

1 **Enhanced STAT5a activation rewires exhausted CD8 T cells during**  
2 **chronic stimulation to acquire a hybrid durable effector like state**

3 Jean-Christophe Beltra<sup>1,2,3</sup>, Mohamed S. Abdel-Hakeem<sup>1,2,4,5</sup>, Sasikanth Manne<sup>1,2</sup>, Zhen  
4 Zhang<sup>6</sup>, Hua Huang<sup>6</sup>, Makoto Kurachi<sup>7</sup>, Leon Su<sup>8</sup>, Lora Picton<sup>8</sup>, Yuki Muroyama<sup>1,2</sup>,  
5 Valentina Casella<sup>9</sup>, Yinghui J. Huang<sup>1,2</sup>, Josephine R. Giles<sup>1,2,3</sup>, Divij Mathew<sup>1,2</sup>, Jonathan  
6 Belman<sup>1,2</sup>, Max Klapholz<sup>1,2</sup>, Hélène Decaluwe<sup>10</sup>, Alexander C. Huang<sup>2,3,11,12</sup>, Shelley L.  
7 Berger<sup>6</sup>, K. Christopher Garcia<sup>8,13,14,15</sup> and E. John Wherry<sup>1,2,3,16</sup>

8 <sup>1</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, PA, USA

9 <sup>2</sup>Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

10 <sup>3</sup>Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA

11 <sup>4</sup>Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt

12 <sup>5</sup>Current address: Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA

13 <sup>6</sup>Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA

14 <sup>7</sup>Department of Molecular Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan

15 <sup>8</sup>Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA

16 <sup>9</sup>Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain

17 <sup>10</sup>Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada

18 <sup>11</sup>Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

19 <sup>12</sup>Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, PA, USA

20 <sup>13</sup>Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.

21 <sup>14</sup>Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129, USA.

22 <sup>15</sup>Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA

23 <sup>16</sup>Lead contact

24

25 \*Correspondence: [wherry@pennmedicine.upenn.edu](mailto:wherry@pennmedicine.upenn.edu)

26

35 **Abstract**

36 Rewiring exhausted CD8 T cells ( $T_{EX}$ ) towards more functional states is a major goal of  
37 cancer immunotherapy but has proven challenging due to the epigenetic stability of  $T_{EX}$ .  
38 Indeed,  $T_{EX}$  are epigenetically programmed by the transcription factor Tox. However,  
39 epigenetic changes continue to occur as  $T_{EX}$  transition from progenitor ( $T_{EX}^{prog}$ ), to  
40 intermediate ( $T_{EX}^{int}$ ) and terminal ( $T_{EX}^{term}$ ) subsets, suggesting potential developmental  
41 flexibility in mature  $T_{EX}$  subsets. By examining the transition of  $T_{EX}^{prog}$  into  $T_{EX}^{int}$  cells, we  
42 discovered a reciprocally antagonistic circuit between Stat5a and Tox in  $T_{EX}$  cells. Stat5-  
43 activity controlled  $T_{EX}^{int}$  development, antagonized Tox, and instigated partial effector  
44 biology. Stat5 was also essential for  $T_{EX}$  reinvigoration by PD-1 blockade. Indeed,  
45 temporal induction of Stat5-activity in  $T_{EX}$  using an orthogonal IL-2/IL2R $\beta$ -pair fostered  
46  $T_{EX}^{int}$  cell accumulation and synergized with PD-L1 blockade. Constitutive Stat5a activity  
47 (STAT5CA) antagonized Tox-dependent  $T_{EX}$  epigenetic programming to generate a  
48 durable hybrid effector/NK-like population with enhanced tumor control. Finally, enforcing  
49 Stat5-signals in established  $T_{EX}^{prog}$  partially rewired the  $T_{EX}$  epigenetic landscape towards  
50 the effector/memory lineage. Together, these data highlight therapeutic opportunities of  
51 manipulating Stat5 to rewire  $T_{EX}$  towards a durably protective hybrid program.

52 (182 words)

53

54 **Key words:** CD8 T cell exhaustion, Stat5, epigenetic reprogramming, Tox, PD-1  
55 blockade,  $T_{EX}$  intermediate, IL-2, orthogonal IL-2.

## 56 INTRODUCTION

57 CD8 T cell exhaustion is a common feature of chronic viral infections and cancers and  
58 limits effective control of disease<sup>1,2</sup>. T cell exhaustion is also a major barrier to effective  
59 immunotherapy for cancer including engineered cellular therapies<sup>3</sup> and has been  
60 implicated in autoimmune diseases.<sup>2</sup> First described as loss of effector functions in  
61 settings of chronic antigenic stimulation,<sup>4,5</sup> it is now clear that CD8 T cell exhaustion is a  
62 distinct epigenetically programmed state of T cell differentiation initiated by the HMG-  
63 transcription factor (TF) Tox.<sup>6-10</sup> This Tox-dependent epigenetic program also precludes  
64 (re)differentiation of T<sub>EX</sub> towards functional effector (T<sub>EFF</sub>) or memory (T<sub>MEM</sub>) CD8 T  
65 cells.<sup>11-14</sup> Despite this altered differentiation state, T<sub>EX</sub> acquire the unique ability to persist  
66 long-term despite chronic antigenic stimulation,<sup>14,15</sup> and exert partial control of chronic  
67 infections and cancer.<sup>1,16-18</sup> Moreover, relieving some inhibition of T<sub>EX</sub> through PD-1  
68 pathway blockade results in considerable clinical efficacy for some cancers.<sup>19-24</sup>  
69 Nevertheless, PD-1 pathway blockade fails to induce permanent epigenetic rewiring of  
70 T<sub>EX</sub><sup>25,26</sup> highlighting the need to identify strategies that can relieve the constraints on  
71 (re)differentiation of T<sub>EX</sub> cells and allow conversion to more durably functional CD8 T cell  
72 states.

73

74 Recent work examining the developmental biology of T<sub>EX</sub> cells has defined biologically  
75 distinct subsets that are related in a developmental hierarchy.<sup>27-30</sup> Molecular  
76 characterization of T<sub>EX</sub> subsets has provided insights into subset-specific biology and their  
77 therapeutic relevance. For example, a Tcf1 (*Tcf7*)-expressing progenitor (T<sub>EX</sub><sup>prog</sup>) subset  
78 retains proliferative potential and generates downstream T<sub>EX</sub> subsets in the steady

79 state.<sup>27,31-33</sup> These  $T_{EX}^{prog}$  exist in two interchangeable states including a stem-like -  
80 quiescent subset ( $T_{EX}^{prog1}$ ) that resides in lymphoid tissues and a transcriptionally distinct  
81 subpopulation ( $T_{EX}^{prog2}$ ) that leaves these lymphoid niches and re-enters cell cycle. As  
82 these  $T_{EX}^{prog2}$  cells proliferate, they lose Tcf1 expression and differentiate into an  
83 intermediate “effector-like” subset ( $T_{EX}^{int}$ ) that circulates in blood and ultimately converts  
84 to terminally exhausted CD8 T cells ( $T_{EX}^{term}$ ) upon entering peripheral tissues where these  
85  $T_{EX}^{term}$  also acquire features of tissue residency.<sup>27</sup> An additional set of insights involves  
86 the  $T_{EX}^{int}$  subset. First, PD-1 blockade functions as a transient amplifier of this  $T_{EX}^{int}$   
87 population.<sup>27,28</sup> Although  $T_{EX}^{prog}$  initiate the proliferative response to PD-1 blockade,<sup>31,32</sup>  
88 subsequent production of new “effector-like”  $T_{EX}^{int}$  cells likely mediates the therapeutic  
89 benefits. Second, partial re-acquisition of effector features by  $T_{EX}^{int}$  cells in the landscape  
90 of a Tox-dependent exhaustion program suggests possible developmental flexibility. The  
91 molecular mechanisms of this potential  $T_{EX}$  rewiring, however, remain poorly understood.  
92 Thus, identifying mechanisms controlling  $T_{EX}$  subset conversions and biology, particularly  
93 at the  $T_{EX}^{int}$  stage could reveal opportunities to rewire the differentiation trajectory of  $T_{EX}$   
94 for therapeutic benefit.

95  
96 Here, we discovered a reciprocal antagonistic circuit between Tox and Stat5a in  $T_{EX}$   
97 including preferential re-engagement of Stat5a activity in the  $T_{EX}^{int}$  subset. Indeed, Stat5  
98 was essential for  $T_{EX}^{int}$  cell development as well as for the response to PD-1 pathway  
99 blockade. Moreover, Stat5 controlled re-activation of effector-like machinery acquired at  
100 the  $T_{EX}^{int}$  stage, fostering cytolytic effector functions even in the context of a  $T_{EX}$  chromatin  
101 landscape. Enforcing constitutive Stat5a activity (STAT5CA) antagonized Tox and the

102 Tox-dependent  $T_{EX}$  programming in chronic viral infection. This enforced Stat5a activity  
103 resulted in the induction of a suite of effector and NK-like biology in virus-specific CD8 T  
104 cells. These changes were driven by re-wired epigenetic and transcriptional circuitry and  
105 resulted in durable accumulation, and superior protective capacity, of STAT5CA-  
106 expressing CD8 T cells in settings of chronic viral infection and cancer. Therapeutic  
107 delivery of IL-2/Stat5-signals selectively to  $T_{EX}$  cells using an orthogonal IL-2/IL2R $\beta$  pair  
108 system enhanced formation of  $T_{EX}^{int}$  cells and synergized robustly with PD-1 blockade.  
109 Finally, temporal reactivation of Stat5 in  $T_{EX}^{prog}$  reversed key epigenetic features of  
110 exhaustion, restored accessibility at  $T_{EFF}/T_{MEM}$ -related open chromatin regions and  
111 improved polyfunctionality. Together, these observations identify Stat5 as a key regulator  
112 of  $T_{EX}$  differentiation, antagonizing Tox-driven terminal exhaustion and fostering improved  
113 effector activity and durability in the setting of chronic antigen (Ag) stimulation. Moreover,  
114 accessing this biology by therapeutic augmenting Stat5 signals specifically in  $T_{EX}$  in  
115 combination with PD-1 blockade not only expanded the  $T_{EX}^{int}$  population but also rewired  
116 these  $T_{EX}$  cells towards a more protective differentiation state with features of durability  
117 under chronic antigenic stress and enhanced effector biology.

118

119 **Results**

120 **Tox restrains Stat5a activity in virus-specific CD8 T cells during chronic infection**

121 During chronic viral infections and cancer, Tox fosters epigenetic commitment of Ag-  
122 specific CD8 T cells towards exhaustion.<sup>6-9</sup> This fate commitment to T<sub>EX</sub> is mediated in  
123 part by antagonizing pathways of functional effector (T<sub>EFF</sub>) and memory (T<sub>MEM</sub>) cell  
124 differentiation. However, partial transcriptional and epigenetic re-engagement of effector  
125 biology occurs at the T<sub>EX</sub><sup>int</sup> cell stage suggesting the existence of yet unidentified pro-  
126 effector molecular circuits capable of temporally counterbalancing the Tox-dependent  
127 exhaustion program.<sup>27</sup> To identify potential mechanisms of re-engagement of effector  
128 circuitry in T<sub>EX</sub> cells, we investigated transcriptional circuits and upstream regulators  
129 preferentially antagonized by Tox in virus-specific CD8 T cells during chronic viral  
130 infection. We performed Ingenuity Pathways Analysis (IPA) on differentially expressed  
131 genes (DEGs) between WT and Tox-deficient TCR transgenic “P14” CD8 T cells specific  
132 for LCMV D<sup>b</sup>gp<sub>33-41</sub> from previously published RNA sequencing (RNAseq) data (**Fig.**  
133 **S1A**).<sup>7</sup> Networks of transcriptional regulators involved in interferon signaling (i.e. *Irf1*, *Irf7*,  
134 *Stat1*) and terminal exhaustion (i.e. *Foxo1*) enriched in WT P14 cells. Conversely, TFs  
135 associated with T<sub>EFF</sub> or T<sub>MEM</sub> differentiation (i.e. *Tbx21*, *Id3* and *Stat5a*) had elevated  
136 transcriptional activity in Tox-deficient P14 cells (**Fig. S1B, Table S1**). Using a second  
137 single cell RNA sequencing (scRNAseq) dataset,<sup>6</sup> transcriptional networks of Tbet and  
138 Stat5a again enriched in Tox-deficient compared to WT D<sup>b</sup>gp33<sup>+</sup> CD8 T cells and these  
139 TFs scored among the top 10 regulators enriched in 3 out of the 5 main clusters of cells  
140 identified (**Fig. S1C-G, Table S1**). Among the transcriptional regulators identified by IPA,  
141 Tbet and Stat5a overlapped with a list of TFs independently predicted using Taiji

142 analysis<sup>34</sup> to selectively impact  $T_{EX}^{int}$  cells compared to other  $T_{EX}$  subsets (**Fig. S1H**).<sup>27</sup>  
143 Previous work identified bi-directional antagonism between Tbet and Tox in  $T_{EX}^{int}$  cells.<sup>27</sup>  
144 However, Taiji analysis predicted Stat5a activity to be even more specifically enriched in  
145 the  $T_{EX}^{int}$  subset than Tbet, and the IPA-defined transcriptional network of Stat5a was  
146 more strongly anti-correlated with Tox expression than Tbet (**Fig. 1A** and **S1H**). These  
147 analyses suggested a possible antagonistic axis between Tox and Stat5a in  $T_{EX}$  cells.  
148 Indeed, the transcriptional signatures of Stat5a and Tox were inversely correlated in Ag-  
149 specific CD8 T cells at 1 week and 1 month of chronic infection (**Fig. 1B-C**). Stat5a activity  
150 in  $T_{EX}$  cells was also anti-correlated with the expression of exhaustion-specific genes, but  
151 positively associated with genes involved in effector-related biology (**Fig. S1I**). These data  
152 suggested a role for Stat5a in antagonizing Tox and the program of CD8 T cell exhaustion.

153

154 **STAT5a reduces Tox expression, antagonizes exhaustion and fosters effector-like**  
155 **CD8 T cell differentiation during chronic viral infection**

156 During the first week of a developing chronic viral infection, Ag-specific CD8 T cells  
157 differentiate into either effector-like CD8 T cells or precursors of  $T_{EX}$ .<sup>26,35</sup> Because the  
158 potential Stat5a and Tox antagonism observed above was evident by d8p.i., we asked  
159 whether Stat5a could impact early CD8 T cell-fate commitment during chronic infection.  
160 Congenically distinct P14 cells were transduced with retroviruses (RV) encoding either a  
161 constitutively active form of Stat5a (P14 STAT5CA)<sup>36,37</sup> or a control RV (P14 Empty). RV-  
162 transduced P14 cells were sort-purified based on RV-encoded reporter protein  
163 expression (violet-excited [VEX] or green fluorescent protein [GFP]), mixed at a 1:1 ratio  
164 and co-transferred into congenically distinct LCMV clone 13 (CI13) infected mice (**Fig.**

165 **2A**). On d8p.i., expression of Tcf1 (or Ly108) and Tim3 can identify  $T_{EX}$  precursors  
166 ( $T_{EX}^{prec}$ ; Tcf1/Ly108<sup>+</sup>Tim3<sup>-</sup>) or more differentiated “effector-like” CD8 T cells (Tcf1/Ly108<sup>-</sup>  
167 Tim3<sup>+</sup>) (**Fig. S2A**).<sup>33,35</sup> Both d8 populations were detected for P14 Empty controls. In  
168 contrast, most of the P14 STAT5CA cells (91.7±0.98%) had differentiated into Ly108<sup>-</sup>  
169 Tim-3<sup>+</sup> CD8 T cells whereas the Ly108<sup>+</sup>Tim-3<sup>-</sup>  $T_{EX}^{prec}$  population was substantially  
170 reduced in both frequency (2.7±0.4%) and absolute number for the STAT5CA RV group  
171 (4.3-fold lower numbers than the Empty RV group) (**Fig. 2B** and **S2B**). We further  
172 confirmed the decrease in the generation of  $T_{EX}^{prec}$  cells in P14 STAT5CA cells using  
173 unbiased clustering based on 12 flow cytometry parameters (**Fig. 2C**-see methods) or  
174 Tcf1 expression (**Fig. 2D**-upper panel). The overall numerical advantage of P14  
175 STAT5CA cells over the P14 Empty at this early time-point (**Fig. S2B**) suggested a  
176 differentiation bias towards the Ly108<sup>-</sup>Tim-3<sup>+</sup> effector-like population at the expense of  
177  $T_{EX}^{prec}$ . Enforcing Stat5a activity also resulted in substantially lower Tox expression (**Fig.**  
178 **2D**-lower panel). At this early time point, production of antiviral cytokines by P14 Empty  
179 and P14 STAT5CA cells after gp33 peptide stimulation was similar (**Fig. S2C**).  
180 Expression of the inhibitory receptors (IR) PD-1, Lag-3, and Tigit was also equivalent  
181 between STAT5CA and Empty RV P14 cells whereas other IRs (2B4, Tim-3) and some  
182 effector-related molecules (Cx3cr1, Granzyme B [GzmB]) were more highly expressed by  
183 the STAT5CA P14 cells (**Fig. 2E**). Thus, during the first week of a chronic viral infection,  
184 increasing STAT5a activity reduced Tox expression and enhanced the development of  
185 Ly108<sup>-</sup>Tim-3<sup>+</sup> effector-like cells at the expense of  $T_{EX}^{prec}$ .

186

187 Stat5 supports early expansion of Ag-specific CD8 T cells in acutely resolving infections,  
188 though Stat5 activity in these settings has minimal impact on the balance of KLRG1<sup>+</sup>  
189 terminal T<sub>EFF</sub> and CD127<sup>+</sup> memory precursors CD8 T cells.<sup>38,39</sup> To interrogate how Stat5  
190 regulates differentiation of Ag-specific CD8 T cells early during chronic viral infection,  
191 naïve P14 WT (Rosa<sup>YFP</sup>Stat5a/b<sup>+/+</sup>) and P14 Stat5iKO (Rosa<sup>YFP</sup>Stat5a/b<sup>f/f</sup>) were treated  
192 with tat-cre recombinase *in vitro* (cre<sup>+</sup>; or not [cre<sup>-</sup>]) to induce genetic deletion of *floxed*  
193 alleles (**Fig. S2D**). Induction of YFP served as a surrogate for efficient cre-mediated  
194 recombination. We then adoptively transferred cre treated (cre<sup>+</sup>) P14 WT or P14 Stat5iKO  
195 cells (or their cre<sup>-</sup> controls) into congenically distinct recipient mice that were infected with  
196 LCMV Cl13 and assessed the impact of loss of *Stat5a/b* at d8p.i. Genetic deletion of  
197 *Stat5a/b* resulted in a higher proportion of T<sub>EX</sub><sup>prec</sup> cells and a reduction in Ly108<sup>-</sup>Tim-3<sup>+</sup>  
198 effector-like cells (11±1% vs 47±2% and 85±1% vs 49±2% of T<sub>EX</sub><sup>prec</sup> and Ly108<sup>-</sup>Tim-3<sup>+</sup>  
199 cells in P14 WT vs P14 Stat5iKO respectively) (**Fig. 2F** and **S2E-F**). The overall number  
200 of P14 cells was reduced by ~11-fold in the absence of *Stat5a/b* but this effect was  
201 predominantly in the Ly108<sup>-</sup>Tim-3<sup>+</sup> population that was reduced ~18-fold compared to the  
202 WT P14 cells (**Fig. 2G**). In contrast, the Ly108<sup>+</sup>Tim-3<sup>-</sup> T<sub>EX</sub><sup>prec</sup> were impacted less with  
203 only a ~2.7-fold reduction in the absence of *Stat5a/b*. Changes in proliferation or cell  
204 death did not appear to explain these differences between the WT and *Stat5a/b* iKO cells  
205 because BrdU incorporation (d7-8) and active caspase 3 were similar between these  
206 populations (**Fig. S2G-H**). These data suggested an impact on differentiation and in  
207 particular, an altered formation of Ly108<sup>-</sup>Tim-3<sup>+</sup> cells in the absence of *Stat5a/b*,  
208 consistent with the enhanced development of this effector-like population using STAT5CA  
209 (**Fig. 2B**). This effect of *Stat5a/b*-deficiency appeared to be preferential to chronic

210 infection because, consistent with previous studies,<sup>38,39</sup> there was little impact of loss of  
211 *Stat5a/b* on the distribution of memory precursor and short-lived effector CD8 T cell  
212 subsets during acute LCMV Armstrong (Arm) infection (**Fig. S2I**). Consistent with the  
213 reduction of Tox upon constitutive activation of Stat5a (**Fig. 2D**), loss of *Stat5a/b* resulted  
214 in increased Tox expression in P14 Stat5iKO compared to P14 WT during Cl13 infection  
215 (**Fig. 2H**). The minimal role of Tox at early stages of acutely resolving versus chronic  
216 infection<sup>6,7</sup> may explain the preferential impact of Stat5 during LCMV Cl13 infection  
217 compared to Arm infection. Moreover, these data indicate a role for Stat5 in the early  
218 population dynamics during evolving chronic infection with Stat5 activity repressing Tox  
219 and fostering differentiation into the more effector-like Ly108<sup>+</sup>Tim-3<sup>+</sup> subset during the  
220 first week of infection.

221  
222 **Constitutive STAT5a activation promotes an epigenetic state with features of**  
223 **effector and exhausted CD8 T cells during chronic infection**

224 Commitment of CD8 T cells to exhaustion is associated with acquisition of a distinct  
225 epigenetic landscape.<sup>6,26,40</sup> To investigate whether constitutively active Stat5a altered  
226 early epigenetic programming of Ag-specific CD8 T cells, we performed Assay for  
227 Transposase-Accessible Chromatin followed by high throughput sequencing  
228 (ATACseq)<sup>41</sup> on P14 Empty and P14 STAT5CA cells at d8 of Cl13 infection and compared  
229 these data to P14 cells isolated at d8 of Arm infection ( $T_{EFF}$ ). Examining all differentially  
230 accessible peaks (DAPs; Ifc>2, FDR≤0.01), each population of P14 cells was distinct in  
231 principal component space (**Fig. 3A**) or by Spearman distance analysis (**Fig. S3A**) with  
232 P14 Empty and P14 STAT5CA differing from each other by almost the same “distance”

233 as they each differed from the  $T_{EFF}$  cells from Arm infection. Indeed, P14 Empty and P14  
234 STAT5CA differed from Arm-derived  $T_{EFF}$  by 27,876 and 25,681 DAPs respectively. P14  
235 STAT5CA cells also differed from their P14 Empty controls in chronic infection by 16,901  
236 DAPs (**Fig. 3B, Table S2**). The majority of DAP were at intergenic, promoter and intronic  
237 regions (**Fig. S3B**). One possible explanation for these epigenetic differences could be  
238 the near absence of the  $Ly108^+Tcf1^+ T_{EX^{prec}}$  population in P14 STAT5CA (**Fig. 2B**) and  
239 subsequent absence of the *Tcf1* signature. However, of the 16,901 DAPs between P14  
240 Empty and P14 STAT5CA cells, only 454 peaks (2.7%) related to genes differentially  
241 expressed between WT and  $Tcf7^{-/-} gp33^+ CD8$  T cells from d7 post LCMV Cl13 infection  
242 (**Fig. S3C**).<sup>33</sup> This observation suggested that the distinct ATAC profile of P14 STAT5CA  
243 cells was not simply due to the absence of *Tcf1*-expressing  $T_{EX^{prec}}$  cells in this population,  
244 but rather reflected epigenetic remodeling provoked by constitutive *Stat5a* expression.

245  
246 To examine how constitutive *Stat5* expression impacted the early establishment of  
247 exhaustion in Ag-specific CD8 T cells, we performed K-means clustering of the 16,901  
248 DAPs between P14 Empty and P14 STAT5CA (**Fig. 3C, Table S2**). Cluster 1 and 4 (C1,-  
249 4) contained regions preferentially remodeled in P14 STAT5CA cells. In contrast, C2, -3  
250 and -5 contained DAPs with selectively increased or decreased accessibility in P14 Empty  
251 cells but the opposite trend in both P14 STAT5CA and  $T_{EFF}$  cells (**Fig. 3C**). Hence, among  
252 the 16,901 DAPs between P14 Empty and P14 STAT5CA cells, 62% (10,445 peaks; [C2,-  
253 3 and-5]) represented changes in which P14 STAT5CA cells became more similar to  $T_{EFF}$   
254 compared to P14 Empty cells. DAPs in C1 (gained in P14 STAT5CA) strongly enriched  
255 for *Stat5* binding motifs (also potentially bound by *Stat1*, -3 and -4) and motifs for effector-

256 related TFs (Runx1/2) (**Fig. 3C-D; Table S2**). C4 DAPs (decreased in P14 STAT5CA)  
257 rather contained T-box and homeobox TFs motifs (i.e. Eomes, T-bet, Tbr1, Tbx2-6,  
258 Tgif1/2). C2 with high accessibility in P14 Empty was enriched in binding motifs for TCR-  
259 dependent TFs with established roles in  $T_{EX}$  including NFAT (RHD) and BATF (bZIP) and  
260 this cluster included open chromatin regions at exhaustion-specific genes (i.e. *Tox*, *Tox2*)  
261 (**Fig. 3C-D and S3D**). C3 and -5 with increased accessibility in both P14 STAT5CA and  
262  $T_{EFF}$  compared to P14 Empty, contained several DAPs located near genes encoding  
263 effector-related molecules and TFs (i.e. *Gzma*, *Fasl*, *Prf1*, *Runx1/3*, *Id2*) and enriched for  
264 Stat5, Runx1/2 and ETS motifs (**Fig. 3C-D and S3D**). Further clustering of all DAPs  
265 between P14 Empty, P14 STAT5CA and  $T_{EFF}$  (70,458 peaks) revealed decreased  
266 accessibility at a large fraction of exhaustion-related open chromatin regions in P14  
267 STAT5CA cells concomitant with a shift to a more effector-like open chromatin landscape  
268 (**Fig. S3E**). Together, these data highlight an altered epigenetic program in P14  
269 STAT5CA cells early during chronic viral infection and shift towards effector biology at the  
270 stage of differentiation when epigenetic imprinting of exhaustion typically occurs.

271  
272 Consistent with this antagonism of the early program of exhaustion, a large fraction of  
273 open chromatin regions near *Tox*-dependent or exhaustion-related genes were lost in  
274 P14 STAT5CA cells, whereas accessibility at effector-associated genes was increased  
275 (**Fig. 3E**). A substantial proportion of genes from these core signature lists possessed  
276 one or several Stat5 binding sites, suggesting direct regulation of genes involved in  
277 effector versus exhaustion biology by this TF (**Fig. 3F, Table S2**). *Tox* was among the top  
278 exhaustion-related genes with reduced chromatin accessibility in P14 STAT5CA

279 compared to P14 Empty cells consistent with lower expression of Tox in the former  
280 population (**Fig. 2D**). Moreover, this gene contained one of the highest numbers of direct  
281 Stat5 binding sites (**Fig. 3G**). To explore the relationship between Tox and Stat5a, we  
282 further analyzed the *Tox* locus (**Fig. 3H**). Overall, chromatin accessibility decreased in  
283 *Tox* in P14 STAT5CA compared to P14 Empty cells, notably at enhancers in the first  
284 intron (**Fig. 3H-I**). Indeed, accessibility at one region in the first intron was decreased to  
285 a level comparable to or even lower than that observed in  $T_{EFF}$  cells (**Fig. 3I**). This region  
286 was also enriched for active H3K27Ac histone marks, particularly in settings of chronic  
287 Ag-stimulation (P14 Empty Cl13 D8) suggesting an active chromatin environment in early  
288  $T_{EX}$  (**Fig 3H**). Indeed, this region contained, and was framed by several binding sites for  
289 NFAT1<sup>42</sup> and NFAT2<sup>43</sup> (**Fig. 3H,J**), TFs that are key drivers of Tox induction during the  
290 early development of  $T_{EX}$ .<sup>6,7,10</sup> This active H3K27Ac chromatin environment in intron 1  
291 was reduced in P14 STAT5CA cells suggesting that enforced STAT5 activity impedes  
292 chromatin accessibility in *Tox*, particularly at sites where the transcriptional drivers of Tox  
293 induction (NFATs) can bind. Together, these data highlight the potential impact of Stat5  
294 in the epigenetic regulation of key exhaustion-related genes including *Tox* where Stat5  
295 appears to function directly to modulate accessibility in this locus at locations where NFAT  
296 proteins may act.

297

298 **Constitutive STAT5a activation instigates a distinct effector/NK-like transcriptional  
299 program and improves therapeutic potential**

300 Establishment of a Tox-dependent exhaustion program drives altered function, but also  
301 is required for the maintenance of  $T_{EX}$  during chronic infections and cancer.<sup>6-9,31,32</sup> Without

302 Tox,  $T_{EX}$  cannot form or persist in the setting of chronic Ag stimulation. Because  
303 constitutive Stat5a activation antagonized Tox, we next investigated the durability and  
304 fate of P14 STAT5CA cells later during chronic viral infection. We again employed the co-  
305 adoptive transfer model where P14 Empty and P14 STAT5CA cells could be examined  
306 in the same chronically infected recipient mice. At d27p.i.,  $85\pm4.5\%$  of the RV transduced  
307 (VEX<sup>+</sup>) donor P14 cells were P14 STAT5CA cells and this population numerically  
308 outcompeted their P14 Empty counterpart in the spleen as well as peripheral tissues (**Fig.**  
309 **4A-B** and **S4A-C**). This numerical advantage of P14 STAT5CA cells was also observed  
310 even in mice with life-long viremia due to transient depletion of CD4 T cells (CI13  $\alpha$ CD4;  
311 **Fig. 4A-right**) where cells persisted for at least  $\sim$ 3 months (**Fig. S4D**) suggesting a  
312 prolonged advantage of this enforced STAT5CA expression. At d27p.i., the donor P14  
313 STAT5CA population was enriched for Ly108<sup>−</sup>CD69<sup>−</sup>  $T_{EX}^{int}$  cells. The proportion of the  
314 two Tcf1<sup>+</sup> progenitor subsets,  $T_{EX}^{prog1}$  (Ly108<sup>+</sup>CD69<sup>+</sup>) and  $T_{EX}^{prog2}$  (Ly108<sup>+</sup>CD69<sup>−</sup>) were  
315 dramatically reduced, though a small population of the latter was present, and the  
316 frequency of  $T_{EX}^{term}$  (Ly108<sup>−</sup>CD69<sup>+</sup>) was also reduced compared to the P14 Empty  
317 population from the same mice (**Fig. 4C** and **S4E**). Thus, constitutive Stat5a activation  
318 leads to an accumulation advantage for virus-specific CD8 T cells in the setting of a  
319 chronic viral infection, despite the substantial reduction in Tcf1<sup>+</sup>  $T_{EX}^{prog}$  cells, mainly  
320 through an accumulation of  $T_{EX}^{int}$ -like cells.

321  
322 Based on the ATAC-seq data from d8 p.i., we hypothesized that the P14 STAT5CA cells  
323 later in chronic infection might differ from previously defined  $T_{EX}^{int}$  despite their Ly108<sup>−</sup>  
324 CD69<sup>−</sup> phenotype. We therefore performed single-cell RNA sequencing (scRNA-seq) to

325 compare P14 STAT5CA and P14 Empty cells at ~1 month of chronic viral infection. We  
326 identified canonical clusters of  $T_{EX}$  cells including a  $T_{EX}$  progenitor cluster (C4; progenitors  
327 [ $T_{EX}^{prog}$ ]) selectively expressing *Tcf7*, *Slamf6*, and *Xcl1* and two clusters that enriched for  
328 a signature of  $T_{EX}^{term}$  (C0 and C1) and expressed *Cxcr6*, a marker associated with  
329 terminal exhaustion<sup>30</sup> as well as elevated *Pdcd1*, *Cd160* and *CD244* (2B4) (**Fig. 4D** and  
330 **S4F-G**). We also identified two clusters of *Cx3cr1*-expressing cells, one of which was  
331 consistent with  $T_{EX}^{int}$  cells (C3). A second cluster (C2; Effector/NK-like) also enriched for  
332 a  $T_{EX}^{int}$  cell signature but displayed selective expression of NK cell receptors (i.e. *Klre1*,  
333 *Kirk1*, *Kird1*), elevated transcripts of effector molecules and TFs (i.e. *Gzma*, *Zeb2*) (**Fig.**  
334 **4D** and **S4F-G**, **Table S3**), similar to a recently described NK-like  $T_{EX}$  subset.<sup>26,44</sup> This  
335 subset also had reduced expression of several exhaustion-related genes including *Tox*  
336 and *Pdcd1* compared to all other clusters (**Fig. 4D** and **S4F-G**, **Table S3**). This  
337 effector/NK-like cluster (C2) was composed mostly of P14 STAT5CA cells with little  
338 contribution of P14 Empty cells. Rather, the latter were more evenly distributed  
339 throughout C0,1,3, and -4 (**Fig. 4E** and **S4H**). Consistent with the high expression of NK-  
340 and effector-genes in C2, these cells also enriched for the transcriptional signatures of  
341 short-lived effector CD8 T cells (SLEC) and had the lowest enrichment score for an  
342 exhaustion or Tox-dependent transcriptional signature among clusters of CD8 T cells  
343 from CI13 infection (**Fig. 4F**). Moreover, although the P14 STAT5CA cluster (C2) mapped  
344 closely to the  $T_{EX}^{int}$  cluster (C3) in a UMAP representation (**Fig. 4D**), these two clusters  
345 differed by expression of 211 genes ( $\text{Log2FC} > 0.5$ ,  $p_{\text{value\_adj}} \leq 0.05$ ) with  $T_{EX}^{int}$  cells  
346 mostly composed of P14 Empty cells having higher expression of exhaustion-related  
347 genes including *Tox*, *Eomes*, *Pdcd1*, *Lag3* whereas the P14 STAT5CA cells had higher

348 expression of genes encoding effector or NK cell-related markers (e.g. *Klre1*, *Klrb1c*,  
349 *Klrk1*, *Klrd1*, *Gzma*, *Tbx21*), and genes involved in cell survival (e.g. *Bcl2*) (**Fig. 4G-H**,  
350 **Table S3**). Lastly, genes with increased chromatin accessibility in P14 STAT5CA cells at  
351 d8p.i. (**Fig. 3, Table S4**) had higher mRNA expression in P14 STAT5CA cells (C2) at  
352 d27p.i. (**Fig. 4I**), suggesting that the transcriptional differences observed in P14  
353 STAT5CA cells at d27p.i. reflected, at least in part, the chromatin accessibility landscape  
354 established by d8 p.i. Together these data suggested that constitutive STAT5a activation  
355 drove virus-specific CD8 T cells into a distinct state during chronic infection characterized  
356 by a transcriptional program with both effector and NK-like features in this setting that  
357 typically drives CD8 T cell exhaustion.

358

359 The enhanced effector/NK biology of P14 STAT5CA cells coupled with the accumulation  
360 advantage in chronic infection prompted us to evaluate disease control and/or therapeutic  
361 efficacy. Because during LCMV Cl13 infection even small changes in the number of WT  
362 P14 alter pathogenesis<sup>45,46</sup> complicating questions of protective immunity, we used a  
363 tumor model where the ability to control tumor growth could be assessed. P14 STAT5CA  
364 and P14 Empty cells were adoptively transferred separately into mice with established  
365 B16-gp<sub>33-41</sub> tumors (d10 post tumor inoculation) (**Fig. 4J**). Adoptive transfer of P14 Empty  
366 cells into these mice only slightly delayed tumor growth whereas P14 STAT5CA cells  
367 resulted in substantial reduction in tumor burden and survival of all mice in this group  
368 (**Fig. 4K-L**). Thus, the impact of constitutively active STAT5a on differentiation of CD8 T  
369 cells not only antagonized exhaustion, but these changes in CD8 T cell differentiation  
370 corresponded to improved therapeutic efficacy and control of tumor growth.

371 **STAT5 is essential for generation of  $T_{EX}^{int}$  cells and for response to PD-L1 blockade**

372 We next used the adoptive transfer approach to investigate how endogenous Stat5  
373 influenced  $T_{EX}$  dynamics when exhaustion was fully established using P14 WT and P14  
374 Stat5iKO cells (**Fig. S2D**). At ~1 month p.i., P14 Stat5iKO cells had high expression PD-  
375 1 and Tox (albeit slightly reduced compared to P14 WT) but lacked expression of  
376 molecules associated with  $T_{EX}^{int}$  or  $T_{EX}^{term}$  (i.e. Granzyme B, Cx3cr1, Tim-3; **Fig. 5A**).  
377 Indeed, the P14 Stat5iKO population was almost exclusively composed of  $T_{EX}$  progenitors  
378 ( $T_{EX}^{prog1}$  and  $T_{EX}^{prog2}$ ) with only minor populations of  $T_{EX}^{int}$  cells and  $T_{EX}^{term}$  compared to  
379 P14 WT cells or STAT5-proficient (cre-/YFP-) controls from the same donor P14  
380 population (**Fig. 5B** and **Fig. S5A-B**). As a result, the number of P14 Stat5iKO cells in the  
381 spleen was reduced compared to P14 WT cells with even more substantial reductions in  
382 the blood and peripheral tissues consistent with the accumulation of  $T_{EX}^{int}$  and  $T_{EX}^{term}$  cells  
383 in these locations (**Fig. 5C** and **S5C-D**).<sup>27</sup> However, the  $T_{EX}^{prog1}$  and  $T_{EX}^{prog2}$   
384 compartments remained numerically intact in the absence of *Stat5a/b* (**Fig. 5C**). The  
385 stability of these progenitor-like CD8 T cells in chronic viral infection in the absence of  
386 *Stat5a/b* was in stark contrast to the ~23-fold reduction in the number of memory CD8 T  
387 cells formed by P14 Stat5iKO following an acute infection with LCMV Arm (**Fig. 5D**)  
388 highlighting the distinct dependency on *Stat5a/b* for the formation and/or maintenance of  
389  $T_{MEM}$  in acutely resolving versus  $T_{EX}^{prog}$  in chronic viral infection.

390

391 As  $T_{EX}^{prog1}$  cells exit quiescence, they convert to  $T_{EX}^{prog2}$  cells that re-engage cell-cycle  
392 and further differentiate into  $T_{EX}^{int}$  cells. This  $T_{EX}^{prog2}$  to  $T_{EX}^{int}$  transition is amplified by PD-  
393 1 pathway blockade.<sup>27</sup> In the absence of *Stat5a/b*, proliferation of  $T_{EX}^{prog1}$  and  $T_{EX}^{prog2}$  was

394 reduced compared to P14 WT (**Fig. S5E**). This reduced proliferation suggested a defect  
395 in the conversion of  $T_{EX}^{prog1}$  and  $T_{EX}^{prog2}$  into  $T_{EX}^{int}$  cells without *Stat5a/b*. PD-L1 blockade  
396 did not rescue the development of  $T_{EX}^{int}$  cells for P14 Stat5iKO cells and these cells failed  
397 to expand in number following PD-L1 blockade despite a numerically intact progenitor  
398 compartment (**Fig. 5E** and **S5F-G**). Thus, Stat5 was essential for proliferation-driven  
399 conversion of  $T_{EX}^{prog1}$  and  $T_{EX}^{prog2}$  into  $T_{EX}^{int}$ , a key developmental transition for generation  
400 of more terminally differentiated  $T_{EX}$  subsets, replenishment of peripheral immunity and  
401 response to PD-1 blockade.

402  
403 To investigate the molecular effects of Stat5-deficiency in  $T_{EX}$  subsets, we performed  
404 Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) on P14 WT  
405 and P14 Stat5iKO cells at ~1 month of chronic infection. Using RNA-based unsupervised  
406 clustering, we again identified major clusters of  $T_{EX}$  cells and confirmed the near absence  
407 and robust reduction of the  $T_{EX}^{int}$  and  $T_{EX}^{term}$  subsets respectively in P14 Stat5iKO  
408 compared to P14 WT (**Fig. 5F,G** and **S6A,B**). Top DEGs between WT and Stat5iKO P14  
409 cells reflected this altered subset distribution with increased expression of progenitor-  
410 associated genes (i.e. *Tcf7*, *Id3*, *Xcl1*) but depletion of genes related to more  
411 differentiated subsets (i.e. *Cx3cr1*, *Cxcr6*, *Gzma*, *Gzmb*) in the later population (**Fig. 5H**,  
412 **Table S5**). Comparing clusters also revealed transcriptional divergence between P14  
413 Stat5iKO and P14 WT cells in the three main clusters, suggesting that STAT5-deficiency  
414 affected all major subsets of  $T_{EX}$  cells (**Fig. S6C**).

415

416 The  $T_{EX}^{prog1}$  and  $T_{EX}^{prog2}$  often co-segregate in scRNA-seq space because of the  
417 dominance of the progenitor signature. However, the  $T_{EX}^{prog2}$  subset engages distinct  
418 biology as these cells begin to downregulate *Tcf7*, enter cell cycle and initiate the  
419 transition to downstream  $T_{EX}$  subsets.<sup>27</sup> CITE-seq captured this key transitional biology  
420 by discriminating  $Ly108^+CD69^- T_{EX}^{prog2}$  cells using surface markers and allowed us to  
421 further interrogate Stat5a/b-dependent transcriptional differences in this subset (**Fig.**  
422 **S6D-F**). Indeed, analysis of DEGs confirmed transcriptional differences between oligo-  
423 tagged antibody-defined  $T_{EX}$  subsets (**Fig. 5I**, **Table S5**). Of interest, the Stat5-dependent  
424 cyclin *Ccnd2* that initiates the G1-S cell-cycle phase was elevated in all P14 WT  $T_{EX}$   
425 subset compared to P14 Stat5iKO cells consistent with a defect in cell-cycle re-entry in  
426 the absence of *Stat5a/b* (**Fig. 5J**). This reduced *Ccnd2* expression was coupled with a  
427 robust decrease in expression of multiple genes encoding ribosomal proteins (*Rps* genes)  
428 in P14 Stat5iKO cells, particularly in  $T_{EX}^{prog1}$  and  $T_{EX}^{prog2}$  cells (**Fig. 5J**). This observation  
429 suggested a reduction in protein synthesis in *Stat5a/b*-deficient  $T_{EX}$  coupled to a defect in  
430 differentiation potential. *Stat5a/b*-deficient  $T_{EX}^{prog2}$  cells also retained higher expression  
431 of progenitor associated-molecules (i.e. *Tcf7*, *Sell*, *Slamf6*, *Id3*, *Tox*) whereas these  
432 genes are typically reduced during the  $T_{EX}^{prog1}$  to  $T_{EX}^{prog2}$  transition.<sup>27</sup> Expression of some  
433 of these progenitor-related molecules even trended higher in the few *Stat5a/b*-deficient  
434  $T_{EX}^{int}$  and  $T_{EX}^{term}$  cells detectable (e.g. *Sell*, *Slamf6*, *Tcf7*, *Tox*) compared to P14 WT  $T_{EX}^{int}$   
435 and  $T_{EX}^{term}$  cells (**Fig. 5J**). In addition, the few  $T_{EX}^{int}$  cells that developed in the absence  
436 of *Stat5a/b* had impaired expression key effector genes including (i.e. *Gzma*, *GzmB*,  
437 *Cx3cr1*, *Zeb2*, *Tbx21*, *Id2*) and multiple KLR-molecules (i.e. *Klrd1*, *Klre1*, *Klrc1*, *Klrc2*,  
438 *Klrk1*), though because of the small number of Stat5iKO  $T_{EX}^{int}$  cells, many of these

439 changes did not reach statistical significance. However, this lack of effector-biology in  
440 P14 Stat5iKO  $T_{EX}^{int}$  cells was also apparent at the  $T_{EX}^{term}$  stage (i.e. reduced *Gzmb*,  
441 *Gzma*) and these cells also had reduced expression of *Bcl2* perhaps contributing to poor  
442 survival in the absence of *Stat5a/b* (Fig. 5J). Together, these data point to a key inability  
443 of  $T_{EX}^{prog2}$  cells to exit quiescence, re-engage cell-cycle and engage the transition to the  
444  $T_{EX}^{int}$  stage in the absence of *Stat5a/b*. Stat5 also mediated the transcriptional switch that  
445 accompanied this  $T_{EX}^{prog2}$ -to- $T_{EX}^{int}$  transition by extinguishing at least some of the  $T_{EX}$   
446 progenitor-associated biology and fostering the effector and NK-like features that  
447 characterize the  $T_{EX}^{int}$  subset.

448

449 **Temporal reactivation of Stat5 in  $T_{EX}$  cells drives  $T_{EX}^{int}$  cell accumulation and**  
450 **synergizes with PD-L1 blockade**

451 Given the key role of Stat5 for  $T_{EX}^{int}$  cell generation described above, we next explored  
452 the potential of temporally manipulating this axis to foster development of this subset. To  
453 this end, we leveraged an orthogonal IL-2/IL2R $\beta$  system.<sup>47</sup> Briefly, P14 CD8 T cells were  
454 transduced with an RV encoding an orthogonal IL2R $\beta$ -receptor chain (*ortho*IL2R $\beta$ ; P14  
455 IL2R $\beta$ -ortho) that selectively binds and triggers Stat5 activation in response to cognate  
456 orthogonal IL-2 (*ortho*IL-2) but not the native endogenous IL-2 and compared these cells  
457 to those transduced with an empty RV (P14 Empty). Congenically distinct P14 IL2R $\beta$ -  
458 ortho and P14 Empty cells were co-transferred into mice infected with LCMV Cl13 (Fig.  
459 6A). Starting on d21p.i., groups of mice received escalated doses of *ortho*IL-2 for 5 days  
460 and changes in total  $T_{EX}$  and  $T_{EX}$  subsets were examined at d26p.i. *In vivo* delivery of  
461 *ortho*IL-2 caused a selective and dose dependent expansion of the YFP<sup>+</sup> (RV<sup>+</sup>) P14

462 IL2R $\beta$ -ortho cells compared to their P14 Empty control counterparts (**Fig. 6B**). This dose-  
463 dependent numerical increase was not observed in YFP $^{-}$  (RV $^{-}$ ) cells and, unlike WT IL-2,  
464 *ortholl*-2 treatment also did not alter the frequency of regulatory T cells, demonstrating  
465 the specificity of the *ortholl*-2/IL2R $\beta$  system (**Fig. S7A-B**). Moreover, although the  
466 frequency of T<sub>EX</sub> subsets remained similar in the P14 Empty population and endogenous  
467 gp<sub>33-41</sub>-specific CD8 T cells (**Fig. S7C-D**), the P14 IL2R $\beta$ -ortho population in the same  
468 mice displayed an expansion of T<sub>EX</sub><sup>prog2</sup> and T<sub>EX</sub><sup>int</sup> cells and concomitant reductions in the  
469 frequency of T<sub>EX</sub><sup>prog1</sup> and T<sub>EX</sub><sup>term</sup> cells with increasing doses of *ortholl*-2 in both the spleen  
470 and peripheral tissues (**Fig. 6C-D** and **S7E-H**). The gradual decrease in T<sub>EX</sub><sup>term</sup> cell  
471 frequency within P14 IL2R $\beta$ -ortho also suggested that *ortholl*-2-mediated Stat5  
472 activation stabilized the T<sub>EX</sub><sup>int</sup> stage, restraining conversion to the more terminally  
473 exhausted T<sub>EX</sub><sup>term</sup> cells. Although the frequency of stem-like T<sub>EX</sub><sup>prog1</sup> cells among the P14  
474 IL2R $\beta$ -ortho populations treated with *ortholl*-2 decreased in a dose dependent manner,  
475 the absolute number of these key progenitor cells remained stable (**Fig. S7I**) suggesting  
476 that *ortholl*-2 treatment could enhance the generation of downstream T<sub>EX</sub> subsets without  
477 depleting the T<sub>EX</sub> progenitor populations. These data indicate that temporal engagement  
478 of the *ortholl*-2 system in T<sub>EX</sub> cells, likely through increasing Stat5 activity, can function  
479 as an amplifier of the T<sub>EX</sub><sup>prog2</sup> transition into T<sub>EX</sub><sup>int</sup> cells.

480  
481 Because expansion of T<sub>EX</sub><sup>prog2</sup> and T<sub>EX</sub><sup>int</sup> cells is also observed following PD-1/PD-L1  
482 pathway blockade,<sup>27</sup> we next tested the potential of PD-1 pathway blockade to combine  
483 with *ortholl*-2. P14 Empty and P14 IL2R $\beta$ -ortho cells expanded similarly upon PD-L1  
484 blockade. However, the P14 IL2R $\beta$ -ortho cells substantially outnumbered their P14 Empty

485 counterpart in the same mice when *ortholl*-2 was provided at the time of PD-L1 blockade  
486 (**Fig. 6F-G** and **S7J-K**). This burst in P14 IL2R $\beta$ -ortho cell number was due to a selective  
487 amplification of  $T_{EX}^{prog2}$  and an even more robust increase in  $T_{EX}^{int}$  cells (**Fig. 6H-I**). Thus,  
488 the strong combinatorial potential of IL-2-derived signals to synergize with PD-1/PD-L1  
489 blockade reported previously<sup>48</sup> resides in the convergence of the two approaches at  
490 amplifying the  $T_{EX}^{int}$  subset likely in a Stat5-dependent manner.

491

492 **Temporal reactivation of Stat5 in  $T_{EX}$  progenitors enables functional recovery and**  
493 **partial epigenetic rewiring towards the  $T_{EFF}/T_{MEM}$  lineage upon rechallenge**

494 Given the ability of Stat5-dependent signals to restrain exhaustion and foster effector-like  
495 biology, we next tested whether engaging Stat5 in combination with strong re-  
496 differentiation signals could rewire the epigenetic program of mature  $T_{EX}$  cells. To test this  
497 idea, we sort-purified RV transduced IL2R $\beta$ -ortho Ly108 $^+$   $T_{EX}$  progenitors cells on d27p.i.,  
498 after exhaustion was fully established (**Fig. S8A**). These cells were adoptively transferred  
499 into congenic naïve recipient mice and these mice were subsequently challenged with  
500 LCMV Arm to provide a strong (re)differentiation signal (**Fig. 7A**). On day 3-to-7 post  
501 challenge (p.ch.), recipient mice received daily injections of PBS or *ortholl*-2 (150KIU)  
502 with or without anti-PD-L1 (**Fig. 7A**). We compared these responses to recall responses  
503 of conventional memory P14 CD8 T cells (Memory;  $T_{MEM}$ ) isolated from LCMV Arm mice  
504 (d>90p.i.) (**Fig. 7A** and **S8A**). When compared head-to-head,  $T_{MEM}$  cells numerically  
505 outperformed Ly108 $^+$   $T_{EX}$  progenitors from the PBS-treated group ( $T_{EX}^{[PBS]}$ ) by ~54-fold  
506 on d8 p.ch. (**Fig. 7B**), consistent with previous observations.<sup>11</sup>  $T_{EX}^{[PBS]}$  also remained poor  
507 cytokine producers, had lower expression of cytolytic molecules (i.e. Gzmb, Gzma),

508 rapidly re-expressed Tox and PD-1, and generated few KLRG1<sup>+</sup>CD127<sup>-</sup> secondary T<sub>EFF</sub>  
509 compared to the donor T<sub>MEM</sub> (**Fig. 7C-E**). In contrast, however, IL2R $\beta$ -ortho Ly108<sup>+</sup> T<sub>EX</sub>  
510 progenitors treated with *ortholl*2 (T<sub>EX</sub><sup>[*oIL*2]</sup>) during re-challenge underwent robust  
511 secondary expansion compared to their PBS-treated counterparts, approaching the  
512 expansion potential of T<sub>MEM</sub> cells, especially when *ortholl*2 was combined with PD-L1  
513 blockade (**Fig. 7B**). The accumulation advantage of T<sub>EX</sub><sup>[*oIL*2]</sup> cells versus T<sub>EX</sub><sup>[PBS]</sup> persisted  
514 at d40 p.ch. (**Fig. S8B**). *Ortholl*2 treatment was sufficient to restore polyfunctionality as  
515 assessed by IFN $\gamma$  and TNF production and this polyfunctionality was not further enhanced  
516 by addition of PD-L1 blockade (**Fig. 7C**). *Ortholl*2 treatment also resulted in higher  
517 expression of effector related molecules reaching levels similar to (T-bet, CD94, GzmB)  
518 or even higher (GzmA) than observed for secondary T<sub>EFF</sub> responses derived from T<sub>MEM</sub>  
519 and those qualitative changes occurred in the absence of an increase in the KLRG1<sup>+</sup>  
520 population (**Fig. 7D, E**). Tox expression was reduced in T<sub>EX</sub><sup>[*oIL*2]</sup> cells whereas PD-1  
521 expression remained unchanged compared to the PBS treatment group (**Fig. 7D**),  
522 consistent with the additional benefit of blocking the PD-1 pathway in combination with  
523 *ortholl*2 treatment (**Fig. 7B and D**). Thus, in this rechallenge setting, *ortholl*2 treatment  
524 synergized with PD-L1 blockade for robust expansion of T<sub>EX</sub> progenitor cells and  
525 accessing the IL-2-STAT5 axis in this setting had a selective qualitative impact on  
526 restoring robust expansion, polyfunctionality and effector biology.

527  
528 To interrogate the mechanisms of this *ortholl*2 treatment benefit on T<sub>EX</sub> cells, we  
529 performed ATAC-seq on T<sub>MEM</sub>, T<sub>EX</sub><sup>[PBS]</sup> and T<sub>EX</sub><sup>[*oIL*2]</sup> at d8p.ch. Principle component  
530 analysis revealed distinct chromatin landscapes for T<sub>MEM</sub>, T<sub>EX</sub><sup>[PBS]</sup> and T<sub>EX</sub><sup>[*oIL*2]</sup> with 4701

531 DAPs ( $|fc|>2$ ,  $FDR\leq 0.01$ ) by pairwise comparisons (**Fig. 7F,G, Table S6**). K-means  
532 clustering of all DAPs identified modules of open chromatin regions preferentially  
533 accessible in cells originating from  $T_{EX}^{prog}$  (open in  $T_{EX}^{[PBS]}$  vs  $T_{MEM}$ ; C1 and C2;  
534 Exhaustion-Modules) or  $T_{MEM}$  cells (open in  $T_{MEM}$  vs  $T_{EX}^{[PBS]}$ ; C3 and C4; Memory-  
535 Modules) (**Fig. 7H, Table S6**). These data indicated that even in settings of strong  
536 (de)differentiation signals, scars of the exhaustion epigenetic landscape persisted in cells  
537 that expanded from  $T_{EX}^{prog}$ .<sup>11,13</sup> Targeted delivery of *ortholl*-2-signals, however, reversed  
538 parts of this epigenetic program in  $T_{EX}^{prog}$ -derived cells (**Fig. 7H**; C2; Exhaustion-module  
539 “Reversed”) and even allowed for acquisition of open chromatin patterns associated with  
540 the  $T_{EFF}/T_{MEM}$  lineage (**Fig. 7H**; C4; Memory module “Reacquired”). In addition, *ortholl*-2  
541 treatment resulted in a selectively increased accessibility at a large fraction of chromatin  
542 regions that were otherwise closed in both  $T_{EX}^{[PBS]}$  and  $T_{MEM}$ -derived cells (**Fig. 7H**; C5;  
543 “IL2-Stat5 module”). Notably, *ortholl*-2 treatment increased chromatin accessibility at  
544 genes related to cell proliferation (*Cdkn2b*), effector differentiation (*Id2*, *Klrb1c*), IL-2/Stat5  
545 responsiveness (*Il2ra*, *Cish*) and interferon response (*Ifitm1*, *Ifitm3*) (**Table S6**).  
546 Nevertheless, a fraction of  $T_{EX}^{prog}$ - (C1; Exhaustion-module “Conserved”) and  $T_{MEM}$ - (C3;  
547 Memory module “Not Re-acquired)-related open chromatin regions were not or were  
548 more moderately affected by *ortholl*-2 treatment suggesting selectivity in the epigenetic  
549 changes triggered by the *ortholl*-2-Stat5 axis (**Fig. 7H**). Finally, the genomic regions  
550 remodeled in *ortholl*-2 treated  $T_{EX}^{prog}$  ( $T_{EX}^{[oIL2]}$ ), in particular the IL2-Stat5 C5 module also  
551 displayed consistent directionality of chromatin accessibility in P14 STAT5CA cells from  
552 d8p.i. (**Fig. S8C**). The susceptibility of those regions to IL-2/Stat5-mediated chromatin  
553 accessibility modulation at either early or late time-points of a chronic viral infections

554 suggested opportunities to leverage this IL-2/Stat5 axis for either the prevention or  
555 therapeutic reprogramming of  $T_{EX}$  cells.

556  
557 To examine the transcriptional circuitry that was rewired by *ortholl*-2 signals in this setting  
558 of  $T_{EX}^{prog}$  (re)differentiation, we next compared the network of TF binding site in the altered  
559 chromatin accessibility landscape of  $T_{MEM}$ ,  $T_{EX}^{[PBS]}$  and  $T_{EX}^{[oIL2]}$ . The open chromatin  
560 landscape of  $T_{EX}^{[PBS]}$  enriched in binding motifs for TCR-inducible bZIP domain-containing  
561 AP-1 family members ([C1]; i.e. Fra1/2, JunB, BATF, Atf3 or AP-1) and High Mobility  
562 Group-TFs ([C2]; i.e. Tcf7, Tcf3, the Tcf7-homologue Lef1 and the Tcf7 partners Foxo1  
563 and Eomes)<sup>49-51</sup> (**Fig. 7I**).  $T_{MEM}$ -derived cells, in contrast, enriched for T-box (i.e. Tbx21),  
564 ETS (i.e. Ets1) and Runt (i.e. RUNX1/2) motifs (C3 and C4), consistent with distinct  
565 transcriptional circuitry governing the  $T_{EX}$  and  $T_{MEM}$  lineages during recall  
566 responses.<sup>25,26,40,52</sup> Notably, whereas  $T_{MEM}$  also contained accessible bZIP motifs, these  
567 motifs were located in chromatin accessible regions associated with C4 DAP, whereas  
568 the bZIP motifs enriched in  $T_{EX}^{[PBS]}$  were found mainly in C1 open chromatin regions.  
569 These data suggested distinct wiring of TCR-dependent signals (i.e. mediated via bZIP  
570 TFs) in  $T_{EX}$  versus  $T_{MEM}$  during rechallenge. *Ortholl*-2 treatment did not alter accessibility  
571 at bZIP motifs in C1, the module associated with  $T_{EX}^{[PBS]}$  recall responses. However,  
572 *ortholl*-2 increased accessibility at bZIP motifs in the  $T_{EFF}/T_{MEM}$ -related C4 and also  
573 provoked increased accessibility at bZIP binding sites in C5, the module preferentially  
574 enriched in the  $T_{EX}^{[oIL2]}$  cells (i.e. Jun-AP1, FosL2) (**Fig. 7I**). Thus, *ortholl*-2, likely through  
575 Stat5 engagement, appears to have a prominent impact in shaping the set of bZIP family  
576 TF binding sites in  $T_{EX}$  during (re)differentiation. Moreover, *ortholl*-2 treatment also

577 selectively reversed the  $T_{EX}$ -associated accessibility at HMG-TFs bound regions (C2) and  
578 re-engaged  $T_{MEM}/T_{EFF}$ -related enhancers such as those bound by the Runx-family of TFs  
579 (C4) (**Fig. 7I**). Together, these data suggest that providing strong (re)differentiation  
580 signals via antigenic restimulation in combination with IL-2 and/or Stat5 signals may have  
581 therapeutic potential to rewire  $T_{EX}$ . This augmented IL-2-Stat5-signaling during  
582 (re)differentiation of  $T_{EX}^{prog}$  resulted in a remodeled epigenetic landscape and subsequent  
583 reshaping of the TF network in these cells towards a hybrid  $T_{EFF}/T_{EX}$  state that combined  
584 partial silencing and rewiring of exhaustion-related open chromatin regions to re-  
585 engagement of some chromatin accessibility regions associated with the  $T_{EFF}/T_{MEM}$   
586 lineage.

587

588

589

590 **Discussion**

591 Reversing or rewiring the epigenetic program of  $T_{EX}$  remains a major goal of cancer  
592 immunotherapy.<sup>11,13,25,53</sup> Here, we discovered a reciprocal circuit between Stat5a and Tox  
593 in which Stat5a antagonizes Tox and the Tox-driven  $T_{EX}$  epigenetic program, fostering  
594 the acquisition of effector-like biology. In established  $T_{EX}$ , boosting Stat5 activity partially  
595 rewired the  $T_{EX}$  open chromatin landscape towards the  $T_{EFF}/T_{MEM}$  lineage with a  
596 preferential ability to function at the point of developmental flexibility that occurs as  $T_{EX}^{prog}$   
597 convert to the “effector-like”  $T_{EX}^{int}$  subset. The use of an orthogonal IL-2/IL2R $\beta$ -pair  
598 system<sup>47</sup> allowed Stat5-signals to be directed exclusively to the Ag-specific CD8 T cells  
599 of interest *in vivo* and strongly synergized with PD-1 pathway blockade through  
600 coordinated expansion of  $T_{EX}^{int}$  cells. These data may help explain the therapeutic benefit  
601 of IL-2 in settings of T cell exhaustion,<sup>54,55</sup> the combinatorial effect of IL-2 treatment with  
602 PD-1 pathway blockade,<sup>48</sup> and define mechanisms by which  $\gamma_c$ -cytokine signaling can  
603 impact CD8 T cell exhaustion. Moreover, a notable feature of manipulating Stat5 activity  
604 in  $T_{EX}$  was the generation of a highly durable hybrid state of differentiation that has  
605 features of effector biology, NK receptor expression, resistance to exhaustion, and  
606 durability which together, could have considerable therapeutic benefit.

607

608 IL-2 was one of the first effective immunotherapies for cancer<sup>55</sup> and, can have a direct  
609 impact on  $T_{EX}$ .<sup>56</sup> Our data now provide mechanistic explanations for these effects of IL-2.  
610 First, Stat5 antagonizes Tox and the Tox-dependent  $T_{EX}$  epigenetic imprinting fostering  
611 effector-like differentiation. This Stat5 antagonism of Tox may explain the preferential  
612 impact of early Stat5-signals in settings where Tox is abundant (chronic infections,

613 cancer) versus those that favor  $T_{EFF}$  (e.g. acutely resolving infections) where  $Tox$   
614 expression is low.<sup>7</sup> Second, Stat5 was necessary for formation of  $T_{EX^{int}}$  cells a finding that  
615 may explain the strong synergy of IL-2 and PD-1 blockade. Mechanistically, Stat5  
616 attenuated or extinguished the stem-like biology of  $T_{EX^{prog}}$  to initiate exit from quiescence,  
617 cell-cycle re-entry and allow downstream  $T_{EX^{int}}$  cell differentiation. One potential link  
618 between these events may be the mechanisms of downregulation of Tcf1 which is  
619 essential for exit from the  $T_{EX^{prog}}$  state.<sup>27,35,57</sup> In other settings, IL-2/Stat5-signals can  
620 repress Tcf1 activity and promote cellular differentiation.<sup>58,59</sup> Indeed, here we found that  
621 enhancing Stat5 activity (STAT5CA) depleted Tcf1<sup>+</sup> cells and provoked a loss of Tcf1  
622 binding sites in established  $T_{EX}$  (*ortholl*-2) whereas Stat5-deficiency trapped  $T_{EX}$  at the  
623 progenitor stage. Thus, the balance between Tcf1 and Stat5 activity may be one key  
624 regulator node for differentiation of  $T_{EX^{prog}}$  into downstream  $T_{EX}$  subsets including  $T_{EX^{int}}$ .  
625 Third, Stat5 promotes the effector circuitry in  $T_{EX^{int}}$  cells including driving expression of  
626 many effector (e.g. *GzmB*, *IFN $\gamma$* , *FasL* or *perforin*) and NK-related genes also previously  
627 linked to Stat5 activity in other settings.<sup>38,58,60</sup> Hence, Stat5 not only functions to drive  
628 formation of  $T_{EX^{int}}$  cells but also likely controls expression of some of the key genes  
629 associated with this effector/NK-like biology. Together, these observations provide  
630 rationale for developing therapeutic strategies to increase Stat5 activity in  $T_{EX}$  in settings  
631 of chronic infection or cancer. In particular, the *ortholl*-2 approach<sup>47</sup> may control for  
632 previous limitations by delivering Stat5 inducing signals only to the cells of interest.<sup>61</sup>  
633  
634 Since the discovery of the distinct epigenetic wiring of  $T_{EX}$  that limits re-differentiation  
635 upon PD-1 blockade,<sup>25,40</sup> developing approaches to reprogram the epigenetics of  $T_{EX}$  has

636 been a major goal. Identifying such strategies, however, has proven challenging. The  
637 data presented here reveal new potential opportunities for, at least partial epigenetic re-  
638 wiring of  $T_{EX}$ .  $T_{EX}$  can retain epigenetic “scars” in settings of disease cure and rapidly re-  
639 engage the  $T_{EX}$  program upon antigenic rechallenge.<sup>11,13,8,62</sup> In settings of an acute viral  
640 rechallenge, we found that boosting the IL-2/Stat5 signals reversed a substantial fraction  
641 of these exhaustion-associated scars and restored accessibility at open chromatin  
642 regions associated with the  $T_{MEM}/T_{EFF}$  lineage. This partial epigenetic reprogramming was  
643 sufficient to restore robust re-expansion and polyfunctionality. The exhaustion-specific  
644 open chromatin regions reversed by the IL-2/Stat5 axis were enriched for HMG-motifs  
645 especially those that could be bound by Tcf1. Tcf1 functions in activated CD8 T cells to  
646 maintain stemness at the expense of effector differentiation<sup>49,50,57,63</sup>. One possibility is  
647 that Tcf1 may restrain  $T_{EFF}$  features in  $T_{EX}$  and the ability of Stat5 signals to repress Tcf1  
648 activity<sup>58,59</sup> maybe be sufficient to relieve the Tcf-mediated  $T_{EX}^{prog}$  restraint. Coupled to an  
649 antagonism of Tox, IL-2/Stat5 signals are likely to foster  $T_{EX}$  rewiring by both augmenting  
650 a developmental biology conversion of  $T_{EX}^{prog}$  into  $T_{EX}^{int}$  by antagonizing Tcf1 and also by  
651 removing the Tox-dependent reinforcement of the  $T_{EX}$  program. Thus, appropriately  
652 accessing the IL-2/Stat5 pathway provides a strong combination of signals for  $T_{EX}$   
653 (re)differentiation.

654

655 Long-term persistence in settings of continued TCR signaling is a hallmark of  $T_{EX}$  cells  
656 compared to  $T_{EFF}$  or  $T_{MEM}$ .<sup>14,15,35,64,65</sup> Thus, a notable feature of constitutive Stat5a activity  
657 in Ag-specific CD8 T cells during chronic infection was the durability of this population  
658 despite the relative absence of the key regulators of  $T_{EX}$  persistence, Tox and Tcf1.<sup>6-9,31-</sup>

659 33,66 Although there are some data suggesting a role for IL-2-signals in fine-tuning memory  
660 CD8 T cell formation,<sup>67</sup> IL-2 signals also drive terminal differentiation of short-lived effector  
661 CD8 T cells and prolonged exposure to exogenous IL-2 exacerbates T<sub>EFF</sub> contraction in  
662 settings of acute viral infection<sup>54,68-72</sup>. Moreover, use of IL-2 for *in vitro* expansion in  
663 settings of adoptive cell therapy (ACT) has been associated with poor engraftment and/or  
664 limited durability or anti-tumor activity of Ag-specific CD8 T cells.<sup>59</sup> Thus, although IL-2  
665 fosters strong effector function, this cytokine can also drive terminal differentiation.<sup>73,74</sup> As  
666 a result, in settings of ACT, strategies to temper Stat5-signals (e.g. using engineered IL-  
667 2 variants or alternate  $\gamma_c$ -cytokines during *in vitro* expansion)<sup>58,59,75</sup> have been developed  
668 to restrain terminal differentiation and support formation of a stem-like compartment with  
669 superior engraftment potential and anti-tumor activity.<sup>36,58,59,68,69,76,77</sup> Thus, our data on  
670 the durability benefits of STAT5CA in chronic viral infection suggest several possibilities.  
671 First, constitutively active Stat5 may function differently than prolonged exposure to IL-2.  
672 Second, enforcing Stat5-signals directly in CD8 T cells may differ from exogenous IL-2  
673 treatment, especially in settings where the ability of T<sub>EFF</sub> signal downstream of IL-2 is  
674 reduced due to changes in receptor expression and/or signaling efficiency.<sup>36,78,79</sup> Third,  
675 continuous IL-2/Stat5 signals may provoke different effects than short-term IL-2 exposure  
676 as used in ACT protocols<sup>59</sup> or previous studies only providing additional IL-2 during the  
677 effector phase.<sup>54</sup> However, one last possibility is that in the setting of continuous TCR  
678 signals that drive exhaustion, enforced Stat5 activity synergizes with other exhaustion-  
679 driven antigen-dependent survival signals. Dissecting these questions will be an  
680 important future goal to determine how Stat5 interacts with other signals and devise  
681 strategies to optimally exploit the Stat5/IL-2 pathway for enhancing immunotherapy.

682

683 In summary, we identify a role for augmented IL-2/Stat5 signals in a potential epigenetic  
684 rewiring of T<sub>EX</sub> cells and uncover the underlying molecular and cellular mechanisms for  
685 these effects. The result of increasing IL-2/Stat5 signals is a hybrid differentiation state  
686 combining therapeutically useful features of both T<sub>EFF</sub> and T<sub>EX</sub> leading to improved control  
687 of disease. The use of the *orthotIL-2* system demonstrated that these effects are cell  
688 intrinsic to T<sub>EX</sub> and suggests future strategies for Stat5 targeting therapeutics including  
689 cytokine-based and engineered cellular therapy-based approaches. Future studies in  
690 humans will be necessary to understand how these molecular principles extend to more  
691 complex settings with both pre-existing T<sub>EX</sub> and opportunities for new T cell priming as  
692 well as role for other  $\gamma_c$  responsive cell types. Nevertheless, these data may provide a  
693 guide for developing and evaluating such therapies in future clinical trials.

694

695 **STAR★METHODS**

696 **Mice**

697 Six-week old C57BL/6 female mice (CD45.2, Charles River, NCI) were used as recipient  
698 mice for most adoptive transfer experiments. Alternatively, six-week old C57BL/6 male or  
699 female (CD45.2, The Jackson Laboratory) mice were used as recipients for Stat5iKO  
700 experiments. P14 TCR transgenic mice expressing a TCR specific for the LCMV D<sup>b</sup>gp33-  
701 41 peptide were bred in house and backcrossed onto the C57BL/6 background. P14  
702 Rosa<sup>YFP</sup> *Stat5a/b*<sup>f/f</sup> (P14 Stat5iKO) mice were generated by crossing *Stat5a/b*<sup>f/f</sup> mice  
703 (The Jackson laboratory, ref-#032053-JAX) with P14 Rosa<sup>YFP</sup> mice (bred in house). All  
704 experiments and breeding conditions were in accordance with Institutional Animal Care  
705 and Use Committee (IACUC) guidelines for the University of Pennsylvania.

706

707 **Viruses and Infections**

708 LCMV Arm and CI13 were grown in BHK cells and titrated using plaque assay on VERO  
709 cells as described.<sup>80</sup> Recipient mice were infected either intraperitoneally (i.p.) with LCMV  
710 Arm (2x10<sup>5</sup> plaque forming units [PFU]) or intravenously (i.v.) with LCMV CI13 (4x10<sup>6</sup>  
711 PFU).

712

713 **Cell line and tumor transplant**

714 The B16<sub>gp33</sub> melanoma cell line was maintained in DMEM supplemented with 10% FBS,  
715 1% L-glut and 1% Pen/Strep. Tumor cells cultured for less than two weeks were  
716 resuspended in cold PBS and implanted subcutaneously (5x10<sup>5</sup> cells in 50µl) in the flank  
717 of recipient mice using 29G1/2 syringes. Tumor size was monitored every two days using

718 a digital caliper and mice were euthanized before tumors exceeded the volume permitted  
719 by the IACUC guidelines for the University of Pennsylvania.

720

721 **Retroviral vectors**

722 The STAT5CA construct has been described previously<sup>36,37</sup> and was kindly provided by  
723 Dr. Susan Kaech (The Salk Institute). The IL2R $\beta$ -ortho construct has been described  
724 previously<sup>47</sup> and was obtained from Dr. Christopher K. Garcia (Stanford University) under  
725 the Material Transfer Agreement RIS#59882/00 between Stanford University, the  
726 University of Pennsylvania and the Parker Institute for Cancer Immunotherapy (PCI).  
727 Both constructs were cloned into a MSCV-IRES plasmid containing either VEX or  
728 YFP/GFP-reporters. RV particles were produced by transfection of 293T cells. Briefly,  
729 293T cells were pre-incubated with warmed cDMEM supplemented with chloroquine  
730 (25 $\mu$ M; Sigma). Cells were transduced with a pCL-Eco plasmid (15 $\mu$ g) and MSCV-IRES  
731 expression plasmid (15 $\mu$ g) using Lipofectamine 3000 (ThermoFisher Scientific) for 6  
732 hours at 37°C 5%CO<sub>2</sub>. After incubation, transduction medium was replaced with fresh  
733 cDMEM. RV supernatants were collected at days 3 and 4 of culture and titrated on  
734 NIH3T3 cells.

735

736 **METHOD DETAILS**

737 **Adoptive T cell transfer**

738 PBMCs containing 1x10<sup>3</sup> P14 CD8 T cells were adoptively transferred into recipient mice  
739 24h prior to infection with either LCMV Arm or LCMV CI13. For Stat5iKO experiments,  
740 P14 Rosa<sup>YFP+/-</sup> *Stat5a/b*<sup>fl/fl</sup> (P14 Stat5iKO) and their control counterpart P14 Rosa<sup>YFP+/-</sup>

741 *Stat5a/b<sup>+/+</sup>* (both CD45.1.2<sup>+</sup>) were harvested from PBMCs and cultured in serum free  
742 RPMI medium containing (cre+) or not (cre-) 50 $\mu$ g/ml of tat-cre recombinase (Proteomic  
743 Core Facility-Children's Hospital of Philadelphia) for 45min at 37°C, 5%CO2. Cells were  
744 washed once in FBS then complete RPMI (cRPMI), resuspended in cold PBS and 1.5x10<sup>3</sup>  
745 of each were adoptively transferred into separate naïve CD45.2 recipients 24h before  
746 infection.<sup>27</sup> Markers associated with early T cell activation (i.e. CD69, Ly6C, PD-1, CD25,  
747 CD62L, CD127) were assessed in P14 populations before infusion into recipient mice to  
748 ensure transfer of phenotypically naïve T cells.

749

### 750 **Retroviral (RV) transduction**

751 RV transduction of P14 CD8 T cells was performed as described previously <sup>81</sup> with slight  
752 modifications. For each experiment, P14 CD8 T cells were enriched from spleens of P14  
753 transgenic mice using EasySep<sup>tm</sup> CD8<sup>+</sup> T cell isolation Kit (StemCell) and activated *in*  
754 *vitro* in cRPMI supplemented with  $\alpha$ CD3 (1 $\mu$ g/ml),  $\alpha$ CD28 (0.5 $\mu$ g/ml) antibodies and rhIL-  
755 2 (100U/ml) (PeproTech) at a seeding density of 1x10<sup>6</sup> cells/ml. One day post activation  
756 (between 24-27h), CD8 T cells were re-suspended at a density of 3-5x10<sup>6</sup> cells/ml mixed  
757 with RV supernatant containing polybrene (4 $\mu$ g/ml) at a 1:1 ratio (v/v) and spin-  
758 transduced 75' at 2000g 32°C. After transduction, 4ml of warmed cRPMI containing  
759  $\alpha$ CD3,  $\alpha$ CD28 and rhIL2 was gently added to each well of a 6-well plate for a final volume  
760 of 6ml. Cells were incubated O/N (~16h) at 37°C, 5% CO2. The next day, transduced  
761 cells were stained for 15min with LiveDead Aqua (ThermoFisher Scientific) or Zombie  
762 NIR (BioLegend) and anti-CD8 antibodies in 1XPBS at RT, resuspended in warmed  
763 cRPMI and RV-positive cells (either VEX+ or YFP/GFP+) were sorted among live CD8 T

764 cells (LiveDead Aqua/Zombie NIR<sup>+</sup>CD8<sup>+</sup>). For most RV experiments described, P14 cells  
765 expressing different congenic markers (CD45.1 or CD45.1.2) were used for transduction  
766 of control RVs (empty) and RVs encoding proteins of interest (STAT5CA or IL2R $\beta$ -ortho).  
767 The two congenically distinct P14 populations were then mixed at a 1:1 ratio in warmed  
768 PBS and injected into C57BL/6 recipients ( $2.5 \times 10^4$  each) infected 3 days earlier with  
769 LCMV Arm or Cl13.

770

### 771 **Tumor experiments**

772 C57BL/6 mice were inoculated with  $5 \times 10^5$  B16<sub>gp33</sub> cells. Ten days post tumor inoculation,  
773 mice were randomized and either left untreated or injected i.v. with FACS purified P14  
774 Empty or P14 STAT5CA cells ( $5 \times 10^5$ ).

775

### 776 **Cell preparation, flow cytometry and cell sorting**

777 Spleens were mechanically disrupted onto a 70 $\mu$ M cell strainer using the plunger of a  
778 3mL syringe and resuspended in 1mL of ACK red blood cell lysing buffer (Gibco) for 3  
779 min at room temperature (RT). Cell suspensions were washed and resuspended in  
780 cRPMI supplemented with 10% FBS, 1% penn/strep, 1% L-glut, Hepes 10mM (Cell  
781 Center, UPenn), MEM non-essential amino acids 1% (Gibco), Sodium Pyruvate 1mM  
782 (Cell Center UPenn),  $\beta$ -mercaptoethanol (0.05mM). Bone marrow suspensions were  
783 harvested by flushing cells out of the femur and tibia of infected mice with a 29G syringe  
784 and cRPMI. Cells were then treated as above. For lungs and livers, mice were perfused  
785 with cold PBS. Lungs were cut in a petri dish, disrupted in 10 ml of RPMI (1%FBS) in the  
786 presence of Collagenase D (1X) (Roche) using a MACs dissociator (Miltenyi Biotec) and

787 incubated for 45min at 37°C under agitation. After incubation, lung cells were disrupted a  
788 second time on a MACs dissociator (Miltenyi Biotec) and processed as above. After  
789 mechanical disruption onto a 70µM strainer, lymphocytes from livers were enriched using  
790 Percoll (GE Healthcare) density gradient separation (80%/40%), washed two times with  
791 cRPMI and processed as above. Blood samples were collected in 1ml of PBS 2mM  
792 EDTA. RPMI was added (1ml) and samples were underlaid with 1ml of Histopaque 1083  
793 (Sigma Aldrich) for lymphocyte enrichment using density gradient concentration.  
794 Remaining red blood cells were lysed using ACK lysing buffer (Gibco) for 3min at RT.  
795 Equal numbers of cell were stained with extracellular antibodies for 30min on ice in FACS  
796 buffer (PBS 1X, 1% FBS, 2mM EDTA) in the presence of Live/Dead Fixable Aqua Cell  
797 Stain (ThermoFisher Scientific). Cells were then fixed for 20 min on ice with  
798 Cytofix/Cytoperm (BD bioscience) and analyzed by flow cytometry. For cytoplasmic  
799 protein detection, cells were incubated for an additional 30min on ice in Perm/Wash buffer  
800 (BD bioscience) and stained for 1h on ice in Perm/Wash buffer (BD bioscience) containing  
801 antibodies targeting cytoplasmic proteins (active-caspase3, gzmA, gzmB, IFN $\gamma$ , TNF). For  
802 TFs detection, cells were fixed (20min) and permeabilized (30min) on ice using the Foxp3  
803 Transcription Factor buffer set (ThermoFisher Scientific) and incubated for an hour with  
804 TF antibodies. For TFs detection in cells expressing a fluorescent reporter protein (VEX  
805 or GFP/YFP), cells were pre-fixed 5min in 2% formaldehyde (ThermoFisher Scientific)  
806 before fixation and permeabilization using the Foxp3 TF buffer set (ThermoFisher

807 Scientific). Samples were resuspended in FACS buffer, acquired on an LSR II or BD  
808 FACSsymphony and analysed with FlowJo v.10 software (Tree Star Inc).

809  
810 For cell sorting *ex vivo*, CD8 T cells were enriched from total splenocytes using the  
811 EasySep<sup>tm</sup> CD8<sup>+</sup> T cell isolation Kit (StemCell) (routinely >90% purity), stained on ice for  
812 30' with relevant cocktails of antibodies and populations of interest were sorted at 4°C on  
813 an BD FACSARIA (BD Bioscience) using a 70  $\mu$ M nozzle in 50% FBS RPMI. Purity was  
814 routinely >95%. For ATACseq, scRNAseq and CITEseq experiments, RV-positive or  
815 reporter expressing P14 cells (either VEX<sup>+</sup> or GFP/YFP<sup>+</sup>) were sorted among LiveDead  
816 Aqua/ZombieNIR<sup>-</sup>CD8<sup>+</sup>CD45.1<sup>+</sup> cells. For re-challenge experiments, memory and T<sub>EX<sup>prog</sup></sub>  
817 P14 cells were sorted among LiveDead Aqua<sup>-</sup>CD45.1<sup>+</sup>CD45.2<sup>-</sup>CD8<sup>+</sup> T cells and T<sub>EX<sup>prog</sup></sub>  
818 cells were further discriminated as Ly108<sup>+</sup>Cx3cr1<sup>-</sup>.

819  
820 **Intracellular cytokine staining**  
821 Splenocytes or total CD8 T cells enriched using the EasySep<sup>tm</sup> CD8<sup>+</sup> T cell isolation Kit  
822 (StemCell) (1-2x10<sup>6</sup>) were re-stimulated *in vitro* for 5h at 37°C 5% CO<sub>2</sub> in cRPMI  
823 supplemented with GolgiStop (1/250; BD bioscience), GolgiPlug (1/500; BD bioscience)  
824 and gp<sub>33-41</sub> peptide (NIH, 0.4 $\mu$ g/ml). Cells were then washed and stained using the BD  
825 Fixation/permeabilization kit (BD Bioscience).

826  
827 **Antibody and cytokine treatment**

828 Where indicated, mice were depleted of CD4 T cells using two i.p. injections of 200 $\mu$ L of  
829 PBS containing 200 $\mu$ g of monoclonal anti-CD4 antibody (clone GK1.5, BioXcell) one day  
830 prior and post infection with LCMV Cl13. PD-L1 blockade was performed in CD4-depleted  
831 mice as previously described.<sup>25</sup> Sequential i.p. injections of 200 $\mu$ l of PBS containing or  
832 not rat anti-mouse PD-L1 monoclonal antibody (200 $\mu$ g/injection, clone 10F.9G2, BioXcell)  
833 were performed every three days between days 22 and 34 for a total of five injections.  
834 For re-challenge experiments, similar injections were performed at d0, 3 and 6 post  
835 infection with LCMV Arm. For experiments using the IL2/IL2R $\beta$ -orthogonal pair system,  
836 *ortho*IL-2 was infused daily (I.P) in 200 $\mu$ l of cold PBS at indicated concentrations from  
837 d21-to-25p.i. In some experiments, groups of mice were treated similarly with regular  
838 mIL2 as a reference (25KIU/injection). In experiments combining *ortho*IL-2 treatment with  
839 PD-L1 blockade, *ortho*IL-2 was infused I.P every 2 days (100KIU/injection) for the  
840 duration of PD-L1 treatment (d22-34p.i.). For re-challenge experiments, *ortho*IL-2 was  
841 infused daily (I.P) from d3-to-d7 post challenge (150KIU/injection).

842

#### 843 **Active caspase-3 and BrdU detection**

844 Splenocytes from infected mice were incubated for 5 hours at 37°C 5%CO<sub>2</sub> in cRPMI  
845 prior intra-cytoplasmic detection of active-caspase 3 (BD Bioscience) using BD  
846 Fixation/Permeabilization kit (BD Bioscience). Mice adoptively transferred with either  
847 P14WT or P14Stat5iKO were injected I.P with 2mg of BrdU at d7p.i. with LCMV Cl13 and

848 BrdU detection in splenic P14 cells was performed one day later (d8p.i.) using a BrdU  
849 detection Kit (BD Bioscience) according to manufacturer's protocol.

850

851 **Sample preparation for Cut&Run**

852 Cut&Run was performed as previously described <sup>82</sup> with modifications. P14 Empty and  
853 P14 STAT5CA cells were sorted at d8.p.i. with either LCMV Arm or CI13 from recipients  
854 of two independent experiments and 0.5 to 3x10<sup>5</sup> cells were recovered in 1.5ml DNA  
855 LoBind Eppendorfs containing 650µl of 50%FBS RPMI. Samples were washed twice in  
856 1ml of cold wash buffer (20mM HEPES-NaOH pH7.5, 150mM NaCl, 0.5mM Spermidine  
857 and protease inhibitor from Roche), re-suspended in 400µl (final) of wash buffer  
858 containing 20µl of BioMagplus Concanavalin A-coated magnetic beads (Bangs  
859 Laboratories) per reaction and rotated for 15min at 4°C to allow the cells to bind. Tubes  
860 were placed on a magnet stand and liquid was removed. Beads were then incubated O/N  
861 at 4°C in 250µl of antibody buffer (20mM HEPES-NaOH pH7.5, 150mM NaCl, 0.5mM  
862 Spermidine, 2mM EDTA, 0.1% digitonin and protease inhibitor from Roche) containing  
863 2.5µl (1/100) of antibodies against H3K27ac (Active Motif) or IgG control (Cell Signalling  
864 Tech). Samples were then washed twice in 500µl of Digitonin Buffer (20mM HEPES-  
865 NaOH pH7.5, 150mM NaCl, 0.5mM Spermidine, 0.1% digitonin and protease inhibitor  
866 from Roche), resuspended in 250µl of cold Digitonin Buffer containing Protein-A  
867 micrococcal nuclease (pA-MN) and rotated at 4°C for 1h. Beads were washed twice in  
868 1ml of cold Digitonin Buffer to remove unbound pA-MN, resuspended in 150µl of Digitonin  
869 Buffer, cooled down at 0°C on a pre-cooled metal block for 5min and incubated 30min at  
870 0°C with CaCl<sub>2</sub> (3µl of 0.1M per sample) to initiate pA-MN digestion. Reaction was

871 stopped by addition of 150 $\mu$ l of 2X stop Buffer (340mM NaCl, 20mM EDTA, 4mM EGTA,  
872 0.02% Digitonin, 50 $\mu$ g/ml RNaseA and 50 $\mu$ g/ml Glycogen) followed by 10min incubation  
873 at 37°C to release target chromatin. Samples were then centrifuged 5min 16,000g 4°C  
874 and supernatants were transferred to new tubes. Chromatin fragments were incubated  
875 10min at 70°C with 3 $\mu$ l of 10% SDS and 2.5 $\mu$ l of proteinase K (20mg/ml) followed by  
876 phenol/chloroform/isoamyl alcohol-based extraction according to original protocol  
877 (method B). Upper phase containing DNA was mixed with 1 $\mu$ l of glycogen (20mg/ml) and  
878 incubated with 750 $\mu$ l of cold 100% ethanol at -20°C O/N. Samples were centrifuged 30min  
879 16,000g 4°C, rinsed once with 1ml of cold 100% ethanol and centrifuged again for 5min  
880 16,000g 4°C to remove residual ethanol. Samples were air-dried, resuspended in 50 $\mu$ l of  
881 molecular grade water and stored at -20°C. DNA libraries were built using the NEBNext  
882 Ultra II DNA Library Prep Kit for Illumina (NewEngland Biolabs) with the following  
883 modifications.<sup>83</sup> NEBNext End Prep step was performed using 25 $\mu$ l of input material for a  
884 final volume of 30 $\mu$ l and the following adapted program (30min-20°C, 60min-50°C, Hold  
885 at 4°C). Adaptor was diluted at 1:25 and added at 1.5 $\mu$ l for ligation (15min-20°C) followed  
886 by addition of 1.5 $\mu$ l of Red USER Enzyme and additional 15min incubation at 37°C. Size  
887 selection was performed using 80 $\mu$ l of AMPure XP beads (Beckman Coulter) and purified  
888 DNA fragments were amplified for 14 cycles (annealing time changed to 10s). Libraries  
889 were cleaned-up with two rounds of size selection with AMPure XP beads (24 $\mu$ l/12 $\mu$ l;  
890 Beckman Coulter) and eluted in 15 $\mu$ l of molecular grade water, and amplicons quality was  
891 assessed on a 2200 TapeStation (Agilent Technologies). Libraries were quantified by  
892 qPCR using the NEBNext Library Quant kit for Illumina (NewEngland Biolabs) according  
893 to manufacturer's protocol and pooled at equal molarity (1nM). Denatured Libraries were

894 diluted at 1.8pM, loaded into a NextSeq 500/550 High Output Kit (75 cycles, Illumina) and  
895 paired-end sequencing was performed on a NextSeq 550 (Illumina).

896

897 **Sample preparation for scRNAseq**

898 Splenocytes from recipient mice were pooled from duplicate experiments and CD8 T cell  
899 enrichment was performed using EasySep™ CD8+ T cell isolation Kit (StemCell).  
900 Enriched CD8 T cells were stained and P14 populations of interest were sorted at 4°C in  
901 1.5ml Eppendorf tubes containing 50% FBS RPMI as described above. Sorted samples  
902 were topped with cold PBS 0.04% BSA, centrifuged for 5' 350g at 4°C, washed two times  
903 in cold PBS and resuspended in 50-100µl of cold PBS. Samples were counted, down-  
904 sampled and equivalent number of cells (6300) between samples were loaded into the  
905 Chip (Chromium Next GEM Chip G) of a Chromium Next GEM Single Cell 3' Reagent Kit  
906 v3.1 (Dual Index, 10x Genomics) and run onto a Chromium Controller. Samples were  
907 then processed according to manufacturer's protocol. cDNA libraries were prepared using  
908 the Dual Index TT Set A (10x Genomics) and the number of indexing PCR cycles was  
909 adjusted to the cDNA input of each individual sample according to manufacturer's  
910 recommendations. Libraries were quantified by qPCR using a KAPA Library Quant Kit  
911 (KAPA Biosystems). Normalized libraries were pooled (2.5nM), loaded onto a NovaSeq  
912 6000 SP Reagent Kit (100 cycles, Illumina) for a final concentration of 450pM and paired-  
913 end sequencing was performed on a NovaSeq 6000 (Illumina).

914

915 **Sample preparation for CITEseq**

916 CITEseq samples from duplicate experiments were prepared as described above  
917 (scRNAseq section) and processed according to the CITE-seq protocol from the New  
918 York Center Technology Innovation Lab (<https://cite-seq.com/protocols/>). Briefly,  
919 enriched CD8 T cells were incubated for 10' at 4°C in Staining buffer (2%BSA/0.01%  
920 Tween in PBS) containing FcBlock (1/10 dilution ;TruStain™ FcX, Biolegend) followed by  
921 a 30' incubation in Staining Buffer containing TotalSeqB antibodies against Ly108, CD69,  
922 Tim-3, PD-1, CD127, CD122, Lag-3, CD38 and KLRG1 (BioLegend) previously titrated  
923 according to manufacturer's protocol using PE-conjugated version of each antibodies.  
924 Samples were then washed, sorted as described above, down-sampled and equivalent  
925 number of cells ( $10^4$ ) between samples were loaded onto the Chip (Chromium Next GEM  
926 Chip G) of a Chromium Next GEM Single Cell 3' Reagent Kit v3.1 (Dual Index, 10x  
927 Genomics) and run onto a Chromium Controller. Samples were then processed according  
928 to manufacturer's protocol. Gene expression and Cell surface Protein libraries were  
929 constructed using Dual Index TT Set A and Dual Index NT Set A (10x Genomics)  
930 respectively. Libraries were quantified by qPCR using a KAPA Library Quant Kit (KAPA  
931 Biosystems). Normalized libraries were pooled (0.23nM), diluted to 1.8pg/ml and loaded  
932 onto a NextSeq 500/550 High Output Kit v2.5 (150 cycles, Illumina) and paired-end  
933 sequencing was performed on a NextSeq 550 (Illumina).

934

### 935 **Sample preparation for ATACseq**

936 ATACseq sample preparation was performed as described <sup>41</sup> with minor modifications.  
937 Sorted cells (2-to-5 $\times 10^4$ ) were washed twice in cold PBS and resuspended in 50 $\mu$ l of cold  
938 lysis buffer (10mM Tris-HCl, pH 7.4, 10mM NaCl, 3mM MgCl<sub>2</sub> and 0.1% IGEPAL CA-

939 630). Lysates were centrifuge (750xg, 10min, 4°C) and nuclei were resuspended in 50µl  
940 of transposition reaction mix (TD buffer [25µl], Tn5 Transposase [2.5µl], nuclease-free  
941 water [22.5µl]; (Illumina)) and incubated for 30min at 37°C. Transposed DNA fragments  
942 were purified using a Qiagen Reaction MiniElute Kit, barcoded with NEXTERA dual  
943 indexes (Illumina) and amplified by PCR for 11 cycles using NEBNext High Fidelity 2x  
944 PCR Master Mix (New England Biolabs). PCR products were purified using a PCR  
945 Purification Kit (Qiagen) and amplified fragments size was verified on a 2200 TapeStation  
946 (Agilent Technologies) using High Sensitivity D1000 ScreenTapes (Agilent  
947 Technologies). Libraries were quantified by qPCR using a KAPA Library Quant Kit (KAPA  
948 Biosystems). Normalized libraries were pooled, diluted to 1.8pM, loaded onto a NextSeq  
949 500/550 High Output Kit v2.5 (150 cycles, Illumina) and paired-end sequencing was  
950 performed on a NextSeq 550 (Illumina).

951

## 952 QUANTIFICATION AND STATISTICAL ANALYSIS

### 953 FlowSOM analysis

954 Compensated parameters for gated P14 Empty and P14 STAT5CA cells were exported  
955 from four individual mice co-transferred with both P14 populations and concatenated.  
956 Concatenated files were down-sampled using the FlowJo DownSampleV3 plugin for even  
957 representation of P14 Empty and P14 STAT5CA populations (15000 cells each), grouped  
958 using the t-sne function of FlowJo V10.8.0 using 12 parameters (CD44, Tbet, Tcf1, Tim-  
959 3, GzmB, Tox, Lag3, Icos, Ly108, CD39, CD127 and PD-1) and clusters were defined  
960 with the FlowSom plugin using the same parameters.

961

962 **Ingenuity Pathways Analysis (IPA)**

963 DEGs between P14 WT and P14 ToxKO (**Fig. S1B**),<sup>7</sup> or cluster specific DEGs (**Fig. S1C-G**) from reprocessed scRNAseq of WT and ToxKO D<sup>b</sup>gp33<sup>+</sup> CD8 T cells isolated at d7p.i. with LCMV CI13 (GEO Accession number: GSE119943)<sup>6</sup> were used as input to the Upstream regulator analysis part of the Core analysis using QIAGEN's Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, [www.qiagen.com/ingenuity](http://www.qiagen.com/ingenuity)) to generate Transcription factor specific networks.

969

970 **Taiji Rank Analysis**

971 Transcription Factor Binding Site (TFBS) analysis and PageRank analysis were  
972 performed using Taiji<sup>34</sup> ([https://taiji-pipeline.github.io/algorithm\\_PageRank.html](https://taiji-pipeline.github.io/algorithm_PageRank.html)) and  
973 paired ATACseq and RNAseq datasets of indicated T<sub>EX</sub> subsets (GEO accession number:  
974 GSE149879)<sup>27</sup> to generate TF ranks visualized as heatmap using R pheatmap package  
975 (**Fig. S1H**). For **Fig. 1A**, the fold change in Taiji score for T<sub>EX<sup>int</sup></sub> cells compared to other  
976 T<sub>EX</sub> subsets was calculated for each individual TF enriched in both the IPA analysis (**Fig.**  
977 **S1B**) and the Taiji Rank analysis (**Fig. S1H**).

978

979 **ATACseq**

980 Raw ATACseq FASTQ files from paired-end sequencing were processed using the script  
981 available at the following repository ([https://github.com/wherrylab/jogiles\\_ATAC](https://github.com/wherrylab/jogiles_ATAC)).  
982 Samples were aligned to the GRCm38/mm10 reference genome using Bowtie2. We used  
983 samtools to remove unmapped, unpaired, mitochondrial reads and ENCODE blacklist  
984 regions were also removed

985 ( <https://sites.google.com/site/anshulkundaje/projects/blacklists> ). PCR duplicates were  
986 removed using Picard. Peak calling was performed using MACS v2 (FDR q-value 0.01).  
987 For each experiment, we combined peaks of all samples to create a union peak list and  
988 merged overlapping peaks with BedTools *merge*. The number of reads in each peak was  
989 determined using BedTools *coverage*. Differentially accessible peaks were identified  
990 following DESeq2 normalization using a lfc of 2 and FDR cut-off  $<0.01$  unless otherwise  
991 indicated. DAPs were clustered using the k-means clustering methods and motif  
992 enrichment analysis was performed for each cluster on indicated DAPs using Homer  
993 (default parameters). For peak tracks representation, bed files for each replicate were  
994 imported into the UCSC Genome browser online tool. Replicates for each sample were  
995 merged and each biological sample were normalized. For sample distance, a distance  
996 matrix was calculated using the “euclidean” measure for all peak and plotted as a  
997 heatmap.

998

### 999 **CUT&RUN and ChIP-Seq data processing and analysis**

1000 Data qualities were checked using FastQC and MultiQC. Paired-end reads were aligned  
1001 to mm10 reference genome using Bowtie2 v2.3.5 with options suggested by Skene et al.  
1002 2018.<sup>82</sup> Bam files containing uniquely mapped reads were kept using Samtools v1.1.  
1003 MarkDuplicates command from Picard tools v1.96 was used to remove presumed PCR  
1004 duplicates. Blacklist regions defined by ENCODE were removed, and filtered typical  
1005 chromosomes were used for downstream analysis. Read per million (RPM) normalized  
1006 bigwig files to visualize binding signals were created using deepTools bamCoverage  
1007 v3.3.2 with parameters --normalizeUsing CPM -bs 5 --smoothLength 20 --skipNAs.

1008 Biological replicates were pooled together using bigwigCompare with parameter --  
1009 operation add -bs 5 --skipNAs. Peaks were called on using MACS v2.1 using the  
1010 broadPeak setting with general adjusted *p*-value cutoff of 0.05. Genes proximal to peaks  
1011 were annotated against the mm10 genome using R package rGREAT. Venn diagram of  
1012 peak comparisons were plotted using Bioconductor package ChIPpeakAnno. Peaks of all  
1013 conditions were merged to create the final union peaks list. For visualization purpose,  
1014 bigwig files of biological replicates were pooled using wiggletools with mean setting, and  
1015 median background were subtracted. Tracks were loaded to UCSC genome browser for  
1016 visualization. Published ChIP-Seq data were downloaded from NCBI (GEO accession  
1017 number: GSE64407 [Nfat1], GSE98654 [Nfat2], GSE100674 [Stat5]).<sup>42,43,84</sup> Paired-end  
1018 reads were aligned to mm10 reference genome using Bowtie2 with same parameters as  
1019 CUT&RUN. RPM normalized tracks were generated using deepTools bamCoverage.  
1020 Some downloaded signal track files were lifted from mm9 to mm10 using UCSC tool  
1021 liftOver. Read counts under peaks were generated using deepTools multiBigwigSummary  
1022 v3.3.2. Binding motifs enrichment analysis were identified using findMotifsGenome.pl  
1023 from HOMER v4. Local motif binding positions are identified using FIMO with parameters  
1024 –bfile –motifs. Dot plots were generated using R packages ggplot2.

1025

## 1026 **Single-Cell RNA sequencing (scRNAseq)**

1027 Sample demultiplexing, alignment, filtering and creation of a UMI count matrix were  
1028 performed using Cell Ranger software v.4.0.0 (10x Genomics). A Seurat object was  
1029 created from the UMI count matrix using Seurat\_4.0.5.<sup>85</sup> Cells with fewer than 200 or  
1030 greater than 2500 detected genes were excluded from downstream analysis as of cells

1031 with >10% of mitochondrial gene counts. Genes which expression was detected in 3 cells  
1032 or less were excluded. A total of 920 P14 Empty and 302 P14 STAT5CA cells passed  
1033 filters with an average sequencing depth of 1984 genes per cell and were considered for  
1034 downstream analysis. Counts were normalized by total expression in the corresponding  
1035 cell using the “LogNormalize” function and default scaling factor of 10,000 to give counts  
1036 per million. Top 2000 variable features were determined using the “vst” selection method.  
1037 Linear dimensional reduction (PCA) was performed on scaled variable features and  
1038 features from the 20 most significant PCs were used as input for unsupervised clustering  
1039 using the “FindNeighbors” and “FindClusters” functions of Seurat with a resolution of 0.3.  
1040 We next ran non-linear dimensional reduction (UMAP) to visualize the data. Differentially  
1041 expressed genes were identified by the Seurat function “FindAllMarkers” with  
1042 min.pct=0.25 and logfc.threshold=0.25 and the top 10 genes per cluster were used for  
1043 creating the Heatmap using the R package “Dittoseq” (**Fig. S4F**). For projection of  
1044 indicated gene signatures (SLEC, Exhaustion, Tox program and  $T_{EX}^{prog1}$ ,  $T_{EX}^{prog2}$ ,  $T_{EX}^{int}$ ,  
1045  $T_{EX}^{term}$ ), Seurat clusters were used as features to calculate module scores of single cells  
1046 using the “AddModuleScore” of Seurat\_4.0.5. Module scores for each of the gene  
1047 signatures were used to color the UMAP projection (**Fig. S4G**) or dot plots (**Fig. 4F**).  
1048 Single-cell analysis of P14 Empty and P14 IL2R $\beta$ -ortho was processed independently  
1049 using similar pipeline. A total of 925 P14 Empty and 951 P14 IL2R $\beta$ -ortho passed filters  
1050 with an average sequencing depth of 1786 genes per cell and were considered for  
1051 downstream analysis. Non-linear dimensional reduction (UMAP) was used to visualize  
1052 data (**Fig. S7E,F**) from the 12 most significant PCs using a resolution of 0.1.

1053 For projection of Stat5a and Tox signatures, scRNASeq data of P14 CD8 T cells isolated  
1054 from LCMV CI13 infected mice at d7 and d30p.i. (GEO accession number: GSE131535  
1055 and GSE150370),<sup>11,35</sup> were reprocessed and module scores for Stat5a and Tox signature  
1056 genes were used to color the UMAP (**Fig. 1B**) as described above.

1057  
1058  
1059 **Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq)**  
1060 A UMI count matrix was created for P14 WT and P14 Stat5iKO cells using CellRanger  
1061 4.0.0. and the two matrixes were used to create Seurat objects. For each sample, an  
1062 antibody (“adt”) assay was created and added to its cognate Seurat object (WT or  
1063 Stat5iKO) that were subsequently merged into one object containing rna and adt counts  
1064 for each sample. Cells with fewer than 200 or greater than 2500 detected genes were  
1065 excluded from downstream analysis as of cells with >12% of mitochondrial gene counts.  
1066 Genes which expression was detected in 3 cells or less were excluded. A total of 4377  
1067 P14 WT and 4906 P14 Stat5iKO cells passed filters with an average sequencing depth  
1068 of 1210 genes per cell and were considered for downstream analysis. Counts (rna assay)  
1069 were then normalized, and the top 2000 variable features were scaled before running  
1070 linear dimensional reduction (PCA). The 30 most significant PCs were used as input for  
1071 unsupervised clustering using the “FindNeighbors” and “FindClusters” functions of Seurat  
1072 with a resolution of 0.1. We next ran non-linear dimensional reduction (UMAP) using the  
1073 rna assay to visualize Seurat clusters (**Fig. 5F**) or individual samples (**Fig. 5G**). DEGs  
1074 were identified by the Seurat function “FindAllMarkers” with min.pct=0.25 and  
1075 logfc.threshold=0.25 and the top 52 variable features by p.val.adj were used for creating  
1076 the Heatmap (Fig. 5H). The “FindMarkers” function of Seurat was also used for cluster-

1077 wise assessment of the number of DEGs using as an input Seurat clusters (**Fig. S6C**) or  
1078 oligo-tagged antibodies-defined populations (**Fig. 5I**). These oligo-tagged defined  
1079 populations were delineated based on Ly108 and CD69 adt values with cut-off for positive  
1080 and negative cells set up using the “FeatureScatter” function of Seurat. DEGs between  
1081 oligo-tagged defined populations were presented as Volcano plots (**Fig. 5J**). For  
1082 projection of indicated gene signatures ( $T_{EX}^{prog1}$ ,  $T_{EX}^{prog2}$ ,  $T_{EX}^{int}$ ,  $T_{EX}^{term}$ ), oligo-tagged  
1083 defined populations were used as features to calculate module scores of single cells using  
1084 the “AddModuleScore” of Seurat\_4.0.5. Module scores for each of the gene signatures  
1085 were used to color the UMAP projection (**Fig. S6E**) or dot plots (**Fig. S6F**).  
1086

### 1087 **Gene ontology**

1088 Gene ontology of gene sets of interest were obtained using the Metascape online tool  
1089 (<http://metascape.org/gp/index.html#/main/step1>). Pathway enrichment analysis (GO  
1090 Biological processes) was set for a minimum overlap of 3, a *p*-value cut-off of 0.01 and a  
1091 minimum enrichment score of 1.5.  
1092

### 1093 **Statistical analysis and experimental replications**

1094 Statistics on flow cytometry data were performed using unpaired or paired (co-adoptive  
1095 transfer experiments) two-tailed Student’s t test. For data presented as a ratio (**Fig. 2D-**  
1096 **E, 4B, 5A, and 6F,I**) a Wilcoxon signed rank test was performed with a hypothetical value  
1097 of 1 or equal to the mean in control group (**Fig. 6F,I**) (GraphPad Prism v6; \**p* < 0.0332,  
1098 \*\**p* < 0.0021, \*\*\**p* < 0.0002, \*\*\*\**p* < 0.0001). For statistics on scRNASeq data, a Pearson  
1099 correlation coefficient was calculated as well as a *p* value of significance to estimate the

1100 degree of correlation between Stat5a and Tox signatures (**Fig. 1C** and **S1I**). A Wilcoxon  
1101 t test was performed in **Fig. 4I** to compare enrichment of indicated signature in  $T_{EX}$   
1102 clusters.

1103 The experiments described were replicated as follows. **Figure 2 - (B)** N=3 independent  
1104 experiments (ind exp) with 12 mice/group (**D**) N=2 (Tcf1) or 4 (Tox) with 8 (Tcf1) or 15  
1105 (Tox) mice/group (**E**) N=2-4 ind exp with 6-16 mice/group (**F-G**) N=3 ind exp with 10-12  
1106 mice/group (**H**) N=2 with 7-9 mice/group. **Figure 4 - (A)** Representative of 2 ind exp with  
1107 10 mice/group (**B**) N=2-4 ind exp with 5-17 mice per time points (**C**) Representative of 2  
1108 ind exp with 9-10 mice/group (**K-L**) Representative of 2 ind exp with at least 6 mice/group  
1109 in each. **Figure 5 - (A)** N=2-5 ind exp with 6-18 mice/group (**B**) N=4 ind exp with 14 mice  
1110 per group (**C**) N=3 ind exp with 9-10 mice/group (**D**) N=1-2 ind exp with 2-8 mice/group  
1111 (**E**) Representative of 2 ind exp with 8-10 mice per group. **Figure 6 - (B)** N=2 ind exp with  
1112 6-10 mice/group (**C**) N=2 with 6 mice/group (**D**) N=2 with 6-17 mice/group (**F-I**) N=2 with  
1113 9-15 mice per group. **Figure 7 - (B)** N=5 with 5-18 mice/group (**C**) N=2 with 2-8  
1114 mice/group (**D**) Representative of 5 in exp with 5-18 mice/group (**E**) N=5 with 5-18  
1115 mice/group.

1116

1117 **Acknowledgments**

1118 We thank all members of the Wherry Lab and Dr. Golnaz Vahedi (UPENN) for insightful  
1119 discussions and comments on the manuscript as well as Dr. Susan Kaech (Salk Institute  
1120 for Biological Studies) for providing the original STAT5CA constructs. This work was  
1121 supported by the Parker Institute for Cancer Immunotherapy (PICI) and the National  
1122 Institute of Health (NIH) grants AI155577, AI115712, AI117950, AI108545, AI082630 and

1123 CA210944 (to EJW). ACH is supported by NIH (K08CA230157) and received Doris Duke  
1124 Clinical Scientist Development and Damon Runyon Clinical investigator Awards. JC-B is  
1125 a Parker Institute for Cancer Immunotherapy (PICI) scholar. DM was supported through  
1126 The American Association of Immunologists Intersect Fellowship Program for  
1127 Computational Scientists and Immunologists.

1128

### 1129 **Author Contributions**

1130 JC-B and EJW conceived and designed the experiments. JC-B performed the  
1131 experiments with help from MSA-H, YM, VC, DM, JB and MK. JC-B prepared libraries  
1132 and performed sequencing with help from DM and ACH. JC-B analyzed the scRNASeq  
1133 and CITE-seq datasets with help and guidance from SM. ATACseq datasets were  
1134 analyzed by SM and HH in collaboration with JC-B. ZZ and SL-B provided technical help  
1135 for CnR and CnR datasets were analyzed by HH in collaboration with JC-B. LS, LP and  
1136 K-CG provided the orthogonal IL2R $\beta$  construct. MK adapted the STAT5CA construct to  
1137 our MSCV based expression system. JC-B and EJW wrote the manuscript with input from  
1138 MSA-H, JRG, HD and ACH.

1139

### 1140 **Conflicts of Interest**

1141 ACH is a consultant for Immunai and receives research support from BMS. K-CG is the  
1142 founder of Synthekine. EJW is a member of the Parker Institute for Cancer  
1143 Immunotherapy which supported the study. EJW is an advisor for Arsenal Biosciences,  
1144 Merck, Marengo, Janssen, Related Sciences, Pluto Immunotherapeutics, Rubius,

1145 Synthekine, and Surface Oncology. EJW is a founder of Surface Oncology, Danger Bio,  
1146 and Arsenal Biosciences.

1147

1148 **Data availability**

1149 All sequencing data generated during this study will be made publicly available at the time  
1150 of publication.

1151

1152

1153 **Figure legend**

1154 **Figure 1: Reciprocal Activity between Stat5a and Tox in Ag-specific CD8 T cells**  
1155 **during chronic infection. A-** Dot plot of IPA regulators significantly enriched from **Fig. S1B** ( $\log p \geq 10$ ) that were also enriched in an independent Taiji Rank analysis in **Fig. S1H**.  
1156 Selected IPA regulators are plotted based on their fold change in Taiji enrichment for  
1158  $T_{EX^{int}}$  cells (Y axis) and correlation of the IPA-defined gene network for each TF to Tox  
1159 expression (X- axis). **B-** UMAP of re-processed scRNAseq of P14 CD8 T cells at d8  
1160 (upper panel)<sup>35</sup> or d30 (lower panel)<sup>11</sup> post CI13 infection projecting the Stat5a network  
1161 as defined by the IPA analysis (left) or a core signature for Tox (genes enriched in P14  
1162 WT versus P14 ToxKO).<sup>7</sup> **C-** Correlation scores between Stat5a network and a Tox  
1163 signature at indicated time of CI13 infection.

1164

1165 **Figure 2: Stat5 opposes Tox and antagonizes establishment of exhaustion. A-**  
1166 Experimental design. **B-** Frequency of Ly108/Tim-3-defined subsets in indicated  
1167 populations at d8p.i. **C-** t-sne representation of flow cytometry data highlighting FlowSOM  
1168 clusters (see methods). **D-** Tcf1 and Tox expression in indicated populations at d8p.i. **E-**  
1169 MFI of indicated markers expressed as a ratio (P14 STAT5CA/P14 Empty). **F-** Frequency  
1170 of Ly108/Tim-3-defined subsets in indicated populations at d8p.i. **G-** Absolute numbers  
1171 of indicated populations at d8p.i. **H-** Tox expression in indicated sub-populations of P14  
1172 WT and P14 Stat5iKO at d8p.i.

1173

1174 **Figure 3: Enhanced Stat5a activity restrains Tox and the Tox-dependent exhaustion**  
1175 **program while supporting an effector epigenetic landscape.** Splenic P14 Empty and

1176 P14 STAT5CA cells isolated at d8 of CI13 infection were analyzed by ATACseq. Naïve  
1177 CD8 T cells (not depicted) and P14 cells isolated from Arm infected mice at d8p.i. ( $T_{EFF}$ )  
1178 were used as reference. **A**- PCA of normalized ATACseq counts (all peaks). **B**- Number  
1179 of peaks more accessible in indicated populations and comparisons (FDR 0.01, Ifc $\geq$ 2). **C**-  
1180 Clustered heatmap (k-means) of DAPs between P14 Empty and P14 STAT5CA (FDR  
1181 0.01, Ifc $\geq$ 2) annotated with most variable genes per cluster (among top 100 per cluster by  
1182 Ifc and number of DAPs). **D**- Top 10 motifs (Homer) enriched in DAPs from corresponding  
1183 clusters in **Fig. 3C**. **E**- Heatmap for scores associated with genomic regions plotting  
1184 accessibility at genes from indicated gene signatures list. **F**- Frequency of genes from  
1185 signature list in **Fig. 3E** with DAPs between P14 Empty and P14 STAT5CA that possess  
1186 direct binding sites for Stat5 (chipseq dataset from *Villarino et. al, J Exp Med 2017*).<sup>84</sup> **G**-  
1187 Dot plot of exhaustion signature genes (**from Fig. 3E-middle**) containing at least 3 DAPs  
1188 between P14 Empty and P14 STAT5CA cells and scored based on the number of DAPs  
1189 per gene (Y axis), average Ifc (X axis) and number of direct Stat5 binding sites (bubble  
1190 size). **H**- ATACseq, Cut&Run (H3K27ac) and Chip-seq (NFAT1,<sup>42</sup> NFAT2<sup>43</sup> and Stat5<sup>84</sup>)  
1191 tracks at the Tox locus. Blue highlights indicate ATAC peaks reduced in P14 STAT5CA  
1192 cells compared to P14 Empty. **I**- ATACseq track zoom-in from **Fig. 3H**. **J**- Top 10 motifs  
1193 (Homer) enriched in DAPs between P14 Empty and P14 STAT5CA found at the Tox  
1194 locus.

1195

1196 **Figure 4: Constitutive Stat5a activity drives a durable and protective effector/NK-  
1197 like CD8 T cell differentiation during chronic viral infection and cancer. A-**  
1198 Frequency of co-transferred P14 Empty and P14 STAT5CA cells among RV+ (VEX+)

1199 CD8 T cells at d27p.i. with CI13 (left) or CI13 with CD4-depletion (right). **B-** Ratio of cell  
1200 number (P14 STAT5CA/P14 Empty) at indicated time points in the spleen. **C-** Frequency  
1201 of Ly108/CD69-defined  $T_{EX}$  subsets in indicated populations at d27p.i. **D-E** UMAP of  
1202 scRNASeq data combining P14 Empty $^{VEX^+}$  and P14 STAT5CA $^{VEX^+}$  cells isolated at d27p.i.  
1203 plotting Seurat clusters (**D-left**) or individual samples (**E**) and representative genes per  
1204 cluster (**D-right**). **F-** GSEA for indicated signatures in Seurat clusters. **G-** DEGs  
1205 ( $\log_2FC > 0.5$ ,  $p\_value\_adj \leq 0.05$ ) between C2 and C3 from **Fig. 4D**. **H-** Gene ontology for  
1206 genes Up in C2 vs C3 from **(Fig. 4D)** **I-** Relative expression of genes with increased  
1207 accessibility in P14 STAT5CA over P14 Empty at d8p.i. **(Fig. 3)** across Seurat clusters.  
1208 **J-** Experimental design. **K-L-** B16<sub>gp33</sub> tumor growth (**K**) and Kaplan Meyer survival curve  
1209 (**L**) for each experimental group.

1210

1211 **Figure 5: Stat5-signals drive  $T_{EX}^{int}$  cell development and are essential for CD8 T cell**  
1212 **responses to PD-L1 blockade. A-** Expression of key markers on indicated splenic  
1213 populations at d27p.i. **B-** Frequency of Ly108/CD69-defined subsets among indicated  
1214 populations at d27p.i. **C-** Absolute numbers of indicated populations of P14 WT and P14  
1215 Stat5iKO cells at d27p.i. **D-** Absolute numbers of  $T_{MEM}$  and Ly108 $^+$   $T_{EX}^{prog}$  in indicated P14  
1216 populations at d27 post Arm (Arm, memory) or CI13 (CI13, Ly108 $^+$  progenitors) infection  
1217 with (YFP $^+cre^+$ ) or without (YFP $^-cre^-$ ) prior *in vitro* treatment with tat-cre recombinase. **E-**  
1218 Frequency of Ly108/CD69-defined subsets among P14 WT and P14 Stat5iKO cells at  
1219 d35p.i. in CD4 T cells-depleted hosts treated ( $\alpha$ PD-L1) or not (PBS) with anti-PD-L1  
1220 antibodies between d22-34 (see method). **F-G-** UMAP plotting RNA-defined Seurat  
1221 clusters (**F-left**) or individual samples (**G**) from CITE-seq analysis of P14 WT and P14

1222 Stat5iKO cells isolated at d27p.i. **H-** Top 52 DEGs between P14 WT and P14 Stat5iKO.

1223 **I-** Number of DEGs between oligo-tagged antibodies (Ly108 and CD69)-defined  
1224 populations (see **Fig. S6D,E**). **J-** DEGs (FC $\geq$ 0.25) between indicated oligo-tagged  
1225 antibodies (Ly108 and CD69)-defined populations of P14WT and P14 Stat5iKO cells.

1226

1227 **Figure 6: Orthogonal IL-2/IL2R $\beta$ -triggered Stat5 activation in Ag-specific CD8 T  
1228 cells enforces T<sub>EX<sup>int</sup></sub> cell development and synergizes with PD-L1 blockade. A-**

1229 Experimental design. **B-** Absolute numbers of YFP<sup>+</sup> P14 Empty and P14 IL2R $\beta$ -ortho cells  
1230 isolated at d26p.i. from experimental groups infused with indicated concentration of  
1231 *ortholL-2*. **C-** Frequency of Ly108/CD69-defined subsets among co-transferred P14  
1232 Empty<sup>YFP+</sup> and P14 IL2R $\beta$ -ortho<sup>YFP+</sup> cells isolated at d26p.i. from indicated experimental  
1233 groups. **D-** Frequency of indicated subsets among P14 IL2R $\beta$ -ortho<sup>YFP+</sup> cells isolated at  
1234 d26p.i. from experimental groups infused with indicated concentrations of *ortholL-2*.

1235 Dotted grey lines indicate mean frequencies of each sub-population across all  
1236 experimental groups in P14 IL2R $\beta$ -ortho<sup>YFP-</sup> control cells. **E-** Experimental design. **F-** Ratio

1237 of cell number between co-transferred P14 IL2R $\beta$ -ortho<sup>YFP+</sup>/P14 Empty<sup>YFP+</sup> in indicated  
1238 experimental groups at d35p.i. Combo stands for  $\alpha$ PD-L1+*ortholL-2* (100KIU). **G-**

1239 Relative frequency of P14 Empty<sup>YFP+</sup> and P14 IL2R $\beta$ -ortho<sup>YFP+</sup> cells in indicated  
1240 experimental groups at d35p.i. **H-** Representative dot plots of Ly108/CD69-defined

1241 subsets among P14 Empty<sup>YFP+</sup> and P14 IL2R $\beta$ -ortho<sup>YFP+</sup> cells isolated at d35p.i. from  
1242 indicated experimental groups. **I-** Ratio of absolute cell number between indicated

1243 subsets of co-transferred P14 IL2R $\beta$ -ortho<sup>YFP+</sup> and P14 Empty<sup>YFP+</sup> isolated at d35p.i. from  
1244 indicated experimental groups.

1245 **Figure 7: Improved function and partial epigenetic rewiring of rechallenged  $T_{EX}^{prog}$**   
1246 **cells with targeted IL-2-Stat5 signals. A-** Experimental design. P14 Memory (Memory)  
1247 and P14 Ly108<sup>+</sup>  $T_{EX}$  progenitors (YFP<sup>+</sup>, expressing the IL2R $\beta$ -ortho receptor, [ $T_{EX}$ ]) were  
1248 sorted from indicated time post Arm (d $\geq$ 90p.i.) or CI13 (d26p.i.) infection respectively (see  
1249 **Fig. S8A** for sorting strategy), transferred into new hosts and challenged with LCMV Arm.  
1250 Mice injected with  $T_{EX}$  cells (Ly108<sup>+</sup> P14 expressing IL2R $\beta$ -ortho<sup>YFP+</sup>) were treated with  
1251 either PBS ( $T_{EX}^{[PBS]}$ ) or daily infusion of *orthotIL-2* (150KIU day 3-7; [ $T_{EX}^{[oIL2]}$ ]) in  
1252 combination or not with  $\alpha$ PD-L1 blockade (day0, -3 and -6p.ch.). P14 memory cells were  
1253 treated with PBS or  $\alpha$ PD-L1 at similar time points. Cells were analyzed in the spleen at  
1254 d8p.ch. **B-** Absolute numbers in the spleen at d8.p.ch. **C-** Cytokine secretion by re-  
1255 challenged memory and  $T_{EX}$  from each experimental conditions after 5h of *in vitro* re-  
1256 stimulation with gp33 peptide. **D-** Expression of indicated markers on re-challenged  
1257 memory and  $T_{EX}$  from each experimental condition. **E-** Frequency of KLRG1/CD127-  
1258 defined sub-populations among re-challenged memory and  $T_{EX}$  from indicated  
1259 experimental groups. **F-** PCA of ATACseq data using all DAPs (FDR 0.01, Ifc $\geq$ 2) between  
1260 indicated populations isolated at d8p.ch. **G-** Number of peaks more accessible in  
1261 indicated populations and comparisons (FDR 0.01, Ifc $\geq$ 2). **H-** Clustered heatmap (k-  
1262 means) plotting all DAPs between indicated populations (FDR 0.01, Ifc $\geq$ 2). **I-** Motif  
1263 enrichment analysis (Homer) plotting the top 10 motifs enriched in DAPs from  
1264 corresponding clusters in **Fig.7H**.

1265  
1266  
1267

1268 **Supplemental figure legend**

1269 **Figure S1 (related to Figure 1): Increased Stat5a activity in  $T_{EX}^{int}$  and ToxKO CD8 T**  
1270 **cells. A-** Analytical approach. **B-** Ingenuity Pathways Analysis on DEGs between P14  
1271 WT and P14 ToxKO cells at d8p.i. (dataset from *Khan et. al, Nature 2019*).<sup>7</sup>  
1272 Transcriptional regulators significantly enriched ( $logp > 10$ ) in P14 WT or P14 ToxKO are  
1273 highlighted in grey and blue respectively. Non-significant hits are colored in black. Bubble  
1274 size represents the number of genes considered by the IPA analysis for each individual  
1275 TF. **C-** UMAP of re-processed scRNAseq data of WT and Tox<sup>-/-</sup> gp<sub>33</sub>-specific CD8 T cells  
1276 isolated from bone marrow chimeras at d7 post LCMV Cl13 infection and featuring Seurat  
1277 clusters.<sup>6</sup> **D-** Histogram showing the relative proportion of WT and Tox<sup>-/-</sup> CD8 T cells in  
1278 each Seurat cluster from **Fig. S1C**. **E-** Heatmap of top10 DEGs between WT and Tox<sup>-/-</sup>  
1279 gp<sub>33</sub><sup>+</sup> CD8 T cells per indicated cluster identified in **Fig. S1C**. **F-** IPA analysis of DEGs  
1280 between WT and Tox<sup>-/-</sup> gp<sub>33</sub><sup>+</sup> CD8 T cells for each individual cluster defined in **Fig. S1C**.  
1281 Plotted are the top 10 transcriptional regulators enriched in each individual cluster. **G-**  
1282 Network analysis of Stat5a and T-bet (*Tbx21*) by Ingenuity of DEGs between WT and  
1283 Tox<sup>-/-</sup> gp<sub>33</sub><sup>+</sup> CD8 T cells in indicated clusters form **Fig. S1C**. Darker red in target genes  
1284 indicates positive enrichment in Tox<sup>-/-</sup> gp<sub>33</sub><sup>+</sup> CD8 T cells. **H-** Taiji rank analysis identifying  
1285 TFs with increased activity in previously defined subsets of  $T_{EX}$  based on published  
1286 RNAseq and ATACseq data.<sup>27</sup> Plotted are overlapping TFs identified in both the IPA  
1287 analysis in **Fig. S1B** and the independent Taiji analysis. **I-** Correlation scores between  
1288 Stat5a network and indicated gene signatures at d30 post LCMV Cl13 infection.  
1289

1290 **Figure S2 (related to Figure 2): Stat5 impacts early cell-fate decision of Ag-specific**  
1291 **CD8 T cells during a chronic viral infection. A-** MFI of indicated markers expressed as  
1292 a mean of ratio (P14 Ly108<sup>+</sup>Tim-3<sup>-</sup>/P14 Ly108<sup>-</sup>Tim-3<sup>+</sup>). N=10 with 4-20 mice/group. **B-**  
1293 Numerical proportion of P14 Empty (grey) and P14 STAT5CA (blue) within indicated  
1294 populations of VEX<sup>+</sup> cells at d8p.i. N=4 with 16 mice/group. **C-** Representative dot plot  
1295 (left) and cumulative frequencies (right) of IFN $\gamma$  and TNF $\alpha$  production by P14 Empty (grey)  
1296 and P14 STAT5CA (blue) cells at d8p.i. N=2 with 8 mice/group. **D-** Experimental design.  
1297 PBMCs from CD45.1.2<sup>+</sup> P14 Rosa<sup>YFP</sup> *Stat5a/b*<sup>+/+</sup> (P14 WT) and P14 Rosa<sup>YFP</sup> *Stat5a/b*<sup>fl/fl</sup>  
1298 (P14 Stat5iKO) mice were treated (cre+) or not (cre-) with Tat cre recombinase *in vitro*  
1299 and adoptively transferred into separate groups of C57BL/6J recipients subsequently  
1300 infected with LCMV CI13. Transferred cells were tracked at d8p.i. using congenic markers  
1301 and YFP induction was used as a surrogate of cre-mediated recombination and deletion  
1302 of floxed alleles. **E-** Representative contour plots (left) and cumulative frequencies (right)  
1303 of Ly108 and Tim-3-defined subpopulations among untreated (cre-, YFP<sup>-</sup>) P14 WT (grey)  
1304 and P14 Stat5iKO (blue) control cells at d8p.i. Numbers indicate frequencies. N=3 with  
1305 11-12 mice/group. **F-** Absolute numbers of indicated populations among untreated (cre-,  
1306 YFP<sup>-</sup>) P14 WT (grey) and P14 Stat5iKO (blue) control cells at d8p.i. N=2 with 6-7  
1307 mice/group. **G-** *In vivo* BrdU incorporation (d7 to d8p.i.) in indicated populations of  
1308 untreated (cre-, YFP<sup>-</sup>) and treated (cre+, YFP<sup>+</sup>) P14 WT (grey) and P14 Stat5iKO (blue)  
1309 cells at d8p.i. **H-** Active caspase 3 staining in indicated populations of untreated (cre-,  
1310 YFP<sup>-</sup>) and treated (cre+, YFP<sup>+</sup>) P14 WT (grey) and P14 Stat5iKO (blue) cells at d8p.i.,  
1311 after 5h incubation at 37°C. **I-** Representative dot plots of KLRG1 and CD127-defined  
1312 subpopulations among treated (cre+, YFP<sup>+</sup>) and untreated (cre-, YFP<sup>-</sup>) P14 WT (grey)

1313 and P14 Stat5iKO (blue) cells isolated from the blood at d8 post LCMV Arm infection.

1314 Numbers indicate frequencies. (G-I) N=2 with 3-8 mice/group.

1315

1316 **Figure S3 (related to Figure 3): Constitutive Stat5a activity drives a hybrid**

1317 **epigenetic state in Ag-specific CD8 T cells. A-** Spearman distance analysis using all

1318 DAPs (FDR≤0.01, Ifc≥2) between indicated populations. Color indicates distances. **B-**

1319 Genetic distribution of the total peak list (upper panel) and all DAPs between T<sub>EFF</sub>, P14

1320 Empty and P14 STAT5CA cells (lower panel; FDR≤0.01, Ifc≥2). **C-** Overlap between

1321 genes containing DAPs between P14 Empty and P14 STAT5CA and genes differentially

1322 expressed between WT and *Tcf7*<sup>-/-</sup> P14 cells (dataset from *Wu et. al*<sup>33</sup>) **D-** ATACseq tracks

1323 of indicated genes. DAPs between P14 Empty and P14 STAT5CA are highlighted in blue.

1324 **E-** Clustered heatmap (k-means) plotting all DAPs between P14 Empty, P14 STAT5CA

1325 and T<sub>EFF</sub> cells (FDR≤ 0.01, Ifc≥2).

1326

1327 **Figure S4 (related to Figure 4): Constitutive Stat5a activity increases durability and**

1328 **effector biology in CD8 T cells during chronic viral infection. A-** Pre-adoptive transfer

1329 mix plotting the relative frequency of P14 Empty<sup>VEX+</sup> over P14 STAT5CA<sup>VEX+</sup> prior to

1330 adoptive transfer. **B-** Relative frequencies of P14 Empty (grey) and P14 STAT5CA (blue)

1331 among VEX<sup>+</sup> CD8 T cells at d27p.i. N=2 with 10 mice/group. **C-** Number of P14 Empty<sup>VEX+</sup>

1332 (grey) and P14 STAT5CA<sup>VEX+</sup> (blue) per 10<sup>6</sup> CD8 T cells in indicated anatomical locations.

1333 Data representative of 2 independent experiments with 5 mice/group in each. **D-**

1334 Representative dot plot (left) and cumulative frequencies (right) of P14 Empty (grey) and

1335 P14 STAT5CA (blue) isolated from the spleen of LCMV CI13 and CD4-depleted mice at

1336 d $\geq$ 90p.i. Numbers indicate frequencies. N=2 with 6 mice/group. **E**- Frequencies of  
1337 indicated populations among P14 Empty<sup>VEX+</sup> (grey) and P14 STAT5CA<sup>VEX+</sup> (blue) cells at  
1338 d27p.i. N=2 with 9-10 mice/group. **F**- Heatmap displaying the top 10 variable genes per  
1339 Seurat clusters (defined in **Fig. 4D**) at d27p.i. **G**- Projection of indicated T<sub>EX</sub> subset  
1340 signatures (dataset from *Beltra et. al* <sup>27</sup>) into UMAP space from **Fig. 4D**. **H**- Relative  
1341 distribution of indicated P14 populations across Seurat clusters (defined in **Fig. 4D**).  
1342

1343 **Figure S5 (related to Figure 5): Stat5 is essential to maintain CD8 T cell**  
1344 **responsiveness to PD-L1 blockade in settings of chronic viral infection. A-**  
1345 Representative contour plots (left) and cumulative frequencies (right) of Ly108 and CD69-  
1346 defined subpopulations among untreated (cre-, YFP<sup>-</sup>) P14 WT (grey) and P14 Stat5iKO  
1347 (blue) control cells at d27p.i. Numbers indicate frequencies. N=4 with 10-12 mice/group.  
1348 **B**- Absolute numbers of indicated populations among untreated (cre-, YFP<sup>-</sup>) P14 WT  
1349 (grey) and P14 Stat5iKO (blue) control cells at d27p.i. N=3 with 5-8 mice/group. **C**-  
1350 Number of treated (cre+, YFP<sup>+</sup>) P14 WT (grey) and P14 Stat5iKO (blue) cells per 10<sup>6</sup>  
1351 CD8 T cells in indicated anatomical location at d27p.i. Numbers indicate fold changes in  
1352 cell numbers. **D**- Representative dot plots displaying the frequency of treated (cre+, YFP<sup>+</sup>)  
1353 P14 WT (grey) and P14 Stat5iKO (blue) cells among gp33<sup>+</sup> CD8 T cells in indicated  
1354 anatomical locations at d27p.i. (C-D) N=1 with 3 mice/group. **E**- Cumulative frequencies  
1355 of Ki67<sup>+</sup> cells among indicated populations of P14 WT and P14 Stat5iKO cells at d27p.i.  
1356 N=3 with 10-11 mice/group. **F**- Absolute numbers of P14 WT (grey) and P14 Stat5iKO  
1357 (blue) cells at d35p.i. in the spleen of LCMV Cl13 infected mice (depleted of CD4 T cells)  
1358 and treated with either PBS or  $\alpha$ PD-L1 blocking antibodies. Numbers indicate fold

1359 changes in cell number. **G**- Representative dot plots displaying the frequency of treated  
1360 (cre+, YFP<sup>+</sup>) P14 WT (grey, upper panel) and P14 Stat5iKO (blue, lower panel) cells  
1361 among CD8 T cells in indicated anatomical locations and experimental group at d35p.i.  
1362 (F-G) Representative of 2 independent experiments with 3-5 mice/group in each.

1363

1364 **Figure S6 (related to Figure 5): CITE-seq-mediated delineation of T<sub>EX</sub> subsets A-**  
1365 Heatmap displaying the top representative genes per Seurat clusters (defined in **Fig. 5F**)  
1366 at d27p.i. **B**- Relative distribution of indicated populations across Seurat clusters (defined  
1367 in **Fig. 5F**). **C**- Number of DEGs between P14WT and P14 Stat5iKO cells in indicated  
1368 mRNA-based Seurat clusters. Numbers in grey indicate DEGs with  $lfc \geq 0.25$  and numbers  
1369 in blue DEGs with  $lfc \geq 0.25$  and  $P_{value\_adj} < 0.05$ . **D**- Detection of oligo-tagged  
1370 antibodies against Ly108 and CD69 across mRNA-defined Seurat clusters (defined in  
1371 **Fig. 5F**). **E**- Projection of indicated oligo-tagged antibodies-defined populations within  
1372 mRNA-defined Seurat clusters (defined in **Fig. 5F**). **F**- GSEA for indicated T<sub>EX</sub> subsets  
1373 signature (dataset from *Beltra et. al*<sup>27</sup>) across indicated oligo-tagged antibodies-defined  
1374 populations in P14 WT cells.

1375

1376 **Figure S7 (related to Figure 6): Targeted delivery of IL-2/Stat5 signals using an**  
1377 **orthogonal IL-2/IL2R $\beta$  pair system alters T<sub>EX</sub> subset dynamic at steady state and**  
1378 **upon PD-L1 blockade. A**- Absolute numbers of splenic P14 Empty<sup>YFP-</sup> (grey) and P14  
1379 IL2R $\beta$ -ortho<sup>YFP-</sup> (blue) cells isolated at d26p.i. from experimental groups treated with  
1380 indicated doses of *ortholl*IL-2 between d21-25p.i. N=2 with 6-14 mice/group. **B**- Frequency  
1381 of endogenous Tregs (CD4<sup>+</sup>CD25<sup>+</sup>FoxP3<sup>+</sup>) in groups of LCMV Cl13 mice treated with

1382 PBS (grey), regular IL2 (mrIL2, 25KIU, black) or *ortholl*-2 (25KIU, blue) between d21 and  
1383 25p.i. Data were collected from the blood at d26p.i.. N=1 with 3-4 mice/group. **C**-  
1384 Cumulative frequencies of indicated sub-populations among P14 Empty<sup>YFP+</sup> cells isolated  
1385 at d26p.i. from experimental groups infused with indicated doses of *ortholl*-2. Dotted grey  
1386 lines indicate mean frequencies of each sub-population across all experimental groups in  
1387 P14 Empty<sup>YFP</sup>-control cells. **D**- Cumulative frequencies of indicated sub-populations  
1388 among endogenous gp33<sup>+</sup> CD8 T cells isolated at d26p.i. from experimental groups  
1389 infused with indicated concentrations of *ortholl*-2. Dotted grey lines indicate mean  
1390 frequencies of each sub-population across all experimental groups. (C-D) N=2 with 6-14  
1391 mice/group. **E**- UMAP of scRNAseq data combining P14 Empty<sup>YFP+</sup> and P14 IL2R $\beta$ -  
1392 *ortho*<sup>YFP+</sup> cells isolated at d26p.i. plotting Seurat clusters (**E**-left) or highlighting individual  
1393 samples (**F**) and expression of representative genes per cluster (**E**-right). **G**- Relative  
1394 distribution of indicated populations across Seurat clusters (defined in **Fig. S7E**). **H**-  
1395 Representative contour plots of Ly108 and CD69 expression in co-transferred populations  
1396 of P14 Empty<sup>YFP+</sup> (grey) and P14 IL2R $\beta$ -*ortho*<sup>YFP+</sup> (blue) cells in indicated organs from  
1397 mice treated with 250KIU of *ortholl*-2 at d26p.i. Representative of 2 independent  
1398 experiments with 2-6 mice/group. **I**- Absolute numbers of indicated populations among  
1399 P14 IL2R $\beta$ -*ortho*<sup>YFP+</sup> cells isolated at d26p.i. from indicated experimental groups. N=2-3  
1400 independent experiments with 6-11 mice/group **J**- Frequency of YFP<sup>+</sup> cells expressed as  
1401 a ratio of splenic P14 IL2R $\beta$ -*ortho*/P14 Empty at d26p.i. in indicated experimental groups.  
1402 Representative of 2 independent experiments with 9-11 mice/group. **K**- Number of P14  
1403 Empty<sup>YFP+</sup> (grey) and P14 IL2R $\beta$ -*ortho*<sup>YFP+</sup> (blue) per 10<sup>6</sup> CD8 T cells in indicated  
1404 anatomical locations and experimental groups. N=1 with 3-6 mice/group.

1405

1406 **Figure S8 (related to Figure 7): Targeted delivery of IL-2/Stat5 signals during viral**  
1407 **rechallenge alters T<sub>EX</sub> biology. A-** Sorting strategy for P14 T<sub>MEM</sub> (lower panel) and P14  
1408 IL2R $\beta$ -ortho cells (Ly108 $^{+}$  T<sub>EX</sub> progenitors expressing the IL2R $\beta$ -ortho receptor [YFP  
1409 reporter], upper panel). **B-** Absolute numbers of indicated P14 cell populations in the  
1410 spleen at d40 post re-challenge. N=1 with 3 mice/group. **C-** Heatmap for scores  
1411 associated with genomic regions plotting accessibility at genomic regions identified in **Fig.**  
1412 **7H** for T<sub>EFF</sub>, P14 Empty and P14 STAT5CA cells isolated at d8 of CI13 infection as  
1413 detailed in **Fig.3**.

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428 **Tables**

1429 **Table S1:** IPA results and gene input

1430 **Table S2:** DAPs between P14 Empty, P14 STAT5CA and  $T_{EFF}$

1431 **Table S3:** DEGs between C2 and C3 (Fig. 4G)

1432 **Table S4:** Genes with increased accessibility in P14 STAT5CA vs P14 Empty at d8p.i.

1433 **Table S5:** DEGs between P14WT and P14 Stat5iKO

1434 **Table S6:** DAPS between rechallenged Memory,  $T_{EX}^{[PBS]}$  and  $T_{EX}^{[oIL2]}$

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

## 1449 References

1450 1 McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T Cell Exhaustion During Chronic  
1451 Viral Infection and Cancer. *Annu Rev Immunol* **37**, 457-495, doi:10.1146/annurev-  
1452 immunol-041015-055318 (2019).

1453 2 Collier, J. L., Weiss, S. A., Pauken, K. E., Sen, D. R. & Sharpe, A. H. Not-so-opposite ends of  
1454 the spectrum: CD8(+) T cell dysfunction across chronic infection, cancer and  
1455 autoimmunity. *Nat Immunol* **22**, 809-819, doi:10.1038/s41590-021-00949-7 (2021).

1456 3 Ramakrishna, S., Barsan, V. & Mackall, C. Prospects and challenges for use of CAR T cell  
1457 therapies in solid tumors. *Expert Opin Biol Ther* **20**, 503-516,  
1458 doi:10.1080/14712598.2020.1738378 (2020).

1459 4 Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral  
1460 persistence alters CD8 T-cell immunodominance and tissue distribution and results in  
1461 distinct stages of functional impairment. *J Virol* **77**, 4911-4927 (2003).

1462 5 Zajac, A. J. *et al.* Viral immune evasion due to persistence of activated T cells without  
1463 effector function. *J Exp Med* **188**, 2205-2213 (1998).

1464 6 Yao, C. *et al.* Single-cell RNA-seq reveals TOX as a key regulator of CD8(+) T cell persistence  
1465 in chronic infection. *Nat Immunol* **20**, 890-901, doi:10.1038/s41590-019-0403-4 (2019).

1466 7 Khan, O. *et al.* TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion.  
1467 *Nature* **571**, 211-218, doi:10.1038/s41586-019-1325-x (2019).

1468 8 Alfei, F. *et al.* TOX reinforces the phenotype and longevity of exhausted T cells in chronic  
1469 viral infection. *Nature* **571**, 265-269, doi:10.1038/s41586-019-1326-9 (2019).

1470 9 Scott, A. C. *et al.* TOX is a critical regulator of tumour-specific T cell differentiation. *Nature*  
1471 **571**, 270-274, doi:10.1038/s41586-019-1324-y (2019).

1472 10 Seo, H. *et al.* TOX and TOX2 transcription factors cooperate with NR4A transcription  
1473 factors to impose CD8(+) T cell exhaustion. *Proc Natl Acad Sci U S A* **116**, 12410-12415,  
1474 doi:10.1073/pnas.1905675116 (2019).

1475 11 Abdel-Hakeem, M. S. *et al.* Epigenetic scarring of exhausted T cells hinders memory  
1476 differentiation upon eliminating chronic antigenic stimulation. *Nat Immunol* **22**, 1008-  
1477 1019, doi:10.1038/s41590-021-00975-5 (2021).

1478 12 Tonnerre, P. *et al.* Differentiation of exhausted CD8(+) T cells after termination of chronic  
1479 antigen stimulation stops short of achieving functional T cell memory. *Nat Immunol* **22**,  
1480 1030-1041, doi:10.1038/s41590-021-00982-6 (2021).

1481 13 Yates, K. B. *et al.* Epigenetic scars of CD8(+) T cell exhaustion persist after cure of chronic  
1482 infection in humans. *Nat Immunol* **22**, 1020-1029, doi:10.1038/s41590-021-00979-1  
1483 (2021).

1484 14 Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of  
1485 memory T cell potential and commitment to exhaustion during chronic viral infection. *J  
1486 Virol* **86**, 8161-8170, doi:JVI.00889-12 [pii]  
1487 10.1128/JVI.00889-12 (2012).

1488 15 West, E. E. *et al.* Tight regulation of memory CD8(+) T cells limits their effectiveness during  
1489 sustained high viral load. *Immunity* **35**, 285-298, doi:10.1016/j.jimmuni.2011.05.017  
1490 (2011).

1491 16 Cartwright, E. K. *et al.* CD8(+) Lymphocytes Are Required for Maintaining Viral  
1492 Suppression in SIV-Infected Macaques Treated with Short-Term Antiretroviral Therapy.  
1493 *Immunity* **45**, 656-668, doi:10.1016/j.jimmuni.2016.08.018 (2016).

1494 17 Mueller, Y. M. *et al.* CD8+ cell depletion of SHIV89.6P-infected macaques induces CD4+ T  
1495 cell proliferation that contributes to increased viral loads. *J Immunol* **183**, 5006-5012,  
1496 doi:10.4049/jimmunol.0900141 (2009).

1497 18 Jin, X. *et al.* Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian  
1498 immunodeficiency virus-infected macaques. *J Exp Med* **189**, 991-998,  
1499 doi:10.1084/jem.189.6.991 (1999).

1500 19 Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. *Science* **359**,  
1501 1350-1355, doi:10.1126/science.aar4060 (2018).

1502 20 Huang, A. C. *et al.* T-cell invigoration to tumour burden ratio associated with anti-PD-1  
1503 response. *Nature* **545**, 60-65, doi:10.1038/nature22079 (2017).

1504 21 Li, H. *et al.* Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated  
1505 Compartment within Human Melanoma. *Cell* **181**, 747, doi:10.1016/j.cell.2020.04.017  
1506 (2020).

1507 22 Kamphorst, A. O. *et al.* Rescue of exhausted CD8 T cells by PD-1-targeted therapies is  
1508 CD28-dependent. *Science* **355**, 1423-1427, doi:10.1126/science.aaf0683 (2017).

1509 23 Sade-Feldman, M. *et al.* Defining T Cell States Associated with Response to Checkpoint  
1510 Immunotherapy in Melanoma. *Cell* **175**, 998-1013 e1020, doi:10.1016/j.cell.2018.10.038  
1511 (2018).

1512 24 Cerck, A. *et al.* PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal  
1513 Cancer. *N Engl J Med*, doi:10.1056/NEJMoa2201445 (2022).

1514 25 Pauken, K. E. *et al.* Epigenetic stability of exhausted T cells limits durability of  
1515 reinvigoration by PD-1 blockade. *Science*, doi:10.1126/science.aaf2807 (2016).

1516 26 Giles, J. R. *et al.* Longitudinal single cell transcriptional and epigenetic mapping of effector,  
1517 memory, and exhausted CD8 T cells reveals shared biological circuits across distinct cell  
1518 fates. *bioRxiv*, 2022.2003.2027.485974, doi:10.1101/2022.03.27.485974 (2022).

1519 27 Beltra, J. C. *et al.* Developmental Relationships of Four Exhausted CD8(+) T Cell Subsets  
1520 Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms.  
1521 *Immunity* **52**, 825-841 e828, doi:10.1016/j.jimmuni.2020.04.014 (2020).

1522 28 Hudson, W. H. *et al.* Proliferating Transitory T Cells with an Effector-like Transcriptional  
1523 Signature Emerge from PD-1(+) Stem-like CD8(+) T Cells during Chronic Infection.  
1524 *Immunity* **51**, 1043-1058 e1044, doi:10.1016/j.jimmuni.2019.11.002 (2019).

1525 29 Zander, R. *et al.* CD4(+) T Cell Help Is Required for the Formation of a Cytolytic CD8(+) T  
1526 Cell Subset that Protects against Chronic Infection and Cancer. *Immunity* **51**, 1028-1042  
1527 e1024, doi:10.1016/j.jimmuni.2019.10.009 (2019).

1528 30 Sandu, I. *et al.* Landscape of Exhausted Virus-Specific CD8 T Cells in Chronic LCMV  
1529 Infection. *Cell Rep* **32**, 108078, doi:10.1016/j.celrep.2020.108078 (2020).

1530 31 Im, S. J. *et al.* Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy.  
1531 *Nature* **537**, 417-421, doi:10.1038/nature19330 (2016).

1532 32 Utzschneider, D. T. *et al.* T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the  
1533 Immune Response to Chronic Viral Infections. *Immunity* **45**, 415-427,  
1534 doi:10.1016/j.jimmuni.2016.07.021 (2016).

1535 33 Wu, T. *et al.* The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and  
1536 maintain T cell stemness. *Sci Immunol* **1**, doi:10.1126/sciimmunol.aai8593 (2016).

1537 34 Zhang, K., Wang, M., Zhao, Y. & Wang, W. Taiji: System-level identification of key  
1538 transcription factors reveals transcriptional waves in mouse embryonic development. *Sci  
1539 Adv* **5**, eaav3262, doi:10.1126/sciadv.aav3262 (2019).

1540 35 Chen, Z. *et al.* TCF-1-Centered Transcriptional Network Drives an Effector versus  
1541 Exhausted CD8 T Cell-Fate Decision. *Immunity* **51**, 840-855 e845,  
1542 doi:10.1016/j.jimmuni.2019.09.013 (2019).

1543 36 Hand, T. W. *et al.* Differential effects of STAT5 and PI3K/AKT signaling on effector and  
1544 memory CD8 T-cell survival. *Proc Natl Acad Sci U S A* **107**, 16601-16606,  
1545 doi:10.1073/pnas.1003457107 (2010).

1546 37 Onishi, M. *et al.* Identification and characterization of a constitutively active STAT5  
1547 mutant that promotes cell proliferation. *Mol Cell Biol* **18**, 3871-3879,  
1548 doi:10.1128/MCB.18.7.3871 (1998).

1549 38 Tripathi, P. *et al.* STAT5 is critical to maintain effector CD8+ T cell responses. *J Immunol*  
1550 **185**, 2116-2124, doi:10.4049/jimmunol.1000842 (2010).

1551 39 Mitchell, D. M. & Williams, M. A. Disparate roles for STAT5 in primary and secondary CTL  
1552 responses. *J Immunol* **190**, 3390-3398, doi:10.4049/jimmunol.1202674 (2013).

1553 40 Sen, D. R. *et al.* The epigenetic landscape of T cell exhaustion. *Science*,  
1554 doi:10.1126/science.aae0491 (2016).

1555 41 Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of  
1556 native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-  
1557 binding proteins and nucleosome position. *Nat Methods* **10**, 1213-1218,  
1558 doi:10.1038/nmeth.2688 (2013).

1559 42 Martinez, G. J. *et al.* The transcription factor NFAT promotes exhaustion of activated  
1560 CD8(+) T cells. *Immunity* **42**, 265-278, doi:10.1016/j.jimmuni.2015.01.006 (2015).

1561 43 Klein-Hessling, S. *et al.* NFATc1 controls the cytotoxicity of CD8(+) T cells. *Nat Commun* **8**,  
1562 511, doi:10.1038/s41467-017-00612-6 (2017).

1563 44 Daniel, B. *et al.* Divergent clonal differentiation trajectories of T cell exhaustion. *bioRxiv*,  
1564 2021.2012.2016.472900, doi:10.1101/2021.12.16.472900 (2021).

1565 45 Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of  
1566 PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. *J Exp  
1567 Med* **212**, 1125-1137, doi:10.1084/jem.20142237 (2015).

1568 46 Blattman, J. N., Wherry, E. J., Ha, S. J., van der Most, R. G. & Ahmed, R. Impact of epitope  
1569 escape on PD-1 expression and CD8 T-cell exhaustion during chronic infection. *J Virol* **83**,  
1570 4386-4394, doi:10.1128/JVI.02524-08 (2009).

1571 47 Sockolosky, J. T. *et al.* Selective targeting of engineered T cells using orthogonal IL-2  
1572 cytokine-receptor complexes. *Science* **359**, 1037-1042, doi:10.1126/science.aar3246  
1573 (2018).

1574 48 West, E. E. *et al.* PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted  
1575 T cells. *J Clin Invest* **123**, 2604-2615, doi:67008 [pii]  
1576 10.1172/JCI67008 (2013).

1577 49 Zhou, X. *et al.* Differentiation and persistence of memory CD8(+) T cells depend on T cell  
1578 factor 1. *Immunity* **33**, 229-240, doi:10.1016/j.jimmuni.2010.08.002 (2010).

1579 50 Delpoux, A., Lai, C. Y., Hedrick, S. M. & Doedens, A. L. FOXO1 opposition of CD8(+) T cell  
1580 effector programming confers early memory properties and phenotypic diversity. *Proc  
1581 Natl Acad Sci U S A* **114**, E8865-E8874, doi:10.1073/pnas.1618916114 (2017).

1582 51 Shan, Q. *et al.* Tcf1 and Lef1 provide constant supervision to mature CD8(+) T cell identity  
1583 and function by organizing genomic architecture. *Nat Commun* **12**, 5863,  
1584 doi:10.1038/s41467-021-26159-1 (2021).

1585 52 Doering, T. A. *et al.* Network Analysis Reveals Centrally Connected Genes and Pathways  
1586 Involved in CD8(+) T Cell Exhaustion versus Memory. *Immunity* **37**, 1130-1144, doi:S1074-  
1587 7613(12)00470-0 [pii]  
1588 10.1016/j.jimmuni.2012.08.021 (2012).

1589 53 Delgoffe, G. M. *et al.* The role of exhaustion in CAR T cell therapy. *Cancer Cell* **39**, 885-888,  
1590 doi:10.1016/j.ccr.2021.06.012 (2021).

1591 54 Blattman, J. N. *et al.* Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo.  
1592 *Nat Med* **9**, 540-547, doi:10.1038/nm866  
1593 nm866 [pii] (2003).

1594 55 Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. *J Immunol* **192**,  
1595 5451-5458, doi:10.4049/jimmunol.1490019 (2014).

1596 56 Beltra, J. C. *et al.* IL2Rbeta-dependent signals drive terminal exhaustion and suppress  
1597 memory development during chronic viral infection. *Proc Natl Acad Sci U S A* **113**, E5444-  
1598 5453, doi:10.1073/pnas.1604256113 (2016).

1599 57 Shan, Q. *et al.* Ectopic Tcf1 expression instills a stem-like program in exhausted CD8(+) T  
1600 cells to enhance viral and tumor immunity. *Cell Mol Immunol* **18**, 1262-1277,  
1601 doi:10.1038/s41423-020-0436-5 (2021).

1602 58 Mo, F. *et al.* An engineered IL-2 partial agonist promotes CD8(+) T cell stemness. *Nature*  
1603 **597**, 544-548, doi:10.1038/s41586-021-03861-0 (2021).

1604 59 Hinrichs, C. S. *et al.* IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells  
1605 for adoptive immunotherapy. *Blood* **111**, 5326-5333, doi:blood-2007-09-113050 [pii]  
1606 10.1182/blood-2007-09-113050 (2008).

1607 60 Grange, M. *et al.* Active STAT5 regulates T-bet and eomesodermin expression in CD8 T  
1608 cells and imprints a T-bet-dependent Tc1 program with repressed IL-6/TGF-beta1  
1609 signaling. *J Immunol* **191**, 3712-3724, doi:10.4049/jimmunol.1300319 (2013).

1610 61 Kalbasi, A. *et al.* Potentiating adoptive cell therapy using synthetic IL-9 receptors. *Nature*  
1611 **607**, 360-365, doi:10.1038/s41586-022-04801-2 (2022).

1612 62 Utzschneider, D. T. *et al.* Early precursor T cells establish and propagate T cell exhaustion  
1613 in chronic infection. *Nat Immunol* **21**, 1256-1266, doi:10.1038/s41590-020-0760-z (2020).

1614 63 Danilo, M., Chennupati, V., Silva, J. G., Siegert, S. & Held, W. Suppression of Tcf1 by  
1615 Inflammatory Cytokines Facilitates Effector CD8 T Cell Differentiation. *Cell Rep* **22**, 2107-  
1616 2117, doi:10.1016/j.celrep.2018.01.072 (2018).

1617 64 Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent  
1618 memory CD8 T cells do not develop during chronic viral infection. *Proc Natl Acad Sci U S  
1619 A* **101**, 16004-16009, doi:0407192101 [pii]  
1620 10.1073/pnas.0407192101 (2004).

1621 65 Shin, H., Blackburn, S. D., Blattman, J. N. & Wherry, E. J. Viral antigen and extensive  
1622 division maintain virus-specific CD8 T cells during chronic infection. *J Exp Med* **204**, 941-  
1623 949, doi:jem.20061937 [pii]  
1624 10.1084/jem.20061937 (2007).

1625 66 Siddiqui, I. *et al.* Intratumoral Tcf1(+)PD-1(+)CD8(+) T Cells with Stem-like Properties  
1626 Promote Tumor Control in Response to Vaccination and Checkpoint Blockade  
1627 Immunotherapy. *Immunity* **50**, 195-211 e110, doi:10.1016/j.immuni.2018.12.021 (2019).

1628 67 Williams, M. A., Tynik, A. J. & Bevan, M. J. Interleukin-2 signals during priming are  
1629 required for secondary expansion of CD8+ memory T cells. *Nature* **441**, 890-893,  
1630 doi:nature04790 [pii]  
1631 10.1038/nature04790 (2006).

1632 68 Pipkin, M. E. *et al.* Interleukin-2 and inflammation induce distinct transcriptional  
1633 programs that promote the differentiation of effector cytolytic T cells. *Immunity* **32**, 79-  
1634 90, doi:S1074-7613(10)00010-5 [pii]  
1635 10.1016/j.immuni.2009.11.012 (2010).

1636 69 Kalia, V. *et al.* Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells  
1637 favors terminal-effector differentiation in vivo. *Immunity* **32**, 91-103, doi:S1074-  
1638 7613(10)00008-7 [pii]  
1639 10.1016/j.immuni.2009.11.010 (2010).

1640 70 Mathieu, C. *et al.* IL-2 and IL-15 regulate CD8+ memory T-cell differentiation but are  
1641 dispensable for protective recall responses. *Eur J Immunol* **45**, 3324-3338,  
1642 doi:10.1002/eji.201546000 (2015).

1643 71 Boulet, S., Daudelin, J. F. & Labrecque, N. IL-2 Induction of Blimp-1 Is a Key In Vivo Signal  
1644 for CD8+ Short-Lived Effector T Cell Differentiation. *J Immunol*,  
1645 doi:10.4049/jimmunol.1302365 (2014).

1646 72 Mitchell, D. M., Ravkov, E. V. & Williams, M. A. Distinct roles for IL-2 and IL-15 in the  
1647 differentiation and survival of CD8+ effector and memory T cells. *J Immunol* **184**, 6719-  
1648 6730, doi:jimmunol.0904089 [pii]  
1649 10.4049/jimmunol.0904089 (2010).

1650 73 Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses,  
1651 tolerance, and immunotherapy. *Immunity* **38**, 13-25, doi:10.1016/j.immuni.2013.01.004  
1652 (2013).

1653 74 Spolski, R., Li, P. & Leonard, W. J. Biology and regulation of IL-2: from molecular  
1654 mechanisms to human therapy. *Nat Rev Immunol* **18**, 648-659, doi:10.1038/s41577-018-  
1655 0046-y (2018).

1656 75 Shourian, M., Beltra, J. C., Bourdin, B. & Decaluwe, H. Common gamma chain cytokines  
1657 and CD8 T cells in cancer. *Semin Immunol* **42**, 101307, doi:10.1016/j.smim.2019.101307  
1658 (2019).

1659 76 Gattinoni, L. *et al.* Wnt signaling arrests effector T cell differentiation and generates CD8+  
1660 memory stem cells. *Nat Med* **15**, 808-813, doi:10.1038/nm.1982 (2009).

1661 77 Shin, H. M. *et al.* Epigenetic modifications induced by Blimp-1 Regulate CD8(+) T cell  
1662 memory progression during acute virus infection. *Immunity* **39**, 661-675,  
1663 doi:10.1016/j.immuni.2013.08.032 (2013).

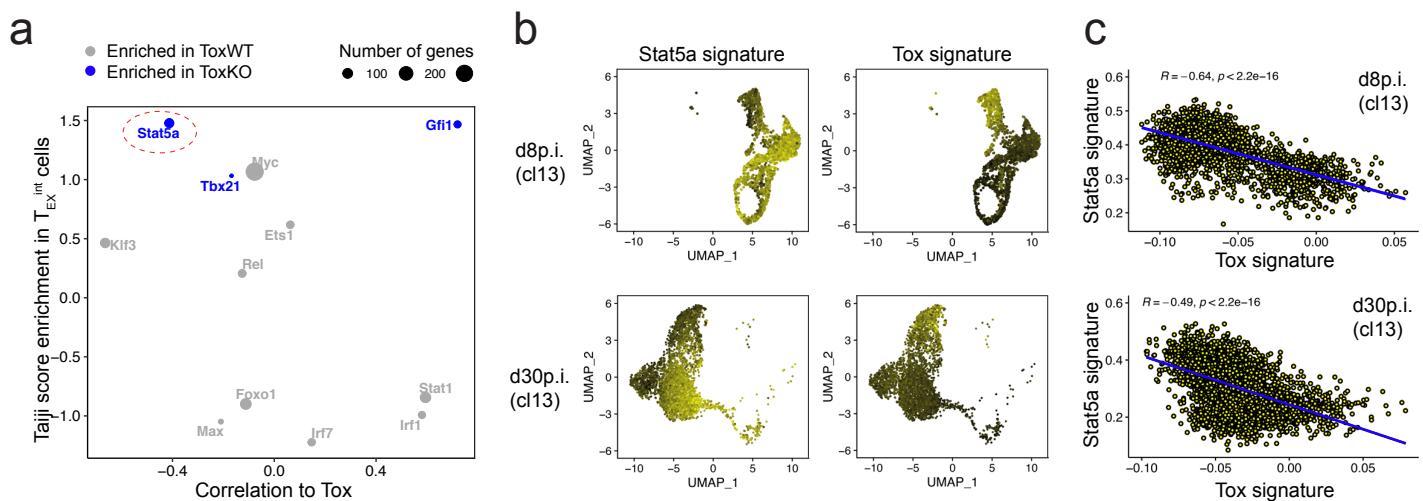
1664 78 Gong, D. & Malek, T. R. Cytokine-dependent Blimp-1 expression in activated T cells  
1665 inhibits IL-2 production. *J Immunol* **178**, 242-252, doi:178/1/242 [pii] (2007).

1666 79 Martins, G. A., Cimmino, L., Liao, J., Magnusdottir, E. & Calame, K. Blimp-1 directly  
1667 represses IL2 and the IL2 activator Fos, attenuating T cell proliferation and survival. *J Exp  
1668 Med* **205**, 1959-1965, doi:10.1084/jem.20080526 (2008).

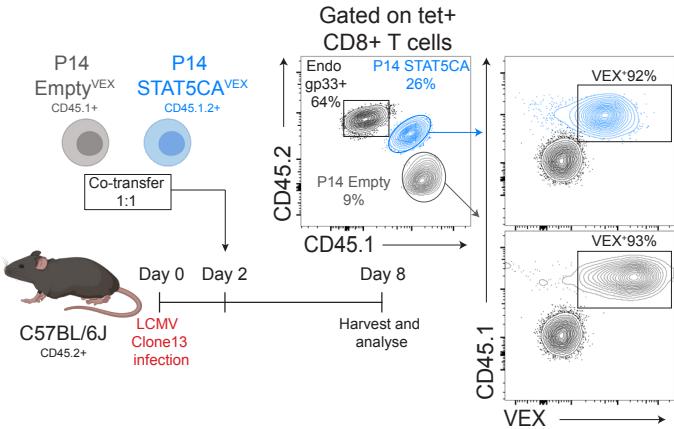
1669 80 Welsh, R. M. & Seedhom, M. O. Lymphocytic choriomeningitis virus (LCMV): propagation,  
1670 quantitation, and storage. *Curr Protoc Microbiol Chapter 15*, Unit 15A 11,  
1671 doi:10.1002/9780471729259.mc15a01s8 (2008).

1672 81 Kurachi, M. *et al.* Optimized retroviral transduction of mouse T cells for in vivo assessment  
1673 of gene function. *Nat Protoc* **12**, 1980-1998, doi:10.1038/nprot.2017.083 (2017).

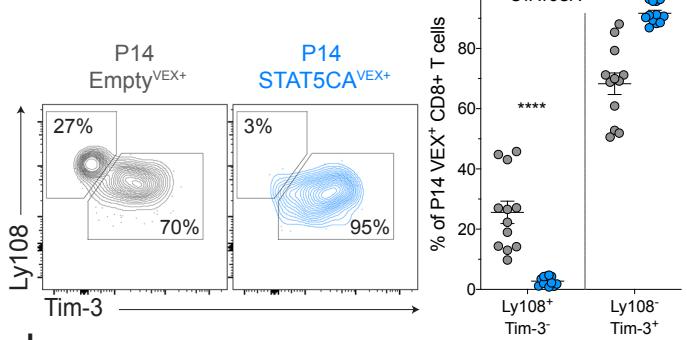
1674 82 Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high  
1675 efficiency for low cell numbers. *Nat Protoc* **13**, 1006-1019, doi:10.1038/nprot.2018.015  
1676 (2018).


1677 83 Cao, Z. *et al.* ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia  
1678 dependency. *Mol Cell* **81**, 3604-3622 e3610, doi:10.1016/j.molcel.2021.07.018 (2021).

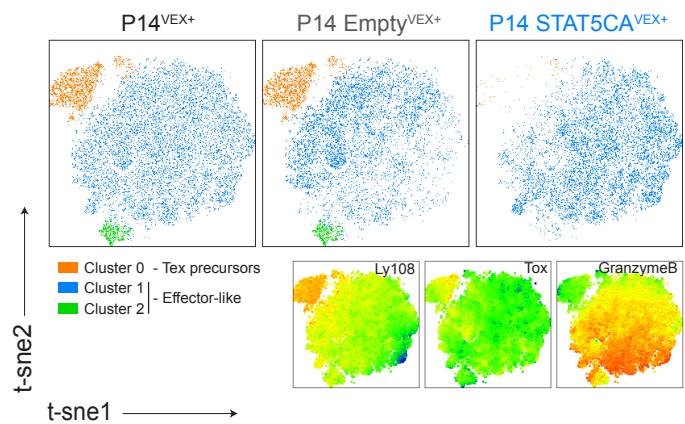
1679 84 Villarino, A. V. *et al.* Subset- and tissue-defined STAT5 thresholds control homeostasis and  
1680 function of innate lymphoid cells. *J Exp Med* **214**, 2999-3014, doi:10.1084/jem.20150907  
1681 (2017).


1682 85 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell  
1683 transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol*  
1684 **36**, 411-420, doi:10.1038/nbt.4096 (2018).

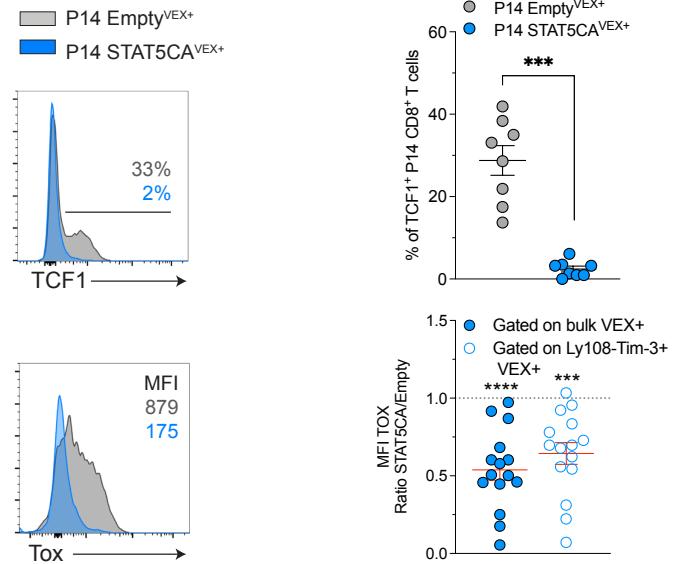
1685


# Figure 1

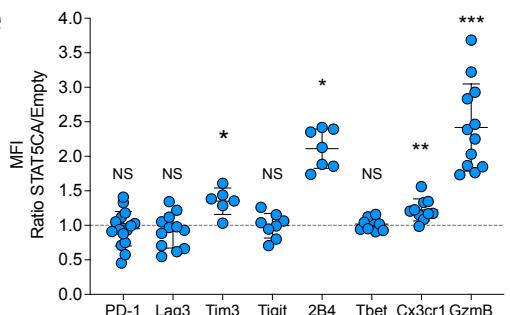



**a**

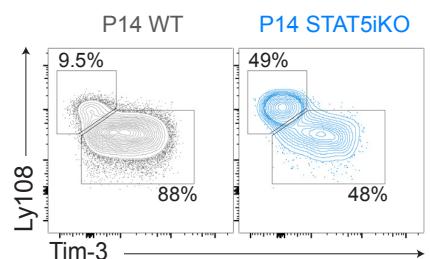



**b**

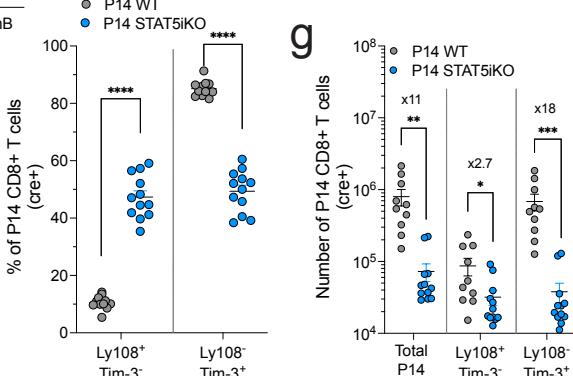



**c**

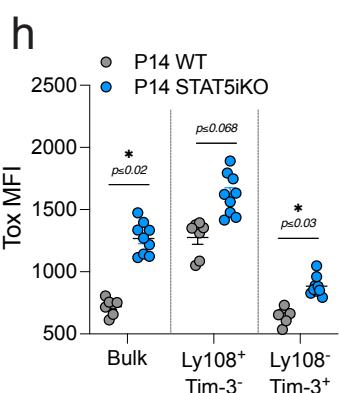



**d**

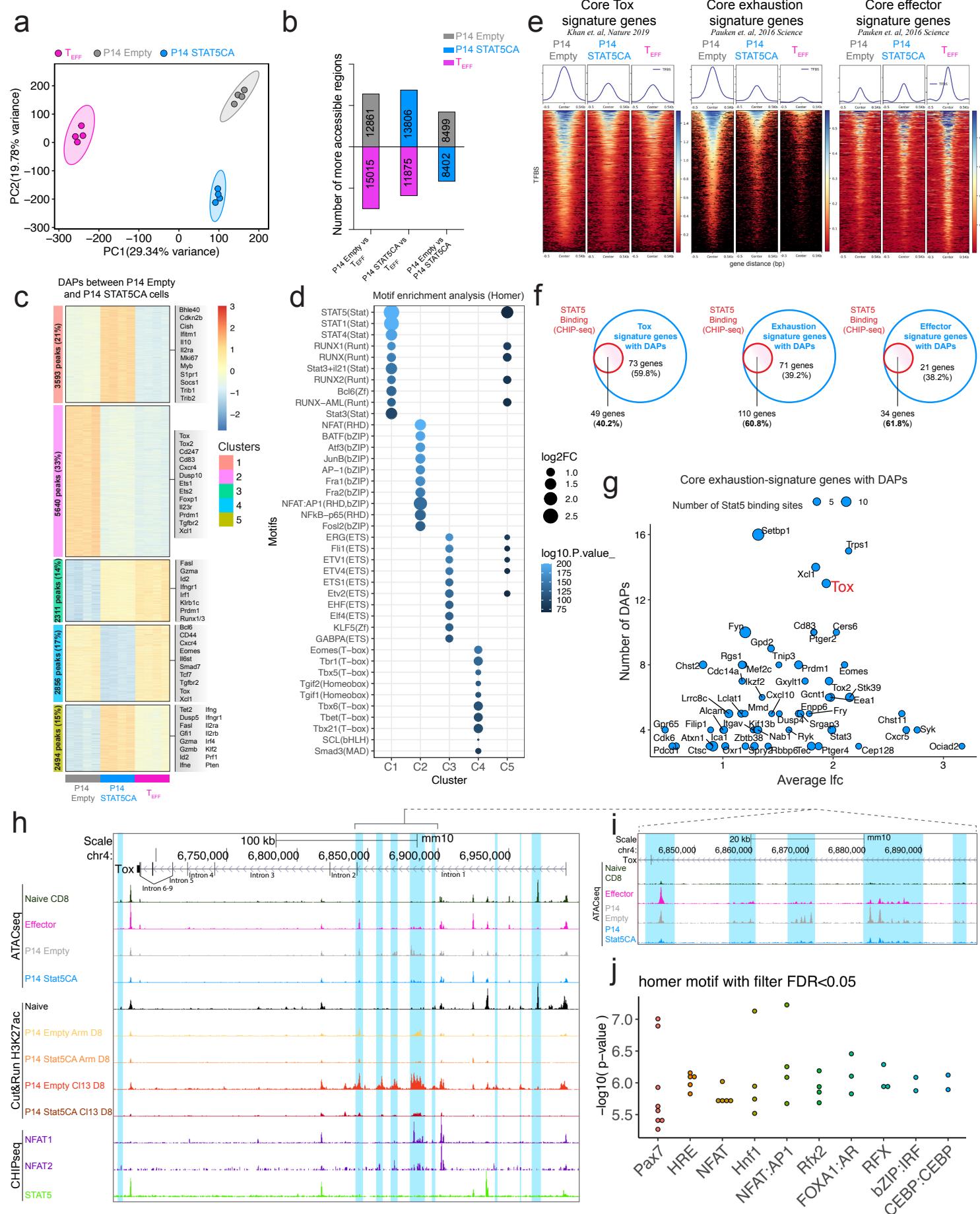



**e**

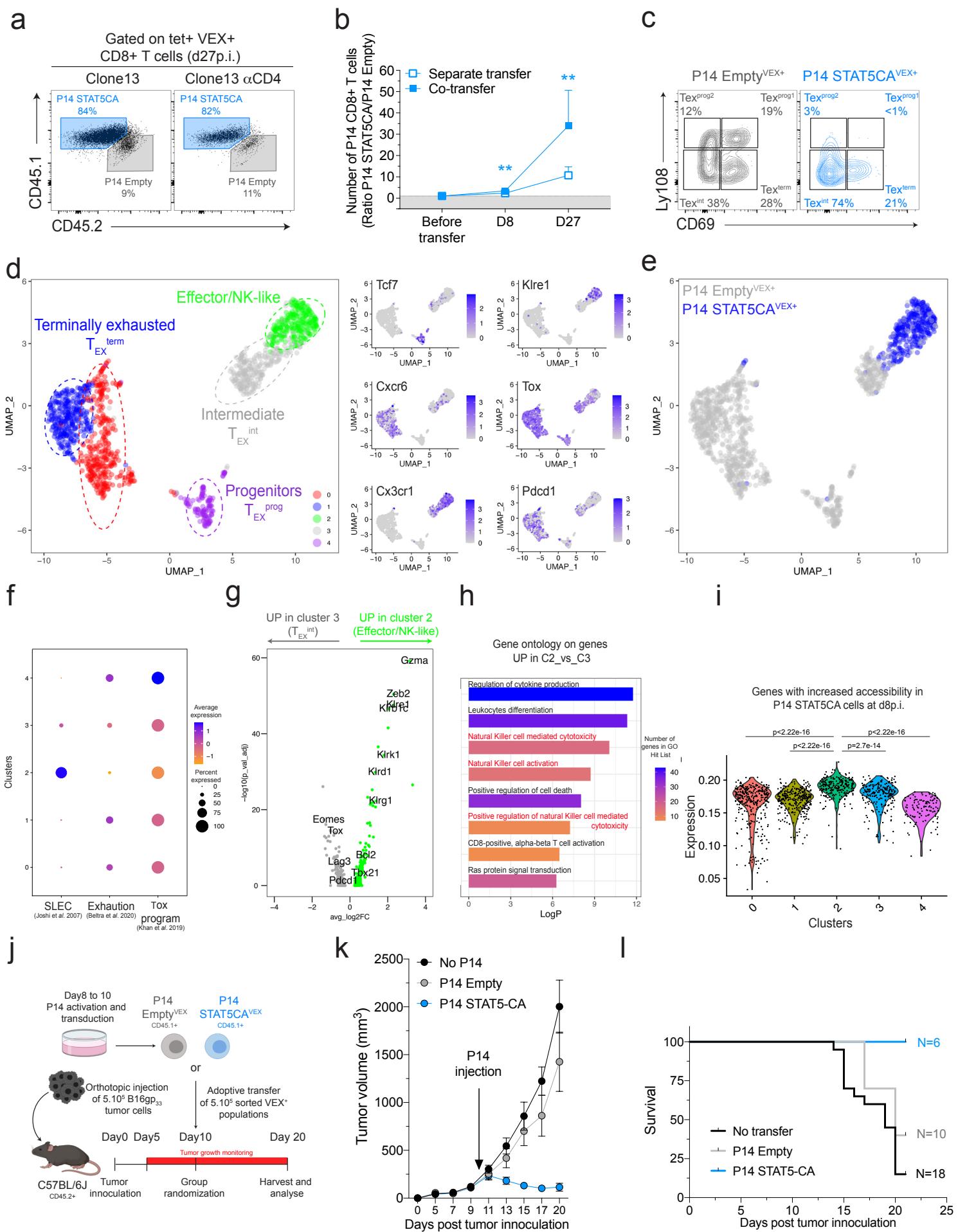



**f**

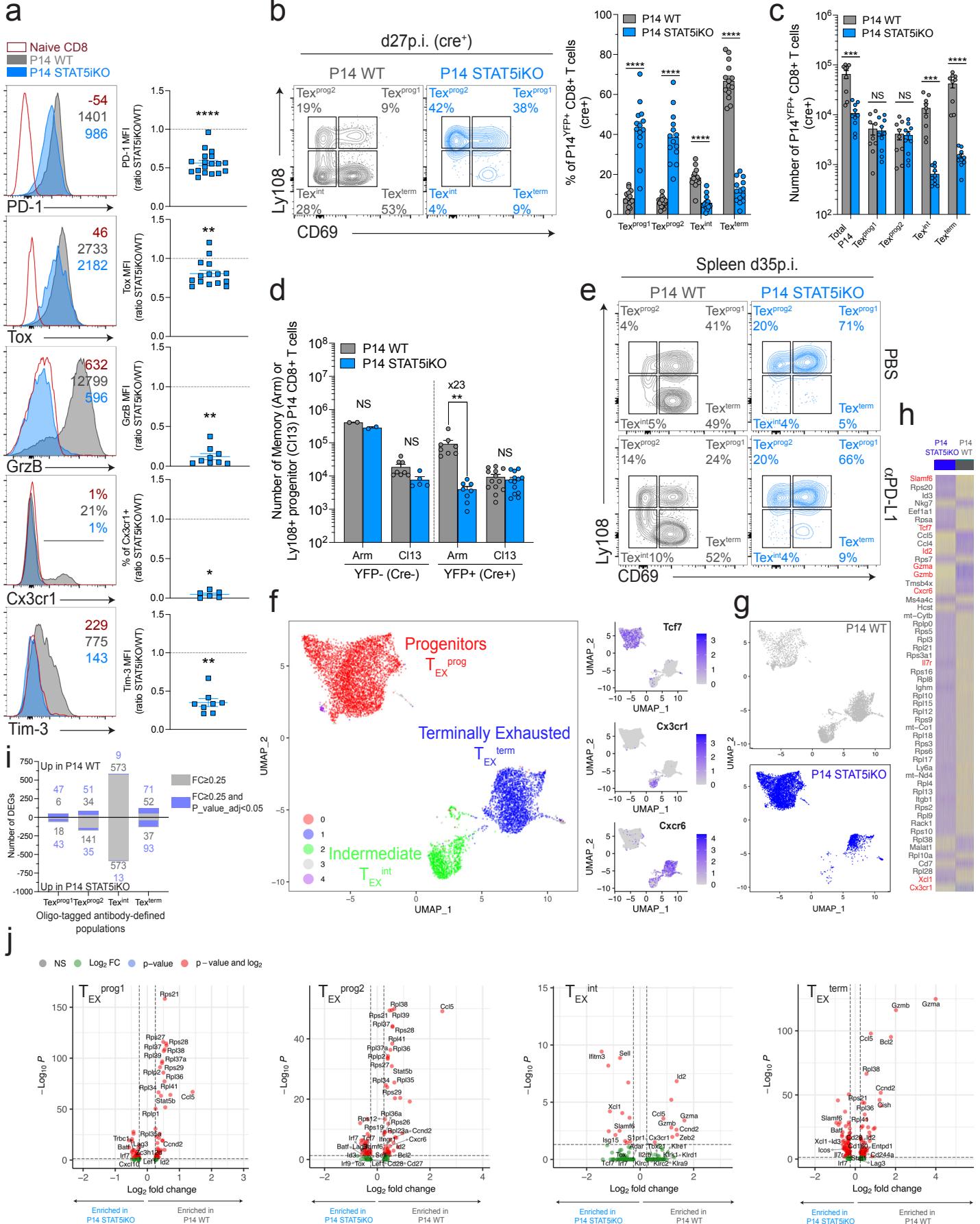



**g**

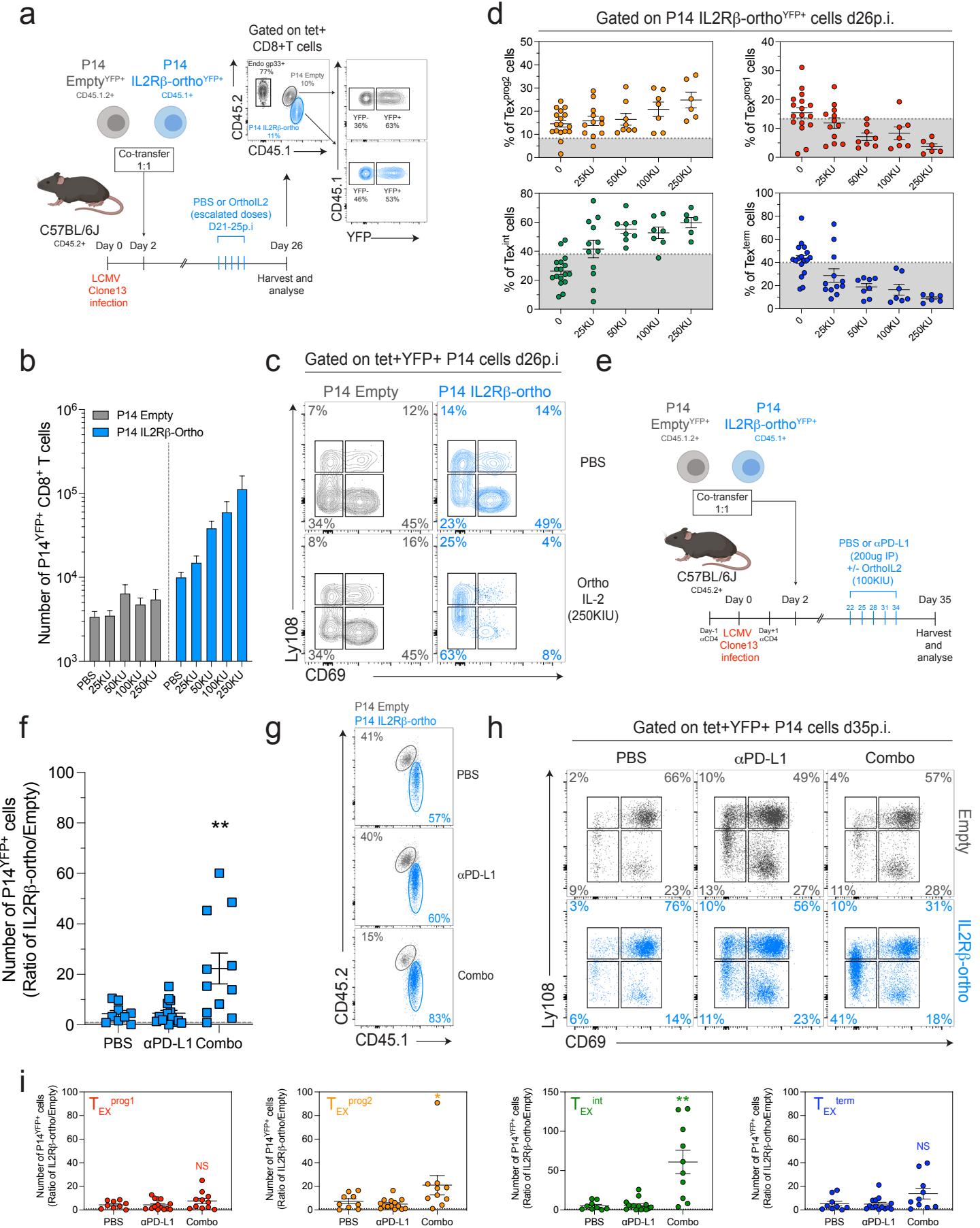



**h**



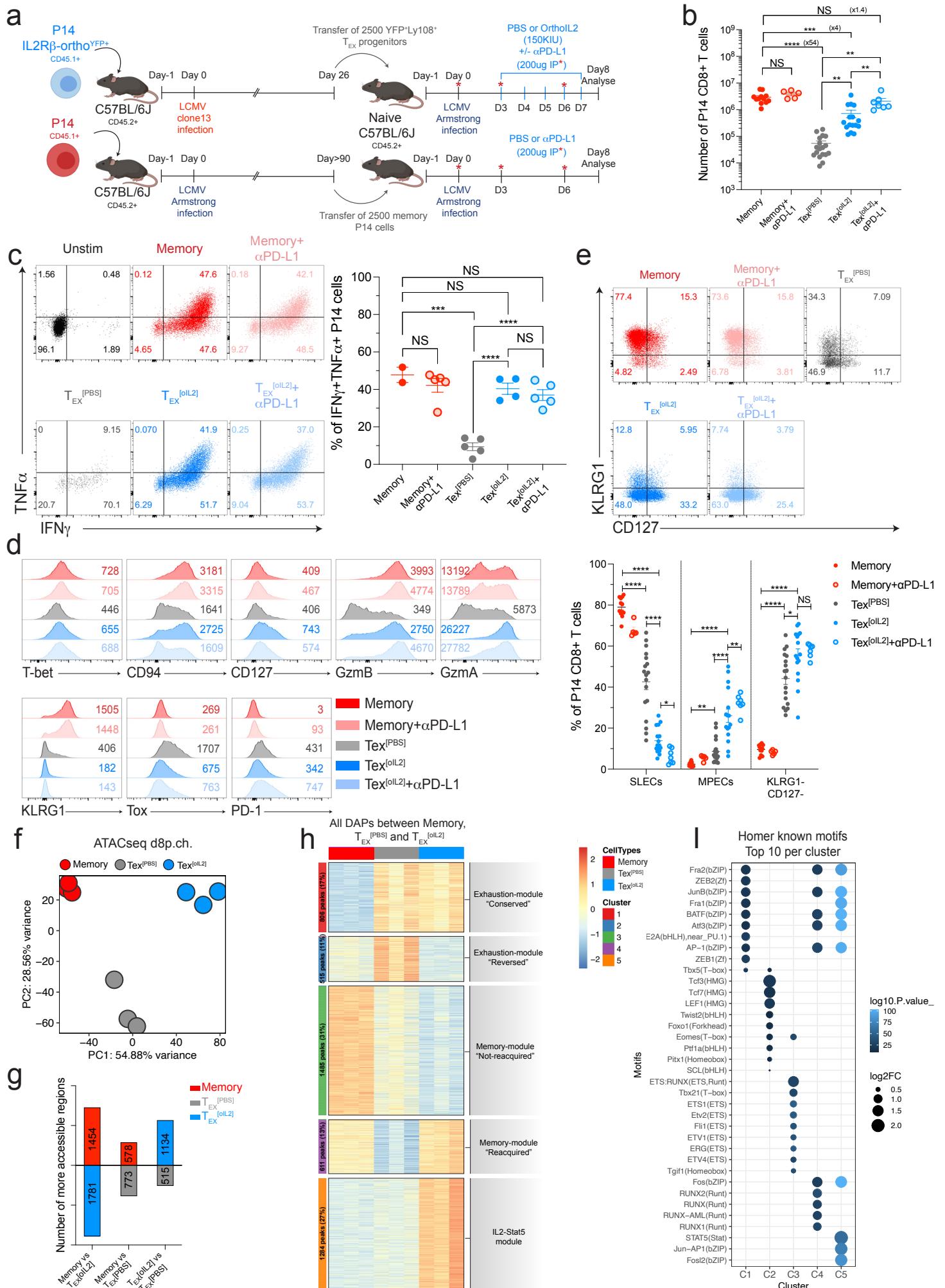

# Figure 3



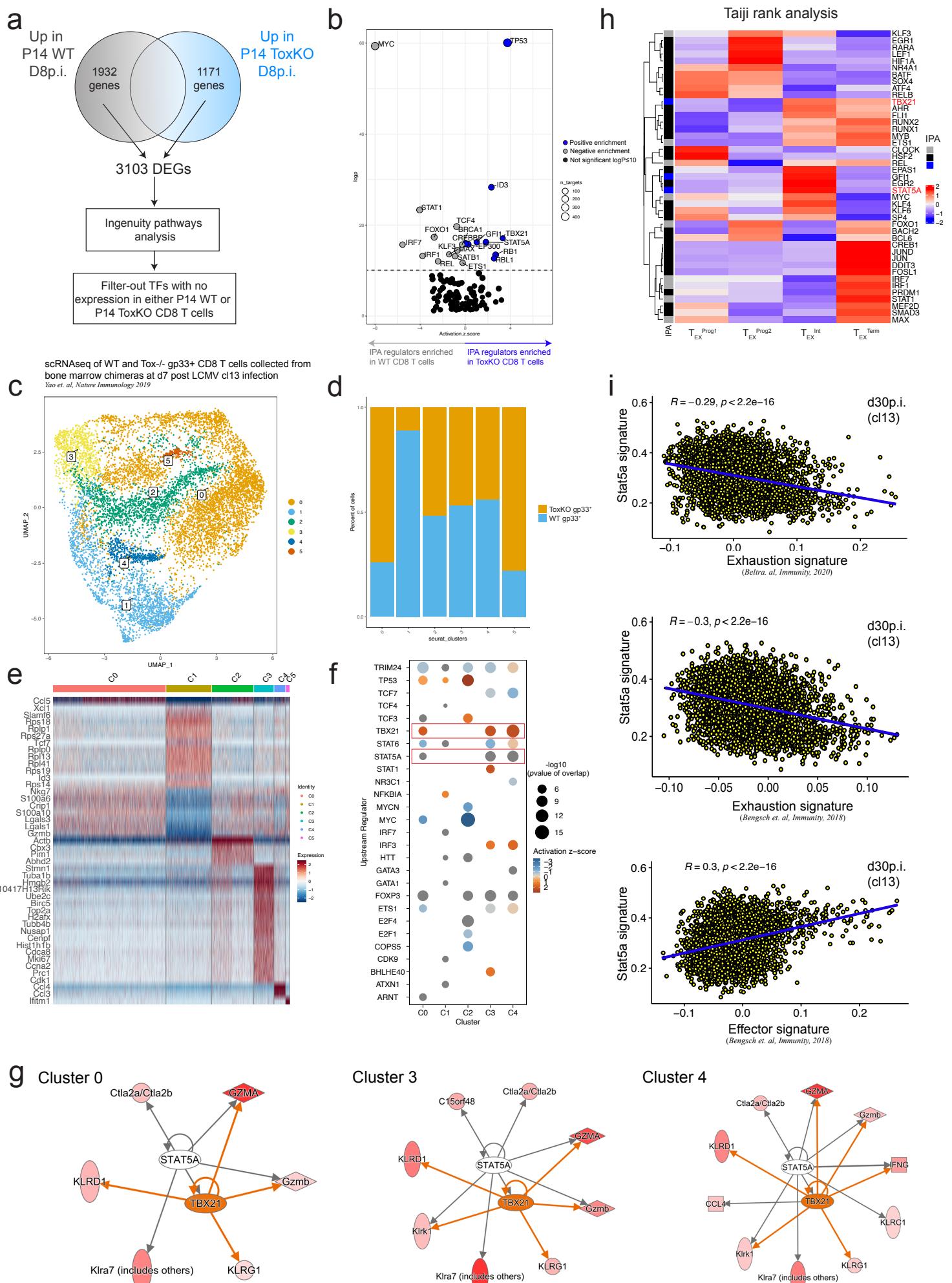

# Figure 4



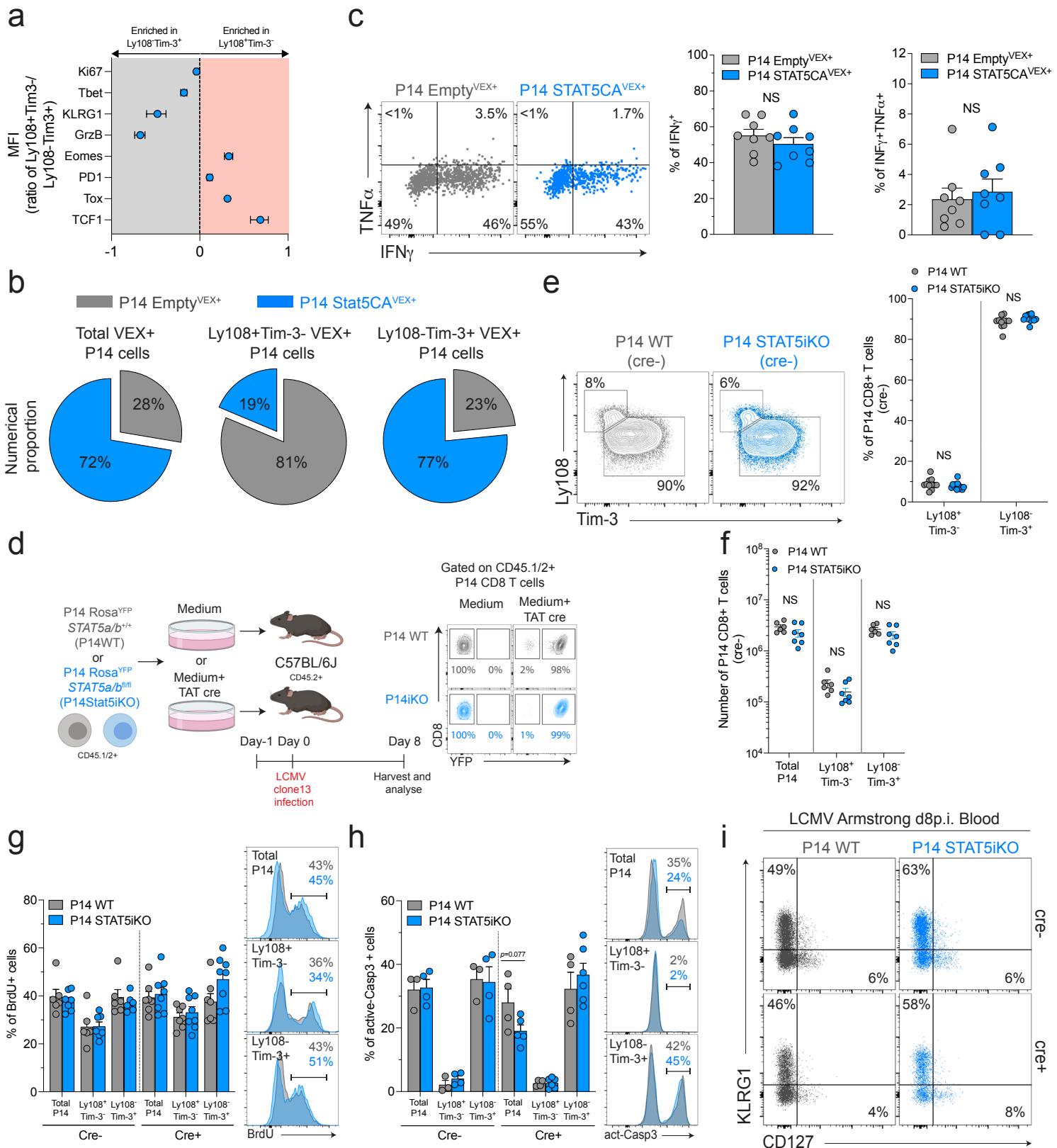
# Figure 5



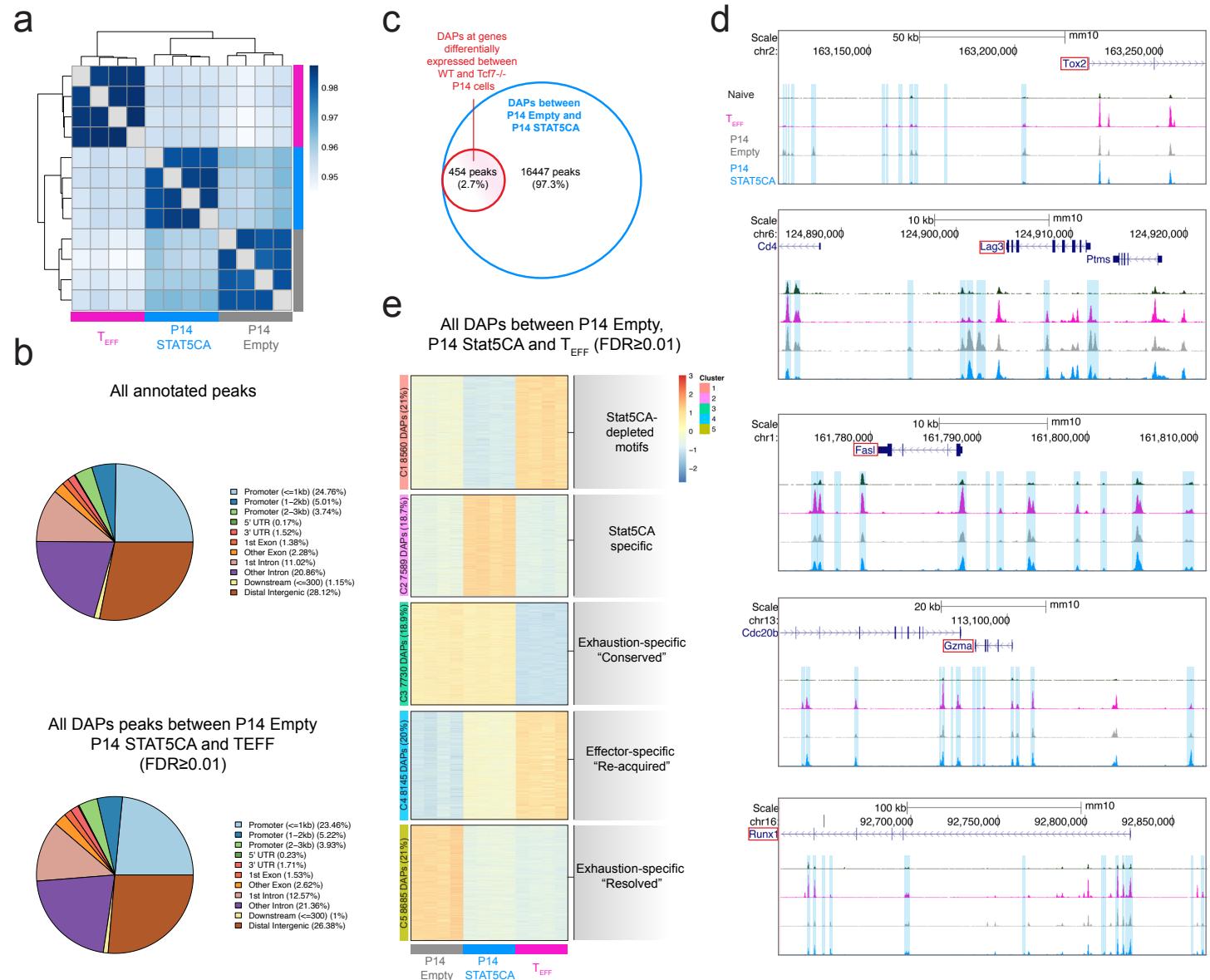

## Figure 6



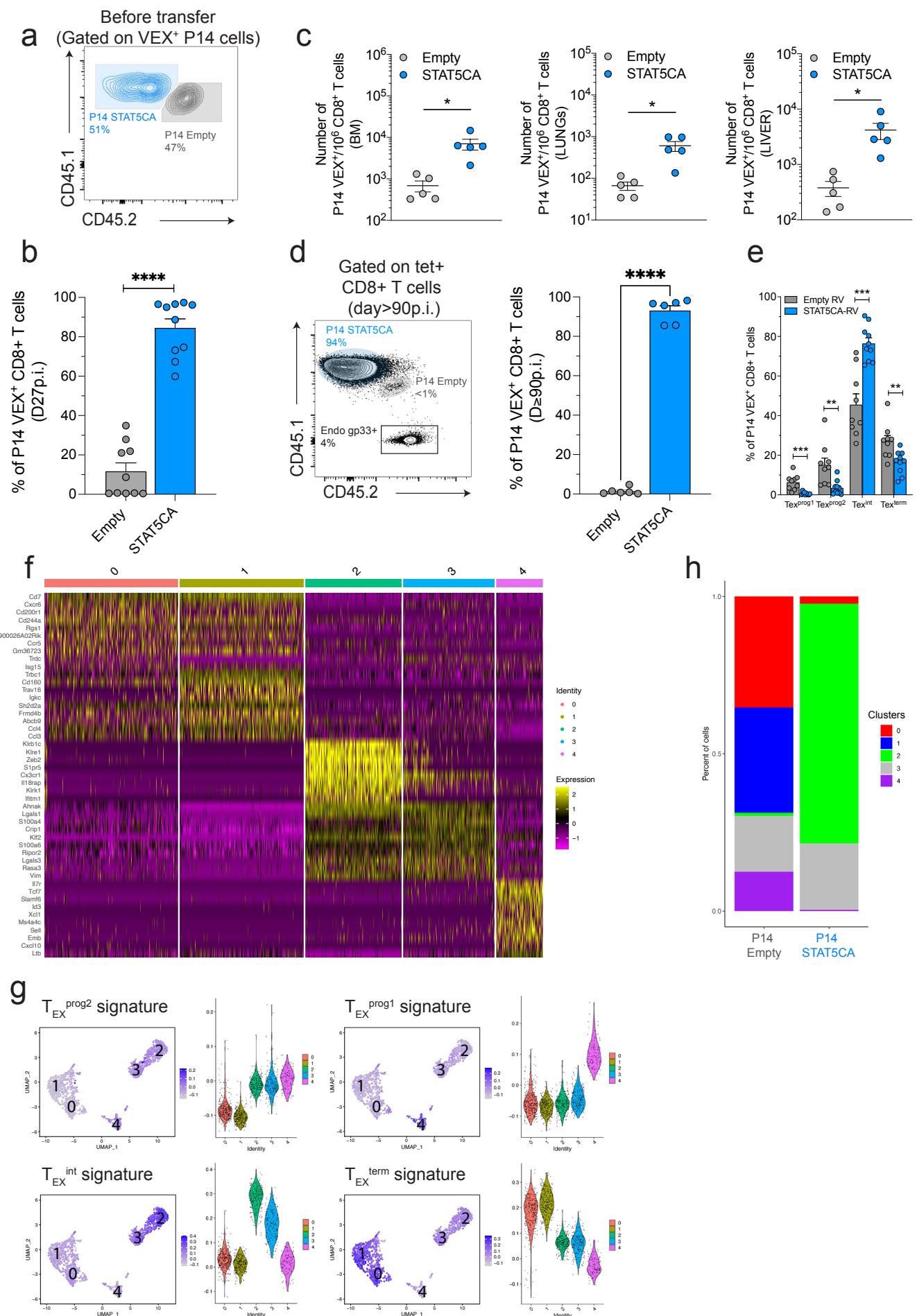

# bioRxiv preprint which was not peer-reviewed


## Figure 7

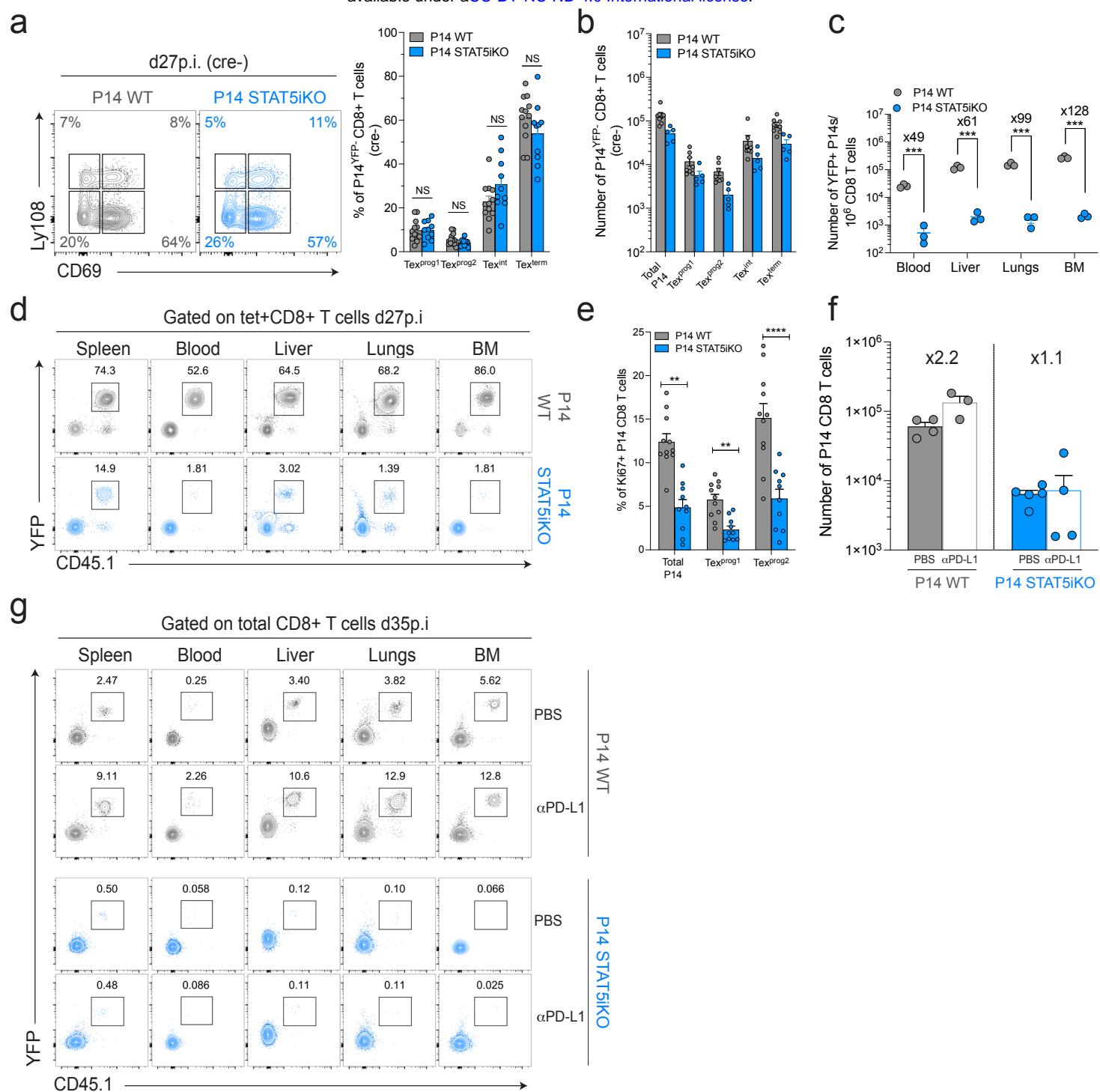



# Figure. S1

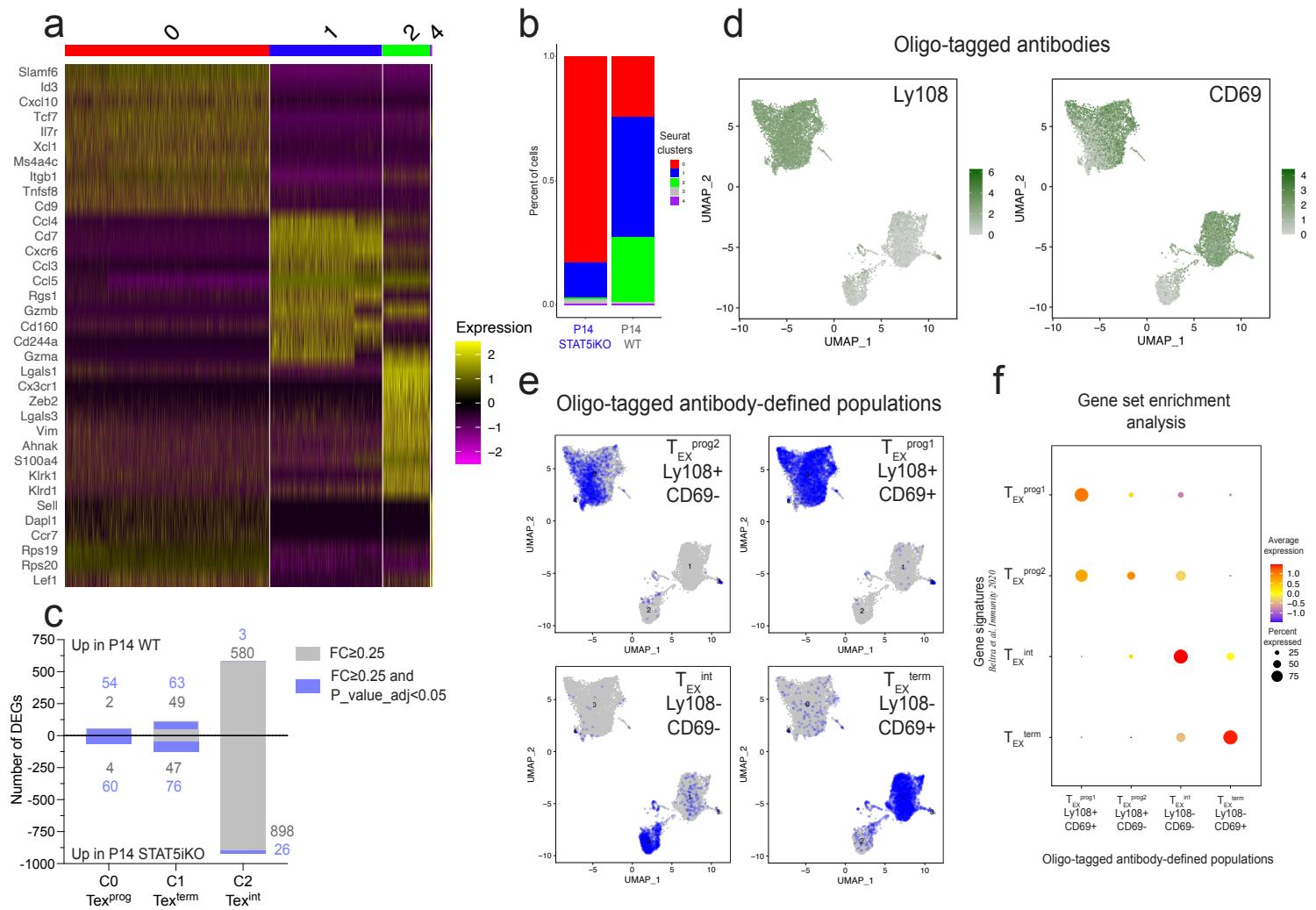



## Figure S2

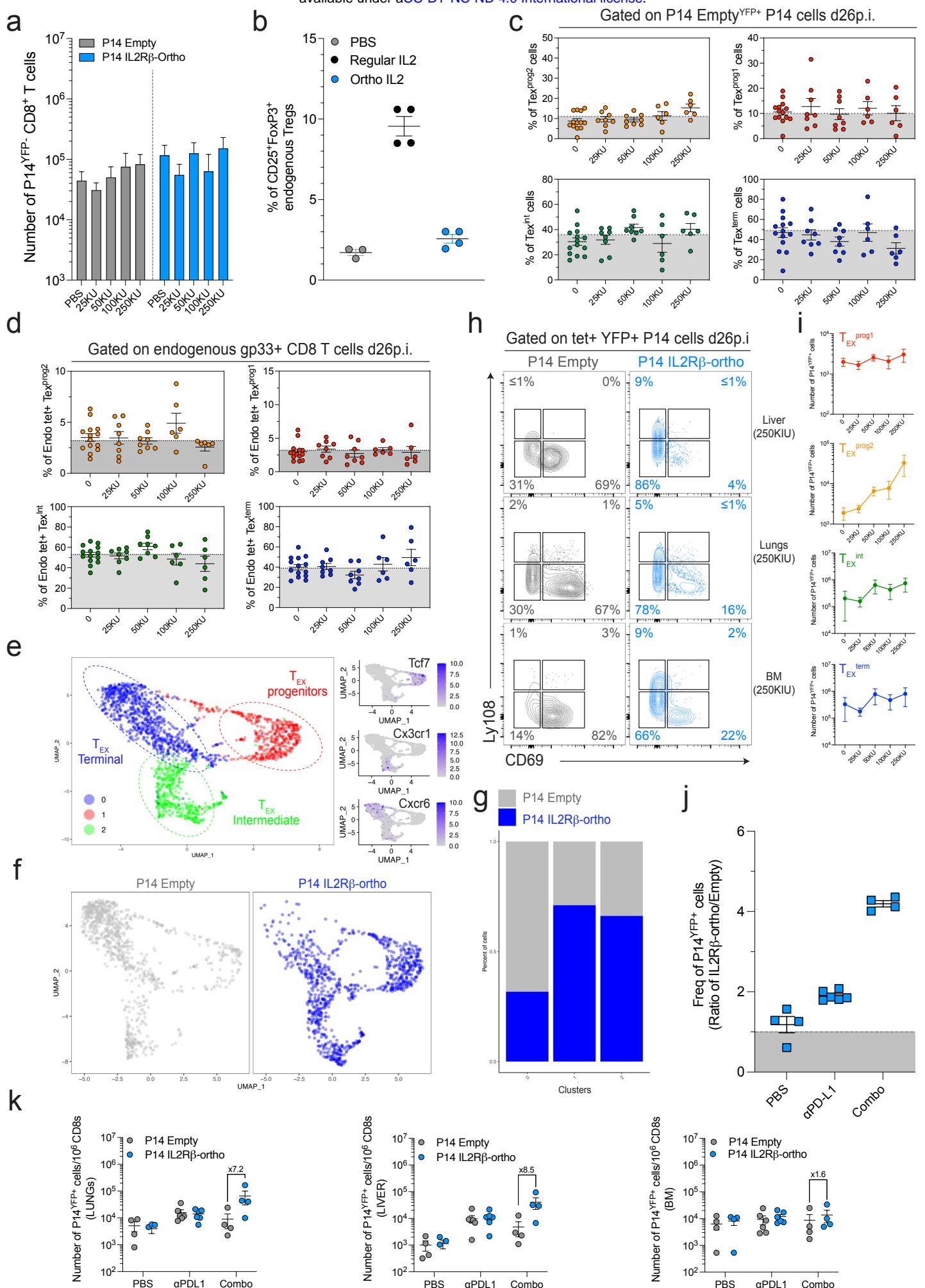



# Figure S3

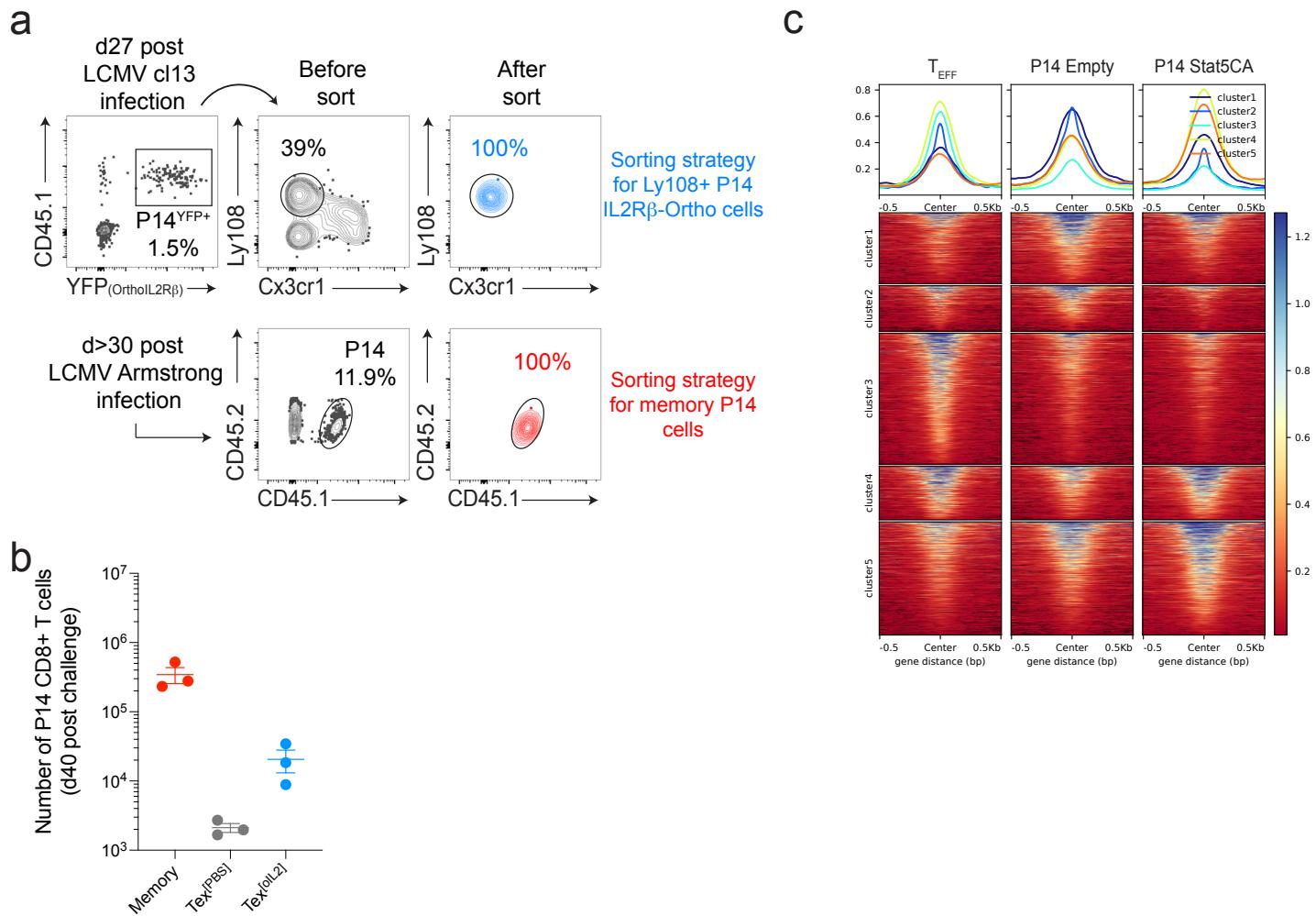



## Figure. S4




# Figure S5




# Figure. S6



# Figure 87



# Figure. S8

