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Abstract: 

Background: Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate 

brain activity with high temporal resolution. However, due to the ill-posed nature of the MEG 

source imaging (MSI) problem, the ability of MSI to identify accurately underlying brain sources 

along the cortical surface is still uncertain and requires validation. 

Method: We validated the ability of MSI to estimate the background resting state activity of 45 

healthy participants by comparing it to the intracranial EEG (IEEG) atlas (https://mni-open-

ieegatlas.research.mcgill.ca/). First, we applied wavelet-based Maximum Entropy on the Mean 

(wMEM) as an MSI technique. Next, we converted MEG source maps into intracranial space, by 

applying a forward model to the MEG reconstructed source maps and estimated virtual IEEG 

(VIEEG) potentials on each IEEG channel location and quantitatively compared those with actual 

IEEG signals from the atlas for 38 regions of interest in the canonical frequency bands. 

Results:  The MEG spectra were more accurately estimated in the lateral regions compared to the 

medial regions. The regions with higher amplitude in the VIEEG than in the IEEG were more 

accurately recovered. In the deep regions, MEG estimated amplitudes were largely underestimated 

and the spectra were poorly recovered. Moreover, the MEG largely overestimated oscillatory 
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peaks in the alpha band, especially in the anterior and deep regions. This is possibly due to higher 

phase synchronization of alpha oscillations over extended regions, exceeding the spatial sensitivity 

of IEEG but detected by MEG. Importantly, we found that MEG estimated spectra were more 

comparable to spectra from the IEEG atlas after the aperiodic components were removed. 

Conclusion: This study identifies brain regions and frequencies for which MEG source analysis is 

likely to be reliable, a promising step towards resolving the uncertainty in recovering intracerebral 

activity from non-invasive MEG studies. 

Keywords: Intracranial EEG; Magnetoencephalography; Source imaging; Validation; Resting state; 

Spectral analysis. 

Highlights: 

 Validation of MEG source imaging with intracranial EEE atlas 

 Assessment of resting state human brain oscillations from healthy brain 

 Adapted source imaging method, wMEM, to localize resting state oscillations 

 Identified brain regions with oscillations accurately estimated by MEG 

 MEG estimated spectra dominated by oscillations in the alpha band 

 

1 Introduction 

Neuronal oscillations are fundamental properties of brain activity and are considered to play an 

important role in processing and regulating neuronal communication in physiological (Giraud & 

Poeppel, 2012; Pellegrino et al., 2021; Voytek et al., 2010; Wang, 2010) and pathological 

conditions (Buzsáki et al., 2013; Hirano & Uhlhaas, 2021; Schnitzler & Gross, 2005). 

Electro/magneto-encephalography (EEG/MEG) are widely used non-invasive 

electrophysiological methods to measure neuronal activity. They provide excellent temporal 

resolution in the order of milliseconds, which enables to study spontaneous brain activity and 

oscillations in different frequency bands. Due to their non-invasive nature, EEG/MEG have been 

used in many studies of brain dynamics and networks, not only during well controlled tasks but 

also during the resting state, a state when the brain activity is spontaneous (thinking of nothing/not 

performing any task) (Brookes et al., 2011; Hipp et al., 2012; Keitel & Gross, 2016; Mellem et al., 
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2017). EEG/MEG have also been widely used as a presurgical tool for drug-resistant epilepsy and 

basic epilepsy research (Dalal et al., 2013; Hamandi et al., 2016; Pellegrino et al., 2018; von 

Ellenrieder et al., 2016). Compared to other invasive and non-invasive modalities, EEG/MEG have 

limited spatial resolution, since they consist in scalp recordings and source localization requires 

solving an ill-posed inverse problem (Darvas et al., 2004). The effects of inverse solution leakage 

and the challenges of localizing signals from deep brain structures are of great concern, especially 

when considering clinical applications such as pre-surgical planning for epilepsy (Aydin et al., 

2020; Hedrich et al., 2017) and particularly while interpreting results from resting state activity 

due to its low signal-to-noise ratio, which is even lower for deep sources. Validation is thus 

necessary for non-invasive EEG/MEG techniques, to accurately interpret the results. In this study, 

we aimed to validate the ability of MEG source imaging to estimate resting state oscillations in 

healthy subjects. Due to the frequent lack of a ground truth, validation of source imaging 

techniques using realistic simulations are common and often useful, such as in the context of 

epileptic spikes (Becker et al., 2015; Chowdhury et al., 2016; Grova et al., 2006) and connectivity 

studies (Wang et al 2014). However, generating realistic simulations of brain activity is 

challenging and even more for resting state activity.  

The gold standard to validate non-invasive methods is intracerebral EEG (IEEG), an invasive 

technique employed in some patients with epilepsy during pre-surgical evaluation. In IEEG, 

electrodes are placed on or into brain tissue (Jayakar et al., 2016). They are subdural grid/strip or 

depth electrodes (freehand or using stereoencephalography, SEEG introduced by Bancaud and 

Talairach in the 1950s (Enatsu & Mikuni, 2016)). IEEG thus can measure brain activity directly 

from the regions of interest, however, at a cost of requiring a surgical procedure to implant the 

electrodes and of having a limited spatial coverage. IEEG can record brain activity with excellent 

spatial accuracy, however validation could only be partial because of the limited spatial sampling, 

due to the invasiveness of the procedure.   

Simultaneous recordings of EEG/MEG and IEEG provide an excellent opportunity to validate non-

invasive results (De Stefano et al., 2022; Koessler et al., 2010; Pizzo et al., 2019). However, 

acquiring simultaneous MEG and IEEG is technically challenging (Badier et al., 2017; Dubarry et 

al., 2014; Kakisaka et al., 2012; Rampp et al., 2010; Santiuste et al., 2008) and not many groups 

have the access and technical resources to conduct such acquisitions. Also, only the patients who 
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are candidates for epilepsy surgery undergo such invasive IEEG procedures. The implantation of 

intracranial electrodes is usually limited to affected regions, with a few electrodes placed in healthy 

regions, thus providing limited coverage of the brain. Our group developed an atlas of healthy 

IEEG data (Frauscher et al., 2018) at the Montreal Neurological Institute (MNI) (https://mni-open-

ieegatlas.research.mcgill.ca/). This MNI IEEG atlas is generated by pooling IEEG data from 110 

patients with refractory epilepsy who underwent IEEG implantation for clinical evaluation for 

epilepsy, only keeping the data from the electrodes implanted in healthy brain regions. With a 

dense coverage of all regions, this atlas provides us with the unique opportunity to study the 

spectral characteristics of normal brain oscillations at a group level. We took this opportunity to 

validate the non-invasive modality, MEG, to localize the spectral properties of the normal brain in 

wakefulness, in a group of healthy participants and compare those with the MNI IEEG atlas as 

ground truth, assuming both modalities represent the activity of the healthy brain at a group level.  

We assessed MEG source imaging of resting state oscillatory patterns of healthy subjects at a 

group level and validated with the MNI IEEG atlas. We expect that MEG source imaging can 

recover the spectral patterns observed in the MNI IEEG atlas more accurately in some regions than 

in others. To investigate this question, we applied wavelet-based Maximum Entropy on the Mean 

(wMEM) (Aydin et al., 2020; Lina et al., 2012; Pellegrino et al., 2016; von Ellenrieder et al., 2016). 

wMEM is an EEG/MEG source imaging technique we developed and adapted to localize resting 

state oscillatory patterns, which proved its unique ability to recover the location and the spatial 

extent of the underlying oscillatory generators (Avigdor et al., 2021; Aydin et al., 2020; Pellegrino 

et al., 2016; von Ellenrieder et al., 2016). An original method proposed by our group (Abdallah et 

al., 2022; Grova et al., 2016) to estimate IEEG signals from MEG sources was then applied to 

support a quantitative comparison between the MNI IEEG atlas (electrical potentials) and MEG 

sources (cortical current densities), at the location of each IEEG electrode contact of the atlas. This 

is the first study to provide a group level validation with IEEG spectral characteristics across the 

human cortex obtained from non-invasive resting state MEG recordings in the healthy brain.  

2 Material and methods 

2.1 Experimental design 

Our analysis pipeline is summarized in Fig 1. We used the MNI IEEG atlas as ground truth to 

validate MEG source imaging of resting state oscillatory patterns for healthy subjects. The MEG 
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data were collected from 45 healthy subjects. To solve the inverse MEG problem, we applied the 

wavelet Maximum Entropy on the Mean (wMEM), developed by our group (Lina et al., 2012). 

The reconstructed MEG data along subject specific cortical surface were projected to the positions 

of IEEG electrodes used in the atlas to generate virtual IEEG (VIEEG) data using a method 

proposed by (Grova et al., 2016). To do this, the positions of the intracranial electrodes were 

projected from the template ICBM152 anatomy to the anatomy of each healthy subject. By 

applying an IEEG forward model from the sources localized along the cortical surface to all IEEG 

channel positions, this method allowed a quantitative comparison between the spectral properties 

of MEG estimated VIEEG with actual IEEG atlas for each regions of interest (ROIs) for each 

frequency band of interest.  

 

Figure 1: Analysis pipeline to compare the spectral properties estimated by MEG with the MNI IEEG atlas, 

as ground truth. Ground truth MNI IEEG atlas (Frauscher et al., 2018)consists of 2300 channels collected 

from 110 subjects with epilepsy, retaining only the healthy brain regions. For each IEEG channel, 60 

seconds of resting state data during wakefulness were used. MEG pipeline: MEG data were collected from 

45 healthy participants, each having 60 seconds of resting state data during wakefulness (only 10 seconds 

of data are shown in this figure). We applied wavelet-MEM (wMEM) to solve the MEG inverse problem. 

For each source map, we estimated virtual IEEG (VIEEG) data at each position of 2300 channels (positions 

obtained from the MNI IEEG atlas). We compared the spectral characteristics (spectra and oscillatory 

peaks) between IEEG and VIEEG for 38 ROIs (MICCAI atlas). To consider only the oscillatory components, 

the aperiodic components were removed from the spectra using the FOOOF toolbox  (Donoghue et al., 

2020). 
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2.2 Ground truth: MNI IEEG atlas 

The data in the MNI IEEG atlas (Frauscher et al., 2018) were collected from 110 patients with 

refractory epilepsy who underwent IEEG implantation for clinical evaluation for epilepsy surgery. 

The key features of the data are: i) some electrodes were implanted in brain regions that turned out 

to be healthy and only those were retained to construct the atlas, ii) recordings were controlled 

with subjects having their eyes closed, and iii) electrodes were projected on the standard ICBM152 

template. In the intracranial atlas, a total of 2300 channels from 110 patients (age: 31±10 Y, range: 

13-62 Y, M:54) were selected. IEEG data in each patient were re-referenced to a common average 

reference, calculated by taking the average of 5% of the total channels exhibiting the lowest power 

and subtracting that value from each channel. Sixty seconds of resting state data during 

wakefulness were available for each of the 2300 channels. The IEEG channels in the atlas were 

classified into 38 regions of interest (ROIs) based on the MICCAI (Landman & Warfield, 2019) 

atlas. The channels from the left and the right hemispheres were considered together. The number 

of channels in each ROI was variable but ensured sufficient coverage of all regions: mean ± 

standard deviation: 60±47 channels in each ROI. More details on the data, centers, patient 

information, and inclusion criteria can be found in Frauscher et al. (2018).  

2.3 Subject selection criteria for MEG 

57 healthy participants who underwent MEG acquisition were included in this study (Pellegrino 

et al., 2022). MEG data were collected at the MEGLab of the IRCCS San Camillo Hospital in 

Venice, Italy. Eight minutes of resting state were acquired with eyes closed. The participants did 

not have any history of neurological or psychiatric disorders or any irregularity in the cycle of 

sleep-wakefulness. After preprocessing and sleep scoring of data, we finally included 45 

participants (age: 28.67 ± 4.13 Y, range: 20-38 Y, M: 10).  Of the participants, one was excluded 

for sleeping during the acquisition and 11 for coregistration issues such as issues with 

segmentation, or very noisy data. 

2.4 MEG data acquisition 

MEG data were acquired using a CTF-MEG system (VSM MedTech Systems Inc., Coquitlam, 

BC, Canada) with 275 axial gradiometers with a sampling rate of 1200 Hz. Bipolar electrodes were 

added to record Electrocardiogram (ECG) and electrooculogram (EOG). The coils were positioned 

on three anatomical landmarks (left and right preauricular points and nasion). These positions, 
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along with the shape of the head of each participant were recorded with a 3D Polhemus localizer 

(Pellegrino et al., 2022), which were used for coregistration of MEG sensors with individual 

anatomical MRI of the participants. 

2.5 Anatomical MRI, MEG-MRI co-registration and forward model estimation 

For each participant, a T1-weighted-3D-TFE anatomical MRI was performed with a 3T Ingenia 

CX Philips scanner (Philips Medical Systems, Best, The Netherlands). The following parameters 

were used for MRI acquisition: [TR]=8.3 ms, [TE]=4.1 ms, flip angle=8°, acquired matrix 

resolution=288 × 288, slice thickness=0.87 mm) (Pellegrino, 2022). Freesurfer (Dale et al., 1999) 

was used for subsequent brain segmentation and reconstruction of the white/gray matter interface. 

The coregistration of MEG sensors with anatomical MRI was performed in Brainstorm (Tadel et 

al., 2011), applying a surface fitting between the head shape from MRI and the positions of coils 

and head shape recorded using 3D Polhemus during MEG acquisition. We considered the cortical 

mesh of the mid layer which is equidistant from the white and grey matter interface as source 

space, consisting of around 8000 vertices. The forward model was computed using OpenMEEG 

software (Gramfort et al., 2010; Kybic et al., 2005) implemented in Brainstorm (Tadel et al., 2011). 

We used a 3-layer Boundary Element model (BEM) consisting of brain, skull, and scalp surfaces 

with conductivity values of 0.33, 0.0165, and 0.33 S m-1, respectively (Zhang et al., 2006).   

2.6 MEG data preprocessing 

MEG preprocessing was performed with Brainstorm software (Tadel et al., 2011). Preprocessing 

of MEG data included (i) filtering within the 0.5-80 Hz band, (ii) applying a notch filter at 50 Hz, 

(iii) downsampling to 200 Hz, (iv) applying third-order spatial gradient noise correction and (v) 

removal of cardiac and eye movement artifacts using Signal Space Projection (SSP) (Uusitalo & 

Ilmoniemi, 1997) routine available in Brainstorm. A sixty-second segment was extracted for each 

subject, continuous or concatenated (minimum length of the continuous segment: 10 seconds), 

where no artifact was visibly present, ensuring with an EEG expert that the subject was awake 

during this segment. To assess the data for sleep score, some scalp EEG channels were provided 

(F4, C4, O2, Ref left mastoid, Ground left shoulder).  

2.7 MEG Source imaging using wavelet Maximum Entropy on the Mean (wMEM) 

The MEG inverse problem was solved using the Maximum Entropy on the Mean (MEM) 

(Amblard et al., 2004), which we carefully validated in the context of EEG/MEG source imaging 
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(Chowdhury et al., 2013). The key feature of this framework is a spatial prior model, assuming 

that brain activity is organized within cortical parcels. MEM is a Bayesian framework, where the 

activity of every parcel is tuned by the probability of activation of a hidden state variable. When 

the parcel is active, a Gaussian prior is assumed to model a priori the activity within the parcel. 

Starting from such a prior “reference” distribution, inference to ensure data fit is then obtained 

using entropic techniques. As a result, MEM is able to either switch off or switch on the 

corresponding parcels during the localization process, while allowing local contrast along the 

cortical surface within the active parcels. Parcellation of the whole cortical surface (K~228 parcels)  

and initialization of the probability of being active were obtained using a data driven approach, 

based on a Multivariate Source Pre-localization (MSP) method (Mattout et al., 2005), a projection 

technique allowing to define the probability of every source to contribute to the data. The MEM 

specific prior model, using the entropic technique to fit the data, allows accurate localization of 

the underlying generators together with their spatial extent, as previously demonstrated by our 

studies for the standard version of MEM (cMEM) (Abdallah et al., 2022; Chowdhury et al., 2016; 

Chowdhury et al., 2013; Grova et al., 2016; Heers et al., 2016), as well as the wavelet-based 

extension of MEM (wMEM) (Lina et al., 2012). wMEM was specifically designed to localize brain 

oscillatory patterns. wMEM applies a discrete wavelet transformation (Daubechies wavelets) to 

characterize the oscillatory patterns in the data before applying the MEM solver (Lina et al., 2012).  

We validated wMEM for localizing oscillatory patterns at seizure onset (Pellegrino et al., 2016), 

interictal bursts of high frequency oscillations (Avigdor et al., 2021; von Ellenrieder et al., 2016) 

and MEG resting state fluctuations (Aydin et al., 2020). Both wMEM and cMEM implementations 

are available within the Brain Entropy in space and time (Best) plugin of Brainstorm software 

(https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/). To compute the sensor level noise 

covariance matrix from ongoing resting state data, we used a synthetic baseline generated from the 

segment of the signal of interest, by resampling the phase of the Fourier transform of the signal 

(Prichard & Theiler, 1994). This baseline preserves the spectrum of the signal while destroying 

the temporal coherence. We incorporated a few changes in standard wMEM implemented in 

Brainstorm, to localize specifically oscillatory patterns in resting state data, as described in the 

Appendix.  
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2.8 Estimation of virtual IEEG (VIEEG) data from the MEG source map 

MEG and IEEG are two different modalities each measuring brain activity in different units, MEG 

measurements after source imaging are estimated current densities (in nanoAmpere-meters), 

whereas IEEG measurements are electrical potentials in µVolts. To allow quantitative comparison 

between these two modalities, we converted MEG reconstructed source maps into IEEG channel 

space, by estimating corresponding IEEG potentials that would correspond to those MEG sources 

on each electrode contact (channel) of the atlas (Abdallah et al., 2022; Grova et al., 2016). To do 

so, we first localized the position of all channels of the atlas within the native MRI referential 

system of all healthy subjects from whom we analyzed MEG data. Co-registration between 

anatomical MRI of each subject and the ICBM152 template where the atlas is defined was obtained 

using Minctracc program (Collins et al., 1994). This is obtained in three steps: (1) estimation of a 

linear registration to account for the linear part of the transformation (using bestlinreg_s tool), (2) 

estimation of a non-linear transformation to account for the variability between the two maps 

(using minctracc tool); (3) application of the resulting non-linear transformation to the coordinates 

of the electrode contacts of MNI IEEG atlas, to convert them from the ICBM152 anatomy to the 

anatomy of each healthy subject.  

Then, for each subject, to estimate the virtual IEEG potentials from MEG estimated current 

density, JMSI,  we calculated a subject specific IEEG forward model, GIEEG that estimates the 

influence of each dipolar source of the cortical surface on each IEEG channel (Grova et al., 2016).  

Since we did not intend to solve the inverse problem of source localization from IEEG data, we 

used a simplified IEEG forward model GIEEG assuming an infinite volume conductor characterized 

by a conductivity 𝜎 of 0.25 S.m-1. For a total number of IEEG contacts c, (c = 2300) and n number 

of cortical sources (n = 8000).  GIEEG is a c x n matrix that estimates the electrical potential located 

at each IEEG electrode i (i=1, 2 …c) corresponding to an equivalent current dipole of unit activity 

located on the vertex Sj and oriented along 𝑛ሬ⃗ j, normal to the cortical surface (j = 1,2,….. n), 

calculated as:  

𝐺ூாாீ(𝑖, 𝑗) =
௡ሬ⃗ ೕ.௨ሬሬ⃗ ೔ೕ

ସగఙ௥೔ೕ
మ    (1) 

where 𝑢ሬ⃗ ௜௝ is a unit vector oriented from the source Sj to the IEEG contact i and rij is the Euclidean 

distance between Sj and contact i. To avoid numerical instabilities, when the sources on the cortical 
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surface were too close to the IEEG contacts (𝑟𝑖𝑗 < 3 mm), the distance 𝑟𝑖𝑗 was set to 3 mm instead, 

keeping the orientation 𝑢ሬ⃗ ௜௝. Finally, we applied the IEEG forward model, GIEEG to the MEG 

reconstructed source map (JMSI) to estimate IEEG potentials on each IEEG channel, VIEEG as:  

𝑉𝐼𝐸𝐸𝐺 =  𝐺ூாாீ𝐽ெௌூ   (2) 

Here, we applied a simplified IEEG forward model because Cosandier-Rimélé et al. (2007) 

showed that it could estimate accurately real IEEG measurements. Moreover, von Ellenrieder et 

al. (2012) showed that the use of finite-element models considering the actual size and the shape 

of the IEEG electrodes had almost no influence on local electrical potentials at 2 mm from the 

electrodes.  

As for each source map, we estimated VIEEG for each IEEG channel in the atlas, we generated 

more VIEEG channels compared to the MNI IEEG atlas (2300 channels in the IEEG atlas vs 2300 

x 45 channels in VIEEG).   

2.9 Frequency specific brain maps of relative power 

For each of the IEEG and VIEEG channels, the power spectral density (PSD) was estimated using 

Welch’s method (Time duration: 0-60 seconds, 2s sliding Hamming windows, overlap: 50%). For 

each channel, a relative PSD was obtained by dividing each PSD value by the total power across 

the whole frequency range. The group average of relative PSD  was calculated across all channels 

within a ROI and all frequency bins in each frequency band of interest: δ (0.5-4Hz), θ (4-8Hz), α 

(8-13Hz), β (13-30Hz), and γ (30-80Hz).   

We also applied the depth weighted minimum norm estimate (MNE) as another standard source 

imaging method to obtain VIEEGMNE to compare with IEEG and VIEEGMEM (VIEEG  estimated 

using wMEM). To calculate the noise covariance for depth weighted MNE, we used 2 seconds of 

resting state data from each subject. To solve MNE, we estimated the regularization hypermeter λ 

by using the signal-to-noise ratio (SNR) of the data, as λ=1/SNR2, with the SNR arbitrarily set to 

3 (default value in Brainstorm). We used the term VIEEGMEM to differentiate from VIEEGMNE 

only for the analysis of relative PSD. For the rest of the document, we used the notation VIEEG 

instead of VIEEGMEM.  

To compare the relative PSD before and after applying the conversion from MEG source maps 

into virtual intracranial space, we also calculated the relative PSD after MEG source imaging 
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directly along the cortical surface (Fig S2). To obtain a group average of relative PSD for 45 

subjects, we followed the approach described in Niso et al. (2019). We first projected individual 

relative PSD to a default template, ICBM152 (Fonov et al., 2009) and then obtained a group 

average of 45 relative PSD in each frequency band of interest. 

2.10 Analysis of spectral oscillatory components 

In this study,  we applied FOOOF (Fitting Oscillations & One-Over-F) (Donoghue et al., 2020), a 

commonly used algorithm (Huang et al., 2021; Mahjoory et al., 2020; Ramsay et al., 2021; 

Senoussi et al., 2022; Wiesman et al., 2022) to separate periodic components from the aperiodic 

components of the spectra by parameterizing the power spectra as a composition of these two 

components. Although the aperiodic components are also of much interest and recently gained 

attention (Bódizs et al., 2021; He, 2014; Ostlund et al., 2021; Ouyang et al., 2020; Schaworonkow 

& Voytek, 2021; Wilkinson & Nelson, 2021), our aim in this study was to compare and validate 

the periodic components only.  

For each of the IEEG and VIEEG channels, we decomposed the spectra into periodic and aperiodic 

components using the FOOOF toolbox (MATLAB version) (Donoghue et al., 2020). The 

following FOOOF parameters were used: frequency range = 0.5–80 Hz; peak type: Gaussian; peak 

width limits (minimum bandwidth, maximum bandwidth) = 1 – 8 Hz; maximum number of 

peaks = 8; peak threshold: 3.0 dB; proximity threshold = 2 SD; aperiodic mode: knee. As we 

concentrated only on the rhythmic activities of the spectra, we subtracted (in the log-log scale) the 

aperiodic component from the raw PSD. The remaining oscillatory component of the spectra 

(PSDIEEG and PSDVIEEG) was considered for further analysis and comparison between IEEG and 

VIEEG.  We also identified the oscillatory peaks during the process of finding aperiodic 

components.  

2.11 Comparison of VIEEG spectra with IEEG 

For each ROI, we calculated the median of PSDIEEG across all available channels within the ROI 

(NROI). The median of PSDVIEEG for each ROI was obtained across a total number of channels = 

NROI x Number of healthy subjects. The overlap between PSDIEEG and PSDVIEEG was calculated for 

each frequency bin as: 
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𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = ቐ
1 −

|ெ௘ௗ௜௔௡ ௉ௌ஽಺ಶಶಸିெ௘ௗ௜  ௉ௌ஽ೇ಺ಶಶಸ|

௦௧௔௡ௗ௔௥  ௗ௘௩௜௔௧௜௢௡ೇ಺ಶಶಸ
; 𝑖𝑓 𝑀𝑒𝑑𝑖𝑎𝑛 𝑃𝑆𝐷௏ூாாீ − 𝑆𝐷௉ௌ஽௏ூாாீ ≤ 𝑀𝑒𝑑𝑖𝑎𝑛 𝑃𝑆𝐷ூாாீ ≤ 𝑀𝑒𝑑𝑖𝑎𝑛 𝑃𝑆𝐷௏ூாாீ + 𝑆𝐷௉ௌ஽௏ூாாீ

0 ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(3) 

We calculated the average overlap for each ROI before and after removing the aperiodic 

components of the spectra. Average overlap quantifies the distance between median PSDVIEEG and 

median PSDIEEG at each frequency bin. The value of this metric ranges between 0 and 1. If the 

median of PSDVIEEG perfectly coincides with the median of PSDIEEG at a specific frequency, the 

overlap is 1, and if the median of PSDIEEG is greater or less than one standard deviation of 

PSDVIEEG, the overlap is zero at that frequency. We obtained average overlap across all the 

frequency bins within each frequency band of interest: δ (0.5-4Hz), θ (4-8Hz), α (8-13Hz), β (13-

30Hz), and γ (30-80Hz). 

2.12 Comparison of VIEEG with IEEG in terms of peak frequency 

We also compared the oscillatory peaks between the MEG estimated VIEEG and the MNI IEEG 

atlas. Using FOOOF, we identified all oscillatory peaks in each IEEG and VIEEG channel. For 

each ROI, the number of channels (out of the total number in each ROI NROI) exhibiting an 

oscillatory peak in a specific frequency band of interest was calculated for the IEEG and VIEEG 

of each subject. Then we calculated the percentage difference of the number of channels exhibiting 

peak in a specific frequency band as: 

𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜ =

ே௨௠௕௘௥ ௢௙ ௖௛௔௡௡௘௟௦ ௘௫௛௜௕௜௧௜௡௚ ௣௘௔௞௦ ௜௡ ௏ூாாீ ௜௡ ௦௨௕௝௘௖௧ ௜ି
ே௨௠௕௘௥ ௢௙ ௖௛௔௡௡௘௟௦ ௘௫௛௜௕௜௧௜௡௚ ௣௘௔௞௦ ௜௡ ூாாீ

ேೃೀ಺
× 100  (4) 

This measure was obtained for each ROI and each frequency band for each subject i. To obtain a 

group level estimation of channels exhibiting peaks per ROI per frequency band, we calculated the 

median of 𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi over 45 subjects. This metric is a percentage assessing the 

overestimation or underestimation of MEG estimated VIEEG channels showing oscillatory peaks, 

when compared to IEEG. The value of the Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi) ranges from -100% to 

100%. For a particular ROI and frequency band, Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi) = +100% 

indicates that all the VIEEG channels in that ROI (NROI) showed peaks in that frequency band, 

whereas no peak was identified in any of the IEEG channels in that ROI and frequency band. We 

called it a 100% overestimation of peaks by MEG estimated VIEEG in that ROI. On the contrary, 

a -100% estimation (underestimation) is obtained when all the IEEG channels in a ROI exhibit 
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peaks, but VIEEG fails to identify any peak in that ROI. The peaks are well estimated by VIEEG 

if the Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi) is close to zero.  

3 Results 

3.1 Frequency specific brain maps of relative power 

In Fig 2, the group average of relative PSD is plotted for 38 ROIs for IEEG, and MEG estimated 

VIEEG. For each frequency band in Fig 2, we used a common color bar for all modalities, thus 

highlighting how much MEG could estimate relative power when compared to IEEG. Fig S1 

shows another representation of the same data, the color bar ranging from minimum to maximum 

value for each modality in each frequency band. Fig S1 highlights the regions exhibiting the 

strongest activation of average relative power within each modality.  

Overall, similar patterns of power distribution were observed between IEEG and MEG estimated 

VIEEG (VIEEGMEM), such as high power in delta, theta, and gamma bands in the anterior ROIs, 

and high power in the alpha band in posterior ROIs. Beta power was strong around the primary 

and supplementary motor regions in both IEEG and VIEEG. However, for all frequency bands in 

Fig 2, the relative PSD in each IEEG ROI was very distinct, showing important contrasts and a 

larger range from strongest to weakest activity among ROIs, whereas MEG estimated VIEEG 

maps were smoother among the neighboring ROIs spanning a smaller range of activity. This was 

evident especially in deeper regions such as the hippocampus and amygdala, which were very 

distinguished in IEEG showing very strong or weak activity, whereas these regions showed 

smoother activation in VIEEG, almost undistinguishable from the neighboring ROIs. We also 

observed high delta power and weak beta power in IEEG in lateral posterior ROIs, which were not 

well estimated by VIEEG.  

The MEG estimated VIEEG using depth weighted MNE, VIEEGMNE, also showed similar patterns 

of power distribution as estimated by VIEEGMEM. Compared to IEEG, VIEEGMNE exhibited an 

underestimation in the theta band and an overestimation in the gamma band. In contrast, 

VIEEGMEM power in the theta and gamma bands was in a similar range as IEEG. The relative 

power estimated by wMEM and depth weighted MNE on the cortical surface (Fig S2) also showed 

similar patterns in all frequency bands, except for gamma (more details in the supplementary 

material).  
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Comparison of MEG estimated average relative PSD with MNI IEEG atlas 

 

Figure 2: Group average of relative PSD values across each frequency band and over all the available 

channels in each ROI of the IEEG atlas, the ground truth, the MEG estimated VIEEG using wavelet-MEM 

(wMEM) method VIEEGMEM
,
 and minimum norm method estimate VIEEGMNE.  The number of channels in 

each ROI (NROI) in IEEG varies.  For each ROI, VIEEG was estimated for 45 x NROI channels, where the total 

number of subjects is 45. The relative PSD for each channel is calculated as the ratio of the power of the 

signal in each frequency bin relative to the total power of the signal. Relative PSD value for a channel 

range between 0 and 1. The color bar ranges from minimum to maximum value among IEEG, VIEEGMEM, 

and VIEEGMNE in each frequency band, such that the scale is the same for all modalities in a given band. 

3.2 Analysis of spectral oscillatory components 

In Fig 3, for four typical example ROIs selected at different depths (two in the lateral and two in 

the medial side), we show the decomposition of spectra into periodic and aperiodic components 

for IEEG and VIEEG. The spectra are plotted as median ± standard deviation across all available 

channels within a ROI, NROI channels for IEEG, and the number of healthy subjects × NROI 

channels for VIEEG. Fig 3 also shows the probability histogram of all identified oscillatory peaks 

in the ROI for VIEEG and IEEG. For comparison between the VIEEG and IEEG spectra, we only 

considered the periodic components of the spectra, after removing the aperiodic components from 
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the original spectra. The comparison between IEEG and VIEEG spectra is discussed in the 

following sections. 

Decomposition of the spectra into periodic and aperiodic components  

  

Figure 3: Decomposition of spectra into periodic and aperiodic components shown in a few example 

ROIs for IEEG and VIEEG. For both IEEG and VIEEG, the top panel shows the normalized PSD before and 

after removing the aperiodic component and the bottom panel shows the probability histogram of 

identified peaks in δ (0.5-4Hz), θ (4-8Hz), α (8-13Hz), β (13-30Hz) and γ (30-80Hz). The aperiodic fits and 

oscillatory peaks are identified using the FOOOF toolbox (Donoghue et al., 2020). 

3.3 Comparison of VIEEG spectra with IEEG 

We show the comparison between IEEG and VIEEG spectra for four example ROIs (two in the 

lateral and two in the medial side) in Fig 4, before and after removing aperiodic components. We 

selected these four ROIs based on how MEG estimated the spectra compared to IEEG, quantified 
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by the metric average overlap (performance worsening from left to right, after removing the 

aperiodic components). The figure shows the value of average overlap quantified for each 

frequency band for a ROI. For all four ROIs, the average overlap improved after removing the 

aperiodic components. 

For angular gyrus, the MEG estimated the spectra quite well compared to IEEG, in most frequency 

bands after removing the aperiodic components. The similarity between spectra was quantified by 

average overlap (δ: 0.53, θ: 0.74, α: 0.31, β: 0.77, γ: 0.52). Before removing the aperiodic 

components, the average overlap values in all frequency bands were clearly lower δ: 0.13, θ: 0.11, 

α: 0.16, β: 0.02, γ: 0.11.  

In the middle temporal gyrus, the average overlap in all frequency bands after removing the 

aperiodic spectra are δ: 0.2, θ: 0.55, α: 0.55, β: 0.47, γ: 0.48. Here we chose another ROI for which 

MEG estimated VIEEG exhibited similar spectra to Gold Standard IEEG spectra, for all bands 

except delta. Before removing the aperiodic spectra, those values were much worse:  δ: 0.15, θ: 

0.29, α: 0.36, β: 0.02, γ: 0.05. 

The example medial ROI anterior cingulate also showed improvement after removing the 

aperiodic components. The average overlap values in all frequency bands before and after 

removing aperiodic components are δ: 0.08, θ: 28, α: 0.43, β: 0.19, γ: 0.0 and δ: 0.27, θ: 0.3, α: 

0.61, β: 0.2, γ: 0.3, respectively. For this medial structure, more difficult to localize in MEG 

because of its depth, average overlap values were good in the alpha band but lower in other bands 

(around 0.3), when compared to previous examples.    

Finally, we showed an example of deep ROI, the hippocampus. MEG estimated the spectra in the 

hippocampus very poorly compared to IEEG. The average overlap values in all frequency bands 

before and after removing aperiodic components are δ: 0.1, θ: 32, α: 0.01, β: 0, γ: 0.49 and δ: 0.13, 

θ: 04, α: 0.29, β: 0.2, γ: 0.37, respectively. Although the spectral comparison improved after 

removing the aperiodic components, they remained inaccurate compared to other lateral superficial 

ROIs. It is worth mentioning that with MEG we estimated a clear peak in the alpha band in the 

hippocampus, whereas clearly IEEG data were exhibiting no alpha band peak.  

The comparison between IEEG and VIEEG spectra after removing the aperiodic components for 

38 ROIs is shown in Fig S3. 
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Comparison of MEG estimated spectra with ground truth IEEG: few selected ROIs 

 

Figure 4: Comparison of periodic components of MEG estimated spectra with ground truth IEEG, with and 

without aperiodic components. Average overlaps between VIEEG and IEEG spectra across each spectral 

band are shown for a few selected ROIs. The value of overlap is calculated at each frequency bin and 

ranges from 0 to 1. For a ROI, if the median of PSDVIEEG perfectly coincides with the median of PSDIEEG at 

all frequency bins within a specific frequency band, the average overlap is 1.  

In Fig 5, we summarized the average overlap for all 38 ROIs before and after removing the 

aperiodic components. It shows for all frequency bands, the average overlap values improved after 

we removed the aperiodic components. If we compare the ROIs after removing the aperiodic 

spectra, we observe that the spectra in lateral regions are overall better estimated when compared 

to the medial ROIs. It was clearly the case for deeper regions like the hippocampus and amygdala, 

for which MEG estimated VIEEG spectra were not accurately recovering the actual IEEG spectra. 

On the other hand, the PSD in lateral temporal and parietal were localized accurately for all bands, 

as well as the medial posterior cingulate region.  Especially, the medial ROIs in the theta band 

were very poorly estimated compared to other frequency bands. The delta band was very poorly 

estimated in occipital ROIs. This was also the case when we compared relative power in Fig 2, 

IEEG showed high activation in the delta band in the occipital regions which were not well 

estimated by MEG.  
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Spectral components estimated by MEG compared to MNI IEEG atlas: 38 ROIs  

  

 

Figure 5: Average overlap between VIEEG and IEEG spectra across each spectral band for each of the 38 

ROIs, (A) with and (B) without aperiodic components. The value of overlap is calculated at each frequency 

bin and ranges from 0 to 1. For a ROI, if the median of PSDVIEEG perfectly coincides with the median of 

PSDIEEG at all frequency bins within a specific frequency band, the average overlap is 1. 

3.4 Comparison of VIEEG with IEEG in terms of oscillatory peaks 

Oscillatory peaks in each band were estimated using the FOOOF algorithm, after removing the 

aperiodic component. When we compared MEG estimated spectra with the MNI IEEG atlas in 

terms of oscillatory peaks, we found that the probability histogram of peaks from all ROIs (Fig 

6A) in IEEG has more variability in all frequency bands, whereas MEG estimated peaks are more 

narrowly concentrated within each frequency band, especially exhibiting high concentration in the 

alpha band. Also, the MEG estimated peaks in the theta band were much fewer than in IEEG. Fig 

6B shows the probability histogram of peaks identified in IEEG, and VIEEG for an example ROI 

(hippocampus) for one subject. It also shows the value of the percentage difference of the number 
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of channels exhibiting peaks in a specific frequency band, as a proportion of the total number of 

channels in that ROI (Peak_estimatedSUBi) (Eq. 4). For instance, IEEG found peaks in the theta 

band, whereas no peak was found in VIEEG channels in this band. This was quantified in terms 

of the percentage difference of the number of channels exhibiting peak, Peak_estimatedSUBi = -

40% (underestimation) in the theta band. Thus, in the hippocampus, MEG clearly underestimated 

peaks in the delta, theta, and gamma band by 36%, 40%, and 31% respectively. On the other hand, 

we observed a large overestimation of channels exhibiting peaks in VIEEG in the alpha band by 

83%. In the beta band, the estimation of peaks by VIEEG was comparable with those in IEEG 

(Peak_estimatedSUBi = 0).  The probability histograms of peaks identified in IEEG and VIEEG for 

all 38 ROIs of 45 subjects are shown in Fig S4. 

Comparison of oscillatory peaks identified in MEG estimated spectra with MNI IEEG atlas 

 

  

Figure 6: (A) Probability histogram of all identified peaks in all ROIs for IEEG and VIEEG using the FOOOF 

toolbox.  (B) Percentage difference of the number of channels exhibiting spectral peaks in VIEEG compared 

to IEEG in each spectral band, as a proportion of the total number of channels in the ROI: illustration for 

the hippocampus ROI for one subject. The value of 𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜ ranges from -100% to 100%. The 

A 
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peaks are better estimated by VIEEG in comparison with IEEG, for a specific frequency band, if 

𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜  is close to zero. 

In Fig 7, we summarized the percentage difference of the number of channels exhibiting a peak 

in a specific frequency band for 45 subjects, by plotting the median of Peak_estimatedSUBi 

(calculated for each subject) over 45 subjects and shown for 38 ROIs. Warmer colors indicate an 

overestimation and cooler colors indicate an underestimation of channels exhibiting peaks by 

MEG when compared to the MNI IEEG atlas. We observe that MEG overestimated peaks in the 

alpha band for most ROIs, especially higher in frontal (lateral and medial) ROIs (>40%) and 

deeper ROIs such as hippocampus and amygdala (~100% overestimation). The peaks in the delta 

band were well estimated in most ROIs except the occipital ROIs (like Fig 2 and Fig 5), and 

deep ROIs such as the hippocampus and posterior cingulate, where peaks were underestimated 

by MEG (<-35%). We observe an underestimation of peaks in beta and theta bands, in frontal 

and central ROIs (both lateral and medial) (<-35%). MEG moderately overestimated beta peaks 

in posterior regions and gamma peaks all over the brain regions. Those regions also showed 

higher relative power in MEG (Fig 2) compared to IEEG.  
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Estimation of peaks by MEG in all spectral bands compared to IEEG: 38 ROIs 

 

Figure 7: Median values of 𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜ over 45 subjects are plotted for 38 ROIs. 

𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜ measures the percentage difference of the number of channels exhibiting spectral 

peaks in VIEEG compared to IEEG, as a proportion of the total number of channels in each ROI, for each 

spectral band and ROI, calculated for each subject i. The value of the median 𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜ over 

all subjects ranged from -100% to 100%. Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜) = +100% indicates that all the 

channels from VIEEG in a ROI (NROI) showed a peak in that frequency band, whereas no peak were 

identified in any of the IEEG channels in that ROI. We called it a 100% overestimation of oscillatory peaks 

by MEG estimated VIEEG in this ROI. On the contrary, a -100% estimation is obtained when all the IEEG 

channels in a ROI exhibit peaks, but no peak was identified in VIEEG in that ROI, resulting in a 100% 

underestimation. The peaks were better estimated by VIEEG for the ROIs if median 

(𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜) was close to zero. The values in the color bar are ranging from underestimation (-

100%, negative values, cooler color) to overestimation (+100%, positive values, warmer color) of channels 

exhibiting peak by MEG estimated VIEEG. 
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It is also important to mention that all our results were reported in a common average montage. 

We also produced these results for bipolar montage and a similar pattern was found. Please see 

supplementary Fig S5 and Fig S6 comparing the results from the two montages. Although the 

spectral components recovered by both montages were very reproducible, bipolar montage was 

slightly better at estimating the oscillatory peaks in the alpha band, especially in the frontal regions. 

3.5 IEEG and VIEEG amplitude 

In Fig 8, the average amplitude across the IEEG and VIEEG channels in each ROI is plotted for 

the 38 ROIs, where each ROI amplitude was normalized by the average amplitude of all 38 ROIs. 

The mean amplitude across 38 ROIs was 28.4 µV for IEEG, and 0.67 µV for VIEEG, since 

underestimation of the amplitude after solving the MEG inverse problem was expected by the 

regularization procedure. Thus, we normalized IEEG and VIEEG amplitudes to be comparable. A 

strong positive correlation (Spearman’s R = 0.69, p < 0.001) was found for the amplitudes of 38 

ROIs between IEEG and VIEEG. In Fig 8, we also plotted the difference of normalized amplitudes 

between IEEG and VIEEG for each ROI, called the amplitude difference. We represented the 

absolute value of amplitude difference in the bar plot and showed the signed amplitude difference 

on the inflated cortical surface. In the lateral occipital, lateral parietal, and lateral temporal regions, 

the VIEEG amplitudes were larger than the IEEG amplitudes. On the other hand, in the medial 

frontal regions and some deep regions such as the hippocampus and amygdala, the IEEG 

amplitudes were much higher than the MEG estimated VIEEG amplitudes.  
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Comparison of IEEG and VIEEG amplitude 

 

Figure 8: Average amplitude across the channels in each ROI, normalized by the average amplitude across 

all ROIs. The bar plot shows the absolute difference of normalized amplitude between IEEG and VIEEG. 

The right panel shows the difference of normalized amplitude between IEEG and VIEEG on the inflated 

cortical surface (lateral and medial views). 

We calculated the correlation between the signed amplitude difference and the average overlap 

(calculated in Fig 5) for 38 ROIs in all frequency bands. It showed moderate negative correlation 

in alpha band (Spearman’s R = -0.33, p = 0.04) and beta band (Spearman’s R = -0.3, p = 0.08). A 

negative correlation indicates that for regions exhibiting higher VIEEG amplitude when compared 

to IEEG amplitudes, the average overlap between VIEEG and IEEG spectra were better. In delta 

and theta frequency bands, weak negative correlation was found (δ: Spearman’s R = -0.19, p = 

0.25, θ: Spearman’s R = -0.22, p = 0.18). No correlation was found in gamma band (Spearman’s 

R = -0.03, p = 0.8).  
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4 Discussion  

We aimed to assess the reliability of MEG source imaging of awake resting state oscillations by 

validating with the MNI IEEG atlas as ground truth (Frauscher et al., 2018). We compared MEG 

estimated VIEEG spectra from a healthy group of participants (Pellegrino et al., 2022) with the 

MNI IEEG atlas of healthy brain awake activity, in terms of (i) oscillatory components of the 

spectra, (ii) oscillatory peaks, and (iii) relative power. This is the first study using an IEEG atlas 

of healthy awake activity to validate quantitatively the accuracy of MEG source imaging of resting 

state activity.  In this context, we carefully investigated the performance of our source imaging 

technique, the wavelet based Maximum Entropy on the Mean (wMEM) (Aydin et al., 2020; Lina 

et al., 2012; Pellegrino et al., 2016). A quantitative comparison between IEEG and VIEEG spectra 

showed that the VIEEG spectra were closer to the IEEG spectra after the aperiodic components 

were removed from the spectra (Fig 5). The estimation of the VIEEG spectra was overall more 

accurate in the lateral regions compared to the medial regions (Fig 5B). Especially better 

estimation was found in the regions exhibiting higher VIEEG amplitude compared to IEEG (Fig 

8), such as the lateral parietal, lateral temporal, and some lateral occipital regions (Fig 5B). 

Importantly, we found that the estimation of VIEEG resting state spectra was particularly 

inaccurate in the deep regions such as the hippocampus and amygdala, for most frequency bands. 

Our study also found that MEG estimated spectra were dominated by oscillations in the alpha 

band, especially in anterior and deeper regions, unlike the actual in situ measurements from the 

MNI IEEG atlas (Fig 4, Fig 7, Fig S3). This observation is consistent with the finding of dominance 

in alpha oscillations reported in previous studies (Capilla et al., 2022; Keitel & Gross, 2016; 

Mahjoory et al., 2020). In our study, the MNI IEEG atlas as ground truth enabled us to quantify 

the extent of overestimation or underestimation of alpha dominance in MEG estimated spectra. A 

quantitative comparison of oscillatory peaks showed that MEG overestimated peaks in the alpha 

band in most brain regions, especially in the frontal and deep regions (Fig 7). In the delta, theta, 

and gamma bands, the peaks in the deep regions were underestimated, whereas they were more 

accurately estimated in lateral cortical regions. In terms of relative power, the distribution of MEG 

relative power reported in our study was consistent with the previous MEG studies in different 

frequency bands (Fig 2, Fig S1, Fig S2) (Hillebrand et al., 2012; Mahjoory et al., 2020; Mellem et 

al., 2017; Niso et al., 2016; Niso et al., 2019). However, when compared to the MNI IEEG atlas 

(Fig 2), important differences in average relative power were observed in the anterior regions for 
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the alpha band, in the posterior regions for the delta, beta and gamma bands, and in deep regions 

(such as hippocampus and amygdala) for all bands. Especially in the theta band, MEG largely 

underestimated relative power compared to IEEG in all brain regions.  

We also calculated the relative power for MEG using another source imaging method, depth 

weighted MNE (Fig 2, Fig S1, and Fig S2), to determine if the findings of our study were not 

mainly driven by our source imaging method, wMEM. Indeed, results were overall similar when 

depth weighted MNE was applied. Investigating more carefully the comparison between MNE and 

wMEM, VIEEG estimated using wMEM exhibited slightly better distribution (i.e., closer to IEEG) 

in relative power, when compared to MNE, especially in the theta band and gamma bands, for 

which MNE was respectively underestimating and overestimating the relative power.  

4.1 Removing the aperiodic component improves the spectral comparison between 

VIEEG and IEEG 

Electrophysiological power spectra are composed of periodic components, typically characterized 

by spectral peaks in canonical frequency bands and aperiodic components, also known as 1/f-like 

or arrhythmic components (He, 2014). While analyzing electrophysiological power spectra of 

neuronal oscillations, the separation of periodic and aperiodic components allows a better 

estimation of the periodic component (Donoghue et al., 2021; Wen & Liu, 2016). We applied 

FOOOF (Donoghue et al., 2020)  to separate the periodic and aperiodic components of the spectra 

from IEEG and VIEEG. We quantitatively compared the IEEG and VIEEG spectra before and 

after removing the aperiodic components. The spectra estimated by MEG became more 

comparable to IEEG after the aperiodic components were removed (Fig 5). This is reflected by the 

metric average overlap, which quantifies the overlap between IEEG and VIEEG spectra. In Fig 

5A, the average overlap values of the spectra, which include the aperiodic components, were very 

low for all frequency bands, with most ROIs exhibiting an average overlap < 0.2. The average 

overlap values of the ROIs were much improved after removing the aperiodic components (Fig 

5B) compared to Fig 5A. This indicates that the discrepancies between IEEG and VIEEG spectra 

were mostly driven by the variations in the aperiodic components between the two modalities. The 

aperiodic component of the spectrum might be generated by spatial interactions among neuronal 

populations (Aguilar-Velázquez & Guzmán-Vargas, 2019). The IEEG records brain activity 

locally, with a spatial sensitivity of less than 1cm (von Ellenrieder et al., 2021), and would 
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therefore not pick-up all the spatial interactions, leading to a different aperiodic component from 

the one recorded by the more spatially spread sensitivity of scalp EEG or MEG. Moreover, in a 

recent study based on computational modeling using the virtual brain project, we found that 

anatomical and forward model properties of EEG and MEG resulted in different aperiodic 

components between EEG and MEG (Bénar et al., 2019).  

The differences in the aperiodic components between MEG and IEEG could also result from the 

differences in the inherent mechanism of generation of the signals in those two modalities. The 

local bioelectrical environment contributes to the generation of the local field potential of IEEG 

(Bédard & Destexhe, 2009), whereas MEG is mainly contributed by the activation of pyramidal 

sources.  

4.2 MEG spectra were better estimated in the lateral regions compared to the medial 

regions 

We observed that MEG estimated spectra were better estimated in lateral regions compared to the 

medial regions in most frequency bands (Fig 5B). The lateral parietal and lateral temporal regions 

in most frequency bands showed average overlap values greater than 0.5. In contrast, for most of 

the medial ROIs, the average overlap values were less than 0.5 in all frequency bands (except 

gamma). We found a negative correlation between the signed difference of IEEG and VIEEG 

amplitude (Fig 8) and the average overlap values (Fig 5B) in all frequency bands except gamma. 

These negative correlations were moderate in the alpha and beta bands, and weak in the delta and 

theta bands. Such negative correlations indicate that average overlap values were better in regions 

having VIEEG amplitudes greater than IEEG amplitudes, which means MEG could estimate the 

spectra from these ROIs more accurately when underlying signals were of larger amplitudes for 

those regions. Example regions include the lateral parietal, lateral temporal, and some lateral 

occipital regions, which exhibited VIEEG amplitudes much higher than IEEG amplitudes (Fig 8) 

and also resulted in higher average overlap (Fig 5B). Overall, an important finding was that deep 

regions were not well estimated by MEG, and we found similar results for wMEM and MNE 

(results not shown). For instance, the average overlap values were less than 0.3 in the hippocampus 

for all frequency bands except gamma, and less than 0.25 in the amygdala for all frequency bands. 

The reason for such poor estimation could be the large underestimation of the VIEEG amplitude 

compared to IEEG (Fig 8). Similarly, in the lingual gyrus and occipital fusiform gyrus, the VIEEG 
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amplitude was largely underestimated compared to IEEG (Fig 8). The average overlap in this ROI 

was less than 0.25 in all frequency bands except gamma.  

4.3 Dominance of alpha oscillations in MEG 

Oscillatory peaks in the alpha band were largely overestimated by MEG, especially in frontal 

regions (Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜) = ~45-84%) and deep regions such as the hippocampus 

(Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜) = 86%) and amygdala (Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑ௌ௎஻௜) 

=100%). We found widespread alpha oscillations in all brain regions (Fig 7, Fig S3, Fig S4). A 

quantitative comparison between the spectra from MEG estimated VIEEG and the MNI IEEG 

atlas (Fig 5B) showed, in most of the lateral frontal regions and medial regions, an average overlap 

in the alpha band of less than 0.5. A similar dominance of alpha oscillations in MEG was also 

reported in previous MEG resting state studies (Capilla et al., 2022; Keitel & Gross, 2016; 

Mahjoory et al., 2020). Using eyes open MEG data, Capilla et al. (2022) reported the dominance 

of alpha oscillations in all posterior regions. Alpha is also of much higher amplitude with eyes 

closed than with eyes open. Thus, with eyes closed data, the dominance of alpha oscillations is 

expected to be more widespread and could explain why we found an overestimation of the alpha 

peak identified in MEG in most frontal brain regions. On the other hand, the large predominance 

of alpha oscillations found in deeper brain regions, that were also showing weak amplitudes, could 

be explained by spatial leakage from cortical signals getting localized with very little amplitude in 

deep regions. Nunez et al. (2001) and Srinivasan et al. (2006) also reported alpha dominance in 

brain regions with scalp recordings, including frontal regions. It is quite evident from intracranial 

EEG that alpha is not as prominent and widespread as seen from scalp recordings, especially not 

in the frontal regions (Groppe et al., 2013; Penfield & Jasper, 1954).  

With electrocorticography (ECoG) recordings in patients with epilepsy, Groppe et al. (2013) 

reported that most dominant oscillations tended to be around ~7 Hz (in the theta range), not in the 

alpha range (8-13Hz) typically reported in scalp recordings. This is also evident from the peak 

histogram of IEEG and MEG (Fig 6A), IEEG tends to have the highest number of peaks around 

~7Hz, within theta and alpha bands, whereas MEG peaks were around ~10-12Hz, in much higher 

proportions. Compared to IEEG, MEG underestimated theta and overestimated alpha, which was 

also evident in the relative power calculated in Fig 2. The reason EEG/MEG sees higher alpha 

oscillations might be due to a phase synchronization over larger spatial extents than other bands 
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(Groppe et al., 2013). The IEEG having a very local sensitivity profile, would pick up the activity 

from the alpha band, but also from other bands with low spatial phase synchronization. MEG, on 

the other hand, having a more extended spatial profile, would pick up the generators of 

synchronous alpha activity interfering constructively, but generators of theta activity (or other 

poorly synchronized bands) would partially cancel out, leading to a dominant alpha rhythm.  

To tackle the dominance of alpha oscillations, a few previous studies normalized each ROI 

spectrum by considering the average spectra of all other brain regions. Such normalization gives a 

measure of the characteristic features of each ROI spectrum compared to other brain regions, 

resulting in a less widespread influence of alpha oscillations in all brain regions (Capilla et al., 

2022; Keitel & Gross, 2016). We did not incorporate such normalization in this study, as we aimed 

to compare the MEG estimated spectra for each ROI with the MNI IEEG atlas, not with other 

ROIs. We also investigated IEEG and VIEEG data in a bipolar montage (Fig S5 and Fig S6). The 

spectral components estimated by MEG compared to the MNI IEEG atlas were very similar for 

bipolar and common-average montages (Fig S5). However, the peaks estimated by MEG were less 

dominant in the frontal regions in the alpha band in the bipolar montage, when compared to a 

common-average reference montage (Fig S6).    

4.4 Differences in signal relative power 

A qualitative comparison of relative power between MEG estimated spectra and the MNI IEEG 

atlas (Fig 2, Fig S1) showed that in general, both modalities have similar brain distributions, such 

as strong delta and theta power in frontal regions, alpha power in posterior regions, beta power in 

motor and frontal regions, and gamma power in frontal areas. However, when compared to the 

MNI IEEG atlas, the MEG estimated relative power was spatially much more smoothly distributed. 

For instance, the IEEG atlas showed low power in the hippocampus in theta, alpha, and beta bands, 

in contrast to strong power in its neighboring region the para-hippocampal gyrus. In MEG, due to 

source leakage, such separation was not possible, resulting in similar distributions in the para-

hippocampal gyrus, the hippocampus, and the neighboring regions for all frequency bands (Fig 2, 

Fig S1). The contrast between strong and weak relative power was reflected in MEG only where 

an extended area in IEEG exhibited a similar contrast. For instance, the frontal regions showed 

weak alpha power compared to the posterior regions in IEEG, a pattern that was also found in 

VIEEG (Fig S1). Similarly, posterior regions in the theta band and the orbito-frontal region in the 
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beta band showed weak power compared to other brain regions within the specific band in IEEG, 

which were also reflected in VIEEG (Fig S1). Due to the source leakage in MSI, subtle changes in 

relative power in brain regions (as seen in the MNI IEEG atlas) were not accurately retrieved using 

MEG (Fig 2). This was particularly the case for deep regions localized with small amplitude in 

MEG. Similar mislocalization patterns were found with wMEM and MNE.  

Our MEG relative power maps were quite consistent with previous MEG studies (Niso et al., 2016; 

Niso et al., 2019). We also compared the MEG relative power on the cortical surface and MEG 

estimated VIEEG relative power in the intracranial space in Fig S2 (described in the supplementary 

material). Fig S2 confirms that the conversion from the MEG source map to intracranial space 

(VIEEG) did not add any discrepancy, and the relative power in the virtual intracranial space 

(VIEEG) was concordant with the MEG relative power on the cortical surface. We also included 

source imaging results from depth weighted MNE in Fig 2, Fig S1, and Fig S2, to show that the 

findings in our study were not driven by our source imaging method, wMEM. We get similar 

findings with depth weighted MNE (as discussed in the supplementary material).  It is worth 

mentioning that our method consisting in converting MEG sources into virtual IEEG potentials 

(Abdallah et al., 2022; Grova et al., 2016) offers a solid quantification approach to compare MEG 

sources estimated using different source imaging techniques with actual IEEG in situ recordings, 

carefully taking into account spatial sampling of IEEG data.   

4.5 wMEM for resting state localization and comparison with MNE    

We implemented and validated an adapted version of wavelet MEM to solve the inverse problem 

in the context of resting state source imaging. wMEM is a MEM framework specifically designed 

to localize oscillatory brain patterns in the context of EEG/MEG signals utilizing discrete wavelet 

transformation (Daubechies wavelets). Taking advantage of the MEM specific prior model 

(Chowdhury et al., 2013), wMEM can accurately localize the oscillatory patterns together with 

their spatial extent. This ability was validated for localizing oscillatory patterns at seizure onset 

(Pellegrino et al., 2016), interictal bursts of high frequency oscillations (Avigdor et al., 2021; von 

Ellenrieder et al., 2016) as well as for localizing MEG resting state fluctuations in the alpha band 

(Aydin et al., 2020). We further adapted wMEM to localize wide band oscillations in resting state 

EEG/MEG data. (i) Spatial prior model: Our main adaptation of the wMEM spatial prior model 

consisted in considering one stable whole brain parcellation of the cortical surface, following the 
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strategy proposed for cMEM (Chowdhury et al., 2013), whereas in our previous wMEM 

implementation the parcellation was varying for time frequency samples. To do so,  we proposed 

data-driven whole brain parcellation informed by the MSP method (Mattout et al., 2005), a 

projection technique allowing to estimate the probability of every source to contribute to the data, 

before region growing around local MSP peaks. The main adaptation of our current 

implementation is that the MSP projector is applied on all wavelet coefficients of Daubechies time-

frequency representation of our data, instead of using signals in the time domain (see detailed in 

the Appendix).  (ii) Initialization of the probability of being active for each parcel: Following the 

parcellation, we then initialized the probability of each parcel of being active or not, using 

normalized energy calculated for each time frequency sample. (iii) Selection of baseline for resting 

state localization: There is no ideal baseline definition when localizing ongoing resting state data.  

We proposed to compute the sensor level noise covariance matrix from the ongoing resting state 

data. To do this, we generated a quasi-synthetic baseline from the signal of interest by randomly 

modifying the Fourier phase at each frequency. We also adopted a sliding window approach to 

generate the baseline for a more accurate estimation of the noise covariance matrix for each time 

frequency sample along the time scale. More details of these adaptations are described in the 

Appendix.  

Before applying this new implementation of wMEM on resting state MEG data, we validated it 

within a controlled environment with realistic simulation of epileptic spikes and oscillations on 

realistic MEG background, as previously proposed in Chowdhury et al. (2013) and Lina et al. 

(2012). We observed that this new wMEM demonstrated improvement in localizing the underlying 

spatial extent of the generators when compared to the previous wMEM implementation (Lina et 

al., 2012) and depth weighted MNE (results not shown), therefore justifying our rationale for 

incorporating the adaptations when localizing resting state data.  

In the present study, we also compared wMEM and depth weighted MNE when localizing resting 

state MEG data. The comparison in terms of relative power (Fig S2) showed similar maps in all 

frequency bands except gamma. However, when compared to actual IEEG power (Fig 2), VIEEG 

estimated using wMEM exhibited better distribution in relative power, when compared to MNE, 

especially in theta and gamma bands. VIEEG computed from MNE sources showed large 

underestimation in the theta band and overestimation in the gamma band, whereas VIEEG power 
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estimated from wMEM sources recovered power in the theta and gamma bands more accurately. 

Additionally, the relative power in the delta band was slightly better estimated using wMEM 

compared to depth weighted MNE. The reason wMEM localized brain activity in the lower (delta 

and theta) and higher (gamma) frequency range more accurately might be explained by the 

sparse/optimal data representation of oscillatory components obtained when using Daubechies 

discrete wavelets (Lina et al., 2012), before solving the inverse problem.  

It is also important to mention that, unlike wMEM, depth weighted MNE is designed to 

compensate for the bias of high sensitivity of the forward model towards superficial sources. 

Nevertheless, our overall results using both methods were similar. Currently, we are implementing 

depth weighting in wMEM, following a strategy proposed in Cai et al. (2022) for MEM 

implemented for the reconstruction of functional Near-InfraRed Spectroscopy data. In addition, 

we are including deep subcortical structures (such as the hippocampus) in the MEM model. We 

expect that incorporating depth weighted wMEM with more accurate models of subcortical 

structures (Attal & Schwartz, 2013) could improve the localization of resting state oscillation in 

deep regions. This investigation was out of the scope of the present study. 

4.6 Limitations 

One limitation of this study is that the normative MNI IEEG atlas was collected from patients with 

epilepsy, although by including only the IEEG electrodes implanted in the brain regions which 

turned out to be healthy. This limitation cannot be overcome, as IEEG data are never collected 

from healthy subjects. Nevertheless, such normative IEEG atlas data are so far the best ground 

truth and provide us with a unique opportunity to validate non-invasive source imaging techniques. 

Another limitation is the heterogeneity of IEEG channels in different ROIs. The sampling of IEEG 

channels was higher in lateral temporal, parietal, and frontal regions compared to medial and 

occipital regions. This might have biased our results, but not severely. We found a mild to 

moderate positive correlation between the number of channels in a ROI and the average overlap 

value (calculated in Fig 5B) in delta and beta bands (results not shown).  We also combined 

channels in both hemispheres to maximize the sampling and the coverage of the brain. Thus, any 

effect of hemispheric asymmetry on oscillatory characteristics was lost. Also, the MEG data and 

IEEG data in this study were not simultaneously recorded. Simultaneous IEEG-MEG recordings 

would give us more opportunities to validate region specific spectral components (De Stefano et 
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al., 2022; Pizzo et al., 2019), which we plan to do in the future. However simultaneous IEEG-

MEG recordings have limited spatial sampling, whereas we could study the whole brain with the 

normative MNI IEEG atlas. 

5 Conclusion 

We aimed to address the reliability of MEG source imaging by validating source imaging results 

with the MNI IEEG atlas as ground truth. We quantitatively estimated the concordance of MEG 

estimated spectral components with the MNI IEEG atlas and identified the brain regions for which 

MEG estimated spectra are reliable and some regions for which we should be cautious while 

interpreting MEG results. We found widespread leakage of alpha oscillations in MEG estimated 

spectra in frontal and deep brain regions, which was present both before and after the removal of 

aperiodic components. In the future, we are planning to investigate these issues on simultaneous 

MEG-IEEG data and validate MEG source imaging of spectral components at the single-subject 

level.  
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Appendix 

The maximum entropy on the mean (MEM) is a Bayesian inference technique that regularizes the 

inverse problem using prior information. This prior relies on the notion of functional parcellation 

of brain activity over the cortical surface, and hidden state variables describing each parcel being 

active or inactive. A data driven parcellization (DDP) based on Multivariate Source Pre-

localization (MSP) method (Mattout et al., 2005) was used to guide the parcellation of the cortical 

surface into non-overlapping and functionally homogeneous parcels (Lapalme et al., 2006). For 

each parcel, the prior is then defined as a mixture of Gaussians, each Gaussian of each parcel will 

be related to a state as active and inactive controlled by a hidden state variable. In the context of 
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resting state EEG/MEG, we adapted wMEM by incorporating a few changes in the prior model 

and initialization of the parcels.  

Spatial prior model:  

Parcellation of the whole cortical surface was obtained using a data driven approach, based on the 

Multivariate Source Pre-localization (MSP) method (Mattout et al., 2005), a projection technique 

allowing to estimate the probability of every source contributing to the data. The MEG data (M) 

were first normalized (across sensors) and then wavelet transformed (𝑊෩ ). In the present 

implementation of wMEM, time expansion was thus substituted with a time-scale representation. 

The contribution of each source to the data (called the MSP score) is obtained using the normalized 

MEG data (𝑊෩ ) and the normalized lead field matrix (𝐺෨), where the normalization was performed 

by the norm of each column. 𝑊෩  is the sensor space data in the wavelet domain (dimension: number 

of sensors × discrete wavelet time-frequency indices), whereas the normalized lead field 𝐺෨ is of 

dimension number of sensors × n; n is the total number of sources. The MSP score for each source 

(ai), i= 1,…. n, is calculated in the following steps: 

The normalized lead field matrix 𝐺෨ is decomposed into d mutually orthogonal eigenvectors ui 

using singular value decomposition (SVD). We selected a subspace, Us = [u1, u2, … us], by 

projecting these orthogonalized projectors onto the normalized data 𝑊෩  as 𝑈௧𝑊෩ 𝑊෩ ௧𝑈 and taking 

the diagonal of 𝑈௧𝑊෩ 𝑊෩ ௧𝑈 that captures 95% of the variability.  

In the data subspace spanned by Us, the data that can be explained within this subspace is calculated 

as: 

𝑊௦ = 𝑈௦ 𝑈௦
௧ 𝑊෩     (A.1) 

The projector in this subspace is defined by  

𝑃௦ = 𝑊௦(𝑊௦
௧𝑊௦)ିଵ𝑊௦

௧   (A.2) 

Finally, the MSP score between 0 and 1 for each source i is then calculated by the norm of the 

projection of its associated lead field,  

𝑎(𝑖) = 𝑔෤௜
௧𝑃௦𝑔෤௜                (A.3) 

where 𝑔෤௜ is the ith column of 𝐺෨. 
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Parcels are then constructed using a region-growing algorithm, selecting sources according to 

decreasing MSP scores. In this version of wMEM, assuming a stable parcellation of the cortex for 

all the time-frequency samples for resting state data, we followed the strategy proposed for cMEM 

(Chowdhury et al., 2013), ensuring that the same underlying parcellation was considered when 

localizing all the time-frequency samples (dimension of 𝑊෩  as number of sensors × number of 

discrete time frequency boxes).  In our previous implementation (Lina et al., 2012), a specific 

parcellation was computed for each time-frequency box to localize. 

Initialization of the parcels:  

The probability 𝛼௞ for each parcel k to be active was then initialized as the amount of ‘normalized 

energy’ in the parcel, for each time-frequency sample. Given the minimum norm estimated energy 

of the sources, for a specific time-frequency sample (a column in 𝑊෩ ) 𝑤෥ ,   

𝑗 = 𝐺෨ 
௧(𝐺෨𝐺෨ 

௧)ିଵ𝑤෥   (A.4) 

 

𝛼௞ = ට
∑ ௝(௜)మ

೔∈ೖ

∑ ௝(௜)మ
೔సభ,….೙

  (A.5) 

Although the parcels were identical across time-frequency samples, this quantity initializing the 

probability of each parcel to be active changed with time and frequency. 

 

Selection of baseline for resting state localization:  

A baseline is needed to complete the initialization of the prior, to define the variance of the active 

state and inactive state, in comparison to the noise variance at the sensor level. This is an important 

feature that will allow switching off parcels in the model when they are not active. The idea of 

selecting a baseline is to choose a segment of data with an amplitude significantly lower than the 

signal of interest. However, the selection of such segments in resting state data is not 

straightforward. In  Aydin et al. (2020), the baseline was defined as a two-second segment 

exhibiting low amplitude in the alpha band, since we were investigating amplitude envelope 

correlation in the alpha band, as a connectivity metric. This approach worked reasonably when 

localizing in a specific and narrow frequency band, however, becomes inappropriate when 

localizing in a wide frequency band. Here, we propose to generate a quasi-synthetic baseline from 

a segment of the signal of interest. The baseline was obtained by randomly modifying the Fourier 
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phase at each frequency, for all the sensors (originally proposed by Prichard & Theiler 1994). This 

baseline preserves the coherence between the sensors and the power spectrum of the signals while 

destroying only the temporal coherence. To consider this new baseline, we adopted a sliding 

window approach to calculate the baseline. For each window with one second duration along the 

sixty second resting state MEG data, a quasi synthetic “shuffled” baseline was thus generated. To 

solve the inverse problem for each time frequency box, we selected the corresponding one second 

“shuffled” baseline along the time scale. We adopted this sliding window approach considering 

that the selection of baseline is an important aspect of the initialization of the prior, allowing the 

parcels to be active or not, and thus would be more reasonable to use the baseline which is 

temporally associated with the time frequency sample. 
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