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Genome-wide association studies (GWAS) have mapped thousands of susceptibility loci 9 

associated with immune-mediated diseases, many of which are shared across multiple 10 

diseases. To assess the extent of the genetic sharing across nine immune-mediated diseases 11 

we applied genomic structural equation modelling (genomic SEM) to GWAS data. By 12 

modelling the genetic covariance between these diseases, we identified three distinct groups: 13 

gastrointestinal tract diseases, rheumatic and systemic diseases, and allergic diseases. We 14 

identified 92, 103 and 91 genetic loci that predispose to each of these disease groups, with 15 

only 12 of them being shared across groups. Although loci associated with each of these 16 

disease groups were highly specific, they converged on perturbing the same pathways, 17 

primarily T cell activation and cytokine signalling. Finally, to assess whether variants 18 

associated with each disease group modulate gene expression in immune cells, we tested for 19 

colocalization between loci and single-cell eQTLs derived from peripheral blood mononuclear 20 

cells. We identified the causal route by which 47 loci contribute to predisposition to these 21 

three disease groups. In addition, given that the assessed variants are pleiotropic, we found 22 

evidence for eight of these genes being strong candidates for drug repurposing. Taken 23 

together, our data suggest that different constellations of diseases have distinct patterns of 24 

genetic association, but that associated loci converge on perturbing different nodes in a 25 

common set of T cell activation and signalling pathways. 26 

 27 

Introduction 28 

 29 

Immune-mediated diseases are chronic and disabling conditions where the immune system 30 

attacks healthy tissue, leading to its destruction. It is well documented that these diseases co-31 
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occur within families and that multiple immune diseases are likely to occur in the same 32 

individual 1–3 suggesting that immune diseases have a shared genetic basis.  33 

 34 

Genome-wide association studies (GWAS) have identified thousands of susceptibility loci 35 

associated with immune-mediated diseases, many of which have been observed in multiple 36 

diseases 4,5. For example, the major histocompatibility complex (MHC) locus is associated with 37 

most of autoimmune diseases 6. Another example is a locus containing CTLA4 which is 38 

associated with multiple immune diseases including rheumatoid arthritis (RA), celiac disease 39 

(CeD), type 1 diabetes (T1D) and Hashimoto thyroiditis (Ht) 7–10. Targeting the CTLA-4 pathway 40 

has been successful in tumour immunotherapy, however in more than 60% of patients, CTLA-41 

4 blockade leads to multiorgan autoimmune reaction 11. In contrast, the property of CTLA-4 42 

to bind the costimulatory molecules is extensively used as a treatment for RA 12.  43 

 44 

Understanding the pleiotropy of genetic associations is critical, as it can reveal common 45 

disease mechanisms and pathogenic pathways. A cross-disorder genomic analysis could 46 

identify shared mechanisms and potential targets for drug repurposing. By combining cases 47 

and controls across immune diseases, recent work identified 224 shared associations, 48 

improved fine-mapping and revealed shared disease genes such as RGS1 13. Similarly, a study 49 

using local genetic correlation showed widespread sharing across traits 14. For example, T1D 50 

and Systemic Lupus Erythematosus (SLE) shared 18 loci. Another study assessed the 51 

regulatory activity of immune disease associated SNPs and showed that shared genes were 52 

highly connected and were involved in immune pathways 15. Although it has been established 53 

that immune phenotypes have a shared genetic predisposition, further detailed and 54 

systematic analysis is necessary to understand the causes and structure of such sharing. In 55 

particular, it is unclear whether sharing is equally distributed across immune diseases (i.e. is 56 

there a common factor conferring general risk for all immune disease?) or there are 57 

subgroups of immune diseases that are more similar to each other than the rest.  58 

Here we sought to investigate common factors representing general risk across immune 59 

diseases. To examine the genetic architecture of nine immune-mediated diseases we applied 60 

genomic structural equation modelling (genomic SEM) 16 to GWAS data. This revealed three 61 

groups of diseases: first consisting of diseases affecting the gastrointestinal tract, the second 62 

consisted of rheumatic and systemic disorders and the third group contained allergic diseases. 63 
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Each group had an unique genetic architecture and only a handful of loci were in common 64 

among the groups. Collectively, our results provide new insights into shared mechanisms of 65 

genetic risk for immune-mediated diseases and prioritise drug targets that could be used for 66 

multiple disorders.  67 

 68 

Results 69 

 70 

Factor analysis reveals three groups of immune-mediated diseases 71 

To investigate whether there is a common genetic factor underlying multiple immune-72 

mediated diseases, we first used the multivariate LD score regression implementation in 73 

genomic SEM 16,17 to estimate genetic correlations among nine diseases (Crohn’s disease, CD; 74 

ulcerative colitis, UC; primary sclerosing cholangitis, PSC; juvenile idiopathic arthritis, JIA; 75 

systemic lupus erythematosus, SLE; rheumatoid arthritis, RA; type 1 diabetes, T1D; eczema, 76 

Ecz; asthma, Ast) (Figure 1A, Supplementary Table 1). We collected GWAS summary statistics 77 

for each of the traits, and we selected studies that used genome-wide genotyping arrays, as 78 

it is required for accurate estimation of LD score regression. We then modelled the genetic 79 

variance-covariance matrices across traits using genomic SEM 16. This allowed us to uncover 80 

latent factors which represent shared variance components across diseases (Figure 1B). By 81 

using a range of model fit statistics, we were able to show that the genetic correlation 82 

structure was best described by a model using three factors (Supplementary Figure 1A-C). 83 

Factor one consisted of diseases affecting the gastrointestinal tract (CD, UC and PSC). Factor 84 

two contained autoimmune diseases, which were largely rheumatic and systemic disorders 85 

(RA, SLE, JIA and T1D). Finally, factor three contained allergic diseases (Ast and Ecz) (Figure 86 

1B). Therefore, we refer to factors as: Fgut, Faid and Falrg. 87 

 88 

To identify how genetic variation impacts the identified latent factors, we tested the 89 

association between common SNPs across GWAS studies and each of the latent factors. We 90 

discovered 201 genome-wide significant regions that are associated with latent factors, 72 for 91 

Fgut, 66 for Faid and 63 for Falrg (Figure 1C and 1D and Supplementary Table 2). Strikingly, the 92 

overlap between these regions was modest, with only 30 out of 201 genomic regions 93 

overlapping among at least two factors, and only four regions overlapping across all three 94 

factors (Figure 1D). Comparing the z-scores for the three factors within each region showed 95 
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that this modest overlap was not due to p-value thresholding (i.e the same region in another 96 

factor having a p-value just below the threshold) (Figure 1E). In addition, we correlated Fgut, 97 

Faid and Falrg with psoriasis 18 and allergies 19 GWAS, and showed that they have high 98 

correlation with Falrg and not with the other factors (Supplementary Figure 2A). Furthermore, 99 

eosinophil counts 20 also showed the highest correlation with Falrg, giving further support to 100 

our factor definition (Supplementary Figure 2B). We did not observe strong genetic 101 

correlation with lymphocyte or monocyte counts 20 (Supplementary Figure 2B).  102 

 103 

Finally, we investigated whether the SNPs were acting via the three factors according to the 104 

proposed causal model or, whether SNPs had independent effects on the diseases that the 105 

factors are composed of. To do so, we computed the QSNP heterogeneity statistics (Methods 106 

and 21). In short, QSNP allows us to identify SNPs that plausibly do not affect individual diseases 107 

exclusively by their associations with the latent common factors. In other words, if the QSNP 108 

heterogeneity statistic is significant, it implies that the tested SNP acts at least partially 109 

independently of the latent factors. Our results show that only 10% of loci were significant for 110 

QSNP heterogeneity (22/201) (Supplementary Figure 3A), suggesting that the three factor 111 

model explained the genetic structure at the individual SNP level for 90% of identified regions.  112 

 113 
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 114 

Figure 1. Three groups of immune-mediated diseases have distinct patterns of genetic 115 
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associations. A) Genetic correlation matrix of nine immune-mediated disorders estimated 116 
with LD score regression. Shades of blue and red indicate positive and negative correlations 117 
respectively. (B-D) Blue represents Fgut, green Faid and red Falrg. B) Path diagram of the three-118 
factor model of immune-mediated diseases. Colours represent different factors. Latent 119 
variables representing common genetic factors are depicted as circles. Standardised loadings 120 
(one-headed arrows), residual variances (two-headed arrows connecting the variable with 121 
itself) and covariances (two-headed arrows connecting latent variables) are shown. C) 122 
Manhattan plots of SNP-specific effects on each factor. Black rhomboids represent lead SNPs 123 
and a solid line indicates the genome-wide significant threshold (p-value= 5×10-8). D) UpSet 124 
plot showing the overlap between significant genomic regions associated with different 125 
factors; intersection size indicates the number of overlapping regions. Asymmetric overlaps 126 
(e.g. two regions in one factor overlapping with one region in the other) are counted as one 127 
overlap. Yellow represents overlapping genomic regions. E) Heatmap of absolute z-scores of 128 
factor specific genomic regions. Each column corresponds to a lead SNP, with rows 129 
corresponding to factors. Hierarchical clustering was applied to the columns, with breaks 130 
along columns separating the factor-specific lead SNPs. CD, Crohn’s disease; UC, ulcerative 131 
colitis; PSC, primary sclerosing cholangitis, JIA, juvenile idiopathic arthritis; SLE, systemic lupus 132 
erythematosus; RA, rheumatoid arthritis ; T1D, type 1 diabetes; Ecz, eczema; Ast, asthma. 133 
 134 

Latent factors have a distinct genetic architecture 135 

An overlap of GWAS regions across two traits does not imply that the underlying causal 136 

mechanism is the same across traits. Given that many GWAS regions are complex and could 137 

contain multiple independent signals, we performed a systematic analysis of identified 138 

regions by combining conditional analysis with colocalization. Briefly, to increase the 139 

robustness of colocalization, we devised a statistical approach where the association signal is 140 

first decomposed into its conditionally independent components. Next, each component was 141 

used for colocalization testing which allowed us to group similar association signals (Figure 142 

2A). This approach enabled resolving complex regions and discovering colocalization events 143 

for secondary signals, which would not have been possible by colocalizing the whole regions.  144 

Due to challenges of the HLA region we removed two genomic regions encompassing HLA 145 

genes. We identified 286 independent signals in 199 GWAS associated regions 146 

(Supplementary Table 3-6). Out of these 286 loci, 84 were specifically associated with Fgut, 94 147 

with Faid and 83 with Falrg (Supplementary Table 3-4 and Figure 2B). Only 11 loci were shared 148 

across any two factors, and only one was shared across all 3 factors. This further 149 

demonstrated that each group of diseases had a specific pattern of genetic associations. For 150 

example, a region on chromosome 16 encompassing multiple genes (11,006,011−11,751,015) 151 
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had significant associations with all three factors (Figure 2C and 2D). However, the conditional 152 

analysis and colocalization demonstrated that these signals are independent and not shared 153 

across factors. In this region we identified three independent signals that colocalize between 154 

CD and Fgut: rs12922863 (the closest gene CIITA which is involved in antigen presentation), 155 

rs415595 (the closest gene TNP2 involved in the regulation of protein processing) and 156 

rs13335254 (the closest gene LITAF which regulates TNF-alpha expression). Similarly, Faid and 157 

Falrg had two independent signals each, which colocalized with T1D and Ecz respectively. The 158 

locus that was shared across all three groups of diseases is located at chromosomes 4 159 

(122,903,441-123,720,933) and encompasses a potent regulator of T and B cell proliferation 160 

IL21. 161 

Taken together, we identified independent signals between factors and determined how each 162 

of the factors relate to individual diseases and their likely causal genes.  163 
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 164 
Figure 2. Latent factors have a distinct genetic architecture. A) Diagram of the conditional 165 
analysis and colocalization strategy (see Methods). Colours represent different traits. B) Blue, 166 
green and red represent loci that were specific for Fgut, Faid and Falrg respectively, while yellow 167 
represents loci that are shared between factors. C) Colocalization relationship between latent 168 
factors and traits in the region 16:11,006,011 − 11,751,015. Colours represent disease groups. 169 
Circles represent latent factors or traits, rsID of the lead SNP and rhomboids represent the 170 
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loci that colocalize among traits. D) Conditional analysis of the genomic region 171 
16:11,006,011−11,751,015. Locus-zoom plots of three different factors (blue for Fgut, green 172 
for Faid, and red for Falrg ) and the conditional loci for each of the latent factors in the regions 173 
are shown.  174 
 175 

Factor-associated loci perturb different nodes in T cell activation and signalling 176 

Identifying transdiagnostic risk pathways can uncover critical cell functions whose 177 

perturbations lead to immune system dysfunction and diseases. Therefore, we sought to 178 

translate factor-associated variants to cellular functions. Briefly, we identified the closest 179 

gene to the lead SNP within each locus and used these genes to test for pathway enrichment 180 

with gProfiler2 (Methods). Genes within the associated loci were enriched in cytokine 181 

signalling, differentiation of T helper cells, and various immune diseases as well as response 182 

to pathogens (Figure 3A and Supplementary Table 7). Given the modest overlap of factor-183 

associated loci, we expected that the enriched pathways would be distinct across factors. 184 

However, factor associated genes were largely enriched in the same pathways, although 185 

different genes were driving this enrichment (Figure 3A). For example, we observed that both 186 

Fgut and Faid-associated loci were enriched in the JAK-STAT signalling pathway, which is critical 187 

for response to many cytokines (Figure 3B). Despite both Fgut and Faid being enriched for JAK-188 

STAT signalling, the implicated genes were distinct. Notably, several loci encompassing 189 

cytokine genes (IL2, IL10, IFNG, IL12B) were associated with the Fgut group of diseases, while 190 

only IL21 was associated with the Faid group of diseases. Similarly, transcription factors STAT1 191 

and STAT4 were specifically associated with Faid, while STAT3 was associated with Fgut. This 192 

suggests that although trans-diagnostic risk loci are different for three groups of diseases, 193 

they converge on perturbing similar cellular functions. 194 
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 195 
Figure 3. Factor associated loci perturb different nodes of the same pathways . A) KEGG 196 
pathway enrichment analysis of factor associated genes. The heatmap shows KEGG pathways 197 
that were significantly enriched (p-adjusted < 0.05) in factor associated genes. The radius of 198 
the circle is proportional to the -log10(p-adjusted). The tile plot shows enriched genes in each 199 
of the pathways. Blue, green and red represent the genes that contributed to the enrichment 200 
for Fgut, Faid and Falrg respectively. B) Schematic representation of JAK-STAT signalling pathway. 201 
Blue and green represent components of the pathway that contribute to the enrichment from 202 
Fgut and Faid respectively. 203 
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 204 

To test whether transdiagnostic risk variants also converge on a specific cell type, we 205 

conducted a MAGMA gene-property analysis implemented in CELLECT 22,23. To do that we first 206 

used the OneK1K cohort 24, which to date is the largest study containing single-cell RNA 207 

sequencing (scRNA-seq) data from 982 donors and 1.27 million peripheral blood mononuclear 208 

cells (PMBCs). We showed that there is an enrichment of Fgut, Faid, and Falrg-associated loci in 209 

memory CD4, CD8 and unconventional T cells in all three disease groups (Figure 4A). In 210 

contrast, we did not observe enrichment of GWAS loci in naive T cells or B cell populations 211 

consistent with previous reports 25. Interestingly, NK cells were also enriched, but only for the 212 

Fgut and Faid group of diseases. A similar pattern of enrichment was observed using S-LDSC 213 

(Supplementary Figure 4). In addition, given that tonsils are the secondary lymphoid organs 214 

where immune activation occurs, we verified T cell enrichments using a study which profiled 215 

human tonsils at the single cell level 26. These data showed the same pattern of trans-216 

diagnostic enrichment, observed in CD4 and CD8 T cells (particularly in regulatory T cells) 217 

(Figure 4B). As observed in PBMC data, disease loci were generally not enriched in B cells. The 218 

exception to that was memory B cells expressing Fc receptor–like-4 (FCRL4+ B cells). FCRL4+ 219 

B cells are thought to be tissue resident and have been identified as a potential target in RA 220 

therapy 27, hence our results provide further genetic support for their modulation. 221 

Furthermore, we observed that disease loci were enriched in immune cells from gut 28 and 222 

lung 29 cell atlasses, with the strongest enrichment observed in T cells as previously shown 223 

(Supplementary Figure 5A and 5B). Nevertheless, we did not observe enrichment in epithelial 224 

or other non-immune cells (Supplementary Figure 5A and 5B). Taken together, the cross 225 

disease factors capture true immune signals that are shared across diseases. Finally, we 226 

observed a similar enrichment pattern in biological processes across all three groups of 227 

diseases. Notably, genes in factor-associated loci were enriched for lymphocyte and immune 228 

activation (Figure 4C and Supplementary Table 8), albeit this enrichment was driven by a 229 

distinct group of genes (Figure 4D) as demonstrated previously. 230 

Taken together, our data suggests that different groups of diseases have distinct patterns of 231 

genetic associations but that associated loci converge on perturbing different nodes in 232 

lymphocyte activation and cytokine signalling. 233 
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 234 

Figure 4. Factor associated loci converge on T cells. A-B) MAGMA gene-property results of 235 
Onek1k PBMC dataset (A) and tonsillar cells (B). The barplot shows -log10(p-value) of the 236 
enrichment. Colours in the barplot represent groups of cells belonging to the same cell-type. 237 
The heatmap shows regression coefficients from the MAGMA model. C) The bar plot shows 238 
the -log10(p-adjusted) of the top five GO terms enriched in factor associated genes. Blue, 239 
green and red represent the GO terms for Fgut, Faid and Falrg respectively. D) The stacked-bar 240 
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plot shows the number of genes unique or shared by the latent factors in the top 10 enriched 241 
GO terms. We bolded pathways associated with cell activation. Grey represents genes unique 242 
to one of the factors, purple represents genes that are associated with two factors and orange 243 
represents genes that are associated with all three latent factors.  244 
 245 
Colocalizing immune cell eQTLs prioritises cross-disease causal genes and identifies potential 246 

drug targets  247 

To assess whether variants associated with each disease group modulate gene expression in 248 

immune cells, we tested for colocalization between factor-associated loci and single-cell 249 

eQTLs (sc-eQTLs) derived from peripheral blood mononuclear cells (PMBCs) from the OneK1K 250 

cohort 24. Briefly, to identify independent and secondary eQTL signals we performed locus 251 

decomposition (see Methods) and colocalized with factor-associated loci using the Bayesian 252 

framework coloc 30. We identified 55 colocalizations in Fgut, 41 in Faid and 21 in Falrg with PP4 > 253 

0.9 (Supplementary Table 9). Finally, to determine whether an increase of gene expression 254 

predicts increased disease risk, we used Mendelian Randomization (MR) using the Wald ratio 255 

method (Figure 5A and Supplementary Table 10). For example, an eQTL for Src family tyrosine 256 

kinase BLK present in naive memory B cells specifically colocalized with an association with 257 

the Faid group of traits (Figure 5B), with an increase of BLK expression associated with lower 258 

disease risk. This is consistent with the fact that rare variants that reduce BLK function have 259 

been demonstrated to induce SLE 31. In another example, we observed that a locus associated 260 

with Fgut modulates the expression of Prostaglandin E Receptor 4 PTGER4 (Figure 5C). In this 261 

case, an increase in gene expression is protective to the Fgut group of diseases. 262 

One of the major hurdles of human genetics has been to translate genetic findings into clinical 263 

insights. To identify potential drug targets, we used the Open Targets Platform 32 and 264 

investigated whether colocalizing genes are known drug targets (Figure 5D). Of the 47 eQTL 265 

genes, eight are targeted by drugs which are either already used in the clinics or are in clinical 266 

trials. Four of these eight have been previously used in autoimmune diseases, while the other 267 

four represent potential candidates for drug repurposing. For example, our data shows that 268 

the increase of expression of a key immune regulator CTLA4 is protective against Faid group of 269 

diseases. The property of CTLA-4 to regulate the immune system has long been exploited in 270 

treatment of RA 12 . Similarly, an inhibitor for Integrin Subunit Alpha 4 ITGA4 has been trailed 271 

in UC and CD (Open Targets database and Figure 5D). Our data gives further genetic evidence 272 

that increase of ITGA4 expression leads to an increased risk for Fgut diseases, and therefore it 273 
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is plausible that inhibiting ITGA4 would be beneficial not only in CD and UC but should also be 274 

trialled in PSC.  275 

Taken together, our data shows that understanding the pleiotropy of genetic associations can 276 

reveal common disease mechanisms, identify novel drug targets and offer evidence for drug 277 

repurposing. 278 

 279 

 280 

 281 
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 282 
Figure 5. Colocalization of immune cell eQTLs prioritises cross-disease causal genes and 283 
identifies potential drug targets. A) Colocalization and Mendelian Randomization results (see 284 
Methods) of eQTL predicting risk to the latent factors. Triangles pointing upwards indicate 285 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.03.510292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510292
http://creativecommons.org/licenses/by/4.0/


that an increase of gene expression increases disease risk, while triangles point downwards 286 
indicate decrease of disease risk. Blue, green and red represent Fgut, Faid and Falrg respectively. 287 
Only significant Mendelian Randomization results (p-value <0.05) are shown. B-C) 288 
Colocalization-plots of latent factors and eQTLs. Posterior probability of colocalization (H4) is 289 
shown. B) Locus-zoom plot representing the colocalization between the BLK gene in B 290 
memory cells and Faid. C) Locus-zoom plot representing the colocalization between the 291 
PTGER4 gene in NK cells and Fgut. D) Table representing the drugs prescribed in clinics, in 292 
clinical trials or with preliminary results in mice for immune-mediated disorders targeting 293 
eQTL genes. MS, multiple sclerosis; UC, ulcerative colitis; CD, Crohn’s disease; RA, rheumatoid 294 
arthritis; JIA, juvenile idiopathic arthritis; T1D, type 1 diabetes; EAE, experimental 295 
autoimmune encephalomyelitis. 296 
 297 

Discussion 298 

 299 

In this work we used genomic SEM to investigate the common genetic factors predisposing to 300 

multiple immune-mediated diseases. We identified three broad categories of immune 301 

mediated diseases: affecting the gastrointestinal tract, rheumatic and systemic disorders, and 302 

allergic diseases. Surprisingly, underlying factors affecting the pathogenesis of each of these 303 

disease groups had a highly specific pattern of genetic associations, with only 12/286 loci 304 

being shared across these groups. This suggests that there is a genetic similarity between 305 

diseases within a group, but that the associated loci are highly distinct across groups. The 306 

identified groups agree with previous epidemiological findings. For example, T1D was 307 

grouped with rheumatic diseases including RA, which is in line with reports that patients with 308 

T1D but not T2D have increased risk of RA (OR=4.9) 33. Similarly, approximately 70% of 309 

patients with PSC have IBD, with UC being the most prevalent 34. Our study shows that there 310 

are common genetic mechanisms driving the pathogenesis of these diseases and suggests 311 

that creating cross-disorder cohorts of immune diseases could increase the power to identify 312 

causal pathogenic processes. 313 

  314 

Importantly, over 90% of identified loci acted via common factors, rather than independently 315 

on each of the diseases. Therefore, we sought to identify transdiagnostic risk pathways in 316 

order to uncover biological processes whose perturbation affects each of the disease groups. 317 

Our study showed that despite associated loci being highly factor specific, they converged on 318 

perturbing the same pathways involved in T cell activation, differentiation and cytokine 319 
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signalling. Fgut and Faid-associated loci were enriched in the JAK-STAT signalling pathway, 320 

although there was no overlap in genes driving the pathway enrichment in each of these 321 

groups. Loci encompassing cytokine genes (IL2, IL10, IFNG, IL12B) and STAT genes (STAT1 and 322 

STAT4) were associated with the Fgut group of diseases, while IL21 and STAT3 were associated 323 

with the Faid group of diseases. Similarly, out of 55 genes that are enriched for lymphocyte 324 

activation, only 6 were shared across at least two factors. Therefore, one can speculate that 325 

perturbations at different nodes which regulate T cell activation and cytokine signalling are 326 

partially responsible for driving different disease outcomes. Recent advances in CRISPR 327 

editing in T cells and its subpopulations 35,36 will be instrumental to elucidate the differential 328 

effects of perturbing each node within shared pathways. 329 

Finally, it has been widely demonstrated that supporting preclinical data with genetic 330 

evidence can significantly increase the chance of developing successful drugs 37. Therefore, 331 

understanding how trans-diagnostic variants regulate gene expression can help to identify 332 

novel drug targets or supporting evidence to existing trials. Here we colocalized the factor-333 

associated loci with sc-eQTL derived from the OneK1K cohort. To date, OneK1K is the largest 334 

study containing single-cell RNA sequencing (scRNA-seq) data from 982 donors and 1.27 335 

million PMBCs. We showed that eight of these colocalizing genes are known drug targets 336 

offering further genetic support for their potential therapeutic effect. In addition, given that 337 

the assessed variants are pleiotropic, our results imply that identified drugs could be 338 

repurposed for diseases within the same group. For example, our data shows that the 339 

increase of expression of a key immune regulator CTLA4 is protective against Faid group of 340 

diseases. The property of CTLA-4 to regulate the immune system has long been exploited in 341 

treatment of RA 12. Similarly, an inhibitor for Integrin Subunit Alpha 4, ITGA4 has been trailed 342 

in UC and CD (Open Targets database). Our data gives further genetic evidence that increase 343 

of ITGA4 expression leads to an increased risk for Fgut diseases, and therefore it is plausible 344 

that inhibiting ITGA4 would be beneficial not only in CD and UC but should also be trialled in 345 

PSC. However, one limitation of this study is that we identified colocalization events for 40 346 

out of 286 loci. This highlights the urgent need for larger cohorts, which will be more powered 347 

to detect eQTLs, as well as large-scale genetic studies in immune disease patients. 348 

In conclusion, our work underscores that three groups of immune-mediated diseases do not 349 

share similarities in their genetic predisposition, but show associated loci which converge on 350 
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perturbing different nodes of a common set of pathways, including in lymphocyte activation 351 

and cytokine signalling. 352 
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 363 

Methods 364 

 365 

Processing of summary statistics for LD score regression 366 

We downloaded GWAS summary statistics from published studies on the most common 367 

autoimmune disorders: T1D 7, RA 8, JIA 38 , SLE 39, CD 40, UC 40, AST 41, ECZ 42, PSC 43 368 

(Supplementary Table 1). Where necessary, rsIDs were added to the summary statistics using 369 

the reference file provided in the Genomic SEM repository 370 

(https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/file/576598996073). 371 

Where necessary, chromosomes X and Y were removed and standard error of logistic betas 372 

were calculated based on Odds Ratio confidence intervals. Summary statistics were formatted 373 

with the munge function from Genomic SEM R package v.0.0.5, (with default parameters) 374 

which removes all the SNPs not present in the reference file, filters out SNP with MAF < 1% 375 

and flips the alleles according to the reference file and computes z-scores. The HapMap3 376 

reference file is provided in the Genomic SEM repository 377 

https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/file/805005013708. 378 

 379 

Estimation of genetic correlation with Genomic SEM 380 

The sum of effective sample size for GWAS that were meta-analysed was calculated by 381 

retrieving the information about the cohorts from the respective publications 382 
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(Supplementary Table 1). We calculated the sample prevalence for each of the cohorts using 383 

the following formula  384 

𝑣! =	𝑛!"#$#/(𝑛!"#$# +	𝑛!%&'(%)#)	,  385 

 386 

Next, we calculated the cohort specific sample size as follows: 387 

 388 

𝐸𝑓𝑓𝑁! = 	4	 × 𝑣𝑐 	× (1 − 𝑣𝑐) × (𝑛𝑐𝑎𝑠𝑒𝑠 + 𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)	, 389 

 390 

Finally, we summed the 𝐸𝑓𝑓𝑁!  of each contributing cohort to compute the sum of effective 391 

sample size: 392 

 ∑ 	𝐸𝑓𝑓𝑁𝑐 ,  393 

 394 

Where c are contributing cohorts (as described at 395 

https://github.com/GenomicSEM/GenomicSEM) 44. To estimate genetic correlation we used 396 

the ldsc function in Genomic SEM, using the LD reference panel provided in the Genomic SEM 397 

repository 398 

(https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/folder/119413852418399 

).  400 

 401 

Factor model specification and GWAS estimation with Genomic SEM 402 

We computed three confirmatory factor analysis models guided by exploratory factor 403 

analysis: a) a common factor model with the latent factor variance fixed to 1. b) a two-factor 404 

model, where one factor was loading into CD, UC, PSC, JIA, SLE, RA and T1D while the other 405 

factor was loading into Ecz and Ast. We allowed for correlation between factors. c) A three 406 

factor model where Fgut was loading into CD, UC, PSC; Faid was loading into T1D, SLE, JIA, RA, 407 

and Falrg loading into Ecz and Ast; we fixed the variance of the latent factors to 1 and allowed 408 

correlation between the latent factors (Supplementary Figure 1). 409 

The fit of the model was assessed by estimating the comparative fit index (CFI) and the 410 

standardised root mean square residual (SRMR) parameters. We used CFI >0.95 and SRMR < 411 

0.07 as a measure of good fit. Before estimating the SNP-specific effect, we aligned the 412 

summary statistics to the reference file 413 

(https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/file/576598996073) 414 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.03.510292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510292
http://creativecommons.org/licenses/by/4.0/


which is used to standardise the effect sizes and SE and format the summary statistics (i.e. 415 

remove SNPs not present in the reference files and flip the alleles to match the reference) 416 

with the sumstats function in Genomic SEM with default parameters. SNP-specific effects of 417 

3,309,805 SNPs were estimated with the userGWAS function with default parameters using 418 

the weighted least squares (WLS) estimation method. In order to evaluate whether the 419 

calculated SNP effects were acting through our three factor model, we performed the QSNP 420 

heterogeneity tests. The heterogeneity test returns a 𝜒2, whose null hypothesis suggests that 421 

the SNP is acting through the specified model. Therefore, rejecting the null hypothesis means 422 

that the SNP acts through a model that is different from the specified one 16,21.  423 

 424 

Loci definitions and conditional analysis 425 

We define the boundaries of each significant genomic region by identifying all the SNPs with 426 

a p-value lower than 1×10-6. We calculated the distance among each consecutive SNPs below 427 

this threshold in the same chromosome; if two SNPs were further than 250 kb apart, then 428 

they were defined as belonging to two different genomic regions. We then considered as 429 

‘significant’ all the genomic regions where at least one SNP had a p-value < 5×10-8. This 430 

procedure was repeated for all GWAS. Finally, we compared genomic regions between 431 

different GWAS and merged those which overlapped, redefining the boundaries as the 432 

minimum and maximum genomic position across all overlapping genomic regions.  433 

 434 

Processing of summary statistics for conditional analysis and colocalization 435 

Before running conditional analysis and colocalization, summary statistics (traits and factors) 436 

were processed with the Bioconductor MungeSumstats package 45. We specify the 437 

parameters to the MungeSumstat function to: align the summary statistics to reference 438 

genome to the build GRCh7 (1000genomes Phase2 Reference Genome Sequence hs37d5, 439 

based on NCBI GRCh37, R package ‘BSgenome.Hsapiens.1000genomes.hs37d5’ v0.99.1), flip 440 

the alleles according to the reference file, remove the SNPs not in the reference file (SNP 441 

locations for Homo sapiens, dbSNP Build 144, based on GRCh37.p13, R package 442 

‘SNPlocs.Hsapiens.dbSNP144.GRCh37’ v.0.99.20), exclude the SNPs with betas or standard 443 

errors equal to 0.  444 

 445 

Conditional analysis and colocalization 446 
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The genomic regions defined in the previous steps are based on genomic position, but 447 

multiple association signals may be present within each genomic region. To this end, we 448 

developed a statistical approach which first divides each GWAS-significant genomic region 449 

into its component signals and then uses colocalization across different traits to group similar 450 

association signals. First, in each genomic region for each GWAS we performed stepwise 451 

forward conditional regression using COJO 46. The stopping criteria was that all conditional p-452 

values were larger than 1x10-4. This led to a set of independent SNPs using all SNPs within the 453 

genomic region boundary (+/- 100kb). For each SNP, a conditional dataset was produced 454 

where SNPs in the genomic region were conditioned to all identified independent SNPs apart 455 

from the target one. We then considered as true signals those with p-value p<10-6 or those 456 

for which the SNP with the lowest p-value was lower than 5×10-8 in the original GWAS.  457 

This procedure was repeated on all the traits which had a significant association in the 458 

considered genomic region. We thus obtained for each trait a set of conditional datasets 459 

covering all the SNPs in the genomic region. This procedure is similar to that used by Robinson 460 

et al 47 but instead of using the step-wise conditioned datasets it uses an ‘all but one’ 461 

approach. 462 

To understand which loci were pleiotropic between traits, we ran colocalization using coloc 463 
30 analysis between all pairs of loci specific for each trait. Loci which colocalized with PP4 > 464 

0.9 were grouped in a single locus. We excluded the genomic regions in the HLA locus 465 

(chromosome 6 - 29,000,000-33,000,000) from this analysis. 466 

 467 

Colocalization with eQTL data 468 

We downloaded eQTLs from the OneK1K cohort 24. We first identified for each genomic region 469 

if significant cis-eQTLs were present. For each identified eQTL we performed the 470 

decomposition of the locus as described above and the identified loci were colocalized with 471 

factor and individual trait associated GWAS signals. To claim a true colocalizing signal we 472 

required that PP4 > 0.9. In order to identify the direction of the effect of the increase in gene 473 

expression for the colocalizing loci, we used Mendelian Randomization using the Wald ratio 474 

method (TwoSampleMR R package, 48) using as instrument the SNP with the smallest p-value 475 

in the conditional datasets. Significant MR results (p-value lower than 0.05) were reported. 476 

This procedure was performed cell type per cell type. 477 

 478 
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Cell type enrichment  479 

To identify cell types underlying identified factors we used CELL-type Expression-specific 480 

integration for Complex Traits (CELLECT). CELLECT quantifies the association between GWAS 481 

signal and gene expression specificity using well established models for GWAS enrichment 482 

MAGMA 22 and S-LDSC 49.  483 

 484 

Gene based enrichment  485 

Candidate genes were defined by mapping each lead SNP to the nearest transcription starting 486 

site of protein coding genes using the EnsDb.Hsapiens.v75 R package (v2.99.0). To identify 487 

enrichment in KEGG pathways, GO terms and REACT pathways we used the R package 488 

gprofiler2 (v0.2.1) 50, with default parameters. Pathway was considered significant if p-adj < 489 

0.05. We used the R package pathview (v1.34.0) 51 to represent the KEGG pathways and to 490 

highlight factor-specific genes. The diagram shown in Figure 3B was created with 491 

biorender.com using the KEGG pathway as reference.  492 

 493 

Identification of drug targets 494 

Open Targets Platform 32 (v.22.06) was used to identify drug targets for eQTL genes. This 495 

website was queried on (29th August 2022).  496 
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Supplementary Figures 

 
Supplementary Figure 1. Factor models that were tested and their fit statistics. A) A 
common factor model with the latent factor variance fixed to 1. B) a two factor model, where 
one factor was loading into CD, UC, PSC, JIA, SLE, RA, T1D while the other factor was loading 
into Ecz and Ast. We allowed correlation between factors and imposed the residual variance 
to be positive for Ezc. C) A three factor model where Fgut was loading into CD, UC, PSC; Faid 
was loading into T1D, SLE, JIA, RA and Falrg loading into Ecz and Ast; we fixed the variance of 
the latent factors to 1 and we allowed correlation between the latent factors and imposed 
the residual variance to be positive for Ezc.  
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Supplementary Figure 2. LDSC genetic correlations among Factors and allergic traits. A) LDSC 
genetic correlations among factors, psoriasis 18 and allergies 19. Shades of blue and red 
indicate positive and negative correlations respectively. B) LDSC genetic correlations between 
factors and circulating cell counts 20. Blue, green and red represent Fgut, Faid and Falrg 
respectively.  
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Supplementary Figure 3. Qsnp statistics of genomic regions lead SNP. A) The bar plot shows 
the number of lead SNPs of the genomic region which had a significant QSNP (in white) and not 
significant (in grey).  
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Supplementary Figure 4. Comparison of LDSC and MAGMA enrichments. Dot plot shows 
correlation of -log10(p-value) between MAGMA and LDSC outputs for OneK1K cohort. 
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Supplementary Figure 5. A-B) MAGMA gene-property results of intestinal cells 28 (A) and lung 
cells 29(B). The barplot shows -log10(p-value) of the enrichment. 
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