotides, Chol-TEG is a TEG linked cholesterol molecule (IDT commercial code). Note that
898 domains labeled with lower case are partially complementary to their upper-case counterparts. E.g. **x2**
899 (reporter top strand) is a shortened version of **X2** and is only partially complementary to **X2*** (reporter
900 bottom strand). Colour codes used here correspond to the same coloured domains shown in Figure 1.
901

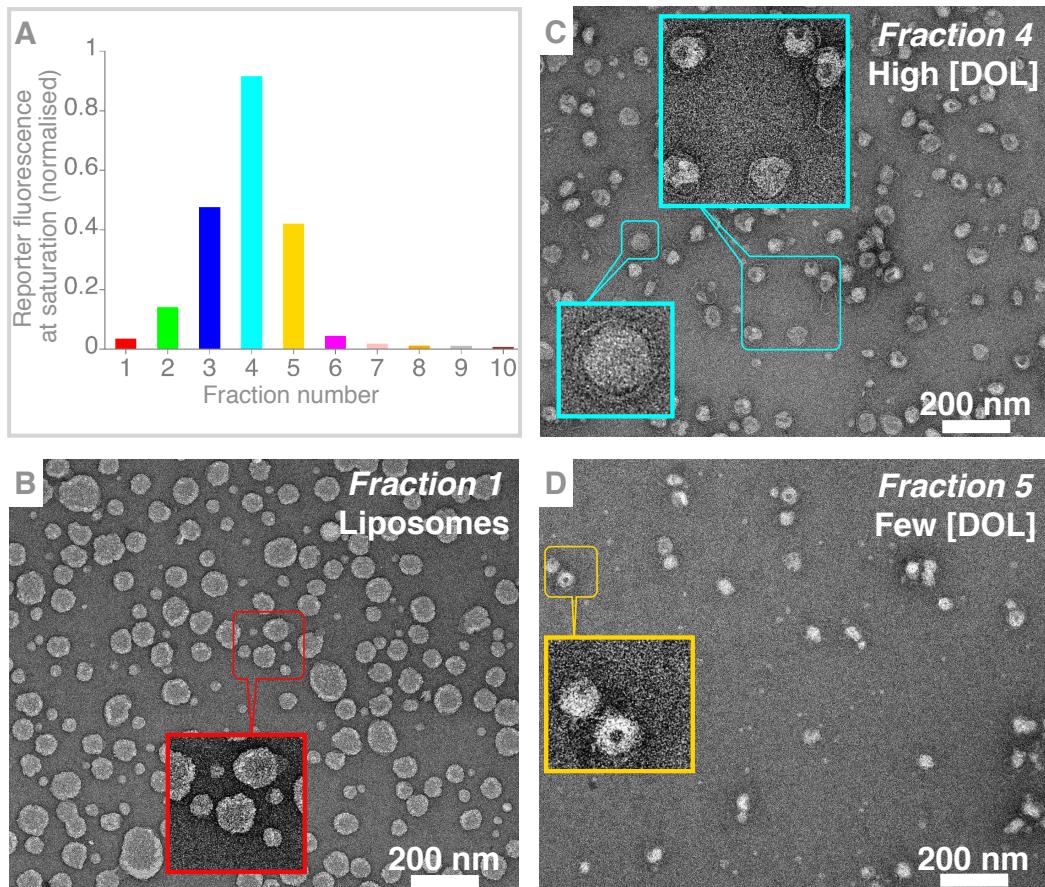
Domain	Sequence
A* (anchor_A*)	GTTTGAGTTGAGTGGAAAG/3CholTEG/
A.P1.X2.X1 (anchor_A)	/5Chol-TEG/CTTCCCCACTCAACTCAAAC.CA.ACACCATTACCCAC.ATTCAAATCC
X2*,P1*,T* (linker_A)	GTGGGTAAATGGTGT.TG.AGATG
B* (anchor_B*)	/5Chol-TEG/GTTGGTAATGGAATGGAAAG
Y1.Y2.P2.B (anchor_B)	CACAATACAC.CCTACACATACATCA.AC.CTTCCCATTCCATTACCAAC/3ChoITEG/
S*,P2*,Y2* (linker_B)	GTGGA.GT.TGATGTATGTGTAGG
T.P1.X2 (release_A)	CATCT.CA.ACACCATTACCCAC
Y2.P2.S (release_B)	CCTACACATACATCA.AC.TCCAC
x2,X1,Y1,y2 (reporter top strand)	atttacccac.ATTCAAATCC./iBHQ-1dT/.CACAATACAC.cctacacata
Y2*, Y1*, X1*, X2* (reporter bottom strand)	TGATGTATGTGTAGG.GTGTATTGTG./iFluorT/.GGATTGAAT.GTGGGTAAATGGTGT

902

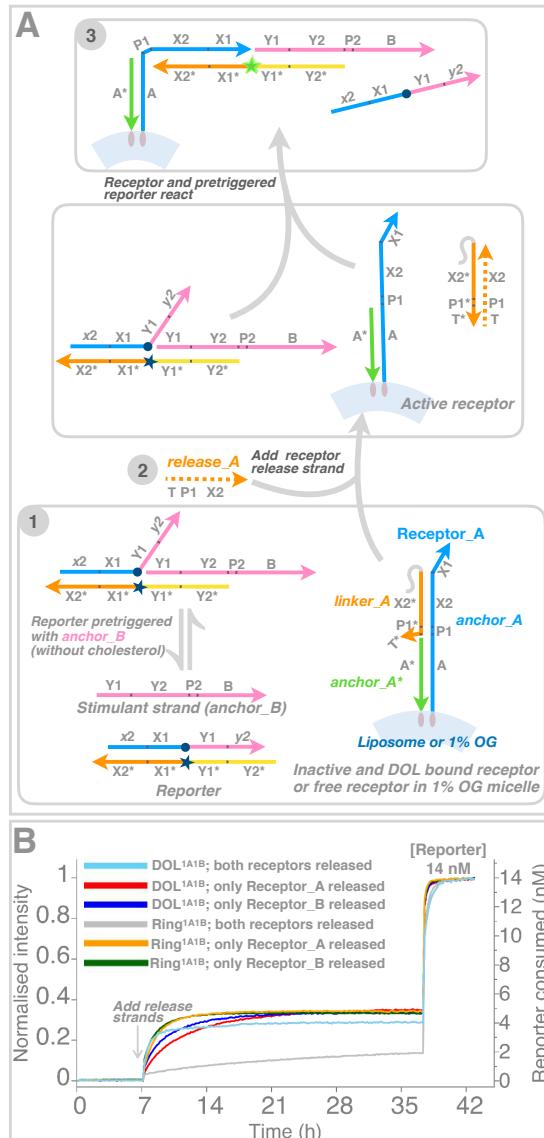

903

904

905 **Figure 1: DOL synthesis and DNA circuit logic. (A)** DOL assembly (left column) and DNA receptor
 906 interaction (right column). Step A: DNA scaffold (8064 nucleotides; grey loop), regular staple strands
 907 (grey segments), and linker-extended staples (having orange and yellow sections) were annealed;
 908 excess staples were removed. Step B: Two types of DNA receptors modified with cholesterol (red
 909 ovals) were tethered to the ring and rings were repurified. Step C: Rings were incubated with
 910 cholesterol-modified antihandles (grey lines with red ovals) Step D: Lipids and detergent were added;
 911 subsequent dialysis removed detergent and seeded liposome formation (blue spheres) on rings to create
 912 DOL. **(B)** Stepwise operation of a DNA circuit for the receptor release and interaction measurement.
 913 Step labels 1-3 correspond to labels in the right column of A. A zoomed segment of the liposome
 914 bilayer is shown. Initially (Step 1) both receptors are inactive and bound to the ring (not shown) via
 915 linker_A and linker_B (themselves attached to the ring via a short section of gray polyT). The inter-
 916 receptor distance (~45 nm) is not shown to scale. Receptors were detethered (Step 2) by adding release
 917 strands complementary to the linkers; domains T* and S* provided toeholds for this reaction. Released
 918 receptors diffuse freely within the bilayer but do not interact. Receptor interaction (Step 3) is mediated
 919 by a reporter complex consisting of a top strand with internal quencher (dark blue circle) and a bottom
 920 strand with an internal fluorophore (star; dark blue when quenched or green when fluorescent). Table 1
 921 gives domains and sequences for all circuit components; Supplementary Table S1 gives each domain's
 922 role).


923

924
925


Figure 2: Receptor reactions on three DOL variants. (A-C) Various platforms studied here by varying the number of receptors or rings. In each case also shown (right side of arrow) the number of ternary complexes depending on the initial number of receptors tethered on a DOL platform (left side of arrow). The DNA reporter circuit logic (Figure 1B) remains the same in all the cases. Labels α (left) and β (right) represent the states corresponding to fluorescence intensity curves shown in D-F. (D-F) Kinetics curves acquired from plate reader experiments shown for receptor interaction event on the same surface of DOL (intra-DOL): DOL^{1A1B} (cyan curve, pooled fraction 3+4, two repeats averaged), DOL^{2A2B} (orange curve, fraction 5, single repeat), and dimer_DOL^{1A1B} cases (green curve, fraction 6, two repeats averaged). Initial 7 h has DOL with reporter complex (4.7 nM). After 7 h release strands (100 nM) were added. DOL concentrations are the saturation endpoints, with single standard deviation for two repeats where performed, are given in square brackets. To measure the maximum available fluorescence for purposes of normalization, unreacted reporter was unquenched by adding an excess of stimulant strands at \sim 36 h at 100 nM (*anchor_A* and *anchor_B* without cholesterol modifications) evident as a quick spike in fluorescence. States labelled as α (before 7 h) and β (after 7 h) are shown as cartoon representations A, B, C for each case. (E) Kinetics curves shown for receptor interaction between two different DOLs (inter-DOL) each containing only one receptor type: inter-DOL^{1A1B} and inter-DOL^{2A2B}. In all cases pooled fraction 3+4 were used and two repeats were performed (averaged curves shown). Plate reader experiment details similar to D. Concentrations were estimated from TEM data (see Supplementary Information Section 4). (F) Kinetics curves shown for receptor interaction in solution. Receptor complexes were made with linker and anchor strands without cholesterol modifications (Receptor_A consists of *linker_A* and *anchor_A** and *anchor_A*, similar for Receptor_B). Plate reader experiment details are similar to D and receptors are activated by adding release strands. For 1A1B case each receptor 100 nM, release strands 900 nM and for 2A2B case these were at 200 nM and 1800 nM respectively, reporter complex was at 9.8 nM for both cases. Adding excess of stimulant strands did not show any further spike in fluorescence as all of the reporter molecules were consumed by receptors already in excess. (G-I) TEM images for the samples taken after completion of plate reader experiment (after \sim 36 h) for the DOL cases in D. TEM images for interDOL cases in E are shown in Supplementary Figure S8.

954
955

956
957
958
959
960
961
962

Figure 3: Analyzing different fractions for DOL^{1A1B}. (A) Different fractions collected after isopycnic DOL purification (see Supplementary Section 1 and Supplementary Figure S1D) were analyzed with plate reader experiment set up similar to Figure 2D. Normalized saturation for each fraction is shown as a bar plot. TEM images for fractions 1, 4 and 5 are shown in B, C, D respectively and remaining fractions are shown in Supplementary Figure S3.

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

Figure 4: Determining tethering efficiency. Tethering efficiency of receptors to the DOL^{1A1B} platform was determined by comparing the extent of receptor reaction when both receptors were released and reacted normally within the DOL, and when one or the other receptor was reacted with a receptor complex in the presence of a stimulant strand in solution. **(A)** shows a modified logic circuit in which only receptor Receptor_A was released; a stimulant strand (*anchor_B* without a cholesterol modification) was supplied in excess to make up for any missing Receptor_B. A reciprocal experiment using *anchor_A* without a cholesterol modification is not shown. **(B)** Fluorescence curves (as in Figure 2) where either both the receptors were released with a normal reporter complex (cyan), only Receptor_A was released (red), or only Receptor_B was released (blue). Analogous curves are shown for a ring-only system (without a liposome), in which both the receptors were released (grey), only Receptor_A was released (orange, two repeats averaged), or only Receptor_B was released (green, two repeats averaged). As in Figure 2, reporter complexes were quenched after ~36 hours with an excess of both stimulant strands, or whichever was missing.