

1 **Cross-disorder genetic analysis of immune diseases reveals distinct disease groups and**
2 **associated genes that converge on common pathogenic pathways**

3

4 Pietro Demela¹, Nicola Pirastu¹, Blagoje Soskic¹

5 ¹Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan

6 Correspondence to: Blagoje Soskic (blagoje.soskic@fht.org)

7

8

9 Genome-wide association studies (GWAS) have mapped thousands of susceptibility loci
10 associated with immune-mediated diseases, many of which are shared across multiple
11 diseases. To assess the extent of the genetic sharing across nine immune-mediated diseases
12 we applied genomic structural equation modelling (genomic SEM) to GWAS data. By
13 modelling the genetic covariance between these diseases, we identified three distinct groups:
14 gastrointestinal tract diseases, rheumatic and systemic diseases, and allergic diseases. We
15 identified 92, 103 and 91 genetic loci that predispose to each of these disease groups, with
16 only 12 of them being shared across groups. Although loci associated with each of these
17 disease groups were highly specific, they converged on perturbing the same pathways,
18 primarily T cell activation and cytokine signalling. Finally, to assess whether variants
19 associated with each disease group modulate gene expression in immune cells, we tested for
20 colocalization between loci and single-cell eQTLs derived from peripheral blood mononuclear
21 cells. We identified the causal route by which 47 loci contribute to predisposition to these
22 three disease groups. In addition, given that the assessed variants are pleiotropic, we found
23 evidence for eight of these genes being strong candidates for drug repurposing. Taken
24 together, our data suggest that different constellations of diseases have distinct patterns of
25 genetic association, but that associated loci converge on perturbing different nodes in a
26 common set of T cell activation and signalling pathways.

27

28 **Introduction**

29

30 Immune-mediated diseases are chronic and disabling conditions where the immune system
31 attacks healthy tissue, leading to its destruction. It is well documented that these diseases co-

32 occur within families and that multiple immune diseases are likely to occur in the same
33 individual¹⁻³ suggesting that immune diseases have a shared genetic basis.

34

35 Genome-wide association studies (GWAS) have identified thousands of susceptibility loci
36 associated with immune-mediated diseases, many of which have been observed in multiple
37 diseases^{4,5}. For example, the major histocompatibility complex (MHC) locus is associated with
38 most of autoimmune diseases⁶. Another example is a locus containing *CTLA4* which is
39 associated with multiple immune diseases including rheumatoid arthritis (RA), celiac disease
40 (CeD), type 1 diabetes (T1D) and Hashimoto thyroiditis (Ht)⁷⁻¹⁰. Targeting the CTLA-4 pathway
41 has been successful in tumour immunotherapy, however in more than 60% of patients, CTLA-
42 4 blockade leads to multiorgan autoimmune reaction¹¹. In contrast, the property of CTLA-4
43 to bind the costimulatory molecules is extensively used as a treatment for RA¹².

44

45 Understanding the pleiotropy of genetic associations is critical, as it can reveal common
46 disease mechanisms and pathogenic pathways. A cross-disorder genomic analysis could
47 identify shared mechanisms and potential targets for drug repurposing. By combining cases
48 and controls across immune diseases, recent work identified 224 shared associations,
49 improved fine-mapping and revealed shared disease genes such as *RGS1*¹³. Similarly, a study
50 using local genetic correlation showed widespread sharing across traits¹⁴. For example, T1D
51 and Systemic Lupus Erythematosus (SLE) shared 18 loci. Another study assessed the
52 regulatory activity of immune disease associated SNPs and showed that shared genes were
53 highly connected and were involved in immune pathways¹⁵. Although it has been established
54 that immune phenotypes have a shared genetic predisposition, further detailed and
55 systematic analysis is necessary to understand the causes and structure of such sharing. In
56 particular, it is unclear whether sharing is equally distributed across immune diseases (i.e. is
57 there a common factor conferring general risk for all immune disease?) or there are
58 subgroups of immune diseases that are more similar to each other than the rest.

59 Here we sought to investigate common factors representing general risk across immune
60 diseases. To examine the genetic architecture of nine immune-mediated diseases we applied
61 genomic structural equation modelling (genomic SEM)¹⁶ to GWAS data. This revealed three
62 groups of diseases: first consisting of diseases affecting the gastrointestinal tract, the second
63 consisted of rheumatic and systemic disorders and the third group contained allergic diseases.

64 Each group had an unique genetic architecture and only a handful of loci were in common
65 among the groups. Collectively, our results provide new insights into shared mechanisms of
66 genetic risk for immune-mediated diseases and prioritise drug targets that could be used for
67 multiple disorders.

68

69 **Results**

70

71 *Factor analysis reveals three groups of immune-mediated diseases*

72 To investigate whether there is a common genetic factor underlying multiple immune-
73 mediated diseases, we first used the multivariate LD score regression implementation in
74 genomic SEM^{16,17} to estimate genetic correlations among nine diseases (Crohn's disease, CD;
75 ulcerative colitis, UC; primary sclerosing cholangitis, PSC; juvenile idiopathic arthritis, JIA;
76 systemic lupus erythematosus, SLE; rheumatoid arthritis, RA; type 1 diabetes, T1D; eczema,
77 Ecz; asthma, Ast) (Figure 1A, Supplementary Table 1). We collected GWAS summary statistics
78 for each of the traits, and we selected studies that used genome-wide genotyping arrays, as
79 it is required for accurate estimation of LD score regression. We then modelled the genetic
80 variance-covariance matrices across traits using genomic SEM¹⁶. This allowed us to uncover
81 latent factors which represent shared variance components across diseases (Figure 1B). By
82 using a range of model fit statistics, we were able to show that the genetic correlation
83 structure was best described by a model using three factors (Supplementary Figure 1A-C).
84 Factor one consisted of diseases affecting the gastrointestinal tract (CD, UC and PSC). Factor
85 two contained autoimmune diseases, which were largely rheumatic and systemic disorders
86 (RA, SLE, JIA and T1D). Finally, factor three contained allergic diseases (Ast and Ecz) (Figure
87 1B). Therefore, we refer to factors as: F_{gut} , F_{aid} and F_{alrg} .

88

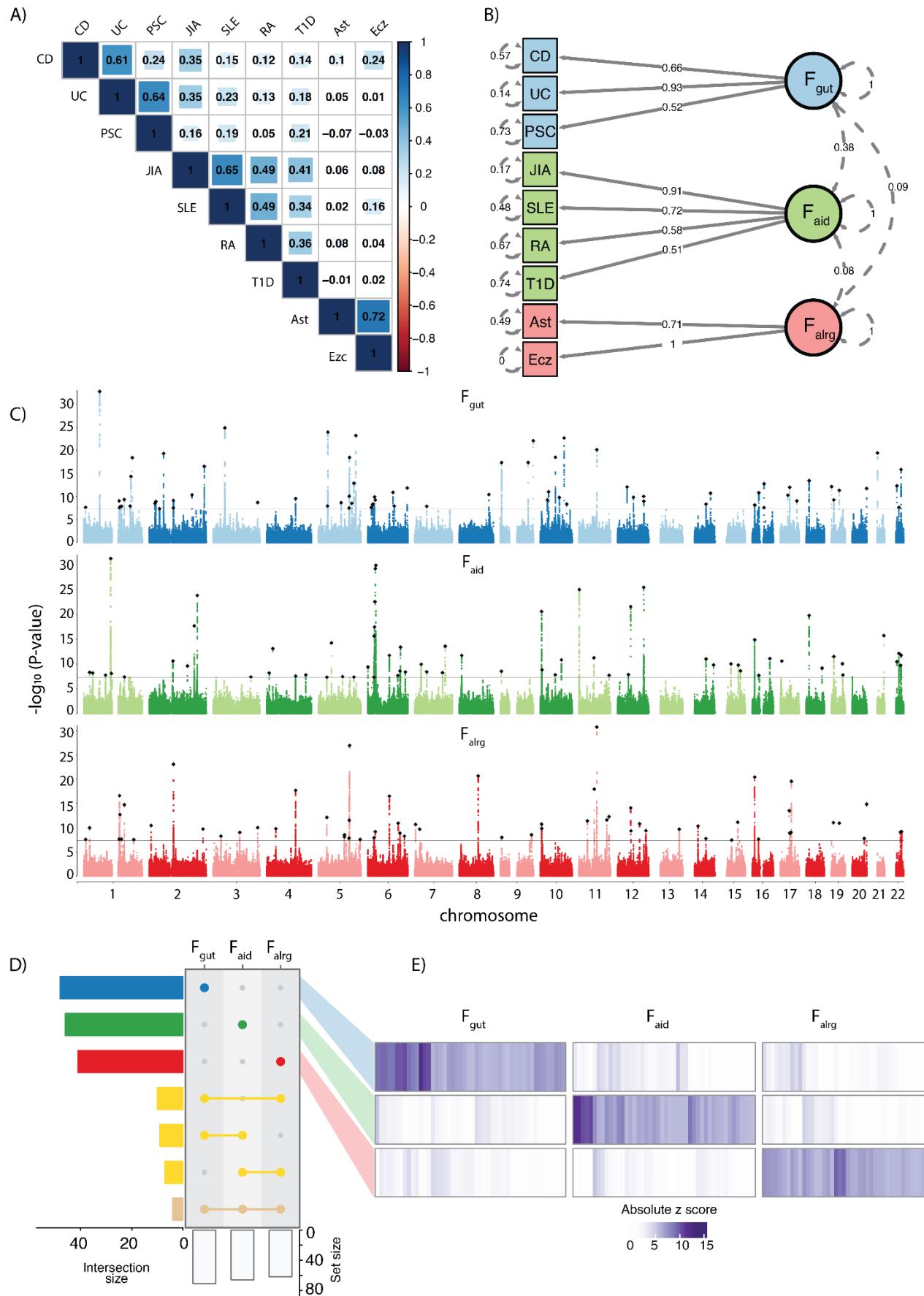
89 To identify how genetic variation impacts the identified latent factors, we tested the
90 association between common SNPs across GWAS studies and each of the latent factors. We
91 discovered 201 genome-wide significant regions that are associated with latent factors, 72 for
92 F_{gut} , 66 for F_{aid} and 63 for F_{alrg} (Figure 1C and 1D and Supplementary Table 2). Strikingly, the
93 overlap between these regions was modest, with only 30 out of 201 genomic regions
94 overlapping among at least two factors, and only four regions overlapping across all three
95 factors (Figure 1D). Comparing the z-scores for the three factors within each region showed

96 that this modest overlap was not due to p-value thresholding (i.e the same region in another
97 factor having a p-value just below the threshold) (Figure 1E). In addition, we correlated F_{gut} ,
98 F_{aid} and F_{alrg} with psoriasis¹⁸ and allergies¹⁹ GWAS, and showed that they have high
99 correlation with F_{alrg} and not with the other factors (Supplementary Figure 2A). Furthermore,
100 eosinophil counts²⁰ also showed the highest correlation with F_{alrg} , giving further support to
101 our factor definition (Supplementary Figure 2B). We did not observe strong genetic
102 correlation with lymphocyte or monocyte counts²⁰ (Supplementary Figure 2B).

103

104 Finally, we investigated whether the SNPs were acting via the three factors according to the
105 proposed causal model or, whether SNPs had independent effects on the diseases that the
106 factors are composed of. To do so, we computed the Q_{SNP} heterogeneity statistics (Methods
107 and²¹). In short, Q_{SNP} allows us to identify SNPs that plausibly do not affect individual diseases
108 exclusively by their associations with the latent common factors. In other words, if the Q_{SNP}
109 heterogeneity statistic is significant, it implies that the tested SNP acts at least partially
110 independently of the latent factors. Our results show that only 10% of loci were significant for
111 Q_{SNP} heterogeneity (22/201) (Supplementary Figure 3A), suggesting that the three factor
112 model explained the genetic structure at the individual SNP level for 90% of identified regions.

113

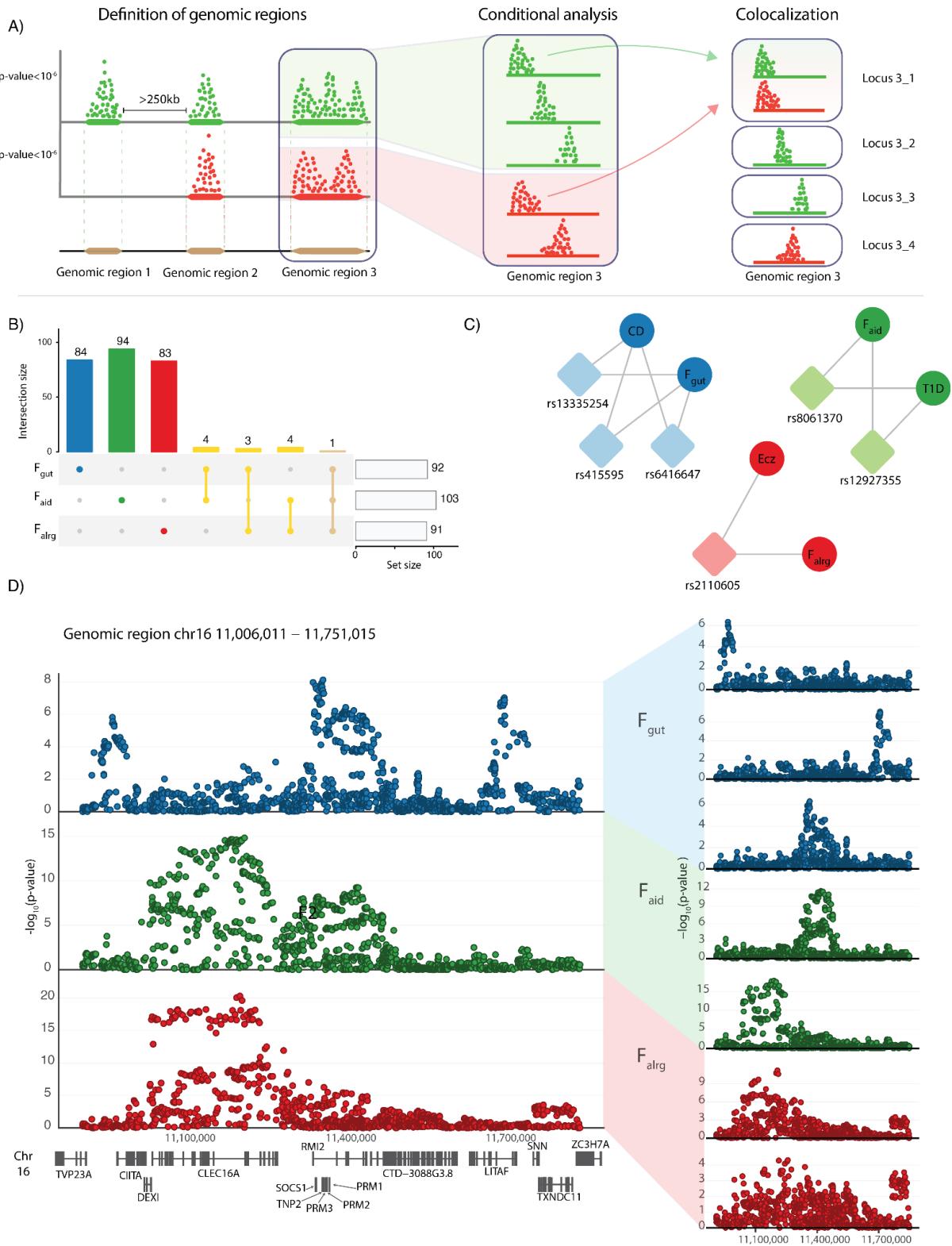


116 **associations.** **A)** Genetic correlation matrix of nine immune-mediated disorders estimated
117 with LD score regression. Shades of blue and red indicate positive and negative correlations
118 respectively. **(B-D)** Blue represents F_{gut} , green F_{aid} and red F_{alrg} . **B)** Path diagram of the three-
119 factor model of immune-mediated diseases. Colours represent different factors. Latent
120 variables representing common genetic factors are depicted as circles. Standardised loadings
121 (one-headed arrows), residual variances (two-headed arrows connecting the variable with
122 itself) and covariances (two-headed arrows connecting latent variables) are shown. **C)**
123 Manhattan plots of SNP-specific effects on each factor. Black rhomboids represent lead SNPs
124 and a solid line indicates the genome-wide significant threshold ($p\text{-value} = 5 \times 10^{-8}$). **D)** UpSet
125 plot showing the overlap between significant genomic regions associated with different
126 factors; intersection size indicates the number of overlapping regions. Asymmetric overlaps
127 (e.g. two regions in one factor overlapping with one region in the other) are counted as one
128 overlap. Yellow represents overlapping genomic regions. **E)** Heatmap of absolute z-scores of
129 factor specific genomic regions. Each column corresponds to a lead SNP, with rows
130 corresponding to factors. Hierarchical clustering was applied to the columns, with breaks
131 along columns separating the factor-specific lead SNPs. CD, Crohn's disease; UC, ulcerative
132 colitis; PSC, primary sclerosing cholangitis; JIA, juvenile idiopathic arthritis; SLE, systemic lupus
133 erythematosus; RA, rheumatoid arthritis; T1D, type 1 diabetes; Ecz, eczema; Ast, asthma.
134

135 *Latent factors have a distinct genetic architecture*

136 An overlap of GWAS regions across two traits does not imply that the underlying causal
137 mechanism is the same across traits. Given that many GWAS regions are complex and could
138 contain multiple independent signals, we performed a systematic analysis of identified
139 regions by combining conditional analysis with colocalization. Briefly, to increase the
140 robustness of colocalization, we devised a statistical approach where the association signal is
141 first decomposed into its conditionally independent components. Next, each component was
142 used for colocalization testing which allowed us to group similar association signals (Figure
143 2A). This approach enabled resolving complex regions and discovering colocalization events
144 for secondary signals, which would not have been possible by colocalizing the whole regions.
145 Due to challenges of the HLA region we removed two genomic regions encompassing *HLA*
146 genes. We identified 286 independent signals in 199 GWAS associated regions
147 (Supplementary Table 3-6). Out of these 286 loci, 84 were specifically associated with F_{gut} , 94
148 with F_{aid} and 83 with F_{alrg} (Supplementary Table 3-4 and Figure 2B). Only 11 loci were shared
149 across any two factors, and only one was shared across all 3 factors. This further
150 demonstrated that each group of diseases had a specific pattern of genetic associations. For
151 example, a region on chromosome 16 encompassing multiple genes (11,006,011–11,751,015)

152 had significant associations with all three factors (Figure 2C and 2D). However, the conditional
153 analysis and colocalization demonstrated that these signals are independent and not shared
154 across factors. In this region we identified three independent signals that colocalize between
155 CD and F_{gut} : rs12922863 (the closest gene *CIITA* which is involved in antigen presentation),
156 rs415595 (the closest gene *TNP2* involved in the regulation of protein processing) and
157 rs13335254 (the closest gene *LITAF* which regulates TNF-alpha expression). Similarly, F_{aid} and
158 F_{alrg} had two independent signals each, which colocalized with T1D and Ecz respectively. The
159 locus that was shared across all three groups of diseases is located at chromosomes 4
160 (122,903,441-123,720,933) and encompasses a potent regulator of T and B cell proliferation
161 *IL21*.
162 Taken together, we identified independent signals between factors and determined how each
163 of the factors relate to individual diseases and their likely causal genes.



164

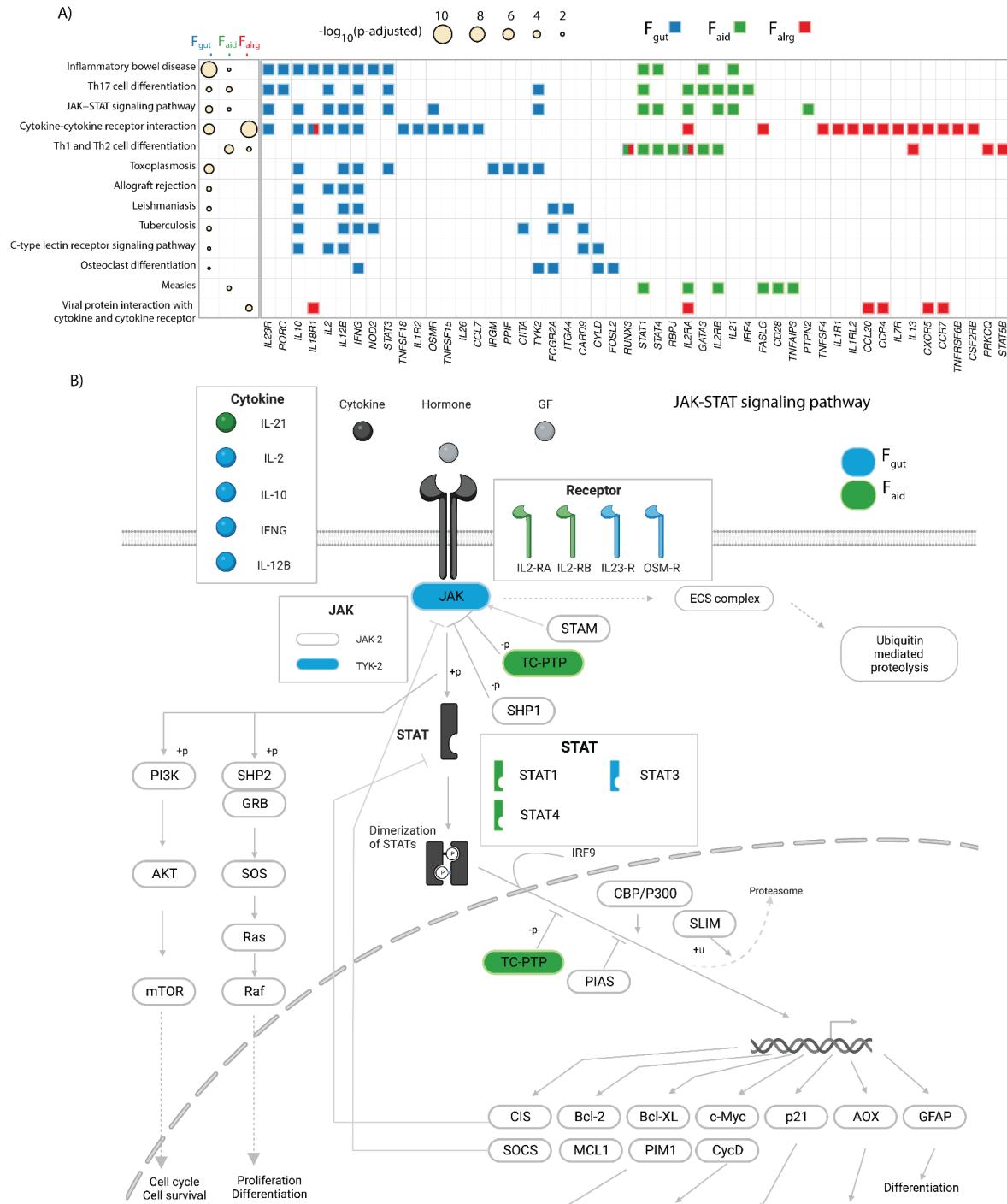
165 **Figure 2. Latent factors have a distinct genetic architecture. A)** Diagram of the conditional
 166 analysis and colocalization strategy (see Methods). Colours represent different traits. **B)** Blue,
 167 green and red represent loci that were specific for F_{gut} , F_{aid} and F_{alar} respectively, while yellow
 168 represents loci that are shared between factors. **C)** Colocalization relationship between latent
 169 factors and traits in the region 16:11,006,011 – 11,751,015. Colours represent disease groups.
 170 Circles represent latent factors or traits, rsID of the lead SNP and rhomboids represent the

171 loci that colocalize among traits. **D)** Conditional analysis of the genomic region
172 16:11,006,011–11,751,015. Locus-zoom plots of three different factors (blue for F_{gut} , green
173 for F_{aid} , and red for F_{alg}) and the conditional loci for each of the latent factors in the regions
174 are shown.

175

176 *Factor-associated loci perturb different nodes in T cell activation and signalling*

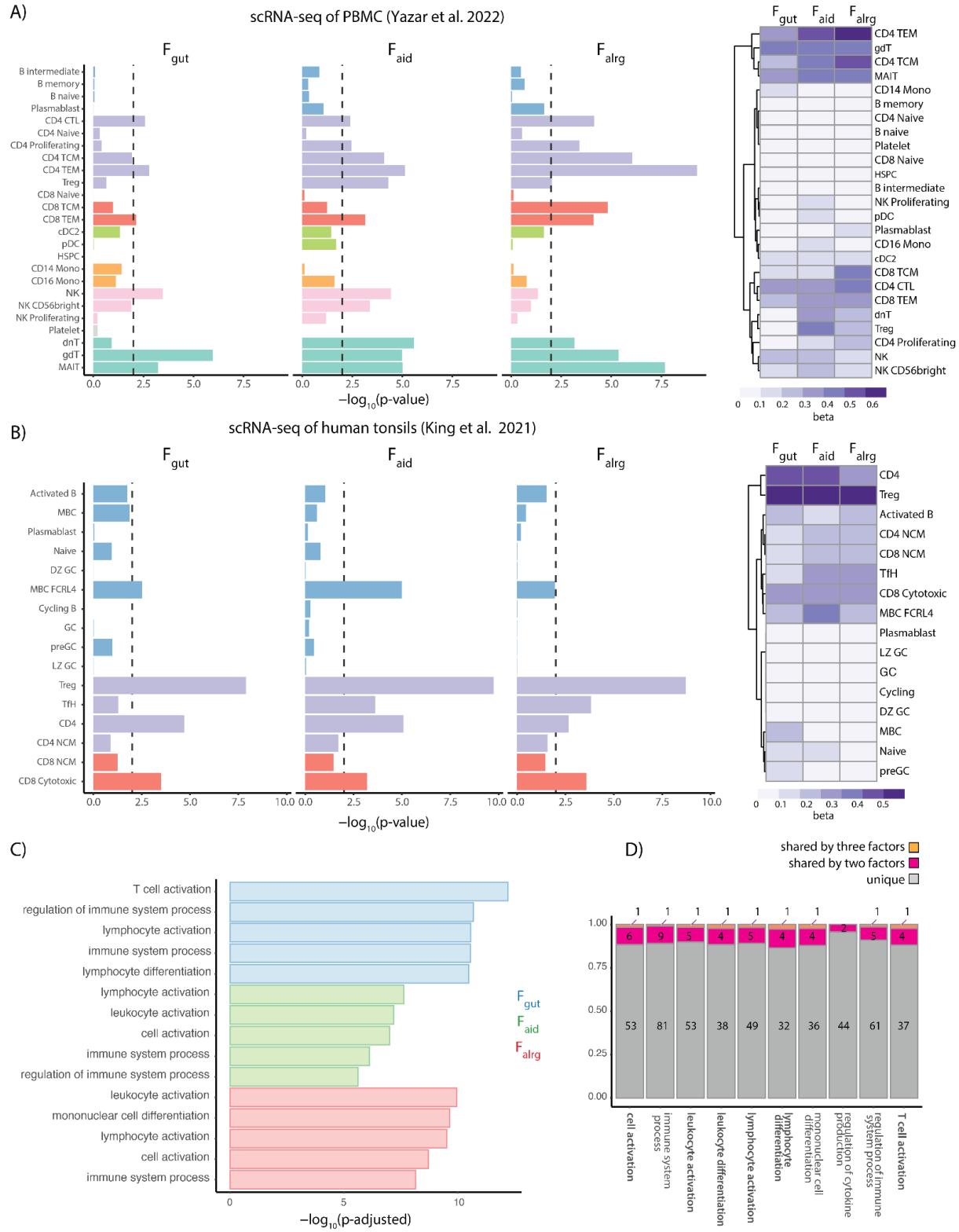
177 Identifying transdiagnostic risk pathways can uncover critical cell functions whose
178 perturbations lead to immune system dysfunction and diseases. Therefore, we sought to
179 translate factor-associated variants to cellular functions. Briefly, we identified the closest
180 gene to the lead SNP within each locus and used these genes to test for pathway enrichment
181 with gProfiler2 (Methods). Genes within the associated loci were enriched in cytokine
182 signalling, differentiation of T helper cells, and various immune diseases as well as response
183 to pathogens (Figure 3A and Supplementary Table 7). Given the modest overlap of factor-
184 associated loci, we expected that the enriched pathways would be distinct across factors.
185 However, factor associated genes were largely enriched in the same pathways, although
186 different genes were driving this enrichment (Figure 3A). For example, we observed that both
187 F_{gut} and F_{aid} -associated loci were enriched in the JAK-STAT signalling pathway, which is critical
188 for response to many cytokines (Figure 3B). Despite both F_{gut} and F_{aid} being enriched for JAK-
189 STAT signalling, the implicated genes were distinct. Notably, several loci encompassing
190 cytokine genes (*IL2*, *IL10*, *IFNG*, *IL12B*) were associated with the F_{gut} group of diseases, while
191 only *IL21* was associated with the F_{aid} group of diseases. Similarly, transcription factors *STAT1*
192 and *STAT4* were specifically associated with F_{aid} , while *STAT3* was associated with F_{gut} . This
193 suggests that although trans-diagnostic risk loci are different for three groups of diseases,
194 they converge on perturbing similar cellular functions.



195

196 **Figure 3. Factor associated loci perturb different nodes of the same pathways . A)** KEGG
 197 pathway enrichment analysis of factor associated genes. The heatmap shows KEGG pathways
 198 that were significantly enriched ($p\text{-adjusted} < 0.05$) in factor associated genes. The radius of
 199 the circle is proportional to the $-\log_{10}(p\text{-adjusted})$. The tile plot shows enriched genes in each
 200 of the pathways. Blue, green and red represent the genes that contributed to the enrichment
 201 for F_{gut} , F_{aid} and F_{alg} respectively. **B)** Schematic representation of JAK-STAT signalling pathway.
 202 Blue and green represent components of the pathway that contribute to the enrichment from
 203 F_{gut} and F_{aid} respectively.

204
205 To test whether transdiagnostic risk variants also converge on a specific cell type, we
206 conducted a MAGMA gene-property analysis implemented in CELLECT^{22,23}. To do that we first
207 used the OneK1K cohort²⁴, which to date is the largest study containing single-cell RNA
208 sequencing (scRNA-seq) data from 982 donors and 1.27 million peripheral blood mononuclear
209 cells (PBMCs). We showed that there is an enrichment of F_{gut} , F_{aid} , and F_{alg} -associated loci in
210 memory CD4, CD8 and unconventional T cells in all three disease groups (Figure 4A). In
211 contrast, we did not observe enrichment of GWAS loci in naive T cells or B cell populations
212 consistent with previous reports²⁵. Interestingly, NK cells were also enriched, but only for the
213 F_{gut} and F_{aid} group of diseases. A similar pattern of enrichment was observed using S-LDSC
214 (Supplementary Figure 4). In addition, given that tonsils are the secondary lymphoid organs
215 where immune activation occurs, we verified T cell enrichments using a study which profiled
216 human tonsils at the single cell level²⁶. These data showed the same pattern of trans-
217 diagnostic enrichment, observed in CD4 and CD8 T cells (particularly in regulatory T cells)
218 (Figure 4B). As observed in PBMC data, disease loci were generally not enriched in B cells. The
219 exception to that was memory B cells expressing Fc receptor-like-4 (FCRL4+ B cells). FCRL4+
220 B cells are thought to be tissue resident and have been identified as a potential target in RA
221 therapy²⁷, hence our results provide further genetic support for their modulation.
222 Furthermore, we observed that disease loci were enriched in immune cells from gut²⁸ and
223 lung²⁹ cell atlases, with the strongest enrichment observed in T cells as previously shown
224 (Supplementary Figure 5A and 5B). Nevertheless, we did not observe enrichment in epithelial
225 or other non-immune cells (Supplementary Figure 5A and 5B). Taken together, the cross
226 disease factors capture true immune signals that are shared across diseases. Finally, we
227 observed a similar enrichment pattern in biological processes across all three groups of
228 diseases. Notably, genes in factor-associated loci were enriched for lymphocyte and immune
229 activation (Figure 4C and Supplementary Table 8), albeit this enrichment was driven by a
230 distinct group of genes (Figure 4D) as demonstrated previously.
231 Taken together, our data suggests that different groups of diseases have distinct patterns of
232 genetic associations but that associated loci converge on perturbing different nodes in
233 lymphocyte activation and cytokine signalling.



234

235 **Figure 4. Factor associated loci converge on T cells. A-B)** MAGMA gene-property results of
 236 Onek1k PBMC dataset (A) and tonsillar cells (B). The barplot shows $-\log_{10}(p\text{-value})$ of the
 237 enrichment. Colours in the barplot represent groups of cells belonging to the same cell-type.
 238 The heatmap shows regression coefficients from the MAGMA model. **C)** The bar plot shows
 239 the $-\log_{10}(p\text{-adjusted})$ of the top five GO terms enriched in factor associated genes. Blue,
 240 green and red represent the GO terms for F_{gut} , F_{aid} and F_{alrg} respectively. **D)** The stacked-bar

241 plot shows the number of genes unique or shared by the latent factors in the top 10 enriched
242 GO terms. We bolded pathways associated with cell activation. Grey represents genes unique
243 to one of the factors, purple represents genes that are associated with two factors and orange
244 represents genes that are associated with all three latent factors.

245
246 *Colocalizing immune cell eQTLs prioritises cross-disease causal genes and identifies potential*
247 *drug targets*

248 To assess whether variants associated with each disease group modulate gene expression in
249 immune cells, we tested for colocalization between factor-associated loci and single-cell
250 eQTLs (sc-eQTLs) derived from peripheral blood mononuclear cells (PBMCs) from the OneK1K
251 cohort ²⁴. Briefly, to identify independent and secondary eQTL signals we performed locus
252 decomposition (see Methods) and colocalized with factor-associated loci using the Bayesian
253 framework *coloc* ³⁰. We identified 55 colocalizations in F_{gut}, 41 in F_{aid} and 21 in F_{alrg} with PP4 >
254 0.9 (Supplementary Table 9). Finally, to determine whether an increase of gene expression
255 predicts increased disease risk, we used Mendelian Randomization (MR) using the Wald ratio
256 method (Figure 5A and Supplementary Table 10). For example, an eQTL for Src family tyrosine
257 kinase *BLK* present in naive memory B cells specifically colocalized with an association with
258 the F_{aid} group of traits (Figure 5B), with an increase of *BLK* expression associated with lower
259 disease risk. This is consistent with the fact that rare variants that reduce *BLK* function have
260 been demonstrated to induce SLE ³¹. In another example, we observed that a locus associated
261 with F_{gut} modulates the expression of Prostaglandin E Receptor 4 *PTGER4* (Figure 5C). In this
262 case, an increase in gene expression is protective to the F_{gut} group of diseases.

263 One of the major hurdles of human genetics has been to translate genetic findings into clinical
264 insights. To identify potential drug targets, we used the Open Targets Platform ³² and
265 investigated whether colocalizing genes are known drug targets (Figure 5D). Of the 47 eQTL
266 genes, eight are targeted by drugs which are either already used in the clinics or are in clinical
267 trials. Four of these eight have been previously used in autoimmune diseases, while the other
268 four represent potential candidates for drug repurposing. For example, our data shows that
269 the increase of expression of a key immune regulator *CTLA4* is protective against F_{aid} group of
270 diseases. The property of CTLA-4 to regulate the immune system has long been exploited in
271 treatment of RA ¹². Similarly, an inhibitor for Integrin Subunit Alpha 4 *ITGA4* has been trialed
272 in UC and CD (Open Targets database and Figure 5D). Our data gives further genetic evidence
273 that increase of *ITGA4* expression leads to an increased risk for F_{gut} diseases, and therefore it

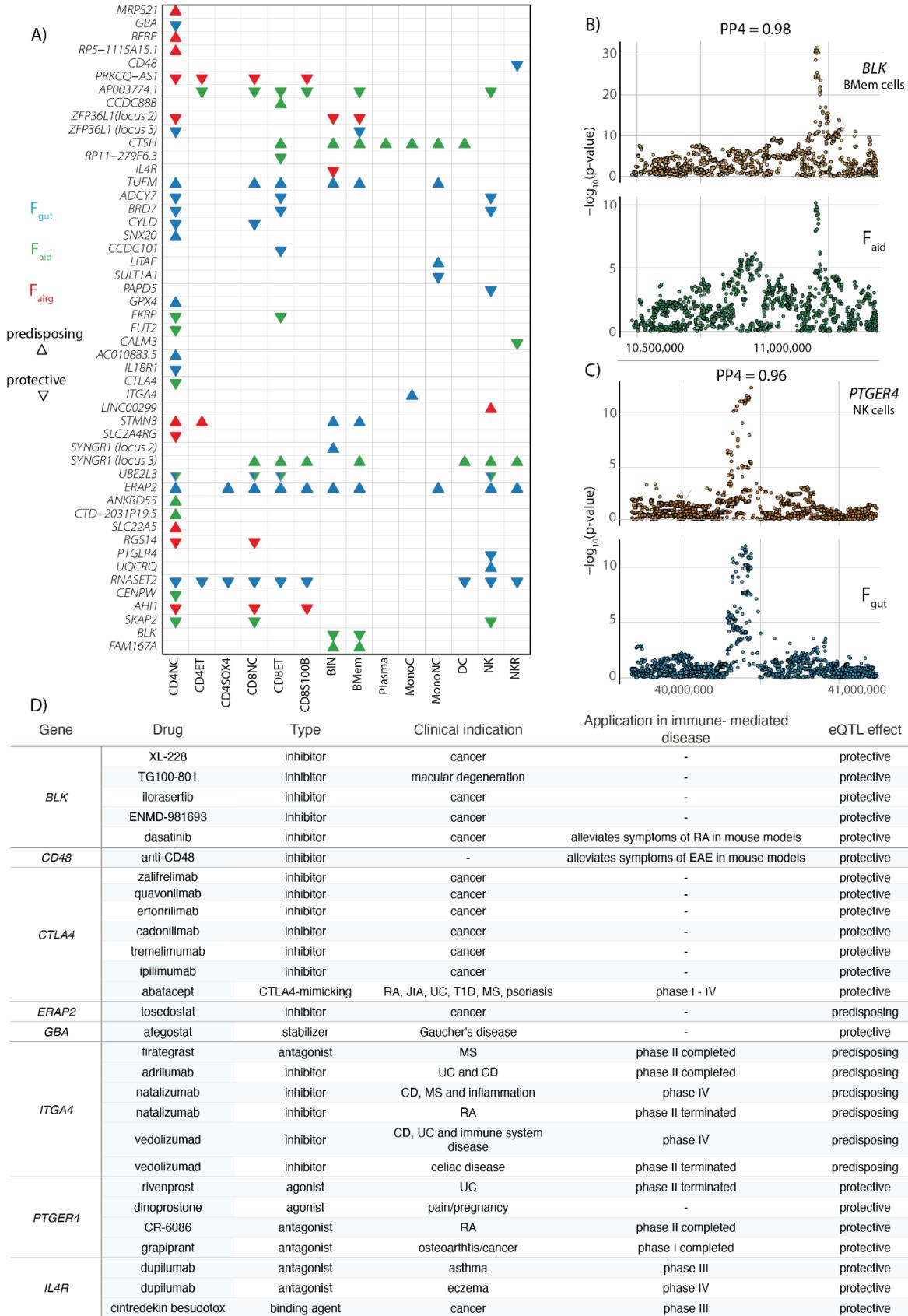
274 is plausible that inhibiting *ITGA4* would be beneficial not only in CD and UC but should also be
275 trialled in PSC.

276 Taken together, our data shows that understanding the pleiotropy of genetic associations can
277 reveal common disease mechanisms, identify novel drug targets and offer evidence for drug
278 repurposing.

279

280

281



282

283 **Figure 5. Colocalization of immune cell eQTLs prioritises cross-disease causal genes and**
 284 **identifies potential drug targets. A) Colocalization and Mendelian Randomization results (see**
 285 **Methods) of eQTL predicting risk to the latent factors. Triangles pointing upwards indicate**

286 that an increase of gene expression increases disease risk, while triangles point downwards
287 indicate decrease of disease risk. Blue, green and red represent F_{gut} , F_{aid} and F_{alrg} respectively.
288 Only significant Mendelian Randomization results (p-value <0.05) are shown. **B-C**
289 Colocalization-plots of latent factors and eQTLs. Posterior probability of colocalization (H4) is
290 shown. **B)** Locus-zoom plot representing the colocalization between the *BLK* gene in B
291 memory cells and F_{aid} . **C)** Locus-zoom plot representing the colocalization between the
292 *PTGER4* gene in NK cells and F_{gut} . **D)** Table representing the drugs prescribed in clinics, in
293 clinical trials or with preliminary results in mice for immune-mediated disorders targeting
294 eQTL genes. MS, multiple sclerosis; UC, ulcerative colitis; CD, Crohn's disease; RA, rheumatoid
295 arthritis; JIA, juvenile idiopathic arthritis; T1D, type 1 diabetes; EAE, experimental
296 autoimmune encephalomyelitis.

297

298 **Discussion**

299

300 In this work we used genomic SEM to investigate the common genetic factors predisposing to
301 multiple immune-mediated diseases. We identified three broad categories of immune
302 mediated diseases: affecting the gastrointestinal tract, rheumatic and systemic disorders, and
303 allergic diseases. Surprisingly, underlying factors affecting the pathogenesis of each of these
304 disease groups had a highly specific pattern of genetic associations, with only 12/286 loci
305 being shared across these groups. This suggests that there is a genetic similarity between
306 diseases within a group, but that the associated loci are highly distinct across groups. The
307 identified groups agree with previous epidemiological findings. For example, T1D was
308 grouped with rheumatic diseases including RA, which is in line with reports that patients with
309 T1D but not T2D have increased risk of RA (OR=4.9) ³³. Similarly, approximately 70% of
310 patients with PSC have IBD, with UC being the most prevalent ³⁴. Our study shows that there
311 are common genetic mechanisms driving the pathogenesis of these diseases and suggests
312 that creating cross-disorder cohorts of immune diseases could increase the power to identify
313 causal pathogenic processes.

314

315 Importantly, over 90% of identified loci acted via common factors, rather than independently
316 on each of the diseases. Therefore, we sought to identify transdiagnostic risk pathways in
317 order to uncover biological processes whose perturbation affects each of the disease groups.
318 Our study showed that despite associated loci being highly factor specific, they converged on
319 perturbing the same pathways involved in T cell activation, differentiation and cytokine

320 signalling. F_{gut} and F_{aid} -associated loci were enriched in the JAK-STAT signalling pathway,
321 although there was no overlap in genes driving the pathway enrichment in each of these
322 groups. Loci encompassing cytokine genes (*IL2*, *IL10*, *IFNG*, *IL12B*) and STAT genes (*STAT1* and
323 *STAT4*) were associated with the F_{gut} group of diseases, while *IL21* and *STAT3* were associated
324 with the F_{aid} group of diseases. Similarly, out of 55 genes that are enriched for lymphocyte
325 activation, only 6 were shared across at least two factors. Therefore, one can speculate that
326 perturbations at different nodes which regulate T cell activation and cytokine signalling are
327 partially responsible for driving different disease outcomes. Recent advances in CRISPR
328 editing in T cells and its subpopulations^{35,36} will be instrumental to elucidate the differential
329 effects of perturbing each node within shared pathways.

330 Finally, it has been widely demonstrated that supporting preclinical data with genetic
331 evidence can significantly increase the chance of developing successful drugs³⁷. Therefore,
332 understanding how trans-diagnostic variants regulate gene expression can help to identify
333 novel drug targets or supporting evidence to existing trials. Here we colocalized the factor-
334 associated loci with sc-eQTL derived from the OneK1K cohort. To date, OneK1K is the largest
335 study containing single-cell RNA sequencing (scRNA-seq) data from 982 donors and 1.27
336 million PMBCs. We showed that eight of these colocalizing genes are known drug targets
337 offering further genetic support for their potential therapeutic effect. In addition, given that
338 the assessed variants are pleiotropic, our results imply that identified drugs could be
339 repurposed for diseases within the same group. For example, our data shows that the
340 increase of expression of a key immune regulator *CTLA4* is protective against F_{aid} group of
341 diseases. The property of CTLA-4 to regulate the immune system has long been exploited in
342 treatment of RA¹². Similarly, an inhibitor for Integrin Subunit Alpha 4, *ITGA4* has been trialled
343 in UC and CD (Open Targets database). Our data gives further genetic evidence that increase
344 of *ITGA4* expression leads to an increased risk for F_{gut} diseases, and therefore it is plausible
345 that inhibiting *ITGA4* would be beneficial not only in CD and UC but should also be trialled in
346 PSC. However, one limitation of this study is that we identified colocalization events for 40
347 out of 286 loci. This highlights the urgent need for larger cohorts, which will be more powered
348 to detect eQTLs, as well as large-scale genetic studies in immune disease patients.
349 In conclusion, our work underscores that three groups of immune-mediated diseases do not
350 share similarities in their genetic predisposition, but show associated loci which converge on

351 perturbing different nodes of a common set of pathways, including in lymphocyte activation
352 and cytokine signalling.

353

354 **Authors contributions:** NP and BS conceived and designed the project. PD, NP and BS
355 performed the data analysis and interpreted the results. NP and BS supervised the analysis.
356 PD, NP and BS wrote the manuscript. **Acknowledgements:** PD is a PhD student within the
357 European School of Molecular Medicine (SEMM). We thank Craig Glastonbury, Cecilia
358 Domínguez Conde, Eddie Cano-Gamez, Laura Esposito, Gosia Trynka and Nicole Soranzo for
359 critical feedback on the manuscript. We also thank Davide Bolognini and Edoardo Giacopuzzi
360 for the computational support. **Competing interests:** All authors declare no competing
361 interests.

362

363

364 **Methods**

365

366 **Processing of summary statistics for LD score regression**

367 We downloaded GWAS summary statistics from published studies on the most common
368 autoimmune disorders: T1D ⁷, RA ⁸, JIA ³⁸, SLE ³⁹, CD ⁴⁰, UC ⁴⁰, AST ⁴¹, ECZ ⁴², PSC ⁴³
369 (Supplementary Table 1). Where necessary, rsIDs were added to the summary statistics using
370 the reference file provided in the Genomic SEM repository
[371 \(https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/file/576598996073\)](https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/file/576598996073).

372 Where necessary, chromosomes X and Y were removed and standard error of logistic betas
373 were calculated based on Odds Ratio confidence intervals. Summary statistics were formatted
374 with the *munge* function from Genomic SEM R package v.0.0.5, (with default parameters)
375 which removes all the SNPs not present in the reference file, filters out SNP with MAF < 1%
376 and flips the alleles according to the reference file and computes z-scores. The HapMap3
377 reference file is provided in the Genomic SEM repository
[378 \(https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/file/805005013708\)](https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/file/805005013708).

379

380 **Estimation of genetic correlation with Genomic SEM**

381 The sum of effective sample size for GWAS that were meta-analysed was calculated by
382 retrieving the information about the cohorts from the respective publications

383 (Supplementary Table 1). We calculated the sample prevalence for each of the cohorts using
384 the following formula

385
$$v_c = n_{cases}/(n_{cases} + n_{controls}),$$

386

387 Next, we calculated the cohort specific sample size as follows:

388

389
$$EffN_c = 4 \times v_c \times (1 - v_c) \times (n_{cases} + n_{controls}),$$

390

391 Finally, we summed the $EffN_c$ of each contributing cohort to compute the sum of effective
392 sample size:

393
$$\Sigma EffN_c,$$

394

395 Where c are contributing cohorts (as described at
396 <https://github.com/GenomicSEM/GenomicSEM>)⁴⁴. To estimate genetic correlation we used
397 the *ldsc* function in Genomic SEM, using the LD reference panel provided in the Genomic SEM
398 repository

399 (<https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/folder/119413852418>
400).

401

402 Factor model specification and GWAS estimation with Genomic SEM

403 We computed three confirmatory factor analysis models guided by exploratory factor
404 analysis: a) a common factor model with the latent factor variance fixed to 1. b) a two-factor
405 model, where one factor was loading into CD, UC, PSC, JIA, SLE, RA and T1D while the other
406 factor was loading into Ecz and Ast. We allowed for correlation between factors. c) A three
407 factor model where F_{gut} was loading into CD, UC, PSC; F_{aid} was loading into T1D, SLE, JIA, RA,
408 and F_{alrg} loading into Ecz and Ast; we fixed the variance of the latent factors to 1 and allowed
409 correlation between the latent factors (Supplementary Figure 1).

410 The fit of the model was assessed by estimating the comparative fit index (CFI) and the
411 standardised root mean square residual (SRMR) parameters. We used CFI >0.95 and SRMR <
412 0.07 as a measure of good fit. Before estimating the SNP-specific effect, we aligned the
413 summary statistics to the reference file
414 (<https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/file/576598996073>)

415 which is used to standardise the effect sizes and SE and format the summary statistics (i.e.
416 remove SNPs not present in the reference files and flip the alleles to match the reference)
417 with the *sumstats* function in Genomic SEM with default parameters. SNP-specific effects of
418 3,309,805 SNPs were estimated with the *userGWAS* function with default parameters using
419 the weighted least squares (WLS) estimation method. In order to evaluate whether the
420 calculated SNP effects were acting through our three factor model, we performed the Q_{SNP}
421 heterogeneity tests. The heterogeneity test returns a χ^2 , whose null hypothesis suggests that
422 the SNP is acting through the specified model. Therefore, rejecting the null hypothesis means
423 that the SNP acts through a model that is different from the specified one^{16,21}.

424

425 **Loci definitions and conditional analysis**

426 We define the boundaries of each significant genomic region by identifying all the SNPs with
427 a p-value lower than 1×10^{-6} . We calculated the distance among each consecutive SNPs below
428 this threshold in the same chromosome; if two SNPs were further than 250 kb apart, then
429 they were defined as belonging to two different genomic regions. We then considered as
430 'significant' all the genomic regions where at least one SNP had a p-value $< 5 \times 10^{-8}$. This
431 procedure was repeated for all GWAS. Finally, we compared genomic regions between
432 different GWAS and merged those which overlapped, redefining the boundaries as the
433 minimum and maximum genomic position across all overlapping genomic regions.

434

435 **Processing of summary statistics for conditional analysis and colocalization**

436 Before running conditional analysis and colocalization, summary statistics (traits and factors)
437 were processed with the Bioconductor MungeSumstats package⁴⁵. We specify the
438 parameters to the MungeSumstat function to: align the summary statistics to reference
439 genome to the build GRCh7 (1000genomes Phase2 Reference Genome Sequence hs37d5,
440 based on NCBI GRCh37, R package 'BSgenome.Hsapiens.1000genomes.hs37d5' v0.99.1), flip
441 the alleles according to the reference file, remove the SNPs not in the reference file (SNP
442 locations for Homo sapiens, dbSNP Build 144, based on GRCh37.p13, R package
443 'SNPlocs.Hsapiens.dbSNP144.GRCh37' v.0.99.20), exclude the SNPs with betas or standard
444 errors equal to 0.

445

446 **Conditional analysis and colocalization**

447 The genomic regions defined in the previous steps are based on genomic position, but
448 multiple association signals may be present within each genomic region. To this end, we
449 developed a statistical approach which first divides each GWAS-significant genomic region
450 into its component signals and then uses colocalization across different traits to group similar
451 association signals. First, in each genomic region for each GWAS we performed stepwise
452 forward conditional regression using COJO⁴⁶. The stopping criteria was that all conditional p-
453 values were larger than 1×10^{-4} . This led to a set of independent SNPs using all SNPs within the
454 genomic region boundary (+/- 100kb). For each SNP, a conditional dataset was produced
455 where SNPs in the genomic region were conditioned to all identified independent SNPs apart
456 from the target one. We then considered as true signals those with p-value $p < 10^{-6}$ or those
457 for which the SNP with the lowest p-value was lower than 5×10^{-8} in the original GWAS.
458 This procedure was repeated on all the traits which had a significant association in the
459 considered genomic region. We thus obtained for each trait a set of conditional datasets
460 covering all the SNPs in the genomic region. This procedure is similar to that used by Robinson
461 et al⁴⁷ but instead of using the step-wise conditioned datasets it uses an 'all but one'
462 approach.

463 To understand which loci were pleiotropic between traits, we ran colocalization using coloc
464³⁰ analysis between all pairs of loci specific for each trait. Loci which colocalized with $PP4 >$
465 0.9 were grouped in a single locus. We excluded the genomic regions in the HLA locus
466 (chromosome 6 - 29,000,000-33,000,000) from this analysis.

467

468 **Colocalization with eQTL data**

469 We downloaded eQTLs from the OneK1K cohort²⁴. We first identified for each genomic region
470 if significant cis-eQTLs were present. For each identified eQTL we performed the
471 decomposition of the locus as described above and the identified loci were colocalized with
472 factor and individual trait associated GWAS signals. To claim a true colocalizing signal we
473 required that $PP4 > 0.9$. In order to identify the direction of the effect of the increase in gene
474 expression for the colocalizing loci, we used Mendelian Randomization using the Wald ratio
475 method (TwoSampleMR R package,⁴⁸) using as instrument the SNP with the smallest p-value
476 in the conditional datasets. Significant MR results (p-value lower than 0.05) were reported.
477 This procedure was performed cell type per cell type.

478

479 **Cell type enrichment**

480 To identify cell types underlying identified factors we used CELL-type Expression-specific
481 integration for Complex Traits (CELLECT). CELLECT quantifies the association between GWAS
482 signal and gene expression specificity using well established models for GWAS enrichment
483 MAGMA ²² and S-LDSC ⁴⁹.

484

485 **Gene based enrichment**

486 Candidate genes were defined by mapping each lead SNP to the nearest transcription starting
487 site of protein coding genes using the EnsDb.Hsapiens.v75 R package (v2.99.0). To identify
488 enrichment in KEGG pathways, GO terms and REACT pathways we used the R package
489 gprofiler2 (v0.2.1) ⁵⁰, with default parameters. Pathway was considered significant if p-adj <
490 0.05. We used the R package pathview (v1.34.0) ⁵¹ to represent the KEGG pathways and to
491 highlight factor-specific genes. The diagram shown in Figure 3B was created with
492 biorender.com using the KEGG pathway as reference.

493

494 **Identification of drug targets**

495 Open Targets Platform ³² (v.22.06) was used to identify drug targets for eQTL genes. This
496 website was queried on (29th August 2022).

References

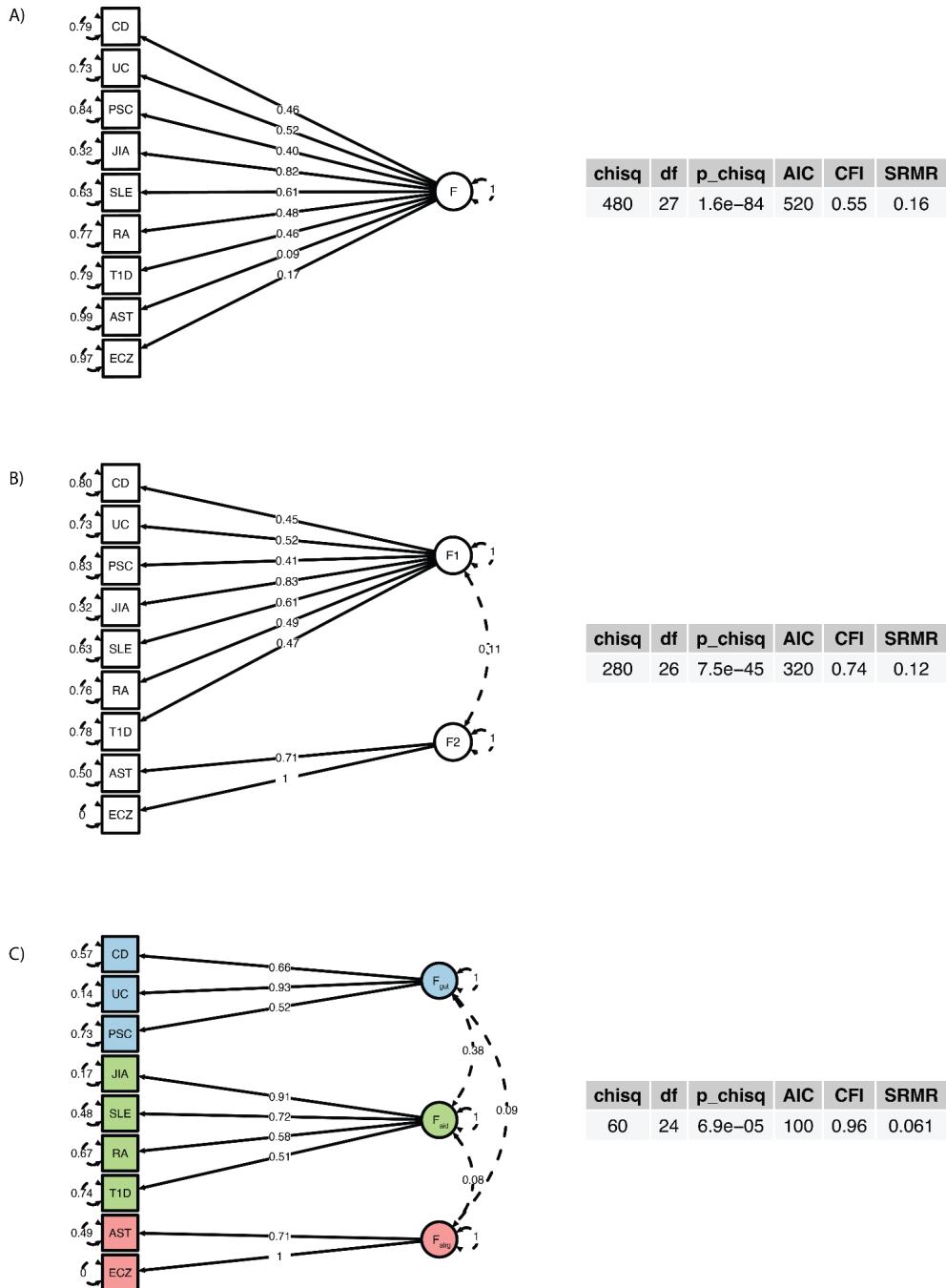
1. Bao, Y. K. *et al.* High prevalence of comorbid autoimmune diseases in adults with type 1 diabetes from the HealthFacts database. *J. Diabetes* **11**, 273–279 (2019).
2. Cooper, G. S., Bynum, M. L. K. & Somers, E. C. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. *J. Autoimmun.* **33**, 197–207 (2009).
3. Bogdanos, D. P. *et al.* Twin studies in autoimmune disease: genetics, gender and environment. *J. Autoimmun.* **38**, J156–69 (2012).
4. Cotsapas, C. *et al.* Pervasive sharing of genetic effects in autoimmune disease. *PLoS Genet.* **7**, e1002254 (2011).
5. Farh, K. K.-H. *et al.* Genetic and epigenetic fine mapping of causal autoimmune disease variants. *Nature* **518**, 337–343 (2015).
6. Matzarakis, V., Kumar, V., Wijmenga, C. & Zhernakova, A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. *Genome Biol.* **18**, 76 (2017).
7. Chiou, J. *et al.* Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. *Nature* **594**, 398–402 (2021).
8. Okada, Y. *et al.* Genetics of rheumatoid arthritis contributes to biology and drug discovery. *Nature* **506**, 376–381 (2014).
9. Trynka, G. *et al.* Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. *Nat. Genet.* **43**, 1193–1201 (2011).
10. Chu, X. *et al.* A genome-wide association study identifies two new risk loci for Graves' disease. *Nat. Genet.* **43**, 897–901 (2011).
11. Rowshanravan, B., Halliday, N. & Sansom, D. M. CTLA-4: a moving target in immunotherapy. *Blood* **131**, 58–67 (2018).
12. Kremer, J. M. *et al.* Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. *N. Engl. J. Med.* **349**, 1907–1915 (2003).
13. Lincoln, M. R. *et al.* Joint analysis reveals shared autoimmune disease associations and identifies common mechanisms. *bioRxiv* (2021) doi:10.1101/2021.05.13.21257044.
14. Werme, J., van der Sluis, S., Posthuma, D. & de Leeuw, C. A. An integrated framework for local genetic correlation analysis. *Nat. Genet.* **54**, 274–282 (2022).
15. Gokuladhas, S., Schierding, W., Golovina, E., Fadason, T. & O'Sullivan, J. Unravelling the Shared Genetic Mechanisms Underlying 18 Autoimmune Diseases Using a Systems Approach. *Front. Immunol.* **12**, 693142 (2021).
16. Grotzinger, A. D. *et al.* Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. *Nat Hum Behav* **3**, 513–525 (2019).
17. Bulik-Sullivan, B. *et al.* An atlas of genetic correlations across human diseases and traits. *Nat. Genet.* **47**, 1236–1241 (2015).
18. Stuart, P. E. *et al.* Transethnic analysis of psoriasis susceptibility in South Asians and Europeans enhances fine-mapping in the MHC and genomewide. *HGG Adv* **3**, (2022).

19. Ferreira, M. A. *et al.* Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. *Nat. Genet.* **49**, 1752–1757 (2017).
20. Vuckovic, D. *et al.* The Polygenic and Monogenic Basis of Blood Traits and Diseases. *Cell* **182**, 1214–1231.e11 (2020).
21. Grotzinger, A. D. *et al.* Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. *Nat. Genet.* 1–12 (2022).
22. Skene, N. G. *et al.* Genetic identification of brain cell types underlying schizophrenia. *Nat. Genet.* **50**, 825–833 (2018).
23. Timshel, P. N., Thompson, J. J. & Pers, T. H. Genetic mapping of etiologic brain cell types for obesity. *Elife* **9**, (2020).
24. Yazar, S. *et al.* Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. *Science* **376**, eabf3041 (2022).
25. Soskic, B. *et al.* Chromatin activity at GWAS loci identifies T cell states driving complex immune diseases. *Nat. Genet.* **51**, 1486–1493 (2019).
26. King, H. W. *et al.* Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. *Sci Immunol* **6**, (2021).
27. Yeo, L. *et al.* Expression of FcRL4 defines a pro-inflammatory, RANKL-producing B cell subset in rheumatoid arthritis. *Ann. Rheum. Dis.* **74**, 928–935 (2015).
28. Elmentait, R. *et al.* Cells of the human intestinal tract mapped across space and time. *Nature* **597**, 250–255 (2021).
29. Madissoon, E. *et al.* scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. *Genome Biol.* **21**, (2019).
30. Giambartolomei, C. *et al.* Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. *PLoS Genet.* **10**, e1004383 (2014).
31. Jiang, S. H. *et al.* Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. *Nat. Commun.* **10**, 2201 (2019).
32. Ochoa, D. *et al.* Open Targets Platform: supporting systematic drug–target identification and prioritisation. *Nucleic Acids Res.* **49**, D1302–D1310 (2020).
33. Liao, K. P. *et al.* Specific association of type 1 diabetes mellitus with anti-cyclic citrullinated peptide-positive rheumatoid arthritis. *Arthritis Rheum.* **60**, 653–660 (2009).
34. Mertz, A., Nguyen, N. A., Katsanos, K. H. & Kwok, R. M. Primary sclerosing cholangitis and inflammatory bowel disease comorbidity: an update of the evidence. *Ann. Gastroenterol. Hepatol.* **32**, 124–133 (2019).
35. Freimer, J. W. *et al.* Systematic discovery and perturbation of regulatory genes in human T cells reveals the architecture of immune networks. *Nat. Genet.* **54**, 1133–1144 (2022).
36. Schmidt, R. *et al.* CRISPR activation and interference screens decode stimulation responses in primary human T cells. *Science* **375**, eabj4008 (2022).
37. Ochoa, D. *et al.* Human genetics evidence supports two-thirds of the 2021 FDA-

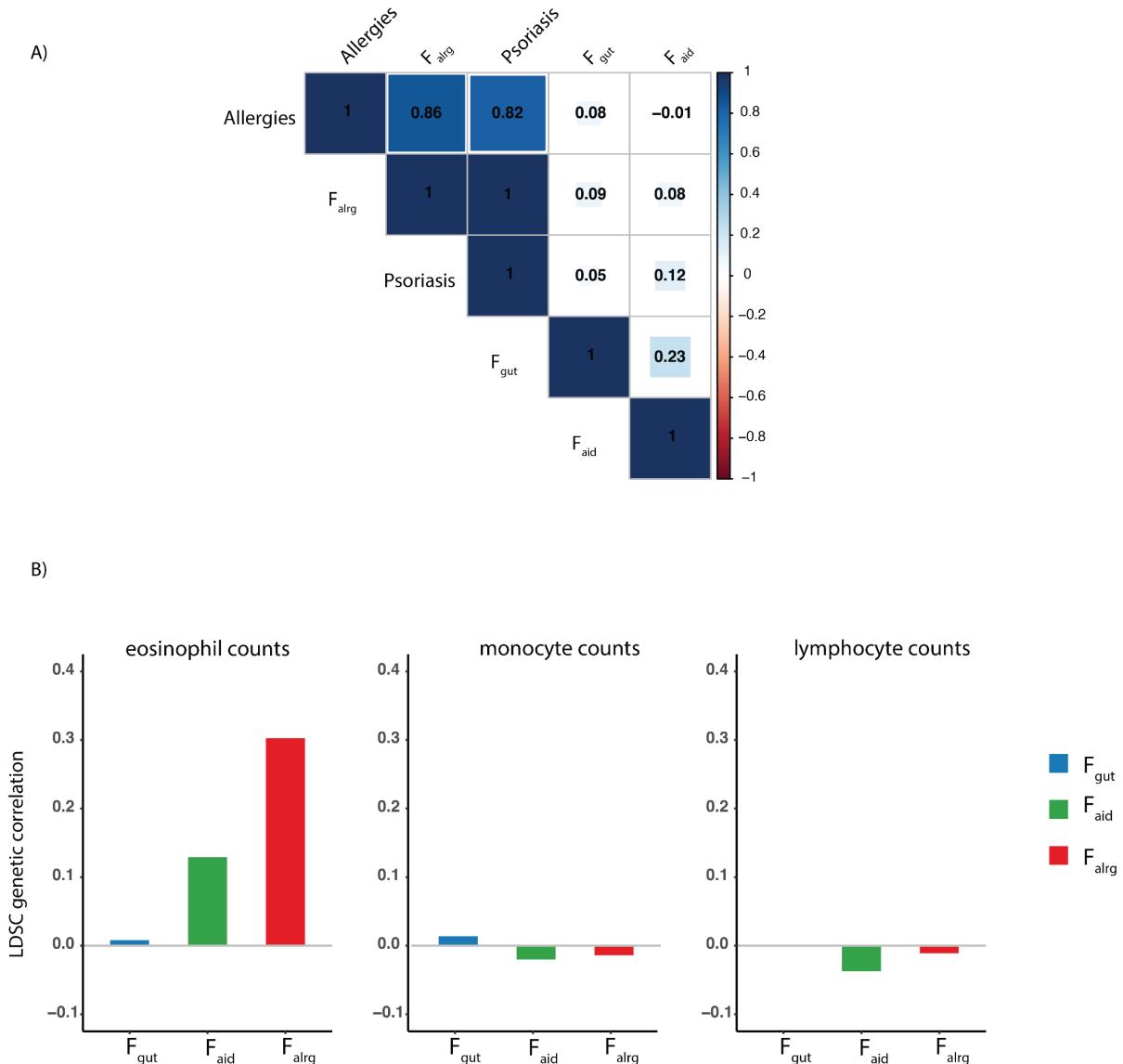
approved drugs. *Nat. Rev. Drug Discov.* **21**, 551 (2022).

- 38. López-Isac, E. *et al.* Combined genetic analysis of juvenile idiopathic arthritis clinical subtypes identifies novel risk loci, target genes and key regulatory mechanisms. *Ann. Rheum. Dis.* **80**, 321–328 (2021).
- 39. Bentham, J. *et al.* Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. *Nat. Genet.* **47**, 1457–1464 (2015).
- 40. de Lange, K. M. *et al.* Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. *Nat. Genet.* **49**, 256–261 (2017).
- 41. Han, Y. *et al.* Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. *Nat. Commun.* **11**, 1776 (2020).
- 42. Sliz, E. *et al.* Uniting biobank resources reveals novel genetic pathways modulating susceptibility for atopic dermatitis. *J. Allergy Clin. Immunol.* **149**, 1105–1112.e9 (2022).
- 43. Ji, S.-G. *et al.* Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. *Nat. Genet.* **49**, 269–273 (2017).
- 44. Grotzinger, A. D., de la Fuente, J., Nivard, M. G. & Tucker-Drob, E. M. Pervasive Downward Bias in Estimates of Liability Scale Heritability in GWAS Meta-Analysis: A Simple Solution. *medRxiv* 2021.09.22.21263909 (2021)
doi:10.1101/2021.09.22.21263909.
- 45. Murphy, A. E., Schilder, B. M. & Skene, N. G. MungeSumstats: A Bioconductor package for the standardisation and quality control of many GWAS summary statistics. *Bioinformatics* (2021) doi:10.1093/bioinformatics/btab665.
- 46. Yang, J. *et al.* Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. *Nat. Genet.* **44**, 369–75, S1–3 (2012).
- 47. Robinson, J. W. *et al.* An efficient and robust tool for colocalisation: Pair-wise Conditional and Colocalisation (PWCoCo). *bioRxiv* 2022.08.08.503158 (2022)
doi:10.1101/2022.08.08.503158.
- 48. Hemani, G. *et al.* The MR-Base platform supports systematic causal inference across the human genome. *Elife* **7**, (2018).
- 49. Finucane, H. K. *et al.* Partitioning heritability by functional annotation using genome-wide association summary statistics. *Nat. Genet.* **47**, 1228–1235 (2015).
- 50. Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J. & Peterson, H. gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. *F1000Res.* **9**, (2020).
- 51. Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. *Bioinformatics* **29**, 1830–1831 (2013).

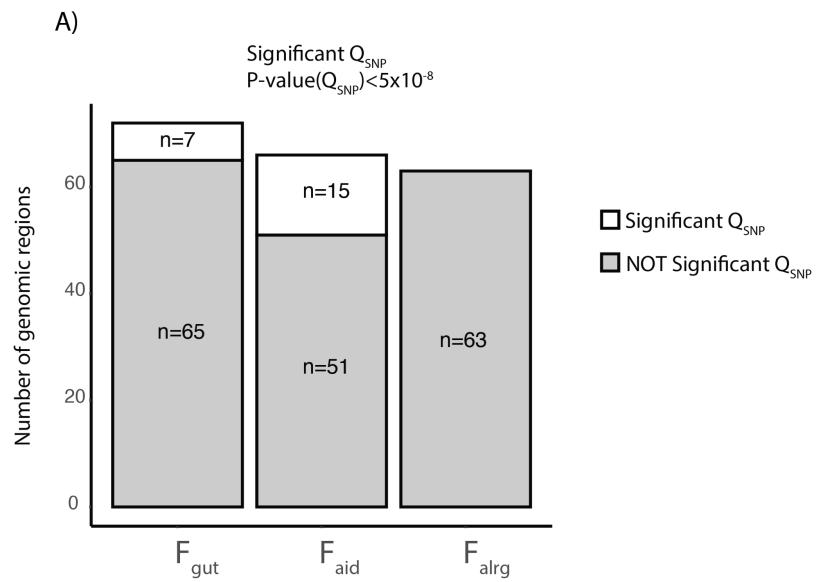
Supplementary Figures



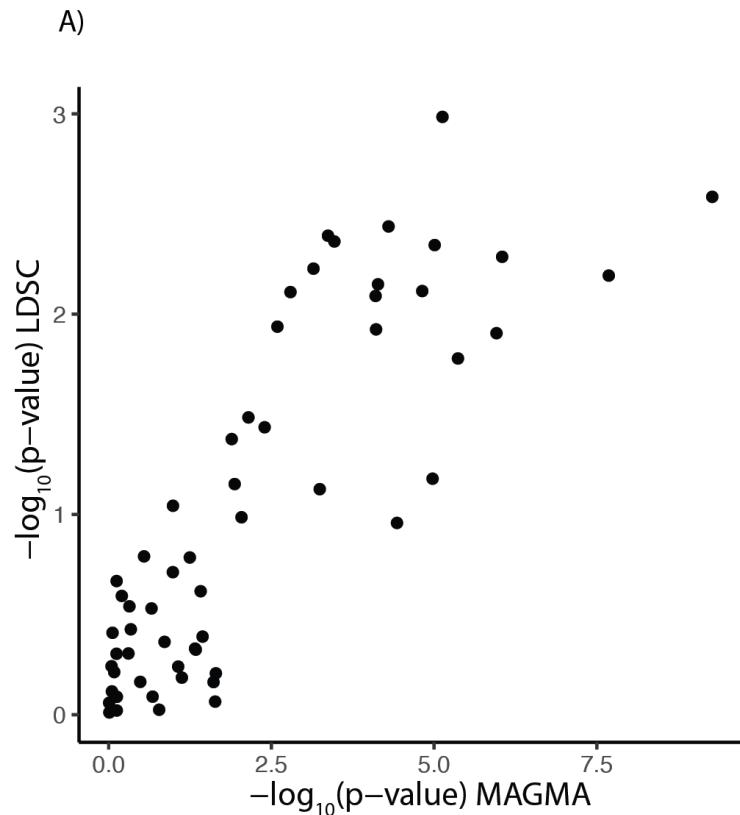
Supplementary Figure 1. Factor models that were tested and their fit statistics. A) A common factor model with the latent factor variance fixed to 1. **B)** a two factor model, where one factor was loading into CD, UC, PSC, JIA, SLE, RA, T1D while the other factor was loading into Ecz and Ast. We allowed correlation between factors and imposed the residual variance to be positive for Ezc. **C)** A three factor model where Fgut was loading into CD, UC, PSC; Faid was loading into T1D, SLE, JIA, RA and Falrg loading into Ecz and Ast; we fixed the variance of the latent factors to 1 and we allowed correlation between the latent factors and imposed the residual variance to be positive for Ezc.



Supplementary Figure 2. LDSC genetic correlations among Factors and allergic traits. A) LDSC genetic correlations among factors, psoriasis ¹⁸ and allergies ¹⁹. Shades of blue and red indicate positive and negative correlations respectively. **B)** LDSC genetic correlations between factors and circulating cell counts ²⁰. Blue, green and red represent F_{gut} , F_{aid} and F_{alrg} respectively.



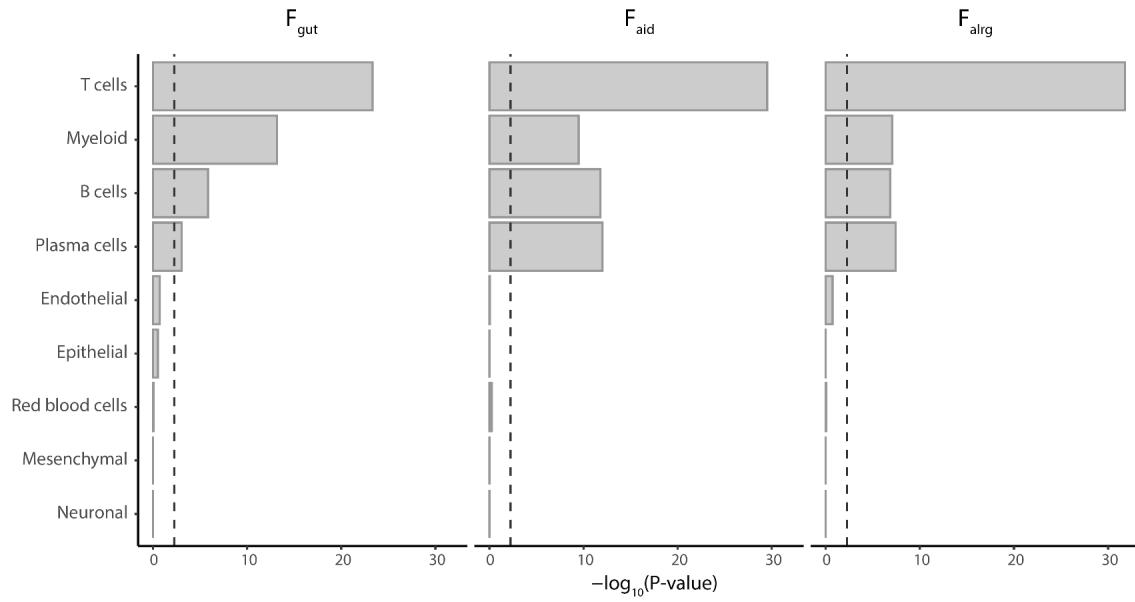
Supplementary Figure 3. Qsnp statistics of genomic regions lead SNP. A) The bar plot shows the number of lead SNPs of the genomic region which had a significant Q_{SNP} (in white) and not significant (in grey).



Supplementary Figure 4. Comparison of LDSC and MAGMA enrichments. Dot plot shows correlation of $-\log_{10}(p\text{-value})$ between MAGMA and LDSC outputs for OneK1K cohort.

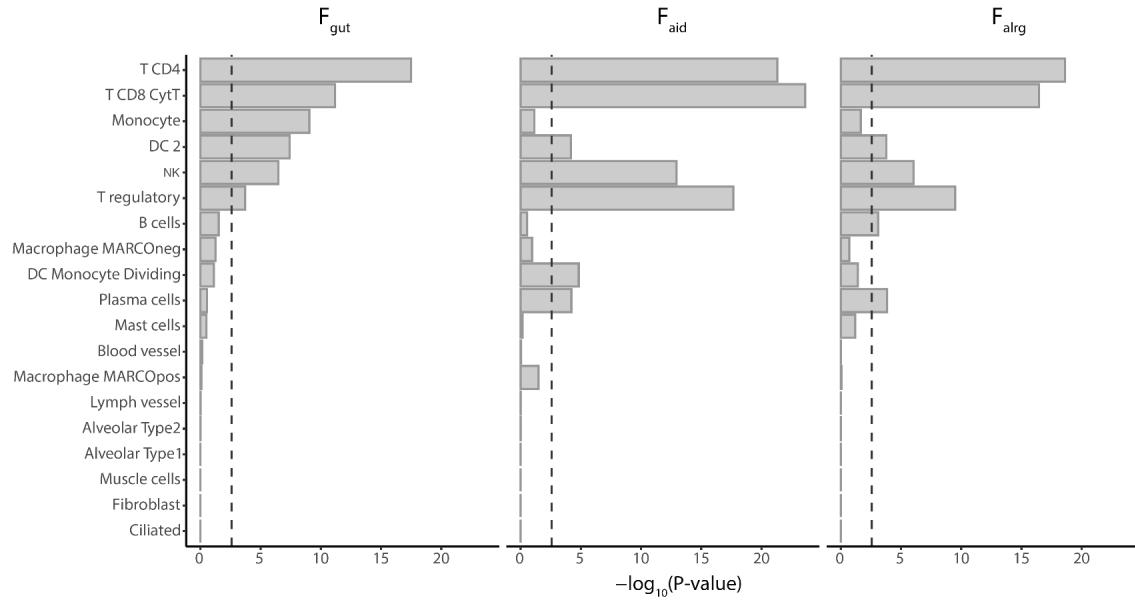
A)

scRNA-seq of human intestinal tract cells (Elmentait et al. 2021)



B)

scRNA-seq of human lung cells (Madisoon et al. 2019)



Supplementary Figure 5. A-B) MAGMA gene-property results of intestinal cells ²⁸ (A) and lung cells ²⁹(B). The barplot shows $-\log_{10}(p\text{-value})$ of the enrichment.