

1 **Polycomb Repressive Complex 1 subunit Cbx4 positively regulates effector responses in CD8**
2 **T cells**

3 Melo G.A.¹, Xu, T.², Calôba C.^{1,5}, Schutte, A.², Brum G.¹, Passos T.O.¹, Higa L.⁷, Gonçalves A.⁸,
4 Tanuri A.⁷, Viola J.P.B.⁶, Werneck M.B.F.⁵, Nakaya H.I.⁴, Pipkin M.E.³, Martinez G.J.^{2,*}, Pereira
5 R.M^{1,*}

6

7 **Affiliations**

8 ¹ Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal
9 do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil.

10 ² Center for Cancer Cell Biology, Immunology, and Infection; Discipline of Microbiology and
11 Immunology. Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North
12 Chicago, IL 60064, USA.

13 ³ Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of
14 Florida, Jupiter, FL 33458, USA.

15 ⁴ Hospital Israelita Albert Einstein, 05652-900, São Paulo, SP, Brazil.

16 ⁵ Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902,
17 Rio de Janeiro, RJ, Brazil.

18 ⁶ Programa de Imunologia e Biologia Tumoral, Instituto Nacional do Câncer, 20231-050, Rio de
19 Janeiro, RJ, Brazil.

20 ⁷ Departamento de Genética. Instituto de Biologia, Universidade Federal do Rio de Janeiro, 21941-
21 902, Rio de Janeiro, RJ, Brazil.

22 ⁸ Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences,
23 University of São Paulo, 05508-000, São Paulo, SP, Brazil.

24

25 *Correspondence:

26 Renata M. Pereira, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes –
27 IMPG, Centro de Ciências da Saúde – CCS, Universidade Federal do Rio de Janeiro, Avenida
28 Carlos Chagas Filho, 373, sala D1-035 CEP: 21941-902, Rio de Janeiro, RJ, Brasil.

29 renata.pereira@micro.ufrj.br

30 ORCID# 0000-0002-7719-8356

31

32 Gustavo J. Martinez, Center for Cancer Cell Biology, Immunology and Infection, Discipline of
33 Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, Chicago
34 Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA. gjmartinez@gmail.com.

35 ORCID# 0000-0003-0178-3329

36

37 **Key words:** Epigenetics, Polycomb, Cbx4, PRC1, T cell differentiation, CD8 T cell

38

39 **Summary:** Understanding the epigenetic control of CTL differentiation is critical for the
40 manipulation of these cells in immunotherapy protocols. This article demonstrates a novel role for
41 Cbx4, a Polycomb-group protein, in supporting CD8 T cell commitment to an effector cell
42 phenotype.

43

44 **Abstract:** CD8 T cell differentiation is controlled by the crosstalk of various transcription factors
45 and epigenetic modulators. Uncovering the different players in regulating this process is
46 fundamental to improving immunotherapy and designing novel therapeutic approaches. Here, we

47 show that Polycomb Repressive Complex (PRC)1 subunit Chromobox (Cbx)4 favors
48 differentiation to effector CD8 T cells. Cbx4 deficiency in CD8 T cells induced transcriptional
49 signature and phenotype of memory cells, increasing the formation of memory population during
50 acute viral infection. It has been previously shown that besides chromodomain-mediated binding
51 to H3K27me3, Cbx4 function as a SUMO E3 ligase in a SUMO interacting motifs (SIM)-
52 dependent way. The overexpression of Cbx4 mutants in distinct domains showed that this protein
53 regulates CTL differentiation primarily in a SIM-dependent way and partially through its
54 chromodomain. Our data revealed a novel role of a Polycomb group protein Cbx4 controlling CD8
55 T lymphocyte differentiation and indicates the SUMOylation process as a key molecular
56 mechanism connected to chromatin modification in this process.

57 **Introduction**

58 CD8 T cells are an essential component of adaptive immunity, working as key players in
59 the elimination of intracellular pathogens and tumor cells (1). Upon activation, CD8 T cells
60 undergo intense expansion and differentiate into a heterogeneous population composed of pro-
61 inflammatory and cytotoxic terminal effector cells (TE), characterized by expression of the killer
62 cell lectin-like receptor G1 (KLRG1⁺) and low expression of IL-7Ra (CD127⁻), and memory
63 precursor (MP) cells that are responsible for the generation of long-term immunity, that express
64 CD127 and low levels of KLRG1 (KLRG1⁻CD127⁺). Complex transcriptional programs that are
65 regulated dynamically control gene expression that specifies the differentiation of these distinct
66 CD8 T cell states. The identification of the key players that participate in this process is critical for
67 the understanding of these molecular processes and for advancing novel therapeutic strategies (1,
68 2). Several transcription factors have been described to drive CD8 T cell differentiation, including
69 T-bet (3, 4), Blimp1 (5, 6), Zeb-2 (7, 8), Id2 (9–11), and NFAT1 (12) which promote generation
70 of TE cells, and Tcf-1 (13, 14), Eomes (3, 15), Bcl-6 (16, 17), Id3 (18, 19), Foxo1 (20–22) and
71 Runx3 (23) for memory cell differentiation. Transcription factors cooperate with epigenetic
72 regulators, including chromatin modifiers that add, remove or recognize post-translational
73 modifications in histones, adding a new level of complexity to this differentiation process that
74 remains to be completely uncovered (24–26).

75 The Polycomb Repressor Complex (PRC)2, responsible for tri-methylating lysine 27 of
76 histone 3 (H3K27me3), which is considered a repressive mark, was described as having an
77 essential role in commitment to effector cell differentiation through the deposition of this mark in
78 memory-related genes, leading to transcriptional repression during acute viral infection (25, 27,
79 28). In addition, members of this complex were upregulated right after activation in cells that later

80 differentiated into terminal effector CD8 T cells (28). Furthermore, it was demonstrated that
81 H3K27me3 removal by lysine demethylase Kdm6 promotes effector differentiation through de-
82 repression of effector genes (29–31). These evidences underscore the importance of H3K27me3
83 methylation/demethylation dynamic regulation to CD8 T cell differentiation. H3K27me3 can
84 recruit another epigenetic complex from the Polycomb group (PcG), the PRC1, that also works as
85 a repressor through the ubiquitylation of lysine 119 of histone H2A (H2AK119ub) by its catalytic
86 subunit Ring1, as well as through chromatin remodeling mechanisms mediated by other subunits
87 that can integrate the complex (32). PRC1 composition is highly heterogeneous, and its distinct
88 configurations are divided in canonical (cPRC1) or noncanonical PRC1 (ncPRC1) (33, 34). While
89 ncPRC1 complexes can be recruited to genome sites independently of PRC2 function (35, 36),
90 cPRC1 are known to be recruited to H3K27me3-tagged *loci*. This process is thought to be mediated
91 by recognition and binding of Chromobox (Cbx) family proteins (Cbx2, Cbx4, Cbx6, Cbx7, and
92 Cbx8) to this repressive epigenetic mark through its conserved chromodomain (32, 37). Cbx4 is
93 reported to function additionally as a small ubiquitin-like modifier (SUMO) E3 ligase through its
94 two SUMO interacting motifs (SIM) (38, 39). SUMO conjugation is a dynamic post-translational
95 modification that can alter the molecular interactions, stability and activity of targeted proteins and
96 mediates the regulation of several critical cellular processes, such as control of gene expression
97 and chromatin structure (40, 41). Besides, Cbx4 E3 SUMO ligase activity has been reported to
98 regulate essential transcriptional regulators, such as Dnmt3a and Hif-1 α (42, 43).

99 Here we show that Cbx4 induces effector cell commitment primarily through its SIM
100 domain-related mechanisms. Cbx4-deficient CD8 T cells showed increased expression of
101 memory-related surface markers CD127 and CD62L for both *in vitro* differentiation and during
102 acute viral infection. Consistent with our phenotyping results, RNA-Seq of *in vivo*-differentiated

103 Cbx4-deficient cells showed skewing towards memory precursor transcriptional signature.
104 Furthermore, Cbx4 deficiency led to increased memory generation at acute lymphocytic
105 choriomeningitis virus (LCMV) viral infection memory time point. To rescue the Cbx4 deficient
106 phenotype, we overexpressed Cbx4 or Cbx4 functional domain mutants in CD8 T cells. We found
107 that the overexpression restored the effector population in a SIM domain-dependent manner and
108 only partially depended on its chromodomain. Our data, suggest that Cbx4 promotes CD8 T cell
109 effector differentiation, which is mainly driven by SUMOylation mechanisms and less so by its
110 capacity to bind to methylated histones.

111

112 **Methodology**

113 *Mice*

114 All mice were on a C57BL/6 background. The experimental mice were 6- to 8-wk-old and
115 sex- and age-matched. P14 (LCMV gp33-41-H2-Db-specific) Thy1.1 and CD4-Cre mice have
116 been previously described (12). Cbx4^{f/f} mice (obtained from Dr. Guo-Liang Xu,
117 Institute of Biochemistry and Cell Biology, China (44)) were bred to create the following
118 genotypes: Cbx4^{f/f}Cd4^{Cre} and P14 Thy1.1⁺ Cbx4^{f/f}Cd4^{Cre}. Mice were housed in specific
119 pathogen-free barrier facilities and used according to protocols approved by the Rosalind Franklin
120 University of Medicine and Science Institutional Animal Care and Use Committee (IACUC). Mice
121 housed in the Mouse facility of Departamento de Imunologia (UFRJ) were used according to the
122 rules established by CONCEA (Conselho Nacional de Experimentação Animal) and UFRJ CEUA
123 (Comitê de Ética no Uso de Animais) approval (Protocol 054/20).

124

125 *T cell isolation and culture*

126 Naive CD8⁺ T cells were purified from spleen and lymph nodes using the Mouse Naive
127 CD8⁺ T Cell Isolation Kit (StemCell Technologies) or through negative selection using Dynabeads
128 Untouched Mouse CD8 cells Kit (Thermo Fisher Scientific) followed by Fluorescence-Activated
129 Cell Sorting (FACS). Naïve CD8 T cells were cultured on Dulbecco's modified Eagle's Medium
130 (DMEM) supplemented with 10% heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin-
131 streptomycin, 50 ng/ml gentamicin, 1X MEM non-essential amino acids, 1 mM sodium pyruvate,
132 1X MEM Vitamin Solution, 10 mM HEPES, and 50 μ M β -Mercaptoethanol (45). Naïve CD8 T
133 cells were activated with 1 μ g/ml (effector-like polarization) or 50 ng/mL (memory-like
134 polarization) of anti-CD3 (clone 2C11) and 1 μ g/mL of anti-CD28 (clone 37.51) (Thermo Fisher
135 Scientific) at 1 million cells per mL on a 12- or 24-well plate that had been precoated with 300
136 μ g/ml goat anti-hamster IgG (Pierce Protein Biology, Life Technologies) (45). Cells were removed
137 from the initial stimulus 48 h after activation and were cultured at 0.5 million/mL in the presence
138 of 100 U/ml of recombinant human (rh)IL-2 for effector-like or 10 U/mL of rhIL-2, 10 ng/mL of
139 rhIL-7 and 10 ng/mL of rhIL-15 for memory-like phenotype polarization. In indicated
140 experiments, 200 U/mL of recombinant murine (rm)IL-2 were used to generate effector-like cells
141 and 20 U/mL of rhIL-2, 10 ng/mL of rmIL-7 and 10 ng/mL of rmIL-15 for memory-like cells (46).
142

143 *Retroviral plasmids and transduction*

144 For Cbx4 knockdown experiments, retroviral particles were generated by transfecting
145 Phoenix-Eco cells with Ametrine-expressing murine retroviral vectors containing shRNAs
146 targeting CD4 (shCD4) or Cbx4 (shCbx4) mRNA (47). For Cbx4 over-expression, Plat-E cells
147 were transfected with GFP-expressing murine retroviral vectors containing unaltered Cbx4 coding
148 sequence (Cbx4-OE), Cbx4 mutants carrying two point mutations (F11A/W35L) at Cbx4

149 chromodomain (Δ Chromo), deletion of the two SUMO interacting motifs (SIM) domains (Δ SIM1-
150 2) or GFP-expressing empty vector (Mock), kindly donated by Dr. Wang (48). Virus supernatant
151 was filtered through 0.45-mm filters and used fresh for transduction in Cbx4 knockdown
152 experiments or concentrated by centrifugation at 6000 x g (F14-14 x 50cy rotor) at 4°C overnight
153 for Cbx4 over-expression experiments. *In vitro*-activated CD8 T cells (as described above) were
154 transduced with retroviral particles 18-20h after activation. T cell culture medium was carefully
155 replaced with media containing fresh or concentrated retrovirus supplied with 8 μ g/ml polybrene
156 and centrifuged at 800 x g for 1 h at 37°C and then put into a 37°C 10% CO₂ incubator for 4h. For
157 the adoptive transfer of transduced P14 cells, T cell cultures were immediately harvested after
158 incubation. For *in vitro* culture experiments, the conditioned T cell media was replaced, and cells
159 were then expanded until day 6 or day 14 for effector- or memory-like polarization, respectively.
160

161 *LCMV infection and adoptive cell transfer*

162 Mice were infected i.p. with 2×10^5 PFUs of LCMV Armstrong (LCMV Arm) and
163 analyzed on day 45 (d45) post-infection (p.i.). For adoptive transfer experiments with transduced
164 CD8 T cells, congenic C57BL/6 (Thy1.2) mice received intravenously 5×10^5 *in vitro*-transduced
165 P14 Thy1.1 cells (expressing shCD4 or shCbx4) and were subsequently infected i.p. with $1.5 \times$
166 10^5 PFUs of LCMV clone13, as previously described (47). LCMV strains were initially provided
167 by Dr. Shane Crotty, La Jolla Institute, CA and expanded with BHK cells as described before (49).
168

169 *Flow Cytometry analysis*

170 Spleens and lymph nodes were used for isolating single-cell suspension. RBCs were lysed
171 from spleens with ACK lysis buffer. For LCMV tetramer staining, H2Db-gp33-41

172 (KAVYNFATC) Alexa Fluor 647 or APC was incubated at room temperature before staining for
173 cell surface molecules and intracellular staining. Cytokine production was measured by FACS
174 from *ex vivo* splenic cells or *in vitro* cultured cells upon restimulation with 10 nM PMA and 1 μ M
175 Ionomycin for 4 h in the presence of brefeldin A. Samples were run on FACSaria IIu or LSRII
176 (BD Biosciences), and data were analyzed with FlowJo (Version 9.9.4 and Version 10.7.1).

177

178 *Cytotoxicity assay*

179 For cytotoxicity assay, naïve P14 CD8 T cells were activated *in vitro*, transduced with
180 shCD4 or shCbx4, and cultured with 10 U/ml rhIL-2 as described above. On day 6, Ametrine⁺
181 cells were purified by FACS and co-cultured at different ratios with GFP-expressing parental
182 mammary carcinoma cell line EO771 (negative control to determine nonspecific target lysis) or
183 EO771 cells expressing the cognate Ag gp33-41 (EO771-GFP-gp33-41). After overnight
184 incubation (12 h), the remaining live GFP-expressing EO771 cells were determined by flow
185 cytometry as a measure of the cytotoxic activity. EO771 cells cultured in the absence of CTLs
186 were used as a baseline for cell death.

187

188 *RNA sequencing*

189 FACS-purified cells from *in vivo* experiment were washed twice with PBS and used for
190 RNA sequencing. RNA-seq libraries were prepared using SMARTer Stranded RNA-Seq Kit
191 (Clontech) according to the manufacturer's instructions. RNA-Seq libraries were sequenced with
192 the rapid run protocol with a HiSeq 2500 instrument (Illumina). The paired-end reads that passed
193 Illumina filters were filtered for reads aligning to tRNA, rRNA, adapter sequences, and spike-in
194 controls. The reads were then aligned to the UCSC mm9 reference genome using TopHat (v1.4.1).

195 DUST scores were calculated with PRINSEQ Lite (v 0.20.3), and low complexity reads (DUST >
196 4) were removed from the BAM files. Read counts to each genomic feature were obtained with
197 htseq-count (v 0.6.0) using the default “union” option. After removing absent features (zero counts
198 in all samples), the raw counts were imported to R/Bioconductor package DESeq2 (v1.24.0) to
199 identify differentially expressed genes among samples. We considered genes differentially
200 expressed between two groups of samples when the DESeq2 analysis resulted in a p-value < 0.05.
201 Gene set enrichment analysis (GSEA), that considers the gene expression ranking to calculate
202 enrichment, was performed by comparing the differentially expressed genes between shCD4 and
203 shCbx4-treated samples (pre-ranked gene list) to published SLEC and MPEC datasets (gene set)
204 (23).

205

206 *Quantitative real-time RT-PCR*

207 Total RNA was isolated from FACS-purified CD8 T cells using TRIzol reagent
208 (Invitrogen) according to manufacturer’s instructions. Superscript reverse transcriptase
209 (Invitrogen) and oligonucleotide primers were used to synthesize cDNA. Gene expression was
210 examined with 7500 Real-Time PCR System (Applied Biosystems) using Power SYBR green PCR
211 Master Mix (Thermo Fisher Scientific). Gene expression was normalized to *Rpl22* (encodes L22
212 ribosomal protein) gene expression. The following primers were used: *Rpl22* forward, 5'-
213 ACCCTGGACTGCACTCACCCCTG-3'; *Rpl22* reverse, 5'-CCGCCGAGGTTGCCAGCTT-3';
214 Sell forward, 5'-CATTCCCTGTAGCCGTCATGG-3'; Sell reverse, 5'-
215 AGGAGGAGCTGTTGGTCATG-3'; II7r forward, 5'-GCGGACGATCACTCCTTCTG-3'; II7r
216 reverse, 5'-AGCCCCACATATTGAAATTCCA-3'; *Cbx4* forward, 5'-
217 AGTGGAGTATCTGGTGAAATGGA-3'; *Cbx4* reverse, 5'- TCCTGCCTTCCCTGTTCTG-3'.

218

219 *Statistics and analysis*

220 Graphs were plotted using Prism 7 or 8 (GraphPad). Statistical analysis was performed
221 using nonpaired one-way ANOVA followed by Tukey multiple comparisons, two-tail paired or
222 nonpaired Student t test, or two-way ANOVA followed by Tukey, Sidak or Dunnet multiple
223 comparisons, as indicated.

224

225 **Results and Discussion**

226 *Cbx4 deficiency skews CD8 T cell differentiation to a memory phenotype and impacts CD8 T cell*
227 *cytotoxicity*

228 To assess the role of Cbx4 in CD8 T cell differentiation, we employed LCMV acute
229 infection model using adoptive transfer of CD8 T cells from P14 mice. Naïve CD8 T cells from
230 P14 Thy1.1⁺ mice were activated *in vitro* and transduced with retroviral vectors (RV) expressing
231 shRNA targeting Cbx4 mRNA (shCbx4) or CD4 mRNA as a control (shCD4). Transduced cells
232 were then adoptively transferred to WT Thy1.2⁺ congenic mice that were infected on the same day
233 with LCMV, as previously described (47) (Fig.1.A). The efficiency of shRNA-mediated silencing
234 of Cbx4 was confirmed by RT-qPCR (Suppl.Fig1. A).

235 The differentiation of P14 cells to effector or memory phenotype was analyzed 8 days post-
236 infection by measuring KLRG1 and CD127 expression (Fig.1.B-D). Transferred LCMV-specific
237 Cbx4-deficient CD8 T (P14 shCbx4) cells had lower frequency and number of TEs
238 (KLRG1⁺CD127⁻) and, accordingly, higher frequency and cell number of populations expressing
239 the memory-associated marker CD127, both in MP (KLRG1⁻CD127⁺) and in KLRG1⁺CD127⁺
240 double positive population. The frequency of transferred Thy1.1⁺ P14 cells and transduced

241 Ametrine^{hi} Thy1.1⁺ P14 cells were lower in mice receiving P14 shCbx4 cells in comparison to
242 mice receiving control cells; however, no significant difference was observed in the cell numbers,
243 which is consistent with the increase in total CD8⁺ T cell population numbers in mice receiving
244 P14 shCbx4 cells (Suppl.Fig.1. B).

245 To further investigate the contribution of Cbx4 to the regulation of CD8 T cell
246 transcriptional profile, P14 CD8 T cells from the LCMV acute infection model described above
247 were sort-purified on d8 post-infection, and total RNA was extracted for RNA-Seq. Data analysis
248 showed 836 differentially expressed genes (DEGs) when comparing P14 shCbx4 CD8 T cells to
249 P14 shCD4 CD8 T cells (Fig.1.E). Among those genes, several surface markers that positively
250 correlate with the memory cells were upregulated on Cbx4 deficient cells, including *Il7r* (CD127)
251 and *Slamf6* (2, 50). In addition, genes encoding key transcription factors *Eomes* and *Tcf7* (Tcf-
252 1), which promote the generation and persistence of central memory CD8 T cells, were also
253 upregulated in comparison to control cells (3, 13–15). Concordantly, genes positively correlated
254 with the effector phenotype and function, such as *Klrg1*, *Prf1* and *Cx3cr1*, were downregulated in
255 P14 shCbx4 compared to shCD4 CD8 T cells. These gene expression alterations, such as the
256 upregulation of *Tcf7* and *Il7r*, were not just due to a higher frequency of memory cells in our Cbx4-
257 deficient population, as sorted Cbx4-deficient KLRG1^{hi} CD8 T cells also showed an enrichment
258 of memory-associated genes (Suppl.Fig.1. D). To test whether these gene expression alterations
259 lead to a global shift towards memory transcriptional programs, we performed Gene Set
260 Enrichment Analysis (GSEA) using previously published memory precursor (KLRG1^{lo}CD127^{hi})
261 transcriptional signature from day 8 acute LCMV infection model (23). We found that genes
262 upregulated in P14 shCbx4 cells showed enrichment in memory precursor transcriptional signature
263 (Fig.1.F), indicating that Cbx4 could directly regulate memory-associated genes. It is also

264 plausible that Cbx4 could indirectly impact the expression of transcription factors related to CD8
265 T cell differentiation by controlling other transcriptional regulators. For example, our RNA-Seq
266 showed that *c-Myb*, a transcriptional activator of *Tcf7* (51), is upregulated in P14 shCbx4 cells.
267 Similarly, Cbx4 was reported to activate the Wnt/β-catenin pathway, a pathway upstream of TCF-
268 1 activation, in human lung adenocarcinoma cells (52). Future studies will be focused on
269 determining which transcriptional regulators involved in CD8 T cell differentiation are directly
270 regulated by Cbx4.

271 As we observed the downregulation of genes related to effector function (i.e.: *Prf1*), we
272 explored if Cbx4 deficiency could impact CD8 T cell cytotoxic function. P14 cells were analyzed
273 in an *in vitro* cytotoxicity assay, co-culturing activated and retrovirally transduced P14 cells with
274 GP33-expressing GFP⁺ EO771 tumor cells (EO771) (Fig.1.G). We observed that P14 shCbx4 cells
275 had diminished cytotoxicity compared to P14 shCD4, which further supports the observation of
276 defective effector differentiation with concomitant skewing to memory phenotype in the absence
277 of Cbx4 protein.

278 Collectively, our findings shows that Cbx4 deficiency upregulates memory precursor
279 transcriptional signature and expression of memory surface markers (CD127, CD62L), and
280 decreases effector cytotoxic function, revealing a skewing of CD8 T cells towards a memory
281 phenotype and a role for the Polycomb protein Cbx4 in the control of CD8 T cell differentiation.

282

283 *Cbx4 deficiency leads to increased memory CD8 T cell formation*

284 To confirm if Cbx4 could control memory CD8 T cell formation, we used the acute LCMV
285 infection in T cell-specific Cbx4 deficient mice ($\text{Cbx4}^{\text{fl/fl}}\text{Cd4}^{\text{Cre}}$, herein referred to as Cbx4 TKO
286 mice), analyzing polyclonal Cbx4 deficient CD8 T cells 60 days post-infection (Fig.2.A). Analysis

287 of lymphocyte populations on thymus, lymph nodes and spleens of Cbx4 T KO mice at steady
288 state showed no alteration in T cell development or abnormal phenotype of lymphocytes in
289 secondary lymphoid organs (data not shown). On day 60 post-infection, Cbx4 TKO mice showed
290 a slight increase in the frequency and number of CD8 T cells, as well as higher number of LCMV-
291 specific H2Db-gp33-41⁺ (GP33⁺) cells (Fig.2.B, C). In addition, Cbx4 TKO mice had higher
292 frequency and cell number of KLRG1⁺CD127⁺ population in GP33⁺ CD8 T cells (Fig.2. D-F). We
293 also observed higher number of memory KLRG1⁻CD127⁺ population, although this was not
294 reflected in population frequency. Accordingly, we found decreased frequency and cell number of
295 terminal effector (KLRG1⁺CD127⁻) GP33⁺ CD8 T cells (Fig.2.D-F). The expression of CXCR3,
296 which is associated with memory population formation and rapid recall response (53), was
297 upregulated on GP33⁺ CD8 T cells of Cbx4 TKO mice, as seen by the increased cell numbers of
298 KLRG1⁺CXCR3⁺ and KLRG1⁻CXCR3⁺ populations (Suppl.Fig.2.A, B). To further validate the
299 enrichment of memory-associated genes in Cbx4 deficient CD8 T cells, we performed intracellular
300 staining to examine expression of transcription factor T-bet and Eomes from our *ex vivo* samples.
301 We observed that T-bet/Eomes ratio was significantly lower in Cbx4 TKO mice, regardless of
302 KLRG1 expression, in line with a global increased memory profile upon Cbx4 deficiency
303 (Fig.2.G).

304 To recapitulate this phenotype in an *in vitro* model system, we differentiate CD8 T cells to
305 either effector- or memory-like cells using a previously established protocol (46). Consistently, we
306 observed increased levels of the memory markers CD127 and CD62L in Cbx4-deficient cells,
307 regardless of the polarized phenotypes (Suppl.Fig. 3). In summary, deficiency in Cbx4 leads to
308 increased expression of memory-associated surface markers and transcription factors in CTLs,
309 both *in vivo* and *in vitro*.

310

311 *Repression of memory phenotype by Cbx4 is primarily dependent on SIM1-2 domains*

312 We next investigated the mechanism through which Cbx4 impacts CD8 T cell
313 differentiation. As Cbx4 protein can mediate P_cG-dependent repression and function in parallel as
314 an E3 ligase enzyme (32, 37–39), we enforced the expression, in either wild-type or Cbx4-deficient
315 P14 cells, of wild type or mutant Cbx4 cDNAs lacking key functional domains: (1) Δ Chromo,
316 with an amino acid substitution at chromodomain that prevents its binding to H3K27me3 residues;
317 (2) Δ SIM1-2, that lacks both SUMO-interacting motifs (Fig. 3A).

318 Cbx4 KO CD8 T cells activated and differentiated *in vitro* to a memory-like phenotype
319 displayed accentuated expression of CD62L and CD127 during cell culture, and complementation
320 of Cbx4-deficient cells with wildtype Cbx4 counteracted this phenotype (Fig. 3B, C).
321 Overexpression of Δ Chromo mutant reproduces to a lesser degree the effect seen upon wild-type
322 isoform overexpression, indicating that the Cbx4 H3K27me3 binding function has a partial
323 contribution to its role in the commitment to effector cell differentiation. On the other hand,
324 deletion of SIM sequences not only reversed wild-type isoform Cbx4 overexpression impact but
325 induced the opposite effect, promoting memory phenotype in both P14 WT and P14 Cbx4 T KO
326 cells. Overexpression of Δ SIM1-2 mutant in P14 WT CD8 T cells raised the frequency of
327 CD62L⁺CD127⁺ population to levels observed in Mock-transduced P14 Cbx4 KO cells,
328 suggesting that overexpression of SIM-deficient Cbx4 isoform might be competing with
329 endogenous Cbx4 function, and potentially acting as a dominant negative version of the protein
330 (Fig.3.C). The same patterns were observed for the expression of memory-related markers CD62L
331 and CD127 at protein (Fig.3.D, E) and transcriptional (Fig.3.F, G) levels. Expression of markers
332 related to the effector phenotype, CD25, and recall response, CXCR3, corroborated these data,

333 showing an increase of both proteins upon wild-type Cbx4 overexpression while Δ Chromo mutant
334 overexpression partially reproduced wild type Cbx4 effect and Δ SIM1-2 mutant reversed the effect
335 (Fig.3.H, I).

336 The fact that we observed that both chromodomain and SIM domains are required for
337 effector CD8 T cell differentiation is consistent with the fact that it has been shown in mouse
338 embryonic fibroblast that conjugation of SUMO at the Cbx4 SIM domain is essential for
339 recruitment of cPRC1 to H3K27me3 in genome *loci* and control of PRC1 repressive activity (54).
340 Moreover, it was reported that Cbx4-mediated SUMOylation of Ezh2 promoted its recruitment
341 and enhanced Ezh2 methyltransferase activity, demonstrating that Cbx4 regulates PRC2 (55).
342 Therefore, our results indicate that Cbx4 SIM domains might regulate cPRC1 and PRC2-
343 dependent repressive mechanisms in CD8 T cells. Further studies investigating Cbx4
344 SUMOylation and targets for Cbx4 SUMO E3 ligase function in CD8 T cells are needed to fully
345 define its role in CD8 T cell differentiation. In addition, looking into the crosstalk between Cbx4
346 and other P_cG proteins in CD8 T cells, especially Ezh2, and its potential interaction with
347 H3K27me3 residues through the chromodomain is needed to understand how this protein controls
348 Polycomb-mediated repressive mechanisms during CD8 T cell differentiation. Finally, the ability
349 of Cbx4 to also bind to H3K9me3 adds another potential layer of complexity to the epigenetic
350 regulation of T cells by this protein (37).

351 Taken together, our data demonstrates that Cbx4, a Polycomb-group protein, participates
352 in the control of CD8 T cell differentiation. We observed that both Cbx4 SIM1-2 domains and
353 chromodomain are required for the repression of memory phenotype, however SIM1-2 might play
354 a more dominant role in this process. Further studies better characterizing the role of Cbx4 to CD8
355 T cell functionality and clarifying the mechanisms by which Cbx4 perform its role as regulator,

356 identifying its targets and partners, will help clarify how the Polycomb-dependent complex
357 molecular network regulates CD8 T cell differentiation.

358

359 **References**

- 360 1. Kaech, S. M., and W. Cui. 2012. Transcriptional control of effector and memory CD8+ T cell
361 differentiation. *Nat Rev Immunol* 12: 749–761.
- 362 2. Chang, J. T., E. J. Wherry, and A. W. Goldrath. 2014. Molecular regulation of effector and
363 memory T cell differentiation. *Nat Immunol* 15: 1104–1115.
- 364 3. Intlekofer, A. M., N. Takemoto, E. J. Wherry, S. A. Longworth, J. T. Northrup, V. R. Palanivel,
365 A. C. Mullen, C. R. Gasink, S. M. Kaech, J. D. Miller, L. Gapin, K. Ryan, A. P. Russ, T. Lindsten,
366 J. S. Orange, A. W. Goldrath, R. Ahmed, and S. L. Reiner. 2005. Effector and memory CD8+ T
367 cell fate coupled by T-bet and eomesodermin. *Nat Immunol* 6: 1236–1244.
- 368 4. Joshi, N. S., W. Cui, A. Chandele, H. K. Lee, D. R. Urso, J. Hagman, L. Gapin, and S. M.
369 Kaech. 2007. Inflammation Directs Memory Precursor and Short-Lived Effector CD8+ T Cell
370 Fates via the Graded Expression of T-bet Transcription Factor. *Immunity* 27: 281–295.
- 371 5. Kallies, A., A. Xin, G. T. Belz, and S. L. Nutt. 2009. Blimp-1 Transcription Factor Is Required
372 for the Differentiation of Effector CD8+ T Cells and Memory Responses. *Immunity* 31: 283–295.
- 373 6. Rutishauser, R. L., G. A. Martins, S. Kalachikov, A. Chandele, I. A. Parish, E. Meffre, J.
374 Jacob, K. Calame, and S. M. Kaech. 2009. Transcriptional Repressor Blimp-1 Promotes CD8+
375 T Cell Terminal Differentiation and Represses the Acquisition of Central Memory T Cell
376 Properties. *Immunity* 31: 296–308.
- 377 7. Omilusik, K. D., J. A. Best, B. Yu, S. Goossens, A. Weidemann, J. V. Nguyen, E. Seuntjens,
378 A. Stryjewska, C. Zweier, R. Roychoudhuri, L. Gattinoni, L. M. Bird, Y. Higashi, H. Kondoh, D.
379 Huylebroeck, J. Haigh, and A. W. Goldrath. 2015. Transcriptional repressor ZEB2 promotes
380 terminal differentiation of CD8+ effector and memory T cell populations during infection. *Journal
381 of Experimental Medicine* 212: 2027–2039.
- 382 8. Dominguez, C. X., R. A. Amezquita, T. Guan, H. D. Marshall, N. S. Joshi, S. H. Kleinstein,
383 and S. M. Kaech. 2015. The transcription factors ZEB2 and T-bet cooperate to program
384 cytotoxic T cell terminal differentiation in response to LCMV viral infection. *Journal of
385 Experimental Medicine* 212: 2041–2056.
- 386 9. Cannarile, M. A., N. A. Lind, R. Rivera, A. D. Sheridan, K. A. Camfield, B. B. Wu, K. P.
387 Cheung, Z. Ding, and A. W. Goldrath. 2006. Transcriptional regulator Id2 mediates CD8+ T cell
388 immunity. *Nat Immunol* 7: 1317–1325.
- 389 10. Knell, J., J. A. Best, N. A. Lind, E. Yang, L. M. D'Cruz, and A. W. Goldrath. 2013. Id2
390 Influences Differentiation of Killer Cell Lectin-like Receptor G1 ^{hi} Short-Lived CD8⁺ Effector T
391 Cells. *J.I.* 190: 1501–1509.

392 11. Masson, F., M. Minnich, M. Olshansky, I. Bilic, A. M. Mount, A. Kallies, T. P. Speed, M.
393 Busslinger, S. L. Nutt, and G. T. Belz. 2013. Id2-Mediated Inhibition of E2A Represses Memory
394 CD8⁺ T Cell Differentiation. *J.I.* 190: 4585–4594.

395 12. Xu, T., A. Keller, and G. J. Martinez. 2019. NFAT1 and NFAT2 Differentially Regulate CTL
396 Differentiation Upon Acute Viral Infection. *Front. Immunol.* 10: 184.

397 13. Zhou, X., S. Yu, D.-M. Zhao, J. T. Harty, V. P. Badovinac, and H.-H. Xue. 2010.
398 Differentiation and Persistence of Memory CD8+ T Cells Depend on T Cell Factor 1. *Immunity*
399 33: 229–240.

400 14. Jeannet, G., C. Boudousquié, N. Gardiol, J. Kang, J. Huelsken, and W. Held. 2010.
401 Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell
402 memory. *Proc. Natl. Acad. Sci. U.S.A.* 107: 9777–9782.

403 15. Banerjee, A., S. M. Gordon, A. M. Intlekofer, M. A. Paley, E. C. Mooney, T. Lindsten, E. J.
404 Wherry, and S. L. Reiner. 2010. Cutting Edge: The Transcription Factor Eomesodermin Enables
405 CD8⁺ T Cells To Compete for the Memory Cell Niche. *J.I.* 185: 4988–4992.

406 16. Ichii, H., A. Sakamoto, M. Hatano, S. Okada, H. Toyama, S. Taki, M. Arima, Y. Kuroda, and
407 T. Tokuhisa. 2002. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells.
408 *Nat Immunol* 3: 558–563.

409 17. Liu, Z., Y. Guo, S. Tang, L. Zhou, C. Huang, Y. Cao, H. Huang, X. Wu, D. Meng, L. Ye, H.
410 He, Z. Xie, Y. Wu, X. Liu, and X. Zhou. 2019. Cutting Edge: Transcription Factor BCL6 Is
411 Required for the Generation, but Not Maintenance, of Memory CD8⁺ T Cells in Acute Viral
412 Infection. *J.I.* 203: 323–327.

413 18. Ji, Y., Z. Pos, M. Rao, C. A. Klebanoff, Z. Yu, M. Sukumar, R. N. Reger, D. C. Palmer, Z. A.
414 Borman, P. Muranski, E. Wang, D. S. Schrump, F. M. Marincola, N. P. Restifo, and L. Gattinoni.
415 2011. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory
416 CD8+ T cells. *Nat Immunol* 12: 1230–1237.

417 19. Yang, C. Y., J. A. Best, J. Knell, E. Yang, A. D. Sheridan, A. K. Jesionek, H. S. Li, R. R.
418 Rivera, K. C. Lind, L. M. D'Cruz, S. S. Watowich, C. Murre, and A. W. Goldrath. 2011. The
419 transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell
420 subsets. *Nat Immunol* 12: 1221–1229.

421 20. Kim, M. V., W. Ouyang, W. Liao, M. Q. Zhang, and M. O. Li. 2013. The Transcription Factor
422 Foxo1 Controls Central-Memory CD8+ T Cell Responses to Infection. *Immunity* 39: 286–297.

423 21. Michelini, R. H., A. L. Doedens, A. W. Goldrath, and S. M. Hedrick. 2013. Differentiation of
424 CD8 memory T cells depends on Foxo1. *Journal of Experimental Medicine* 210: 1189–1200.

425 22. Utzschneider, D. T., A. Delpoux, D. Wieland, X. Huang, C.-Y. Lai, M. Hofmann, R. Thimme,
426 and S. M. Hedrick. 2018. Active Maintenance of T Cell Memory in Acute and Chronic Viral
427 Infection Depends on Continuous Expression of FOXO1. *Cell Reports* 22: 3454–3467.

428 23. Wang, D., H. Diao, A. J. Getzler, W. Rogal, M. A. Frederick, J. Milner, B. Yu, S. Crotty, A.
429 W. Goldrath, and M. E. Pipkin. 2018. The Transcription Factor Runx3 Establishes Chromatin
430 Accessibility of cis-Regulatory Landscapes that Drive Memory Cytotoxic T Lymphocyte
431 Formation. *Immunity* 48: 659-674.e6.

432 24. Henning, A. N., R. Roychoudhuri, and N. P. Restifo. 2018. Epigenetic control of CD8+ T cell
433 differentiation. *Nat Rev Immunol* 18: 340–356.

434 25. Xu, T., R. M. Pereira, and G. J. Martinez. 2021. An Updated Model for the Epigenetic
435 Regulation of Effector and Memory CD8⁺ T Cell Differentiation. *J.I.* 207: 1497–1505.

436 26. Diao, H., and M. Pipkin. 2019. Stability and flexibility in chromatin structure and transcription
437 underlies memory CD8 T-cell differentiation. *F1000Res* 8.

438 27. Gray, S. M., R. A. Amezquita, T. Guan, S. H. Kleinstein, and S. M. Kaech. 2017. Polycomb
439 Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8+ T Cell Terminal
440 Differentiation and Loss of Multipotency. *Immunity* 46: 596–608.

441 28. Kakaradov, B., J. Arsenio, C. E. Widjaja, Z. He, S. Aigner, P. J. Metz, B. Yu, E. J. Wehrens,
442 J. Lopez, S. H. Kim, E. I. Zuniga, A. W. Goldrath, J. T. Chang, and G. W. Yeo. 2017. Early
443 transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell
444 RNA sequencing. *Nat Immunol* 18: 422–432.

445 29. Li, J., K. Hardy, M. Olshansky, A. Barugahare, L. J. Gearing, J. E. Prier, X. Y. X. Sng, M. L.
446 T. Nguyen, D. Piovesan, B. E. Russ, N. L. La Gruta, P. J. Hertzog, S. Rao, and S. J. Turner.
447 2021. KDM6B-dependent chromatin remodeling underpins effective virus-specific CD8+ T cell
448 differentiation. *Cell Reports* 34: 108839.

449 30. Xu, T., A. Schutte, L. Jimenez, A. N. A. Gonçalves, A. Keller, M. E. Pipkin, H. I. Nakaya, R.
450 M. Pereira, and G. J. Martinez. 2021. Kdm6b Regulates the Generation of Effector CD8⁺ T
451 Cells by Inducing Chromatin Accessibility in Effector-Associated Genes. *J.I.* 206: 2170–2183.

452 31. Yamada, T., S. Nabe, K. Toriyama, J. Suzuki, K. Inoue, Y. Imai, A. Shiraishi, K. Takenaka,
453 M. Yasukawa, and M. Yamashita. 2019. Histone H3K27 Demethylase Negatively Controls the
454 Memory Formation of Antigen-Stimulated CD8⁺ T Cells. *J.I.* 202: 1088–1098.

455 32. Aranda, S., G. Mas, and L. Di Croce. 2015. Regulation of gene transcription by Polycomb
456 proteins. *Sci. Adv.* 1: e1500737.

457 33. Melo, G. A., C. Calôba, G. Brum, T. O. Passos, G. J. Martinez, and R. M. Pereira. 2022.
458 Epigenetic regulation of T cells by Polycomb group proteins. *J Leukocyte Bio* 111: 1253–1267.

459 34. Blackledge, N. P., and R. J. Klose. 2021. The molecular principles of gene regulation by
460 Polycomb repressive complexes. *Nat Rev Mol Cell Biol* 22: 815–833.

461 35. Tavares, L., E. Dimitrova, D. Oxley, J. Webster, R. Poot, J. Demmers, K. Bezstarost, S.
462 Taylor, H. Ura, H. Koide, A. Wutz, M. Vidal, S. Elderkin, and N. Brockdorff. 2012. RYBP-PRC1
463 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and
464 H3K27me3. *Cell* 148: 664–678.

465 36. Schoeftner, S., A. K. Sengupta, S. Kubicek, K. Mechtler, L. Spahn, H. Koseki, T. Jenuwein,
466 and A. Wutz. 2006. Recruitment of PRC1 function at the initiation of X inactivation independent
467 of PRC2 and silencing. *EMBO J* 25: 3110–3122.

468 37. Bernstein, E., E. M. Duncan, O. Masui, J. Gil, E. Heard, and C. D. Allis. 2006. Mouse
469 polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in
470 facultative heterochromatin. *Mol Cell Biol* 26: 2560–2569.

471 38. Kagey, M. H., T. A. Melhuish, and D. Wotton. 2003. The Polycomb Protein Pc2 Is a SUMO
472 E3. *Cell* 113: 127–137.

473 39. Merrill, J. C., T. A. Melhuish, M. H. Kagey, S.-H. Yang, A. D. Sharrocks, and D. Wotton.
474 2010. A Role for Non-Covalent SUMO Interaction Motifs in Pc2/CBX4 E3 Activity. *PLoS ONE* 5:
475 e8794.

476 40. Geiss-Friedlander, R., and F. Melchior. 2007. Concepts in sumoylation: a decade on. *Nat
477 Rev Mol Cell Biol* 8: 947–956.

478 41. Zhao, X. 2018. SUMO-Mediated Regulation of Nuclear Functions and Signaling Processes.
479 *Molecular Cell* 71: 409–418.

480 42. Li, B., J. Zhou, P. Liu, J. Hu, H. Jin, Y. Shimono, M. Takahashi, and G. Xu. 2007. Polycomb
481 protein Cbx4 promotes SUMO modification of *de novo* DNA methyltransferase Dnmt3a.
482 *Biochemical Journal* 405: 369–378.

483 43. Li, J., Y. Xu, X.-D. Long, W. Wang, H.-K. Jiao, Z. Mei, Q.-Q. Yin, L.-N. Ma, A.-W. Zhou, L.-S.
484 Wang, M. Yao, Q. Xia, and G.-Q. Chen. 2014. Cbx4 Governs HIF-1 α to Potentiate Angiogenesis
485 of Hepatocellular Carcinoma by Its SUMO E3 Ligase Activity. *Cancer Cell* 25: 118–131.

486 44. Liu, B., Y.-F. Liu, Y.-R. Du, A. N. Mardaryev, W. Yang, H. Chen, Z.-M. Xu, C.-Q. Xu, X.-R.
487 Zhang, V. A. Botchkarev, Y. Zhang, and G.-L. Xu. 2013. Cbx4 regulates the proliferation of
488 thymic epithelial cells and thymus function. *Development* 140: 780–788.

489 45. Martinez, G. J., R. M. Pereira, T. Äijö, E. Y. Kim, F. Marangoni, M. E. Pipkin, S. Togher, V.
490 Heissmeyer, Y. C. Zhang, S. Crotty, E. D. Lamperti, K. M. Ansel, T. R. Mempel, H. Lähdesmäki,
491 P. G. Hogan, and A. Rao. 2015. The Transcription Factor NFAT Promotes Exhaustion of
492 Activated CD8 + T Cells. *Immunity* 42: 265–278.

493 46. Neitzke-Montinelli, V., C. Calôba, G. Melo, B. B. Frade, E. Caramez, L. Mazzoccoli, A. N. A.
494 Gonçalves, H. I. Nakaya, R. M. Pereira, M. B. F. Werneck, and J. P. B. Viola. 2022.
495 Differentiation of Memory CD8 T Cells Unravel Gene Expression Pattern Common to Effector
496 and Memory Precursors. *Front Immunol* 13: 840203.

497 47. Chen, R., S. Bélanger, M. A. Frederick, B. Li, R. J. Johnston, N. Xiao, Y.-C. Liu, S. Sharma,
498 B. Peters, A. Rao, S. Crotty, and M. E. Pipkin. 2014. In Vivo RNA Interference Screens Identify
499 Regulators of Antiviral CD4+ and CD8+ T Cell Differentiation. *Immunity* 41: 325–338.

500 48. Chen, Q., L. Huang, D. Pan, L. J. Zhu, and Y.-X. Wang. 2018. Cbx4 Sumoylates Prdm16 to
501 Regulate Adipose Tissue Thermogenesis. *Cell Reports* 22: 2860–2872.

502 49. Crotty, S., M. M. McCausland, R. D. Aubert, E. J. Wherry, and R. Ahmed. 2006.
503 Hypogammaglobulinemia and exacerbated CD8 T-cell-mediated immunopathology in SAP-
504 deficient mice with chronic LCMV infection mimics human XLP disease. *Blood* 108: 3085–3093.

505 50. Beltra, J.-C., S. Manne, M. S. Abdel-Hakeem, M. Kurachi, J. R. Giles, Z. Chen, V. Casella,
506 S. F. Ngiow, O. Khan, Y. J. Huang, P. Yan, K. Nzingha, W. Xu, R. K. Amaravadi, X. Xu, G. C.
507 Karakousis, T. C. Mitchell, L. M. Schuchter, A. C. Huang, and E. J. Wherry. 2020.
508 Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying
509 Transcriptional and Epigenetic Landscape Control Mechanisms. *Immunity* 52: 825-841.e8.

510 51. Gautam, S., J. Fioravanti, W. Zhu, J. B. Le Gall, P. Brohawn, N. E. Lacey, J. Hu, J. D.
511 Hocker, N. V. Hawk, V. Kapoor, W. G. Telford, D. Gurusamy, Z. Yu, A. Bhandoola, H.-H. Xue,
512 R. Roychoudhuri, B. W. Higgs, N. P. Restifo, T. P. Bender, Y. Ji, and L. Gattinoni. 2019. The
513 transcription factor c-Myb regulates CD8+ T cell stemness and antitumor immunity. *Nat*
514 *Immunol* 20: 337–349.

515 52. Wang, Z., Z. Fang, G. Chen, B. Liu, J. Xu, F. Li, F. Li, H. Liu, H. Zhang, Y. Sun, G. Tian, H.
516 Chen, G. Xu, L. Zhang, L. Hu, and H. Ji. 2021. Chromobox 4 facilitates tumorigenesis of lung
517 adenocarcinoma through the Wnt/β-catenin pathway. *Neoplasia* 23: 222–233.

518 53. Hu, J. K., T. Kagari, J. M. Clingan, and M. Matloubian. 2011. Expression of chemokine
519 receptor CXCR3 on T cells affects the balance between effector and memory CD8 T-cell
520 generation. *Proc Natl Acad Sci U S A* 108: E118-127.

521 54. Kang, X., Y. Qi, Y. Zuo, Q. Wang, Y. Zou, R. J. Schwartz, J. Cheng, and E. T. H. Yeh. 2010.
522 SUMO-Specific Protease 2 Is Essential for Suppression of Polycomb Group Protein-Mediated
523 Gene Silencing during Embryonic Development. *Molecular Cell* 38: 191–201.

524 55. Wu, L., T. Pan, M. Zhou, T. Chen, S. Wu, X. Lv, J. Liu, F. Yu, Y. Guan, B. Liu, W. Zhang, X.
525 Deng, Q. Chen, A. Liang, Y. Lin, L. Wang, X. Tang, W. Cai, L. Li, X. He, H. Zhang, and X. Ma.
526 2022. CBX4 contributes to HIV-1 latency by forming phase-separated nuclear bodies and
527 SUMOylating EZH2. *EMBO Reports* .

528

529

530

531

532

533

534

535

536

537

538

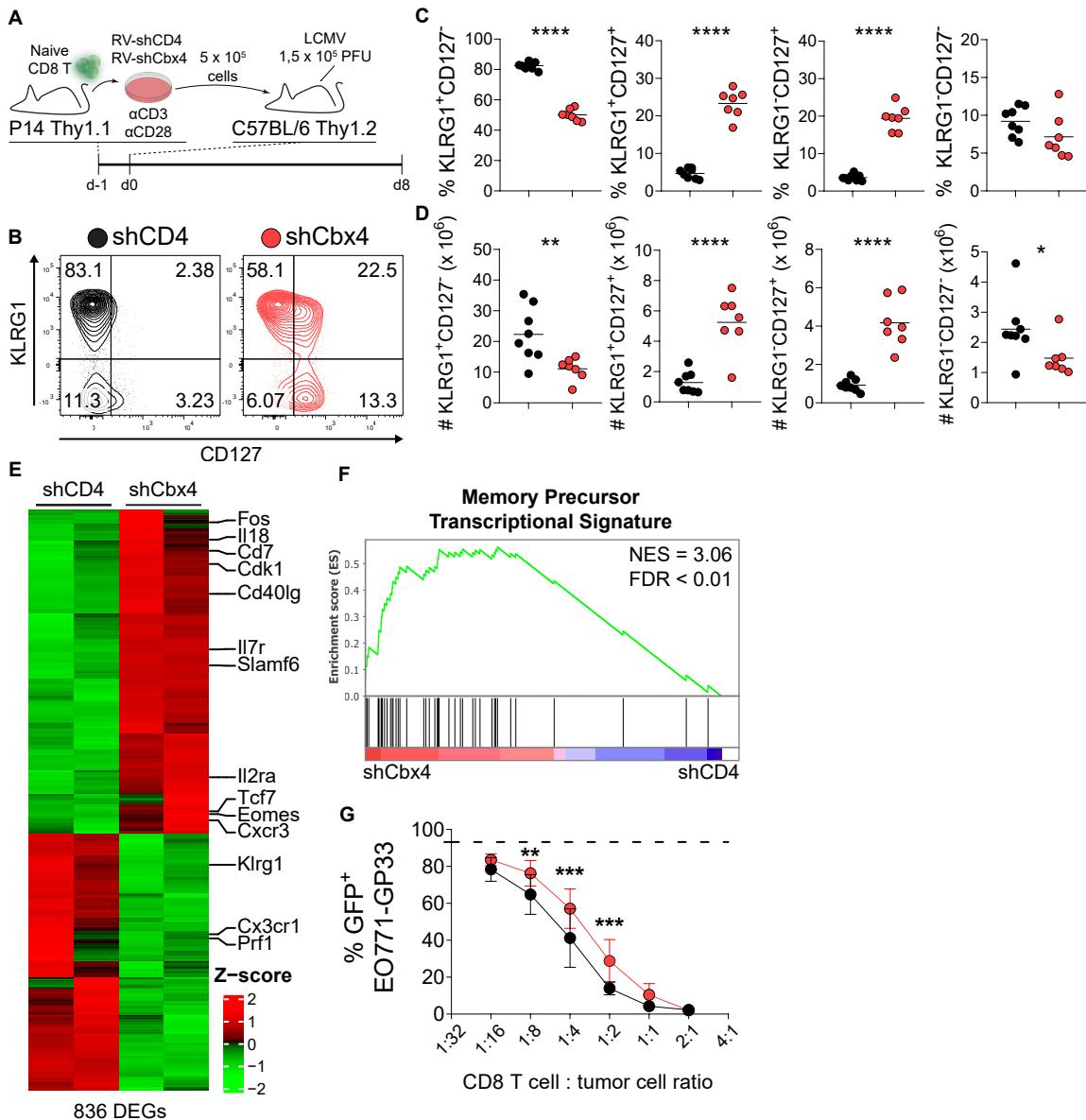
539

540

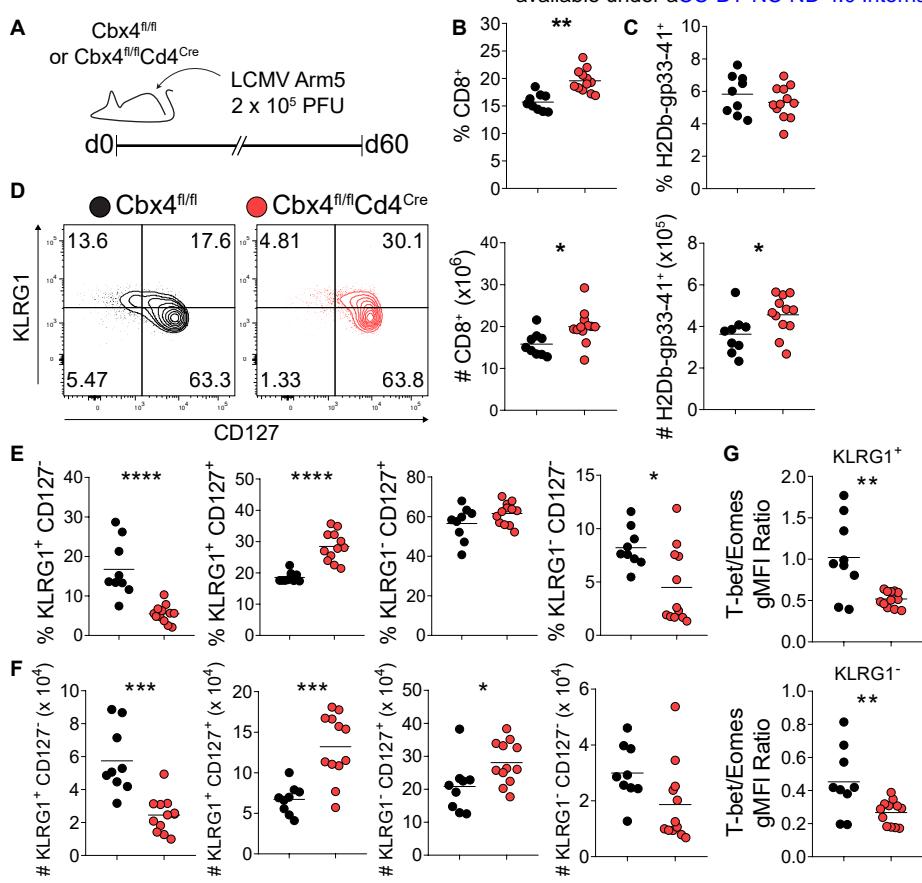
541 **Figures Legends**

542 **Figure 1. Cbx4 deficiency skews CD8 T cell differentiation to a memory phenotype.** (A) *In*
543 *vitro*-activated P14 Thy1.1⁺ cells transduced with retrovirus (RV) expressing control shRNA
544 (shCD4, black) or shRNA targeting Cbx4 (shCbx4, red) were transferred to congenic receptor
545 mice subsequently infected with LCMV and analyzed by flow cytometry for KLRG1 and CD127
546 expression in Ametrine⁺ Thy1.1⁺ CD8⁺ T cells at 8 dpi (B) or Ametrine⁺-sorted for RNA-Seq.
547 Summary of frequency (C) and total cell numbers (D) of populations analyzed in KLRG1 x CD127
548 gate. RNA-Seq results showed 836 differentially expressed genes (DEGs) that were visualized in
549 a heatmap of Z-score values clustered by hierarchical clustering (E). DEGs were tested by GSEA
550 for enrichment of transcription signature from memory precursor (KLRG1^{lo}CD127^{hi}) population
551 from day 8 of acute LCMV infection (23) (F). P14 shCD4 and shCbx4 cells were also assessed for
552 *in vitro* specific cytotoxicity (dashed line indicates baseline tumor cell survival) (G).
553 Representative contour plots for KLRG1 and CD127 expression are shown (B). Data are
554 representative of two independent experiments (n≥3). *p<0.05, **p<0.01, ***p<0.001, ****p
555 <0.0001 by unpaired two-tailed Student *t* test (C, D).

556


557 **Figure 2. Cbx4 deficiency increases CD8 T cell memory formation.** (A) Polyclonal Cbx4^{fl/fl}
558 (black) or Cbx4^{fl/fl}Cd4^{Cre} (red) mice were infected with acute infection LCMV and analyzed at 60
559 dpi. Frequency and total cell numbers of total CD8 T cell population (B) or LCMV-specific CD8
560 T cells (C) were measured by flow cytometry. The expression of KLRG1 and CD127 was analyzed
561 by flow cytometry at 60 dpi (D), and frequency (E) and cell numbers (F) of each subpopulation
562 were calculated. The expression of T-bet and Eomes was measured by gMFI in flow cytometry
563 and T-bet/Eomes ratio was calculated using those values in both KLRG1⁺ and KLRG1⁻

564 populations (G). Representative contour plots for KLRG1 and CD127 expression are shown (D).
565 Data are representative of two independent experiments ($n \geq 3$). $*p < 0.05$, $**p < 0.01$, $***p <$
566 0.001 , $****p < 0.0001$ by unpaired two-tailed Student *t* test (B, C, E-G).


567

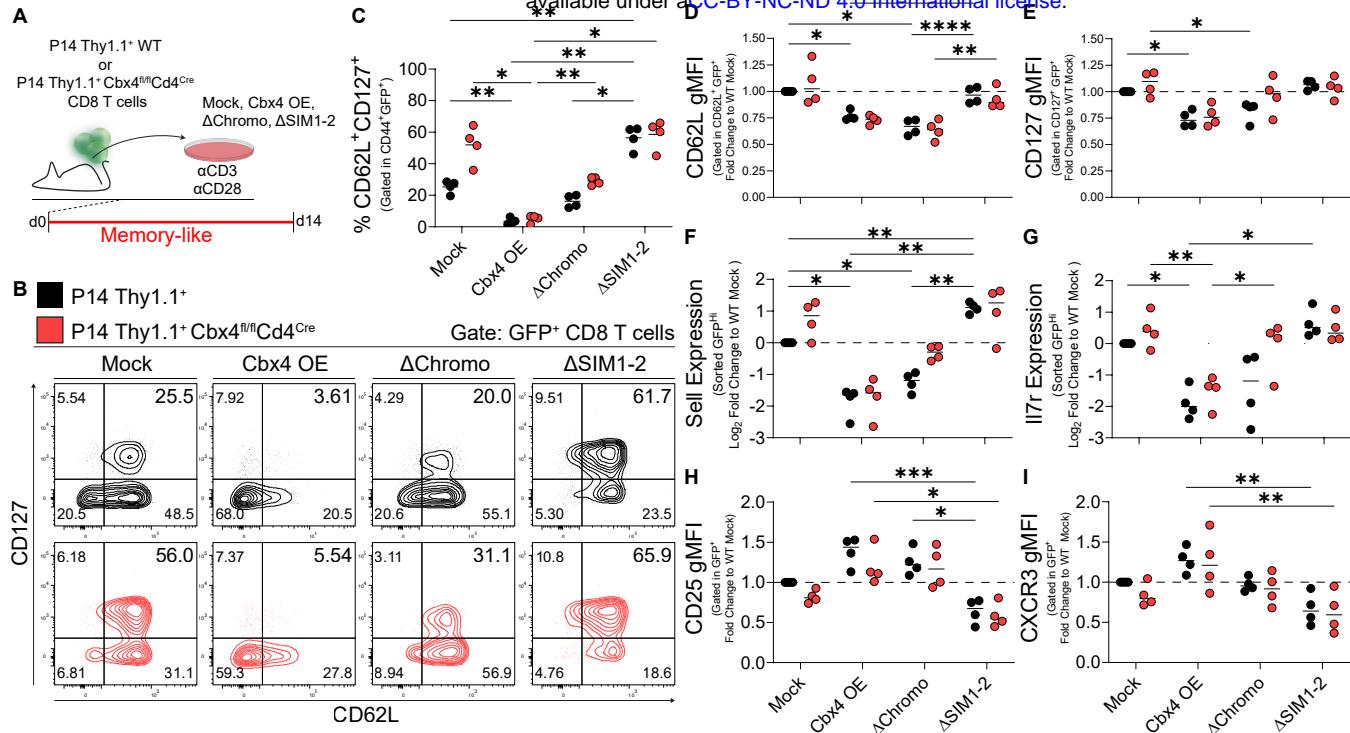

568 **Figure 3. Differential requirement of Chromo and SIM1-2 Cbx4 domains for CTL**
569 **differentiation.** (A) *In vitro*-activated P14 Thy1.1⁺ WT (black) or P14 Thy1.1⁺ Cbx4^{fl/fl}CD4^{Cre}
570 (red) cells were transduced with either of Mock (control), wild type Cbx4 mRNA, Cbx4 ΔChromo
571 mutant or Cbx4 ΔSIM1-2 mutant, and then polarized *in vitro* to memory-like phenotype (10U/mL
572 of rhIL-2, 10 ng/mL of rhIL-7 and 10 ng/mL of rhIL-15) until day 14 of culture. The frequency of
573 CD8 T cells expressing both CD62L and CD127 (C), as well as the expression of each marker
574 measured by gMFI (D, E) was analyzed by flow cytometry. Gene expression for *Sell* (CD62L) and
575 *Il7r* (CD127) was quantified by RT-qPCR using reporter GFP⁺-sorted cells (F, G). Expression of
576 effector-related markers CD25 and CXCR3 (H, I). All gMFI and mRNA expression data are
577 normalized to P14 Thy1.1⁺ WT transduced with Mock. Representative contour plots for CD62L
578 and CD127 cytometry are shown (B). Data are representative of four (C-I) independent
579 experiments. $*p < 0.05$, $**p < 0.01$, $***p < 0.001$, $****p < 0.0001$ by two-way ANOVA with
580 Tukey's test for multiple comparisons.

Figure 1

Figure 2

