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Abstract

Unlike 20-letter-coded proteins, RNA homologous sequences are notoriously difficult to detect because their

4-letter-coded sequences can quickly lose their sequence identity. As a result, employing secondary structures

has been found necessary to improve the sensitivity and the accuracy of homolog search. However, exact

secondary structures often are not known. As a result, Rfam, the de facto gold-standard of RNA homologous

families, has to rely on manual curation and experimental secondary structure if available. Here, we showed

that using a combination of BLAST and iterative INFERNAL searches along with an expanded sequence

database leads multiple sequence alignments (MSA) that are comparable to those provided by Rfam MSAs,

according to secondary structure extracted from mutational coupling analysis and alignment accuracy when

compared to structure alignment. The fully automatic tool (RNAcmap2) allows making homolog search,

multiple sequence alignment, and mutational coupling analysis for any non-Rfam RNA sequences with Rfam-

like performance.

Key words: RNA homology search, Automated pipeline, Multiple sequence alignments, RNAcmap2

© The Author . Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510702doi: bioRxiv preprint 

email:zhouyq@szbl.ac.cn
email:jaswinder.singh3@griffithuni.edu.au
email:k.paliwal@griffith.edu.au
email:t.litfin@griffith.edu.au
https://doi.org/10.1101/2022.10.03.510702
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Singh et al.

Introduction

Homology search is the first step for getting a clue about an RNA with an unknown function. A set of homologous sequences, if

found, will allow not only functional inference but also provide structural consensus for improving secondary structure prediction,

for example, as in RNAaliFold [1] and CaCoFold [2]. Multiple Sequence Alignment (MSA) of homologous sequences can further

reveal the pairs of co-varying bases, indicating conserved secondary and tertiary structural features [3, 4, 5, 6, 7]. Sequence profiles

and correlated mutations generated from multiple sequence alignment have been found useful for significantly improving prediction

of RNA secondary structure [8] and solvent accessibility [9, 10, 11] by deep learning.

Existing homology search and alignment tools can be classified into two categories: sequence-based and profile-based. BLAST-N

[12] is a popular homolog search tool based on the heuristic Smith-Waterman algorithm [13] for similarity search between two

sequences. Profile-based methods include nhmmer [14] and INFERNAL [15]. nhmmer employs profile Hidden Markov Models

(profile HMM) to search a query against a reference library, where the query can be a single sequence, MSA or profile HMM.

INFERNAL incorporates secondary structure along with a query sequence/MSA and builds a covariance model (CM) equivalent to

the sequence-based profile HMM. The CM is then utilized to search against a reference library to find even more remote homologs. In

general, profile-based homolog searches are more sensitive in detecting remote homologs than sequence-based searches and including

secondary structure in profile-based searches (INFERNAL) is more sensitive than using profile only (nhmmer). INFERNAL and

manual curation were utilized to obtain Rfam homologous sequences along with their MSAs within an RNA family, by using

experimentally validated or predicted structural information [16]. Rfam alignment has been considered as the “de facto” gold

standard for MSA. However, the exact secondary structure of an RNA is often unknown, and manual curation is too slow to meet

the demand from exponentially growing RNA sequences [17].

Recently, we developed a fully automated pipeline RNAcmap [18] to obtain an aligned set of homologs. RNAcmap used the

BLAST-N and INFERNAL tools against the NCBI’s nucleotide database [17] for homology search. However, for sequences annotated

in Rfam, the base pairs detected by mutational coupling from RNAcmap aligned sequences is not as accurate as those from Rfam

aligned sequences.

This work improves the RNAcmap pipeline with one additional search and expanded reference database. The proposed pipeline

(RNAcmap2) first search by BLAST-N followed by two additional INFERNAL searches. Moreover, we expand the NCBI’s nucleotide

database by including NCBI’s metagenomics and patent sequences. RNAcmap2 yields the alignment and structural co-variation

signals as accurate as Rfam supplied MSAs. Unlike Rfam, RNAcmap2 can produce MSA for any RNA sequences with > 50%

improvement in F1-score over RNAcmap on 127 non-Rfam RNAs for predicted contact base pairs, according to direct coupling

analysis [3, 4, 5, 6, 7].

Materials and methods

Datasets

For benchmarking, we downloaded all high-resolution (<3.5Å) X-ray structures that include RNA chains from Protein Data Bank

[19] on October 3, 2020. Individual RNA chains were extracted from RNA-RNA and RNA-protein complex structures using a

PDBParser from Biopython [20]. To remove the redundancy within RNA chains, we used CD-HIT-EST [21] at the lowest allowed

sequence identity cut-off of 0.8. This led to a total of 245 non-redundant and high-resolution RNA chains with minimum and

maximum sequence length of 33 and 418 respectively. RNA secondary structure labels for these chains were obtained from their 3D

structural files using DSSR [22].

Table 1. The number of PDB RNAs classified according to Neff -value obtained from RNAcmap alignment.

Neff -value Total Rfam mapped Non-Rfam mapped

No-hit 21 1 20

Low (1 ≤ Neff ≤ 10) 83 15 68

Medium (10 < Neff ≤ 50) 31 15 16

High (50 < Neff ) 110 87 23

Total 245 118 127

The method performance of structure-prediction tools strongly depends on the number of effective homologous sequences Neff .

Thus, we divided our dataset into four categories: No-hit, Low Neff (1 ≤ Neff < 10), Medium Neff (10 ≤ Neff < 50), and High

Neff (50 ≤ Neff ) RNAs as shown in Table 1, where the Neff -value was obtained from RNAcmap [18] with the NCBI nucleotide

database downloaded at January 14, 2021.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510702doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510702
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

Rfam mapping and MSA

The above 245 PDB structures were mapped into Rfam and non-Rfam families by directly searching the PDB RNA sequence on

the Rfam website (https://rfam.xfam.org/). Out of 245 chains, 118 RNA sequences were mapped to 48 different Rfam families,

whereas 127 could not be mapped to any existing Rfam families, as shown in Table 1.

To obtain Rfam MSAs on Rfam mapped RNAs, we downloaded fasta files of 48 families from http://ftp.ebi.ac.uk/pub/

databases/Rfam/14.6/fasta_files/ and corresponding covariance model files (Rfam.cm.gz) from http://ftp.ebi.ac.uk/pub/

databases/Rfam/14.6/. The query sequence along with its corresponding family fasta sequences were aligned using cmalign program

from INFERNAL along with the covariance model of that particular family as an input.

Reference database

Both RNAcmap and RNAcmap2 require a reference database for homology search. In RNAcmap, we employed NCBI’s nucleotide

(nt) database [17] as the only reference database library. In this work, we have expanded our reference database with environment

samples (env nt), transcriptome shotgun assembly (tsa nt), and nucleotide sequences derived from the Patent Division of GenBank

(pat nt) databases in addition to NCBI’s nucleotide (nt) database.

The NCBI’s nucleotide database file (nt.gz ) used in RNAcmap and RNAcmap2 was downloaded from https://ftp.ncbi.nlm.

nih.gov/blast/db/FASTA/ on January 14, 2021. NCBI’s nucleotide database (nt) file was of size 344 GB after unzip. In addition to

nt database, we downloaded env nt (Version-1.1), tsa nt (Version-1.1), and pat nt (Version-1.1) databases from https://ftp.ncbi.

nlm.nih.gov/blast/db/ on July 29, 2021. These four databases (nt, env nt, tsa nt, and pat nt) were concatenated together using

their fasta files into a single fasta file of size 506 GB. Duplicate sequences in the combined database were removed using the program

SeqKit [23]. The final database is of size 487 GB used as a reference library for the RNAcmap2 pipeline. There is an increase 31%

in the number of sequences for the expanded sequence library.

The RNAcmap2 Pipeline

RNAcmap2 employs three iterative homology searches. There is one more INFERENAL search than RNAcmap, as shown in Figure 1.

In the first search, a query RNA sequence is searched against the reference database library using BLAST-N [12] with E-value=0.001,

line-length=1000, and number-of-alignments=50000 to obtain multiple sequence alignment (MSA-1). Next, a covariance model

(CM) is built from the MSA-1 and predicted secondary structure from RNAfold [1] [as consensus secondary structure (CSS)] using

program cmbuild from the INFERNAL [15] tool. This CM is calibrated (Calibrated CM) using program cmcalibrate from the

INFERNAL tool. Finally, the calibrated CM is searched against the reference database library using the cmsearch program from

INFERNAL with E-value=10 to obtain MSA-2.

If Neff <50 after the completion of the above two searches, we will perform the third round of homology search. This is done

by building a new covariance model (CM) with the cmbuild program, which utilizes MSA-2 and the consensus secondary structure

from RNAfold as an input. The new covariance model (CM) after calibration is then employed to search against the reference

database library with the same e-value of 10 to obtain the MSA-3, as shown in Figure 1. MSA-3 was considered as the final set

of homologous sequences. Here, we stop the search after two searches if Neff >50 because method performance does not improve

much after Neff >50 in secondary structure and contact map prediction (SPOT-RNA2 [8] and SPOT-RNA-2D [24]). In this work,

we found that three iterations were usually sufficient for most cases. However, additional iterations may be beneficial if extreme

sensitivity is required and long computational time is not a concern.

Performance Evaluation by Base Pairing

One way to evaluate MSAs generated from RNAcmap and RNAcmap2 is to compare the structural accuracy extracted from

co-variational analysis of MSAs. This was done by employing direct coupling analysis predictors such as GREMLIN [3], PLMC

[5, 6], mfDCA [7], and plmDCA [4]. GREMLIN and PLMC are pseudo-likelihood optimization-based DCA predictors. GREMLIN

and PLMC were downloaded from https://github.com/sokrypton/GREMLIN_CPP and https://github.com/debbiemarkslab/plmc,

respectively, and both run with the default parameters. Mean-field direct coupling analysis (mfDCA) and pseudo-likelihood

maximization (plmDCA) direct coupling analysis algorithms were obtained from pydca [25] program (https://github.com/KIT-MBS/

pydca).

Another way to evaluate the usefulness of homologous sequences obtained is to employ the alignment-based folding algorithm

RNAalifold [1]. RNAalifold was obtained from Vienna package version 2.4.14 (https://www.tbi.univie.ac.at/RNA/). The program

was run with the default parameters. As a comparison, we also obtained CaCofold [2], which uses both positive and negative

evolutionary information along with a probabilistic folding algorithm for RNA secondary structure prediction. CaCofold was

downloaded from http://eddylab.org/R-scape/ and was run with the default parameters.

The third way to evaluate homologous sequences is to input the resulting sequence profile and direct coupling result into our deep-

learning-based predictor SPOT-RNA2 [8]. SPOT-RNA2 was downloaded from https://github.com/jaswindersingh2/SPOT-RNA2

and run with the default settings.
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Fig. 1: The architecture of the RNAcmap2 pipeline. CSS: Consensus Secondary Structure. CM: Covariance Model. L: Length of

the input RNA sequence

Performance Evaluation by Structure Alignment

In addition to the performance evaluation according to secondary structure, one direct way to compare RNAcmap2 MSAs with

other MSAs is by comparing the alignment accuracy of RNAs belonging to the same Rfam family and having 3D structures. We

first located Rfam families that contain more than one RNA with known structure. Then the “gold-standard” alignment is made

by performing structure alignment using RMalign [26]. To obtain the RNAcmap2 alignment, one RNA from each family with the

highest Neff was considered as the reference RNA, and the covariance model was built by using RNAcmap2 MSA. Next, the

remaining RNAs within a family were aligned with the highest Neff RNA’s covariance model using the cmscan program from

INFERNAL. To obtain the Rfam alignment, we used the covariance model provided by the Rfam for that particular family to align

RNAs within the same family. The alignment accuracy is measured by comparing Rfam and RNAcmap2 generated alignments to

the gold standard structure alignment.

Performance Measures

For benchmarking four DCA and alignment-based folding predictors on RNAcmap’s MSAs, sensitivity (SN = TP/(TP + FN)),

precision (PR = TP/(TP + FP )), and F1-score [F1 = 2(PR × SN)/(PR + SN)] were used for non-local base-pairs [|i − j| ≥ 4],

where TP , TN , FP and FN are true positives, true negatives, false positives and false negatives, respectively. The performance

metrics were evaluated for individual RNAs with mean performance reported in the results section.

Results

Improvement of MSAs measured by coupling analysis

The quality of MSAs generated by different methods can be quantified by the accuracy of base pairs inferred from direct coupling

analysis. Here, we employed the mfDCA predictor as other predictors yield the same trend, and mfDCA has the best performance,
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as shown in Supplementary Table S1. Table 2 (the average result) and Figure 2 (the distribution) compare three MSAs generated by

BLAST-N, direct INFERNAL, the combination of BLAST-N and INFERNAL (RNAcmap) searches against the NCBI nt database

along with two additional MSAs by the RNAcmap (RNAcmap*) and RNAcmap2 searches against the expanded NCBI database

(nt, env nt, tsa nt, and pat nt). The performance measure is the F1-score for top L/3 predictions.

As Table 2 and Figure 2 show, BLAST-N is quite ineffective in getting a significant number of effective homologs for all RNAs

(F1-scores all <0.1), confirming that sequences are not very conserved in RNA homologs. Direct INFERNAL search with secondary

structure predicted by RNAfold allows substantial improvement over BLAST-N for low, medium and high-Neff RNAs. Combining

BLAST-N and INFERNAL (RNAcmap) provides an additional 14%, 16%, and 10% improvement over INFERNAL for these low,

medium and high-Neff RNAs, respectively. Expansion of the sequence library leads to a 10% increase in F1-score for medium

Neff RNAs and a 27% increase for low Neff RNAs from RNAcmap to RNAcmap*. An additional round of homology search leads

to a 16% increase in F1-score for medium Neff RNAs and a 75% increase for low Neff RNAs from RNAcmap* to RNAcmap2.

For no-hit RNAs, the expansion of the sequence library allows detection of some homologs (Median Neff=1) by RNAcmap* with

further improvement by RNAcmap2 (Median Neff=1.4). Similar trends were obtained from the other three DCA predictors as

shown in Supplementary Tables S2, S3, and S4.

Table 2. Performance comparison among different MSA pipelines on No-hit RNAs (21 RNAs), Low Neff RNAs (83 RNAs), Medium Neff RNAs

(31 RNAs), and High Neff RNAs (110 RNAs) using mfDCA predictor.

No-hit RNAs Low Neff RNAs Medium Neff RNAs High Neff RNAs

MSA Pipeline F1 Precision Sensitivity Median Neff F1 Precision Sensitivity Median Neff F1 Precision Sensitivity Median Neff F1 Precision Sensitivity Median Neff

MSA-1 BLAST-N 0.000 0.000 0.000 0.0 0.018 0.019 0.017 1.0 0.021 0.024 0.019 1.0 0.098 0.114 0.088 2.1

- INFERNAL 0.000 0.000 0.000 0.0 0.168 0.185 0.159 2.0 0.407 0.464 0.374 17.0 0.640 0.734 0.571 335.1

MSA-2 RNAcmap 0.000 0.000 0.000 0.0 0.191 0.211 0.179 2.3 0.472 0.532 0.440 26.5 0.693 0.791 0.626 636.5

MSA-2 RNAcmap∗ 0.121 0.130 0.127 1.0 0.244 0.269 0.229 4.1 0.520 0.586 0.485 31.6 0.702 0.801 0.633 605.1

MSA-3 RNAcmap2 0.148 0.162 0.151 1.4 0.426 0.470 0.399 13.0 0.605 0.674 0.574 123.2 0.703 0.802 0.634 605.1

Fig. 2: Violin plot of F1-score of predicted top L/3 contacts by mfDCA predictor using BLAST-N, INFERNAL, RNAcmap,

RNAcmap∗, and RNAcmap2 supplied aligned homologous sequences for No-hit RNAs (21 RNAs), Low Neff RNAs (83 RNAs),

Medium Neff RNAs (31 RNAs) and high Neff RNAs (110 RNAs). In the Violin plot: white dot represents the median; the thin

horizontal line represents mean; the thick and thin gray bar in the center represents the interquartile range and 1.5×interquartile

range; the curve on either side of gray line shows the distribution of data using kernel density estimation; wider the curves around

gray lines, higher the probability of data points lies in that region and vice versa.

One interesting observation is that median Neff -values for high Neff RNAs obtained from RNAcmap (Neff=636.5) was slightly

higher than RNAcmap2 (Neff=605.1). This is counter-intuitive as RNAcmap employed a reference database that is a subset of the

RNAcmap2 reference database. This is due to the limit of top 50,000 allowed hits. If top 50,000 contains more redundant sequences,

the number of effective homologous sequences will be lower. Indeed, if we relax 50,000 to 100,000, we will achieve higher Neff for

RNAcmaps. However, we keep 50,000 as the default to save the computational time.

To illustrate the consistent improvement of RNAcmap2 over RNAcmap, Figure 3 compares the performance of RNAcmap2 and

RNAcmap supplied alignments at different cutoffs for top predictions. RNAcmap2 improves over RNAcmap at all cutoffs for top

contact predictions (L/n, n=1,2,3,...9,10). The results are similar for all other three DCA predictors (See Supplementary Figures

S1, S2, and S3).
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Fig. 3: Boxplot of F1-score (A), Precision (B), and Sensitivity (C) as a function of predicted top L/n base pairs by mfDCA from

RNAcmap (in green) and RNAcmap2 (in red) supplied alignment for 135 PDB RNAs from no-hit, low, medium Neff test sets. The

distribution is shown in terms of median, 25th and 75th percentile with outlier shown by dots.

RNAcmap2 vs Rfam

Rfam is considered the de facto gold standard for clustering homologous RNA families and their multiple sequence alignments

because they have employed experimental secondary structure for alignment and homology search where possible. From 245 RNAs,

118 RNAs were mapped to Rfam families, while the remaining 127 RNAs were not mapped to any Rfam family (See Table 1).

Figure 4 compares F1-scores of top L/3 predicted base pairs by mfDCA on MSAs from Rfam and that from RNAcmap2 for those

RNAs mapped to Rfam [No-hit (1 RNA) and Low Neff (15 RNAs), Medium Neff (15 RNAs), and High Neff (87 RNAs) test

sets]. The fully automatic RNAcmap2 MSAs yield essentially the same performance on base-pair prediction as the manually curated

Rfam for high Neff RNAs and improve it over somewhat for low Neff RNAs and significantly for medium Neff RNAs.

Table 3 shows a family-wise performance comparison of RNAcmap2, Rfam, and RNAcmap supplied MSAs using top L/3 mfDCA

predicted base pairs on 48 different Rfam families. RNAcmap2 MSAs performed better than Rfam MSAs on 29/48 families, and

Rfam MSAs performed better than RNAcmap2 for 16/48 families, while performance on three families was equally good.

Another way to compare Rfam MSAs with RNAcmap2 MSAs is to compare alignment accuracy. Table 4 shows that the overall

performance is nearly the same. RNAcmap2 has a better alignment on 6/11 families whereas Rfam has a better alignment on 5/11

families with two or more RNA structures. The median accuracies are 78.89% for RNAcmap2 and 78.38% for Rfam, respectively.

Application of RNAcmap2 MSA

RNAcmap2 MSAs can be employed for improving different applications such as DCA predictors (mfDCA), alignment-based

folding predictors (RNAaliFold and CaCoFold) and deep-learning-based predictors (SPOT-RNA2). Figure 5A shows the method

performance for a combined 38 RNAs from no-hit, low, median Neff sets and 37 RNAs from high Neff set with ‘deep’ RNAcmap2

alignment (Neff/L > 0.2) after excluding sequences overlapping with SPOT-RNA2 training data using CD-HIT-EST at lowest

identity cut-off of 0.8.

RNAcmap2 MSA provides significant improvement for base pairs prediction over RNAcmap MSA in all cases with the largest

improvement for mfDCA as it has the lowest performance with RNAcmap MSA. The deep learning SPOT-RNA2 has the smallest

improvement because it is more difficult to improve over already accurate prediction with the median F1-score>0.70 for SPOT-RNA2

with the RNAcmap input, while all other predictors with F1-score <0.66 even after using RNAcmap2 MSAs.

For high Neff RNAs (Figure 5B), RNAcmap2 supplied MSAs performance are essentially the same as the RNAcmap MSAs,

confirming the use of Neff=50 as the cutoff for stopping the search.

As an illustrative example, Figure 6 compares RNAcmap and RNAcmap2 MSAs based on base pair prediction by mfDCA and

SPOT-RNA2. This is tRNA in a protein-tRNA complex structure (chain B in PDB ID 4wj4) [27]. In this figure, correctly predicted

canonical base-pairs, non-canonical base-pairs and pseudoknots are indicated by the color blue, orange and green, respectively. Any

wrongly predicted base-pairs are shown by color magenta. mfDCA (RNAcmap2) predicted a more accurate native-like topology

(Figure 6A ) with an F1-score of 0.81 as compared to mfDCA (RNAcmap) with an F1-score of 0.77 (Figure 6B) in comparison to

the native structure (Figure 6C). In both cases, mfDCA is able to predict one pseudoknot (in green) and non-canonical (in orange)

base-pair correctly. SPOT-RNA2 (RNAcmap2) is able to predict all the canonical, non-canonical, and pseudoknot base-pairs in

the native structure with an overall native-like topology as shown in Figure 6E and F1-score of 0.93. In comparison, SPOT-RNA2

(RNAcmap) predicts structure with an F1-score of 0.82 as shown in Figure 6D, but due to many predicted false base-pairs, the
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Fig. 4: F1-score of predicted top L/3 base pairs by mfDCA from Rfam (in blue) and RNAcmap2 (in red) supplied alignment for

No-hit RNAs (1 RNA), Low Neff RNAs (15 RNAs), Medium Neff RNAs (15 RNAs) and high Neff RNAs (87 RNAs) mapped to

Rfam. In the Violin plot: white dot represents the median; the thin horizontal line represents mean; the thick and thin gray bar in

the center represents the interquartile range and 1.5×interquartile range; the curve on either side of gray line shows the distribution

of data using kernel density estimation; wider the curves around gray lines, higher the probability of data points lies in that region

and vice versa.

overall topology of the predicted structure by SPOT-RNA2 (RNAcmap) is quite different from the native structure in Figure 6F.

The result highlights the power of improved MSAs for secondary structure and tertiary base-pair prediction.

Discussion

This work has developed a new automatic homology search pipeline (RNAcmap2) by performing three iterative searches against

an expanded sequence library, including metagenomics and patented sequences. RNAcmap2 significantly improved over RNAcmap

with mean F1-score increased from 0.00 to 0.148, 0.191 to 0.426, and 0.472 to 0.605 for No-hit, low Neff , and medium Neff

RNAs, respectively. Moreover, RNAcmap2 produced MSAs that are comparably accurate as manually curated Rfam MSAs when

compared on 118 PDB RNAs belonging to 48 Rfam families in their ability to extract base pairing information. Thus, RNAcmap2

can generate MSAs for any Rfam or non-Rfam RNAs with the Rfam-like performance. The new tool is expected to be useful for

predicting 1D-structural properties such as solvent accessibility [9, 10, 11] and backbone torsion angle prediction [28], 2D structural

properties such as base pairing [8] and contact maps [24, 29], and RNA 3D structure prediction [30, 31, 32].

The performance of RNAcmap2 depends on the accuracy of Consensus Secondary Structure (CSS). Here, we employed RNAfold

as it is one of the state-of-the-art, folding-based algorithms for RNA secondary structure prediction. Recently, deep learning

techniques such as single-sequence-based SPOT-RNA significantly improves over folding-based algorithms in predicting RNA

secondary structures [33]. Supplementary Table S5 shows the mfDCA performance comparison of RNAcmap* and RNAcmap2

with RNAfold and SPOT-RNA as the CSS predictor on 102 RNAs after removing redundant sequences to SPOT-RNA training

set using CD-HIT-EST at 80% identity cut-off. RNAcmap* with SPOT-RNA CSS leads to 9% higher F1-score over RNAcmap*

with RNAfold CSS. Similarly, RNAcmap2 with SPOT-RNA CSS yields 3% higher F1-score than the RNAcmap2 (RNAfold). In the

automatic server provided, we give users an option for using RNAfold or SPOT-RNA for CSS. We did not choose SPOT-RNA as

the default to avoid the potential over-fit issue.

RNAcmap2 is computationally expensive. For low Neff RNAs, RNAcmap2 takes about 5 hours for a 200 nts sequence when

allowed to use 16 CPU threads of Intel(R) Xeon(R) CPU E5-2670 (2.60 GHz). Searching homologs for RNAs with >1000 nts is

computationally prohibitive. This is why we restricted the RNAcmap2 pipeline for three iterative searches only as the default.

However, if one has the necessary computational resource, the additional number of iterations can generate more homologous

sequences. For no-hit RNAs, we will get a significant 9% improvement for the F1-score (0.148 to 0.162) from the mfDCA predictor

for the 4th round of the homology search. In the standalone version of RNAcmap2, the default value for the number of iterations

can be set by users.
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Table 3. Performance comparison of RNAcmap, Rfam, and RNAcmap2 based on F1-score on 48 Rfam mapped families using mfDCA top L/3

predicted base pairs.

Rfam Family RNA type No. of RNAs RNAcmap Rfam RNAcmap2

RF00005 tRNA 53 0.717 0.746 0.724

RF00001 5S ribosomal 6 0.618 0.630 0.625

RF00167 Purine riboswitch 4 0.711 0.685 0.711

RF01852 Selenocysteine transfer 3 0.856 0.852 0.871

RF00379 ydaO/yuaA leader 3 0.568 0.693 0.597

RF01750 ZMP/ZTP riboswitch 2 0.406 0.657 0.511

RF00162 SAM riboswitch 2 0.757 0.746 0.757

RF00234 glmS glucosamine-6-phosphate activated ribozyme 2 0.709 0.695 0.697

RF01051 Cyclic di-GMP-I riboswitch 2 0.647 0.704 0.647

RF00059 TPP riboswitch 2 0.453 0.679 0.485

RF00174 Cobalamin riboswitch 2 0.650 0.528 0.640

RF01689 AdoCbl variant 1 0.000 0.613 0.453

RF02680 PreQ1-III riboswitch 1 0.029 0.261 0.319

RF00390 UPSK 1 0.080 0.066 0.297

RF02679 Pistol ribozyme 1 0.111 0.486 0.541

RF02519 ToxI antitoxin 1 0.364 0.091 0.455

RF01734 Fluoride riboswitch 1 0.171 0.800 0.629

RF02796 Pab160 1 0.462 0.462 0.667

RF01763 Guanidine-III riboswitch 1 0.462 0.513 0.513

RF01704 Downstream peptide 1 0.667 0.733 0.733

RF03013 nadA 1 0.263 0.737 0.579

RF01725 SAM-I/IV variant riboswitch 1 0.000 0.500 0.611

RF01415 Flavivirus 3’UTR stem loop IV 1 0.222 0.267 0.133

RF00102 VA 1 0.073 0.409 0.713

RF00100 7SK 1 0.400 0.844 0.533

RF02678 Hatchet ribozyme 1 0.259 0.222 0.370

RF00026 U6 spliceosomal 1 0.143 0.000 0.429

RF01826 SAM-V riboswitch 1 0.244 0.300 0.476

RF00442 Guanidine-I riboswitch 1 0.232 0.556 0.274

RF02553 Y RNA-like 1 0.254 0.698 0.419

RF00505 RydC 1 0.432 0.270 0.571

RF01344 CRISPR RNA direct repeat element 1 0.429 0.000 0.880

RF02683 NiCo riboswitch 1 0.394 0.627 0.836

RF00458 Cripavirus internal ribosome entry site 1 0.500 0.391 0.628

RF00164 Coronavirus 3’ stem-loop II-like motif 1 0.647 0.412 0.588

RF00008 Hammerhead ribozyme 1 0.755 0.604 0.792

RF01786 Cyclic di-GMP-II riboswitch 1 0.542 0.847 0.847

RF00228 Hepatitis A virus internal ribosome entry site 1 0.418 0.090 0.716

RF01831 THF riboswitch 1 0.600 0.714 0.657

RF01854 Bacterial large signal recognition particle 1 0.595 0.762 0.643

RF02001 Group II catalytic intron D1-D4-3 1 0.726 0.006 0.720

RF00050 FMN riboswitch 1 0.698 0.721 0.744

RF01857 Archaeal signal recognition particle 1 0.793 0.793 0.811

RF00029 Group II catalytic intron 1 0.760 0.520 0.760

RF00168 Lysine riboswitch 1 0.752 0.709 0.752

RF00504 Glycine riboswitch 1 0.831 0.800 0.831

RF00380 M-box riboswitch 1 0.677 0.632 0.647

RF00002 5.8S ribosomal 1 0.378 0.422 0.222

Mean 48 Families - 0.468 0.531 0.605

Non-Rfam - 127 0.278 - 0.440

Despite the large improvement from RNAcmap to RNAcmap2, there are still 8 RNAs with PDB structures having no hits.

RNAcmap2 can improve over RNAcmap only if there is more than one hit in MSA-2. This limitation will be overcome by the

exponential increase in collection of RNA sequences [17].
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Table 4. Comparison of alignment accuracy given by Rfam and RNAcmap2 within a family with respect to structure alignment obtained from

RMalign using tertiary structures.

Mean Accuracy

Rfam Family RNA type No. of RNAs Rfam RNAcmap2

RF00001 5S ribosomal 5 76.20 89.56

RF00005 tRNA 52 82.27 71.93

RF00059 TPP riboswitch 1 90.79 89.47

RF00162 SAM riboswitch 1 82.98 89.36

RF00167 Purine riboswitch 3 94.81 94.29

RF00174 Cobalamin riboswitch 1 69.81 45.28

RF00234 glmS glucosamine-6-phosphate activated ribozyme 1 68.64 73.73

RF00379 ydaO/yuaA leader 2 78.38 78.89

RF01051 Cyclic di-GMP-I riboswitch 1 88.00 93.33

RF01750 ZMP/ZTP riboswitch 1 67.39 65.22

RF01852 Selenocysteine transfer 2 59.18 60.94

Mean - - 78.04 77.45

Median - - 78.38 78.89

Median Neff - - 3206.19 710.48

Fig. 5: Violin plot of F1-score of base pairs (bps) predictions from mfDCA, RNAaliFold, CaCoFold, and SPOT-RNA2 using

RNAcmap and RNAcmap2 supplied alignment for combined no-hit, low, and median Neff RNAs (A) and high Neff RNAs (B).

The metrics are evaluated on combined 38 RNAs from no-hit, low, median Neff sets and 37 RNAs from high Neff set with ‘deep’

RNAcmap2 alignment (Neff/L > 0.2) and non-redundant from SPOT-RNA2 training data at 80% identity cut-off according to

CD-HIT-EST. In the Violin plot: white dot represents the median; the thin horizontal line represents mean; the thick and thin

gray bar in the center represents the interquartile range and 1.5×interquartile range; the curve on either side of gray line shows the

distribution of data using kernel density estimation; wider the curves around gray lines, higher the probability of data points lies in

that region and vice versa.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510702doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510702
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 Singh et al.

A mfDCA (RNAcmap) B mfDCA (RNAcmap2) C Native

D SPOT-RNA2

(RNAcmap) E SPOT-RNA2 (RNAcmap2) F Native

Fig. 6: Performance illustrated by a tRNA (chain B in PDB ID 4wj4). (A) Predicted secondary structure by mfDCA using RNAcmap

alignment, with F1-score of 77%. (B) Predicted secondary structure by mfDCA using RNAcmap2 alignment, with F1-score of 81%.

(C) Native structure. (D) Predicted secondary structure by SPOT-RNA2 using RNAcmap alignment, with F1-score of 82%. (E)

Predicted secondary structure by SPOT-RNA2 using RNAcmap2 alignment, with F1-score of 93%. (F) Native structure.

Key Points

• We developed an improved version of the fully automated RNA homology search pipeline (RNAcmap) by utilizing one BLAST-N

search and two additional INFERNAL searches.

• RNAcmap2 expanded the reference NCBI’s nucleotide database by including NCBI’s metagenomics and patent sequences and

improved the performance over RNAcmap for low Nefff RNAs.

• We provide a publicly available standalone program at GITHUB and web-server on SPARKS-LAB.

Availability

The RNAcmap2 pipeline is available at https://sparks-lab.org/server/rnacmap2/. It is highly recommended that users install

the standalone program at https://github.com/jaswindersingh2/RNAcmap2.

Competing interests

There is NO Competing Interest.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510702doi: bioRxiv preprint 

https://sparks-lab.org/server/rnacmap2/
https://github.com/jaswindersingh2/RNAcmap2
https://doi.org/10.1101/2022.10.03.510702
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

Author contributions statement

JS (Jaswinder Singh) and KP designed pipeline architecture. JS (Jaswinder Singh) and JS prepared the data. JS (Jaswinder Singh)

and TL build reference database. JS (Jaswinder Singh) did the pipeline analysis, compared it with other pipelines and wrote the

manuscript. JS (Jaswinder Singh) build the standalone program and webserver of the pipeline. YZ conceived the study, participated

in the initial design, assisted in data analysis, and drafted the whole manuscript. All authors read, contributed to the discussion,

and approved the final manuscript.

Funding

This work was supported by the Australian Research Council DP210101875 to K.P and Y.Z.

Acknowledgments

We gratefully acknowledge the use of the High-Performance Computing Cluster Gowonda to complete this research and the aid of the

research cloud resources provided by the Queensland Cyber Infrastructure Foundation (QCIF). We also gratefully acknowledge the

support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. This work is also supported in part by

the High Performance Computing Cluster at Shenzhen Bay Laboratory. The support of Shenzhen Science and Technology Program

(Grant No. KQTD20170330155106581) and the Major Program of Shenzhen Bay Laboratory S201101001 is also acknowledged.

Competing interests

There is NO Competing Interest.

References
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4. Magnus Ekeberg, Cecilia Lövkvist, Yueheng Lan, Martin Weigt, and Erik Aurell. Improved contact prediction in proteins: Using

pseudolikelihoods to infer Potts models. Phys. Rev. E, 87:012707, 2013.

5. Sivaraman Balakrishnan, Hetunandan Kamisetty, Jaime G. Carbonell, Su-In Lee, and Christopher James Langmead. Learning

generative models for protein fold families. Proteins: Structure, Function, and Bioinformatics, 79(4):1061–1078, 2011.

6. Thomas A. Hopf, John B. Ingraham, Frank J. Poelwijk, Charlotta P. I. Schärfe, Michael Springer, Chris Sander, and Debora S.

Marks. Mutation effects predicted from sequence co-variation. Nature Biotechnology, 35(2):128–135, 2017.

7. Faruck Morcos, Andrea Pagnani, Bryan Lunt, Arianna Bertolino, Debora S. Marks, Chris Sander, Riccardo Zecchina, José N.
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