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Cross-disorder genetic analysis of immune diseases reveals distinct disease groups and

associated genes that converge on common pathogenic pathways
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Genome-wide association studies (GWAS) have mapped thousands of susceptibility loci
associated with immune-mediated diseases, many of which are shared across multiple
diseases. To assess the extent of the genetic sharing across nine immune-mediated diseases
we applied genomic structural equation modelling (genomic SEM) to GWAS data. By
modelling the genetic covariance between these diseases, we identified three distinct groups:
gastrointestinal tract diseases, rheumatic and systemic diseases, and allergic diseases. We
identified 92, 103 and 91 genetic loci that predispose to each of these disease groups, with
only 12 of them being shared across groups. Although loci associated with each of these
disease groups were highly specific, they converged on perturbing the same pathways,
primarily T cell activation and cytokine signalling. Finally, to assess whether variants
associated with each disease group modulate gene expression in immune cells, we tested for
colocalization between loci and single-cell eQTLs derived from peripheral blood mononuclear
cells. We identified the causal route by which 47 loci contribute to predisposition to these
three disease groups. In addition, given that the assessed variants are pleiotropic, we found
evidence for eight of these genes being strong candidates for drug repurposing. Taken
together, our data suggest that different constellations of diseases have distinct patterns of
genetic association, but that associated loci converge on perturbing different nodes in a

common set of T cell activation and signalling pathways.

Introduction

Immune-mediated diseases are chronic and disabling conditions where the immune system

attacks healthy tissue, leading to its destruction. It is well documented that these diseases co-
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occur within families and that multiple immune diseases are likely to occur in the same

individual 12 suggesting that immune diseases have a shared genetic basis.

Genome-wide association studies (GWAS) have identified thousands of susceptibility loci
associated with immune-mediated diseases, many of which have been observed in multiple
diseases *°. For example, the major histocompatibility complex (MHC) locus is associated with
most of autoimmune diseases ®. Another example is a locus containing CTLA4 which is
associated with multiple immune diseases including rheumatoid arthritis (RA), celiac disease
(CeD), type 1 diabetes (T1D) and Hashimoto thyroiditis (Ht) 719, Targeting the CTLA-4 pathway
has been successful in tumour immunotherapy, however in more than 60% of patients, CTLA-
4 blockade leads to multiorgan autoimmune reaction 1. In contrast, the property of CTLA-4

to bind the costimulatory molecules is extensively used as a treatment for RA 12,

Understanding the pleiotropy of genetic associations is critical, as it can reveal common
disease mechanisms and pathogenic pathways. A cross-disorder genomic analysis could
identify shared mechanisms and potential targets for drug repurposing. By combining cases
and controls across immune diseases, recent work identified 224 shared associations,
improved fine-mapping and revealed shared disease genes such as RGS1 3. Similarly, a study
using local genetic correlation showed widespread sharing across traits 14. For example, T1D
and Systemic Lupus Erythematosus (SLE) shared 18 loci. Another study assessed the
regulatory activity of immune disease associated SNPs and showed that shared genes were
highly connected and were involved in immune pathways >, Although it has been established
that immune phenotypes have a shared genetic predisposition, further detailed and
systematic analysis is necessary to understand the causes and structure of such sharing. In
particular, it is unclear whether sharing is equally distributed across immune diseases (i.e. is
there a common factor conferring general risk for all immune disease?) or there are
subgroups of immune diseases that are more similar to each other than the rest.

Here we sought to investigate common factors representing general risk across immune
diseases. To examine the genetic architecture of nine immune-mediated diseases we applied
genomic structural equation modelling (genomic SEM) 6 to GWAS data. This revealed three
groups of diseases: first consisting of diseases affecting the gastrointestinal tract, the second

consisted of rheumatic and systemic disorders and the third group contained allergic diseases.
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Each group had an unique genetic architecture and only a handful of loci were in common
among the groups. Collectively, our results provide new insights into shared mechanisms of
genetic risk for immune-mediated diseases and prioritise drug targets that could be used for

multiple disorders.

Results

Factor analysis reveals three groups of immune-mediated diseases

To investigate whether there is a common genetic factor underlying multiple immune-
mediated diseases, we first used the multivariate LD score regression implementation in
genomic SEM 1617 to estimate genetic correlations among nine diseases (Crohn’s disease, CD;
ulcerative colitis, UC; primary sclerosing cholangitis, PSC; juvenile idiopathic arthritis, JIA;
systemic lupus erythematosus, SLE; rheumatoid arthritis, RA; type 1 diabetes, T1D; eczema,
Ecz; asthma, Ast) (Figure 1A, Supplementary Table 1). We collected GWAS summary statistics
for each of the traits, and we selected studies that used genome-wide genotyping arrays, as
it is required for accurate estimation of LD score regression. We then modelled the genetic
variance-covariance matrices across traits using genomic SEM 16, This allowed us to uncover
latent factors which represent shared variance components across diseases (Figure 1B). By
using a range of model fit statistics, we were able to show that the genetic correlation
structure was best described by a model using three factors (Supplementary Figure 1A-C).
Factor one consisted of diseases affecting the gastrointestinal tract (CD, UC and PSC). Factor
two contained autoimmune diseases, which were largely rheumatic and systemic disorders
(RA, SLE, JIA and T1D). Finally, factor three contained allergic diseases (Ast and Ecz) (Figure

1B). Therefore, we refer to factors as: Fgut, Faid and Fairg.

To identify how genetic variation impacts the identified latent factors, we tested the
association between common SNPs across GWAS studies and each of the latent factors. We
discovered 201 genome-wide significant regions that are associated with latent factors, 72 for
Feut, 66 for Faig and 63 for Faig (Figure 1C and 1D and Supplementary Table 2). Strikingly, the
overlap between these regions was modest, with only 30 out of 201 genomic regions
overlapping among at least two factors, and only four regions overlapping across all three

factors (Figure 1D). Comparing the z-scores for the three factors within each region showed
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96 that this modest overlap was not due to p-value thresholding (i.e the same region in another
97  factor having a p-value just below the threshold) (Figure 1E). In addition, we correlated Fgut,
98  Faiq and Farg With psoriasis 8 and allergies ®* GWAS, and showed that they have high
99  correlation with Fairg and not with the other factors (Supplementary Figure 2A). Furthermore,
100  eosinophil counts 2° also showed the highest correlation with Farg, giving further support to
101  our factor definition (Supplementary Figure 2B). We did not observe strong genetic
102  correlation with lymphocyte or monocyte counts 2° (Supplementary Figure 2B).
103
104  Finally, we investigated whether the SNPs were acting via the three factors according to the
105 proposed causal model or, whether SNPs had independent effects on the diseases that the
106  factors are composed of. To do so, we computed the Qsne heterogeneity statistics (Methods
107  and?!).In short, Qsnp allows us to identify SNPs that plausibly do not affect individual diseases
108 exclusively by their associations with the latent common factors. In other words, if the Qsnp
109 heterogeneity statistic is significant, it implies that the tested SNP acts at least partially
110  independently of the latent factors. Our results show that only 10% of loci were significant for
111 Qsnp heterogeneity (22/201) (Supplementary Figure 3A), suggesting that the three factor
112  model explained the genetic structure at the individual SNP level for 90% of identified regions.

113
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115  Figure 1. Three groups of immune-mediated diseases have distinct patterns of genetic
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116  associations. A) Genetic correlation matrix of nine immune-mediated disorders estimated
117  with LD score regression. Shades of blue and red indicate positive and negative correlations
118  respectively. (B-D) Blue represents Fgut, green Faig and red Farg. B) Path diagram of the three-
119  factor model of immune-mediated diseases. Colours represent different factors. Latent
120  variables representing common genetic factors are depicted as circles. Standardised loadings
121 (one-headed arrows), residual variances (two-headed arrows connecting the variable with
122  itself) and covariances (two-headed arrows connecting latent variables) are shown. C)
123  Manhattan plots of SNP-specific effects on each factor. Black rhomboids represent lead SNPs
124  and a solid line indicates the genome-wide significant threshold (p-value= 5x10%). D) UpSet
125 plot showing the overlap between significant genomic regions associated with different
126  factors; intersection size indicates the number of overlapping regions. Asymmetric overlaps
127  (e.g. two regions in one factor overlapping with one region in the other) are counted as one
128  overlap. Yellow represents overlapping genomic regions. E) Heatmap of absolute z-scores of
129  factor specific genomic regions. Each column corresponds to a lead SNP, with rows
130 corresponding to factors. Hierarchical clustering was applied to the columns, with breaks
131  along columns separating the factor-specific lead SNPs. CD, Crohn’s disease; UC, ulcerative
132  colitis; PSC, primary sclerosing cholangitis, JIA, juvenile idiopathic arthritis; SLE, systemic lupus
133  erythematosus; RA, rheumatoid arthritis ; T1D, type 1 diabetes; Ecz, eczema; Ast, asthma.
134

135 Latent factors have a distinct genetic architecture

136  An overlap of GWAS regions across two traits does not imply that the underlying causal
137  mechanism is the same across traits. Given that many GWAS regions are complex and could
138 contain multiple independent signals, we performed a systematic analysis of identified
139 regions by combining conditional analysis with colocalization. Briefly, to increase the
140 robustness of colocalization, we devised a statistical approach where the association signal is
141  first decomposed into its conditionally independent components. Next, each component was
142  used for colocalization testing which allowed us to group similar association signals (Figure
143  2A). This approach enabled resolving complex regions and discovering colocalization events
144  for secondary signals, which would not have been possible by colocalizing the whole regions.
145  Due to challenges of the HLA region we removed two genomic regions encompassing HLA
146 genes. We identified 286 independent signals in 199 GWAS associated regions
147  (Supplementary Table 3-6). Out of these 286 loci, 84 were specifically associated with Fgut, 94
148  with Faig and 83 with Fairg (Supplementary Table 3-4 and Figure 2B). Only 11 loci were shared
149 across any two factors, and only one was shared across all 3 factors. This further
150 demonstrated that each group of diseases had a specific pattern of genetic associations. For

151  example, a region on chromosome 16 encompassing multiple genes (11,006,011-11,751,015)
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152  hadsignificant associations with all three factors (Figure 2C and 2D). However, the conditional
153  analysis and colocalization demonstrated that these signals are independent and not shared
154  across factors. In this region we identified three independent signals that colocalize between
155  CD and Fgut: rs12922863 (the closest gene CIITA which is involved in antigen presentation),
156  rs415595 (the closest gene TNP2 involved in the regulation of protein processing) and
157  rs13335254 (the closest gene LITAF which regulates TNF-alpha expression). Similarly, Faig and
158  Fairg had two independent signals each, which colocalized with T1D and Ecz respectively. The
159  locus that was shared across all three groups of diseases is located at chromosomes 4
160 (122,903,441-123,720,933) and encompasses a potent regulator of T and B cell proliferation
161 IL21.

162  Takentogether, we identified independent signals between factors and determined how each

163  of the factors relate to individual diseases and their likely causal genes.
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Figure 2. Latent factors have a distinct genetic architecture. A) Diagram of the conditional
analysis and colocalization strategy (see Methods). Colours represent different traits. B) Blue,
green and red represent loci that were specific for Fgut, Faia and Fairg respectively, while yellow
represents loci that are shared between factors. C) Colocalization relationship between latent
factors and traits in the region 16:11,006,011 - 11,751,015. Colours represent disease groups.
Circles represent latent factors or traits, rsID of the lead SNP and rhomboids represent the
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171 loci that colocalize among traits. D) Conditional analysis of the genomic region
172  16:11,006,011-11,751,015. Locus-zoom plots of three different factors (blue for Fgu:, green
173  for Faig, and red for Fairg) and the conditional loci for each of the latent factors in the regions
174  are shown.

175

176  Factor-associated loci perturb different nodes in T cell activation and signalling

177  Identifying transdiagnostic risk pathways can uncover critical cell functions whose
178  perturbations lead to immune system dysfunction and diseases. Therefore, we sought to
179  translate factor-associated variants to cellular functions. Briefly, we identified the closest
180 gene to the lead SNP within each locus and used these genes to test for pathway enrichment
181  with gProfiler2 (Methods). Genes within the associated loci were enriched in cytokine
182  signalling, differentiation of T helper cells, and various immune diseases as well as response
183  to pathogens (Figure 3A and Supplementary Table 7). Given the modest overlap of factor-
184  associated loci, we expected that the enriched pathways would be distinct across factors.
185 However, factor associated genes were largely enriched in the same pathways, although
186  different genes were driving this enrichment (Figure 3A). For example, we observed that both
187  Fgut and Faig-associated loci were enriched in the JAK-STAT signalling pathway, which is critical
188  for response to many cytokines (Figure 3B). Despite both Fg.t and Faig being enriched for JAK-
189  STAT signalling, the implicated genes were distinct. Notably, several loci encompassing
190  cytokine genes (IL2, IL10, IFNG, IL12B) were associated with the Fgu: group of diseases, while
191  only /L21 was associated with the Faig group of diseases. Similarly, transcription factors STAT1
192  and STAT4 were specifically associated with Faig, while STAT3 was associated with Fgut. This
193  suggests that although trans-diagnostic risk loci are different for three groups of diseases,

194  they converge on perturbing similar cellular functions.
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196  Figure 3. Factor associated loci perturb different nodes of the same pathways . A) KEGG
197  pathway enrichment analysis of factor associated genes. The heatmap shows KEGG pathways
198 that were significantly enriched (p-adjusted < 0.05) in factor associated genes. The radius of
199 thecircle is proportional to the -logio(p-adjusted). The tile plot shows enriched genes in each
200 of the pathways. Blue, green and red represent the genes that contributed to the enrichment
201 for Fgut, Faid and Fairg respectively. B) Schematic representation of JAK-STAT signalling pathway.
202  Blue and green represent components of the pathway that contribute to the enrichment from
203  Fgut and Faiq respectively.
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204

205 To test whether transdiagnostic risk variants also converge on a specific cell type, we
206  conducted a MAGMA gene-property analysis implemented in CELLECT %223, To do that we first
207  used the OneK1K cohort %4, which to date is the largest study containing single-cell RNA
208 sequencing (scRNA-seq) data from 982 donors and 1.27 million peripheral blood mononuclear
209 cells (PMBCs). We showed that there is an enrichment of Fgut, Faig, and Faig-associated loci in
210 memory CD4, CD8 and unconventional T cells in all three disease groups (Figure 4A). In
211  contrast, we did not observe enrichment of GWAS loci in naive T cells or B cell populations
212  consistent with previous reports °. Interestingly, NK cells were also enriched, but only for the
213  Fgut and Faiq group of diseases. A similar pattern of enrichment was observed using S-LDSC
214  (Supplementary Figure 4). In addition, given that tonsils are the secondary lymphoid organs
215  where immune activation occurs, we verified T cell enrichments using a study which profiled
216 human tonsils at the single cell level 26, These data showed the same pattern of trans-
217  diagnostic enrichment, observed in CD4 and CD8 T cells (particularly in regulatory T cells)
218  (Figure 4B). As observed in PBMC data, disease loci were generally not enriched in B cells. The
219  exception to that was memory B cells expressing Fc receptor—like-4 (FCRL4+ B cells). FCRL4+
220 B cells are thought to be tissue resident and have been identified as a potential target in RA
221  therapy ?’, hence our results provide further genetic support for their modulation.
222  Furthermore, we observed that disease loci were enriched in immune cells from gut 28 and
223 lung % cell atlasses, with the strongest enrichment observed in T cells as previously shown
224  (Supplementary Figure 5A and 5B). Nevertheless, we did not observe enrichment in epithelial
225  or other non-immune cells (Supplementary Figure 5A and 5B). Taken together, the cross
226  disease factors capture true immune signals that are shared across diseases. Finally, we
227  observed a similar enrichment pattern in biological processes across all three groups of
228  diseases. Notably, genes in factor-associated loci were enriched for lymphocyte and immune
229  activation (Figure 4C and Supplementary Table 8), albeit this enrichment was driven by a
230  distinct group of genes (Figure 4D) as demonstrated previously.

231  Taken together, our data suggests that different groups of diseases have distinct patterns of
232  genetic associations but that associated loci converge on perturbing different nodes in

233 lymphocyte activation and cytokine signalling.
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Figure 4. Factor associated loci converge on T cells. A-B) MAGMA gene-property results of
Oneklk PBMC dataset (A) and tonsillar cells (B). The barplot shows -logio(p-value) of the
enrichment. Colours in the barplot represent groups of cells belonging to the same cell-type.
The heatmap shows regression coefficients from the MAGMA model. C) The bar plot shows
the -logio(p-adjusted) of the top five GO terms enriched in factor associated genes. Blue,
green and red represent the GO terms for Fgut, Faig and Fairg respectively. D) The stacked-bar
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241 plot shows the number of genes unique or shared by the latent factors in the top 10 enriched
242 GO terms. We bolded pathways associated with cell activation. Grey represents genes unique
243  toone of the factors, purple represents genes that are associated with two factors and orange
244  represents genes that are associated with all three latent factors.

245

246  Colocalizing immune cell eQTLs prioritises cross-disease causal genes and identifies potential

247  drug targets

248  To assess whether variants associated with each disease group modulate gene expression in
249 immune cells, we tested for colocalization between factor-associated loci and single-cell
250 eQTLs (sc-eQTLs) derived from peripheral blood mononuclear cells (PMBCs) from the OneK1K
251  cohort 4. Briefly, to identify independent and secondary eQTL signals we performed locus
252  decomposition (see Methods) and colocalized with factor-associated loci using the Bayesian
253  framework coloc 3. We identified 55 colocalizations in Fgut, 41 in Faig and 21 in Farg with PP4 >
254 0.9 (Supplementary Table 9). Finally, to determine whether an increase of gene expression
255  predicts increased disease risk, we used Mendelian Randomization (MR) using the Wald ratio
256 method (Figure 5A and Supplementary Table 10). For example, an eQTL for Src family tyrosine
257  kinase BLK present in naive memory B cells specifically colocalized with an association with
258  the Faig group of traits (Figure 5B), with an increase of BLK expression associated with lower
259  disease risk. This is consistent with the fact that rare variants that reduce BLK function have
260 been demonstrated to induce SLE 3. In another example, we observed that a locus associated
261  with Fgut modulates the expression of Prostaglandin E Receptor 4 PTGER4 (Figure 5C). In this
262  case, anincrease in gene expression is protective to the Fgu: group of diseases.

263  One of the major hurdles of human genetics has been to translate genetic findings into clinical

32 3nd

264 insights. To identify potential drug targets, we used the Open Targets Platform
265 investigated whether colocalizing genes are known drug targets (Figure 5D). Of the 47 eQTL
266  genes, eight are targeted by drugs which are either already used in the clinics or are in clinical
267  trials. Four of these eight have been previously used in autoimmune diseases, while the other
268 four represent potential candidates for drug repurposing. For example, our data shows that
269 theincrease of expression of a key immune regulator CTLA4 is protective against Faig group of
270 diseases. The property of CTLA-4 to regulate the immune system has long been exploited in
271  treatment of RA 12 . Similarly, an inhibitor for Integrin Subunit Alpha 4 ITGA4 has been trailed
272  inUCand CD (Open Targets database and Figure 5D). Our data gives further genetic evidence

273  thatincrease of ITGA4 expression leads to an increased risk for Fgut diseases, and therefore it
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274 s plausible that inhibiting ITGA4 would be beneficial not only in CD and UC but should also be
275  trialled in PSC.

276  Takentogether, our data shows that understanding the pleiotropy of genetic associations can
277  reveal common disease mechanisms, identify novel drug targets and offer evidence for drug
278  repurposing.

279

280

281
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283  Figure 5. Colocalization of immune cell eQTLs prioritises cross-disease causal genes and
284 identifies potential drug targets. A) Colocalization and Mendelian Randomization results (see
285 Methods) of eQTL predicting risk to the latent factors. Triangles pointing upwards indicate
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286 that an increase of gene expression increases disease risk, while triangles point downwards
287 indicate decrease of disease risk. Blue, green and red represent Fgut, Faia and Fairg respectively.
288 Only significant Mendelian Randomization results (p-value <0.05) are shown. B-C)
289  Colocalization-plots of latent factors and eQTLs. Posterior probability of colocalization (H4) is
290 shown. B) Locus-zoom plot representing the colocalization between the BLK gene in B
291 memory cells and Faig. C) Locus-zoom plot representing the colocalization between the
292  PTGER4 gene in NK cells and Fgu:. D) Table representing the drugs prescribed in clinics, in
293  clinical trials or with preliminary results in mice for immune-mediated disorders targeting
294  eQTLgenes. MS, multiple sclerosis; UC, ulcerative colitis; CD, Crohn’s disease; RA, rheumatoid
295  arthritis; JIA, juvenile idiopathic arthritis; T1D, type 1 diabetes; EAE, experimental
296  autoimmune encephalomyelitis.

297

298 Discussion

299

300 Inthis work we used genomic SEM to investigate the common genetic factors predisposing to
301 multiple immune-mediated diseases. We identified three broad categories of immune
302 mediated diseases: affecting the gastrointestinal tract, rheumatic and systemic disorders, and
303 allergic diseases. Surprisingly, underlying factors affecting the pathogenesis of each of these
304 disease groups had a highly specific pattern of genetic associations, with only 12/286 loci
305 being shared across these groups. This suggests that there is a genetic similarity between
306 diseases within a group, but that the associated loci are highly distinct across groups. The
307 identified groups agree with previous epidemiological findings. For example, T1D was
308 grouped with rheumatic diseases including RA, which is in line with reports that patients with
309 T1D but not T2D have increased risk of RA (OR=4.9) 33, Similarly, approximately 70% of
310 patients with PSC have IBD, with UC being the most prevalent 34. Our study shows that there
311 are common genetic mechanisms driving the pathogenesis of these diseases and suggests
312  that creating cross-disorder cohorts of immune diseases could increase the power to identify
313  causal pathogenic processes.

314

315  Importantly, over 90% of identified loci acted via common factors, rather than independently
316  on each of the diseases. Therefore, we sought to identify transdiagnostic risk pathways in
317  order to uncover biological processes whose perturbation affects each of the disease groups.
318  Ourstudy showed that despite associated loci being highly factor specific, they converged on

319  perturbing the same pathways involved in T cell activation, differentiation and cytokine
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320 signalling. Fgut and Faig-associated loci were enriched in the JAK-STAT signalling pathway,
321  although there was no overlap in genes driving the pathway enrichment in each of these
322  groups. Loci encompassing cytokine genes (/L2, IL10, IFNG, IL12B) and STAT genes (STAT1 and
323  STAT4) were associated with the Fgu: group of diseases, while IL21 and STAT3 were associated
324  with the Faig group of diseases. Similarly, out of 55 genes that are enriched for lymphocyte
325 activation, only 6 were shared across at least two factors. Therefore, one can speculate that
326  perturbations at different nodes which regulate T cell activation and cytokine signalling are
327  partially responsible for driving different disease outcomes. Recent advances in CRISPR
328 editing in T cells and its subpopulations 3>3¢ will be instrumental to elucidate the differential
329  effects of perturbing each node within shared pathways.

330  Finally, it has been widely demonstrated that supporting preclinical data with genetic
331  evidence can significantly increase the chance of developing successful drugs 3. Therefore,
332 understanding how trans-diagnostic variants regulate gene expression can help to identify
333  novel drug targets or supporting evidence to existing trials. Here we colocalized the factor-
334  associated loci with sc-eQTL derived from the OneK1K cohort. To date, OneK1K is the largest
335  study containing single-cell RNA sequencing (scRNA-seq) data from 982 donors and 1.27
336  million PMBCs. We showed that eight of these colocalizing genes are known drug targets
337  offering further genetic support for their potential therapeutic effect. In addition, given that
338 the assessed variants are pleiotropic, our results imply that identified drugs could be
339 repurposed for diseases within the same group. For example, our data shows that the
340 increase of expression of a key immune regulator CTLA4 is protective against Faig group of
341  diseases. The property of CTLA-4 to regulate the immune system has long been exploited in
342  treatment of RA 2. Similarly, an inhibitor for Integrin Subunit Alpha 4, ITGA4 has been trailed
343 inUCand CD (Open Targets database). Our data gives further genetic evidence that increase
344  of ITGA4 expression leads to an increased risk for Fgu: diseases, and therefore it is plausible
345  that inhibiting ITGA4 would be beneficial not only in CD and UC but should also be trialled in
346  PSC. However, one limitation of this study is that we identified colocalization events for 40
347  out of 286 loci. This highlights the urgent need for larger cohorts, which will be more powered
348  to detect eQTLs, as well as large-scale genetic studies in immune disease patients.

349 In conclusion, our work underscores that three groups of immune-mediated diseases do not

350 share similarities in their genetic predisposition, but show associated loci which converge on
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351 perturbing different nodes of a common set of pathways, including in lymphocyte activation
352  and cytokine signalling.
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362

363

364 Methods

365

366  Processing of summary statistics for LD score regression

367 We downloaded GWAS summary statistics from published studies on the most common
368 autoimmune disorders: T1D 7, RA &, JIA 38 | SLE 32, CD 4%, UC 4%, AST *!, ECZ #?, PSC *3
369  (Supplementary Table 1). Where necessary, rsIDs were added to the summary statistics using
370 the reference file provided in the Genomic SEM repository

371 (https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxseebsxollv/file/576598996073).

372  Where necessary, chromosomes X and Y were removed and standard error of logistic betas
373  were calculated based on Odds Ratio confidence intervals. Summary statistics were formatted
374  with the munge function from Genomic SEM R package v.0.0.5, (with default parameters)
375  which removes all the SNPs not present in the reference file, filters out SNP with MAF < 1%
376 and flips the alleles according to the reference file and computes z-scores. The HapMap3
377  reference file is provided in the Genomic SEM repository
378  https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxseebsxollv/file/805005013708.
379

380 Estimation of genetic correlation with Genomic SEM
381  The sum of effective sample size for GWAS that were meta-analysed was calculated by

382 retrieving the information about the cohorts from the respective publications
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383  (Supplementary Table 1). We calculated the sample prevalence for each of the cohorts using
384  the following formula

385 Ve = Neases/ (Neases + Neontrots) »

386

387  Next, we calculated the cohort specific sample size as follows:

388

389 EffNe = 4 x v, X (1 =) X (Mggses + Neontrots) »

390

391  Finally, we summed the Ef f N, of each contributing cohort to compute the sum of effective

392  sample size:

393 X EffN,,
394
395 Where c are contributing cohorts (as described at

396  https://github.com/GenomicSEM/GenomicSEM) 44, To estimate genetic correlation we used

397  theldsc function in Genomic SEM, using the LD reference panel provided in the Genomic SEM
398  repository

399  (https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxseebsxollv/folder/119413852418
400 ).

401

402  Factor model specification and GWAS estimation with Genomic SEM

403 We computed three confirmatory factor analysis models guided by exploratory factor
404  analysis: a) a common factor model with the latent factor variance fixed to 1. b) a two-factor
405 model, where one factor was loading into CD, UC, PSC, JIA, SLE, RA and T1D while the other
406 factor was loading into Ecz and Ast. We allowed for correlation between factors. c) A three
407  factor model where Fg.t was loading into CD, UC, PSC; Faiq was loading into T1D, SLE, JIA, RA,
408 and Farg loading into Ecz and Ast; we fixed the variance of the latent factors to 1 and allowed
409 correlation between the latent factors (Supplementary Figure 1).

410 The fit of the model was assessed by estimating the comparative fit index (CFl) and the
411  standardised root mean square residual (SRMR) parameters. We used CFl >0.95 and SRMR <
412  0.07 as a measure of good fit. Before estimating the SNP-specific effect, we aligned the
413  summary statistics to the reference file

414  (https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxseebsxollv/file/576598996073)



https://doi.org/10.1101/2022.10.03.510292
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.03.510292; this version posted October 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

415  which is used to standardise the effect sizes and SE and format the summary statistics (i.e.
416 remove SNPs not present in the reference files and flip the alleles to match the reference)
417  with the sumstats function in Genomic SEM with default parameters. SNP-specific effects of
418 3,309,805 SNPs were estimated with the userGWAS function with default parameters using
419 the weighted least squares (WLS) estimation method. In order to evaluate whether the
420 calculated SNP effects were acting through our three factor model, we performed the Qsnp
421 heterogeneity tests. The heterogeneity test returns a y?, whose null hypothesis suggests that
422  the SNPis acting through the specified model. Therefore, rejecting the null hypothesis means
423  that the SNP acts through a model that is different from the specified one 1622,

424

425 Loci definitions and conditional analysis

426  We define the boundaries of each significant genomic region by identifying all the SNPs with
427  ap-value lower than 1x10°°. We calculated the distance among each consecutive SNPs below
428  this threshold in the same chromosome; if two SNPs were further than 250 kb apart, then
429 they were defined as belonging to two different genomic regions. We then considered as
430 ‘significant’ all the genomic regions where at least one SNP had a p-value < 5x103. This
431 procedure was repeated for all GWAS. Finally, we compared genomic regions between
432  different GWAS and merged those which overlapped, redefining the boundaries as the
433  minimum and maximum genomic position across all overlapping genomic regions.

434

435  Processing of summary statistics for conditional analysis and colocalization

436  Before running conditional analysis and colocalization, summary statistics (traits and factors)

4, We specify the

437  were processed with the Bioconductor MungeSumstats package
438 parameters to the MungeSumstat function to: align the summary statistics to reference
439 genome to the build GRCh7 (1000genomes Phase2 Reference Genome Sequence hs37d5,
440 based on NCBI GRCh37, R package ‘BSgenome.Hsapiens.1000genomes.hs37d5’ v0.99.1), flip
441  the alleles according to the reference file, remove the SNPs not in the reference file (SNP
442  locations for Homo sapiens, dbSNP Build 144, based on GRCh37.p13, R package
443  ‘SNPlocs.Hsapiens.dbSNP144.GRCh37’ v.0.99.20), exclude the SNPs with betas or standard
444  errors equal to 0.

445

446  Conditional analysis and colocalization
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447  The genomic regions defined in the previous steps are based on genomic position, but
448  multiple association signals may be present within each genomic region. To this end, we
449  developed a statistical approach which first divides each GWAS-significant genomic region
450 into its component signals and then uses colocalization across different traits to group similar
451  association signals. First, in each genomic region for each GWAS we performed stepwise
452  forward conditional regression using COJO %6. The stopping criteria was that all conditional p-
453  values were larger than 1x10™. This led to a set of independent SNPs using all SNPs within the
454  genomic region boundary (+/- 100kb). For each SNP, a conditional dataset was produced
455  where SNPs in the genomic region were conditioned to all identified independent SNPs apart
456  from the target one. We then considered as true sighals those with p-value p<10® or those
457  for which the SNP with the lowest p-value was lower than 5x10% in the original GWAS.
458 This procedure was repeated on all the traits which had a significant association in the
459  considered genomic region. We thus obtained for each trait a set of conditional datasets
460  covering all the SNPs in the genomic region. This procedure is similar to that used by Robinson
461 et al ¥ but instead of using the step-wise conditioned datasets it uses an ‘all but one’
462  approach.

463  To understand which loci were pleiotropic between traits, we ran colocalization using coloc
464 3 analysis between all pairs of loci specific for each trait. Loci which colocalized with PP4 >
465 0.9 were grouped in a single locus. We excluded the genomic regions in the HLA locus
466  (chromosome 6 - 29,000,000-33,000,000) from this analysis.

467

468  Colocalization with eQTL data

469 Wedownloaded eQTLs from the OneK1K cohort 24. We first identified for each genomic region
470 if significant cis-eQTLs were present. For each identified eQTL we performed the
471  decomposition of the locus as described above and the identified loci were colocalized with
472  factor and individual trait associated GWAS signals. To claim a true colocalizing signal we
473  required that PP4 > 0.9. In order to identify the direction of the effect of the increase in gene
474  expression for the colocalizing loci, we used Mendelian Randomization using the Wald ratio
475 method (TwoSampleMR R package, %8) using as instrument the SNP with the smallest p-value
476 in the conditional datasets. Significant MR results (p-value lower than 0.05) were reported.
477  This procedure was performed cell type per cell type.

478


https://doi.org/10.1101/2022.10.03.510292
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.03.510292; this version posted October 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

479  Cell type enrichment

480 To identify cell types underlying identified factors we used CELL-type Expression-specific
481  integration for Complex Traits (CELLECT). CELLECT quantifies the association between GWAS
482  signal and gene expression specificity using well established models for GWAS enrichment
483 MAGMA 22 and S-LDSC *.

484

485 Gene based enrichment

486 Candidate genes were defined by mapping each lead SNP to the nearest transcription starting
487  site of protein coding genes using the EnsDb.Hsapiens.v75 R package (v2.99.0). To identify
488  enrichment in KEGG pathways, GO terms and REACT pathways we used the R package
489  gprofiler2 (v0.2.1) %, with default parameters. Pathway was considered significant if p-adj <
490  0.05. We used the R package pathview (v1.34.0) °! to represent the KEGG pathways and to
491 highlight factor-specific genes. The diagram shown in Figure 3B was created with
492  biorender.com using the KEGG pathway as reference.

493

494  Identification of drug targets

495  Open Targets Platform 32 (v.22.06) was used to identify drug targets for eQTL genes. This
496  website was queried on (29th August 2022).
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Supplementary Figure 1. Factor models that were tested and their fit statistics. A) A
common factor model with the latent factor variance fixed to 1. B) a two factor model, where
one factor was loading into CD, UC, PSC, JIA, SLE, RA, T1D while the other factor was loading
into Ecz and Ast. We allowed correlation between factors and imposed the residual variance
to be positive for Ezc. C) A three factor model where Fgut was loading into CD, UC, PSC; Faig
was loading into T1D, SLE, JIA, RA and Faig loading into Ecz and Ast; we fixed the variance of
the latent factors to 1 and we allowed correlation between the latent factors and imposed

the residual variance to be positive for Ezc.
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Supplementary Figure 2. LDSC genetic correlations among Factors and allergic traits. A) LDSC
genetic correlations among factors, psoriasis ' and allergies '°. Shades of blue and red
indicate positive and negative correlations respectively. B) LDSC genetic correlations between
factors and circulating cell counts 2°. Blue, green and red represent Fgu, Faia and Fairg
respectively.
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Supplementary Figure 3. Qsnp statistics of genomic regions lead SNP. A) The bar plot shows

the number of lead SNPs of the genomic region which had a significant Qsne (in white) and not

significant (in grey).
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Supplementary Figure 4. Comparison of LDSC and MAGMA enrichments. Dot plot shows
correlation of -logio(p-value) between MAGMA and LDSC outputs for OneK1K cohort.
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A) scRNA-seq of human intestinal tract cells (EImentaite et al. 2021)
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scRNA-seq of human lung cells (Madissoon et al. 2019)
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Supplementary Figure 5. A-B) MAGMA gene-property results of intestinal cells 28 (A) and lung
cells 2°(B). The barplot shows -logio(p-value) of the enrichment.
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