

1 **Intranasal delivery of NS1-deleted influenza virus vectored COVID-19 vaccine**

2 **restrains the SARS-CoV-2 inflammatory response**

3 Liang Zhang^{1,#}, Yao Jiang^{1,#}, Jinhang He^{1,#}, Junyu Chen^{1,#}, Ruoyao Qi^{1,#}, Lunzhi
 4 Yuan^{1,#}, Tiange Shao^{2,#}, Congjie Chen¹, Yaode Chen¹, Xijing Wang¹, Xing Lei¹,
 5 Qingxiang Gao³, Chunlan Zhuang¹, Ming Zhou¹, Jian Ma¹, Wei Liu¹, Man Yang¹, Rao
 6 Fu¹, Yangtao Wu¹, Feng Chen¹, Hualong Xiong¹, Meifeng Nie¹, Yiyi Chen¹, Kun Wu¹,
 7 Mujing Fang^{1,4}, Yingbin Wang^{1,4}, Zizheng Zheng^{1,4}, Shoujie Huang^{1,4}, Shengxiang
 8 Ge^{1,4}, Shih Chin Cheng³, Huachen Zhu^{4,5}, Tong Cheng^{1,4}, Quan Yuan^{1,4}, Ting Wu^{1,4,*},
 9 Jun Zhang^{1,4,*}, Yixin Chen^{1,4,*}, Tianying Zhang^{1,4,*}, Hai Qi^{2,*}, Yi Guan^{5,6,*}, Ningshao
 10 Xia^{1,4,*},

11

12 ¹State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National
13 Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of
14 Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, Fujian,
15 China

16 ²Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology,
17 School of Medicine, Tsinghua University, Beijing, 100084, China

¹⁸ ³State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen
¹⁹ University, Xiamen, 361102, Fujian, China

20 ⁴Xiang An Biomedicine Laboratory, Xiamen 361102, Fujian, China

5 State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li
Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077,

23 China

24 ⁶Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint
25 Laboratory for International Collaboration in Virology and Emerging Infectious
26 Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou
27 515063, China

28 # These authors contributed equally to this work.

29 * Corresponding authors.

30 Correspondence: nsxia@xmu.edu.cn (N. Xia), yguan@hku.hk (Y Guan),
31 qihai@tsinghua.edu.cn (H Qi), zhangtianying@xmu.edu.cn (T Zhang),
32 yxchen2008@xmu.edu.cn (Y Chen), zhangj@xmu.edu.cn (J Zhang),
33 wuting@xmu.edu.cn (T Wu).

34

35 **Abstract:**

36 The emergence of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2)
37 variants and “anatomical escape” characteristics threaten the effectiveness of current
38 coronavirus disease (COVID-19) vaccines. There is an urgent need to understand the
39 immunological mechanism of broad-spectrum respiratory tract protection to guide
40 broader vaccines development. In this study, we investigated immune responses
41 induced by an NS1-deleted influenza virus vectored intranasal COVID-19 vaccine
42 (dNS1-RBD) which provides broad-spectrum protection against SARS-CoV-2
43 variants. Intranasal delivery of dNS1-RBD induced innate immunity, trained
44 immunity and tissue-resident memory T cells covering the upper and lower
45 respiratory tract. It restrained the inflammatory response by suppressing early phase
46 viral load post SARS-CoV-2 challenge and attenuating pro-inflammatory cytokine
47 (*IL-6*, *IL-1B*, and *IFN- γ*) levels, thereby reducing excess immune-induced tissue
48 injury compared with the control group. By inducing local cellular immunity and
49 trained immunity, intranasal delivery of NS1-deleted influenza virus vectored vaccine
50 represents a broad-spectrum COVID-19 vaccine strategy to reduce disease burden.

51 **Keywords:**

52 SARS-CoV-2, COVID-19 vaccine, live attenuated influenza virus vector, NS1-deleted,
53 intranasal vaccine, innate immunity, trained immunity, tissue-resident memory T cells,
54 broad-spectrum, respiratory mucosal immunity.

55

56 **Introduction:**

57 SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus) has
58 infected over 580 million people, claimed over 6 million lives, and caused a dramatic
59 loss to human society as of July 2022. SARS-CoV-2 invades the host by binding to
60 angiotensin converting enzyme 2 (ACE2), a high-affinity receptor on respiratory
61 epithelial cell surfaces. Currently, 38 vaccines have been approved for use, most of
62 which are vaccinated by intramuscular injection. The protective effects are mainly
63 derived from the neutralizing antibody targeting spike antigen, and large-scale
64 vaccination has effectively reduced SARS-CoV-2 symptomatic infection,
65 hospitalization and death ¹⁻³. Antibody levels in the respiratory tract are 200-500 times
66 lower than that in circulation ⁴ which leads to "anatomical escape" of SARS-CoV-2 in
67 the upper respiratory tract since it is difficult to completely block the infection,
68 especially after the peak vaccine-induced immune response period ⁵⁻⁷. Furthermore,
69 escape variants are emerging in an endless stream; for example, the Omicron mutant
70 strain has the most significant changes in antigenicity and the immunity conferred
71 after vaccinations and natural infection ^{8,9}. Finally, the virus is also hosted by several
72 animal reservoirs such as minks, cats, deer's ^{10,11}. These realities portend that
73 coronavirus disease (COVID-19) will coexist with humans for many years and will
74 pose a continuing threat. Therefore, the development of broad-spectrum COVID-19
75 vaccines that rely on various immune mechanisms and different technical routes
76 should be encouraged.

77 Theoretically, local protective immune factors in the respiratory tract should

78 respond to SARS-CoV-2 infection in a timelier manner than effectors present in the
79 peripheral lymph nodes and blood. Therefore, the development of COVID-19
80 vaccines via respiratory inoculation has become a hot pipeline shown positive effects
81 in preclinical animal experiments, including vaccines based on adenovirus vectors,
82 vesicular stomatitis virus vectors and other viral vectors ¹²⁻¹⁴. An Ad-vectored trivalent
83 COVID-19 vaccine expressing spike-1, nucleocapsid, and RNA-dependent RNA
84 polymerase (RdRP) antigens from Zhou Xing et al. shows a good broad-spectrum
85 protective effect against a variety of SARS-CoV-2 variant strains by intranasal
86 vaccination ¹⁵. In addition, trained immunity not dependent on specific antigen
87 epitope also plays an important role in the broad-spectrum efficacy of this respiratory
88 mucosal vaccine ¹⁵. It would be difficult to achieve sterilizing immunity against
89 SARS-CoV-2 infection by vaccination as the emerging variants and "anatomical
90 escape" characteristics. Instead, inducing a local immune regulation mechanism that
91 preventing an excessive inflammatory response in the respiratory tract will achieve
92 broad-spectrum protection and reduce the COVID-19 disease burden. The
93 broad-spectrum protective effect of NS1-impaired influenza virus on heterologous
94 influenza virus challenge is independent of virus clearance and deserves attention ¹⁶.
95 Intranasal immunization with NS1-truncated virus (A/PR8/NS124) induces stronger
96 effector T-cells and certain immunoregulatory mechanisms compared with wild-type
97 H1N1 influenza strain (A/PR8/NSfull), which protects the organism against lethal
98 heterologous A/Aichi/2/68 (H3N2) influenza virus challenge through significant
99 attenuation of inflammation and pathology without inhibiting viral load ¹⁶. These

100 studies suggest raise a novel/special hypothesis that the vaccine-induced protective
101 effect may be derived from immune regulation in the respiratory tract to prevent
102 excessive inflammation, but not limited to block viral infection or suppress viral
103 levels.

104 Modification of NS1 protein is a promising approach for the development of
105 live-attenuated influenza viral vectors ¹⁷. We previous developed an intranasal spray
106 vaccine based on the NS1-deleted H1N1 vector carrying the gene encoding
107 SARS-CoV-2-RBD (dNS1-RBD) ^{18,19}, which is currently undergoing Phase III
108 clinical trials in several countries [ChiCTR2100051391]. This vaccine prevents
109 COVID-19 induced by Prototype, Beta and Omicron of SARS-CoV-2 challenge in
110 hamster models in the absence of detectable neutralizing antibodies ¹⁸. The
111 immunological mechanisms that provide broad-spectrum protection remains unclear.

112 In this study, we investigated the protective immune response induced by
113 dNS1-RBD. The broad-spectrum protective immunity induced by this vaccine mainly
114 includes the following aspects: i), innate immunity, various cytokines and chemokines
115 containing antiviral functions or initiating local immune responses were detected in
116 lung tissue within 24 hours after vaccination; alveolar macrophages (AMs), dendritic
117 cells (DCs), and NK cells (NK) were also activated; ii), trained immunity that realizes
118 the memory response of innate immunity by reprogramming the chromatin
119 accessibility landscape which reshapes the immune response profile upon
120 SARS-CoV-2 infection, with attenuation of pro-inflammatory factors and pathways;
121 iii), striking local T cell responses covering the upper and lower respiratory tract.

122 Tissue resident T cells were detected in the nasal-associated lymphoid tissue (NALT)
123 and the lung which supports the long-term protective effects. This intranasal vaccine
124 represents an effective broad-spectrum COVID-19 vaccine strategy by inducing
125 specific and non-specific protective immunity, particularly in the respiratory tract.

126 **Results**

127 **dNS1-RBD immunization systemically activated antiviral innate immune**
128 **pathways in the lung.**

129 The innate immune response elicited by dNS1-RBD was explored by collecting
130 15 samples of mouse lung tissue for RNA-seq analysis, including 12 samples from 1-,
131 7-, 14- and 28 days post-immunization (d.p.im), and three samples without treatment
132 as the control group (**Fig 1A**). Overall, gene expression levels were clustered in
133 principal component analysis (PCA) space along the PC1 and PC2 coordinates (**Fig**
134 **1B**). Many genes from the innate immune response and cytokine-related pathways
135 were rapidly upregulated on the first day after immunization and gradually returned to
136 a resting state over time (**Fig 1C**). Differentially expressed genes (DEGs) extracted
137 from the dNS1-RBD group *vs.* the control group were taken as the key factors and
138 displayed in a heatmap; significant transcriptional changes were observed in the lung
139 during the early phase (Day 1- and Day 7 group) after vaccination and the effect
140 gradually decreased in the late phase (Day 14- and Day 28 group) (**Fig 1D**, left).
141 These genes were mostly activated through dynamic curves that peaked from 1 d.p.im
142 to 7 d.p.im which were further divided into four clusters (**Fig 1D**, middle). The genes
143 from the Cluster 1 to 4 were highly enriched in innate immune response-related

144 pathways such as cytokine production, chemokine signaling pathway, Nod-like
145 receptor signaling pathway and TNF signaling pathway based on Gene Ontology (GO)
146 and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses (**Fig**
147 **1D**, right). Significant elevation of interferon-related genes (*Ifit2*, *Ifna1*, *Ifna2*, *Ifnb1*)
148 and transcription factor *Stat1* was detected at 1 d.p.im and returned to the resting state
149 at 7 d.p.im (**Fig 1D**, right). Our previous study showed that several lung tissue
150 cytokines (*interferon alpha*, *IFN- α* and *Interferon gamma*, *IFN- γ*) are rapidly
151 upregulated by dNS1-RBD at 1 d.p.im and are significantly higher than those in
152 wild-type H1N1/CA04 infected mice ¹⁸. These results may be associated with NS1
153 deletion, which acts as an antagonist of host type-I interferon responses . These results
154 suggest that dNS1-RBD systemically activates antiviral innate immune responses in
155 mice lungs which may support the rapid establishment of protective immunity after
156 vaccination.

157 **dNS1-RBD immunization established a local innate immune barrier by**
158 **activating alveolar macrophages, DCs, NK cells, and virtual memory T cells**
159 **(T_{VM})**

160 Immunization by dNS1-RBD and the empty vector (dNS1-Vector) control
161 provides a protective effect in the early stage (1 d.p.im) ¹⁸. The local innate immune
162 responses were characterized in the lungs at the cellular level by intranasal
163 immunization of C57BL/6 mice with a single dose of dNS1-RBD or dNS1-Vector.
164 Lung immune cells were harvested and analyzed at different time points by flow
165 cytometry (**Fig S1A, B**). Alveolar macrophages are the first-line immune cells in lung

166 tissue exposed to pathogens, are critical for the early control of SARS-CoV-2 and are
167 considered to be the driver of cytokine storms ²⁰. After prime immunization, the
168 number of AMs slightly decreased, but recovered on day 5 (**Fig 2A**). Major
169 histocompatibility-II (MHC-II) levels rapidly increased in the AMs persisted for over
170 5 days, which was comparable between dNS1-Vector group and dNS1-RBD group
171 (**Fig 2B**). The CD11b^{high} population significantly increased in AMs at 3 d.p.im (P <
172 0.001) which may be related to the properties of H1N1 vector (**Fig 2C-E**) ^{21,22}. CD11b
173 expression on the macrophage surface is upregulated after influenza A virus infection
174 which promotes macrophage migration to the niche of infection and helps reduce the
175 inflammatory pathological response ^{21,22}. Plasmacytoid dendritic cells (pDCs) also
176 played an important role in the early antiviral process by producing large amounts of
177 antiviral cytokines; they were activated at 1 d.p.im and lasted for several days (**Fig**
178 **2F**). IFN- γ -secreting NK cells were observed in the dNS1-RBD group after 3 d.p.im,
179 whereas they were observed at 5 d.p.im in the dNS1-Vector group (**Fig 2G, H**). As
180 expected, the IFN- γ response was 20-fold higher in percentage in the lungs than that
181 in the spleen (P < 0.01) (**Fig S2C**).

182 Previous reports indicated that virtual memory (VM) cells are capable of
183 mediating both antigen-specific and bystander protective immunity against infection
184 ²³. Memory CD8⁺ T cells of VM phenotype have been reported to play a major role in
185 the response of aged mice to lung infections ²⁴. CD8⁺ T cell infiltration in different
186 tissues was detected at 1 d.p.im (**Fig 2I**). A large amount of CD8⁺ T cells were
187 recruited into lung in dNS1-RBD group, and most of the infiltrated cells were virtual

188 memory T cells (T_{VM}) showing a $CD44^+CD62L^+$ phenotype with low $CD49d$
189 expression (**Fig 2J-L**), which were recently reported to promote early viral control ²⁵.
190 The early infiltration of T_{VM} in the lung was significantly higher than that in NALT,
191 lymph nodes, spleen, and other tissues ($P < 0.05$, **Fig 2M**). Together, these data
192 suggest that dNS1-RBD and dNS1-Vector induce the activation and differentiation of
193 innate immune cells (AMs, pDCs, NK cells and T_{VM}) in lung tissue and form a local
194 innate immune barrier.

195 **dNS1-RBD immunization reprogrammed chromatin accessibility of alveolar
196 macrophages and maintained the trained immunity phenotype**

197 In recent years, the memory effect of the innate immune response (trained
198 immunity) is thought to play an important role in broad-spectrum anti-infection
199 immunity ^{26,27}. Trained AMs contribute to optimal protection against SARS-CoV-2
200 variants ²⁸. High MHC II expression considered the trained phenotype of AMs ²⁹. In
201 this study, dNS1-RBD and dNS1-Vector significantly increased MHC II expression in
202 mouse AMs, and no significant difference was found between the two groups (**Fig
203 3A**). Furthermore, upregulation of CD80 and CD86 expression was observed in AMs
204 indicating that AMs in the dNS1-RBD and dNS1-Vector groups were functionally
205 changed as a result of innate immune training and maintaining an immunoreactive
206 phenotype (**Fig 3B, C**). ATAC-seq analysis was used to identify the potential changes
207 that may occur in the chromatin accessibility of AMs induced by intranasal
208 immunization. KEGG and GO enrichment analyses showed that differential
209 ATAC-peaks were significantly enriched in pathways related to innate immune

210 response and involved Toll-like- and retinoic acid inducible gene-1-like receptors
211 (RLRs) (**Fig 3D**). A total of 202 upregulated and 194 downregulated peaks were
212 detected in the dNS1-RBD group (**Fig 3E**). The dNS1-RBD group gained 810- and
213 lost 760 lost open chromatin regions (OCRs), respectively compared with the control
214 group 2 months after booster immunization in C57BL/6 mice (**Fig 3F**). Peaks that
215 were not present in the control group were induced in both the dNS1-RBD and
216 dNS1-Vector groups in the regulatory region of MHC II genes (*H2-Aa* and *H2-Eb1*)
217 (**Fig 3G**). OCRs of several antiviral innate immune response genes including *TRIM25*
218 and *IKBKB* are involved in RIG-I mediated antiviral signaling^{30,31}. Toll-like receptors,
219 *TLR3* and *TLR1*, were not detected in the control group compared to the dNS1-RBD
220 group (**Fig 3G**). AMs of dNS1-RBD hamsters gained and lost 913- and 1370 OCRs,
221 respectively compared with the control at two weeks post prime vaccination (**Fig 3H**).
222 The differential OCRs showed peaks in regulatory regions of glycolysis,
223 pro-inflammatory cytokines, antiviral response, and toll-like receptor genes in both
224 the dNS1-RBD and the dNS1-Vector group which were undetected in the control
225 group (**Fig 3I**).

226 These results suggest that NS1-impaired live attenuated influenza virus-induced
227 trained immunity exerts nonspecific protection, possibly through epigenetic
228 remodeling regulation and metabolic rewiring.

229 **dNS1-RBD immunization induced tissue-resident memory T cell responses**
230 **covering the upper and lower respiratory tract**

231 The adaptive immune response is established within days or weeks. Specific-T

232 cells are indispensable for viral clearance and long-term immune protection. C57BL/6
233 mice were intranasally immunized with a single dose of dNS1-RBD or dNS1-Vector.
234 Lung tissue mononuclear cells were harvested at 1-, 3-, 5- and 14 d.p.im to estimate
235 the specific T cell response level. Intracellular cytokine (IFN- γ) expression was
236 analyzed by flow cytometry after *ex vivo* stimulation using a 15-mer spike-peptide
237 pool (**Fig S2A**). As expected, a specific T cell response was undetectable in the
238 dNS1-Vector group (**Fig 4A-C**). In contrast, a CD8 $^{+}$ T cell response was detectable at
239 3 d.p.im in the dNS1-RBD group, with significant increasing numbers of IFN- γ $^{+}$ CD8 $^{+}$
240 T cells after 5 d.p.im ($P < 0.01$) (**Fig 4A-C**). The spleens were also analyzed to
241 compare local- and systemic antigen-specific CD8 $^{+}$ T cell responses (**Fig S2B**); the
242 strength of the immune response (number and percentage of total immune cells) in
243 spleen-specific T cells were weaker than that in lung tissues (**Fig S2C, D**). This
244 correlated with enzyme-linked immunosorbent spot (ELISpot) assays of lymphocytes
245 at 7 d.p.im after *ex vivo* antigen-peptide stimulation; NS1-RBD induced a robust T
246 cell response in the lung tissue by producing 1974/SFC, which was 3.25 folds
247 (606/SFC) that of the spleen, and 16.18 folds (122/SFC, $P < 0.0001$) that of the
248 peripheral blood, respectively (Fig 4D, E). No specific T cell responses were
249 generated on the first day in any tissue.

250 Growing evidence supports a critical role for tissue-resident memory T cells
251 (T_{RMs}) in coordinating effective defense against reinfection in the local tissue where
252 they reside ^{32,33}. Single dose intranasal immunization using dNS1-RBD or
253 dNS1-Vector CD8 $^{+}$ immediately activated T cells immediately and T_{RMs} were

254 generated at 7 d.p.im (**Fig S2E, and S3A, B**). Furthermore, potent induction of T_{RM_s} in
255 the lung tissue was observed by immunization with a second dose of dNS1-RBD at
256 the subsequent time. However, boosting with the dNS1-Vector was less effective (**Fig**
257 **4F, G, and S3C, D**). Similar observations were found with $CD44^+CD8^+$ T cells in the
258 lungs. NALT and the lung tissue were harvested 30 days after the last immunization to
259 verify the form of T_{RM_s} in the upper respiratory tract. The frequency of $CD44^+CD8^+$ in
260 the dNS1-Vector group was like that of the dNS1-RBD group. In contrast, dNS1-RBD
261 induced greater levels T_{RM_s} compared with the dNS1-Vector, particularly in the lung
262 tissue (**Fig 2H, I and S3E, F**).

263 Overall, intranasal immunization with dNS1-RBD induced RBD-specific T cell
264 responses and tissue-resident memory T cell responses were concentrated in the
265 respiratory tract.

266 **dNS1-RBD immunization provided protection from SARS-CoV-2 challenge in
267 hamsters**

268 Golden Syrian hamsters were challenged with beta SARS-CoV-2 variant by
269 contact transmission to mimic patients with severe pneumonia caused by
270 SARS-CoV-2¹⁸. Hamsters were sacrificed at 1-, 3-, 5 days post infection (dpi) for
271 gross lung observation (**Fig 5A**). Control hamsters showed continuous body weight
272 loss beginning at 1 dpi and exhibited weight loss of up to 11.97% at 5 dpi; in contrast,
273 weight loss was not obvious in animals of dNS1-RBD group (mean: +1.24%) (**Fig**
274 **5B**). Vaccinated hamsters showed a lower viral RNA load in nasal washings at 1 dpi
275 compared with the control hamsters. The significantly reduced viral RNA load (> 2.0

276 log) in nasal washings, trachea and lung at 1 dpi (**Fig 5C**), suggesting that an early
277 innate immune response may be elicited in the respiratory tracts and thus restrict
278 SARS-CoV-2 replication. A relatively lower viral RNA load was observed at 3 dpi in
279 trachea (> 1.0 log) and lung (> 2.0 log), which indicated that the intranasal
280 vaccination inhibits the further infection of viruses from the upper to the lower
281 respiratory tract of hamsters (**Fig 5C**). The lung viral loads in vaccinated hamsters
282 were slightly lower than that of the control hamsters at 5 dpi although this was not
283 statistically significant (**Fig 5C**). Hematoxylin and eosin (H&E) staining of the lung
284 lobes of SARS-CoV-2-infected hamsters in the dNS1-RBD group showed significant
285 alleviation of the pathological changes. In contrast, control animals exhibited typical
286 features of severe pneumonia including increased lung lobe consolidation and alveolar
287 destruction, diffusive inflammation, hyaline membrane formation, and severe
288 pulmonary hemorrhage (**Fig 5D**). The apparent lesions in the dNS1-RBD group were
289 markedly diminished, and no obvious viral-infection-related lung damage was
290 observed in the gross lung images at 3- and 5 dpi compared with the control group
291 (**Fig 5D**). The pathological severity scores of vaccinated hamsters were significantly
292 lower than those of the control groups (**Fig 5C**). The reduced lung inflammation could
293 have been linked with the immediate anti-viral responses of hosts³⁴.

294 Hamsters were intranasally immunized with dNS1-RBD or dNS1-vector to
295 validate whether a non-specific protective effect exist by infecting Beta variants
296 through cohoused exposure (**Fig 5E**). The protective efficacy induced by dNS1-vector
297 was comparable to that induced by the dNS1-RBD at early phase (1 and 2 dpi), but

298 not later time point after infection (**Fig 5F**). Slightly enhanced protection was
299 observed in hamsters vaccinated with dNS1-RBD, as reflected by their body weight
300 change, with body weight change of +1.35% and -2.48% at 5 dpi respectively (**Fig**
301 **5F**). Altogether, hamsters from two vaccinated groups exhibited significantly
302 improved weight loss when compared with the control hamsters. These data revealed
303 that not only the dNS1-RBD but also the dNS1-vector confers protection independent
304 of SARS-CoV-2-specific antibody and T-cell responses, suggesting that this
305 NS1-deleted H1N1/CA4 vector-based intranasal vaccine could provide non-specific
306 protection against respiratory virus. The cross-protection effects of vaccine could be
307 achieved by trained immunity, with enhanced non-specific effector responses of
308 innate immune cells.

309 **dNS1-RBD reduced inflammatory signaling- and pro-inflammatory factor levels**
310 **post-challenge in hamsters**

311 Distinct gene expression signatures visualized by PCA from hamster lung
312 samples of the eight groups (pre-challenge and 1-, 3-, 5 dpi in the control group and
313 the dNS1-RBD group) following SARS-CoV-2 infection showed tight clustering of
314 biological samples. Control group samples were clearly separated in principal
315 component 1 at 3 dpi and 5 dpi which contained 62.1% of the variation in the dataset.
316 Meanwhile, all dNS1-RBD group samples and control group samples at 0- and 1 dpi
317 were reflected in principal component 2 (6.8% of the variance). (**Fig 6A**). Gene
318 Ontology (GO) term analysis of the genes upregulated in control hamsters were
319 enriched for response to virus, cytokine production, and inflammatory response

320 regulation terms. Pro-inflammatory cytokines such as *IL-6*, *IL-1B* peaked at 3 dpi and
321 remained high until 5 dpi in control hamster lungs (**Fig S4A**). Excessive release of
322 cytokines and overactivated antiviral responses may be associated with
323 immunopathology upon infection. Notably, SARS-CoV-2 challenge did not
324 significantly alter the cytokine profiles for dNS1-RBD vaccinated hamsters indicating
325 that they were protected from over-activated inflammatory (**Fig S4B**). DEGs involved
326 in inflammatory cytokine production pathways such as *IL-6*, *IL-1B* and *IFN-γ* were
327 elevated at 1 dpi, peaked at 3 dpi and remained high at 5 dpi in control hamsters based
328 on KEGG pathway analysis (**Fig 6B**). In contrast, the dynamics of transcription levels
329 in the dNS1-RBD group changed to a much steadier state, with only mild elevation at
330 5 dpi (**Fig 6B**). The heatmap showed that pathways such as the IFN response, TNF
331 signaling and their downstream signaling pathway (for example, Jak-STAT and
332 NF-κB signaling) were upregulated in control group yet remained steady in the
333 dNS1-RBD group (**Fig 6B**). Consistent with the lung pathology, Cell Death and
334 Apoptosis pathway was clearly activated in control hamsters (**Fig 6C**). Together, these
335 cytokines and their related signaling pathways may play pathological roles in the
336 initiation- and immune cell hyperactivation stage, ultimately leading to organ
337 dysfunction in cytokine storms.

338 Dysregulation of cytokines and chemokines is closely associated with severe
339 inflammation, leading to tissue damage and destruction. After challenge, the
340 expression of *Il-1b*, *Il-6*, *Cxcl10* rapidly increased and remained high until 5 dpi in the
341 control group, which is consistent with the protein levels found in severe COVID-19

342 patients. Meanwhile, their levels remained at a relatively low level in the dNS1-RBD
343 group (**Fig 6D**). Pro-inflammatory cytokines such as *IFN-γ* and *CCL3* showed a rapid
344 and progressed elevation after SARS-CoV-2 exposure in control hamsters. Conversely,
345 their expression levels remained at baseline levels in the dNS1-RBD group and did
346 not progress in the later response despite the presence of the virus (**Fig 6D**). In
347 addition, anti-inflammatory cytokines, such as *transforming growth factor-β* (*TGF-β*)
348 and *IL-10* are two key immune homeostasis regulators which were relatively
349 unperturbed after SARS-CoV-2 challenge (**Fig 6D**). Taken together, distinct responses
350 to SARS-CoV-2 infection between the dNS1-RBD and control groups were identified
351 in transcriptome signatures. Prior vaccination with dNS1-RBD alleviated the
352 immunopathology caused by an over-activated inflammatory response. Overall, a
353 finely tuned immune response prevents excessive inflammation and restores the
354 homeostasis of the immune system and the organism.

355 **Discussion**

356 Although intramuscular COVID-19 vaccines are widely used, controlling of the
357 COVID-19 pandemic remains challenging. At the very beginning of the COVID-19
358 outbreak, our team began to develop an intranasal vaccine based on the NS1-deleted
359 H1N1 vector carrying the gene encoding SARS-CoV-2-RBD (dNS1-RBD)¹⁸. To our
360 knowledge, this is the first intranasal spray COVID-19 vaccine that was entered into a
361 phase 3 clinical trial¹⁹ [ChiCTR2100051391]. In phases I and II clinical trials, the
362 vaccine demonstrated good safety and a immunogenicity pattern that was highly
363 consistent with animal studies—a weak peripheral immune response. Nevertheless,

364 the vaccine is considered a seed candidate with a high probability of performing well
365 in a phase III efficacy trial, based on the surprisingly strong, rapid, sustained and
366 broad-spectrum protective results from animal studies, as well as the encouraging
367 precedents of FluMist's success ³⁵. dNS1-RBD is characterized by the effective
368 prevention of pathological changes caused by SARS-CoV-2 infection without
369 inducing significant neutralizing antibodies ¹⁸, and dNS1-vector also showed
370 protective effects (**Fig 5E, F**). This approach differs from the protective mechanism of
371 traditional vaccines and is vastly different from the previous understanding of vaccine
372 immunity.

373 The protective immune mechanism induced by the vaccine includes at least the
374 following four aspects: (1) innate immunity (**Fig 1** and **Fig 2**), (2) trained immunity
375 (**Fig 3**), (3) cellular immune responses covering the upper and lower respiratory tract
376 (**Fig 4**), (4) antibody targeting RBD ¹⁸.

377 The innate immune system plays an important role in early infection control. The
378 cellular signaling cascade can be activated through pattern recognition receptors of
379 immune cells to promote cytokine- and chemokine secretion. Among these, the type-I
380 interferon response is one of the first lines of defense against viral infections ³⁶. After
381 influenza A virus infection, its NS1 interacts with RIG-I and inhibits IFN- β
382 production mediated by retinoic acid inducible gene-1(RIG-I), thereby allowing the
383 virus to replicate in vivo . Therefore, NS1 truncation increases the host immune
384 response, and includes the recruitment of innate immune cells and the production of
385 various interferon-stimulated genes (ISGs) and cytokines, thereby enhancing

386 early-stage immune protection ³⁷. NS1 truncation promotes a stronger adaptive
387 immune response ³⁸. In our study, the innate immune response was observed in the
388 lung tissue 24 h after dNS1-RBD vaccination through the activation of immune cells,
389 multiple antivirals signaling pathways, and significant up-regulation of various
390 cytokines including the RIG-I related pathway and a type-I interferon response (**Fig 1**
391 and **Fig 2**). Our previous studies showed that the dNS1-RBD virus induced faster and
392 stronger cytokine production than that of the wild-type influenza virus ¹⁸. Furthermore,
393 there was a population of AMs called exudate lung macrophages with significantly
394 upregulated CD11b, which we have not previously focused on. This is a common
395 occurrence in post-infected lung tissue, wherein monocytes are recruited and rapidly
396 differentiate into macrophages, which play an important role in remodeling alveoli
397 and maintaining tissue homeostasis ²⁴. In addition, the virtual memory T cell (T_{VM},
398 CD8⁺ CD44⁺ CD62L⁺ CD49d^{low}) response participated in the early immune response
399 to intranasal immunization (**Fig 2J, K**), which promotes early control of influenza
400 virus infection ²⁵. T_{VM} population also plays a role in bridging innate and acquired
401 immune responses, which can differentiate into tissue resident-T cells. Rapid
402 responses of these innate immune factors provide good protection within 24 h after
403 dNS1-RBD vaccination; therefore, emergency vaccination in the early stage of the
404 outbreak in the endemic areas may reduce disease burden by rapidly interrupting the
405 spread of the virus.

406 RBD-specific cellular immune responses were induced in the NALT and the lung,
407 and the number of IFN- γ spot-forming cells per million lymphocytes was

408 approximately 16 times that in peripheral blood (**Fig 3D**). The response was generated
409 on the 5th day after vaccination and persisted for at least six months in the periphery ¹⁸.
410 Earlier innate immune- and T cell responses are of great significance for
411 asymptomatic infection or mild disease after SARS-CoV-2 infection ³⁹⁻⁴¹.
412 Tissue-resident memory T cells (T_{RMs}) in the respiratory tract and lungs are critical for
413 controlling respiratory viral infections, and provide more timely-, and stronger
414 protective immunity than circulating T cells ³². Lung tissue-resident T cells provide
415 durable and broad-spectrum immune protection ⁴²⁻⁴⁴.

416 There is increasing evidence that innate immune cells can be modified by
417 epigenetics to produce immune protection against heterologous pathogens within a
418 certain period of time and exhibit trained immunity ^{26,27,45}. dNS1-RBD vaccination
419 can also alter the host response pattern to SARS-CoV-2 by inducing trained immunity
420 with (1) broad-spectrum antiviral and (2) anti-inflammatory effects. It can relieve
421 tissue inflammation and maintain tissue homeostasis, thereby providing pathological
422 protection. dNS1-RBD activated alveolar macrophages, myeloid dendritic cells, and
423 NK cells, and remodeled the chromatin openness of these cells. Genes related to
424 anti-infection immunity in these cells remained open for several months, allowing for
425 a faster and stronger response to SARS-CoV-2 challenge (**Fig 2** and **Fig 3**).
426 SARS-CoV-2 rapidly spread after challenge in the control group and reached 6.6 log₁₀
427 copies/mL on the first day. This was accompanied by an over-aggressive immune
428 response, and a variety of inflammation-related signaling pathways and factors were
429 significantly upregulated. In contrast, hamsters in the dNS1-RBD group inhibited the

430 copy number of SARS-CoV-2 virus by approximately 155-fold, 84-fold, and 10-fold
431 on day1, 3, and 5, respectively (**Fig 5C**). Although the inhibitory effect was not
432 prominent at day5, hamster lung tissue was healthy in the dNS1-RBD group, and
433 transcriptome sequencing showed no overstimulated inflammatory response.
434 Cytokines and chemokines are important for clearing viral infections; however,
435 excessive inflammation leads to pathological damage. TGF- β , IL-6, IL10 are related
436 to the occurrence of severe COVID-19 pneumonia. In addition, both viruses
437 mainly infect upper respiratory tract epithelial cells and alveolar epithelial cells since
438 the target cells infected by the dNS1-RBD virus highly overlap with those infected by
439 SARS-CoV-2 ^{46,47}, and widespread immune gene regulation in structural cells is
440 reported ⁴⁸. These studies suggest that dNS1-RBD may reshape the anti-infection
441 response pattern by training immune cells and structural cells to attenuate
442 inflammation and protect the organism.

443 Intranasal immunization with the NS1-shortened counterpart (A/PR8/NS124)
444 provided good protection against lethal heterologous A/Aichi/2/68 (H3N2) influenza
445 virus challenge, even without inhibition of the viral load, but significantly attenuated
446 of inflammation and pathology ¹⁶. Interestingly, intranasal immunization with bacteria
447 also showed some protection against the virus apart from the virus-against-virus
448 effects. Intranasal immunization with *Autographa californica* nuclear polyhedrosis
449 baculovirus (AcNPV) protected against lethal H1N1 A/PR/8/34 influenza virus
450 challenge. Immune protection is observed 24 hours after immunization and the empty
451 vector control also provide similar protection. This is very similar to our findings and

452 indicates the importance of trained immunity in non-specific protection and its
453 advantage in response speed ⁴⁹. Intranasal immunization with attenuated *Bordetella*
454 *pertussis* (BPZE1) protected against two different influenza A virus subtypes: H3N2
455 (A/Aichi/2/68) and H1N1 (A/ PR/8/34) through viral clearance, and alleviation of
456 pathological symptoms by inhibiting the cytokine storm ⁵⁰. Limited adaptive
457 immunity in a BALB/c mouse model deficient in J segments (B cell KO) of the
458 immunoglobulin heavy-chain locus with depleted CD4⁺ and CD8⁺ T cells (T cell dep)
459 that was challenged with mouse-adapted virus (SARS-CoV-2 MA10) still showed
460 immune protection suggesting that it is dependent on the trained immune function of
461 alveolar macrophages ¹⁵.

462 Based on the findings of this study and previous knowledge, we suggest that the
463 protective effects induced by intranasal vaccination could be not only dependent on
464 viral clearance, but also through training the immune cells and structural cells in the
465 respiratory tract, remodeling the immune microenvironment, and carrying out certain
466 immunoregulatory effects after the heterologous challenge. This maintains the balance
467 of the immune system and respiratory tissue and attenuates immune-induced tissue
468 injury. Since intramuscular vaccines have been administered on a large worldwide,
469 boosting with intranasal vaccines can establish more comprehensive immune
470 protection in the anatomical space. At the same time, local cellular immunity and
471 trained immunity in the respiratory tract are considered to be relatively
472 broad-spectrum, which is beneficial for coping with the challenges caused by
473 SARS-CoV-2 variants.

475 **Materials and methods**

476 **Animal experiments**

477 All animal experiments strictly followed the recommendations of the Guide for
478 the Care and Use of Laboratory Animals. The animal studies were approved by the
479 Institutional Animal Care and Use Committee (IACUC) of Xiamen University.

480 The hamster studies were performed in an animal biosafety level 3 (ABSL-3)
481 laboratory (State Key Laboratory of Emerging Infectious Diseases, The University of
482 Hong Kong)

483 C57BL/6 mice were purchased from Shanghai SLAC Laboratory Animal Co.,Ltd.
484 Golden Syrian hamsters were purchased from Beijing Vital River Laboratory Animal
485 Technology Co., Ltd.

486 B6 (Jax 664) was originally from originally from Jackson Laboratory. All B6 (Jax
487 664) mice were maintained under SPF conditions before experiment, with
488 experimental protocols approved by the Tsinghua Institutional Animal Care and Use
489 Committee.

490 **Vaccine formulation**

491 dNS1-RBD vaccine was prepared on a large scale at Beijing Wantai Biological
492 Pharmacy Enterprise Co., Ltd., Beijing, China.

493 **Mouse immunization**

494 Experimental animals were anesthetized with isoflurane, then intranasally
495 immunized with 50 μ L (1×10^6 PFU/mL) of dNS1-RBD, whereas the control group
496 was administered an equal volume of PBS. RNA-seq analysis involved intranasal

497 immunization of C57BL/6 mice (three animals per group) with a single dose, and
498 collection of lung tissue on day 1, 7, 14, or 28 after vaccination.

499 Innate immune response analyses involved intranasal immunization of C57BL/6
500 mice (4 animals per group) with a single dose, and collection of pulmonary
501 lymphocytes on day 1, 3, and 5 after vaccination.

502 ELISpot analyses of peripheral blood mononuclear cells (PBMCs), splenic
503 lymphocytes, pulmonary lymphocytes, and lymph node cells involved intranasal
504 immunization of C57BL/6 mice with a single dose (10 animals per group), and
505 pulmonary lymphocytes were collected on day 1 and 7 after vaccination.

506 Intracellular cytokine staining (ICS) analyses of pulmonary lymphocytes involved
507 intranasal immunization of C57BL/6 mice with a single dose (four animals per group),
508 and collection of pulmonary lymphocytes on day 1, 3, 5, and 14 after vaccination.

509 Tissue-resident T cell analyses involved intranasal immunization of C57BL/6
510 mice (6 animals per group) with a single dose and pulmonary lymphocytes were
511 collected on day 7 and 14 after vaccination; another experiments schedule, intranasal
512 immunization with a double dose (0/14 day) involved harvesting pulmonary
513 lymphocytes on day 14 and 30 after boost vaccination.

514 **Hamster immunization and infection**

515 The experimental hamsters (male: female = 1:1) were anesthetized with
516 isoflurane and intranasally immunized with 100 μ L of the vaccine (1×10^6 PFU/mL),
517 whereas the control group was administered with an equal volume of PBS. Two
518 months after the last vaccination, hamsters were further evaluated by direct contact

519 challenge with SARS-CoV-2. The donor hamsters (carrying the virus) were
520 intranasally infected with 1×10^3 PFU of SARS-CoV-2. Each donor was transferred to
521 a new cage and co-housed with the hamster of the dNS1-RBD group or control group
522 for one day. The donor was then isolated, and the other hamsters were observed.
523 Weight changes and typical symptoms (piloerection, hunched back, and abdominal
524 respiration) were recorded daily after virus inoculation or contact. Hamsters were
525 euthanized for tissue pathological and virological analyses and RNA-seq on day 1, 3,
526 and 5 after challenge. Virus challenge studies were performed in an animal biosafety
527 level 3 (ABSL-3) facility. The SARS-CoV-2 strain used in this study was B.1.351
528 variant AP100 (hCoV-19/China/AP100/2021; GISAID accession No.
529 EPI_ISL_2779638)

530 **Organ-specific sample collection and organ dissociation**

531 Mice were euthanized by exsanguination, and IACUC guidance was approved.
532 Mice were transferred to a biosafety cabinet and their organs were carefully separated.
533 All cells were counted using CountStar software.

534 **Lung**

535 Lungs were cut into 0.5-cm pieces, placed in gentleMACS C tubes (Miltenyi)
536 containing collagenase type IV (Gibco) and DNase I (Roche) in PBS containing 2%
537 FBS, and dissociated using a gentleMACS Dissociator (Miltenyi; program
538 m_lung_01). A single cell suspension was obtained by digesting tissue through a 70
539 μm cell strainer, and centrifugation at 300 g for 5 min at 4 °C. After centrifugation, 1
540 mL of cold red blood cell lysis buffer (Solarbio) was added for 2 min to lyse red blood

541 cells. The reaction was stopped by adding 10 mL of cold PBS containing 2% FBS and
542 washed once to remove residual red blood cell lysis buffer. Lymphocytes were
543 obtained from the resulting cell suspensions using density gradient centrifugation
544 (Percoll, SIGMA-ALDRICH). Cells were recovered at the interface of the 80%
545 Percoll layer and the 40% Percoll layer, then washed with PBS + 2% BSA at 500 g for
546 5 min to remove excess Percoll.

547 **Lymph nodes**

548 Cervical lymph nodes were carefully pinched with tweezers and rinsed several
549 times with cold PBS containing 2% FBS. Lymph nodes were ground and passed
550 through a 70 μ m cell strainer. Lymphocytes were washed once and resuspended in
551 PBS containing 2% FBS.

552 **Spleen**

553 Mice were euthanized and their spleen were carefully separated and rinsed
554 several times with cold PBS containing 2% FBS. Spleen were ground and passed
555 through a 70 μ m cell strainer and the cells were centrifuged at 300 g for 5 min at 4 °C.
556 10 ml of cold red blood cell lysis buffer (Solarbio) was added, and the samples were
557 incubated for 5 min at 4 °C. The reaction was stopped by adding 20 ml of cold PBS
558 containing 2% FBS and washed once to remove the residual buffer. Lymphocytes
559 were washed once and resuspended in PBS containing 2% FBS.

560 **PBMCs**

561 Mouse peripheral blood was transferred into a centrifuge tube containing sodium
562 heparin, then 4 mL PBS buffer was added and transferred to SepMate™ PBMC

563 isolation tubes (STEMCELL). PBMCs used density gradient centrifugation at 1200 g
564 for 10 min at 25 °C (Ficoll-Paque PREMIUM, GE). PBMCs obtained from the middle
565 layer cells.

566 **Nasal-associated lymphoid tissue (NALT)**

567 The lower jaw of the mouse was removed, and a surgical knife was used to
568 carefully cut and excise the upper palate by following the inner contour of mouse
569 incisors and molar teeth. The tissue was digested at 37°C with collagenase type IV
570 (Gibco) and DNase I (Roche) in PBS containing 2% FBS. A single-cell suspension
571 was obtained from the digested tissue using a 70 µm cell strainer.

572 **Tissue-infiltrating lymphocytes**

573 To distinguish tissue-infiltrating lymphocyte from cells associated with blood
574 vessel, mice were intravenously injected with 1.5µg of fluorochrome conjugated
575 anti-CD45.2 (clone 104) antibody 3 min before being sacrificed. The lung tissue was
576 enzymatically digested in RPMI medium containing deoxyribonuclease I (20 µg/ml;
577 Roche) and Liberase CI (40 µg/ml; Roche) at 37°C for 30 min. Lymphocyte was
578 further isolated from tissue digest through Percoll density-gradient centrifugation
579 (40/70%) at 1300g for 30 min. For flow cytometric analyses, lymphocytes prelabeled
580 with intravenously injected antibodies were excluded by gating and unlabeled cells
581 were termed ‘protected’.

582 **Flow cytometry**

583 The expression of phenotypic markers, activation markers, and cytokines was
584 evaluated. Briefly, cells were washed and blocked with antiCD16/CD32 (clone 2.4G2)

585 in 0.5 % BSA-PBS for 30 min on ice, then stained with fluorochrome-labeled mAbs
586 for 30 min on ice. ICS assays involved stimulating each sample with pooled spike
587 peptides (1.0 μ g/mL) in a U-bottom plate and incubating at 37 °C for 18 hours.
588 GolgiPlug (BD Biosciences) was added to the culture at a final concentration of
589 1:1,000 and cells were further incubated for 6 additional hours. After incubation, cells
590 were washed and stained with fluorochrome-labeled mAbs for 30 min on ice. The
591 stained cells were fixed and permeabilized with BD Cytofix/Cytoperm (BD
592 Biosciences, San Jose, CA, United States) according to the manufacturer's
593 instructions. The cells were washed and intracellularly stained with
594 fluorochrome-labeled mAbs for 45 min on ice. The antibody reagents used in this
595 study include: CD4 [Clone GK1.5, FITC], CD8a [Clone 53-6.7, PE/Cy7], NK1.1
596 [Clone PK136, PerCP/Cy5.5], CD64 [Clone X54-5/7.1, PE /Cy7], CD170 [Clone
597 S17007L, PE], CD11b [Clone M1/70, FITC], CD86 [Clone PO3, BV605], CD11c
598 [Clone N418, BV421], CD45.2 [Clone 104, APC/Cy7], CD4 [Clone GK1.5, APC],
599 CD8a [Clone 53-6.7, FITC], CD103 [Clone 2E7, PE], CD69 [Clone H1.2F3, BV421],
600 CD44 [Clone IM7, PE/Cy7], CD45.2 [Clone 104, PerCP/Cy5.5], CD80 [Clone
601 16-10A1, PE /Cy7], CD11b [Clone M1/70, PE], CD317 [Clone 927,BV421], Ly-6C
602 [Clone HK1.4, APC/Cy7], MHC class II [clone M5/114.15.2, APC], CD11c [Clone
603 N418, APC]), cytokine expression (IFN- γ [clone XMG1.2, APC]), and a
604 LIVE/DEAD® Fixable Aqua Dead cell stain kit was also used. Stained cells were
605 processed using a BD LSRFORTESSA X-20 (BD Biosciences) flow cytometry
606 system according to the manufacturer's instructions. Data were analyzed using

607 FlowJo X 10.0.7r2 and GraphPad Prism 8.

608 **ELISpot assay**

609 Dissociated PBMCs, splenic lymphocytes, pulmonary lymphocytes, and lymph
610 node cells were plated at 2.5×10^5 into each well of a mouse IFN- γ ELISpot plate
611 (Dakewe Biotech). Samples were stimulated using pooled Spike peptides of
612 SARS-CoV-2 (Final concentration: 1 μ g/mL, 15-mer peptide with 11 amino acids
613 covering the spike region, Genscript) and cultured at 37°C with 5% CO₂ for 20 h.
614 Spots were scanned, counted, and quantified using the CTL S6 Universal Analyzer
615 (Cellular Technology Limited) according to the manufacturer's instructions.

616 **SARS-CoV-2 and dNS1-RBD RNA quantification**

617 Detection of viral RNA levels was performed in hamster lungs using quantitative
618 RT-PCR. Lung tissue was homogenized using TissueLyser II (Qiagen, Hilden,
619 Germany) and RNA extraction was performed according to the manufacturer's
620 instructions (QIAamp Viral RNA mini kit, Qiagen). Viral RNA quantification was
621 performed by measuring the copy number of the N gene using a SARS-CoV-2
622 RT-PCR kit (Wantai, Beijing, China), whereas CA4-dNS1-nCoV-RBD was quantified
623 using RBD-targeted primers and the NS gene.

624 **Histopathology**

625 Hamster lung tissues were fixed with 10% formalin for 48 h, embedded in
626 paraffin, sectioned, and subjected to hematoxylin and eosin (H&E) staining.
627 Whole-slide images of the lung sections were captured using a Leica Aperio Versa
628 200 microscope. Pathological lung lesions were scored based on i) Alveolar septum

629 thickening and consolidation; ii) hemorrhage, exudation, pulmonary edema and
630 mucous; iii) recruitment and infiltration of inflammatory immune cells. For each lobe,
631 a score was determined based on the severity and percentage of injured areas. Four
632 independent lobes of the lung tissues were scored and average lung pathological score
633 of each individual hamster was used for pathological evaluation.

634 **Bulk RNA sequencing.**

635 The hamster lung lobe was removed, shredded into small pieces and stored in
636 RNA Later Solution (Thermo Fisher Scientific) for a maximum of 24 h at 4 °C. Lung
637 tissue was homogenized using TissueLyser II (Qiagen, Hilden, Germany) and RNA
638 extraction was performed according to the manufacturer's instructions (QIAamp Viral
639 RNA Mini Kit (Qiagen)). The RNA samples were sent to OE Biotech Co., Ltd.
640 (Shanghai, China) for RNA purification, cDNA library construction, and sequencing.

641 **ATAC sequencing.**

642 Hamster lungs were collected 2 months post-vaccination and sorted for
643 bronchoalveolar lavage AMs using a BD FACS Aria Fusion machine. One hundred
644 thousand sorted cells were centrifuged at 500 × g for 10 min at 4 °C per replicate.
645 Cells were lysed with lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM MgCl₂, and 0.1%
646 IGEPAL CA-630). Libraries were prepared using the TruePrep DNA library prep kit
647 V2 for Illumina (Vazyme) according to the manufacturer's instructions. Libraries were
648 cleaned up with AMPure XP beads (Beckman Coulter) at a ratio of 0.7 and the quality
649 was assessed using the 2100 Bioanalyzer (Agilent Technologies). Libraries were
650 sequenced with 150 paired ends using a NovaSeq 6000 instrument (Illumina) for an

651 average of 20 million reads per sample.

652 **Analysis of bulk RNA-sequencing data.**

653 cDNA libraries were sequenced on an Illumina HiSeq X Ten platform and 150 bp
654 paired-end reads were generated. Approximately 49.96 M raw reads were generated
655 for each sample. Raw data (raw reads) in fastq format were initially processed using
656 Trimmomatic and low-quality reads were removed to generate approximately 48.42
657 M clean reads for each sample for further analyses. The clean reads were mapped to
658 the mouse genome (GRCm39) and hamster genome (BCM_Maur_2.0) using hisat2
659 version 2.2.1, then sorted using samtools version 1.15 for differentially expressed
660 gene analysis. The raw count matrix was quantified using featureCounts version 2.0.1,
661 and the transcripts per kilobase million (TPM) of each gene were calculated.
662 Differential expression analysis was performed using R package DESeq2 version
663 1.34.0. A P value < 0.05, and foldchange > 2 was set as the threshold for significantly
664 different expression. Hierarchical cluster analysis of differentially expressed genes
665 (DEGs) was performed to determine the expression patterns in different groups and
666 samples.

667 The enrichment analysis of DEGs through Gene Ontology (GO), Kyoto
668 Encyclopedia of Genes and Genomes (KEGG) and gene-set enrichment analysis
669 (GSEA) were performed using R package clusterprofile version 4.2.0 and fgsea
670 version 1.20.0. Time-series analysis was performed using R package Mfuzz version
671 2.54.0. All visualizations related to RNA-seq analysis were made using R packages
672 ggplot2 version 3.3.5, ComplexHeatmap version 2.10.0, and enrichplot version

673 1.14.1.

674 **Pre-processing and analysis of bulk ATAC-seq data**

675 Quality control of the original ATAC-seq read file was performed using fastQC
676 version 0.11.9 and multiQC version 1.12 software, and the raw data were trimmed
677 using Trim_galore version 0.6.7 to remove the adaptors. The data were aligned to the
678 GRCm39 and BCM_Maur_2.0 genome separately using Bowtie2 version 2.4.5 with
679 the ‘--very-sensitive -X 2000’ parameter, followed by sorting using samtools version
680 1.15. Duplicated and unpaired reads were removed using the picard ‘MarkDuplicates’
681 command. Reads with mapping quality < 30, and reads aligned to the mitochondria
682 chromosome were also removed. All downstream analyses were performed on the
683 filtered reads. The bam file for all samples was converted to a bed file and then
684 called using MACS2 version 2.2.7.1 with the ‘-nomodel --shift -100 --extsize 200’
685 parameter.

686 Differential peak analysis was processed using bedtools to merge the peak file
687 and featureCounts version 2.0.1 was used to construct the matrix; DESeq2 was then
688 used to identify the differential peaks.

689 Coverage files from filtered bam files were produced using deeptools version
690 3.5.1 bamCoverage command. Each position was normalized with ‘—normalizeUsing
691 RPGC,’ followed by conversion to bigWig format and visualization using IGV
692 software.

693 **Acknowledgments:**

694 This study was supported by National Natural Science Foundation of China grants

695 81991491 (to N.X.), 32170943 (to T.Z.), 31730029 (to N.X.), and 82041038 (to Y.C.);
696 Program on Key Research Project of China 2020YFC0842600 (to N.X.);
697 Guangdong-Hongkong-Macau Joint Laboratory grant 2019B121205009 (to Y.G.);
698 Natural Science Foundation of Fujian Province 2020J06007 (to T.Z.) and 2021J02006
699 (to Y.C.); Xiamen Youth Innovation Fund Project 3502Z20206060 (to T.Z.); and
700 Fundamental Research Funds for the Central Universities 20720220003 (to N.X.).

701 **Conflict of interests:**

702 The authors declare that they have no conflict of interest.

703 **Contributions :**

704 **Conceptualization**, J.Z., T.W., Y.C., T.Z., H.Q., Y.G., and N.X.; **Data curation**, L.Z.,
705 Y.J., J.H., J.C., R.Q., L.Y., and T.S.; **Formal analysis**, L.Z., Y.J., and J.H.;
706 **Investigation**, L.Z., Y.J., J.H., J.C., R.Q., L.Y., T.S., X.L., Q.G., Y.C., C.Z., X.W.,
707 C.C., R.F., Y.W., F.C., H.X., and M.N. **Methodology**, L.Z., Y.J., J.H., J.C., R.Q., L.Y.,
708 T.S.; **Visualization**, L.Z., Y.J., J.H., J.C., R.Q., L.Y., and T.S.; **Validation**, L.Z., Y.J.,
709 and R.Q.; **Resources**, J.Z., Y.C., T.Z., H.Q., Y.G., and N.X.; **Funding acquisition**,
710 Y.C., T.Z., Y.G., and N.X.; **Project administration**, T.Z.; **Supervision**, J.Z., T.W.,
711 Y.C., T.Z., H.Q., Y.G., and N.X.; **Writing-original draft**, L.Z., Y.J., J.H., and T.Z.;
712 **Writing-review & editing**, J.Z., T.W., Y.C., T.Z., H.Q., Y.G., and N.X.

713

714 **Reference**

715 1 Fontanet, A. & Cauchemez, S. COVID-19 herd immunity: where are we? *Nat Rev
716 Immuno/20*, 583-584, doi:10.1038/s41577-020-00451-5 (2020).

717 2 Young, M., Crook, H., Scott, J. & Edison, P. Covid-19: virology, variants, and vaccines.
718 *BMJ Medicine* 1, e000040, doi:10.1136/bmjjmed-2021-000040 (2022).

719 3 Gruell, H. *et al.* Antibody-mediated neutralization of SARS-CoV-2. *Immunity* 55,
720 925-944, doi:10.1016/j.jimmuni.2022.05.005 (2022).

721 4 DeFrancesco, L. COVID-19 antibodies on trial. *Nat Biotechnol* 38, 1242-1252,
722 doi:10.1038/s41587-020-0732-8 (2020).

723 5 Zhou, P. *et al.* A pneumonia outbreak associated with a new coronavirus of probable
724 bat origin. *Nature* 579, 270-273, doi:10.1038/s41586-020-2012-7 (2020).

725 6 Sia, S. F. *et al.* Pathogenesis and transmission of SARS-CoV-2 in golden hamsters.
726 *Nature* 583, 834-838, doi:10.1038/s41586-020-2342-5 (2020).

727 7 Harvey, W. T. *et al.* SARS-CoV-2 variants, spike mutations and immune escape. *Nat
728 Rev Microbiol* 19, 409-424, doi:10.1038/s41579-021-00573-0 (2021).

729 8 Andrews, N. *et al.* Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529)
730 Variant. *N Engl J Med* 386, 1532-1546, doi:10.1056/NEJMoa2119451 (2022).

731 9 Sokal, A. *et al.* Analysis of mRNA vaccination-elicited RBD-specific memory B cells
732 reveals strong but incomplete immune escape of the SARS-CoV-2 Omicron variant.
733 *Immunity* 55, 1096-1104.e1094, doi:10.1016/j.jimmuni.2022.04.002 (2022).

734 10 Shi, J. *et al.* Susceptibility of ferrets, cats, dogs, and other domesticated animals to
735 SARS-coronavirus 2. *Science* 368, 1016-1020, doi:10.1126/science.abb7015 (2020).

736 11 Chandler, J. C. *et al.* SARS-CoV-2 exposure in wild white-tailed deer (*Odocoileus*

737 virginianus). *Proc Natl Acad Sci U S A* **118**, doi:10.1073/pnas.2114828118 (2021).

738 12 Alu, A. *et al.* Intranasal COVID-19 vaccines: From bench to bed. *EBioMedicine* **76**,
739 103841, doi:10.1016/j.ebiom.2022.103841 (2022).

740 13 Hassan, A. O. *et al.* A Single-Dose Intranasal ChAd Vaccine Protects Upper and
741 Lower Respiratory Tracts against SARS-CoV-2. *Cell* **183**, 169-184.e113,
742 doi:10.1016/j.cell.2020.08.026 (2020).

743 14 Mettelman, R. C., Allen, E. K. & Thomas, P. G. Mucosal immune responses to
744 infection and vaccination in the respiratory tract. *Immunity* **55**, 749-780,
745 doi:10.1016/j.immuni.2022.04.013 (2022).

746 15 Afkhami, S. *et al.* Respiratory mucosal delivery of next-generation COVID-19 vaccine
747 provides robust protection against both ancestral and variant strains of SARS-CoV-2.
748 *Cell* **185**, 896-915.e819, doi:10.1016/j.cell.2022.02.005 (2022).

749 16 Vasilyev, K., Shurygina, A. P., Sergeeva, M., Stukova, M. & Egorov, A. Intranasal
750 Immunization with the Influenza A Virus Encoding Truncated NS1 Protein Protects
751 Mice from Heterologous Challenge by Restraining the Inflammatory Response in the
752 Lungs. *Microorganisms* **9**, doi:10.3390/microorganisms9040690 (2021).

753 17 Wang, P. *et al.* Generation of DelNS1 Influenza Viruses: a Strategy for Optimizing Live
754 Attenuated Influenza Vaccines. *mBio* **10**, doi:10.1128/mBio.02180-19 (2019).

755 18 Chen, J. *et al.* A live attenuated virus-based intranasal COVID-19 vaccine provides
756 rapid, prolonged, and broad protection against SARS-CoV-2. *Sci Bull (Beijing)*,
757 doi:10.1016/j.scib.2022.05.018 (2022).

758 19 Zhu, F. *et al.* Safety and immunogenicity of a live-attenuated influenza virus

759 vector-based intranasal SARS-CoV-2 vaccine in adults: randomised, double-blind,
760 placebo-controlled, phase 1 and 2 trials. *Lancet Respir Med*,
761 doi:10.1016/s2213-2600(22)00131-x (2022).

762 20 Grant, R. A. *et al.* Circuits between infected macrophages and T cells in SARS-CoV-2
763 pneumonia. *Nature* **590**, 635-641, doi:10.1038/s41586-020-03148-w (2021).

764 21 Califano, D., Furuya, Y. & Metzger, D. W. Effects of Influenza on Alveolar Macrophage
765 Viability Are Dependent on Mouse Genetic Strain. *J Immunol* **201**, 134-144,
766 doi:10.4049/jimmunol.1701406 (2018).

767 22 Milanez-Almeida, P. *et al.* CD11b(+)Ly6C(++)Ly6G(-) Cells with Suppressive Activity
768 Towards T Cells Accumulate in Lungs of Influenza a Virus-Infected Mice. *Eur J
769 Microbiol Immunol (Bp)* **5**, 246-255, doi:10.1556/1886.2015.00038 (2015).

770 23 Kim, J. *et al.* Low-dielectric-constant polyimide aerogel composite films with low water
771 uptake. *Polymer Journal* **48**, 829-834, doi:10.1038/pj.2016.37 (2016).

772 24 Lanzer, K. G., Cookenham, T., Reiley, W. W. & Blackman, M. A. Virtual memory cells
773 make a major contribution to the response of aged influenza-naïve mice to influenza
774 virus infection. *Immun Ageing* **15**, 17, doi:10.1186/s12979-018-0122-y (2018).

775 25 Hou, S. *et al.* Virtual memory T cells orchestrate extralymphoid responses conducive
776 to resident memory. *Sci Immunol* **6**, eabg9433, doi:10.1126/sciimmunol.abg9433
777 (2021).

778 26 Netea, M. G. *et al.* Trained Immunity: a Tool for Reducing Susceptibility to and the
779 Severity of SARS-CoV-2 Infection. *Cell* **181**, 969-977, doi:10.1016/j.cell.2020.04.042
780 (2020).

781 27 Mantovani, A. & Netea, M. G. Trained Innate Immunity, Epigenetics, and Covid-19. *N
782 Engl J Med* **383**, 1078-1080, doi:10.1056/NEJMcibr2011679 (2020).

783 28 Xing, Z. *et al.* Innate immune memory of tissue-resident macrophages and trained
784 innate immunity: Re-vamping vaccine concept and strategies. *J Leukoc Biol* **108**,
785 825-834, doi:10.1002/jlb.4mr0220-446r (2020).

786 29 Yao, Y. *et al.* Induction of Autonomous Memory Alveolar Macrophages Requires T
787 Cell Help and Is Critical to Trained Immunity. *Cell* **175**, 1634-1650.e1617,
788 doi:10.1016/j.cell.2018.09.042 (2018).

789 30 Timmer, A. M. & Nizet, V. IKKbeta/NF-kappaB and the miscreant macrophage. *J Exp
790 Med* **205**, 1255-1259, doi:10.1084/jem.20081056 (2008).

791 31 Liu, Z. *et al.* NDR2 promotes the antiviral immune response via facilitating
792 TRIM25-mediated RIG-I activation in macrophages. *Sci Adv* **5**, eaav0163,
793 doi:10.1126/sciadv.aav0163 (2019).

794 32 Zens, K. D., Chen, J. K. & Farber, D. L. Vaccine-generated lung tissue-resident
795 memory T cells provide heterosubtypic protection to influenza infection. *JCI Insight* **1**,
796 doi:10.1172/jci.insight.85832 (2016).

797 33 Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: Tissue resident
798 memory T cells in mice and humans. *Sci Immunol* **4**, doi:10.1126/sciimmunol.aas9673
799 (2019).

800 34 Plaçais, L. *et al.* Immune interventions in COVID-19: a matter of time? *Mucosal
801 Immuno* **15**, 198-210, doi:10.1038/s41385-021-00464-w (2022).

802 35 Treanor, J. J. *et al.* Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated

803 (TIV) influenza vaccines in prevention of virus infection and illness following challenge
804 of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. *Vaccine* **18**,
805 899-906, doi:10.1016/s0264-410x(99)00334-5 (1999).

806 36 Hoagland, D. A. *et al.* Leveraging the antiviral type I interferon system as a first line of
807 defense against SARS-CoV-2 pathogenicity. *Immunity* **54**, 557-570.e555,
808 doi:10.1016/j.immuni.2021.01.017 (2021).

809 37 Vasilyev, K., Yukhneva, M., Shurygina, A., Stukova, M. & Egorov, A. Enhancement of
810 the immunogenicity of influenza A virus by the inhibition of immunosuppressive
811 function of NS1 protein. *Microbiology Independent Research journal* **5**, 48-58,
812 doi:10.18527/2500-2236-2018-5-1-48-58 (2018).

813 38 Vasilyev, K. A., Shurygina, A.-P. S., Stukova, M. A. & Egorov, A. Y. Enhanced CD8+
814 T-cell response in mice immunized with NS1-truncated influenza virus. *Microbiology*
815 *Independent Research journal* **7**, 24-33, doi:10.18527/2500-2236-2020-7-1-24-33
816 (2020).

817 39 Tan, A. T. *et al.* Early induction of functional SARS-CoV-2-specific T cells associates
818 with rapid viral clearance and mild disease in COVID-19 patients. *Cell Rep* **34**, 108728,
819 doi:10.1016/j.celrep.2021.108728 (2021).

820 40 Blanco-Melo, D. *et al.* Imbalanced Host Response to SARS-CoV-2 Drives
821 Development of COVID-19. *Cell* **181**, 1036-1045.e1039,
822 doi:10.1016/j.cell.2020.04.026 (2020).

823 41 Bergamaschi, L. *et al.* Longitudinal analysis reveals that delayed bystander CD8+
824 T cell activation and early immune pathology distinguish severe COVID-19 from mild

825 disease. *Immunity* **54**, 1257-1275.e1258, doi:10.1016/j.jimmuni.2021.05.010 (2021).

826 42 Wu, T. *et al.* Lung-resident memory CD8 T cells (TRM) are indispensable for optimal
827 cross-protection against pulmonary virus infection. *J Leukoc Biol* **95**, 215-224,
828 doi:10.1189/jlb.0313180 (2014).

829 43 Turner, D. L. *et al.* Lung niches for the generation and maintenance of tissue-resident
830 memory T cells. *Mucosal Immunol* **7**, 501-510, doi:10.1038/mi.2013.67 (2014).

831 44 Teijaro, J. R. *et al.* Cutting edge: Tissue-retentive lung memory CD4 T cells mediate
832 optimal protection to respiratory virus infection. *The Journal of Immunology* **187**,
833 5510-5514, doi:10.4049/jimmunol.1102243 (2011).

834 45 Netea, M. G. *et al.* Trained immunity: A program of innate immune memory in health
835 and disease. *Science* **352**, aaf1098, doi:10.1126/science.aaf1098 (2016).

836 46 Flerlage, T., Boyd, D. F., Meliopoulos, V., Thomas, P. G. & Schultz-Cherry, S.
837 Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory
838 tract. *Nat Rev Microbiol* **19**, 425-441, doi:10.1038/s41579-021-00542-7 (2021).

839 47 Sungnak, W. *et al.* SARS-CoV-2 entry factors are highly expressed in nasal epithelial
840 cells together with innate immune genes. *Nature Medicine* **26**, 681-687,
841 doi:10.1038/s41591-020-0868-6 (2020).

842 48 Thomas Krausgruber, N. F., Victoria Fife-Gernedl, Martin Senekowitsch, Linda C
843 Schuster, Alexander Lercher, Amelie Nemc, Christian Schmidl, André F Rendeiro,
844 Andreas Bergthaler, Christoph Bock. Structural cells are key regulators of
845 organ-specific immune responses. *Nature* **583**, 296-302,
846 doi:10.1038/s41586-020-2424-4 (2020).

847 49 Abe, T. *et al.* Baculovirus induces an innate immune response and confers protection

848 from lethal influenza virus infection in mice. *J Immunol* **171**, 1133-1139,

849 doi:10.4049/jimmunol.171.3.1133 (2003).

850 50 Li, R. *et al.* Attenuated *Bordetella pertussis* protects against highly pathogenic

851 influenza A viruses by dampening the cytokine storm. *J Virol* **84**, 7105-7113,

852 doi:10.1128/jvi.02542-09 (2010).

853

854

855 **Figure legends**

856 **Fig 1. Transcriptional dynamics show activated antiviral innate immune**
857 **responses in the lung induced by dNS1-RBD**

858 (A) Experimental Schema.

859 (B) Principal component analysis (PCA) of the data collected from the lung of
860 C57BL/6 mice at 1-, 7-, 14-, and 28-days post-immunization. n = 3 mice/group.

861 (C) Heatmap showing KEGG pathway-based enrichment analysis of DEGs.

862 (D) Heatmap showing the dynamic expression patterns of DEGs. Expression trends of
863 the genes in the four clusters are shown in the right part.

864 **Fig 2. dNS1-RBD activates alveolar macrophages, DCs, NK cells, and virtual**
865 **memory T Cells in the Lung**

866 (A) Absolute number of AMs in the lung.

867 (B) gMFI of MHC-II expression on AMs.

868 (C-E) Frequency (C), absolute cell number (D), and gMFI (E) of CD11b^{hi} AMs in the
869 lung.

870 (F) Absolute number of pDCs in the lung.

871 (G-H) Frequency (G) and absolute cell number (H) of IFN- γ ⁺ NK1.1⁺ cells in the
872 lung.

873 (I) Representative flow cytometry contour plots for T_{VMs} in the lung.

874 (J-L) Frequency (J), absolute cell number (K), CD49d expression expressed as gMFI
875 (L) of T_{VMs}.

876 (M) Frequency of T_{VMs} in different tissues (NALT/LNs/spleen/lung).

877 Data are presented as mean \pm SEM. Statistical analysis for (A, B, C, D, E, F, G, and H)
878 were Kruskal-Wallis tests with Dunn's multiple comparisons test. Statistical analysis
879 for (J, K, L, and M) were Mann-Whitney tests.
880 ns, non-significant. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. n = 3–4 mice/group.
881 AMs: alveolar macrophages; gMFI: Geometry Mean Fluorescence Intensity; MHC-II:
882 major histocompatibility-II; pDCs: plasmacytoid dendritic cells; NK cells: natural
883 killer cells; IFN- γ : interferon-gamma; T_{VMs}: Virtual memory T cells. NALT:
884 Nasal-associated lymphoid tissue; LNs: Lymph nodes.

885 **Fig 3 Trained phenotype of alveolar macrophages induced by dNS1-RBD and**
886 **dNS1-Vector**

887 (A-C) Statistical analysis plots for gMFI of MHC II (A), CD80 (B) and CD86 (C) on
888 AMs in C57BL/6 mice. n = 6 mice/group.

889 (D) KEGG and GO enrichment result of shared peaks, with color bar on $-\log_{10}$
890 (q-value) scale.

891 (E) Venn-diagram showing differential ATAC-seq peaks (annotated as promoters) for
892 dNS1-RBD or dNS1-Vector compared to the Control group.

893 (F) Scatter-plot of differentially detected ATAC-seq peaks ($\log_2FC > 1.5$, q-value <
894 0.05) of AMs (Lung) in the dNS1-RBD vaccination group compared to the control
895 group in C57BL/6.

896 (G) IGV tracks showing differentially detected peaks related to host defense and
897 antiviral response in C57BL/6 mice from dNS1-RBD vaccination group, dNS1-Vector
898 vaccination group and control group. n = 2 mice/group.

899 (H) Scatter-plot of differentially detected ATAC-seq peaks ($\log_2\text{FC} > 1.5$, $\text{q-value} <$
900 0.05) of AMs (BALF) in dNS1-RBD vaccination group compared to control group in
901 hamsters.

902 (I) IGV tracks showing differentially detected peaks related to host defense and
903 antiviral response in hamsters. $n = 2$ mice/group.

904 Data are presented as mean \pm SEM. Statistical analysis for (A-C) were Kruskal-Wallis
905 tests with Dunn's multiple comparisons test.

906 gMFI: Geometry Mean Fluorescence; AM: alveolar macrophages; Intensity, IGV:
907 Integrative genomics viewer; BALF: bronchoalveolar lavage fluid.

908 **Fig 4 Intranasal immunization of dNS1-RBD and dNS1-Vector elicit**
909 **tissue-resident memory T cells in Lungs**

910 (A) Representative flow cytometry contour plots for $\text{CD8}^+ \text{IFN-}\gamma^+ \text{T cells}$ staining.

911 (B-C) Statistical analysis plots for percentage (B) and cell number (C) of CD8a^+
912 $\text{IFN-}\gamma^+$ in the lung. $n = 4$ mice/group.

913 (D) Representative well images of the $\text{IFN-}\gamma$ ELISpot response of the control group
914 and dNS1-RBD group (1- and 7-days post-immunization).

915 (E) The numbers of $\text{IFN-}\gamma$ SFCs isolated from PBMCs, spleen, and lung were
916 quantified after stimulation of a peptide pool covering the entire spike protein. $n = 10$
917 mice/group.

918 (F-G) Bar graph depicting the frequency (F) and absolute number (G) of $\text{T}_{\text{RM}s}$ in the
919 lungs at indicated time points after prime and booster immunization. $n = 6$
920 mice/group.

921 (H) Bar graph showing the frequency of CD44⁺ CD8⁺T cells in NALT and lung 30
922 days post a prime-boost vaccination. n = 6 mice/group.

923 (I) Bar graph showing the frequency of CD8⁺ TRMs in NALT and lung 30 days post a
924 prime-boost vaccination. n = 6 mice/group.

925 Data are presented as mean \pm SEM. Statistical analysis for (B, C, E, F, and G) were
926 Kruskal-Wallis tests with Dunn's multiple comparisons test. Statistical analysis for (H
927 and I) were two-way ANOVA with Tukey's multiple comparisons test.

928 ns, non-significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

929 IFN- γ : interferon-gamma; SFCs: spot-forming cells; PBMCs: peripheral blood
930 mononuclear cells; T_{RM}s: tissue-resident memory T cells; NALT: Nasal-associated
931 lymphoid tissue.

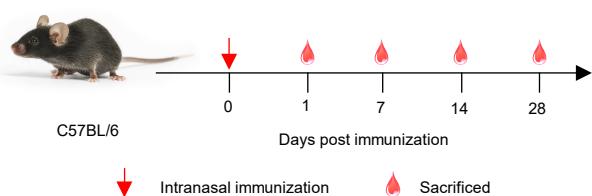
932 **Fig 5 Intranasal immunization with dNS1-RBD and dNS1-Vector protect lung
933 pathology in hamsters against SARS-CoV-2 Challenge**

934 (A) Schema of the experimental design. On days 1, 3, and 5 after cohoused exposure,
935 hamsters from vaccinated and control groups were euthanized for analyses. n = 4
936 hamsters/group.

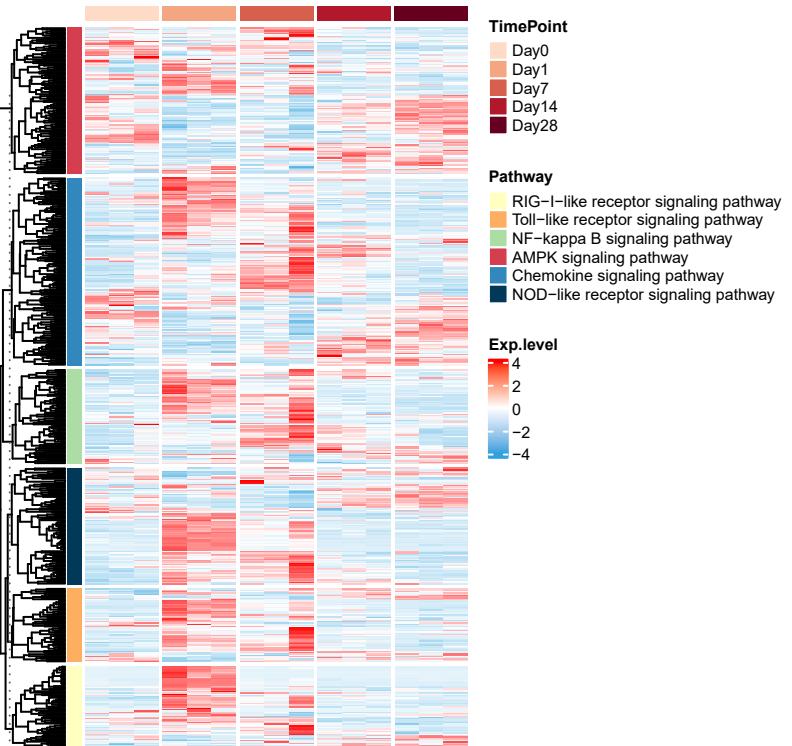
937 (B) Body weight changes of hamsters after cohoused exposure were plotted. The
938 average weight loss of each group at 5 dpi is indicated as a colored number.

939 (C) Bar graph showing the pathological severity scores of lungs and the viral RNA
940 loads from nasal turbinate, trachea, and lung.

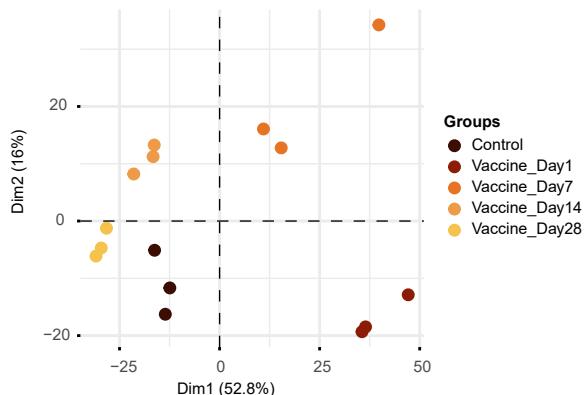
941 (D) Gross lung images and H&E-stained lung sections from dNS1-RBD vaccinated
942 and control groups.

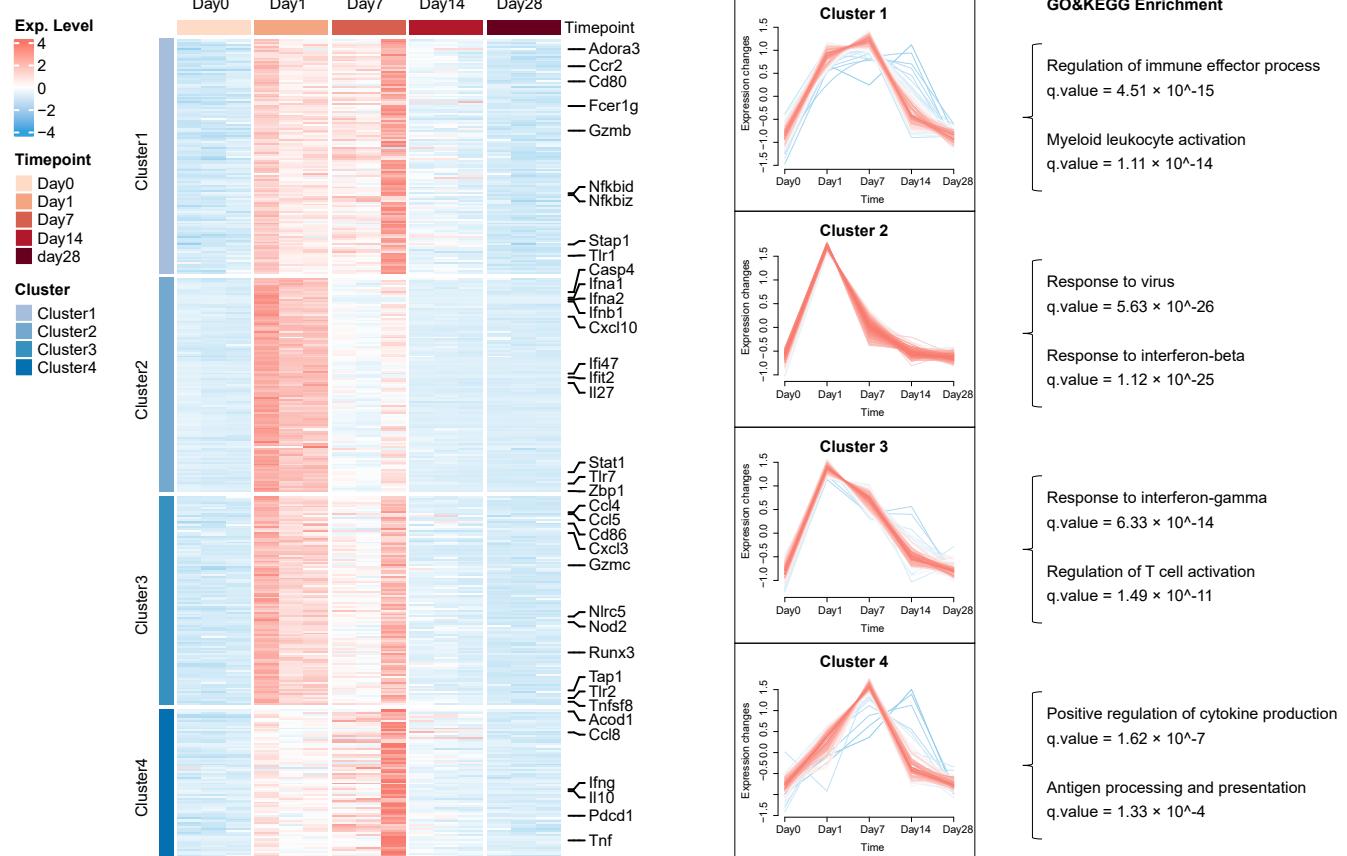

943 (E) Schema of the experimental design. Hamsters were intranasally vaccinated with
944 dNS1-RBD or dNS1-Vector.
945 (F) Body weight changes of hamsters after cohoused exposure were plotted. The
946 average weight loss of each group at 5 dpi is indicated as a colored number.
947 Data are presented as mean \pm SEM. Statistical analysis for (B, C, and F) were
948 two-way ANOVA with Bonferroni's multiple comparisons test. n = 8 hamsters/group
949 ns, non-significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

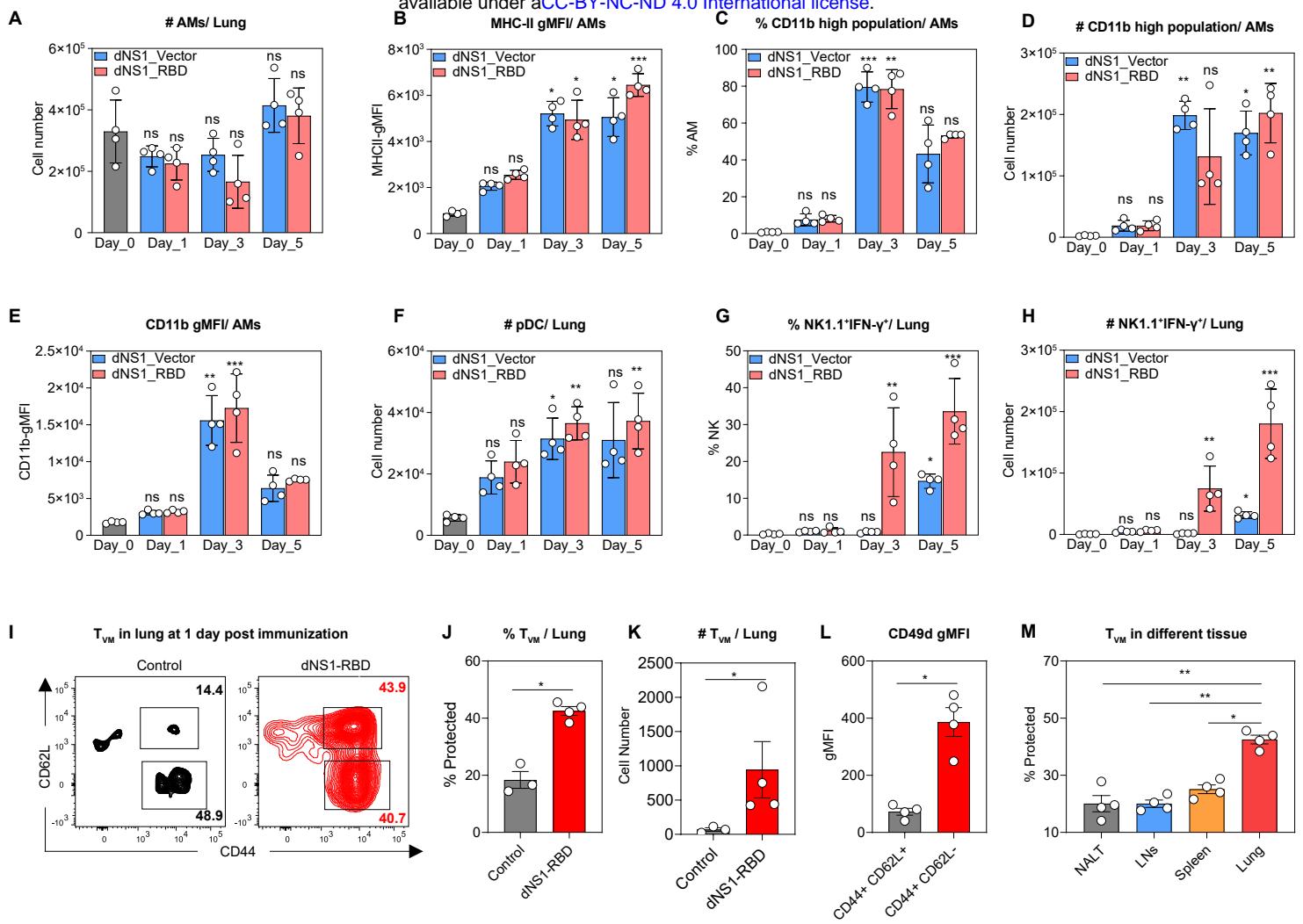
950 **Fig 6 Transcriptome analysis of lung reveals distinct immune response between**

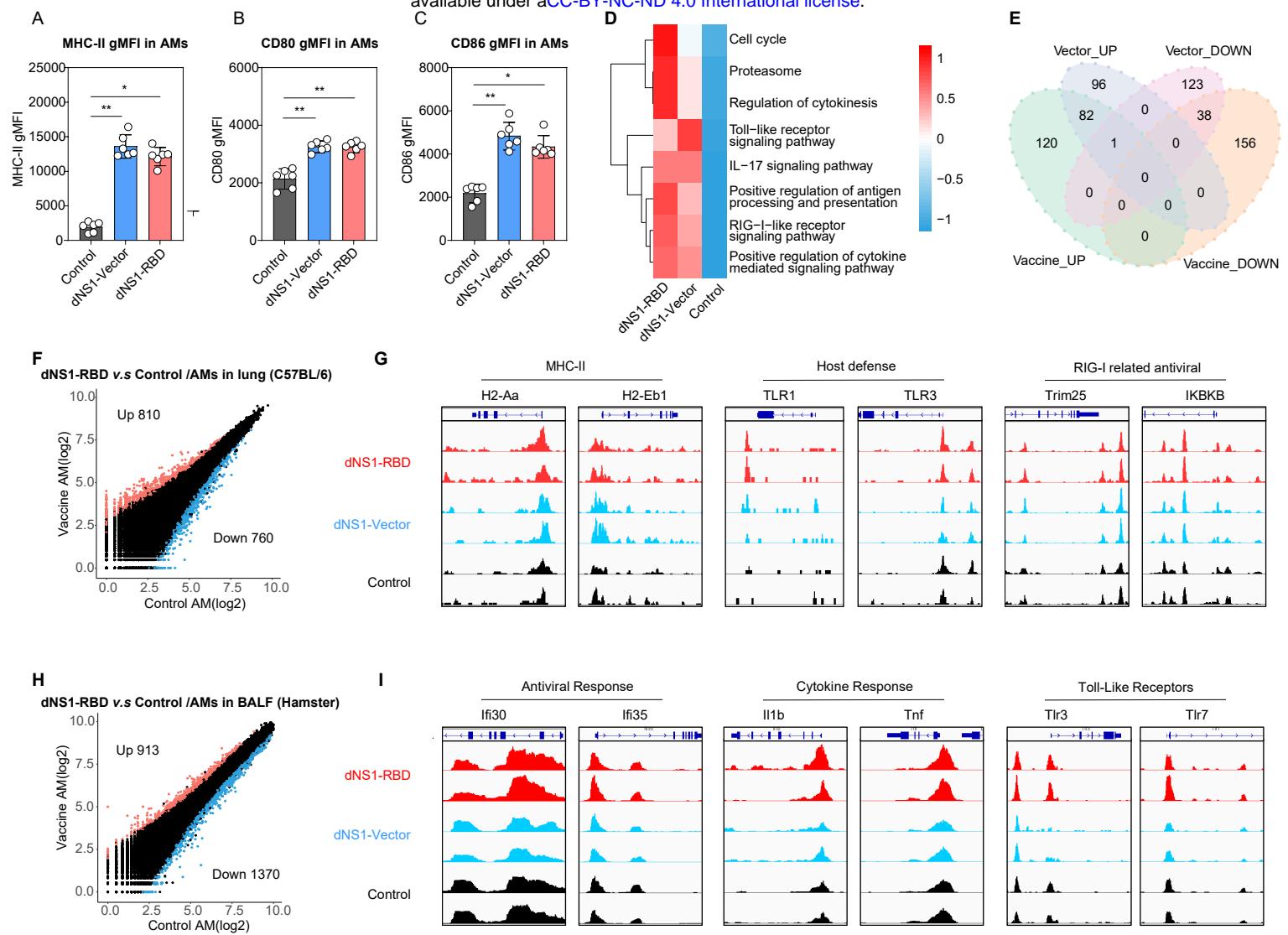

951 **dNS1-RBD immunized and control hamster**

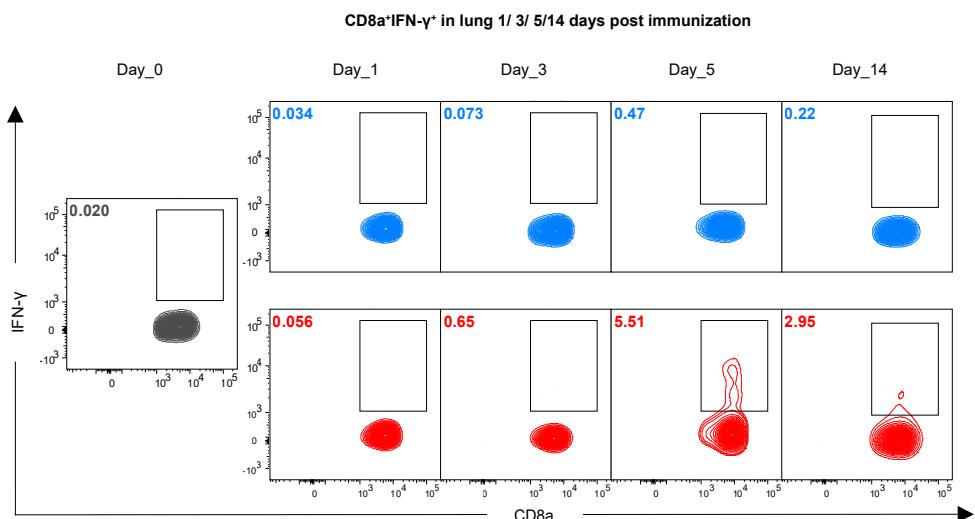
952 (A) PCA Plot showing the global differences between vaccinated and control groups.
953 (B) Heatmap visualization of scaled gene expression levels (TPM) for selected
954 pathways of interest.
955 (C) Heatmap showing the KEGG pathway enrichment analysis of DEGs.
956 (D) Dynamic expression of cytokines in the lungs of hamsters, with error bars shaded
957 (using standard error of the mean).
958 PCA: Principal Component Analysis. n = 4 hamsters/group
959

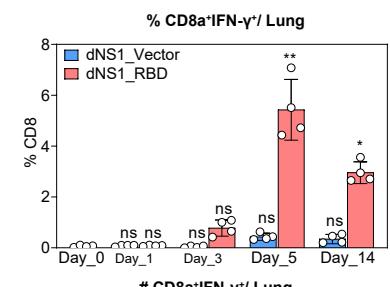

A

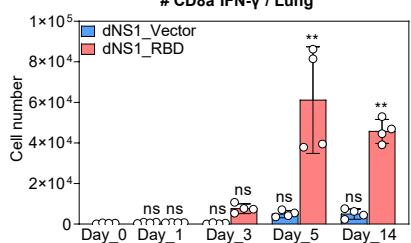

C

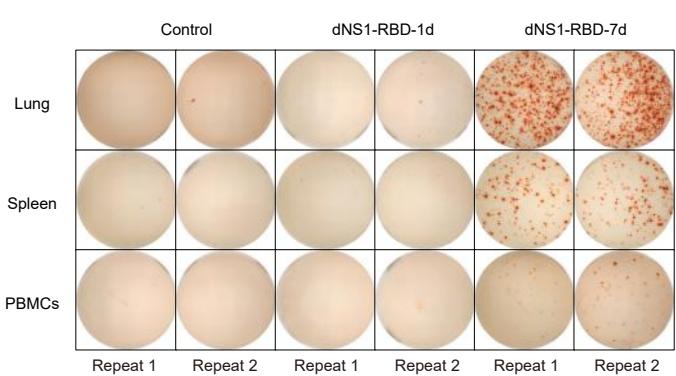


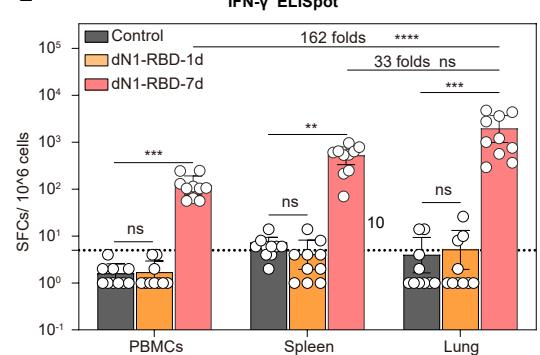

B

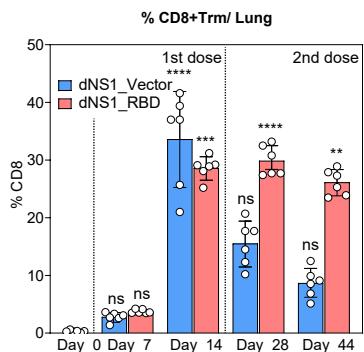

D

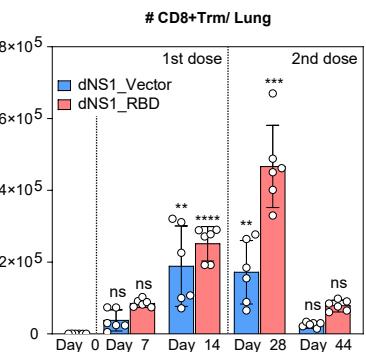


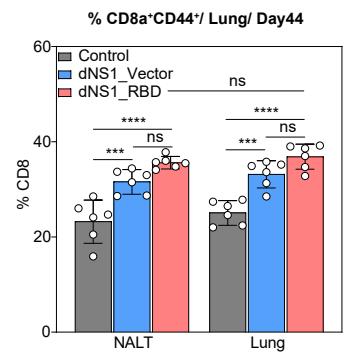

A

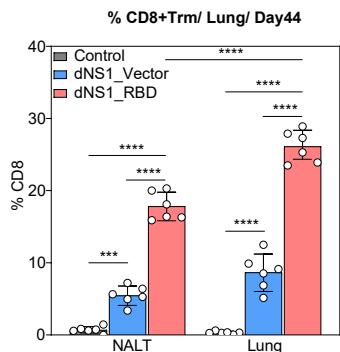

B

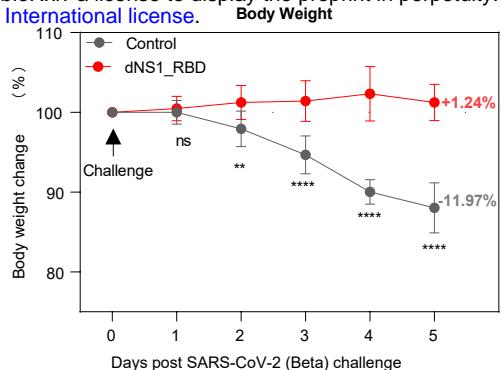
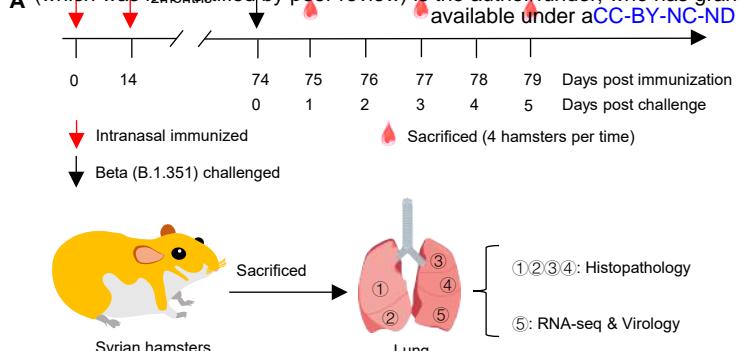

C


D

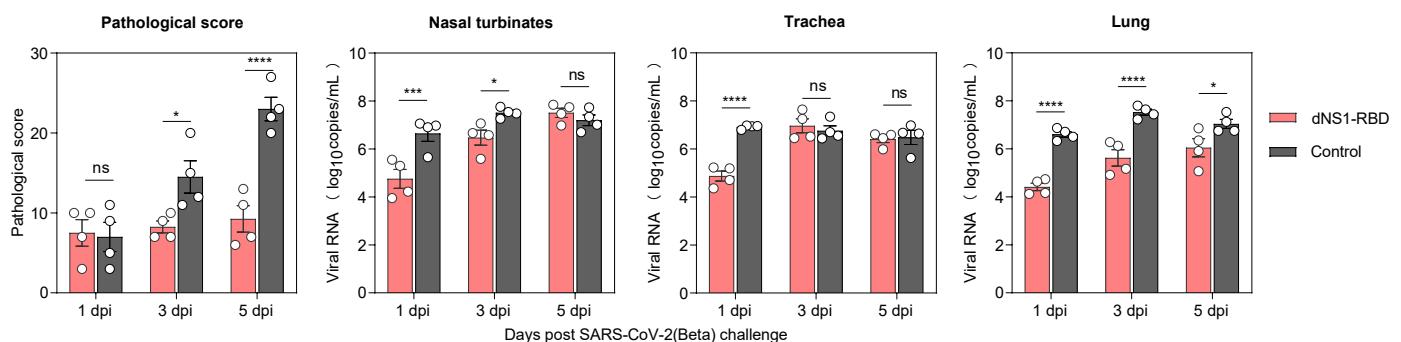

E


F

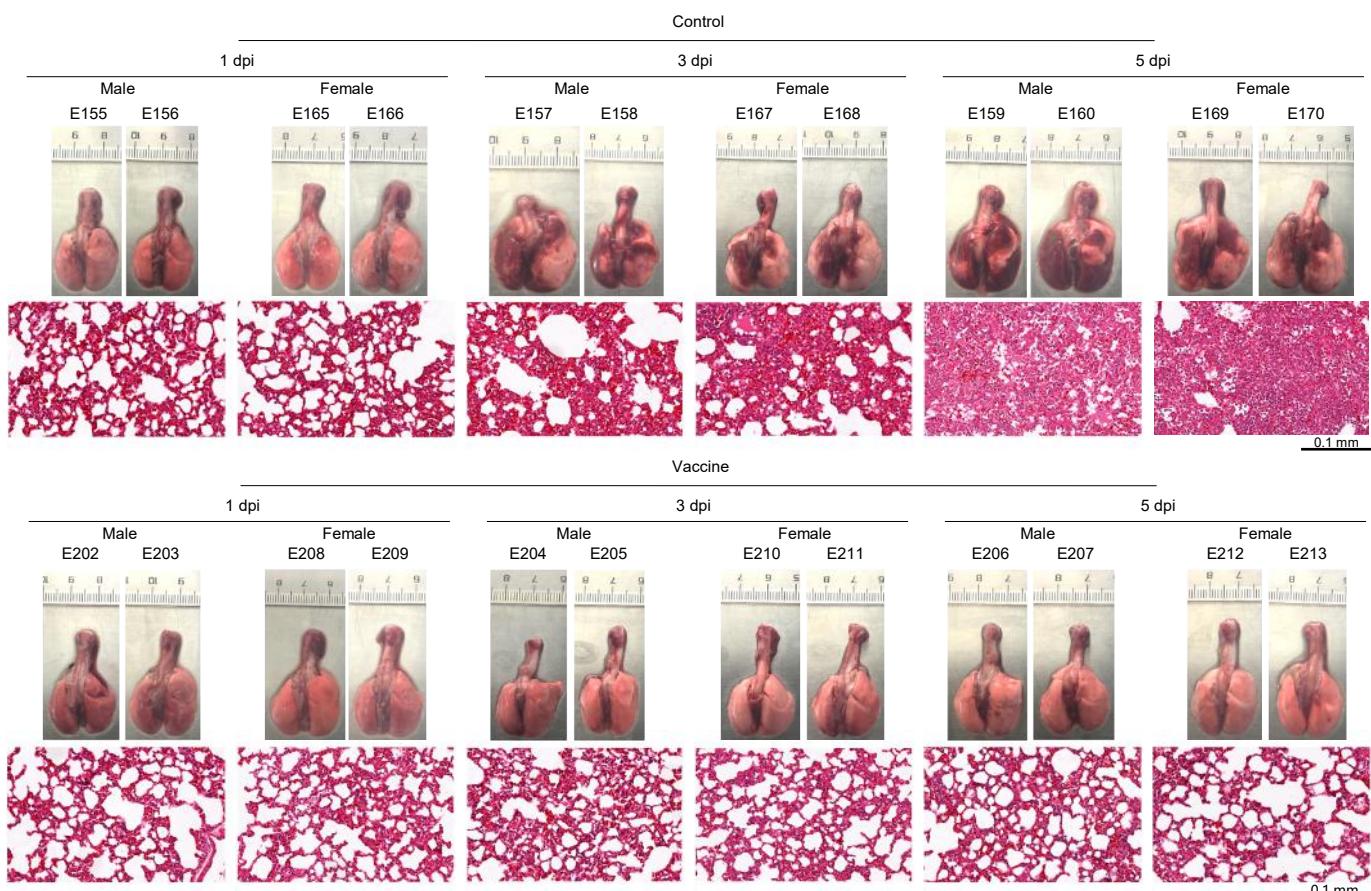

G

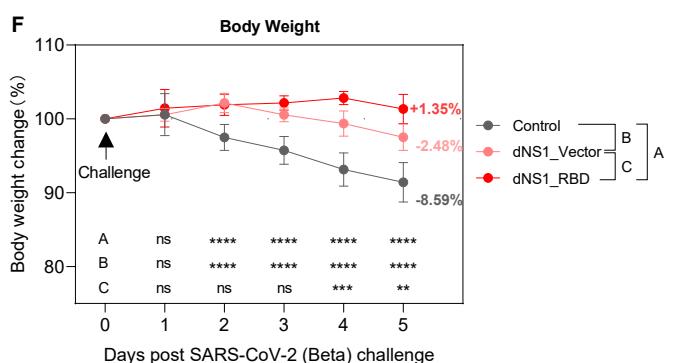
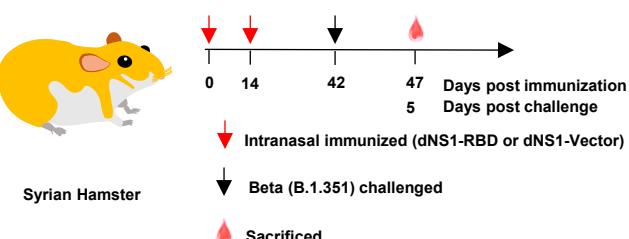



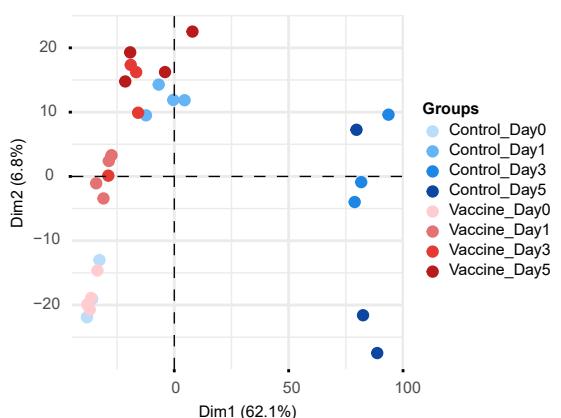
H

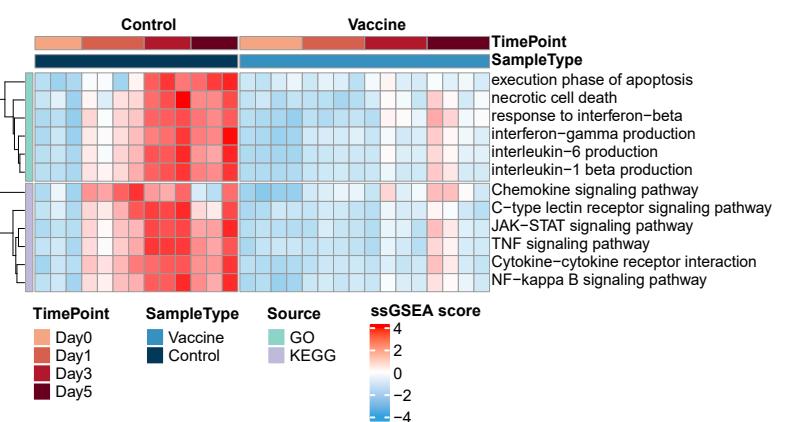


I

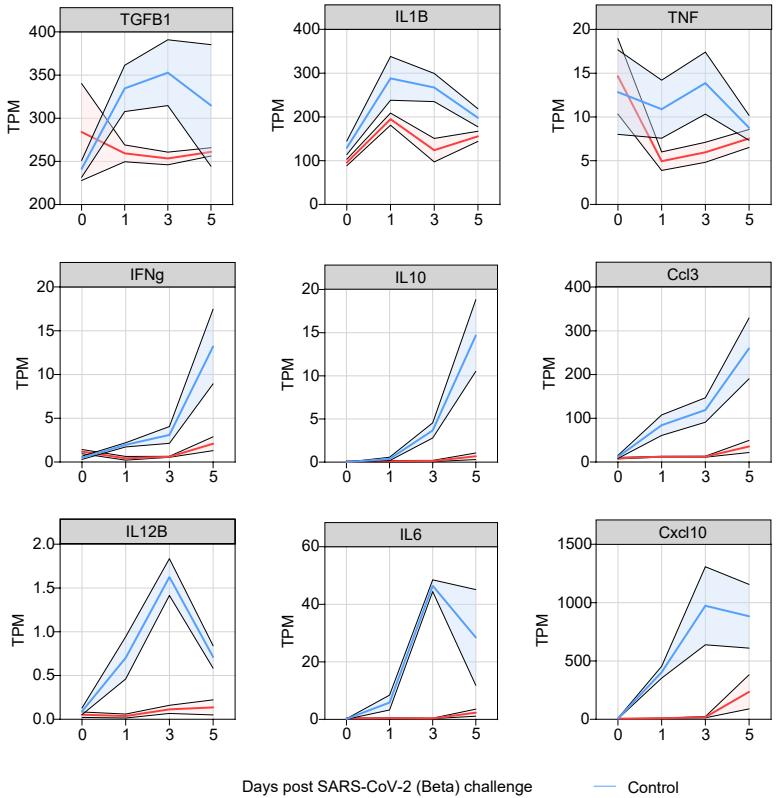


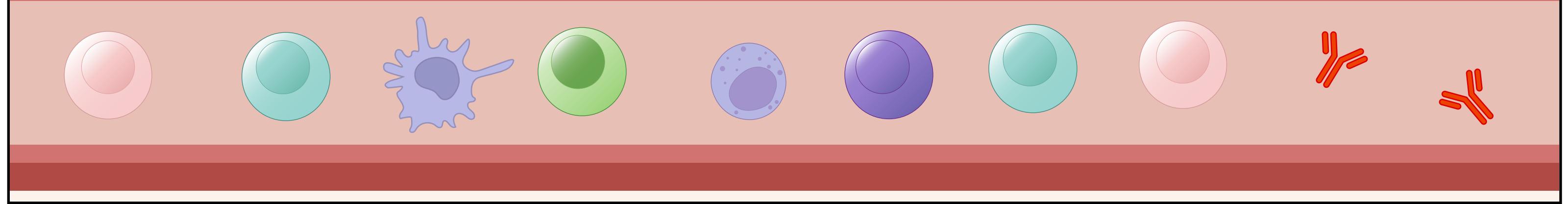
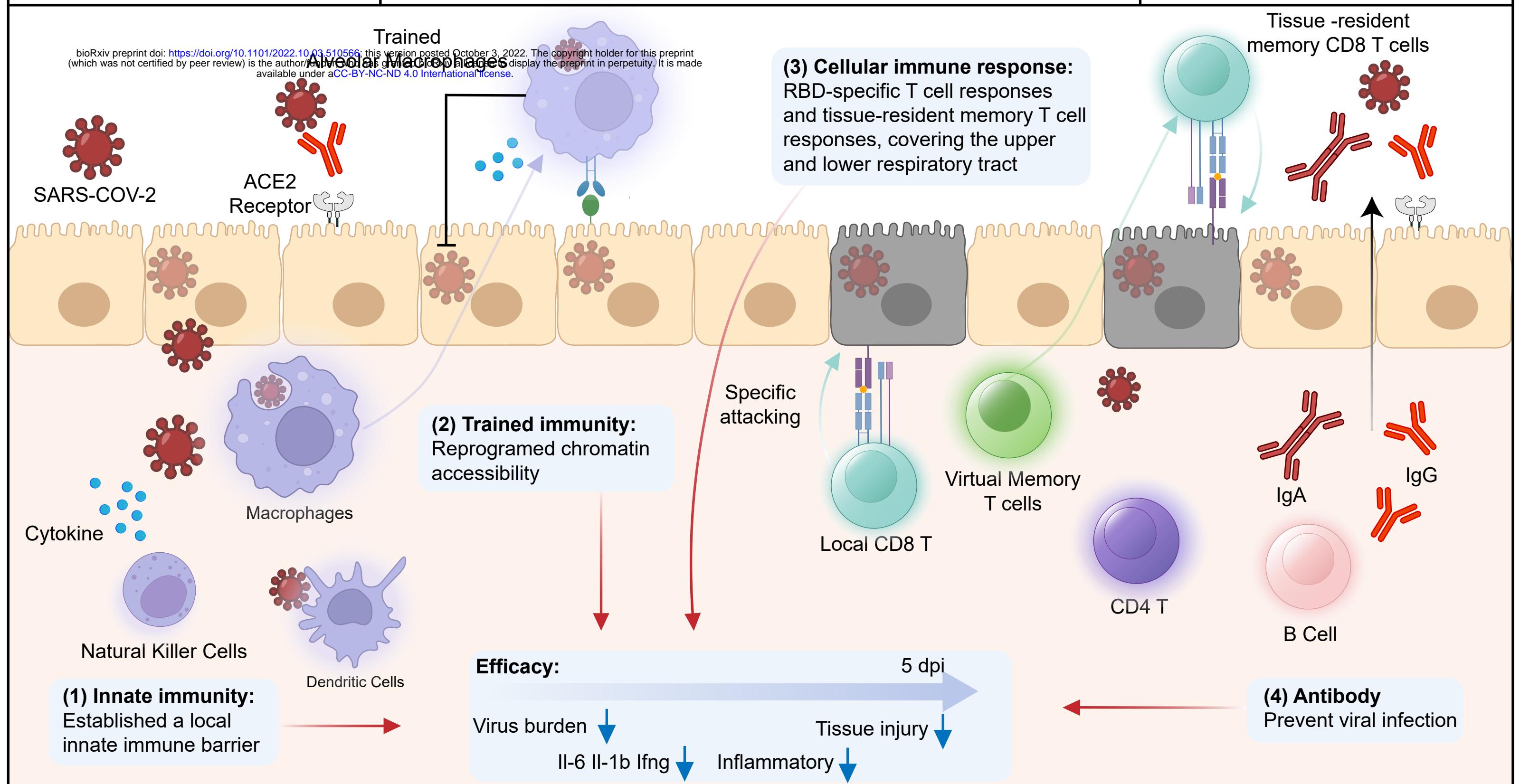
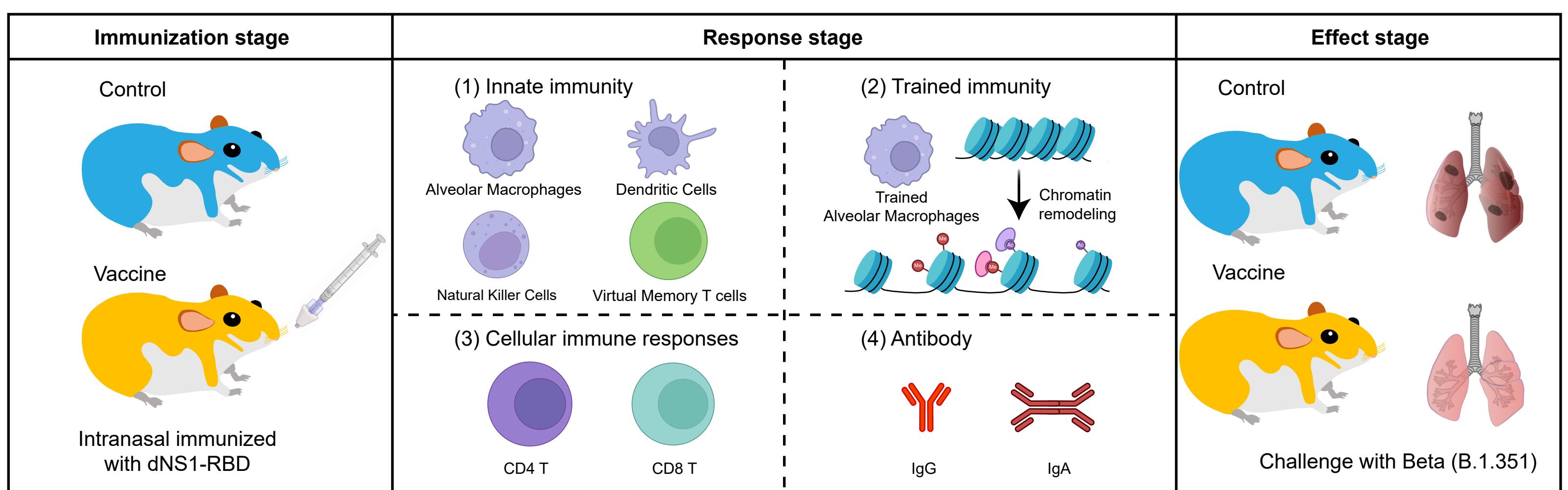


C


D


E

A


B

C

D

