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Abstract:

Background: Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate
brain activity with high temporal resolution. However, due to the ill-posed nature of the MEG
source imaging (MSI) problem, the ability of MSI to identify accurately underlying brain sources

along the cortical surface is still uncertain and requires validation.

Method: We validated the ability of MSI to estimate the background resting state activity of 45

healthy participants by comparing it to the intracranial EEG (IEEG) atlas (https://mni-open-

ieegatlas.research.mcgill.ca/). First, we applied wavelet-based Maximum Entropy on the Mean

(WMEM) as an MSI technique. Next, we converted MEG source maps into intracranial space, by
applying a forward model to the MEG reconstructed source maps and estimated virtual IEEG
(VIEEG) potentials on each IEEG channel location and quantitatively compared those with actual

IEEG signals from the atlas for 38 regions of interest in the canonical frequency bands.

Results: The MEG spectra were more accurately estimated in the lateral regions compared to the
medial regions. The regions with higher amplitude in the VIEEG than in the IEEG were more
accurately recovered. In the deep regions, MEG estimated amplitudes were largely underestimated

and the spectra were poorly recovered. Moreover, the MEG largely overestimated oscillatory
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peaks in the alpha band, especially in the anterior and deep regions. This is possibly due to higher
phase synchronization of alpha oscillations over extended regions, exceeding the spatial sensitivity
of IEEG but detected by MEG. Importantly, we found that MEG estimated spectra were more

comparable to spectra from the IEEG atlas after the aperiodic components were removed.

Conclusion: This study identifies brain regions and frequencies for which MEG source analysis is
likely to be reliable, a promising step towards resolving the uncertainty in recovering intracerebral

activity from non-invasive MEG studies.

Keywords: Intracranial EEG; Magnetoencephalography; Source imaging; Validation; Resting state;

Spectral analysis.

Highlights:

e Validation of MEG source imaging with intracranial EEE atlas

e Assessment of resting state human brain oscillations from healthy brain

e Adapted source imaging method, wMEM, to localize resting state oscillations
¢ Identified brain regions with oscillations accurately estimated by MEG

e MEQG estimated spectra dominated by oscillations in the alpha band

1 Introduction

Neuronal oscillations are fundamental properties of brain activity and are considered to play an
important role in processing and regulating neuronal communication in physiological (Giraud &
Poeppel, 2012; Pellegrino et al., 2021; Voytek et al., 2010; Wang, 2010) and pathological
conditions (Buzsaki et al., 2013; Hirano & Uhlhaas, 2021; Schnitzler & Gross, 2005).
Electro/magneto-encephalography (EEG/MEQG) are  widely used  non-invasive
electrophysiological methods to measure neuronal activity. They provide excellent temporal
resolution in the order of milliseconds, which enables to study spontaneous brain activity and
oscillations in different frequency bands. Due to their non-invasive nature, EEG/MEG have been
used in many studies of brain dynamics and networks, not only during well controlled tasks but
also during the resting state, a state when the brain activity is spontaneous (thinking of nothing/not

performing any task) (Brookes et al., 2011; Hipp et al., 2012; Keitel & Gross, 2016; Mellem et al.,
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2017). EEG/MEG have also been widely used as a presurgical tool for drug-resistant epilepsy and
basic epilepsy research (Dalal et al., 2013; Hamandi et al., 2016; Pellegrino et al., 2018; von
Ellenrieder et al., 2016). Compared to other invasive and non-invasive modalities, EEG/MEG have
limited spatial resolution, since they consist in scalp recordings and source localization requires
solving an ill-posed inverse problem (Darvas et al., 2004). The effects of inverse solution leakage
and the challenges of localizing signals from deep brain structures are of great concern, especially
when considering clinical applications such as pre-surgical planning for epilepsy (Aydin et al.,
2020; Hedrich et al., 2017) and particularly while interpreting results from resting state activity
due to its low signal-to-noise ratio, which is even lower for deep sources. Validation is thus
necessary for non-invasive EEG/MEG techniques, to accurately interpret the results. In this study,
we aimed to validate the ability of MEG source imaging to estimate resting state oscillations in
healthy subjects. Due to the frequent lack of a ground truth, validation of source imaging
techniques using realistic simulations are common and often useful, such as in the context of
epileptic spikes (Becker et al., 2015; Chowdhury et al., 2016; Grova et al., 2006) and connectivity
studies (Wang et al 2014). However, generating realistic simulations of brain activity is

challenging and even more for resting state activity.

The gold standard to validate non-invasive methods is intracerebral EEG (IEEG), an invasive
technique employed in some patients with epilepsy during pre-surgical evaluation. In IEEG,
electrodes are placed on or into brain tissue (Jayakar et al., 2016). They are subdural grid/strip or
depth electrodes (freehand or using stereoencephalography, SEEG introduced by Bancaud and
Talairach in the 1950s (Enatsu & Mikuni, 2016)). IEEG thus can measure brain activity directly
from the regions of interest, however, at a cost of requiring a surgical procedure to implant the
electrodes and of having a limited spatial coverage. IEEG can record brain activity with excellent
spatial accuracy, however validation could only be partial because of the limited spatial sampling,

due to the invasiveness of the procedure.

Simultaneous recordings of EEG/MEG and IEEG provide an excellent opportunity to validate non-
invasive results (De Stefano et al., 2022; Koessler et al., 2010; Pizzo et al., 2019). However,
acquiring simultaneous MEG and IEEG is technically challenging (Badier et al., 2017; Dubarry et
al., 2014; Kakisaka et al., 2012; Rampp et al., 2010; Santiuste et al., 2008) and not many groups

have the access and technical resources to conduct such acquisitions. Also, only the patients who
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are candidates for epilepsy surgery undergo such invasive IEEG procedures. The implantation of
intracranial electrodes is usually limited to affected regions, with a few electrodes placed in healthy
regions, thus providing limited coverage of the brain. Our group developed an atlas of healthy

IEEG data (Frauscher et al., 2018) at the Montreal Neurological Institute (MNI) (https://mni-open-

ieegatlas.research.mcgill.ca/). This MNI IEEG atlas is generated by pooling IEEG data from 110

patients with refractory epilepsy who underwent IEEG implantation for clinical evaluation for
epilepsy, only keeping the data from the electrodes implanted in healthy brain regions. With a
dense coverage of all regions, this atlas provides us with the unique opportunity to study the
spectral characteristics of normal brain oscillations at a group level. We took this opportunity to
validate the non-invasive modality, MEG, to localize the spectral properties of the normal brain in
wakefulness, in a group of healthy participants and compare those with the MNI IEEG atlas as

ground truth, assuming both modalities represent the activity of the healthy brain at a group level.

We assessed MEG source imaging of resting state oscillatory patterns of healthy subjects at a
group level and validated with the MNI IEEG atlas. We expect that MEG source imaging can
recover the spectral patterns observed in the MNI IEEG atlas more accurately in some regions than
in others. To investigate this question, we applied wavelet-based Maximum Entropy on the Mean
(WMEM) (Aydin et al., 2020; Lina et al., 2012; Pellegrino et al., 2016; von Ellenrieder et al., 2016).
wMEM is an EEG/MEG source imaging technique we developed and adapted to localize resting
state oscillatory patterns, which proved its unique ability to recover the location and the spatial
extent of the underlying oscillatory generators (Avigdor et al., 2021; Aydin et al., 2020; Pellegrino
et al., 2016; von Ellenrieder et al., 2016). An original method proposed by our group (Abdallah et
al., 2022; Grova et al., 2016) to estimate IEEG signals from MEG sources was then applied to
support a quantitative comparison between the MNI IEEG atlas (electrical potentials) and MEG
sources (cortical current densities), at the location of each IEEG electrode contact of the atlas. This
is the first study to provide a group level validation with IEEG spectral characteristics across the

human cortex obtained from non-invasive resting state MEG recordings in the healthy brain.

2 Material and methods

2.1 Experimental design

Our analysis pipeline is summarized in Fig 1. We used the MNI IEEG atlas as ground truth to
validate MEG source imaging of resting state oscillatory patterns for healthy subjects. The MEG
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data were collected from 45 healthy subjects. To solve the inverse MEG problem, we applied the
wavelet Maximum Entropy on the Mean (WMEM), developed by our group (Lina et al., 2012).
The reconstructed MEG data along subject specific cortical surface were projected to the positions
of IEEG electrodes used in the atlas to generate virtual IEEG (VIEEG) data using a method
proposed by (Grova et al., 2016). To do this, the positions of the intracranial electrodes were
projected from the template ICBM152 anatomy to the anatomy of each healthy subject. By
applying an IEEG forward model from the sources localized along the cortical surface to all IEEG
channel positions, this method allowed a quantitative comparison between the spectral properties
of MEG estimated VIEEG with actual IEEG atlas for each regions of interest (ROIs) for each

frequency band of interest.
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Figure 1: Analysis pipeline to compare the spectral properties estimated by MEG with the MNI IEEG atlas,
as ground truth. Ground truth MNI IEEG atlas (Frauscher et al., 2018)consists of 2300 channels collected
from 110 subjects with epilepsy, retaining only the healthy brain regions. For each IEEG channel, 60
seconds of resting state data during wakefulness were used. MEG pipeline: MEG data were collected from
45 healthy participants, each having 60 seconds of resting state data during wakefulness (only 10 seconds
of data are shown in this figure). We applied wavelet-MEM (wMEM) to solve the MEG inverse problem.
For each source map, we estimated virtual IEEG (VIEEG) data at each position of 2300 channels (positions
obtained from the MNI IEEG atlas). We compared the spectral characteristics (spectra and oscillatory
peaks) between IEEG and VIEEG for 38 ROlIs (MICCAI atlas). To consider only the oscillatory components,
the aperiodic components were removed from the spectra using the FOOOF toolbox (Donoghue et al.,

2020).
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2.2 Ground truth: MNI IEEG atlas
The data in the MNI IEEG atlas (Frauscher et al., 2018) were collected from 110 patients with

refractory epilepsy who underwent IEEG implantation for clinical evaluation for epilepsy surgery.
The key features of the data are: 1) some electrodes were implanted in brain regions that turned out
to be healthy and only those were retained to construct the atlas, ii) recordings were controlled
with subjects having their eyes closed, and iii) electrodes were projected on the standard ICBM 152
template. In the intracranial atlas, a total of 2300 channels from 110 patients (age: 31+10 Y, range:
13-62'Y, M:54) were selected. IEEG data in each patient were re-referenced to a common average
reference, calculated by taking the average of 5% of the total channels exhibiting the lowest power
and subtracting that value from each channel. Sixty seconds of resting state data during
wakefulness were available for each of the 2300 channels. The IEEG channels in the atlas were
classified into 38 regions of interest (ROIs) based on the MICCAI (Landman & Warfield, 2019)
atlas. The channels from the left and the right hemispheres were considered together. The number
of channels in each ROI was variable but ensured sufficient coverage of all regions: mean +
standard deviation: 60+47 channels in each ROI. More details on the data, centers, patient

information, and inclusion criteria can be found in Frauscher et al. (2018).

2.3 Subject selection criteria for MEG

57 healthy participants who underwent MEG acquisition were included in this study (Pellegrino
et al., 2022). MEG data were collected at the MEGLab of the IRCCS San Camillo Hospital in
Venice, Italy. Eight minutes of resting state were acquired with eyes closed. The participants did
not have any history of neurological or psychiatric disorders or any irregularity in the cycle of
sleep-wakefulness. After preprocessing and sleep scoring of data, we finally included 45
participants (age: 28.67 £ 4.13 Y, range: 20-38 Y, M: 10). Of the participants, one was excluded
for sleeping during the acquisition and 11 for coregistration issues such as issues with

segmentation, or very noisy data.

2.4 MEG data acquisition
MEG data were acquired using a CTF-MEG system (VSM MedTech Systems Inc., Coquitlam,

BC, Canada) with 275 axial gradiometers with a sampling rate of 1200 Hz. Bipolar electrodes were
added to record Electrocardiogram (ECG) and electrooculogram (EOG). The coils were positioned

on three anatomical landmarks (left and right preauricular points and nasion). These positions,
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along with the shape of the head of each participant were recorded with a 3D Polhemus localizer
(Pellegrino et al., 2022), which were used for coregistration of MEG sensors with individual

anatomical MRI of the participants.

2.5 Anatomical MRI, MEG-MRI co-registration and forward model estimation

For each participant, a T1-weighted-3D-TFE anatomical MRI was performed with a 3T Ingenia
CX Philips scanner (Philips Medical Systems, Best, The Netherlands). The following parameters
were used for MRI acquisition: [TR]=8.3 ms, [TE]=4.1 ms, flip angle=8°, acquired matrix
resolution=288 x 288, slice thickness=0.87 mm) (Pellegrino, 2022). Freesurfer (Dale et al., 1999)
was used for subsequent brain segmentation and reconstruction of the white/gray matter interface.
The coregistration of MEG sensors with anatomical MRI was performed in Brainstorm (Tadel et
al., 2011), applying a surface fitting between the head shape from MRI and the positions of coils
and head shape recorded using 3D Polhemus during MEG acquisition. We considered the cortical
mesh of the mid layer which is equidistant from the white and grey matter interface as source
space, consisting of around 8000 vertices. The forward model was computed using OpenMEEG
software (Gramfort et al., 2010; Kybic et al., 2005) implemented in Brainstorm (Tadel et al., 2011).
We used a 3-layer Boundary Element model (BEM) consisting of brain, skull, and scalp surfaces

with conductivity values of 0.33, 0.0165, and 0.33 S m™!, respectively (Zhang et al., 2006).

2.6 MEG data preprocessing

MEG preprocessing was performed with Brainstorm software (Tadel et al., 2011). Preprocessing
of MEG data included (i) filtering within the 0.5-80 Hz band, (ii) applying a notch filter at 50 Hz,
(ii1) downsampling to 200 Hz, (iv) applying third-order spatial gradient noise correction and (v)
removal of cardiac and eye movement artifacts using Signal Space Projection (SSP) (Uusitalo &
[Imoniemi, 1997) routine available in Brainstorm. A sixty-second segment was extracted for each
subject, continuous or concatenated (minimum length of the continuous segment: 10 seconds),
where no artifact was visibly present, ensuring with an EEG expert that the subject was awake
during this segment. To assess the data for sleep score, some scalp EEG channels were provided

(F4, C4, 02, Ref left mastoid, Ground left shoulder).

2.7 MEG Source imaging using wavelet Maximum Entropy on the Mean (WMEM)

The MEG inverse problem was solved using the Maximum Entropy on the Mean (MEM)
(Amblard et al., 2004), which we carefully validated in the context of EEG/MEG source imaging
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(Chowdhury et al., 2013). The key feature of this framework is a spatial prior model, assuming
that brain activity is organized within cortical parcels. MEM is a Bayesian framework, where the
activity of every parcel is tuned by the probability of activation of a hidden state variable. When
the parcel is active, a Gaussian prior is assumed to model a priori the activity within the parcel.
Starting from such a prior “reference” distribution, inference to ensure data fit is then obtained
using entropic techniques. As a result, MEM is able to either switch off or switch on the
corresponding parcels during the localization process, while allowing local contrast along the
cortical surface within the active parcels. Parcellation of the whole cortical surface (K~228 parcels)
and initialization of the probability of being active were obtained using a data driven approach,
based on a Multivariate Source Pre-localization (MSP) method (Mattout et al., 2005), a projection
technique allowing to define the probability of every source to contribute to the data. The MEM
specific prior model, using the entropic technique to fit the data, allows accurate localization of
the underlying generators together with their spatial extent, as previously demonstrated by our
studies for the standard version of MEM (cMEM) (Abdallah et al., 2022; Chowdhury et al., 2016;
Chowdhury et al., 2013; Grova et al., 2016; Heers et al., 2016), as well as the wavelet-based
extension of MEM (WMEM) (Lina et al., 2012). wMEM was specifically designed to localize brain
oscillatory patterns. wWMEM applies a discrete wavelet transformation (Daubechies wavelets) to
characterize the oscillatory patterns in the data before applying the MEM solver (Lina et al., 2012).
We validated wMEM for localizing oscillatory patterns at seizure onset (Pellegrino et al., 2016),
interictal bursts of high frequency oscillations (Avigdor et al., 2021; von Ellenrieder et al., 2016)
and MEG resting state fluctuations (Aydin et al., 2020). Both wMEM and cMEM implementations
are available within the Brain Entropy in space and time (Best) plugin of Brainstorm software

(https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/). To compute the sensor level noise

covariance matrix from ongoing resting state data, we used a synthetic baseline generated from the
segment of the signal of interest, by resampling the phase of the Fourier transform of the signal
(Prichard & Theiler, 1994). This baseline preserves the spectrum of the signal while destroying
the temporal coherence. We incorporated a few changes in standard wMEM implemented in
Brainstorm, to localize specifically oscillatory patterns in resting state data, as described in the

Appendix.
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2.8 Estimation of virtual IEEG (VIEEG) data from the MEG source map

MEG and IEEG are two different modalities each measuring brain activity in different units, MEG
measurements after source imaging are estimated current densities (in nanoAmpere-meters),
whereas IEEG measurements are electrical potentials in #Volts. To allow quantitative comparison
between these two modalities, we converted MEG reconstructed source maps into IEEG channel
space, by estimating corresponding IEEG potentials that would correspond to those MEG sources
on each electrode contact (channel) of the atlas (Abdallah et al., 2022; Grova et al., 2016). To do
so, we first localized the position of all channels of the atlas within the native MRI referential
system of all healthy subjects from whom we analyzed MEG data. Co-registration between
anatomical MRI of each subject and the ICBM 152 template where the atlas is defined was obtained
using Minctracc program (Collins et al., 1994). This is obtained in three steps: (1) estimation of a
linear registration to account for the linear part of the transformation (using bestlinreg_s tool), (2)
estimation of a non-linear transformation to account for the variability between the two maps
(using minctracc tool); (3) application of the resulting non-linear transformation to the coordinates
of the electrode contacts of MNI IEEG atlas, to convert them from the ICBM 152 anatomy to the

anatomy of each healthy subject.

Then, for each subject, to estimate the virtual IEEG potentials from MEG estimated current
density, Jmsi, we calculated a subject specific IEEG forward model, Gieec that estimates the
influence of each dipolar source of the cortical surface on each IEEG channel (Grova et al., 2016).
Since we did not intend to solve the inverse problem of source localization from IEEG data, we
used a simplified IEEG forward model Gieeg assuming an infinite volume conductor characterized
by a conductivity o of 0.25 S.m™!. For a total number of IEEG contacts c, (¢ = 2300) and n number
of cortical sources (n = 8000). Giegg is a ¢ X n matrix that estimates the electrical potential located
at each IEEG electrode i (i=1, 2 ...c) corresponding to an equivalent current dipole of unit activity
located on the vertex S; and oriented along 7ij, normal to the cortical surface (j = 1,2, ..... n),

calculated as:

(1)

4mory 3]

GIEEG (i:j) =

where i;; is a unit vector oriented from the source S;to the IEEG contact i and 7y is the Euclidean

distance between S; and contact i. To avoid numerical instabilities, when the sources on the cortical
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surface were too close to the IEEG contacts (7ij < 3 mm), the distance ri; was set to 3 mm instead,
keeping the orientation ;. Finally, we applied the IEEG forward model, Gierg to the MEG

reconstructed source map (Jmsi) to estimate IEEG potentials on each IEEG channel, VIEEG as:
VIEEG = Giggclmsi ()

Here, we applied a simplified IEEG forward model because Cosandier-Rimélé et al. (2007)
showed that it could estimate accurately real IEEG measurements. Moreover, von Ellenrieder et
al. (2012) showed that the use of finite-element models considering the actual size and the shape
of the IEEG electrodes had almost no influence on local electrical potentials at 2 mm from the

electrodes.

As for each source map, we estimated VIEEG for each IEEG channel in the atlas, we generated
more VIEEG channels compared to the MNI IEEG atlas (2300 channels in the IEEG atlas vs 2300
x 45 channels in VIEEG).

2.9 Frequency specific brain maps of relative power

For each of the IEEG and VIEEG channels, the power spectral density (PSD) was estimated using
Welch’s method (Time duration: 0-60 seconds, 2s sliding Hamming windows, overlap: 50%). For
each channel, a relative PSD was obtained by dividing each PSD value by the total power across
the whole frequency range. The group average of relative PSD was calculated across all channels
within a ROI and all frequency bins in each frequency band of interest: & (0.5-4Hz), 6 (4-8Hz), a
(8-13Hz), B (13-30Hz), and y (30-80Hz).

We also applied the depth weighted minimum norm estimate (MNE) as another standard source
imaging method to obtain VIEEGwmne to compare with IEEG and VIEEGmem (VIEEG estimated
using wWMEM). To calculate the noise covariance for depth weighted MNE, we used 2 seconds of
resting state data from each subject. To solve MNE, we estimated the regularization hypermeter A
by using the signal-to-noise ratio (SNR) of the data, as A=1/SNR’, with the SNR arbitrarily set to
3 (default value in Brainstorm). We used the term VIEEGwmewm to differentiate from VIEEGwnE
only for the analysis of relative PSD. For the rest of the document, we used the notation VIEEG
instead of VIEEGmEwm.

To compare the relative PSD before and after applying the conversion from MEG source maps

into virtual intracranial space, we also calculated the relative PSD after MEG source imaging
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directly along the cortical surface (Fig S2). To obtain a group average of relative PSD for 45
subjects, we followed the approach described in Niso et al. (2019). We first projected individual
relative PSD to a default template, ICBM152 (Fonov et al., 2009) and then obtained a group

average of 45 relative PSD in each frequency band of interest.

2.10 Analysis of spectral oscillatory components

In this study, we applied FOOOF (Fitting Oscillations & One-Over-F) (Donoghue et al., 2020), a
commonly used algorithm (Huang et al., 2021; Mahjoory et al., 2020; Ramsay et al., 2021;
Senoussi et al., 2022; Wiesman et al., 2022) to separate periodic components from the aperiodic
components of the spectra by parameterizing the power spectra as a composition of these two
components. Although the aperiodic components are also of much interest and recently gained
attention (Bodizs et al., 2021; He, 2014; Ostlund et al., 2021; Ouyang et al., 2020; Schaworonkow
& Voytek, 2021; Wilkinson & Nelson, 2021), our aim in this study was to compare and validate

the periodic components only.

For each of the IEEG and VIEEG channels, we decomposed the spectra into periodic and aperiodic
components using the FOOOF toolbox (MATLAB version) (Donoghue et al., 2020). The
following FOOOF parameters were used: frequency range = 0.5-80 Hz; peak type: Gaussian; peak
width limits (minimum bandwidth, maximum bandwidth) =1 — 8 Hz; maximum number of
peaks = 8; peak threshold: 3.0 dB; proximity threshold =2 SD; aperiodic mode: knee. As we
concentrated only on the rhythmic activities of the spectra, we subtracted (in the log-log scale) the
aperiodic component from the raw PSD. The remaining oscillatory component of the spectra
(PSDieec and PSDvieeg) was considered for further analysis and comparison between IEEG and
VIEEG. We also identified the oscillatory peaks during the process of finding aperiodic

components.

2.11 Comparison of VIEEG spectra with IEEG

For each ROI, we calculated the median of PSDigrG across all available channels within the ROI
(Nror). The median of PSDvieec for each ROI was obtained across a total number of channels =
Nroi X Number of healthy subjects. The overlap between PSDigrg and PSDvieeg was calculated for

each frequency bin as:
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|Median PSDjggg—Medi  PSDyggg|

1
standar deviationy|ggg
overlap =

;if Median PSDyppc — SDpspyigee < Median PSD;gp; < Median PSDy;gpc + SDpspyizec

0; otherwise

3
We calculated the average overlap for each ROI before and after removing the aperiodic
components of the spectra. Average overlap quantifies the distance between median PSDyierc and
median PSDicic at each frequency bin. The value of this metric ranges between 0 and 1. If the
median of PSDviegc perfectly coincides with the median of PSDigkc at a specific frequency, the
overlap is 1, and if the median of PSDiggG is greater or less than one standard deviation of
PSDvieeg, the overlap is zero at that frequency. We obtained average overlap across all the
frequency bins within each frequency band of interest: 6 (0.5-4Hz), 0 (4-8Hz), o (8-13Hz), B (13-
30Hz), and y (30-80Hz).

2.12 Comparison of VIEEG with IEEG in terms of peak frequency

We also compared the oscillatory peaks between the MEG estimated VIEEG and the MNI IEEG
atlas. Using FOOOF, we identified all oscillatory peaks in each IEEG and VIEEG channel. For
each ROI, the number of channels (out of the total number in each ROI Nror) exhibiting an
oscillatory peak in a specific frequency band of interest was calculated for the IEEG and VIEEG
of each subject. Then we calculated the percentage difference of the number of channels exhibiting

peak in a specific frequency band as:

Number of channels exhibiting peaks in VIEEG in subject i—
Number of channels exhibiting peaks in IEEG
! gp x 100  (4)

Peak_estimatedsyp; = ~
ROI

This measure was obtained for each ROI and each frequency band for each subject i. To obtain a
group level estimation of channels exhibiting peaks per ROI per frequency band, we calculated the
median of Peak_estimatedsusi over 45 subjects. This metric is a percentage assessing the
overestimation or underestimation of MEG estimated VIEEG channels showing oscillatory peaks,
when compared to IEEG. The value of the Median (Peak_estimatedsusi) ranges from -100% to
100%. For a particular ROI and frequency band, Median (Peak_estimatedsusi) = +100%
indicates that all the VIEEG channels in that ROI (Nror) showed peaks in that frequency band,
whereas no peak was identified in any of the IEEG channels in that ROI and frequency band. We
called it a 100% overestimation of peaks by MEG estimated VIEEG in that ROI. On the contrary,

a -100% estimation (underestimation) is obtained when all the IEEG channels in a ROI exhibit
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peaks, but VIEEG fails to identify any peak in that ROI. The peaks are well estimated by VIEEG

if the Median (Peak_estimatedsusi) is close to zero.

3 Results

3.1 Frequency specific brain maps of relative power

In Fig 2, the group average of relative PSD is plotted for 38 ROIs for IEEG, and MEG estimated
VIEEG. For each frequency band in Fig 2, we used a common color bar for all modalities, thus
highlighting how much MEG could estimate relative power when compared to IEEG. Fig S1
shows another representation of the same data, the color bar ranging from minimum to maximum
value for each modality in each frequency band. Fig S1 highlights the regions exhibiting the

strongest activation of average relative power within each modality.

Overall, similar patterns of power distribution were observed between IEEG and MEG estimated
VIEEG (VIEEGwmEwm), such as high power in delta, theta, and gamma bands in the anterior ROIs,
and high power in the alpha band in posterior ROIs. Beta power was strong around the primary
and supplementary motor regions in both [IEEG and VIEEG. However, for all frequency bands in
Fig 2, the relative PSD in each IEEG ROI was very distinct, showing important contrasts and a
larger range from strongest to weakest activity among ROIs, whereas MEG estimated VIEEG
maps were smoother among the neighboring ROIs spanning a smaller range of activity. This was
evident especially in deeper regions such as the hippocampus and amygdala, which were very
distinguished in IEEG showing very strong or weak activity, whereas these regions showed
smoother activation in VIEEG, almost undistinguishable from the neighboring ROIs. We also
observed high delta power and weak beta power in IEEG in lateral posterior ROIs, which were not

well estimated by VIEEG.

The MEG estimated VIEEG using depth weighted MNE, VIEEGwmnE, also showed similar patterns
of power distribution as estimated by VIEEGmem. Compared to IEEG, VIEEGunE exhibited an
underestimation in the theta band and an overestimation in the gamma band. In contrast,
VIEEGwmem power in the theta and gamma bands was in a similar range as IEEG. The relative
power estimated by wMEM and depth weighted MNE on the cortical surface (Fig S2) also showed
similar patterns in all frequency bands, except for gamma (more details in the supplementary

material).
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Comparison of MEG estimated average relative PSD with MNI IEEG atlas
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Figure 2: Group average of relative PSD values across each frequency band and over all the available
channels in each ROI of the IEEG atlas, the ground truth, the MEG estimated VIEEG using wavelet-MEM

(WMEM) method VIEEG, . and minimum norm method estimate VIEEG, .. The number of channels in
each ROI (NRO/) in IEEG varies. For each ROI, VIEEG was estimated for 45 x N, channels, where the total
number of subjects is 45. The relative PSD for each channel is calculated as the ratio of the power of the
signal in each frequency bin relative to the total power of the signal. Relative PSD value for a channel

range between 0 and 1. The color bar ranges from minimum to maximum value among IEEG, VIEEG wem,

and VIEEGwune in each frequency band, such that the scale is the same for all modalities in a given band.

3.2 Analysis of spectral oscillatory components

In Fig 3, for four typical example ROIs selected at different depths (two in the lateral and two in
the medial side), we show the decomposition of spectra into periodic and aperiodic components
for IEEG and VIEEG. The spectra are plotted as median + standard deviation across all available
channels within a ROI, Ngos channels for IEEG, and the number of healthy subjects * Nror
channels for VIEEG. Fig 3 also shows the probability histogram of all identified oscillatory peaks
in the ROI for VIEEG and IEEG. For comparison between the VIEEG and IEEG spectra, we only

considered the periodic components of the spectra, after removing the aperiodic components from
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the original spectra. The comparison between IEEG and VIEEG spectra is discussed in the

following sections.

Decomposition of the spectra into periodic and aperiodic components
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Figure 3: Decomposition of spectra into periodic and aperiodic components shown in a few example
ROIs for IEEG and VIEEG. For both IEEG and VIEEG, the top panel shows the normalized PSD before and
after removing the aperiodic component and the bottom panel shows the probability histogram of
identified peaks in 6 (0.5-4Hz), & (4-8Hz), a (8-13Hz), 8 (13-30Hz) and y (30-80Hz). The aperiodic fits and

oscillatory peaks are identified using the FOOOF toolbox (Donoghue et al., 2020).

3.3 Comparison of VIEEG spectra with IEEG

We show the comparison between IEEG and VIEEG spectra for four example ROIs (two in the
lateral and two in the medial side) in Fig 4, before and after removing aperiodic components. We

selected these four ROIs based on how MEG estimated the spectra compared to IEEG, quantified
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by the metric average overlap (performance worsening from left to right, after removing the
aperiodic components). The figure shows the value of average overlap quantified for each
frequency band for a ROI. For all four ROIs, the average overlap improved after removing the

aperiodic components.

For angular gyrus, the MEG estimated the spectra quite well compared to IEEG, in most frequency
bands after removing the aperiodic components. The similarity between spectra was quantified by
average overlap (6. 0.53, 0: 0.74, o: 0.31, p: 0.77, y: 0.52). Before removing the aperiodic
components, the average overlap values in all frequency bands were clearly lower 0. 0.13, 6: 0.11,

a: 0.16, B: 0.02, y: 0.11.

In the middle temporal gyrus, the average overlap in all frequency bands after removing the
aperiodic spectra are 0. 0.2, 8: 0.55, a: 0.55, p: 0.47, y: 0.48. Here we chose another ROI for which
MEG estimated VIEEG exhibited similar spectra to Gold Standard IEEG spectra, for all bands
except delta. Before removing the aperiodic spectra, those values were much worse: o: 0.15, 6:

0.29, a: 0.36, B: 0.02, y: 0.05.

The example medial ROI anterior cingulate also showed improvement after removing the
aperiodic components. The average overlap values in all frequency bands before and after
removing aperiodic components are o: 0.08, 6: 28, a.: 0.43, p: 0.19, y: 0.0 and o: 0.27, 6: 0.3, a:
0.61, B: 0.2, y: 0.3, respectively. For this medial structure, more difficult to localize in MEG
because of its depth, average overlap values were good in the alpha band but lower in other bands

(around 0.3), when compared to previous examples.

Finally, we showed an example of deep ROI, the hippocampus. MEG estimated the spectra in the
hippocampus very poorly compared to IEEG. The average overlap values in all frequency bands
before and after removing aperiodic components are . 0.1, 8: 32, a: 0.01, B: 0, y: 0.49 and 6: 0.13,
0: 04, o: 0.29, p: 0.2, y: 0.37, respectively. Although the spectral comparison improved after
removing the aperiodic components, they remained inaccurate compared to other lateral superficial
ROIs. It is worth mentioning that with MEG we estimated a clear peak in the alpha band in the

hippocampus, whereas clearly IEEG data were exhibiting no alpha band peak.

The comparison between IEEG and VIEEG spectra after removing the aperiodic components for

38 ROIs is shown in Fig S3.
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Comparison of MEG estimated spectra with ground truth IEEG: few selected ROIs
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Figure 4: Comparison of periodic components of MEG estimated spectra with ground truth IEEG, with and
without aperiodic components. Average overlaps between VIEEG and IEEG spectra across each spectral
band are shown for a few selected ROIs. The value of overlap is calculated at each frequency bin and

ranges from O to 1. For a RO, if the median of PSD, . perfectly coincides with the median of PSD . at

all frequency bins within a specific frequency band, the average overlap is 1.

In Fig 5, we summarized the average overlap for all 38 ROIs before and after removing the
aperiodic components. It shows for all frequency bands, the average overlap values improved after
we removed the aperiodic components. If we compare the ROIs after removing the aperiodic
spectra, we observe that the spectra in lateral regions are overall better estimated when compared
to the medial ROIs. It was clearly the case for deeper regions like the hippocampus and amygdala,
for which MEG estimated VIEEG spectra were not accurately recovering the actual IEEG spectra.
On the other hand, the PSD in lateral temporal and parietal were localized accurately for all bands,
as well as the medial posterior cingulate region. Especially, the medial ROIs in the theta band
were very poorly estimated compared to other frequency bands. The delta band was very poorly
estimated in occipital ROIs. This was also the case when we compared relative power in Fig 2,
IEEG showed high activation in the delta band in the occipital regions which were not well

estimated by MEG.
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Spectral components estimated by MEG compared to MNI IEEG atlas: 38 ROIs
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Figure 5: Average overlap between VIEEG and IEEG spectra across each spectral band for each of the 38
ROIs, (A) with and (B) without aperiodic components. The value of overlap is calculated at each frequency

bin and ranges from 0 to 1. For a ROI, if the median of PSD, . perfectly coincides with the median of

PSD . at all frequency bins within a specific frequency band, the average overlap is 1.

3.4 Comparison of VIEEG with IEEG in terms of oscillatory peaks

Oscillatory peaks in each band were estimated using the FOOOF algorithm, after removing the
aperiodic component. When we compared MEG estimated spectra with the MNI IEEG atlas in
terms of oscillatory peaks, we found that the probability histogram of peaks from all ROIs (Fig
6A) in IEEG has more variability in all frequency bands, whereas MEG estimated peaks are more
narrowly concentrated within each frequency band, especially exhibiting high concentration in the
alpha band. Also, the MEG estimated peaks in the theta band were much fewer than in IEEG. Fig
6B shows the probability histogram of peaks identified in IEEG, and VIEEG for an example ROI

(hippocampus) for one subject. It also shows the value of the percentage difference of the number
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of channels exhibiting peaks in a specific frequency band, as a proportion of the total number of
channels in that ROI (Peak estimatedsus:) (Eq. 4). For instance, IEEG found peaks in the theta
band, whereas no peak was found in VIEEG channels in this band. This was quantified in terms
of the percentage difference of the number of channels exhibiting peak, Peak estimatedsupi = -
40% (underestimation) in the theta band. Thus, in the hippocampus, MEG clearly underestimated
peaks in the delta, theta, and gamma band by 36%, 40%, and 31% respectively. On the other hand,
we observed a large overestimation of channels exhibiting peaks in VIEEG in the alpha band by
83%. In the beta band, the estimation of peaks by VIEEG was comparable with those in IEEG
(Peak_estimatedsus; = (). The probability histograms of peaks identified in IEEG and VIEEG for
all 38 ROIs of 45 subjects are shown in Fig S4.

Comparison of oscillatory peaks identified in MEG estimated spectra with MNI IEEG atlas
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Figure 6: (A) Probability histogram of all identified peaks in all ROIs for IEEG and VIEEG using the FOOOF
toolbox. (B) Percentage difference of the number of channels exhibiting spectral peaks in VIEEG compared
to IEEG in each spectral band, as a proportion of the total number of channels in the ROI: illustration for

the hippocampus ROI for one subject. The value of Peak_estimatedg;p; ranges from -100% to 100%. The
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peaks are better estimated by VIEEG in comparison with |IEEG, for a specific frequency band, if

Peak_estimatedgyp; is close to zero.

In Fig 7, we summarized the percentage difference of the number of channels exhibiting a peak
in a specific frequency band for 45 subjects, by plotting the median of Peak estimatedsusi
(calculated for each subject) over 45 subjects and shown for 38 ROIs. Warmer colors indicate an
overestimation and cooler colors indicate an underestimation of channels exhibiting peaks by
MEG when compared to the MNI IEEG atlas. We observe that MEG overestimated peaks in the
alpha band for most ROIs, especially higher in frontal (lateral and medial) ROIs (>40%) and
deeper ROIs such as hippocampus and amygdala (~100% overestimation). The peaks in the delta
band were well estimated in most ROIs except the occipital ROIs (like Fig 2 and Fig 5), and
deep ROIs such as the hippocampus and posterior cingulate, where peaks were underestimated
by MEG (<-35%). We observe an underestimation of peaks in beta and theta bands, in frontal
and central ROIs (both lateral and medial) (<-35%). MEG moderately overestimated beta peaks
in posterior regions and gamma peaks all over the brain regions. Those regions also showed

higher relative power in MEG (Fig 2) compared to IEEG.
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Estimation of peaks by MEG in all spectral bands compared to IEEG: 38 ROIs
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Figure 7. Median values of Peak_estimatedgyp; over 45 subjects are plotted for 38 ROls.
Peak_estimatedg;g; measures the percentage difference of the number of channels exhibiting spectral
peaks in VIEEG compared to IEEG, as a proportion of the total number of channels in each ROI, for each
spectral band and ROI, calculated for each subject i. The value of the median Peak_estimatedgg; over
all subjects ranged from -100% to 100%. Median (Peak_estimatedsyp;) = +100% indicates that all the
channels from VIEEG in a ROl (Ngo) showed a peak in that frequency band, whereas no peak were
identified in any of the IEEG channels in that ROI. We called it a 100% overestimation of oscillatory peaks
by MEG estimated VIEEG in this ROIl. On the contrary, a -100% estimation is obtained when all the IEEG
channels in a ROI exhibit peaks, but no peak was identified in VIEEG in that ROI, resulting in a 100%
underestimation. The peaks were better estimated by VIEEG for the ROIs if median
(Peak_estimatedgyp;) was close to zero. The values in the color bar are ranging from underestimation (-
100%, negative values, cooler color) to overestimation (+100%, positive values, warmer color) of channels

exhibiting peak by MEG estimated VIEEG.
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It is also important to mention that all our results were reported in a common average montage.
We also produced these results for bipolar montage and a similar pattern was found. Please see
supplementary Fig S5 and Fig S6 comparing the results from the two montages. Although the
spectral components recovered by both montages were very reproducible, bipolar montage was

slightly better at estimating the oscillatory peaks in the alpha band, especially in the frontal regions.

3.5 |EEG and VIEEG amplitude

In Fig 8, the average amplitude across the IEEG and VIEEG channels in each ROI is plotted for
the 38 ROIs, where each ROI amplitude was normalized by the average amplitude of all 38 ROlIs.
The mean amplitude across 38 ROIs was 28.4 uV for IEEG, and 0.67 uV for VIEEG, since
underestimation of the amplitude after solving the MEG inverse problem was expected by the
regularization procedure. Thus, we normalized IEEG and VIEEG amplitudes to be comparable. A
strong positive correlation (Spearman’s R = 0.69, p < 0.001) was found for the amplitudes of 38
ROIs between IEEG and VIEEG. In Fig 8, we also plotted the difference of normalized amplitudes
between IEEG and VIEEG for each ROI, called the amplitude difference. We represented the
absolute value of amplitude difference in the bar plot and showed the signed amplitude difference
on the inflated cortical surface. In the lateral occipital, lateral parietal, and lateral temporal regions,
the VIEEG amplitudes were larger than the IEEG amplitudes. On the other hand, in the medial
frontal regions and some deep regions such as the hippocampus and amygdala, the IEEG

amplitudes were much higher than the MEG estimated VIEEG amplitudes.
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Comparison of IEEG and VIEEG amplitude

W EEG
I VIEEG

abs (IEEG - VIEEG)
T T Lateral view

Amygdala [

Hippocampus s

Fusiform and parahippocampal gyri | —
Planum temporale

Transverse temporal gyrus | ——

Temporal pole and planum polare s —
Inferior temporal gyrus

Middle temporal gyrus

Superior temporal gyrus

Precentral gyrus

Medial segment of precentral gyrus
Medial segment of superior frontal gyrus
Superior frontal gyrus and frontal pole
Middle frontal gyrus

|

-1 -0.5 o 0.5 1
IEEG amplitude — VIEEG amplitude

Orbital part of inferior frontal gyrus
Triangular part of inferior frontal gyrus
Opercular part of inferior frontal gyrus

Frontal operculum
Central operculum
Medial frontal cortex
Supplementary motor cortex
Middle cingulate
Anterior cingulate
Gyrus rectus and orbital gyri
Posterior insula
Anterior insula
Posterior cingulate
Precuneus
Angular gyrus
Supramarginal gyrus
Parietal operculum
Superior parietal lobule
Postcentral gyrus (including medial segment)
Lingual gyrus and occipital fusiform gyrus
Calcarine cortex
Cuneus | ———
Inferior ocipital gyrus and occipital pole
Superior and middle occipital gyri
0 0.5 1 15
Normalized amplitude

Medial view

(TR

N T N Y N YT YT Y Y T YT T T T T T YT Y T T T T T T N T O T T

-

N

Figure 8: Average amplitude across the channels in each ROI, normalized by the average amplitude across
all ROIs. The bar plot shows the absolute difference of normalized amplitude between IEEG and VIEEG.
The right panel shows the difference of normalized amplitude between IEEG and VIEEG on the inflated

cortical surface (lateral and medial views).

We calculated the correlation between the signed amplitude difference and the average overlap
(calculated in Fig 5) for 38 ROIs in all frequency bands. It showed moderate negative correlation
in alpha band (Spearman’s R = -0.33, p = 0.04) and beta band (Spearman’s R = -0.3, p = 0.08). A
negative correlation indicates that for regions exhibiting higher VIEEG amplitude when compared
to IEEG amplitudes, the average overlap between VIEEG and IEEG spectra were better. In delta
and theta frequency bands, weak negative correlation was found (6: Spearman’s R = -0.19, p =
0.25, : Spearman’s R = -0.22, p = 0.18). No correlation was found in gamma band (Spearman’s

R=-0.03, p=0.8).
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4 Discussion

We aimed to assess the reliability of MEG source imaging of awake resting state oscillations by
validating with the MNI IEEG atlas as ground truth (Frauscher et al., 2018). We compared MEG
estimated VIEEG spectra from a healthy group of participants (Pellegrino et al., 2022) with the
MNI IEEG atlas of healthy brain awake activity, in terms of (i) oscillatory components of the
spectra, (ii) oscillatory peaks, and (iii) relative power. This is the first study using an IEEG atlas
of healthy awake activity to validate quantitatively the accuracy of MEG source imaging of resting
state activity. In this context, we carefully investigated the performance of our source imaging
technique, the wavelet based Maximum Entropy on the Mean (WMEM) (Aydin et al., 2020; Lina
et al., 2012; Pellegrino et al., 2016). A quantitative comparison between IEEG and VIEEG spectra
showed that the VIEEG spectra were closer to the IEEG spectra after the aperiodic components
were removed from the spectra (Fig 5). The estimation of the VIEEG spectra was overall more
accurate in the lateral regions compared to the medial regions (Fig 5B). Especially better
estimation was found in the regions exhibiting higher VIEEG amplitude compared to IEEG (Fig
8), such as the lateral parietal, lateral temporal, and some lateral occipital regions (Fig 5B).
Importantly, we found that the estimation of VIEEG resting state spectra was particularly
inaccurate in the deep regions such as the hippocampus and amygdala, for most frequency bands.
Our study also found that MEG estimated spectra were dominated by oscillations in the alpha
band, especially in anterior and deeper regions, unlike the actual in situ measurements from the
MNI IEEG atlas (Fig 4, Fig 7, Fig S3). This observation is consistent with the finding of dominance
in alpha oscillations reported in previous studies (Capilla et al., 2022; Keitel & Gross, 2016;
Mahjoory et al., 2020). In our study, the MNI IEEG atlas as ground truth enabled us to quantify
the extent of overestimation or underestimation of alpha dominance in MEG estimated spectra. A
quantitative comparison of oscillatory peaks showed that MEG overestimated peaks in the alpha
band in most brain regions, especially in the frontal and deep regions (Fig 7). In the delta, theta,
and gamma bands, the peaks in the deep regions were underestimated, whereas they were more
accurately estimated in lateral cortical regions. In terms of relative power, the distribution of MEG
relative power reported in our study was consistent with the previous MEG studies in different
frequency bands (Fig 2, Fig S1, Fig S2) (Hillebrand et al., 2012; Mahjoory et al., 2020; Mellem et
al., 2017; Niso et al., 2016; Niso et al., 2019). However, when compared to the MNI IEEG atlas

(Fig 2), important differences in average relative power were observed in the anterior regions for
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the alpha band, in the posterior regions for the delta, beta and gamma bands, and in deep regions
(such as hippocampus and amygdala) for all bands. Especially in the theta band, MEG largely

underestimated relative power compared to IEEG in all brain regions.

We also calculated the relative power for MEG using another source imaging method, depth
weighted MNE (Fig 2, Fig S1, and Fig S2), to determine if the findings of our study were not
mainly driven by our source imaging method, WMEM. Indeed, results were overall similar when
depth weighted MNE was applied. Investigating more carefully the comparison between MNE and
wMEM, VIEEG estimated using wMEM exhibited slightly better distribution (i.e., closer to IEEG)
in relative power, when compared to MNE, especially in the theta band and gamma bands, for

which MNE was respectively underestimating and overestimating the relative power.

4.1 Removing the aperiodic component improves the spectral comparison between
VIEEG and IEEG

Electrophysiological power spectra are composed of periodic components, typically characterized
by spectral peaks in canonical frequency bands and aperiodic components, also known as 1/f-like
or arrhythmic components (He, 2014). While analyzing electrophysiological power spectra of
neuronal oscillations, the separation of periodic and aperiodic components allows a better
estimation of the periodic component (Donoghue et al., 2021; Wen & Liu, 2016). We applied
FOOOF (Donoghue et al., 2020) to separate the periodic and aperiodic components of the spectra
from IEEG and VIEEG. We quantitatively compared the IEEG and VIEEG spectra before and
after removing the aperiodic components. The spectra estimated by MEG became more
comparable to IEEG after the aperiodic components were removed (Fig 5). This is reflected by the
metric average overlap, which quantifies the overlap between IEEG and VIEEG spectra. In Fig
5A, the average overlap values of the spectra, which include the aperiodic components, were very
low for all frequency bands, with most ROIs exhibiting an average overlap < 0.2. The average
overlap values of the ROIs were much improved after removing the aperiodic components (Fig
5B) compared to Fig SA. This indicates that the discrepancies between IEEG and VIEEG spectra
were mostly driven by the variations in the aperiodic components between the two modalities. The
aperiodic component of the spectrum might be generated by spatial interactions among neuronal
populations (Aguilar-Veldzquez & Guzmdan-Vargas, 2019). The IEEG records brain activity

locally, with a spatial sensitivity of less than lem (von Ellenrieder et al., 2021), and would
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therefore not pick-up all the spatial interactions, leading to a different aperiodic component from
the one recorded by the more spatially spread sensitivity of scalp EEG or MEG. Moreover, in a
recent study based on computational modeling using the virtual brain project, we found that
anatomical and forward model properties of EEG and MEG resulted in different aperiodic

components between EEG and MEG (Bénar et al., 2019).

The differences in the aperiodic components between MEG and IEEG could also result from the
differences in the inherent mechanism of generation of the signals in those two modalities. The
local bioelectrical environment contributes to the generation of the local field potential of IEEG
(Bédard & Destexhe, 2009), whereas MEG is mainly contributed by the activation of pyramidal

Sources.

4.2 MEG spectra were better estimated in the lateral regions compared to the medial
regions

We observed that MEG estimated spectra were better estimated in lateral regions compared to the
medial regions in most frequency bands (Fig 5B). The lateral parietal and lateral temporal regions
in most frequency bands showed average overlap values greater than 0.5. In contrast, for most of
the medial ROIs, the average overlap values were less than 0.5 in all frequency bands (except
gamma). We found a negative correlation between the signed difference of IEEG and VIEEG
amplitude (Fig 8) and the average overlap values (Fig 5B) in all frequency bands except gamma.
These negative correlations were moderate in the alpha and beta bands, and weak in the delta and
theta bands. Such negative correlations indicate that average overlap values were better in regions
having VIEEG amplitudes greater than IEEG amplitudes, which means MEG could estimate the
spectra from these ROIs more accurately when underlying signals were of larger amplitudes for
those regions. Example regions include the lateral parietal, lateral temporal, and some lateral
occipital regions, which exhibited VIEEG amplitudes much higher than IEEG amplitudes (Fig 8)
and also resulted in higher average overlap (Fig 5B). Overall, an important finding was that deep
regions were not well estimated by MEG, and we found similar results for wMEM and MNE
(results not shown). For instance, the average overlap values were less than 0.3 in the hippocampus
for all frequency bands except gamma, and less than 0.25 in the amygdala for all frequency bands.
The reason for such poor estimation could be the large underestimation of the VIEEG amplitude

compared to IEEG (Fig 8). Similarly, in the lingual gyrus and occipital fusiform gyrus, the VIEEG
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amplitude was largely underestimated compared to IEEG (Fig 8). The average overlap in this ROI

was less than 0.25 in all frequency bands except gamma.

4.3 Dominance of alpha oscillations in MEG

Oscillatory peaks in the alpha band were largely overestimated by MEG, especially in frontal
regions (Median (Peak_estimatedgyg;) = ~45-84%) and deep regions such as the hippocampus
(Median (Peak_estimatedgyg;) = 86%) and amygdala (Median (Peak_estimatedgyp;)
=100%). We found widespread alpha oscillations in all brain regions (Fig 7, Fig S3, Fig S4). A
quantitative comparison between the spectra from MEG estimated VIEEG and the MNI IEEG
atlas (Fig 5B) showed, in most of the lateral frontal regions and medial regions, an average overlap
in the alpha band of less than 0.5. A similar dominance of alpha oscillations in MEG was also
reported in previous MEG resting state studies (Capilla et al., 2022; Keitel & Gross, 2016;
Mahjoory et al., 2020). Using eyes open MEG data, Capilla et al. (2022) reported the dominance
of alpha oscillations in all posterior regions. Alpha is also of much higher amplitude with eyes
closed than with eyes open. Thus, with eyes closed data, the dominance of alpha oscillations is
expected to be more widespread and could explain why we found an overestimation of the alpha
peak identified in MEG in most frontal brain regions. On the other hand, the large predominance
of alpha oscillations found in deeper brain regions, that were also showing weak amplitudes, could
be explained by spatial leakage from cortical signals getting localized with very little amplitude in
deep regions. Nunez et al. (2001) and Srinivasan et al. (2006) also reported alpha dominance in
brain regions with scalp recordings, including frontal regions. It is quite evident from intracranial
EEG that alpha is not as prominent and widespread as seen from scalp recordings, especially not

in the frontal regions (Groppe et al., 2013; Penfield & Jasper, 1954).

With electrocorticography (ECoG) recordings in patients with epilepsy, Groppe et al. (2013)
reported that most dominant oscillations tended to be around ~7 Hz (in the theta range), not in the
alpha range (8-13Hz) typically reported in scalp recordings. This is also evident from the peak
histogram of IEEG and MEG (Fig 6A), IEEG tends to have the highest number of peaks around
~7Hz, within theta and alpha bands, whereas MEG peaks were around ~10-12Hz, in much higher
proportions. Compared to IEEG, MEG underestimated theta and overestimated alpha, which was
also evident in the relative power calculated in Fig 2. The reason EEG/MEG sees higher alpha

oscillations might be due to a phase synchronization over larger spatial extents than other bands
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(Groppe et al., 2013). The IEEG having a very local sensitivity profile, would pick up the activity
from the alpha band, but also from other bands with low spatial phase synchronization. MEG, on
the other hand, having a more extended spatial profile, would pick up the generators of
synchronous alpha activity interfering constructively, but generators of theta activity (or other

poorly synchronized bands) would partially cancel out, leading to a dominant alpha rhythm.

To tackle the dominance of alpha oscillations, a few previous studies normalized each ROI
spectrum by considering the average spectra of all other brain regions. Such normalization gives a
measure of the characteristic features of each ROI spectrum compared to other brain regions,
resulting in a less widespread influence of alpha oscillations in all brain regions (Capilla et al.,
2022; Keitel & Gross, 2016). We did not incorporate such normalization in this study, as we aimed
to compare the MEG estimated spectra for each ROI with the MNI IEEG atlas, not with other
ROIs. We also investigated IEEG and VIEEG data in a bipolar montage (Fig S5 and Fig S6). The
spectral components estimated by MEG compared to the MNI IEEG atlas were very similar for
bipolar and common-average montages (Fig S5). However, the peaks estimated by MEG were less
dominant in the frontal regions in the alpha band in the bipolar montage, when compared to a

common-average reference montage (Fig S6).

4.4 Differences in signal relative power

A qualitative comparison of relative power between MEG estimated spectra and the MNI IEEG
atlas (Fig 2, Fig S1) showed that in general, both modalities have similar brain distributions, such
as strong delta and theta power in frontal regions, alpha power in posterior regions, beta power in
motor and frontal regions, and gamma power in frontal areas. However, when compared to the
MNI IEEG atlas, the MEG estimated relative power was spatially much more smoothly distributed.
For instance, the IEEG atlas showed low power in the hippocampus in theta, alpha, and beta bands,
in contrast to strong power in its neighboring region the para-hippocampal gyrus. In MEG, due to
source leakage, such separation was not possible, resulting in similar distributions in the para-
hippocampal gyrus, the hippocampus, and the neighboring regions for all frequency bands (Fig 2,
Fig S1). The contrast between strong and weak relative power was reflected in MEG only where
an extended area in IEEG exhibited a similar contrast. For instance, the frontal regions showed
weak alpha power compared to the posterior regions in IEEG, a pattern that was also found in

VIEEG (Fig S1). Similarly, posterior regions in the theta band and the orbito-frontal region in the
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beta band showed weak power compared to other brain regions within the specific band in IEEG,
which were also reflected in VIEEG (Fig S1). Due to the source leakage in MSI, subtle changes in
relative power in brain regions (as seen in the MNI IEEG atlas) were not accurately retrieved using
MEG (Fig 2). This was particularly the case for deep regions localized with small amplitude in
MEG. Similar mislocalization patterns were found with wMEM and MNE.

Our MEG relative power maps were quite consistent with previous MEG studies (Niso et al., 2016;
Niso et al., 2019). We also compared the MEG relative power on the cortical surface and MEG
estimated VIEEG relative power in the intracranial space in Fig S2 (described in the supplementary
material). Fig S2 confirms that the conversion from the MEG source map to intracranial space
(VIEEG) did not add any discrepancy, and the relative power in the virtual intracranial space
(VIEEG) was concordant with the MEG relative power on the cortical surface. We also included
source imaging results from depth weighted MNE in Fig 2, Fig S1, and Fig S2, to show that the
findings in our study were not driven by our source imaging method, wMEM. We get similar
findings with depth weighted MNE (as discussed in the supplementary material). It is worth
mentioning that our method consisting in converting MEG sources into virtual IEEG potentials
(Abdallah et al., 2022; Grova et al., 2016) offers a solid quantification approach to compare MEG
sources estimated using different source imaging techniques with actual IEEG in situ recordings,

carefully taking into account spatial sampling of IEEG data.

4.5 wWMEM for resting state localization and comparison with MNE

We implemented and validated an adapted version of wavelet MEM to solve the inverse problem
in the context of resting state source imaging. WMEM is a MEM framework specifically designed
to localize oscillatory brain patterns in the context of EEG/MEG signals utilizing discrete wavelet
transformation (Daubechies wavelets). Taking advantage of the MEM specific prior model
(Chowdhury et al., 2013), wMEM can accurately localize the oscillatory patterns together with
their spatial extent. This ability was validated for localizing oscillatory patterns at seizure onset
(Pellegrino et al., 2016), interictal bursts of high frequency oscillations (Avigdor et al., 2021; von
Ellenrieder et al., 2016) as well as for localizing MEG resting state fluctuations in the alpha band
(Aydin et al., 2020). We further adapted wMEM to localize wide band oscillations in resting state
EEG/MEQG data. (i) Spatial prior model: Our main adaptation of the wMEM spatial prior model

consisted in considering one stable whole brain parcellation of the cortical surface, following the
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strategy proposed for cMEM (Chowdhury et al., 2013), whereas in our previous wMEM
implementation the parcellation was varying for time frequency samples. To do so, we proposed
data-driven whole brain parcellation informed by the MSP method (Mattout et al., 2005), a
projection technique allowing to estimate the probability of every source to contribute to the data,
before region growing around local MSP peaks. The main adaptation of our current
implementation is that the MSP projector is applied on all wavelet coefficients of Daubechies time-
frequency representation of our data, instead of using signals in the time domain (see detailed in
the Appendix). (ii) Initialization of the probability of being active for each parcel: Following the
parcellation, we then initialized the probability of each parcel of being active or not, using
normalized energy calculated for each time frequency sample. (iii) Selection of baseline for resting
state localization: There is no ideal baseline definition when localizing ongoing resting state data.
We proposed to compute the sensor level noise covariance matrix from the ongoing resting state
data. To do this, we generated a quasi-synthetic baseline from the signal of interest by randomly
modifying the Fourier phase at each frequency. We also adopted a sliding window approach to
generate the baseline for a more accurate estimation of the noise covariance matrix for each time
frequency sample along the time scale. More details of these adaptations are described in the

Appendix.

Before applying this new implementation of WMEM on resting state MEG data, we validated it
within a controlled environment with realistic simulation of epileptic spikes and oscillations on
realistic MEG background, as previously proposed in Chowdhury et al. (2013) and Lina et al.
(2012). We observed that this new wMEM demonstrated improvement in localizing the underlying
spatial extent of the generators when compared to the previous wWMEM implementation (Lina et
al., 2012) and depth weighted MNE (results not shown), therefore justifying our rationale for

incorporating the adaptations when localizing resting state data.

In the present study, we also compared wMEM and depth weighted MNE when localizing resting
state MEG data. The comparison in terms of relative power (Fig S2) showed similar maps in all
frequency bands except gamma. However, when compared to actual IEEG power (Fig 2), VIEEG
estimated using wMEM exhibited better distribution in relative power, when compared to MNE,
especially in theta and gamma bands. VIEEG computed from MNE sources showed large

underestimation in the theta band and overestimation in the gamma band, whereas VIEEG power
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estimated from wMEM sources recovered power in the theta and gamma bands more accurately.
Additionally, the relative power in the delta band was slightly better estimated using wMEM
compared to depth weighted MNE. The reason wWMEM localized brain activity in the lower (delta
and theta) and higher (gamma) frequency range more accurately might be explained by the
sparse/optimal data representation of oscillatory components obtained when using Daubechies

discrete wavelets (Lina et al., 2012), before solving the inverse problem.

It is also important to mention that, unlike wMEM, depth weighted MNE is designed to
compensate for the bias of high sensitivity of the forward model towards superficial sources.
Nevertheless, our overall results using both methods were similar. Currently, we are implementing
depth weighting in wMEM, following a strategy proposed in Cai et al. (2022) for MEM
implemented for the reconstruction of functional Near-InfraRed Spectroscopy data. In addition,
we are including deep subcortical structures (such as the hippocampus) in the MEM model. We
expect that incorporating depth weighted wMEM with more accurate models of subcortical
structures (Attal & Schwartz, 2013) could improve the localization of resting state oscillation in

deep regions. This investigation was out of the scope of the present study.

4.6 Limitations

One limitation of this study is that the normative MNI IEEG atlas was collected from patients with
epilepsy, although by including only the IEEG electrodes implanted in the brain regions which
turned out to be healthy. This limitation cannot be overcome, as IEEG data are never collected
from healthy subjects. Nevertheless, such normative IEEG atlas data are so far the best ground
truth and provide us with a unique opportunity to validate non-invasive source imaging techniques.
Another limitation is the heterogeneity of IEEG channels in different ROIs. The sampling of IEEG
channels was higher in lateral temporal, parietal, and frontal regions compared to medial and
occipital regions. This might have biased our results, but not severely. We found a mild to
moderate positive correlation between the number of channels in a ROI and the average overlap
value (calculated in Fig 5B) in delta and beta bands (results not shown). We also combined
channels in both hemispheres to maximize the sampling and the coverage of the brain. Thus, any
effect of hemispheric asymmetry on oscillatory characteristics was lost. Also, the MEG data and
IEEG data in this study were not simultaneously recorded. Simultaneous IEEG-MEG recordings

would give us more opportunities to validate region specific spectral components (De Stefano et
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al., 2022; Pizzo et al., 2019), which we plan to do in the future. However simultaneous IEEG-
MEG recordings have limited spatial sampling, whereas we could study the whole brain with the

normative MNI IEEG atlas.

5 Conclusion

We aimed to address the reliability of MEG source imaging by validating source imaging results
with the MNI IEEG atlas as ground truth. We quantitatively estimated the concordance of MEG
estimated spectral components with the MNI IEEG atlas and identified the brain regions for which
MEG estimated spectra are reliable and some regions for which we should be cautious while
interpreting MEG results. We found widespread leakage of alpha oscillations in MEG estimated
spectra in frontal and deep brain regions, which was present both before and after the removal of
aperiodic components. In the future, we are planning to investigate these issues on simultaneous
MEG-IEEG data and validate MEG source imaging of spectral components at the single-subject

level.
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Appendix

The maximum entropy on the mean (MEM) is a Bayesian inference technique that regularizes the
inverse problem using prior information. This prior relies on the notion of functional parcellation
of brain activity over the cortical surface, and hidden state variables describing each parcel being
active or inactive. A data driven parcellization (DDP) based on Multivariate Source Pre-
localization (MSP) method (Mattout et al., 2005) was used to guide the parcellation of the cortical
surface into non-overlapping and functionally homogeneous parcels (Lapalme et al., 2006). For
each parcel, the prior is then defined as a mixture of Gaussians, each Gaussian of each parcel will

be related to a state as active and inactive controlled by a hidden state variable. In the context of
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resting state EEG/MEG, we adapted wMEM by incorporating a few changes in the prior model

and initialization of the parcels.

Spatial prior model:

Parcellation of the whole cortical surface was obtained using a data driven approach, based on the
Multivariate Source Pre-localization (MSP) method (Mattout et al., 2005), a projection technique
allowing to estimate the probability of every source contributing to the data. The MEG data (M)
were first normalized (across sensors) and then wavelet transformed (W). In the present
implementation of wMEM, time expansion was thus substituted with a time-scale representation.
The contribution of each source to the data (called the MSP score) is obtained using the normalized
MEG data (W) and the normalized lead field matrix (&), where the normalization was performed
by the norm of each column. W is the sensor space data in the wavelet domain (dimension: number
of sensors X discrete wavelet time-frequency indices), whereas the normalized lead field G is of
dimension number of sensors X n; n is the total number of sources. The MSP score for each source

(ai), i=1,.... n, is calculated in the following steps:

The normalized lead field matrix G is decomposed into d mutually orthogonal eigenvectors u;
using singular value decomposition (SVD). We selected a subspace, Us = [ui, u2, ... us], by
projecting these orthogonalized projectors onto the normalized data W as USW WU and taking

the diagonal of UtWW U that captures 95% of the variability.

In the data subspace spanned by Uy, the data that can be explained within this subspace is calculated

as:
W, = U UEW (A.1)
The projector in this subspace is defined by
Py = W (WSW) =T W (A.2)

Finally, the MSP score between 0 and 1 for each source i is then calculated by the norm of the

projection of its associated lead field,
a(i) = g PG (A.3)
where §; is the i column of G.
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Parcels are then constructed using a region-growing algorithm, selecting sources according to
decreasing MSP scores. In this version of WMEM, assuming a stable parcellation of the cortex for
all the time-frequency samples for resting state data, we followed the strategy proposed for cMEM
(Chowdhury et al., 2013), ensuring that the same underlying parcellation was considered when
localizing all the time-frequency samples (dimension of W as number of sensors X number of
discrete time frequency boxes). In our previous implementation (Lina et al., 2012), a specific

parcellation was computed for each time-frequency box to localize.

Initialization of the parcels:

The probability «;, for each parcel £ to be active was then initialized as the amount of ‘normalized
energy’ in the parcel, for each time-frequency sample. Given the minimum norm estimated energy

of the sources, for a specific time-frequency sample (a column in W) W,

j=GYGGH W (A.4)

Liek J(D?

adp = (AS)

Although the parcels were identical across time-frequency samples, this quantity initializing the

probability of each parcel to be active changed with time and frequency.

Selection of baseline for resting state localization:

A baseline is needed to complete the initialization of the prior, to define the variance of the active
state and inactive state, in comparison to the noise variance at the sensor level. This is an important
feature that will allow switching off parcels in the model when they are not active. The idea of
selecting a baseline is to choose a segment of data with an amplitude significantly lower than the
signal of interest. However, the selection of such segments in resting state data is not
straightforward. In Aydin et al. (2020), the baseline was defined as a two-second segment
exhibiting low amplitude in the alpha band, since we were investigating amplitude envelope
correlation in the alpha band, as a connectivity metric. This approach worked reasonably when
localizing in a specific and narrow frequency band, however, becomes inappropriate when
localizing in a wide frequency band. Here, we propose to generate a quasi-synthetic baseline from

a segment of the signal of interest. The baseline was obtained by randomly modifying the Fourier

Page 34 of 39


https://doi.org/10.1101/2022.10.03.510665
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.03.510665; this version posted October 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

phase at each frequency, for all the sensors (originally proposed by Prichard & Theiler 1994). This
baseline preserves the coherence between the sensors and the power spectrum of the signals while
destroying only the temporal coherence. To consider this new baseline, we adopted a sliding
window approach to calculate the baseline. For each window with one second duration along the
sixty second resting state MEG data, a quasi synthetic “shuffled” baseline was thus generated. To
solve the inverse problem for each time frequency box, we selected the corresponding one second
“shuffled” baseline along the time scale. We adopted this sliding window approach considering
that the selection of baseline is an important aspect of the initialization of the prior, allowing the
parcels to be active or not, and thus would be more reasonable to use the baseline which is

temporally associated with the time frequency sample.
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