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Abstract

Unlike 20-letter-coded proteins, RNA homologous sequences are notoriously difficult to detect because their
4-letter-coded sequences can quickly lose their sequence identity. As a result, employing secondary structures
has been found necessary to improve the sensitivity and the accuracy of homolog search. However, exact
secondary structures often are not known. As a result, Rfam, the de facto gold-standard of RNA homologous
families, has to rely on manual curation and experimental secondary structure if available. Here, we showed
that using a combination of BLAST and iterative INFERNAL searches along with an expanded sequence
database leads multiple sequence alignments (MSA) that are comparable to those provided by Rfam MSAs,
according to secondary structure extracted from mutational coupling analysis and alignment accuracy when
compared to structure alignment. The fully automatic tool (RNAcmap2) allows making homolog search,
multiple sequence alignment, and mutational coupling analysis for any non-Rfam RNA sequences with Rfam-
like performance.
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Introduction

Homology search is the first step for getting a clue about an RNA with an unknown function. A set of homologous sequences, if
found, will allow not only functional inference but also provide structural consensus for improving secondary structure prediction,
for example, as in RNAaliFold [1] and CaCoFold [2]. Multiple Sequence Alignment (MSA) of homologous sequences can further
reveal the pairs of co-varying bases, indicating conserved secondary and tertiary structural features [3, 4, 5, 6, 7]. Sequence profiles
and correlated mutations generated from multiple sequence alignment have been found useful for significantly improving prediction
of RNA secondary structure [8] and solvent accessibility [9, 10, 11] by deep learning.

Existing homology search and alignment tools can be classified into two categories: sequence-based and profile-based. BLAST-N
[12] is a popular homolog search tool based on the heuristic Smith-Waterman algorithm [13] for similarity search between two
sequences. Profile-based methods include nhmmer [14] and INFERNAL [15]. nhmmer employs profile Hidden Markov Models
(profile HMM) to search a query against a reference library, where the query can be a single sequence, MSA or profile HMM.
INFERNAL incorporates secondary structure along with a query sequence/MSA and builds a covariance model (CM) equivalent to
the sequence-based profile HMM. The CM is then utilized to search against a reference library to find even more remote homologs. In
general, profile-based homolog searches are more sensitive in detecting remote homologs than sequence-based searches and including
secondary structure in profile-based searches (INFERNAL) is more sensitive than using profile only (nhmmer). INFERNAL and
manual curation were utilized to obtain Rfam homologous sequences along with their MSAs within an RNA family, by using
experimentally validated or predicted structural information [16]. Rfam alignment has been considered as the “de facto” gold
standard for MSA. However, the exact secondary structure of an RNA is often unknown, and manual curation is too slow to meet
the demand from exponentially growing RNA sequences [17].

Recently, we developed a fully automated pipeline RNAcmap [18] to obtain an aligned set of homologs. RNAcmap used the
BLAST-N and INFERNAL tools against the NCBI’s nucleotide database [17] for homology search. However, for sequences annotated
in Rfam, the base pairs detected by mutational coupling from RNAcmap aligned sequences is not as accurate as those from Rfam
aligned sequences.

This work improves the RNAcmap pipeline with one additional search and expanded reference database. The proposed pipeline
(RNAcmap?2) first search by BLAST-N followed by two additional INFERNAL searches. Moreover, we expand the NCBI’s nucleotide
database by including NCBI’s metagenomics and patent sequences. RNAcmap2 yields the alignment and structural co-variation
signals as accurate as Rfam supplied MSAs. Unlike Rfam, RNAcmap2 can produce MSA for any RNA sequences with > 50%
improvement in Fl-score over RNAcmap on 127 non-Rfam RNAs for predicted contact base pairs, according to direct coupling
analysis [3, 4, 5, 6, 7].

Materials and methods
Datasets

For benchmarking, we downloaded all high-resolution (<3.5A) X-ray structures that include RNA chains from Protein Data Bank
[19] on October 3, 2020. Individual RNA chains were extracted from RNA-RNA and RNA-protein complex structures using a
PDBParser from Biopython [20]. To remove the redundancy within RNA chains, we used CD-HIT-EST [21] at the lowest allowed
sequence identity cut-off of 0.8. This led to a total of 245 non-redundant and high-resolution RNA chains with minimum and
maximum sequence length of 33 and 418 respectively. RNA secondary structure labels for these chains were obtained from their 3D
structural files using DSSR [22].

Table 1. The number of PDB RNAs classified according to N ¢-value obtained from RNAcmap alignment.

N s s-value Total | Rfam mapped | Non-Rfam mapped
No-hit 21 1 20
Low (1 < N¢yy < 10) 83 15 68
Medium (10 < N¢fy < 50) 31 15 16
High (50 < Ny ¢) 110 87 23
Total 245 118 127

The method performance of structure-prediction tools strongly depends on the number of effective homologous sequences Ny ¢.
Thus, we divided our dataset into four categories: No-hit, Low Negs (1 < Nepyr < 10), Medium Negy (10 < Nepy < 50), and High
Ness (50 < Neyr) RNAs as shown in Table 1, where the N,y s-value was obtained from RNAcmap [18] with the NCBI nucleotide
database downloaded at January 14, 2021.
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Rfam mapping and MSA

The above 245 PDB structures were mapped into Rfam and non-Rfam families by directly searching the PDB RNA sequence on
the Rfam website (https://rfam.xfam.org/). Out of 245 chains, 118 RNA sequences were mapped to 48 different Rfam families,
whereas 127 could not be mapped to any existing Rfam families, as shown in Table 1.

To obtain Rfam MSAs on Rfam mapped RNAs, we downloaded fasta files of 48 families from http://ftp.ebi.ac.uk/pub/
databases/Rfam/14.6/fasta_files/ and corresponding covariance model files (Rfam.cm.gz) from http://ftp.ebi.ac.uk/pub/
databases/Rfam/14.6/. The query sequence along with its corresponding family fasta sequences were aligned using cmalign program
from INFERNAL along with the covariance model of that particular family as an input.

Reference database

Both RNAcmap and RNAcmap2 require a reference database for homology search. In RNAcmap, we employed NCBI’s nucleotide
(nt) database [17] as the only reference database library. In this work, we have expanded our reference database with environment
samples (env_nt), transcriptome shotgun assembly (¢sa_nt), and nucleotide sequences derived from the Patent Division of GenBank
(pat_nt) databases in addition to NCBI’s nucleotide (nt) database.

The NCBI’s nucleotide database file (nt.gz) used in RNAcmap and RNAcmap2 was downloaded from https://ftp.ncbi.nlm.
nih.gov/blast/db/FASTA/ on January 14, 2021. NCBI’s nucleotide database (nt) file was of size 344 GB after unzip. In addition to
nt database, we downloaded env_nt (Version-1.1), tsa_nt (Version-1.1), and pat_nt (Version-1.1) databases from https://ftp.ncbi.
nlm.nih.gov/blast/db/ on July 29, 2021. These four databases (nt, env_nt, tsa_nt, and pat_nt) were concatenated together using
their fasta files into a single fasta file of size 506 GB. Duplicate sequences in the combined database were removed using the program
SeqKit [23]. The final database is of size 487 GB used as a reference library for the RNAcmap2 pipeline. There is an increase 31%
in the number of sequences for the expanded sequence library.

The RNAcmap?2 Pipeline

RNAcmap2 employs three iterative homology searches. There is one more INFERENAL search than RNAcmap, as shown in Figure 1.
In the first search, a query RNA sequence is searched against the reference database library using BLAST-N [12] with E-value=0.001,
line-length=1000, and number-of-alignments=50000 to obtain multiple sequence alignment (MSA-1). Next, a covariance model
(CM) is built from the MSA-1 and predicted secondary structure from RNAfold [1] [as consensus secondary structure (CSS)] using
program cmbuild from the INFERNAL [15] tool. This CM is calibrated (Calibrated CM) using program cmcalibrate from the
INFERNAL tool. Finally, the calibrated CM is searched against the reference database library using the cmsearch program from
INFERNAL with E-value=10 to obtain MSA-2.

If Nepy <50 after the completion of the above two searches, we will perform the third round of homology search. This is done
by building a new covariance model (CM) with the cmbuild program, which utilizes MSA-2 and the consensus secondary structure
from RNAfold as an input. The new covariance model (CM) after calibration is then employed to search against the reference
database library with the same e-value of 10 to obtain the MSA-3, as shown in Figure 1. MSA-3 was considered as the final set
of homologous sequences. Here, we stop the search after two searches if Ny >50 because method performance does not improve
much after N.f¢ >50 in secondary structure and contact map prediction (SPOT-RNA2 [8] and SPOT-RNA-2D [24]). In this work,
we found that three iterations were usually sufficient for most cases. However, additional iterations may be beneficial if extreme
sensitivity is required and long computational time is not a concern.

Performance Evaluation by Base Pairing

One way to evaluate MSAs generated from RNAcmap and RNAcmap2 is to compare the structural accuracy extracted from
co-variational analysis of MSAs. This was done by employing direct coupling analysis predictors such as GREMLIN [3], PLMC
[5, 6], mfDCA [7], and plmDCA [4]. GREMLIN and PLMC are pseudo-likelihood optimization-based DCA predictors. GREMLIN
and PLMC were downloaded from https://github.com/sokrypton/GREMLIN_CPP and https://github.com/debbiemarkslab/plmc,
respectively, and both run with the default parameters. Mean-field direct coupling analysis (mfDCA) and pseudo-likelihood
maximization (plmDCA) direct coupling analysis algorithms were obtained from pydca [25] program (https://github.com/KIT-MBS/
pydca).

Another way to evaluate the usefulness of homologous sequences obtained is to employ the alignment-based folding algorithm
RNAalifold [1]. RNAalifold was obtained from Vienna package version 2.4.14 (https://www.tbi.univie.ac.at/RNA/). The program
was run with the default parameters. As a comparison, we also obtained CaCofold [2], which uses both positive and negative
evolutionary information along with a probabilistic folding algorithm for RNA secondary structure prediction. CaCofold was
downloaded from http://eddylab.org/R-scape/ and was run with the default parameters.

The third way to evaluate homologous sequences is to input the resulting sequence profile and direct coupling result into our deep-
learning-based predictor SPOT-RNA2 [8]. SPOT-RNA2 was downloaded from https://github.com/jaswindersingh2/SPOT-RNA2
and run with the default settings.


https://rfam.xfam.org/
http://ftp.ebi.ac.uk/pub/databases/Rfam/14.6/fasta_files/
http://ftp.ebi.ac.uk/pub/databases/Rfam/14.6/fasta_files/
http://ftp.ebi.ac.uk/pub/databases/Rfam/14.6/
http://ftp.ebi.ac.uk/pub/databases/Rfam/14.6/
https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
https://ftp.ncbi.nlm.nih.gov/blast/db/
https://ftp.ncbi.nlm.nih.gov/blast/db/
https://github.com/sokrypton/GREMLIN_CPP
https://github.com/debbiemarkslab/plmc
https://github.com/KIT-MBS/pydca
https://github.com/KIT-MBS/pydca
https://www.tbi.univie.ac.at/RNA/
http://eddylab.org/R-scape/
https://github.com/jaswindersingh2/SPOT-RNA2
https://doi.org/10.1101/2022.10.03.510702
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.03.510702; this version posted October 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4 Singh et al.

RNA sequence

RNAcmap
BLAST-N
E-value=0.001, line-length=1000, num- (1
alignments=50,000 .
MSA-1 : MSA-2
\ 4 :
INFERNAL | °° | aNAfol g — css INFERNAL
cmbuild A c : 4 cmbuild
CcM : CcM
\ 4 : \ 4
INFERNAL : INFERNAL
cmcealibrate cmcalibrate
NCBI's
Calibrated + Calibrated
cM Metagenomics CcM
Database
\ 4 : v
INFERNAL : INFERNAL
cmsearch «— : cmsearch
E-value=10 E-value=10
MSA-3

Evolutionary Coupling Analysis ¢
GREMLIN/PLMC/mfDCA/pImDCA

Output
LxL

Fig. 1: The architecture of the RNAcmap?2 pipeline. CSS: Consensus Secondary Structure. CM: Covariance Model. L: Length of

the input RNA sequence

Performance Evaluation by Structure Alignment

In addition to the performance evaluation according to secondary structure, one direct way to compare RNAcmap2 MSAs with
other MSAs is by comparing the alignment accuracy of RNAs belonging to the same Rfam family and having 3D structures. We
first located Rfam families that contain more than one RNA with known structure. Then the “gold-standard” alignment is made
by performing structure alignment using RMalign [26]. To obtain the RNAcmap2 alignment, one RNA from each family with the
highest N.¢s was considered as the reference RNA, and the covariance model was built by using RNAcmap2 MSA. Next, the
remaining RNAs within a family were aligned with the highest N.;ss RNA’s covariance model using the cmscan program from
INFERNAL. To obtain the Rfam alignment, we used the covariance model provided by the Rfam for that particular family to align
RNAs within the same family. The alignment accuracy is measured by comparing Rfam and RNAcmap2 generated alignments to
the gold standard structure alignment.

Performance Measures

For benchmarking four DCA and alignment-based folding predictors on RNAcmap’s MSAs, sensitivity (SN = TP/(TP + FN)),
precision (PR = TP/(TP + FP)), and Fl-score [F1 = 2(PR x SN)/(PR 4 SN)| were used for non-local base-pairs [|i — 7| > 4],
where TP, TN, FP and FN are true positives, true negatives, false positives and false negatives, respectively. The performance
metrics were evaluated for individual RNAs with mean performance reported in the results section.

Results

Improvement of MSAs measured by coupling analysis

The quality of MSAs generated by different methods can be quantified by the accuracy of base pairs inferred from direct coupling
analysis. Here, we employed the mfDCA predictor as other predictors yield the same trend, and mfDCA has the best performance,
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as shown in Supplementary Table S1. Table 2 (the average result) and Figure 2 (the distribution) compare three MSAs generated by
BLAST-N, direct INFERNAL, the combination of BLAST-N and INFERNAL (RNAcmap) searches against the NCBI nt database
along with two additional MSAs by the RNAcmap (RNAcmap*) and RNAcmap2 searches against the expanded NCBI database
(nt, env nt, tsa nt, and pat nt). The performance measure is the Fl-score for top L/3 predictions.

As Table 2 and Figure 2 show, BLAST-N is quite ineffective in getting a significant number of effective homologs for all RNAs
(F1-scores all <0.1), confirming that sequences are not very conserved in RNA homologs. Direct INFERNAL search with secondary
structure predicted by RNAfold allows substantial improvement over BLAST-N for low, medium and high-N. ¢y RNAs. Combining
BLAST-N and INFERNAL (RNAcmap) provides an additional 14%, 16%, and 10% improvement over INFERNAL for these low,
medium and high-N. sy RNAs, respectively. Expansion of the sequence library leads to a 10% increase in Fl-score for medium
Nesr RNAs and a 27% increase for low N¢ sy RNAs from RNAcmap to RNAcmap*. An additional round of homology search leads
to a 16% increase in Fl-score for medium N,y RNAs and a 75% increase for low N.frs RNAs from RNAcmap* to RNAcmap2.
For no-hit RNAs, the expansion of the sequence library allows detection of some homologs (Median N fy=1) by RNAcmap* with
further improvement by RNAcmap2 (Median N.fy=1.4). Similar trends were obtained from the other three DCA predictors as
shown in Supplementary Tables S2, S3, and S4.

Table 2. Performance comparison among different MSA pipelines on No-hit RNAs (21 RNAs), Low N.fss RNAs (83 RNAs), Medium N.s; RNAs
(31 RNAs), and High N.7¢ RNAs (110 RNAs) using mfDCA predictor.

No-hit RNAs Low N, ;s RNAs Medium N.;; RNAs High N.;; RNAs
MSA Pipeline F1  Precision Sensitivity Median Ny F1 Precision  Sensitivity Median Nej s F1  Precision Sensitivity Median Ny F1  Precision Sensitivity Median Ny
MSA-1 | BLAST-N 0.000 0.000 0.000 0.0 0.018 0.019 0.017 1.0 0.021 0.024 0.019 1.0 0.098 0.114 0.088 2.1
- INFERNAL | 0.000 0.000 0.000 0.0 0.168 0.185 0.159 2.0 0.407 0.464 0.374 17.0 0.640 0.734 0.571 335.1
MSA-2 | RNAcmap 0.000 0.000 0.000 0.0 0.191 0.211 0.179 2.3 0.472 0.532 0.440 26.5 0.693 0.791 0.626 636.5
MSA-2 | RNAcmap* | 0.121 0.130 0.127 1.0 0.244 0.269 0.229 4.1 0.520 0.586 0.485 31.6 0.702 0.801 0.633 605.1
MSA-3 | RNAcmap2 | 0.148 0.162 0.151 1.4 0.426 0.470 0.399 13.0 0.605 0.674 0.574 123.2 0.703 0.802 0.634 605.1
| I
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Fig. 2: Violin plot of Fl-score of predicted top L/3 contacts by mfDCA predictor using BLAST-N, INFERNAL, RNAcmap,
RNAcmap*, and RNAcmap2 supplied aligned homologous sequences for No-hit RNAs (21 RNAs), Low N.;; RNAs (83 RNAs),
Medium N,y RNAs (31 RNAs) and high N.yy RNAs (110 RNAs). In the Violin plot: white dot represents the median; the thin
horizontal line represents mean; the thick and thin gray bar in the center represents the interquartile range and 1.5Xinterquartile
range; the curve on either side of gray line shows the distribution of data using kernel density estimation; wider the curves around
gray lines, higher the probability of data points lies in that region and vice versa.

One interesting observation is that median N ¢ s-values for high N,y RNAs obtained from RNAcmap (N, f¢=636.5) was slightly
higher than RNAcmap2 (N, ¢ y=605.1). This is counter-intuitive as RNAcmap employed a reference database that is a subset of the
RNAcmap?2 reference database. This is due to the limit of top 50,000 allowed hits. If top 50,000 contains more redundant sequences,
the number of effective homologous sequences will be lower. Indeed, if we relax 50,000 to 100,000, we will achieve higher N,y for
RNAcmaps. However, we keep 50,000 as the default to save the computational time.

To illustrate the consistent improvement of RNAcmap2 over RNAcmap, Figure 3 compares the performance of RNAcmap2 and
RNAcmap supplied alignments at different cutoffs for top predictions. RNAcmap2 improves over RNAcmap at all cutoffs for top
contact predictions (L/n, n=1,2,3,...9,10). The results are similar for all other three DCA predictors (See Supplementary Figures
S1, S2, and S3).
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Fig. 3: Boxplot of Fl-score (A), Precision (B), and Sensitivity (C) as a function of predicted top L/n base pairs by mfDCA from
RNAcmap (in green) and RNAcmap2 (in red) supplied alignment for 135 PDB RNAs from no-hit, low, medium Ny test sets. The
distribution is shown in terms of median, 25th and 75th percentile with outlier shown by dots.

RNAcmap?2 vs Rfam

Rfam is considered the de facto gold standard for clustering homologous RNA families and their multiple sequence alignments
because they have employed experimental secondary structure for alignment and homology search where possible. From 245 RNAs,
118 RNAs were mapped to Rfam families, while the remaining 127 RNAs were not mapped to any Rfam family (See Table 1).
Figure 4 compares Fl-scores of top L/3 predicted base pairs by mfDCA on MSAs from Rfam and that from RNAcmap?2 for those
RNAs mapped to Rfam [No-hit (1 RNA) and Low Ncfs (15 RNAs), Medium N.f¢ (15 RNAs), and High N.ss (87 RNAs) test
sets]. The fully automatic RNAcmap2 MSAs yield essentially the same performance on base-pair prediction as the manually curated
Rfam for high N.yy RNAs and improve it over somewhat for low N.yy RNAs and significantly for medium N,y RNAs.

Table 3 shows a family-wise performance comparison of RNAcmap2, Rfam, and RNAcmap supplied MSAs using top L/3 mfDCA
predicted base pairs on 48 different Rfam families. RNAcmap2 MSAs performed better than Rfam MSAs on 29/48 families, and
Rfam MSAs performed better than RNAcmap?2 for 16/48 families, while performance on three families was equally good.

Another way to compare Rfam MSAs with RNAcmap2 MSAs is to compare alignment accuracy. Table 4 shows that the overall
performance is nearly the same. RNAcmap2 has a better alignment on 6/11 families whereas Rfam has a better alignment on 5/11
families with two or more RNA structures. The median accuracies are 78.89% for RNAcmap2 and 78.38% for Rfam, respectively.

Application of RNAcmap2 MSA

RNAcmap2 MSAs can be employed for improving different applications such as DCA predictors (mfDCA), alignment-based
folding predictors (RNAaliFold and CaCoFold) and deep-learning-based predictors (SPOT-RNA2). Figure 5A shows the method
performance for a combined 38 RNAs from no-hit, low, median Ny s sets and 37 RNAs from high Nf ¢ set with ‘deep’ RNAcmap2
alignment (N.ys/L > 0.2) after excluding sequences overlapping with SPOT-RNA2 training data using CD-HIT-EST at lowest
identity cut-off of 0.8.

RNAcmap2 MSA provides significant improvement for base pairs prediction over RNAcmap MSA in all cases with the largest
improvement for mfDCA as it has the lowest performance with RNAcmap MSA. The deep learning SPOT-RNA2 has the smallest
improvement because it is more difficult to improve over already accurate prediction with the median F1-score >0.70 for SPOT-RNA2
with the RNAcmap input, while all other predictors with Fl-score <0.66 even after using RNAcmap2 MSAs.

For high N.ss RNAs (Figure 5B), RNAcmap2 supplied MSAs performance are essentially the same as the RNAcmap MSAs,
confirming the use of N. =50 as the cutoff for stopping the search.

As an illustrative example, Figure 6 compares RNAcmap and RNAcmap2 MSAs based on base pair prediction by mfDCA and
SPOT-RNAZ2. This is tRNA in a protein-tRNA complex structure (chain B in PDB ID 4wj4) [27]. In this figure, correctly predicted
canonical base-pairs, non-canonical base-pairs and pseudoknots are indicated by the color blue, orange and green, respectively. Any
wrongly predicted base-pairs are shown by color magenta. mfDCA (RNAcmap2) predicted a more accurate native-like topology
(Figure 6A ) with an Fl-score of 0.81 as compared to mfDCA (RNAcmap) with an Fl-score of 0.77 (Figure 6B) in comparison to
the native structure (Figure 6C). In both cases, mfDCA is able to predict one pseudoknot (in green) and non-canonical (in orange)
base-pair correctly. SPOT-RNA2 (RNAcmap?2) is able to predict all the canonical, non-canonical, and pseudoknot base-pairs in
the native structure with an overall native-like topology as shown in Figure 6E and F1l-score of 0.93. In comparison, SPOT-RNA2
(RNAcmap) predicts structure with an Fl-score of 0.82 as shown in Figure 6D, but due to many predicted false base-pairs, the
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the center represents the interquartile range and 1.5 xinterquartile range; the curve on either side of gray line shows the distribution
of data using kernel density estimation; wider the curves around gray lines, higher the probability of data points lies in that region
and vice versa.

overall topology of the predicted structure by SPOT-RNA2 (RNAcmap) is quite different from the native structure in Figure 6F.
The result highlights the power of improved MSAs for secondary structure and tertiary base-pair prediction.

Discussion

This work has developed a new automatic homology search pipeline (RNAcmap2) by performing three iterative searches against
an expanded sequence library, including metagenomics and patented sequences. RNAcmap2 significantly improved over RNAcmap
with mean Fl-score increased from 0.00 to 0.148, 0.191 to 0.426, and 0.472 to 0.605 for No-hit, low N.fr, and medium N,y
RNAs, respectively. Moreover, RNAcmap2 produced MSAs that are comparably accurate as manually curated Rfam MSAs when
compared on 118 PDB RNAs belonging to 48 Rfam families in their ability to extract base pairing information. Thus, RNAcmap2
can generate MSAs for any Rfam or non-Rfam RNAs with the Rfam-like performance. The new tool is expected to be useful for
predicting 1D-structural properties such as solvent accessibility [9, 10, 11] and backbone torsion angle prediction [28], 2D structural
properties such as base pairing [8] and contact maps [24, 29], and RNA 3D structure prediction [30, 31, 32].

The performance of RNAcmap2 depends on the accuracy of Consensus Secondary Structure (CSS). Here, we employed RNAfold
as it is one of the state-of-the-art, folding-based algorithms for RNA secondary structure prediction. Recently, deep learning
techniques such as single-sequence-based SPOT-RNA significantly improves over folding-based algorithms in predicting RNA
secondary structures [33]. Supplementary Table S5 shows the mfDCA performance comparison of RNAcmap* and RNAcmap2
with RNAfold and SPOT-RNA as the CSS predictor on 102 RNAs after removing redundant sequences to SPOT-RNA training
set using CD-HIT-EST at 80% identity cut-off. RNAcmap* with SPOT-RNA CSS leads to 9% higher Fl-score over RNAcmap*
with RNAfold CSS. Similarly, RNAcmap2 with SPOT-RNA CSS yields 3% higher F1-score than the RNAcmap2 (RNAfold). In the
automatic server provided, we give users an option for using RNAfold or SPOT-RNA for CSS. We did not choose SPOT-RNA as
the default to avoid the potential over-fit issue.

RNAcmap2 is computationally expensive. For low N.f; RNAs, RNAcmap2 takes about 5 hours for a 200 nts sequence when
allowed to use 16 CPU threads of Intel(R) Xeon(R) CPU E5-2670 (2.60 GHz). Searching homologs for RNAs with >1000 nts is
computationally prohibitive. This is why we restricted the RNAcmap2 pipeline for three iterative searches only as the default.
However, if one has the necessary computational resource, the additional number of iterations can generate more homologous
sequences. For no-hit RNAs, we will get a significant 9% improvement for the Fl-score (0.148 to 0.162) from the mfDCA predictor
for the 4" round of the homology search. In the standalone version of RNAcmap2, the default value for the number of iterations
can be set by users.
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Table 3. Performance comparison of RNAcmap, Rfam, and RNAcmap2 based on Fl-score on 48 Rfam mapped families using mfDCA top L/3
predicted base pairs.

Rfam Family | RNA type No. of RNAs | RNAcmap Rfam RNAcmap2
RF00005 tRNA 53 0.717 0.746 0.724
RF00001 5S ribosomal 6 0.618 0.630 0.625
RF00167 Purine riboswitch 4 0.711 0.685 0.711
RF01852 Selenocysteine transfer 3 0.856 0.852 0.871
RF00379 ydaO/yuaA leader 3 0.568 0.693 0.597
RF01750 ZMP /ZTP riboswitch 2 0.406 0.657 0.511
RF00162 SAM riboswitch 2 0.757 0.746 0.757
RF00234 glmS glucosamine-6-phosphate activated ribozyme 2 0.709 0.695 0.697
RF01051 Cyclic di-GMP-I riboswitch 2 0.647 0.704 0.647
RF00059 TPP riboswitch 2 0.453 0.679 0.485
RF00174 Cobalamin riboswitch 2 0.650 0.528 0.640
RF01689 AdoCpbl variant 1 0.000 0.613 0.453
RF02680 PreQ1-III riboswitch 1 0.029 0.261 0.319
RF00390 UPSK 1 0.080 0.066 0.297
RF02679 Pistol ribozyme 1 0.111 0.486 0.541
RF02519 ToxI antitoxin 1 0.364 0.091 0.455
RF01734 Fluoride riboswitch 1 0.171 0.800 0.629
RF02796 Pab160 1 0.462 0.462 0.667
RF01763 Guanidine-III riboswitch 1 0.462 0.513 0.513
RF01704 Downstream peptide 1 0.667 0.733 0.733
RF03013 nadA 1 0.263 0.737 0.579
RF01725 SAM-I/IV variant riboswitch 1 0.000 0.500 0.611
RF01415 Flavivirus 3’'UTR stem loop IV 1 0.222 0.267 0.133
RF00102 VA 1 0.073 0.409 0.713
RF00100 7SK 1 0.400 0.844 0.533
RF02678 Hatchet ribozyme 1 0.259 0.222 0.370
RF00026 U6 spliceosomal 1 0.143 0.000 0.429
RF01826 SAM-V riboswitch 1 0.244 0.300 0.476
RF00442 Guanidine-I riboswitch 1 0.232 0.556 0.274
RF02553 Y RNA-like 1 0.254 0.698 0.419
RF00505 RydC 1 0.432 0.270 0.571
RF01344 CRISPR RNA direct repeat element 1 0.429 0.000 0.880
RF02683 NiCo riboswitch 1 0.394 0.627 0.836
RF00458 Cripavirus internal ribosome entry site 1 0.500 0.391 0.628
RF00164 Coronavirus 3’ stem-loop II-like motif 1 0.647 0.412 0.588
RF00008 Hammerhead ribozyme 1 0.755 0.604 0.792
RF01786 Cyclic di-GMP-II riboswitch 1 0.542 0.847 0.847
RF00228 Hepatitis A virus internal ribosome entry site 1 0.418 0.090 0.716
RF01831 THF riboswitch 1 0.600 0.714 0.657
RF01854 Bacterial large signal recognition particle 1 0.595 0.762 0.643
RF02001 Group II catalytic intron D1-D4-3 1 0.726 0.006 0.720
RF00050 FMN riboswitch 1 0.698 0.721 0.744
RF01857 Archaeal signal recognition particle 1 0.793 0.793 0.811
RF00029 Group II catalytic intron 1 0.760 0.520 0.760
RF00168 Lysine riboswitch 1 0.752 0.709 0.752
RF00504 Glycine riboswitch 1 0.831 0.800 0.831
RF00380 M-box riboswitch 1 0.677 0.632 0.647
RF00002 5.8S ribosomal 1 0.378 0.422 0.222
Mean 48 Families - 0.468 0.531 0.605
Non-Rfam - 127 0.278 - 0.440

Despite the large improvement from RNAcmap to RNAcmap2, there are still 8 RNAs with PDB structures having no hits.
RNAcmap2 can improve over RNAcmap only if there is more than one hit in MSA-2. This limitation will be overcome by the
exponential increase in collection of RNA sequences [17].
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Table 4. Comparison of alignment accuracy given by Rfam and RNAcmap2 within a family with respect to structure alignment obtained from
RMalign using tertiary structures.

Mean Accuracy
Rfam Family | RNA type No. of RNAs Rfam RNAcmap2
RF00001 5S ribosomal 5 76.20 89.56
RF00005 tRNA 52 82.27 71.93
RF00059 TPP riboswitch 1 90.79 89.47
RF00162 SAM riboswitch 1 82.98 89.36
RF00167 Purine riboswitch 3 94.81 94.29
RF00174 Cobalamin riboswitch 1 69.81 45.28
RF00234 glmS glucosamine-6-phosphate activated ribozyme 1 68.64 73.73
RF00379 ydaO/yuaA leader 2 78.38 78.89
RF01051 Cyclic di-GMP-I riboswitch 1 88.00 93.33
RF01750 ZMP /ZTP riboswitch 1 67.39 65.22
RF01852 Selenocysteine transfer 2 59.18 60.94
Mean - - 78.04 77.45
Median - - 78.38 78.89
Median Negy | - - 3206.19 710.48
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Fig. 5: Violin plot of Fl-score of base pairs (bps) predictions from mfDCA, RNAaliFold, CaCoFold, and SPOT-RNA2 using
RNAcmap and RNAcmap2 supplied alignment for combined no-hit, low, and median N,y RNAs (A) and high N,y RNAs (B).
The metrics are evaluated on combined 38 RNAs from no-hit, low, median N, s sets and 37 RNAs from high N set with ‘deep’
RNAcmap2 alignment (N.sy/L > 0.2) and non-redundant from SPOT-RNAZ2 training data at 80% identity cut-off according to
CD-HIT-EST. In the Violin plot: white dot represents the median; the thin horizontal line represents mean; the thick and thin
gray bar in the center represents the interquartile range and 1.5Xinterquartile range; the curve on either side of gray line shows the
distribution of data using kernel density estimation; wider the curves around gray lines, higher the probability of data points lies in
that region and vice versa.


https://doi.org/10.1101/2022.10.03.510702
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.03.510702; this version posted October 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

10 Singh et al.

A mfDCA (RNAcmap) B mfDCA (RNAcmap?2) C Native

D SPOT-RNA2
(RNAcmap) E SPOT-RNA2 (RNAcmap?2) F Native

1

Fig. 6: Performance illustrated by a tRNA (chain B in PDB ID 4wj4). (A) Predicted secondary structure by mfDCA using RNAcmap
alignment, with Fl-score of 77%. (B) Predicted secondary structure by mfDCA using RNAcmap?2 alignment, with F1-score of 81%.
(C) Native structure. (D) Predicted secondary structure by SPOT-RNA2 using RNAcmap alignment, with Fl-score of 82%. (E)
Predicted secondary structure by SPOT-RNA2 using RNAcmap2 alignment, with Fl-score of 93%. (F') Native structure.

Key Points

e We developed an improved version of the fully automated RNA homology search pipeline (RNAcmap) by utilizing one BLAST-N
search and two additional INFERNAL searches.

e RNAcmap2 expanded the reference NCBI’s nucleotide database by including NCBI’s metagenomics and patent sequences and
improved the performance over RNAcmap for low Neysrs RNAs.

e We provide a publicly available standalone program at GITHUB and web-server on SPARKS-LAB.

Availability

The RNAcmap2 pipeline is available at https://sparks-1lab.org/server/rnacmap2/. It is highly recommended that users install
the standalone program at https://github.com/jaswindersingh2/RNAcmap?2.
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