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Abstract: 
Numerous studies have characterized the existence of cell subtypes, along with their 

corresponding transcriptional profiles, within the developing mouse pancreas. The upstream 

mechanisms that initiate and maintain gene expression programs across cell states, however, 

remain largely unknown. Here, we generate single-nucleus ATAC-Sequencing data of 

developing murine pancreas and perform an integrated, multi-omic analysis of both chromatin 

accessibility and RNA expression to describe the chromatin landscape of both the developing 

epithelium and mesenchyme at E14.5 at single-cell resolution. We identify candidate 

transcription factors regulating cell fate and construct gene regulatory networks of active 

transcription factor binding to regulatory regions of downstream target genes. This work serves 

as a valuable resource for the field of pancreatic biology in general and contributes to our 

understanding of lineage plasticity among endocrine cell types. In addition, these data identify 

which epigenetic states should be represented in the differentiation of stem cells to the 

pancreatic beta cell fate in order to best recapitulate in vitro the gene regulatory networks that 

are critical for progression along the beta cell lineage in vivo. 
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1. Introduction 
 
 Development of the mammalian pancreas requires the coordination of multiple cell 

lineages over time, culminating in the generation of a highly branched, mature organ consisting 

of both an exocrine and endocrine compartment. Specification of the murine pancreas begins at 

embryonic day (E) 8.5 with the expression of the transcription factor (TF) pancreatic and 

duodenal homeobox 1 (Pdx1) in a focal region of the endoderm-derived primitive foregut [1,2]. 

These Pdx1(+) cells give rise to all of the epithelial lineages of the pancreas (duct, endocrine, 

and acinar) [3] and by E9 evaginate into the surrounding mesenchyme and begin to form a 

stratified epithelium. As branching morphogenesis progresses, regionalization of the epithelium 

results in the formation of both trunk and tip domains by E12.5. Cells located at the tip, marked 

by expression of Cpa1, serve as multipotent progenitors that give rise to all three epithelial cell 

types until E13.5, at which point they undergo fate restriction to only give rise to acinar cells [3–

5]. Epithelial cells located in the trunk give rise to either ductal or endocrine lineages, a fate 

choice dependent on levels of Notch signaling [5]. 

Endocrine progenitor (EP) cells derive from a subset of ductal epithelial cells that 

experience lower levels of Notch and then activate expression of the TF neurogenin3 (Neurog3) 

[5]. Neurog3 expression marks early EP cells, which give rise to the main hormone-producing 

endocrine cells in the pancreas: alpha, beta, delta, and gamma [3,6]. Gene knockout studies in 

mice revealed that the expression of a number of TFs that are critical for differentiation and 

maintenance of pancreatic endocrine lineages, such as paired box gene 4 (Pax4) and 6 (Pax6), 

neurogenic differentiation 1 (Neurod1), and LIM-homeodomain protein Islet 1 (Isl1), is 

dependent on Neurog3 [6].  

Endocrine cell identity is specified and maintained by a complex network of TFs, many of 

which play dynamic roles throughout developmental time [7]. For instance, early in development 

Pdx1 is required for specification of pancreatic progenitors, but later in development it is also 

important for the generation of beta cells and for the maintenance of beta cell identity [8,9]. 

Along with Pdx1 and Pax4, the TFs NK2 homeobox 2 (Nkx2-2) and NK6 homeobox 1 (Nkx6-1) 

are critical factors for beta cell differentiation, while aristaless related homeobox (Arx) is 

essential for alpha cell differentiation. Arx and Pax4 play mutually opposing roles in the 

differentiation of alpha and beta cells, with Arx promoting the generation of alpha at the expense 

of beta and delta cells [10] and Pax4 regulating the decision towards beta and delta at the 

expense of alpha and epsilon cell fate [10–12]. When both Arx and Pax4 are lost, delta cells 

persist but both alpha and beta cells are lost [11]. Expression of Nkx2-2 and Nkx6-1 follows that 
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of Pdx1 in early pancreatic progenitors, then becomes progressively restricted to endocrine cells 

[13,14]. Deletion of Nkx2-2 results in a significant reduction of the four major endocrine cell 

types and an increase in ghrelin-producing epsilon cells [12,14]. Nkx6-1 functions downstream 

of Nkx2-2 and is necessary for beta cell neogenesis through the maintenance and/or expansion 

of beta cell precursors following Neurog3 expression, but prior to the production of insulin, while 

later it is lost from developing alpha cells [13,15].  

Extrinsic signals derived from non-epithelial cells are also important in guiding pancreatic 

organogenesis. Early pioneering work using pancreatic explants ex vivo showed that when E11 

epithelial buds were cultured without their surrounding mesenchymal tissue, epithelial growth 

and differentiation were arrested [16]. More recently, genetic ablation studies have 

demonstrated the requirement for pancreatic mesenchyme for expansion of the pool of early 

pancreatic progenitor cells early in development and for proliferation of differentiated cells later 

in development [17,18]. Although the pancreatic mesenchyme is broadly appreciated as playing 

an important role in pancreatic organogenesis, however, it is still not well understood whether 

there exist biologically relevant sub-populations of mesenchyme with distinct lineages and/or 

functional roles.  

Recent single-cell RNA-Sequencing (scRNA-Seq) studies have highlighted previously 

unappreciated levels of cellular heterogeneity among the epithelial cells of the developing 

murine pancreas, within the endocrine compartment in particular [19–23]. Although relatively 

less attention has been given to elucidating potential cellular heterogeneity within the 

mesenchymal compartment, evidence from scRNA-Seq and classical genetic lineage tracing 

experiments suggests that transcriptionally distinct mesenchymal cell types also exist during 

development [19,20,24]. As a result of this body of work, we now have a greater understanding 

of the transcriptomic cues governing cell states across pancreatic development, but we still lack 

an understanding of the upstream epigenetic features that regulate cell fate decisions. In 

particular, integration of gene expression data and chromatin accessibility data would permit 

identification of active transcription factor binding to accessible chromatin within a given cell 

type.  

In recent years, Assay for Transposase-Accessible Chromatin followed by Sequencing 

(ATAC-Seq) has been developed to profile genome-wide chromatin accessibility for epigenetic 

analysis in a given cell type or tissue [25]. This technique has been applied to sorted 

populations of endocrine cells from the murine pancreas to investigate the chromatin landscape 

of developing EP cells [20,26]. These studies, however, lacked single-cell resolution to capture 

the chromatin states of the various subpopulations of developing endocrine cells that have been 
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described [19–23]. More recently, single-nucleus ATAC-Seq (snATAC-Seq) has emerged as a 

technology to provide insights into chromatin accessibility at single-cell resolution [27,28]. 

snATAC-Seq has been used to profile the chromatin landscape of many developing tissue types 

and has revealed cell-type specific cis- and trans-regulatory elements governing gene 

expression and cell fate decisions [29–33]. Furthermore, integration of scRNA- and snATAC-

Seq data for multi-omic analysis permits refinement of expressed TF to a further parsed subset 

that are likely binding TF motifs in open regions of chromatin and actively regulating expression 

of downstream target genes.  

Here, we generate snATAC-Seq data of developing murine pancreas and perform an 

integrated multi-omic analysis of both chromatin accessibility and RNA expression. We describe 

at single-cell resolution the chromatin landscape of the developing epithelium at E14.5, a stage 

at which the dynamic processes of expansion, differentiation, and morphogenesis are actively 

underway. We identify candidate TFs regulating transitions across the endocrine lineages and 

construct gene regulatory networks (GRNs) of active TFs binding to regulatory regions of 

downstream target genes. Additionally, we generate an snATAC-Seq dataset of developing 

pancreatic mesenchyme, which to our knowledge represents the first ATAC-Seq dataset (bulk 

or single-nucleus) of this cell type. We believe these datasets and analyses will serve as a 

valuable resource for the field of pancreatic biology in general, and will contribute to our 

understanding of lineage plasticity among endocrine cell types. In addition, these data will serve 

as a reference as to which epigenetic states should be represented in the differentiation of stem 

cells to the pancreatic beta cell fate in order to best recapitulate in vitro the gene regulatory 

networks that are critical for progression along the beta cell lineage in vivo.  
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2. Methods 
 
2.1. Animal studies 

All mouse procedures were approved by the University of California, San Francisco 

(UCSF) Institutional Animal Care and Use Committee (IACUC). Mice were housed in a 12-hour 

light-dark cycle in a controlled temperature climate. Noon of the day of a vaginal plug was 

considered embryonic day (E)0.5.  

eFev-EYFP (ePet1-EYFP) mice were kindly donated by Dr. Evan Deneris, and have been 

previously described [34,35]. Mice were maintained on a C57BL/6J background. Wildtype 

C57BL/6J mice used for breeding and for the whole pancreas sample were obtained from The 

Jackson Laboratory. Genotyping of eFev-EYFP mice was conducted on tail DNA, with forward 

primer TGCGATGGGAAGATAAGAGGGG and reverse primer 

GAAGTTCACCTTGATGCCGTTC. 

 

2.2. Histology, immunofluorescence, and imaging 

 E14.5 pancreata were dissected in ice cold 1x PBS, then fixed in 4% paraformaldehyde 

(PFA) overnight at 4C. After washing three times in 1x PBS, tissues were preserved in 30% 

sucrose in PBS at 4C overnight and then embedded in Optimal Cutting Temperature (O.C.T.) 

compound (Tissue-Tek) and flash frozen prior to sectioning at 10 µm thickness.  

For immunofluorescence staining, cryosections were washed 3 times in 1x PBS, 

permeabilized in 0.5% triton X-100 in PBS (PBT) for 10 minutes at room temperature (RT), and 

then blocked with 5% normal donkey serum (NDS) in 0.1% PBT for 1 hour. Sections were stained 

overnight at 4C using primary antibodies against GFP (1:500, Abcam Cat. ab13970) and Chga 

(1:250, Abcam Cat. ab15160). The next day, sections were washed three times in 1x PBS and 

then incubated with species-specific Alexa 488-, 555-, or 647-conjugated secondary antibodies 

and DAPI in 5% NDS in 0.1% PBT for 1 hour at RT. Sections were washed three times in 1x PBS 

and covered in Fluoromount-G mounting solution (SouthernBiotech, Cat. 0100-01).  

Images were captured with an SP8 Leica confocal laser scanning microscope. Maximum 

intensity Z-projections were then prepared using Image J software [36].  

 
2.3 In situ hybridization 

Multiplexed in situ hybridization/immunofluorescence was performed with RNAscope 

technology using probes purchased from Advanced Cell Diagnostics, Inc. Probes against 

mouse Fev (Cat. 413241) and Ngn3 (Cat. 422401) were used according to the manufacturer’s 
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instructions for the RNAscope multiplex fluorescent detection V2 kit (Advanced Cell Diagnostics, 

Inc., Cat. 323110). 10 µm thick cryosections were brought to RT, washed with PBS to remove 

O.C.T., and treated with hydrogen peroxide and proteinase III. Tissue was hybridized with the 

probe mixture for 2 hours at 40C. Hybridization signals were amplified via sequential 

hybridization of amplifier AMP1, AMP2, and AMP3 and label probes Opal 570 (1:1500, 

PerkinElmer, Cat. FP1488001KT), Opal 650 (1:1500, PerkinElmer, Cat. FP1496001KT), and 

Opal 690 (1:1500, PerkinElmer, Cat. FP1497001KT).  

Following signal amplification of the target probes, sections were incubated in 1x 

blocking buffer for 1 hour at RT, followed by staining with primary antibodies against GFP 

(1:500, Abcam Cat. ab13970). The next day, sections were washed three times with 1x PBS 

and then incubated with species-specific Alexa 488- or Alexa 555-secondary antibodies and 

DAPI in 5% NDS in 0.1% PBT for 1 hour at RT. Sections were then washed three times in 1x 

PBS, mounted with ProLong Gold Antifade Mountant (Invitrogen, Cat. P36930), and stored at 

4C prior to imaging. Optical sectioning images were taken with a Leica confocal laser scanning 

SP8 microscope equipped with white light sources. 10 steps X 1 mm thickness Z-sections were 

captured for each imaging area.   

 

2.4. Dissociation and sorting of murine pancreas tissue for quantitative RT-PCR 

 E14.5 pancreata were dissected from embryos of pregnant eFev-EYFP dams, and kept in 

separate wells of a 96-well plate. EYFP fluorescence was assessed under a microscope to 

confirm the genotype of each pancreas. Pancreata with EYFP fluorescence (EYFP(+)) were then 

pooled together and transferred to a 1.5 ml microcentrifuge tube, then dissociated into single cells 

by incubating with 250 ul of TrypLE Express dissociation reagent (Gibco, Cat. 12604013)) at 37C 

for 20 minutes, with pipet trituration at 5 minute intervals. Dissociation was neutralized with FACS 

buffer (10% FBS + 2 mM EDTA in phenol-red free HBSS), and the single-cell suspensions were 

passed through 30 µm cell strainers.  

Cells were stained with SYTOX Blue dead cell stain (Invitrogen, Cat. S34857) to remove 

dead cells, then with a PE-conjugated antibody against mesenchymal marker CD140a (1:50; 

eBioscience Cat. 12-1401-81) and an APC-conjugated antibody against epithelial marker 

CD326/EpCam (1:50; eBioscience Cat. 17-5791-82) at 4C for 30 minutes. Stained cells were 

washed twice in FACS buffer and sorted using a BD FACSAria II cell sorter (BD Biosciences). 

After size selection to remove debris and doublets and sorting on SYTOX Blue negative (live) 

events, cells were further subgated on CD140a(-)/CD326(+) (epithelial) cells and then on EYFP 

fluorescence. 
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RNA was extracted from EYFP(-), EYFP-low, and EYFP-high sorted cells with the 

RNeasy Mini Kit (Qiagen, Cat. 74106). Reverse transcription was performed with the 

PrimeScript High Fidelity RT-PCR Kit (Takara, Cat. R022A). RT-PCR was run on a 7900HT 

Fast RT-PCR instrument (Applied Biosystems) with Taqman probes for Fev (assay ID: 

Mm00462220_m1, Cat. 4331182) and GAPDH (assay ID: Mm99999915_g1, Cat. 4331182) in 

triplicate. Data were normalized to GAPDH. Error bars represent standard error of the mean 

(SEM). 

 

2.5. Dissociation and sorting of murine pancreas tissue for snATAC-Seq 

For the whole pancreas sample, E14.5 C57BL/6J embryonic pancreata (n=10) were 

dissected from 3 litters and pooled into a single 1.5 ml microcentrifuge tube. For the eFev-EYFP 

sample, E14.5 pancreata (n=15) were dissected from embryos of two pregnant eFev-EYFP 

dams, and kept in separate wells of a 96-well plate. EYFP fluorescence was assessed under a 

microscope to confirm the genotype of each pancreas. Pancreata (n=5) with EYFP fluorescence 

(EYFP(+)) were then pooled together, pancreata (n=10) without EYFP fluorescence (EYFP(-)) 

were pooled together (as a negative control), and each sample was transferred to a separate 

1.5 ml microcentrifuge tube.  

The whole pancreas, EYFP(+), and EYFP(-) samples were dissociated into single cells 

by incubating with 250 ul per sample of TrypLE Express dissociation reagent (Gibco, Cat. 

12604013)) at 37C for 20 minutes, with pipet trituration at 5 minute intervals. Dissociation was 

neutralized with FACS buffer (10% FBS + 2 mM EDTA in phenol-red free HBSS) and the single-

cell suspensions were passed through 30 µm cell strainers.  

All samples were stained with SYTOX Blue dead cell stain (Invitrogen, Cat. S34857) to 

remove dead cells. Cells were washed twice in FACS buffer and sorted using a BD FACSAria II 

cell sorter (BD Biosciences). After size selection to remove debris and doublets, all cells were 

sorted on SYTOX Blue negative (live) events, and the EYFP(+) and EYFP(-) samples were 

further subgated on EYFP fluorescence. Live cells from whole pancreas and live EYFP(+) cells 

from the EYFP(+) sample were collected into separate tubes containing 1x FACS buffer and 

immediately subjected to extraction of nuclei as described below.  

 

2.6. Extraction of nuclei  

All buffers (e.g., 0.1x lysis buffer, lysis dilution buffer, and wash buffer) were freshly 

prepared according to the 10x Genomics Demonstrated protocol (CG000212 RevC), and 
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maintained at 4C. Nuclei were isolated from 25,000 cells from whole pancreas or from Fev-high 

(EYFP(+)) cells using the demonstrated protocol. In brief, sorted cells were added to a 2 ml 

microcentrifuge tube and centrifuged at 500 rcf for 5 minutes at 4C. All supernatant was removed 

without disrupting the cell pellet. 100 ul chilled 0.1x lysis buffer was then added and pipetted 5 

times to fully mix the buffer with the cells, then incubated for 3 minutes on ice to achieve full cell 

lysis. 1 ml chilled wash buffer was added to the lysed cells to terminate the lysis. Lysed cells were 

centrifuged at 500 rcf for 5 minutes at 4C, and supernatant was gently removed. Nuclei were 

resuspended in 50 ul wash buffer, transferred to a 200 ul tube, and spun down and resuspended 

in 10 ul 1x Nuclei buffer (10x Genomics, Part Number 2000153). 2 ul of the suspension was 

loaded onto a hemacytometer to determine the concentration of nuclei and simultaneously assess 

nucleus quality. 12,500 high-quality nuclei from the whole pancreas sample and 5,000 high-quality 

nuclei from the eFev-EYFP sample were then used for downstream library construction and 

sequencing. 

  

2.7. snATAC-seq capture, library construction, and sequencing 

Input nuclei were subjected to transposition, partitioning, and library construction using 

10x Genomics Chromium Next GEM Single Cell ATAC Reagent Kit v1.1 Chemistry, according to 

the manufacturer’s instructions. An Agilent Fragment Analyzer was used for assessing the 

fragment distribution of both the whole pancreas and eFev-EYFP libraries, which were run on the 

Illumina NovaSeq 6000 platform. 

 

2.8 Clustering of murine scRNA-Seq data 

For clustering of murine scRNA-Seq data for integration with our snATAC-Seq data, we 

applied the clustering algorithm CellFindR [37] to our previously published dataset of developing 

murine pancreas tissue [19]. 10x Genomics outputs of E14.5 pancreata were downloaded from 

the Gene Expression Omnibus (GEO) (GSE101099; samples GSM3140916, GSM3140919 and 

GSM3140920), and analyzed with Seurat v3.2.3. Seurat objects were created from each 10x 

output with Read10x() and CreateSeuratObject() and filtered to retain high quality cells 

(nFeature_RNA > 1250 and percent.mt < 7 for GSM3140916; nFeature_RNA > 1500 and 

percent.mt < 5 for GSM3140919 and GSM3140920). The datasets were then normalized and 

variable features calculated with NormalizeData() and FindVariableFeatures(), respectively. The 

samples were then integrated using Seurat’s standard batch correction method [38] () with 

SelectIntegrationFeatures(), FindIntegrationAnchors() and IntegrateData(). The integrated object 
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was then scaled with ScaleData() and principal component analysis (PCA) performed with 

RunPCA(). UMAP dimensional reduction was calculated with RunUMAP() with dims = 1:30. 

Neighbors were found in the dataset with FindNeighbors() with dims = 1:30 and clustering 

performed with FindClusters(), resolution = 0.2. Next, broad cell types were manually annotated 

based on expression of known marker genes (i.e. Col3a1 for mesenchyme) and used for 

subsequent iterative sub-clustering.  

For iterative subclustering with CellFindR, each broad cell type (Mesenchyme, 

Mesothelium, Exocrine, and Endocrine) was subsetted individually. PCA, Neighbors and UMAP 

were recalculated as described above (Mesenchyme: dims 1:15; Mesothelium: dims 1:15; 

Exocrine: dims 1:10; and Endocrine: dims 1:10) and the first clustering resolution calculated with 

find_res() from CellFindR. Iterative subclustering was then performed with sub_clustering(). 

Subclusters that displayed characteristics of doublets (expressing markers of more than one 

broad group e.g., Col3a1+/Cpa1+ acinar cells) or low quality (e.g. clustering based on high 

mitochondrial gene content) were manually removed.   

 

2.9. snATAC-Seq analysis  

FASTQ files were generated from raw sequencing reads using the bcl2fastq function 

from Illumina. BAM files and single-cell accessibility counts were generated using the 

cellranger-atac count function from Cell Ranger software, version 1.0.1. Reference genome 

used was Mus musculus assembly mm10, annotation gencode.vM17.basic. Files processed 

with Cell Ranger ATAC were then analyzed using ArchR (version 1.0.1) [39]. 

First, ArchR Arrow files were created with the ArrowFiles() function with default settings. 

An ArchR project was then created using both whole pancreas and EYFP(+) sorted cells with 

ArchRProject(). The project was then filtered for high quality nuclei (TSS enrichment >= 10 and 

number of fragments >= 3,000) and doublets removed with addDoubletScores() and 

filterDoublets(), resulting in a final dataset consisting of 15,003 total cells with a median number 

of 14,630 fragments per cell and a median TSS enrichment score of 14.673. Next, iterative LSI 

was performed with the addIterativeLSI() function, with clustering parameters of resolution = 

0.2, sampleCells = 10,000, n.start = 10, varFeatures = 25000 and dimsToUse = 1:20. Clustering 

was performed with addClusters() with resolution = 0.1 and method = “Seurat”. UMAP 

dimensional reduction was performed with addUMAP(), with minDist = 0.5. Clusters were 

manually annotated based on the Gene Score of known marker genes with addImputeWeights() 

and then visualized by UMAP.  
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For epithelial analysis, epithelial (exocrine and endocrine) nuclei were subsetted based 

on accessibility of known marker genes (Cpa1, Spp1, Chga). Iterative LSI was recalculated with 

iterations  = 2, resolution = 0.2, sampleCells = 5,000, n.start = 10, varFeatures = 25000 and 

dimsToUse = 1:15. Clustering was performed with resolution = 0.9, and UMAP recalculated with 

minDist = 0.5 and dimsToUse = 1:15. Clustered epithelial cells from the scRNA-Seq data 

described above were used for unconstrained integration with addGeneIntegrationMatrix(). 

Chromatin accessibility peaks were then called with Macs2 via ArchR with 

addGroupCoverages(), addReproduciblePeakSet() and addPeakMatrix(). Marker peaks within 

the epithelial compartment were calculated with getMarkerFeatures() using the “PeakMatrix”. 

For motif analysis within marker peaks, motif annotations were added with 

addMotifAnnotations() with the “cisbp” motif set and then calculated with 

peakAnnoEnrichment(). ChromVAR [40] analysis was performed with addBgdPeaks() and  

addDeviationsMatrix(). Correlated transcription factors were correlated between the 

“GeneIntegrationMatrix” (RNA expression from the unconstrained integration) and “MotifMatrix” 

(ChromVAR motif deviations) with correlateMatrices(), keeping TFs with a correlation > 0.5, padj 

< 0.01 and max delta greater than 0.5 of the upper quartile. 

For pseudotime lineage calculations, we manually imputed the cell states for each cell 

lineage (Alpha and Beta) and computed the pseudotime values with addTrajectory().  

For mesenchymal and mesothelial analysis, nuclei were subsetted based on 

accessibility of known marker genes (Col3a1, Wt1). Iterative LSI was recalculated with iterations  

= 2, resolution = 0.5, sampleCells = 2,500, n.start = 10, varFeatures = 25000 and dimsToUse = 

1:15. Clustering was performed with resolution = 0.3, and UMAP recalculated with minDist = 0.3 

and dimsToUse = 1:15. Clustered mesenchymal and mesothelial cells from the scRNA-Seq 

data described above were used for unconstrained integration. Peak calling, marker peak 

identification, motif analysis, ChromVAR analysis and transcription factor correlation were 

performed as described above. 

 

2.10. Gene regulatory network analysis 

 Gene regulatory networks (GRNs) were constructed as described by Lyu et al., 2021 

[31] (https://github.com/Pinlyu3/IReNA-v2). Candidate cluster-enriched genes were calculated 

with the scRNA-Seq dataset of epithelial or mesenchymal cells with Seurat’s FindAllMarkers() 

with min.pct = 0.1 and logfc.threshold = 0.25. DEGs were retained with an average logFC > 0 

and padj < 0.01. DEGs were then mapped to specific cell types with the IReNA v2 function 

Process_DEGs_to_Celltypes().  
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Peak-to-gene linkage was performed with ArchRs addPeak2GeneLinks() function using 

dims = 1:15 for both epithelium and mesenchyme using the “GeneIntegrationMatrix” (integrated 

RNA Seq counts). Peak-to-gene links were then extracted with the IReNA v2 function 

Get_p2g_fun(). 

To identify potential cis-regulatory elements for each candidate gene, called correlated 

accessible regions (CARs), we separated the peak-to-gene links into three categories: TSS 

(when the peak lies within the transcription start site (TSS) for the gene), gene body (when the 

distance between peak and TSS is less than 100kb, and the peak-to-gene score calculated 

above is significant), or distal (when the peak is 100kb upstream or downstream of the TSS of 

correlated gene, and the peak-to-gene score is significant). These peak-to-gene links were then 

filtered to only include genes in the DEG list calculated above with Selection_peaks_to_one().  

Next, we predicted the cell-type specific transcription factors binding in these CARs. We 

first took the snATAC fragments for each dataset (whole pancreas and Fev-high) and then 

extracted the fragments for each cell type. We converted these fragment lists to .BAM files and 

corrected the Tn5 insertion bias with TOBIAS [41] ATACorrect with default parameters except --

read_shift 0 0. We then converted the TOBIAS output bigwig files to GRanges with the IReNA 

v2 function Check_normalized_Signal(). Next, we calculated TF binding motifs in our peaks with 

motifmatcher (https://github.com/GreenleafLab/motifmatchr), filtering calculated TFs out from 

the motif analysis if they were not enriched in each cell type by the DEG analysis. Next, we 

calculated the NC (average bias-corrected Tn5 signal in the center of the motif), NL and NR 

(average bias-corrected Tn5 signal in the left and right flanking regions of the motif) scores with 

Calculate_footprint_celltypes() and filtered TFs with a score of NC < -0.1 and NL > 0.1 and NR 

> 0.1.  

Next, we used MAGIC (Mining Algorithm for GenetIc Controllers) [42] to compute 

correlation between TF and target gene gene expression. We retained the top and bottom 2.5% 

of correlations for our downstream analysis.  

Lastly, we constructed the cell-type specific GRNs. We combined the peak-target links 

from our third step with the cell-type specific TF-peak links from our fourth step with 

Reg_one_cells_RPC_MG(). We then classified these interactions as either activating or 

repressing with our TF-target gene interactions calculated above with 

Add_Cor_to_GRN_network_and_Filter(). We then identified feedback TF-TF pairs in our 

constructed GRN with FoundFeedBackPairs_new() and Process_the_Feedback_res(). 
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3. Results 
 
3.1. Single-nucleus ATAC-Sequencing of the developing murine pancreas 
 

To investigate chromatin accessibility in the developing pancreas, we aimed to capture a 

broad range of cell types, including both epithelial and non-epithelial populations. In addition, we 

were specifically interested in profiling endocrine progenitor (EP) cells, but given their rare 

numbers we searched for a method to enrich for this population. We utilized ePet1-EYFP mice 

(referred to hereafter as eFev-EYFP, as the gene Pet1 is also known as Fev), where EYFP 

expression is driven by a Fev enhancer [34,35]. In previous work, we had identified Fev as a 

marker of an intermediate murine EP population downstream of the better-characterized 

Ngn3(+) population and upstream of differentiated, hormone-expressing endocrine cells [19].  

As lineage reconstruction of scRNA-Seq data had revealed that this Fev-expressing EP 

population is likely the state at which endocrine lineage allocation occurs, we chose to enrich 

Fev(+) cells. Although previous work with this eFev-EYFP mouse line had validated that EYFP 

expression faithfully reflected Fev expression in brain tissue, similar confirmation had not yet 

been performed in the pancreas [34]. We performed dual in situ hybridization 

(ISH)/immunofluorescence (IF) staining of E14.5 eFev-EYFP pancreas tissue to evaluate the 

architecture of EYFP expression with respect to the expression of Ngn3 and Fev transcripts, as 

well as Chromogranin A (Chga) protein, a marker of differentiated hormone-producing 

endocrine cells. Expression of Ngn3 and Fev transcripts was mutually exclusive (Figure 1A), as 

expected from our previous work demonstrating by genetic lineage tracing and scRNA-Seq that 

Fev-expressing cells are downstream of an Ngn3(+) state [19]. In contrast, a significant fraction, 

but not all, of EYFP(+) cells were actively expressing Fev transcript (Figure 1A). In addition, we 

observed EYFP(+) cells also expressing Chga (Figure S1A). As expected, EYFP expression 

was only found in epithelial (E-cadherin(+)) cells, and mostly localized to ductal-like structures 

(Figure S1A). These data are consistent with a model of Fev expression in pancreatic EP cells 
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in eFev-EYFP mice in which Fev transcript first begins to be expressed as Ngn3 expression 

wanes, then expression of EYFP (under the control of the Fev enhancer) follows (Figure 1B). 

Persistence of EYFP in cells that no longer express Fev transcript likely reflects longer 

perdurance of EYFP fluorescent protein compared to Fev mRNA in these cells, similar to what 

has been observed for Ngn3-tdTomato [43], Ngn3-YFP [44]), and Ngn3-EGFP transgenic mice 

[45].  

We further validated the eFev-EYFP mouse line using fluorescence-activated cell sorting 

(FACS) and quantitative real-time polymerase chain reaction (qRT-PCR). Consistent with our IF 

staining, we observed little to no EYFP signal in cells that were negative for the epithelial marker 

EpCAM (Figure S1B). Within the population of cells positive for EpCam and negative for the 

mesenchymal marker CD140a, a bimodal distribution of EYFP signal was detected (Figure 

S1B). TaqMan qRT-PCR analysis revealed that the EYFP-low population had higher expression 

of Fev mRNA compared to EYFP-high cells (Figure S1C). The EYFP-low population thus likely 

corresponds to a stage in which EYFP expression is on the rise and Fev expression is still 

present, whereas the EYFP-high population likely represents a stage where EYFP has reached 

higher expression but Fev itself has begun to wane (Figure 1B). Thus, we selected this EYFP-

low population, enriched for Fev(+) cells, for snATAC-Seq using the 10x Genomics platform 

(Figure 1C, Figure S1D). We additionally included a second sample in our analysis consisting 

of whole pancreas, to capture a broad range of cell types (Figure 1C). 

Single cells were lysed to isolate nuclei, and chromatin was then subjected to the 10x 

Genomics pipeline and sequenced. The resulting dataset was analyzed with the computational 

package ArchR [39]. First, the datasets were filtered to retain high-quality nuclei by thresholding 

on the number of unique nuclear fragments, as well as the transcription start site (TSS) 

enrichment score (see Methods). This step enriches for cells displaying a high fraction of 

fragments that map to the TSS, versus other locations in the genome. Next, the datasets were 

subjected to doublet discrimination, resulting in a final dataset consisting of a combined total of 
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15,003 high-quality nuclei across the two samples. The data were then dimensionally reduced, 

clustered, and visualized in a 2D Uniform Manifold Approximation and Projection (UMAP) 

embedding (Figure 1D). As expected, cells from the eFev-EYFP(+) sample clustered only with 

endocrine cells from the Whole Pancreas sample (Figure 1D, inset), reflecting successful 

enrichment of endocrine cells from the eFev-EYFP mouse line and effective integration of the 

two datasets. Each cluster was annotated as corresponding to a specific cell type found within 

the developing pancreas based on the gene score (accessibility of the gene promoter plus the 

gene body) of the following marker genes: Col3a1 to mark mesenchymal cells, Wt1 for 

mesothelial cells, Cpa1 and Spp1 for exocrine cells, Chga for endocrine cells, Pecam1 for 

endothelial cells, Rac2 for immune cells, and Sox10 for neuronal cells (Figure 1E, 

Supplemental table 1).  

 

3.2. Integration of single-cell transcriptional and chromatin accessibility data identifies 

epithelial heterogeneity in the developing murine pancreas 

To reliably identify the heterogeneity of chromatin states within the epithelial cell types of 

the developing pancreas, we performed unconstrained integration of our snATAC-Seq data from 

all epithelial cells with E14.5 scRNA-Seq data previously published by our laboratory [19]. First, 

we computationally isolated the epithelial cells from the scRNA-Seq dataset (13,093 epithelial 

cells total) and performed iterative sub-clustering with the computational package CellFindR [37] 

to identify biologically relevant cell types. Next, we correlated the gene expression profiles of 

each of the cells within this scRNA-Seq dataset with the gene scores of each of the cells within 

our snATAC-Seq dataset. After identifying correlated cell pairs between the two datasets, cells 

in the snATAC-Seq dataset were assigned the cell type label, as well as the gene expression 

profile, of the cognate cell from the scRNA-Seq data.  

This integration resulted in a final epithelial snATAC-Seq dataset comprised of 8,506 

nuclei representing 10 distinct cell types, including Acinar, Ductal, Spp1(+)/Neurog3(+) double 
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positive EPs, Neurog3(+) single positive EPs, Fev(+)/Chgb(+) intermediate progenitors, and 

Pdx1(+)/Mafb(+) beta cell precursors, as well as Alpha, Beta, Delta and Epsilon cells (Figure 

2A). As expected, the sorted EYFP(+) cells contributed highly to the endocrine but not the 

acinar or ductal compartments of the overall dataset (Figure 2A, inset). The relative proportions 

of these annotated cell types in the snATAC-Seq dataset roughly matched the proportions of the 

epithelial cells in the scRNA-Seq dataset (Figure 2B). Integration scores, a reflection of 

confidence in the assignment of cell identity, were highest among terminally differentiated cell 

types (e.g., exocrine and hormone-expressing endocrine cells) (Figure S2A), indicating less 

ambiguity in chromatin accessibility once cell fate is determined. Even in the absence of 

integration with scRNA-Seq data, all cell types were identified when clustering on chromatin 

accessibility alone (Figure S2B).  

 Next, we confirmed the cell type annotations by assessing chromatin accessibility (gene 

score), as well as the transferred RNA expression from the integration (gene expression). We 

observed high concordance between chromatin accessibility and RNA expression of the marker 

genes defining our cell types (Figure 2C). Additionally, we observed cell-type specific chromatin 

accessibility of each marker gene locus (Figure S2C). When assaying differentially-accessible 

or -expressed genes, we observed far fewer significantly differentially accessible genes (n = 

682) compared to differentially expressed (n = 4,682) (Figure 2D, Supplemental table 1). 

Among these differentially-accessible genes were top markers of each cluster identified by 

differential gene expression analysis of our scRNA-Seq dataset. Taken together, these data 

confirm the existence of heterogeneous epithelial populations initially identified by scRNA-Seq, 

here by an orthogonal method.  

 

3.3. Identification of candidate regulators of epithelial cell fate 

To identify regulators of cell fate decisions in the developing pancreatic epithelium, we 

applied the peak calling algorithm MACS2 [46] to our dataset. We identified 169,197 peaks 
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across all epithelial clusters, with 32,710 peaks exhibiting differential accessibility across cell 

types (Figure 3A, Supplemental table 2). Next, we assayed for TF motif enrichment in these 

differential peaks, identifying 348 enriched motifs. A number of TFs in the same family were 

deemed enriched due to the similarities in DNA binding motifs. For instance, TFs with enriched 

motifs included known regulators of pancreatic epithelial development, such as Sox family 

members (Sox2, Sox4, Sox9; Ductal), Hox family members (Hoxb4, Hoxc4, Hoxa4; Beta) and 

members of the Rfx family (Rxf3 through Rfx7; Fev(+)/Chgb(+) and Pdx(+)/Mafb(+)) 

(Supplemental table 2). To distinguish among TFs with similar DNA motifs identified in a given 

cell type, we next identified significant TF motif deviations (calculated as deviation of motif 

enrichment in accessible peaks from the expected distribution based on the average across all 

cells) of each cell type using ChromVAR [40]. The TFs from ChromVAR were then correlated 

with their gene expression profiles from the integrated RNA expression matrix, thereby 

identifying so-called “correlated TFs” that are both expressed and have significant motif 

deviation (Figure 3B, Supplemental table 3). By breaking this down further on a per-cluster 

basis, we then were able to observe the cell type-specific motif deviations and gene expression 

of the correlated TFs, narrowing the number of TFs with enriched motifs from 348 (Figure 3A) 

to 48 correlated TFs (Figure 3B, C). Correlated TFs included multiple members of the Fox 

family (Foxo1, Delta cells; Foxj2 and Foxc1, Epsilon cells; Foxp2 and Foxp3, Alpha cells; 

Foxp1, Fev(+)/Chgb(+) cells), as well as the Sox family (Figure 3C). Interestingly, by observing 

not only motif deviation but also gene expression, we were able to determine that although both  

Ductal cells and Spp1(+)/Neurog3(+) EPs showed high motif deviation of Sox4, expression was 

significantly higher in the latter population (Figure 3D). This is in line with previously published 

work that shows that Sox4 works with Neurog3 to induce endocrine differentiation in the 

developing murine pancreas [47]. 

We next sought to understand the correlated TFs across the Alpha and Beta cell 

lineages. We first calculated the pseudotime values of cells along both trajectories (Figure 3E) 
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and then applied the same motif deviation and gene expression correlation analysis for the 

genes and enriched motifs along these lineages (Figure 3F, Supplemental table 3). Across the 

Alpha lineage (including Ductal, Spp1(+)/Neurog3(+), Neurog3(+), Fev(+)/Chgb(+), and Alpha 

cells) we identified 42 correlated TFs. This included TFs in Ductal cells (Nr5ac, Nr4a1, Sox9), 

progenitor cells (Sox4, Neurog3, Neurod2, Pax4), and Alpha cells (Foxp2, Isl1, Mafb). For the 

Beta lineage, we identified 35 correlated TFs, including Mnx1, Mafg, Pdx1, and Foxo1. In 

summary, the multi-layered approach taken here has further distilled the subset of TFs that 

likely play an important role in governing fate selection during endocrinogenesis.  

 

3.4. Gene regulatory networks controlling epithelial cell fate  

 Our analyses thus far have identified accessible chromatin and correlated TFs within the 

epithelial compartment of the developing endocrine pancreas. How and where these TFs bind 

and affect downstream target genes to govern cell fate decisions is not as well understood, 

however. To address this gap in knowledge, we next sought to construct a gene regulatory 

network (GRN) for Acinar, Ductal, and endocrine cells of the Alpha and Beta lineages (Figure 

4A). We utilized the computational pipeline Integrated Regulatory Network Analysis (IReNA) v2 

[48] (Figure 4B, Figure S4A), which combines both scRNA-Seq and snATAC-Seq data to 

predict TF binding of downstream target genes in a cell type-specific manner. First, we 

performed differential gene expression analysis on our scRNA-Seq dataset to identify genes 

enriched in each cell type (Figure S4B, Supplemental table 4). We then performed peak-to-

gene linkage analysis in our integrated scRNA- and snATAC-Seq datasets, identifying 

accessible regions of chromatin (peaks) that are either positively or negatively significantly 

correlated with gene expression (genes) (Figure S4C). These peak-to-gene peaks were then 

further filtered and annotated as correlated accessible regions (CARs) belonging to one of three 

categories: TSS (when the peak lies in the transcription start site (TSS) for the gene), gene 

body (when the distance between peak and TSS is less than 100 kb, and the peak-to-gene 
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score calculated above is significant), or distal (when the peak is 100 kb upstream or 

downstream of the TSS of a correlated gene, and the peak-to-gene score is significant). We 

observed varying proportions of CAR categories among the cell types, with TSS representing 

the highest proportion, followed by positive and then negative in the Ductal, Acinar, and early 

EP populations (Figure S4D). As endocrine differentiation progresses, the majority of CARs are 

positively correlated with expressed genes. We next predicted the cell-type specific TF binding 

in these CARs by searching for TF DNA binding motifs in the CARs. Once identified, we then 

filtered the TFs by calculating their TF footprint score, retaining TFs with a score deemed 

significant by IReNA. 

  We observed the highest number of GRN TFs in the Fev(+)/Chgb(+) population (39 

TFs), followed by Neurog3(+) (33 TFs), and Ductal (29 TFs) cells (Figure S4E, Supplemental 

Table 5). Among our network of TFs and target gene-associated CARs, we binned these 

interactions as either activating or repressing by correlating the expression of each TF-target 

gene pair. Genes with a positive TF-target gene correlation were annotated as being activated 

by their given TF, while those with a negative TF-target gene correlation were annotated as 

being repressed. The Ductal and the Fev(+)/Chgb(+) populations had the highest number of 

regulations, followed by Pdx1(+)/Mafb(+) and Neurog3(+) (Figure S4F). The regulations among 

all the populations examined were relatively evenly split between activating and repressing. 

Lastly, from the GRN constructed above, we identified pairs of TFs that regulated one another; 

for each TF, we identified target genes that are also TFs and mapped these pairs as either 

activating or repressing depending on the correlation of gene expression of the target TF in the 

given cell type. This analysis permitted us to identify TFs that regulate the expression of other 

TFs in given cell types (Figure S4G, Supplemental table 6).  

 To examine the TFs comprising this epithelial GRN in more depth, we first focused on 

the hormone(+) populations within our dataset. We found that genes enriched in the Beta cell 

population are largely repressed in the Acinar and Ductal GRNs, then gradually become 
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activated as endocrine differentiation proceeds (Figure 4C). Within the Alpha cell population, 

Beta cell enriched genes are almost exclusively activated, consistent with previous studies 

investigating gene expression of individual TFs revealing that beta and alpha cells share 

common expression of genes needed for proper development and function [7]. We then inquired 

within all of the GRNs defined for epithelial cell types, which TFs either activate or repress 

genes enriched in the Beta cell population. Among the top activating TFs were known regulators 

of Beta cell development, such as Mafb, Neurod1, Pdx1, and Nkx6-1 (Figure 4D). Targets of 

these activating TFs identified by our GRN analysis included numerous genes, both known and 

novel (Supplemental table 5). Repressors of Beta cell enriched genes are largely contained 

within the Ductal GRN and include TFs such as Tead2, Sox4, and Rest (Figure 4E). 

Conversely, TFs activating Alpha cell enriched genes include Beta cell activating TFs such as 

Mafb and Neurod1 (Figure 4F). TFs repressing Alpha cell enriched genes also included Tead2, 

Sox4, and Rest (Figure 4G), suggesting that these TFs repress global hormone(+) cell gene 

signatures. TFs that overlapped between the Alpha (17 TFs) and Beta (13 TFs) GRNs 

comprised known endocrine regulators, such as Pax6, Mafb, Neurod1, and Isl1, as well as TFs 

less well studied in pancreas, such as Zfp516 and Meis2 (Figure 4H). TFs unique to the Beta 

GRN included known regulators of beta cell fate, such as Nkx6-1, Pdx1, and Foxo1, while those 

less well characterized included Mlxipl. Examples of TFs unique to the Alpha GRN were Irx2 

and Arx, known regulators of Alpha cell fate. Less well characterized TFs included Pbx1, which 

is required for proper pancreas development [49], Bbx, Peg3, and Etv1. 

 Among the top activating TFs of Alpha cell enriched genes was Etv1 (Figure 4F),  

reported to be a direct or indirect target of Nkx2-2 [50]. Within beta cells, failure to properly 

degrade Etv1, Etv4, and Etv5 results in impaired insulin secretion [51]. We took a closer look at 

the downstream targets of Etv1 in the Alpha cell GRN and found that Etv1 was predicted to 

activate 140 genes, and repress 133 genes, in the Alpha GRN (Supplemental table 5). When 

performing pathway analysis on these genes, we observed that Etv1 activated pathways related 
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to vesicle mediated transport, lysosome vesicle biogenesis, and membrane trafficking (Figure 

4I). Pathways repressed by Etv1 included translation initiation, metabolism of RNA, and 

nonsense-mediated decay. When examining TF-TF interactions, we found that Etv1 is 

repressed by Sox9 and Tcf3 in the Ductal population, and activated by Mafb and Fev in the 

Pdx1(+)/Mafb(+) population and by Usf2 and Zfp148 in the Fev(+)/Chgb(+) population (Figure 

4J).  

In summary, the computational analyses described in this section have permitted the 

construction of a gene regulatory network of the acinar, ductal, and major endocrine lineages in 

the developing mouse pancreas. This workflow, which is dependent on integration of both 

chromatin accessibility and transcriptional data, has identified regulators of alpha and beta cell 

fate that can serve as the subjects of further experimental study. 

 

3.5. Gene regulatory networks governing the initiation of endocrine differentiation 

During mammalian pancreatic development, a subset of cells within the branching ductal 

epithelium activate the expression of the master regulator of endocrine differentiation, Neurog3. 

These rare Neurog3(+) cells represent the earliest known EP population, and considerable 

attention has been devoted to understanding the ductal to EP transition. In addition to Neurog3, 

which is required for mouse endocrine differentiation [6], numerous other TFs have been 

identified that are also important for endocrinogenesis. Investigation of NEUROG3 binding 

across the genome in human pluripotent stem cell (hPSC)-derived EP cells revealed 

widespread regulation of 138 TFs, some with known roles in endocrine development and others 

with unknown function [52]. Further studies in human cells used inducible and knockout models 

in hPSC-derived endocrine cells to identify predicted targets of multiple endocrine TFs, including 

NEUROG3, PDX1, and RFX6 [53]. Generation of an Ngn3-timer fluorescent reporter mouse line 

that permitted the specific isolation of early Ngn3-expressing cells identified numerous putative 

direct targets of Neurog3 in mouse EPs [54]. These studies have highlighted the need for a 
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broad, integrated analysis of all TFs and downstream targets that control the initiation of 

endocrine differentiation. 

Towards this end, we began by investigating the GRN regulating the transition from a 

ductal to EP cell state. TFs in the Ductal GRN promoting the expression of Spp1(+)/Neurog3(+) 

EP genes include known regulators of endocrine cell fate, such as Sox4 and Sox9 [47,55] 

(Figure 5A). Interestingly, Tead2 and Tcf3 activated the most genes enriched in the 

Spp1(+)/Neurog3(+) and Neurog3(+) EP populations (Figure 5B), indicating that these TFs are 

important initiators of an endocrine cell fate. The Yap/Tead signaling complex has previously 

been shown to activate multipotent progenitor cell enhancers and regulate epithelial outgrowth 

during human pancreatic development [56]. Tcf3, also known as E47, has been shown in a 

human cell line to dimerize with NEUROG3 to bind to the promoter region of the INSM1 gene 

[57], which is required in mice to maintain mature beta cell function [58]. TFs involved in the 

transition from a Spp1(+)/Neurog3(+) to a Neurog3(+) EP cell state include well known 

regulators of endocrine differentiation, such as Nkx2-2, Pax4, Neurod2, and Neurog3 (Figure 

5A). Major repressors of EP enriched genes in the Ductal GRN include TFs such as Rest and 

Nfib (Figure 5C). Rest is a master regulator of neurogenesis and has been previously described 

to inhibit direct reprogramming of pancreatic exocrine to endocrine cells by inhibiting the binding 

of Pdx1 to key endocrine differentiation-related genes [59]. In addition, loss of Rest results in 

increased generation of pancreatic endocrine cells during development [60,61]. Nfib belongs to 

the Nuclear Factor I protein family, of which another member, Nfia, plays a role in the induction 

of EP cell fate [62]. Among TF-TF pairs identified in Ductal, Spp1(+)/Neurog3(+), and 

Neurog3(+) cells, most were classified as activating, with the exception of Hes1, Fos (Ductal), 

and Tcf3 (Spp1(+)/Neurog3(+)) (Figure S5A). The classification of Hes1 as repressing is 

consistent with what is known about the role of Notch signaling in the initiation of EP cell fate 

[5,63]. Taken together, our GRN analysis has identified novel candidate regulators, such as 
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Tcf3 and Tead2, of the ductal to EP cell state transition. These results expand upon our 

knowledge of this key developmental transition and serve as a resource for future studies.  

 We next  focused on Fev(+)/Chgb(+) cells, as our previous work indicated that this cell 

state represents the bifurcation point at which the Alpha or Beta lineage is established (Figure 

4A) [19]. As expected, we observed that the Acinar and Ductal cell types largely repress genes 

that are enriched in the Fev(+)/Chgb(+) population (Figure 5D). These genes begin to be 

activated as an endocrine cell fate is established (Spp1(+)/Neurog3(+) and Neurog3(+) cell 

types) and are fully activated by the Fev(+)/Chgb(+) cell stage. Curiously, the Fev(+)/Chgb(+) 

enriched genes are not repressed in the Alpha and Beta cell types, suggesting that Alpha/Beta 

cell fate is due more to activation of key Alpha/Beta genes as opposed to the repression of 

progenitor-associated genes. Among the top TF activators of Fev(+)/Chgb(+) enriched genes 

(Supplemental table 5), we observed that known regulators of endocrine cell fate such as 

Neurod1, Mafb, and Pax6 activated the most genes (Figure 5E). Activators also included less 

well described TFs, such as members of the Rfx family (Rfx3, Rfx6), as well as Foxo1 and Etv1 

(Figure 5E; Supplemental table 5). Conversely, TF repressors of Fev(+)/Chgb(+) enriched 

genes included the TFs Tead2, Tcf3, Rest, Sox4, Sox9, and Nfib, among others (Figure 5F). 

Next, we constructed a network diagram of TF pairs that either activate or repress TFs enriched 

in the Fev(+)/Chgb(+) population (Figure 5G). Consistent with our observations in Figure 5D, 

TF-TF regulations in the Acinar, Ductal, and Spp1(+)/Neurog3(+) cell states were entirely 

repressive, and regulations in the Neurog3(+) cell state were a mix of activating and repressing 

(Figure 5G; Supplemental table 6). In contrast, TF-TF regulations in the Alpha, Beta, and 

Pdx1(+)/Mafb(+) states were exclusively activating (Figure 5G; Supplemental table 6).  

When comparing the GRNs among all progenitors and precursors, we identified 18 TFs 

unique to the Fev(+)/Chgb(+) population (Figure S5B, Supplemental table 6). Among these 

TFs identified within the Fev(+)/Chgb(+) GRN, Mafb was the top activator of the transition from 

Fev(+)/Chgb(+) to either Pdx1(+)/Mafb(+), Alpha, or Beta cell states (Figure S5C-E). Among the 
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top 10 TFs with the highest number of activating regulations across the transition from a 

Fev(+)/Chgb(+) to Pdx1(+)/Mafb(+) cell state was Vitamin D receptor (Vdr), whose expression 

has been linked to beta cell function and diabetes (Figure S5C) [64]. As expected from Figure 

4F, Etv1 had a higher number of activating regulations for Alpha cell enriched genes compared 

to Pdx1(+)/Mafb(+) or Beta populations (Figure S5C-E), and Pax6 was identified as one of the 

top TFs activating beta cell enriched genes (Figure S5E). Top 10 TFs activating Alpha cell 

enriched genes included Foxp1, which has been implicated in postnatal alpha cell expansion 

and function (Figure S5D) [65].  

The gene Fev was initially described as a prototypical serotonergic transcription factor in 

the brain [66], then as a gene expressed in developing and adult mouse pancreatic islets [67]. 

More recently, we found that Fev in the pancreas marks an intermediate progenitor of the 

mouse endocrine lineage [19]. In a beta cell line, Fev has been demonstrated to bind not only to 

serotonergic genes, reflective of common transcriptional cascades that drive the differentiation 

of both serotonergic neurons and of beta cells [68], but also to a conserved insulin gene 

regulatory element [67]. While levels of glucagon, somatostatin, pancreatic polypeptide, or 

ghrelin were unchanged in Fev whole body knockout (Fev-/-) embryos, levels of Ins1, Ins2, and 

islet amyloid polypeptide (Iapp) were reduced, as were the levels of the gene Slc2a2 (which 

encodes Glut2). Ohta et al. also measured the expression of multiple genes encoding islet TFs 

in Fev-/- embryos, and found that loss of Fev did not alter the expression of Isl1, Mafa, Mafb, 

Mnx1, Neurod1, Pax6, Pdx1, Rfx6, Insm1, Nkx2-2, or Nkx6-1 at E18.5. Knockout embryos did 

display slightly lower levels of Lmx1b, which also plays a role in serotonergic neuron 

development downstream of Nkx2-2. 

Our GRN analysis computed 110 genes activated and 69 genes repressed by Fev 

(Supplemental table 5). Pathway analysis of activated genes included pathways such as 

synaptic vesicle cycle, signaling by NRTKs, and vesicle mediated transport (Figure 5H). These 

data corroborate previous findings in which full body knockout of Fev resulted in decreased 
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pancreatic insulin content, an impairment of insulin secretion, and consequently defects in 

glucose clearance [67]. Pathway analysis of repressed genes included many translation-

associated pathways, such as metabolism of RNA, cap-dependent translation initiation, and 

formation of a pool of free 40s subunits (Figure 5H). Downstream TF interactions of Fev were 

all activating and included the TFs Rfx3, Klf7, and Foxo1 (Figure 5I).  

Taken together, our data identify both known and novel regulators of pro-Alpha and pro-

Beta cell fates that are active in the Fev(+)/Chgb(+) stage, the cell state that represents the 

bifurcation point in the endocrine differentiation trajectory. Our analysis also yields a 

comprehensive view of potential targets of Fev, as well as insights regarding its function in 

regulating the machinery required for the production of endocrine hormone-containing vesicles.  

 

3.6. Characterization of chromatin accessibility and identification of GRNs within 

pancreatic mesenchymal cell types  

 Although proper development of the pancreatic epithelium depends on signals from the 

surrounding mesenchyme, the lineage and function of pancreatic mesenchymal cells remains 

vastly understudied. In previous work, we and others have used scRNA-seq to identify multiple 

transcriptionally distinct mesenchymal populations, including mesothelium, within the developing 

murine pancreas [19,20]. Still, the upstream genetic regulators that maintain these distinct cell 

states are not defined. Data from snATAC-Seq of pancreatic mesenchymal cells would shed 

light on whether distinct states of chromatin accessibility correspond to transcriptionally distinct 

cell subpopulations and would reveal which TFs and binding sites are actively involved in 

controlling mesenchymal cell state.  

We integrated the snATAC-Seq data from the mesenchymal populations within our 

dataset with the age-matched (E14.5) scRNA-Seq data, using methods as described above. 

Clustering of the scRNA-Seq dataset identified six populations of mesenchymal cells, including 

one cluster enriched in the expression of Gap43 (Gap43(+)), another cluster enriched in 
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expression of Sfrp2 (Sfrp2(+)), two clusters expressing chemokines (Cxcl12(+) and Cxcl13(+)), 

Vascular Smooth Muscle cells (VSM; Acta2(+)) and finally Mesothelium (Wt1+) (Figure 6A). 

Integration and cell label transfer classified all populations in our snATAC-Seq dataset, with the 

exception of the small Cxcl13(+) population (Figure 6A,B). Clustering on chromatin accessibility 

alone, without integration with scRNA-Seq data, still resulted in the identification of similar 

clusters as in the integrated dataset (Figure S6A). 

 Next, we identified differentially accessible peaks across all of the mesenchymal 

populations and found a total of 109,660 peaks, with 30,737 peaks displaying differential 

accessibility (Figure S6B, Supplemental table 2). The majority of these differentially 

accessible peaks were enriched in the Gap43(+) and Mesothelial populations, with the 

Cxcl12(+) and Sfrp2(+) populations showing a more modest number. Motif enrichment in these 

differentially accessible peaks identified 123 enriched motifs (Figure S6B). Correlation of gene 

expression and motif deviation scores identified 32 correlated TFs (Figure 6C,D), including 

known regulators of mesenchymal cell fate, such as Wt1, Twist2, and Hand2.  

We next assembled the mesenchymal GRN with IReNA v2 as described above. Among 

the mesenchymal cell types, the Gap43(+) and Mesothelial populations had the highest number 

of total regulations (Figure S6C) as well as the highest numbers of TFs in each of the GRNs 

(Figure S6D). In the TF-TF network, TFs active in the GRN of Mesothelium largely repressed 

the expression of Gap43(+)-associated TFs, whereas the Gap43(+) population activated 

Cxcl12(+)-associated TFs (Figure S6E). We next assessed which GRN TFs were either 

exclusive or shared among the mesenchymal populations (Figure S6F). The GRN in the 

Gap43(+) population contained 18 specific TFs, including genes involved in epithelial-

mesenchymal transition (EMT) such as Snai2, Twist2, and Zeb1, suggesting that cells within the 

Gap43(+) population are actively undergoing EMT processes during pancreatic development. 

Other cell type-specific TFs included Nkx2-3, Hoxb4, and Prxx1. TFs exclusive to the Cxcl12(+) 

population included members of the nuclear factor 1 (Nfia and Nfic), Ap-1 (Junb and Jund), and 
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Klf families (Klf3, Klf6; Klf2 shared with the Gap43+ population). TFs specific to the Sfrp2(+) 

GRN included Zfhx3, Hoxb5, and Meis2, while Pbx1, Tcf21, and Bcl11a were shared with the 

Cxcl12(+) population, and Barx1 was shared with the Mesothelial population.  

We next focused on mesothelial cells, which consist of a monolayer of specialized cells 

that line the pleura and internal organs of adult tissues and serve numerous functions in the 

adult, including lubrication of tissue and immune surveillance [69,70]. In the developing lung, 

lineage tracing studies have demonstrated that mesothelium also acts as a progenitor for 

certain specialized mesenchymal cell subtypes [71]. Furthermore, previous work in our lab 

predicted the downstream lineages of mesothelial cells in the developing pancreas based on 

pseudotemporal ordering of scRNA-Seq data [19]. Despite this, relatively little is known about 

how mesothelial cells are formed and maintained during pancreatic development. Within the 

snATAC-Seq dataset, we identified 23 TFs uniquely active within the GRN of the Mesothelial 

population (Figure S6F). Top TFs activating Mesothelial-enriched genes included Wt1, which 

has previously been shown to be a master regulator of mesothelial formation [72], along with 

Klf13, whose role in mesothelial cell development and homeostasis is not well understood and 

thus warrants further study (Figure 6E). Top repressing TFs of Mesothelial-enriched genes 

included Klf2 (active in Gap43(+) and Cxcl12(+) cells, Figure S6F), Ebf1 (active in Gap43(+), 

VSM, and Cxcl12(+) cells) and Klf6 (active in Cxcl12(+) cells) (Figure 6F). Pathway analysis of 

activated and repressed genes in the Mesothelium GRN identified pathways related to 

metabolism as activated, and ECM formation and deposition as repressed (Figure 6G).  

Taken together, profiling of the chromatin accessibility within the cells of the developing 

mouse pancreatic mesenchyme has determined differentially accessible peaks among these 

populations, and identified TFs potentially important in mesenchymal development through the 

use of motif enrichment and gene expression correlation analyses. Lastly, we have constructed 

a set of mesenchymal GRNs, identifying active TFs and their downstream target genes. These 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2022.10.01.510484doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=7237542,7237553&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=305601&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6162590&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7426243&pre=&suf=&sa=0
https://doi.org/10.1101/2022.10.01.510484
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

data will provide a resource for future work geared towards studying mesenchymal biology and 

understanding how this important but understudied non-epithelial population is maintained.  
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4. Discussion 

 Numerous studies have used scRNA-Seq to characterize developing mouse pancreas 

tissue, providing important insights into cellular heterogeneity and key transcriptional programs 

expressed in developing cell types [19–23]. Still, these datasets lack information about which of 

the expressed TFs are active and binding, and about how the TFs are organized into regulatory 

networks. Profiling of the chromatin accessibility landscape at single-cell resolution has 

emerged as a powerful approach for generating new insights about regulatory programs 

governing development and cell fate decisions across multiple tissue types [31,32,73,74], and 

we have now extended this approach to developing mouse pancreas tissue. Given that we were 

particularly interested in interrogating mechanisms underlying endocrine lineage allocation, we 

utilized a genetic tool to significantly enrich for EP cells. Previous work from our laboratory had 

identified the transcription factor Fev as a marker of a novel endocrine progenitor state, and 

lineage reconstruction analysis indicated that it is at this Fev(+) state that lineage allocation is 

executed [19]. Here, we validated the use of an eFev-EYFP transgenic mouse line for enriching 

for Fev-expressing endocrine cells in the developing pancreas.  

 We have generated a comprehensive atlas of chromatin accessibility in the developing 

E14.5 murine pancreas, including enriched endocrine populations as well as non-endocrine cell 

types. Although previous studies have investigated chromatin accessibility in the developing 

pancreatic epithelium through bulk ATAC-Seq of sorted populations [20,26], to our knowledge 

our study represents the first to examine chromatin accessibility at true single-cell resolution. By 

integrating both scRNA-Seq and snATAC-Seq data, we successfully generated a refined list of 

correlated TFs that are not only expressed, but also likely binding to open regions of chromatin 

to control cell fate decisions. Furthermore, we constructed cell-type specific GRNs describing 

active TFs and their putative target genes through the binding of cis-regulatory regions. Our 

analysis identified a number of known regulators of endocrine cell fate, such as TFs Pdx1 and 

Nkx6-1 in beta cells and Arx in alpha cells, as well as identified novel candidate TFs, such as 
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Mlxipl in beta cells and Pbx1 and Peg3 in alpha cells. Although here our focus within the 

epithelial compartment was on the endocrine lineages, our dataset also provides a rich resource 

for future interrogation of gene regulatory networks controlling acinar and ductal cell fates. 

Identification of these networks will inform efforts underway at generating stem cell-derived 

exocrine cells in vitro for studies aimed at understanding exocrine cell physiology and modeling 

of diseases such as cystic fibrosis, pancreatitis, and pancreatic cancer [75,76]. 

 Traditional single-gene studies, along with genomic studies, have led to the identification 

of numerous TFs that play a functional role in regulating pancreatic endocrine differentiation. 

Although some individual TF-TF interaction pairs have been identified through these methods, 

the field still lacks an understanding of how these TFs are broadly arranged in regulatory 

networks across cell types and developmental stages. Our analysis permitted the creation of a 

TF-TF regulatory network, identifying TFs that control cell fate decisions through the binding and 

regulation of other important TFs. The assembly of these networks has identified both known 

and novel TF-TF interacting pairs whose associations can be experimentally validated in future 

studies using tools such as Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for 

confirmation of binding to specific DNA regions. Furthermore, CRISPR-mediated gene editing 

can be used to assess the downstream consequences of loss of individual candidate TFs on 

cell fate outcomes. 

In contrast to the pancreatic epithelium, the cellular composition and transcriptional 

features of the pancreatic mesenchyme have been less well described. We and others have 

applied scRNA-Seq to mesenchymal tissue to identify transcriptionally distinct sub-populations 

[19,20] and infer lineage relationships among some of these cell subtypes [19]. In addition, 

functional heterogeneity among pancreatic mesenchymal cells has begun to be explored. For 

instance, one study reported that expression of Pbx1 in a subset of Nkx2-5+ mesenchymal cells 

defines an anatomically specialized, pro-endocrine niche [24]. Which genes, including TFs, 

govern the acquisition of mesenchymal subpopulation identity, however, is poorly understood. 
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Our work begins to investigate novel TFs regulating mesenchymal cell fate and will serve as an 

important resource for understanding mesenchymal development and function. Our dataset 

identifies which gene networks should be activated in order to generate not only organ-specific 

mesenchyme, but mesenchymal subtypes from pluripotent stem cell sources [77].  

 The atlas of chromatin accessibility generated here not only provides deeper 

understanding of fundamental mechanisms underlying genetic control of developmental 

programs, but also holds relevance to the translational goals of beta cell regeneration and cell 

replacement therapy. For instance, our comprehensive characterization of chromatin state 

across endocrine development provides insights into the lineage plasticity observed among 

endocrine cells [7], and future work can leverage information about active endocrine cell type-

specific GRNs to improve strategies for trans-differentiation of non-beta endocrine cells to the 

beta cell fate. Furthermore, the generation of functionally mature beta cells from hPSCs remains 

a strong focus of cell replacement therapeutic strategies for patients with diabetes, and such in 

vitro protocols would benefit from an improved understanding of the dynamics in chromatin 

accessibility across endocrine development in vivo. Our dataset identifies which GRNs should 

be modulated in vitro to better approximate in vivo development. For instance, it will be 

interesting to benchmark recently published multi-omic datasets of hPSCs undergoing 

differentiation to a beta cell fate [78,79] against our multi-omic dataset generated here to 

evaluate the fidelity of cells generated in vitro to their in vivo counterparts.  
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Figure 1: Single-nucleus ATAC-Seq of developing murine pancreas. (A) Multiplexed 

immunofluorescence and in situ hybridization staining of E14.5 pancreas from eFev-EYFP 

transgenic mouse embryos. Neurog3 transcript is shown in red and marks early endocrine 

progenitors (EPs), Fev transcript is shown in cyan and marks intermediate EPs, and EYFP 

protein is shown in green. DAPI marks nuclei in white. Five selected regions of interest (ROI) 

are outlined by dashed white rectangles on the merged image and shown at higher 

magnification to the right. These ROIs highlight examples of cells that are 1) Ngn3+/Fev-/EYFP-

; 2) Ngn3+/Fev+/EYFP-; 3) Ngn3-/Fev+/EYFP-; 4) Ngn3-/Fev+/EYFP+; and 5) Ngn3-/Fev-

/EYFP+. Scale bar is 20uM. (B) Model of Fev and EYFP expression in EPs undergoing 

differentiation to a hormone-producing, Chromogranin A (Chga)-expressing state in eFev-EYFP 

reporter mice. Each circle represents a cell state across endocrine differentiation. (C) Overview 

of experimental approach for generating single-nucleus ATAC-Seq (snATAC-Seq) data. To 

enrich for Fev-high EPs, E14.5 eFev-EYFP murine pancreas was dissociated, and the resulting 

single cell suspension was subjected to FACS to enrich for EYFP+ epithelial cells (“EYFP+ 

Cells”). In parallel, E14.5 pancreata from control (C57BL/6J) embryos were dissociated and 

subjected to FACS to isolate all live cells (“Whole Pancreas”) to profile a broad spectrum of cell 

types, including non-epithelial cells. After subjecting samples to snATAC-Seq, data were then 

integrated with previously-published single-cell RNA-Sequencing (scRNA-Seq) datasets of 

E14.5 murine pancreas previously published by our laboratory [19]. (D) Uniform Manifold 

Approximation and Projection (UMAP) visualization of merged snATAC-Seq datasets from both 

Whole Pancreas and EYFP+ samples, comprising a total of 15,003 nuclei. Each dot represents 

a single cell, and each cell is colored according to cell type. Contribution of each sample (Whole 

Pancreas and eFev-EYFP+) to the total dataset is depicted in the inset, with the eFev-EYFP+ 

sample contributing only to the endocrine cluster as expected. (E) Feature plots depicting the 

Gene Scores (accessibility of the gene promoter plus the gene body) for some of the marker 

genes used to annotate the cell types in panel D.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2022.10.01.510484doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=6162590&pre=&suf=&sa=0
https://doi.org/10.1101/2022.10.01.510484
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2022.10.01.510484doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.01.510484
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

Supplementary Figure S1: Strategy for enrichment of Fev-expressing pancreatic 

endocrine progenitor cells. (A) Immunofluorescence staining of E14.5 pancreas from eFev-

EYFP transgenic mouse embryos. In the left panel, Chga marks differentiated endocrine cells in 

red, and green reflects EYFP expression. Nuclei are stained with DAPI in white. In the right 

panel, E-cadherin marks the cell membranes of pancreatic epithelial cells in white, and green 

reflects EYFP expression. Nuclei are stained with DAPI in blue. (B) FACS plots depicting the 

gating strategy used to assess EYFP expression in eFev-EYFP+ embryos. Cells were 

dissociated from E14.5 pancreata and stained with antibodies against EpCAM (an epithelial 

marker) and CD140a (a mesenchymal marker). Two populations were sorted: EpCAM+/CD140- 

epithelial cells (gate 1) and EpCAM-/CD140+ mesenchymal cells (gate 2). Flow analysis of 

EYFP expression revealed both an EYFP high and an EYFP low population within the 

EpCAM+/CD140a- epithelial population, and an absence of EYFP expression in EpCAM-

/CD140a+ mesenchymal cells (C) Quantitative RT-PCR (Taqman) analysis of sorted EYFP-, 

EYFP-low, and EYFP-high cells confirmed that EYFP efficiently reflected Fev expression in the 

embryonic pancreas, with no Fev expression detected in EYFP- cells. Somewhat higher 

expression of Fev was detected in the EYFP-low vs. -high population. (D) FACS plot depicting 

the gating strategy used for isolating Fev-High (EYFP-low) cells for single nucleus ATAC-Seq 

(snATAC-Seq). Scale bars in A are 20uM (left panels) and 60uM (right panels).  
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Figure 2: Integration of single-cell transcriptional and chromatin accessibility data 

identifies epithelial heterogeneity in the developing murine pancreas. (A) UMAP plots 

enabling visualization of scRNA-Seq (left) and snATAC-Seq (right) data for all epithelial cells in 

the E14.5 pancreas. Numbers of cells/nuclei are depicted on the right, along with cell type 

annotations. The scRNA-Seq dataset was previously published by our group [19]. (B) Bar graph 

depicting the proportion of all each cell type as a fraction of all epithelial cells in the scRNA-Seq 

and snATAC-Seq datasets. Colors match the cell types in (A). (C) Feature plots showing 

chromatin accessibility (Gene Score; left) or Gene Expression (right) of genes that mark each 

epithelial cell type. Cpa1, Spp1, Chga, Neurog3, Fev, Ins1, Gcg, Sst, and Ghrl mark acinar, 

ductal, pan-differentiated endocrine, early endocrine progenitor (EP), intermediate EP, beta, 

alpha, delta, and epsilon cells, respectively. (D) Heatmaps depicting genes that are differentially 

accessible (gene score; top heatmap) or differentially expressed (gene integration matrix; 

bottom heatmap) across the epithelial clusters. Genes listed were selected from the set of 

genes determined to be differentially expressed among scRNA-Seq clusters in panel (A). 
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Supplementary Figure S2: Confirmation of cell type assignments. (A) Ridge plots depicting 

scores from the scRNA-Seq and snATAC-Seq integration for each cell type identified in Figure 

2A. A higher integration score indicates higher confidence in the assignment of cell identity. (B) 

UMAP visualization of snATAC-Seq clustering of the epithelial compartment, here without 

integration with scRNA-Seq data. All clusters in Figure 2A are present even when clustered 

based on chromatin accessibility alone. (C) Track plots of cell type-specific marker genes. Each 

row indicates a cell type, and each column is a marker gene. The x-axis represents position 

along the chromosome, which is labeled at the top of each plot. The y-axis represents 

normalized ATAC signal aggregated across all cells within a population . Regions identified as 

peaks are depicted as bars above the gene body.  
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Figure 3: Identification of candidate correlated transcription factors governing pancreatic 

epithelial cell fate. (A) Heatmaps depicting enriched marker peaks (left) and transcription 

factor (TF) motifs enriched in marker peaks (right) for each epithelial cell type. (B) Dot plot 

shows so-called “correlated” TFs (those with high correlation between motif deviation score and 

gene expression) in all epithelial cells. (C) Heatmaps revealing cell type-specific motif deviation 

scores (top) and gene expression values (bottom) of positive TFs identified in (B). (D) Feature 

plots displaying motif deviation (top) and gene expression (bottom) of selected positively 

correlated TFs at single-cell resolution. (E) Pseudotemporal ordering of epithelial cells along the 

Alpha and Beta lineages based on chromatin accessibility. (F) Heatmaps depicting positively 

correlated TFs across pseudotime (from left to right) for Alpha (left heatmaps) and Beta (right 

heatmaps) lineages. 
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Figure 4: Mapping the gene regulatory networks active in the Alpha and Beta cell 

populations. (A) Schematic depicting application of the Integrated Regulatory Network Analysis 

(IReNA) v2 pipeline to identify gene regulatory networks (GRNs) within specific cell types. The 

GRN refers to active, cell type-specific transcription factors (TFs) and their target genes. (B) 

Cell populations used as input for IReNA. Arrows denote known lineage relationships. (C) Bar 

graph indicating the number of downstream target genes for TFs enriched in the Beta cell type. 

Activating (red bar) and repressing (blue bar) refers to positive or negative correlation between 

gene expression levels of the TF and the target gene. (D-E) Bar graphs showing the top 10 TFs 

with the highest number of activating (D) or repressing (E) regulations of target genes enriched 

in the Beta cell type. (F-G) Bar graphs showing the top 10 TFs with the highest number of 

activating (F) or repressing (G) regulations of target genes enriched in the Alpha cell type. (H) 

Venn diagram depicting the overlap between Alpha and Beta GRN TFs. (I) Bar graph depicting 

top most significantly (p-value < 0.01) enriched pathways of genes activated (red bars) or 

repressed (blue bars) by the TF Etv1 in the Alpha cell GRN. (J) Network diagram representing 

regulations between Etv1 and interacting TFs. Each TF is represented by a circle (node) that is 

colored by the cell type in which that TF is active in the GRN. Activating regulations are depicted 

by red lines, while repressing are depicted by blue lines.  
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Supplementary Figure S4: Gene regulatory network map of the developing pancreatic 

epithelium. (A) Diagram depicting the IReNA v2 pipeline. (B) Heatmap showing the top 

differentially expressed genes (DEGs) used as input for GRN construction. Each column 

represents the average expression of a given DEG within each of the epithelial cell populations 

shown in Figure 4B. (C) Heatmaps showing ATAC accessibility (left) and RNA expression 

(right) of identified peak-to-gene (P2G) links used as input for GRN construction. Columns 

represent single cells and rows represent accessible peaks (left) and their correlated genes 

(right). (D) Bar graph cataloging correlated accessible regions (CARs), broken down according 

to CAR type, for each cell population. The three CAR types include those that lie within the 

transcription start site (TSS) of a gene (gray), as well as those that are positively (red) or 

negatively (blue) correlated with their linked gene. (E) Bar graph representing  the proportion of 

all TF-gene interactions that are activating vs. repressing. (F) Histogram showing the total 

number of GRN TFs identified within each cell population. (G) Bidirectional network diagram 

depicting all TF-TF interactions between all cell types shown in Figure 4B. TFs are denoted by 

each node, which is colored by the cell type in which the TF is active in the GRN. Activating 

regulations are depicted by red lines, while repressing are depicted by blue lines.  
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Figure 5: Mapping the gene regulatory networks active in the Fev-expressing pancreatic 

endocrine population. (A) Cartoon depicting the number of activating (red) and repressing 

(blue) regulations between transcription factors (TFs) in Ductal, Spp1(+)/Neurog3(+) and 

Neurog3(+) populations, with representative TFs indicated. (B-C) Bar graphs depicting the top 

10 TFs in the Ductal GRN with the highest number of activating (B) or repressing (C) 

regulations of target genes that are enriched in the Spp1(+)/Neurog3(+) and Neurog3(+) cell 

types. (D) Bar graph depicting the number of TF regulations of target genes enriched in the 

Fev(+)/Chgb(+) cell type. Activating (red bars) and repressing (blue bars) refers to positive or 

negative correlation, respectively, of gene expression between the TF and target gene. (E-F) 

Bar graphs depicting the top 10 transcription factors with the highest number of activating (E) or 

repressing (F) interactions of target genes enriched in the Fev(+)/Chgb(+) cell type. (G) Network 

diagram depicting all TF-TF regulations between TFs enriched in the Fev(+)/Chgb(+) GRN and 

all other GRNs. TFs are denoted by each node, which is colored by the cell type in which the TF 

is found. Each activating regulation is depicted by a red line, while each repressing regulation is 

depicted by a blue line. (H) Bar graph depicting top significant (p-value < 0.01) pathways of 

genes activated (red bars) or repressed (blue bars) by Fev in the GRN analysis. (I) Network 

diagram depicting the TFs activated (red lines) by Fev in the GRN analysis. Each node (TF) is 

colored according to the cell type in which it is expressed.  
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Supplementary Figure S5: Gene regulatory networks in the endocrine progenitor 

populations. (A) Network diagram depicting the TFs activated (red lines) or repressed (blue 

lines) among Ductal, Spp1/Neurog3+ and Neurog3+ cell types. Nodes represent TFs and are 

grouped and colored according to their cell type. The directionality of the regulations are 

modeled below the diagram. (B) Venn diagram depicting overlaps and exclusivity of TFs within 

the GRN constructed from all four EP populations. (C-E) Bar graph depicting the top 10 TFs 

transcription factors within the Fev/Chgb+ GRN with the highest number of activating 

regulations of target genes enriched in the Pdx1/Mafb+ (C) Alpha (D) or Beta (E) cell types. 
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Figure 6: Chromatin accessibility and gene regulatory network in the developing 

pancreatic mesenchyme. (A) UMAP plots enable visualization of scRNA-Seq (left) and 

snATAC-Seq (right) data for all mesenchymal cells in the E14.5 pancreas. Numbers of 

cells/nuclei are depicted on the right, along with cell type annotations. The scRNA-Seq dataset 

is from our previously published work [19]. (B) Bar graph depicts the proportion of each cell type 

in the scRNA-Seq and snATAC-Seq datasets. Colors match the cell types in (A). (C) Dot plot 

showing correlated transcription factors (as determined by correlation between motif deviation 

score and gene expression) in mesenchymal and mesothelial cells. (D) Heatmaps reveal cell 

type-specific motif deviation scores (top) and gene expression values (bottom) of positive 

transcription factors identified in (C). (E, F) Bar graph depicting the top TFs activating (E) and 

repressing (F) genes enriched in the mesothelial population. (G) Bar graph depicting top 

significant (p-value < 0.01) pathways of genes activated (red bars) or repressed (blue bars) by 

mesothelial cells in the GRN analysis. VSM, vascular smooth muscle. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2022.10.01.510484doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=6162590&pre=&suf=&sa=0
https://doi.org/10.1101/2022.10.01.510484
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2022.10.01.510484doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.01.510484
http://creativecommons.org/licenses/by-nc-nd/4.0/


54 

Supplemental figure 6: Gene regulatory network in the developing pancreatic 

mesenchyme. (A) UMAP visualization of snATAC-Seq clustering of mesenchymal cells, here 

without integration with scRNA-Seq data. All clusters in Figure 6A are present even when 

clustered based on chromatin accessibility alone. (B) Heatmaps depict enriched marker peaks 

(left) and transcription factor (TF) motifs enriched in marker peaks (right) for each mesenchymal 

cell type. (C) Bar graph depicting the proportion of all TF-gene interactions that are activating 

(red) vs. repressing (blue). (D) Histogram showing the total number of GRN TFs identified within 

each cell population. (E) Network diagram showing all TF-TF interactions between all cell types 

shown in Figure 6A. Each TF is denoted by a node, which is colored by the cell type in which 

the TF is active. Activating regulations are depicted by red lines, while repressing are depicted 

by blue lines. (F) Venn diagram depicting shared and exclusive Mesenchymal TFs within the 

GRN. VSM, vascular smooth muscle. 
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