

1 Quantitative fluorescence emission anisotropy microscopy for
2 implementing homo-FRET measurements in living cells.

3

4

5

6 Thomas S van Zanten*, Greeshma Pradeep S and Satyajit Mayor*

7

8

9

10 Cell Biology Group, National Centre for Biological Sciences, Tata Institute for Fundamental
11 Research, UAS-GVKV campus, Bellary Road, Bangalore, 560065, India

12

13

14 *corresponding authors: mayor@ncbs.res.in, thomasvz@ncbs.res.in

15

16

17 **Running Title:**

18 Fluorescence emission anisotropy imaging

19

20

21 **Abstract**

22 Quantitative fluorescence emission anisotropy microscopy reveals the organization of
23 fluorescently labelled cellular components and allows for their characterization in terms of
24 changes in either rotational diffusion or homo-Förster's energy transfer characteristics in
25 living cells. These properties provide insights into molecular organization, such as orientation,
26 confinement and oligomerization *in situ*. Here we elucidate how quantitative measurements
27 of anisotropy using multiple microscope systems may be made, by bringing out the main
28 parameters that influence the quantification of fluorescence emission anisotropy. We focus
29 on a variety of parameters that contribute to errors associated with the measurement of
30 emission anisotropy in a microscope. These include the requirement for adequate photon
31 counts for the necessary discrimination of anisotropy values, the influence of extinction
32 coefficients of the illumination source, the detector system, the role of numerical aperture
33 and excitation wavelength. All these parameters also affect the ability to capture the dynamic
34 range of emission anisotropy necessary for quantifying its reduction due to homo-FRET and
35 other processes. Finally, we provide easily implementable tests to assess whether homo-
36 FRET is a cause for the observed emission depolarization.

37

38

39 **Keywords:**

40 FRET | anisotropy | polarization | clustering | live cell

41 **Introduction**

42 Fundamental processes of intracellular life may be understood in terms of pools of molecules
43 that diffuse, interact, bind, change conformation and catalyse physical and chemical state
44 changes within the confined volume of a cell. Utilizing the arsenal of available techniques
45 allows the researcher to unravel rules that govern these processes (Zanten and Mayor, 2015).
46 Traditional biochemical methods (grind and find) provide ensemble averages of
47 concentrations as well as information on interacting species, but lack access to spatial
48 information at the scale of the processes carried out inside the cell. Chemical specific spatial
49 contrast is achieved by using tagged markers in combination with imaging. In a fluorescence
50 setting, optically resolved spatial information can be coupled with high temporal resolution
51 and high signal-to-noise in living systems. However, far-field based fluorescence techniques
52 are inherently diffraction limited and following individual proteins at a density above 10 per
53 μm^2 becomes difficult (Jaqaman *et al.*, 2008; Manley *et al.*, 2008; Sergé *et al.*, 2008).
54 Therefore, it remains challenging to provide direct *in situ* evidence of interaction, binding and
55 conformational changes of molecules in physiological conditions.

56
57 Fluorescence resonance energy transfer (FRET) is uniquely sensitive to the detection of short
58 length scale interactions between fluorophores. This allows a window onto events that occur
59 at 1-10 nm range even though one uses diffraction limited imaging systems (Krishnan *et al.*,
60 2001). Depending on several important conditions (such as spectral overlap, the distance
61 between, and the orientation of the fluorophore dipoles) that have been documented
62 previously (Jares-Erijman and Jovin, 2003), two spectrally distinct fluorophores can transfer
63 the energy of the excited state donor (blue-shifted) fluorophore to the acceptor (red-shifted)
64 fluorophore (Hoppe *et al.*, 2002) in a non-radiative process called hetero-FRET. This
65 concomitantly occurs with a decrease in the donor fluorophore lifetime (Wallrabe and
66 Periasamy, 2005). The sensitivity of this process to the fluorophore distance at the nanometer
67 scale invokes the adage of a spectroscopic ruler (Stryer, 1978). An increase in FRET is
68 additionally associated with a depolarization of the emission if donor fluorophores are excited
69 with polarized light (Förster, 1948). Especially when donor and acceptor are on different
70 molecules (Rizzo *et al.*, 2006) the polarization-based method benefits from a large dynamic
71 range and reduced background from the acceptor fluorophore (Sharma *et al.*, 2004; Rizzo
72 and Piston, 2005). However, the ratio between donor and acceptor fluorophores influences
73 the dynamic range and sensitivity of the hetero-FRET process.

74
75 FRET between like-fluorophores called homo-FRET also takes place. Instead of measuring
76 the changes in lifetime of the donor or spectral shift of the detected fluorescence, determining
77 the extent of homo-FRET is obtained by measuring the reduction in emission polarisation
78 anisotropy (Weber, 1954; Lidke *et al.*, 2003). The homo-FRET methodology eliminates the
79 requirement for careful tuning of donor-acceptor ratios. Consequently, the method is
80 advantageous for detecting homo-oligomerization even when only a very low fraction of
81 interacting species is present (Varma and Mayor, 1998; Sharma *et al.*, 2004). This permits a
82 measurement of oligomerization below the detection limit of hetero-FRET labelling
83 techniques (Kenworthy and Edidin, 1998; Sharma *et al.*, 2004). Here, we provide a systematic
84 way to perform steady-state homo-FRET measurements, and a comprehensive and practical
85 compendium for the use of emission anisotropy for the detection of homo-FRET. We
86 document factors that will affect the dynamic range of the measurement, measurement-
87 associated errors and suggest ways to attribute the anisotropy measurement to homo-FRET.
88 This will allow a rigorous and quantitative implementation of this powerful technique in
89 biological systems where such resolution is necessary.

90
91 **Measuring homo-FRET: Theoretical background**

92 The magnitude of homo-FRET may be determined by measuring the extent of depolarization
93 of fluorescence emission (or reduction in emission anisotropy) upon exciting fluorophores

94 with polarized light (Lakowicz, 2006). In this photophysical process, fluorophore dipoles that
95 are aligned parallel to the plane of polarization of the excitation beam are excited.
96 Fluorescence emission anisotropy, r , is detected by collecting emitted photons at two
97 orthogonal polarizations. The following expression is used to define fluorescence anisotropy:
98

$$99 r(I_{\parallel}, I_{\perp}) = \frac{I_{\parallel} - GI_{\perp}}{I_{\parallel} + 2GI_{\perp}} \quad (1)$$

100 where I_{\parallel} and I_{\perp} are the detected emission intensities parallel and perpendicular to the
101 excitation, respectively. G is the g-factor of the microscope defined as the detection
102 efficiency of the parallel polarized photons with respect to the perpendicular polarized
103 photons. The denominator in equation 1 is equivalent to the total number of photons
104 detected, making it possible to compare anisotropy values from heterogeneous regions. In
105 other words, the detected anisotropy is the fractional sum of anisotropies originating from
106 the region of measurement. For an ensemble of immobile but isotropically oriented
107 fluorophores that have their emission dipole aligned with their absorption dipole (Figure 1Ai)
108 the maximum attainable anisotropy for single-photon excitation is 0.4. Angular mismatch
109 between the absorption and emission dipole, β , results in an instantaneous depolarisation
110 and determines the fluorophore dependent intrinsic anisotropy, r_0 , that is lower than 0.4 (e.g.
111 GFP; $\beta = 11^\circ$, $r_0 = 0.389$ (Myšková *et al.*, 2020)).
112

113 For fluorophores that can freely rotate, the extent of depolarization with respect to the
114 excitation is described by the Perrin equation that relates the fluorescence anisotropy to both
115 the fluorescence lifetime and the rotational diffusion time of the fluorophore (Perrin, 1926)
116 (Figure 1Ai):
117

$$118 r(\tau, \phi) = \frac{r_0}{1 + \frac{\tau}{\phi}} \quad (2)$$

119 where τ is the fluorescence lifetime of the fluorophore and ϕ is the rotational time constant.
120 For the small fluorophore Rho6G, its lifetime of 3.43 ns is much larger than its rotational
121 diffusion in water ($\phi \sim 0.12$ ns). In essence this means that the emission dipole of an excited
122 Rho6G molecule has had the time to randomly re-orient many times before emitting a photon,
123 resulting in a measured anisotropy close to 0 (Figure 1B). An increased anisotropy is obtained
124 for fluorophores that either have a reduced fluorescence lifetime comparable to its rotational
125 timescale like for example, Cy3, ($\tau \sim 0.3$ ns, Figure 1B) or an increased rotational timescale for
126 example, EGFP, ($\phi \sim 14$ ns, Figure 1B).
127

128 Increasing the viscosity of the solution increases the rotational diffusion time of a fluorophore.
129 Figure 1B shows that increasing the fraction of glycerol in the solution results in an increase
130 in the anisotropy for all three fluorophores (Rho6G, Cy3 and EGFP). Note that the measured
131 anisotropy of Rho6G almost completely covers the full dynamic range expected from an
132 ensemble of molecules rapidly rotating with respect to its lifetime to being randomly oriented
133 in the static limit where the rotational diffusion is very slow compared to the lifetime of the
134 fluorophore. The emission anisotropy values range from 0 to 0.35, likely limited through the
135 instantaneous depolarisation due to the angular difference discussed above. Although not
136 usually taken into account it is worth to consider the refractive index of the medium. The
137 lifetime of many fluorophores is sensitive to changes in refractive index (Strickler and Berg,
138 1962; Suhling *et al.*, 2002) ($\tau \propto \eta^{-2}$; where η is the refractive index). Taking a look at the
139 equation 2, it is evident that as refractive index increases, the anisotropy will also increase.
140 Changes in the refractive index may come about by an increase in macromolecular crowding,
141 which is a common state in intracellular conditions (Boersma *et al.*, 2015; Berg *et al.*, 2017).
142

145 The above influences on the value of anisotropy are realized in situations where the
146 fluorophores are dilute and hence far apart from each other. Upon increasing concentration,
147 intermolecular distances reduce, bringing fluorophores within Förster's radius where
148 Förster's resonance energy transfer takes place. In this process energy from one fluorophore
149 may be transferred non-radiatively to a nearby fluorophore (Figure 1Aiii). Since the emission
150 dipole of this second fluorophore will be stochastically oriented with respect to the absorption
151 dipole of the first, energy transfer effectively depolarizes the emission from the interacting
152 pair of fluorophores. This depolarization or decrease in anisotropy provides a measure of the
153 efficiency of the energy transfer process:

154

$$155 \quad r = r_\infty \cdot (1 - E_{FRET}) \quad (3)$$

156

157 where r_∞ is the anisotropy of the fluorophore at infinite dilution and E_{FRET} is the energy
158 transfer efficiency. In a dilute solution r_∞ is described by the Perrin equation, and E_{FRET} values
159 will rise once the fluorophores in solution start approaching each other at distances, d ,
160 comparable or closer than the Förster's radius:

161

$$162 \quad E_{FRET} = \left(1 + \left(\frac{d}{R_0}\right)^6\right)^{-1} \quad (4)$$

163

164 The Förster's radius, R_0 , measured in Å is defined as the distance between two fluorophores
165 for which the energy transfer is 50% through (Förster, 1948):

166

$$167 \quad R_0 = 0.211 \cdot \sqrt[6]{n^{-4} \cdot Q_D \cdot \kappa^2 \cdot J(\lambda)} \quad (5)$$

168

169 where $J(\lambda)$ is the spectral overlap between donor emission and acceptor excitation, n is the
170 refractive index of medium in the range of spectral overlap, Q_D is the quantum yield of the
171 donor in the absence of an acceptor and κ the orientation factor between the dipole of two
172 fluorophores (normally assumed to be 2/3, but can be measured (Dale *et al.*, 1979)).

173

174 The effect of collisional homo-FRET can be experimentally realized by measuring the
175 fluorescence emission anisotropy of Rho6G in a 70% glycerol:water solution with increasing
176 Rho6G concentration. Above a concentration of 100 μM the anisotropy of the solution starts
177 decreasing due to energy transfer between fluorophores (Figure 1C), reflecting the fact that
178 at these concentrations a measurable fraction of molecules are within Förster's radius of each
179 other.

180

181 **How microscope polarization characteristics affect the anisotropy measurement**

182 Anisotropy measurements in a microscope are easy to set up and implement on any imaging
183 modality available today, provided a few factors related to preserving the dynamic range of
184 the measurements are fulfilled. Here we outline the factors that relate to this requirement for
185 emission anisotropy measurements conducted in either confocal, TIFR or wide field
186 modalities. In a confocal microscope emission anisotropy measurements have been
187 implemented in point scanning (Bader *et al.*, 2009), line scanning (Goswami *et al.*, 2008;
188 Ghosh *et al.*, 2012), light sheet (Hedde *et al.*, 2015; Markwardt *et al.*, 2018) or as a spinning
189 disk (Ghosh *et al.*, 2012; Gowrishankar *et al.*, 2012) system. The wide field microscope has
190 been used in an EPI illumination configuration (Varma and Mayor, 1998; Ghosh *et al.*, 2012)
191 or with an appropriate objective in a total-internal reflection (TIRF) configuration (Ghosh *et al.*,
192 2012; Raghupathy *et al.*, 2015; Kalappurakkal *et al.*, 2019). The heart of the measurement lies
193 in the ability to excite fluorophores with polarized light and collect fluorescence emission with
194 sufficiently high polarization extinction.

195

196 To establish the effect of various instrumental parameters we took advantage of the fact that
197 the difference in anisotropy of a 1 μ M Rho6G solution in water to that measured in 100%
198 glycerol covers almost the entire range of emission anisotropy available for a molecule
199 dissolved in a solvent; from 0, as expected from a molecule rotating much faster than its
200 fluorescence lifetime, to 0.35, where the value of anisotropy is result rotationally averaged
201 distribution of dipoles that are excited by polarized light and have a very low rotational
202 diffusion coefficient. First, the excitation polarization extinction coefficient ($C_{\parallel} = I_{\parallel}/I_{\perp}$) at the
203 sample plane was gradually reduced from 1500:1 to 1:1 using a $\lambda/4$ waveplate (Figure 2A).
204 When the polarization extinction coefficient was reduced below 150:1 the measured dynamic
205 range started decreasing, setting the minimum requirement for the polarization extinction of
206 the excitation path for maximum dynamic range. Placing a high-quality polarizer (e.g.
207 Newport 10LP-VIS-B or MoxTek PFU04C) in a collimated segment of the excitation path
208 before the sample plane will take care that this requirement is met.
209

210 Next, the direction of the maximum excitation polarization (1500:1) was changed with respect
211 to the detection polarizations using a $\lambda/2$ waveplate (Figure 2B). A misalignment of less than
212 5° is desirable for obtaining the maximum dynamic range. Note, negative values of anisotropy
213 arise because the parallel and perpendicular detectors become interchanged after 45°.
214 Because high numerical aperture (NA) objectives scramble the polarization (see below) these
215 polarization calibration measurements were performed using a low NA low magnification air
216 objective (10x, 0.3NA) on an epi-illuminated microscope system.
217

218 Finally, on the detection side it is equally important to have a large polarization extinction
219 ratio for each detection channel to obtain the maximum dynamic range in the measurement.
220 The effect of the polarization extinction ratio on each of the detectors can be simulated in
221 terms of bleed through (Figure 2C). For example, a 50:1 extinction coefficient for the
222 perpendicular channel means a 2% contribution from parallel photons. The result is a
223 reduced effective dynamic range of the anisotropy measurement. The most sensitive detector
224 is the parallel channel, and the dynamic range significantly reduces when its extinction
225 coefficient drops below 20:1. One should ideally aim to have an extinction coefficient greater
226 than 100:1 for both channels. These images may be recorded sequentially using two
227 orthogonally oriented high quality polarizers or simultaneously by splitting the emission signal
228 using a polarizing beam splitter and collecting the image on one or two cameras (Ghosh *et*
229 *al.*, 2012). Wire polarizing beam splitters (Moxtek) typically have polarization extinction
230 coefficients on the order of 400:1 on the transmission side and 1:150 on the reflection side
231 with a minimum loss of photons due to absorption. If the extinction coefficient is not
232 satisfactory (i.e. is <100:1) a clean-up polarizer can be placed in front of each detector.
233

234 **The influence of the effective numerical aperture on anisotropy measurements.**

235 The numerical aperture (NA) of an objective in a microscope system is directly related to the
236 effective angular distribution over which the fluorophores in the sample plane are illuminated.
237 This will also influence the anisotropy fluorescence emission that is collected (in both
238 confocal and EPI/TIRF). The increased illumination and collection angle effectively causes a
239 mixing of polarizations, therefore a lowering of anisotropy. This effect is both dependent on
240 the objective as well as the polarization characteristics of the sample. Even though theoretical
241 correction-factors exist to account for high NA collection (Axelrod, 1979, 1989), reducing the
242 NA of the excitation and emission side will increase the dynamic range of polarization
243 anisotropy measurements (Figure 2D). Reducing the NA of an imaging system may be done
244 by using a lower NA objective or by under-filling a higher NA objective. The former will
245 increase the polarization homogeneity of the excitation field and emission field, while the
246 latter only the excitation field.
247

248 Nevertheless, not all microscopy schemes allow for a straightforward reduction in the NA.
249 For objective-based TIRF microscopy, high NA is crucial to obtain the critical angle required
250 for total internal reflection in the excitation path. The axially confined evanescent excitation
251 profile produced by TIRF provides the sensitivity and specificity to image surface localized
252 molecules of interest. It is possible to obtain a pure plane polarised evanescent field by
253 orienting the polarisation of the incoming light perpendicular to the plane of incidence along
254 which total internal reflection occurs (s-polarisation) (Ghosh *et al.*, 2012). The mixing of
255 polarization of a TIRF experiment thus mostly occurs during the collection of the fluorescence
256 emission. And in particular at the larger collection angles that are restricted to the outer rim
257 of the objective back focal plane (BFP). These supercritical angle fluorescence photons can
258 be cut off in a conjugate plane of the BFP that is not shared by both the excitation and
259 emission (Figure 2Ei). Physically reducing the collection NA does not perturb the evanescent-
260 confined field of the excitation (Figure 2Eii) and can in fact be used to correct an anisotropy
261 experiment obtained with a high NA objective. We estimated the collection NA by measuring
262 the reduction in the BFP diameter (see Materials and Methods). To understand the effect of
263 reducing the collection NA on an anisotropy measurement we turned to a constitutive trimeric
264 protein complex that expresses at the cell membrane of a cell: EGFP tagged Vesicular
265 stomatitis virus Glycoprotein (VsV-G-EGFP) (Kreis and Lodish, 1986). As expected, the
266 anisotropy of membrane bound VsV-G-EGFP increases upon reducing the collection NA
267 (Figure 2F).

268

269 **Error in anisotropy determination**

270 Even in a microscope system that is optimized for the preservation of polarization in the
271 excitation and emission paths, the quantification of fluorescence intensity by a detector has
272 a signal-to-noise that is proportional to the number of photons due to the Poisson statistics
273 of the signal. Using error propagation of the signal collected in the parallel and perpendicular
274 channels allows insight in the relative error directly associated with the anisotropy
275 measurement (Lidke *et al.*, 2005):

276

$$277 \frac{\sigma(r)}{r} = \frac{\sqrt{v(r)}}{r} = \sqrt{\frac{(1-r) \cdot (1+2r) \cdot (1-r+G \cdot (1+2r))}{3I_{tot} \cdot r^2}} \quad (6)$$

278

279 The error is dependent on the anisotropy, r , and the total number of detected photons, I_{tot} .
280 Plotting the relative error dependence in pseudocolor on both calculated anisotropy and
281 number of photons (Figure 3A) shows that a relative error below 10% (blue dashed line in
282 Figure 3A) requires a minimum of 400-15000 photons for an anisotropy range of 0.35-0.05,
283 respectively. Using less photons to calculate the anisotropy sharply reduces the accuracy at
284 which the anisotropy can be determined. Practically this means that in a measurement where
285 the number of photons per pixel is limiting, the measurement accuracy of anisotropy will be
286 dependent on the anisotropy value. In such cases the neighbouring pixels or subsequent
287 frames should be summed in order to increase the accuracy of the anisotropy determination
288 at a cost of spatial or temporal resolution, respectively. A Gaussian kernel filter on the two
289 intensity channels also reduces the error in the anisotropy determination (Lidke *et al.*, 2005)
290 but a summation is preferred because it will allow a more straightforward dissection of errors
291 simply associated to the number of photons.

292

293 To experimentally determine the error in any anisotropy measurement, the detector must first
294 be calibrated in terms of offset, noise and gain. Depending on the detector there are several
295 methods available to calibrate the system *a prior* (Vliet *et al.*, 1998; Huang *et al.*, 2013;
296 Lambert and Waters, 2014) and a recent method also allows post-processing of single
297 images (Heintzmann *et al.*, 2018). After calibration, a 100-frame anisotropy image series of
298 fluorescent beads was recorded. The intensity and anisotropy trace of a single pixel at the
299 peak position of each bead was used to extract mean and standard deviation (Ferrand *et al.*,

300 2019). The mean intensity, i.e., horizontal axes of the graph (Figure 3B), was increased
301 experimentally by increasing the camera integration time and through binning the intensity
302 images during post-processing (see Materials and Methods). In this way the experimental
303 error can be determined from several detected photons all the way up to 10^5 photons (Figure
304 3B). Although the variability in mean anisotropy of the beads is rather high (0.22 ± 0.09),
305 indicating a non-uniform sample, the single bead-associated error remains within the
306 boundaries set by photon statistics for both sCMOS and EMCCD cameras (grayed area in
307 Figure 3B).

308

309 **Anisotropy measurements in cells**

310 Expression of proteins from plasmids in cells can encompass a wide range of levels, which
311 for cytosolic proteins would correspond to different cytoplasmic concentrations. Imaging
312 cells that express fluorescent proteins encoded on extra-chromosomal plasmids allow a
313 visual illustration of the variability of anisotropy due to the large range of expression levels
314 possible (pM up to mM; (Milo and Phillips, 2007; Mori *et al.*, 2020)). Even a single cell displays
315 the result of the errors due to photon budget on the anisotropy calculations (Figure 3C). The
316 lower number of photons collected from the cell edges (below 100 photons), dramatically
317 increased the variability in the anisotropy calculation. For the pixels within the same cells the
318 relative error in anisotropy is more than 100%. Consequently, binning the number of photons
319 per pixel results in a reduced error in the anisotropy (Figure 3D). This reduction in variability
320 is purely due to the reduced error in the anisotropy calculation associated with using an
321 increased number of photons for the calculation. Therefore, quantification of the signal from
322 high magnification images is typically obtained from selecting sub-cellular regions of interest
323 or the entire cell for lower magnification images (Figure 3D).

324

325 To test multiple conditions a common brightness region in the Cell Brightness versus
326 Anisotropy graph must be selected (Figure 4A, in between dashed gray lines). The selection
327 should avoid regions dominated by photon statistic noise, scattering or trivial collisional
328 FRET. Towards the lower brightness end of the curve, noise or scattering will start dominating
329 resulting in a decrease or increase in anisotropy, respectively. The cut-off intensity above
330 which collision FRET becomes the dominating factor for the anisotropy measurement can be
331 identified by a clear change in the slope towards the higher brightness side of the curve
332 (Figure 1C and Figure 4A).

333

334 Collecting the anisotropy values of cells within the selected region shows that the rotational
335 correlation time of EGFP in living cells (17 ns; (Gautier *et al.*, 2001; Sharma *et al.*, 2004)) results
336 in a measured anisotropy of 0.26 ± 0.03 (Figure 4B). Significant homo-FRET in the trimeric
337 version of cytosolic EGFP gives rise to a lowering of this anisotropy measurement to \sim
338 0.21 ± 0.04 (Figure 4B). (It is important to reiterate that the x-axis in Figure 4A is proportional
339 to fluorophore density or concentration). The total number of photons that has been used for
340 the anisotropy calculation is in this case related to both the cell area, its brightness and the
341 camera integration time. The minimum number of photons collected from a single selected
342 cell ($3.5\cdot10^4$ photons) within the common brightness region dictates the largest error is $\sim 2\text{-}3\%$,
343 using equation 6. The fact that the standard deviation of the anisotropy values of different
344 cells expressing EGFP (13%) or EGFP-trimer (20%) is larger than the error determined only
345 by photon statistics suggests that there is also a large heterogeneity in the environment of
346 the EGFP and the EGFP-trimer in cells. This may be caused by variation in cell intrinsic
347 properties that change GFP photophysics, or due to the cell-cell differences in the viscosity
348 of the cytoplasm.

349

350 **Attenuation of homo-FRET by emitter dilution**

351 While depolarization of emission anisotropy is a sensitive technique to measure molecular
352 interactions and proximity, it is important to make sure the interpretation of the measurement

353 is correct. One way is to always have a proper positive and negative control during the
354 experiment. In the case of cholesterol-sensitive Glycosyl Phosphatidyl Inositol (GPI)-
355 anchored protein nanoclustering, a negative control that disrupted clustering without
356 significantly affecting the rotational correlation times of the labelled GPI-anchored protein
357 was obtained by the removal of cholesterol from the membrane (Sharma *et al.*, 2004).
358 However, it is not always known *a priori* for a particular system of interest how the molecules
359 are clustered, rendering the possibility of a negative control in doubt. Especially in situations
360 where it is difficult to clearly distinguish a change in rotational diffusion of the fluorescent
361 probes from a change in homo-FRET, other controls are required. If available, time-resolved
362 anisotropy measurements will be the most direct way to separate these two quantities, since
363 here rotational diffusion times may be deconvolved from the rate of energy transfer in the
364 time resolved anisotropy decay traces (Gautier *et al.*, 2001; Sharma *et al.*, 2004).

365
366 Alternatively, in measurements detailed here, diluting the fluorescent sample while monitoring
367 the steady state emission anisotropy is a relatively straightforward approach to separate
368 these two modes of anisotropy reduction. Photobleaching reduces the number of functional
369 emitters without affecting the rotational dynamics of the fluorophore. Therefore, a steady
370 increase in emission anisotropy with photobleaching the fluorophore is a direct measure of
371 the loss of homo-FRET. Other ways of reducing the number of fluorophores that can
372 participate in the energy transfer process is by the use of quenchers or photoconversion
373 (Ojha *et al.*, 2019). It is important to keep in mind that the dark state of fluorophores generated
374 by photobleaching some fluorophores (e.g. GFP in an oxidizing environment, e.g.
375 extracellularly) or even the quenchers themselves should not be able to transfer the energy
376 back to the fluorophores.

377
378 To exemplify the effect of photobleaching, cells expressing the cytosolic EGFP trimer were
379 photobleached. These cells displayed a clear increase in the emission anisotropy as the
380 cellular brightness decreased (Figure 5A,C). Cytosolic EGFP monomers also photobleached
381 but in contrast to the trimer there was no change in the emission anisotropy as cellular
382 brightness decreased (Figure 5B,C). Anisotropy was replotted as a function of emitter
383 dilution, which is equivalent to the extent of photobleaching. The measured anisotropy
384 change upon photobleaching per cell shows that while for cells with monomeric EGFP there
385 was a minimal change there was a significant increase in the anisotropy for cells that
386 contained the EGFP trimer (Figure 5D). The measurement for each cell was fitted to a linear
387 curve that provided the anisotropy at full bleaching and the slope. The anisotropy of both the
388 monomeric and trimeric EGFP at infinite dilution were comparable (Figure 5E). In contrast,
389 their initial anisotropies and more importantly the slope, or anisotropy-change upon
390 photobleaching, were markedly different (Figure 5E-F). The absence of a change in
391 anisotropy upon photobleaching (slope = $0.36 \pm 0.98 \cdot 10^{-2}$) shows that monomeric EGFP did
392 not undergo homo-FRET. On the other hand, for the trimer, a slope of $4.84 \pm 1.76 \cdot 10^{-2}$ was
393 observed, demonstrating significant and measurable homo-FRET occurring for the EGFP-
394 trimer, as expected. With the reasonable assumption that the anisotropy at point where the
395 trimer and monomer anisotropy values converge represents the anisotropy value at infinite
396 dilution, the FRET efficiency calculated using equation 3, for the EGFP-trimer was 20.1%.
397 This is reasonable considering that for the trimer, the closest distance of approach between
398 two monomers in the trimer is ~ 3-4 nm (the distance between the fluorophores when GFP is
399 close packed), approximately the same as the Forster's radius where FRET efficiency is
400 defined as 50%.

401
402 Another factor that influences the anisotropy of emission and the dynamic range of its
403 measurement is the NA of the collection optics. To get more insight into how changing the
404 collection NA affects the dynamic range of an anisotropy experiment, the membrane bound
405 trimer VsV-G-EGFP was photobleached (Figure 5G). To reduce the error in anisotropy

406 determination, signal from the plasma membrane of the entire cell was used. Irrespective of
407 the collection NA, emitter dilution corroborates the fact that the low anisotropy measured
408 from VsV-G-EGFP is due to homo-FRET. This reiterates the fact that even though the
409 absolute value of anisotropy is modulated by the optics used in the measurement, the change
410 upon emitter dilution is a rigorous measurement of homo-FRET. Quantifying the slope
411 suggests that there is an additional improvement of the dynamic range upon reducing the
412 collection NA (Figure 5H).

413

414 **Red-edge excitation to uncover homo-FRET**

415 The chromophore of most fluorescent proteins undergoes a significant change in dipole
416 moment when driven from the ground state into the excited state. In a situation where the
417 chromophore is surrounded by a polar solvent, solvent movement will accompany the
418 redistribution of the electron cloud during excitation (Lakowicz, 2006). The chromophore will
419 emit a photon from the solvent-assisted relaxed state if the solvent redistributes faster than
420 the excited state lifetime. However, in a fluorescent protein the polar residues that interact
421 with the chromophore have relaxation rates that are much slower compared to the excited
422 state lifetime (Haldar and Chattopadhyay, 2007). This means that a chromophore excited at
423 its main absorption band does not relax to its lowest energetic configuration and will therefore
424 emit a blue-shifted photon. Shifting the excitation towards the red edge of the absorption
425 spectrum will result in photoselection of chromophores that interact more strongly with the
426 surrounding polar residues and are configurationally closer to the final solvent relaxed state
427 (Lakowicz and Keating-Nakamoto, 1984). The emission will consequently also shift more
428 towards the red and is termed red-edge excitation shift (REES) (Demchenko, 2002). REES is
429 additionally associated to a loss of energy transfer in homo-FRET due to the decreased
430 likelihood of resonant coupling between the photo-selected chromophore and its close
431 neighbour. Red-edge excitation can therefore be used to non-destructively probe for the
432 occurrence of homo-FRET for fluorescent proteins (Squire *et al.*, 2004).

433

434 Imaging cells expressing cytosolic monomeric EGFP displayed no significant difference
435 between anisotropy images calculated from 488 nm and red-edge (514 nm) excitation (Figure
436 6A). In contrast cells that expressed the EGFP trimer exhibited a significant increase in
437 anisotropy when shifting the excitation from 488 nm to 514 nm (Figure 6B). This is even more
438 striking in the difference image where each cell is predominantly pseudo-colored in red,
439 signifying an anisotropy increase. The cells expressing monomeric EGFP show up in the
440 difference images as pseudo-coloured in both red and blue, indicating that they contain
441 regions of both increased anisotropy that coexist with regions of decreased anisotropy
442 (Figure 6A). This subcellular heterogeneity is most likely due to the temporal shift of about 3s
443 between the 488 nm and 514 nm anisotropy image because it was obtained using a
444 sequential point-scanning scheme and can be improved by using a different simultaneous
445 collection scheme.

446

447 Illumination at 514 nm generates a smaller photon flux per micro watt excitation power as
448 compared to a 488 nm illumination, as expected by the ensemble absorption spectrum of
449 EGFP (Figure 6C). To avoid differences in the error of the anisotropy calculation the laser
450 power was increased when exciting at the red-edge of 514 nm, to obtain similar photon
451 counts. To reduce the error even more the intensity from the entire cell was used to calculate
452 the anisotropy. Red-edge excitation causes a significant increase in the cell-wide anisotropy
453 of cells expressing the EGFP trimer in contrast to the lack of change for cells expressing the
454 EGFP monomer (Figure 6D). Quantifying the change reveals a slightly negative change for
455 monomeric EGFP ($-0.47 \pm 0.65 \cdot 10^{-2}$) versus a positive anisotropy change of $1.71 \pm 1.24 \cdot 10^{-2}$ for
456 the trimeric EGFP (Figure 6E). Next, red-edge excitation performance was tested on two
457 membrane-bound proteins: the trimeric VsV-G-EGFP and mEGFP-GPI. The GPI-anchored
458 protein is known to have a 20% fraction form small nanoclusters (Sharma *et al.*, 2004; Zanten

459 *et al.*, 2009). A $3.55 \pm 3.02 \cdot 10^{-2}$ anisotropy change was measured for VsV-G-EGFP with respect
460 to monomeric EGFP and a $1.01 \pm 2.20 \cdot 10^{-2}$ change for mEGFP-GPI (Figure 6F). This shows
461 that red-edge anisotropy loss as a measure for homo-FRET is sensitive enough to detect the
462 low amount of clustering of GPI-AP in a sea of randomly diffusing GPI-AP monomers (Sharma
463 *et al.*, 2004).

464

465 Discussion

466 In this manuscript we have outlined methods and caveats associated with the measurement
467 of emission anisotropy derived from the polarized excitation of fluorophores in an imaging
468 mode. We define parameters of optical instrumentation in terms of its influence on the
469 excitation polarization and detection of polarized emission. The role of SNR in terms of
470 number of photons detected also contributes significantly to measurement errors, and ways
471 to mitigate these have been examined. Indeed, taking into account all considerations, the
472 detection of emission anisotropy with sufficient accuracy allows a detection of homo-FRET,
473 permitting a very high-resolution measurement of nanoscale molecular interactions in living
474 cells.

475

476 One of the major challenges associated with homo-FRET detection is that the change in
477 emission anisotropy may have origins in processes other than energy transfer. In fact, a
478 straightforward implementation of steady-state emission polarization anisotropy will not allow
479 an immediate distinction between the effect on energy transfer or rotational changes in the
480 probe. Therefore, the experiments need to be complemented with their proper controls and
481 calibrations. Alternatively, for a time-resolved measurement of the emission polarization, the
482 effects of both energy transfer and rotation can be precisely measured. In fact, the rate of
483 anisotropy decay observed in time-resolved anisotropy measurements due to homo-FRET is
484 equivalent to the rate of energy transfer (Gautier *et al.*, 2001), and the ability to deconvolve
485 the fraction of species undergoing this decay informs us about the fraction of species
486 undergoing FRET (Clayton *et al.*, 2002). It is worth reiterating that the dynamic range of time-
487 resolved homo-FRET measurements is larger compared to using two distinct fluorophores to
488 measure molecular mixing (Tramier *et al.*, 2003). The reason for this is that instead of
489 measuring a small change in the lifetime of the donor fluorophore, time-resolved anisotropy
490 measures the changes due to the appearance of a fast time-scale due to homo-FRET, that
491 is of the order of sub-nanoseconds as compared to rotational effects on anisotropy which
492 are on the order of tens of nanoseconds, especially for fluorescent proteins (Volkmer *et al.*,
493 2000; Sharma *et al.*, 2004). However, even while time-resolved measurements are more
494 accurate in determining the extent of energy transfer, the high costs associated with the
495 instrumentation and extensive analysis of the signals may render this approach somewhat
496 less attractive.

497

498 Measuring changes in emission polarization anisotropy upon photobleaching, photo-
499 switching or red-edge excitation provide direct access to the homo-FRET population in a
500 steady-state anisotropy set up. Red-edge excitation and the associated anisotropy loss is an
501 attractive and non-destructive alternative to measure clustering. However, this method is
502 crucially dependent on the embedding of a highly polarizable fluorophore in a rigid
503 environment. Therefore, its use in biological contexts will likely be restricted to some
504 fluorescent proteins or labelling strategies that incorporate the chromophores inside a protein
505 pocket (Halder and Chattopadhyay, 2007) or within a lipid environment (Chattopadhyay,
506 2003). Another practical consideration is the availability of a high power selective laser source
507 to precisely excite at the red-edge of the fluorophore excitation spectrum. Nevertheless, if all
508 the conditions are met, the method is a powerful tool to probe real-time clustering, as a ratio
509 of anisotropies at these two wavelengths.

510

511 The treatment of the effect of NA on polarized detection initially detailed by Axelrod (Axelrod,
512 1979, 1989), and also documented here (Figure 2F) have largely focused on polarization
513 mixing at large excitation and collection angles. However it should be noted that presence of
514 an interface has additional influence on the emission dipole collection especially at higher
515 NAs (> 1.2) (Oheim *et al.*, 2020). This effect is termed super-critical emission collection, and
516 it also decays as a function of distance from the cover slip (Bourg *et al.*, 2015). This effect
517 becomes increasingly important for fluorophores of which the emission dipoles are oriented
518 perpendicular to the glass coverslip. The photons emitted by these fluorophores will get
519 equally distributed between the two orthogonally oriented polarization channels and can
520 become detected above super-critical angles at distances less than $\sim 500\text{nm}$ from the
521 coverslip. Both fast rotation and homo-FRET will permit emission from fluorophores with
522 dipoles oriented perpendicularly to the glass surface and its quantitative influence on
523 anisotropy measurements therefore warrants further exploration.

524
525 Finally, the fluorescence imaging modalities used to obtain homo-FRET are still diffraction
526 limited. This means that the measurement of homo-FRET indicates inter-molecular mixing
527 within the respective diffraction limited area, but it does not provide information about the
528 amount of clusters nor their sizes. Careful measurements of the shape of the photobleaching
529 curve, coupled to detailed simulations are likely to give the structure factor and shape of the
530 fluorescent ensembles that undergo FRET, as well as the fraction of molecules undergoing
531 FRET (Sharma *et al.*, 2004; Rao and Mayor, 2005; Heckmeier *et al.*, 2020). However, even
532 though it is possible to get an estimate of both of these numbers there is no access to the
533 spatial distribution of the fluorophores in the diffraction limited spot. In addition, although the
534 absence of homo-FRET may rule out molecular scale proximity of the probes, it does not
535 exclude the possibility of the association of the probes in a larger complex where individual
536 fluorophore are spaced far enough apart that they do not engage in FRET. Another limitation
537 is the fluorophore size itself which sets the limit on the extent of FRET than may be observed.
538 The sizes of fluorescent proteins (3 nm) prevents the closest approach of fluorophores to
539 approximately this distance, and considering that the Förster's radius for most fluorescent
540 proteins is around 5 nm (Patterson *et al.*, 2000), FRET efficiencies greater than 40% are
541 precluded (Piston and Kremers, 2007).

542
543 To gain more insight high resolution homo-FRET imaging can be complemented by indirect
544 techniques based on correlational movement in single particle tracking experiments (Low-
545 Nam *et al.*, 2011), number-brightness methods (Digman *et al.*, 2008; Cutrale *et al.*, 2019) or
546 fluorescence cross-correlation spectroscopy (Bacia *et al.*, 2006). More direct measurements
547 of the actual distance between the proteins of interest can be obtained in fixed cells. Spatial
548 patterns can be observed using the super-resolving power of the electron microscope (Prior
549 *et al.*, 2003) or super-resolution fluorescence techniques (Hell, 2007).

550
551 It is important to note that under conditions when fluorophores are orientationally restricted
552 this will interfere with the measurement of homo-FRET. In an extreme case, if the entire
553 fluorophore population is oriented, even if they are within Forsters' radius, and are capable
554 of energy transfer, their excitation with polarized excitation will not result in a detectable loss
555 in emission anisotropy. This implicitly means that it would be necessary to ascertain that the
556 ensemble of fluorophores under question does not exhibit an emission anisotropy that is
557 sensitive to the angle subtended with the polarized excitation. For example rhodamine-
558 labelled phalloidin molecules decorating an actin filament, exhibit an emission anisotropy that
559 varies with the angle that the filament subtends with the axis of polarized excitation. Therefore
560 homo-FRET between rhodamine-phalloidin molecules will be poorly detected in case the
561 filament is decorated with a high density of fluorophores. In fact, such a measurement on the
562 same microscopy systems calibrated for sensitive emission anisotropy measurements can
563 be used to measure the orientation of the fluorophores, provided the fluorophores are

564 restricted in their movement and align themselves with respect to a structure or protein of
565 interest. Using such a method, the orientation of actin filaments (Cruz *et al.*, 2016; Rimoli *et*
566 *al.*, 2022), integrin receptors (Nordenfelt *et al.*, 2017) and nuclear pore complexes (Kampmann
567 *et al.*, 2011) within a cell have been visualized.

568

569 In conclusion, the large dynamic range and sensitivity provided by emission polarization
570 based FRET microscopy makes it a technique that is exquisitely suitable to measure small
571 changes in nanoscale clustering of proteins. Here we have provided a practical guideline that
572 will allow the identification of errors associated with the measurement and outlined several
573 of the caveats that need to be considered whilst making such measurements. In addition, we
574 have indicated several ways to ascertain that the measured value corresponds to the property
575 of interest, e.g., nanoclustering.

576

577 **Acknowledgements**

578 T.S.v.Z. acknowledges an EMBO fellowship (ALTF 1519-2013) and the NCBS Campus
579 fellowship. S.M. acknowledges a JC Bose Fellowship from the Department of Science and
580 Technology (Government of India) and support from a Wellcome Trust/Department of
581 Biotechnology, Alliance Margdarshi Fellowship (IA/M/15/1/502018).

582 **MATERIALS AND METHODS**

583

584 **Fluorophores and beads**

585 Rhodamine 6G (Sigma) and Cy3 (GE healthcare) were dissolved in milliQ water at 1mM and
586 further diluted with milliQ or glycerol (Merck) to obtain the indicated concentrations of
587 fluorophores at the required water:glycerol content. EGFP was dissolved in PBS was further
588 diluted in PBS and glycerol keeping the EGFP concentration at 100nM. A coverslip with 3 μ m
589 beads (BD biosciences) was prepared by depositing 50 μ l of a 10^{-4} dilution followed by drying.
590

591 **Cells**

592 CHO-K1 cells were cultured in phenol-red free HF12 (Himedia) supplemented with 10% FBS
593 (Gibco) and 1% antibiotics (Gibco). Cells were plated on uncoated glass dishes 48 hours
594 before and transfected with EGFP-N1, EGFP-EGFP-EGFP-N1 or VsV-G-EGFP 12-16 hours
595 before the experiment using Fugene6 (Promega). CHO cells stably expressing GFP-GPI were
596 obtained earlier (Sharma *et al.*, 2004). To clear the golgi and ER content GFP-GPI and VsV-
597 G-EGFP expressing cells were exposed to 50 μ g/ml of cycloheximide (Sigma) for a total of
598 3-4 hours before the experiment.
599

600 **Anisotropy measurements, calibrations and error determination**

601 Fluorophores or beads were excited using either a laser (Agilent MLC100, 488nm line) send
602 in via the TIRF arm or a LED (CoolLED pE-300-ultra with a Chroma 480/20x excitation filter)
603 via the EPI arm of a Nikon TiE microscope. Both excitation sources had a polarizer (Moxtek
604 PFU04C) at the collimated region of their beam path, were directed to the objective via a
605 dichroic (Semrock Di03 R405/488/562/635) and had polarization extinction coefficients of
606 1500:1 (laser) and 365:1 (LED). Emission light was collected using the same objective and
607 filtered for emission (Semrock 520/35) and polarization (Newport 10LP-VIS-B) right after the
608 dichroic but before the tubelens of the microscope. The emission light was subsequently sent
609 via a Cairns optical splitter to the camera. The camera was either an EMCCD (Photometrics,
610 Evolve delta) or an sCMOS (Photometrics, Prime95B) and the polarization images were taken
611 sequentially. Both cameras had been calibrated for noise and pixel gain values before the
612 experiments using documented methods (Vliet *et al.*, 1998; Huang *et al.*, 2013; Lambert and
613 Waters, 2014).

614

615 Calibration measurements were obtained using a 10x 0.3NA objective that was focused 5-
616 15 μ m inside the solution of a 10ul droplet on the coverslip. To change the extinction
617 coefficient of the excitation beam a $\lambda/4$ wave plate was placed right after the polarizer in the
618 path carrying laser light. Turning the $\lambda/4$ waveplate changes the polarization extinction
619 coefficient, which was measured before each measurement. In a similar fashion the
620 orientation of the excitation placing and rotating a $\lambda/2$ waveplate right after the polarizer in
621 the excitation path altered polarization. sCMOS camera integration times were 200-8000 ms
622 and a laser excitation power of 1.5-2 mWatt ensured between 500-1200 photons per pixel.
623 The error was further reduced by using the average of 5-10 recorded frames, each containing
624 $>10^5$ photons per region of interest.
625

626

627 Once converted into photo-electrons the images were aligned with respect to each other,
either using the image itself or the alignment matrix from separately imaged subdiffraction

628 beads. Any postprocessing on the raw intensity such as binning or smoothing was performed
629 at this stage. Subsequently, the total number of photons from each polarization in different
630 regions of interest were extracted and together with the measured G-factor (0.99 ± 0.02) used
631 for anisotropy calculation using equation (1). The regions of interest (ROIs) were; a 100x100
632 pixel area at the center of field of view for solution images, the peak position of a bead, or an
633 entire cell. In some cases also the mean number of photons was used to determine the
634 brightness.

635

636 Bead images under LED illumination with a 10x 0.3NA objective were used to experimentally
637 determine the errors associated with the anisotropy calculation. Single pixel peak positions
638 of beads were obtained through a 2-D Gaussian fitting on maxima found in the average
639 intensity image of a 100-frame time-series. This allowed the extraction of a temporal trace
640 from both polarizations, which was used to calculate the anisotropy using the G-factor
641 (1.06 ± 0.02) and equation (1). The mean and standard deviation of the anisotropy over the
642 100-frame trace was then used in combination with the average total number of photons per
643 frame to generate a single point in [Figure 3B](#). To cover a large region within photon-budget
644 space both camera integration time (10-1000ms) and post-process pixel binning (0-5 pixels)
645 was used for all camera settings. LED excitation was used because the non-coherent nature
646 avoids interference issues that might significantly affect frame-to-frame intensities of single
647 beads and the power was kept at 0.1 mWatt resulting in negligible photobleaching.

648

649 **Changing Numerical Aperture**

650 The numerical aperture of the EPI/TIRF system was changed in two ways. The first was by
651 using different objectives: 10x 0.3NA air, 20x 0.75NA air, 100x 0.5-1.3 variable NA oil, 100x
652 1.45NA oil, and a 100x 1.49NA oil objective. The collar of the variable NA oil objective
653 changes the filling of the back focal plane by opening and closing an internal iris and thereby
654 alters the effective NA of the objective. The G-factor slightly changed depending on the
655 objective and was corrected in each experiment. The second manner of changing the NA
656 was done in a conjugate image of the back focal plane that was not shared by excitation and
657 emission. For this the emission path was relayed outside the microscope in a 4-f
658 configuration using two 100mm achromatic plano-convex lenses (Melles Griot). Assisted by
659 a removable Bertrand lens (30 mm bi-convex, Thorlabs) an iris was placed and aligned at the
660 conjugate back focal plane of a 100x 1.45NA TIRF objective. Adjusting the diameter of the
661 iris, d_{iris} , changes the NA of the detection path:

662

$$663 NA_{det}(d_{iris}) = NA_0 \cdot \frac{d_{iris}}{d_{objective\ BFP}} \quad (7)$$

664

665 where NA_0 is the NA of the objective, $d_{objective\ BFP}$ is the diameter of the objective back focal
666 plane. Anisotropy images were obtained and analyzed as before. The G-Factor (0.99 ± 0.02)
667 remained unaltered upon changing the collection NA.

668

669 **Photobleaching in TIRF**

670 In the same set up as described above cells expressing the trimeric VsV-G-EGFP at the
671 plasma membrane were photobleached in TIRF through continuous exposure to 10 mWatt
672 488nm laser power in TIRF. Camera integration times were 100-300ms and whole cell basal

673 membrane ROIs were taken, excluding large highly intense spots. Photobleaching rates were
674 measured to be $49 \pm 16 \text{ s}^{-1}$ and independent of detection NA settings.

675

676 **Photobleaching in Confocal**

677 Cells expressing cytosolic EGFP-monomer or EGFP-trimer were placed on a CSU-W1
678 spinning disk confocal. After collimation the excitation beam was sent through a polarization
679 filter (Moxtek PFU04C), a dichroic (Semrock T405/488/568/647) and via the 50 μm pinhole
680 Nipkow spinning disk (4000 rpm) to the objective. Emission was collected with the same
681 objective and from the dichroic sent to two EMCCD detectors (Andor Life888) via a polarizing
682 beam splitter (Moxtek FBF04C) and an individual filter (Chroma ET525/50m) for each camera.
683 The polarization extinction coefficient for 488nm excitation was 3600:1 at the back focal
684 plane and the G-Factor 1.30 ± 0.07 . With a 100x 1.4NA objective and 4.2 mWatt power at the
685 back focal plane the photobleaching rate of EGFP in cells was $196 \pm 50 \text{ s}^{-1}$. Both polarization
686 images were obtained simultaneously at 1 Hz with 50-150 ms integration time and both
687 cameras set at a measured EM gain of 140. To ensure continuous photobleaching the laser
688 was kept on during the photobleaching and typically reached a photobleaching fraction of
689 0.6-0.8 after 150-200 s. Whole cell ROIs were used and cells containing saturated pixels were
690 not taken further for analysis. Steady state anisotropy single cell analysis of cells expressing
691 cytosolic EGFP-monomer or EGFP-trimer (Figure 3) were also measured on the CSU-W1
692 spinning disk confocal in a similar fashion as described above, with the exception of using
693 lower laser power (0.35 mWatt) and longer camera exposure times (150-500 ms).

694

695 **Red-Edge anisotropy**

696 Cells expressing the indicated construct were imaged on a Zeiss LSM780 with a 40x 1.2NA
697 water objective using highly polarized ($>1500:1$) 488nm and 514nm excitation. Excitation and
698 emission were separated using MBS488 for 488nm excitation or MBS458/514 for 514nm
699 excitation and the polarization was sequentially selected using orthogonally oriented
700 polarizers. After identical band pass filter settings (518-562nm) the photon stream was
701 detected using the 32-array GaAsP detector that was set at pseudo photon counting mode.
702 To ensure similar detection conditions the power of the 514nm excitation was increased to
703 162 μWatt as compared to 37 μWatt power used for 488nm excitation and the pinhole
704 together with the objective collar position were optimized before the experiment. GFP
705 excitation under these conditions is still within the linear regime. The pixel size was set at
706 415nm, the pixel dwell time at 6.3 μs and photobleaching of the sample was minimal. Due to
707 the point scanning mode there was a temporal difference between polarizations of 2.7 s and
708 a wait time between two excitation conditions of 5.2 s. Switching the sequence of acquisition
709 had no influence on the cell measurements. The G-Factor of the system was determined
710 using a 100nM FITC solution and was 1.154 for 488nm excitation and 1.157 for 514nm
711 excitation. Because the FITC chromophore is freely rotating in a solution with fast solvent
712 dynamics the polarization of the emission will explore all orientations irrespective of the
713 excitation conditions.

714

715 **Theoretical calculations**

716 In order to theoretically estimate the effect of signal-to-noise at the detectors on the
717 anisotropy measurement a contamination was introduced in the calculation of the anisotropy:

718

719
$$r^*(f_{\parallel}, f_{\perp}) = \frac{((1-f_{\parallel}) \cdot I_{\parallel} + f_{\perp} \cdot I_{\perp}) - G^* \cdot ((1-f_{\perp}) \cdot I_{\perp} + f_{\parallel} \cdot I_{\parallel})}{((1-f_{\parallel}) \cdot I_{\parallel} + f_{\perp} \cdot I_{\perp}) + 2 \cdot G^* \cdot ((1-f_{\perp}) \cdot I_{\perp} + f_{\parallel} \cdot I_{\parallel})} \quad (8)$$

720
721 with f_{\parallel} the fraction of I_{\parallel} leaking into the perpendicular channel, f_{\perp} , and I_{\perp} the reverse. f_{\parallel} and
722 f_{\perp} are the inverse of their polarization extinction coefficients. This calculation has the
723 underlying assumption that no photons are lost during the detection. The G-factor is also
724 affected following:

725
726
$$G^*(f_{\parallel}, f_{\perp}) = \frac{1-f_{\parallel}+f_{\perp}}{1-f_{\perp}+f_{\parallel}} \quad (9)$$

727
728 The dynamic range using the two experimental extremes for fluorophores with aligned
729 excitation and emission dipoles, which are $r = 0$ ($I_{\parallel} = I_{\perp}$) and $r = 0.4$ ($I_{\parallel} = 3I_{\perp}$), can now be
730 calculated with respect to the polarization contamination.

731
732 Next, the theoretical error of the anisotropy measurement had been described by Lidke et al.
733 (Lidke et al., 2005) and was used to calculate the relative anisotropy error dependence on
734 both the anisotropy and the total number of photons used, see equation 6.

735
736 Finally, the effect of the numerical aperture (NA) of the system on the anisotropy
737 measurement is calculated following earlier documented equations (Axelrod, 1979, 1989;
738 Piston and Rizzo, 2008). These relate how a high NA lens collects fluorescence emitted into
739 three-dimensional space, (x, y, z) , where the z-direction (I_z) of the sample coordinate plane is
740 defined as the parallel (I_{\parallel}) plane of the detection. Detection of dipole projections from the
741 other directions than results in:

742
743
$$I_{\parallel} = K_c I_z + K_b I_y + K_a I_x \quad (10)$$

744
$$G \cdot I_{\perp} = K_b I_z + K_c I_y + K_a I_x \quad (11)$$

745
746 where the normalized weighing factors, $K_{a,b,c}$, are defined following Axelrod (Axelrod, 1989):

747
748
$$K_a = \frac{1}{3} \cdot (2 - 3 \cdot \cos\theta + \cos^3\theta) \quad (12)$$

749
$$K_b = \frac{1}{12} \cdot (1 - 3 \cdot \cos\theta + 3 \cdot \cos^2\theta - \cos^3\theta) \quad (13)$$

750
$$K_c = \frac{1}{4} \cdot (5 - 3 \cdot \cos\theta - \cos^2\theta - \cos^3\theta) \quad (14)$$

751
752 the angle, θ , comes from the numerical aperture, NA, via:

753
754
$$NA = n \cdot \sin\theta \quad (15)$$

755
756 where n is the refractive index. Note that for isotropic samples $I_y = I_x$ and that for very small
757 angles (low NA) the weighing factor K_c approaches 1 while $K_{a,b}$ are close to 0. In this situation
758 the dipole projections in sample space (z, y) follow the detection planes (\parallel, \perp). For the
759 calculations of the theoretical graphs in Figure 7A,C the anisotropy values measured with the
760 lowest NA (mean $\pm \sigma$) were used as a starting point. Note that Figure 7A has both air ($n = 1$)
761 and oil ($n = 1.512$) objectives.

REFERENCES

Axelrod, D (1979). Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. *Biophysj* 26, 557–573.

Axelrod, D (1989). Chapter 12 Fluorescence Polarization Microscopy. Elsevier, 333–352.

Bacia, K, Kim, SA, and Schwille, P (2006). Fluorescence cross-correlation spectroscopy in living cells. *Nat Methods* 3, 83–89.

Bader, AN, Hofman, EG, Voortman, J, Henegouwen, PMP van BE, and Gerritsen, HC (2009). Homo-FRET Imaging Enables Quantification of Protein Cluster Sizes with Subcellular Resolution. *Biophysj* 97, 2613–2622.

Berg, J van den, Boersma, AJ, and Poolman, B (2017). Microorganisms maintain crowding homeostasis. *Nat Rev Microbiol* 15, 309–318.

Boersma, AJ, Zuhorn, IS, and Poolman, B (2015). A sensor for quantification of macromolecular crowding in living cells. *Nature Methods* 12, 227–229.

Bourg, N, Mayet, C, Dupuis, G, Barroca, T, Bon, P, Lécart, S, Fort, E, and Lévéque-Fort, S (2015). Direct optical nanoscopy with axially localized detection. *Nat Photonics* 9, 587–593.

Chattopadhyay, A (2003). Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. *Chem Phys Lipids* 122, 3–17.

Clayton, AHA, Hanley, QS, Arndt-Jovin, DJ, Subramaniam, V, and Jovin, TM (2002). Dynamic Fluorescence Anisotropy Imaging Microscopy in the Frequency Domain (rFLIM). *Biophys J* 83, 1631–1649.

Cruz, CAV, Shaban, HA, Kress, A, Bertaux, N, Monneret, S, Mavrakis, M, Savatier, J, and Brasselet, S (2016). Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. *Proceedings of the National Academy of Sciences of the United States of America* 113, E820–E828.

Cutrale, F et al. (2019). Using enhanced number and brightness to measure protein oligomerization dynamics in live cells. *Nature Protocols* 14, 616–638.

Dale, RE, Eisinger, J, and Blumberg, WE (1979). The orientation freedom of molecular probes. *Biophysical Journal* 26, 161–194.

Demchenko, AP (2002). The red-edge effects: 30 years of exploration. *Luminescence* 17, 19–42.

Digman, MA, Dalal, R, Horwitz, AF, and Gratton, E (2008). Mapping the Number of Molecules and Brightness in the Laser Scanning Microscope. *Biophysical Journal* 94, 2320–2332.

Ferrand, A, Schleicher, KD, Ehrenfeuchter, N, Heusermann, W, and Biehlmaier, O (2019). Using the NoiSee workflow to measure signal-to-noise ratios of confocal microscopes. *Scientific Reports* 9, 1–12.

Förster, T (1948). Zwischenmolekulare energiewanderung un fluoreszenz. *Annalen Der Physik* 6, 55–75.

Gautier, I, Tramier, M, Durieux, C, Coppey, J, Pansu, RB, Nicolas, J-C, Kemnitz, K, and Coppey-Moisan, M (2001). Homo-FRET Microscopy in Living Cells to Measure Monomer-Dimer Transition of GFP-Tagged Proteins. *Biophysj* 80, 3000–3008.

Ghosh, S, Saha, S, Goswami, D, Bilgrami, S, and Mayor, S (2012). Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy. 291–327.

Goswami, D, Gowrishankar, K, Bilgrami, S, Ghosh, S, Raghupathy, R, Chadda, R, Vishwakarma, R, Rao, M, and Mayor, S (2008). Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven Activity. *Cell* 135, 1085–1097.

Gowrishankar, K, Ghosh, S, Saha, S, C, R, Mayor, S, and Rao, M (2012). Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface Molecules. *Cell* 149, 1353–1367.

Haldar, S, and Chattopadhyay, A (2007). Dipolar Relaxation within the Protein Matrix of the Green Fluorescent Protein: A Red Edge Excitation Shift Study. *The Journal of Physical Chemistry B* 111, 14436–14439.

Heckmeier, PJ, Agam, G, Teese, MG, Hoyer, M, Stehle, R, Lamb, DC, and Langosch, D (2020). Determining the Stoichiometry of Small Protein Oligomers Using Steady-State Fluorescence Anisotropy. *Biophysj* 119, 99–114.

Hedde, PN, Ranjit, S, and Gratton, E (2015). 3D fluorescence anisotropy imaging using selective plane illumination microscopy. *Opt Express* 23, 22308–22310.

Heintzmann, R, Relich, PK, Nieuwenhuizen, RPJ, Lidke, KA, Ried, and Rieger, B (2018). Calibrating photon counts from a single image.

Hell, SW (2007). Far-Field Optical Nanoscopy. *Science* 316, 1153–1158.

Hoppe, A, Christensen, K, and Swanson, JA (2002). Fluorescence Resonance Energy Transfer-Based Stoichiometry in Living Cells. *Biophys J* 83, 3652–3664.

Huang, F et al. (2013). Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. *Nature Methods* 10, 653–658.

Jaqaman, K, Loerke, D, Mettlen, M, Kuwata, H, Grinstein, S, Schmid, SL, and Danuser, G (2008). Robust single-particle tracking in live-cell time-lapse sequences. *Nature Methods* 5, 695–702.

Jares-Erijman, EA, and Jovin, TM (2003). FRET imaging. *Nature Biotechnology* 21, 1387–1395.

Kalappurakkal, JM, Anilkumar, AA, Patra, C, Zanten, TS van, Sheetz, MP, and Mayor, S (2019). Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading. *Cell* 177, 1738–1756.e23.

Kampmann, M, Atkinson, CE, Mattheyses, AL, and Simon, SM (2011). Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy. *Nat Struct Mol Biol* 18, 643–649.

Kenworthy, AK, and Edidin, MA (1998). Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 Å using imaging fluorescence resonance energy transfer. *Journal of Cell Biology* 142, 69–84.

Kreis, TE, and Lodish, HF (1986). Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. *Cell* 46, 929–937.

Krishnan, RV, Varma, R, and Mayor, S (2001). Fluorescence Methods to Probe Nanometer-Scale Organization of Molecules in Living Cell Membranes. *J Fluoresc* 11, 211–226.

Lakowicz, J (2006). Principles of Fluorescence Spectroscopy.

Lakowicz, JR, and Keating-Nakamoto, S (1984). Red-Edge Excitation of Fluorescence and Dynamic Properties of Proteins and Membranes. *Biochemistry* 23, 3013–3021.

Lambert, TJ, and Waters, JC (2014). Chapter 3 Assessing camera performance for quantitative microscopy. *Methods Cell Biol* 123, 35–53.

Lidke, D, Nagy, P, Barisas, B, Heintzmann, R, Post, J, Lidke, K, Clayton, A, Arndt-Jovin, D, and Jovin, T (2003). Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). *Biochemical Society Transaction* 31, 1020–1027.

Lidke, KA, Rieger, B, Lidke, DS, and Jovin, TM (2005). The role of photon statistics in fluorescence anisotropy imaging. *IEEE Transactions on Image Processing* 14, 1237–1245.

Low-Nam, ST, Lidke, KA, Cutler, PJ, Roovers, RC, Henegouwen, PMP van B en, Wilson, BS, and Lidke, DS (2011). ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding. *Nature Structural and Molecular Biology* 18, 1244–1249.

Manley, S, Gillette, JM, Patterson, GH, Shroff, H, Hess, HF, Betzig, E, and Lippincott-Schwartz, J (2008). High-density mapping of single-molecule trajectories with photoactivated localization microscopy. *Nature Methods* 5, 155–157.

Markwardt, ML, Snell, NE, Guo, M, Wu, Y, Christensen, R, Liu, H, Shroff, H, and Rizzo, MA (2018). A Genetically Encoded Biosensor Strategy for Quantifying Non-muscle Myosin II Phosphorylation Dynamics in Living Cells and Organisms. *Cell Reports* 24, 1060–1070.e4.

Milo, R, and Phillips, R (2007). *Cell Biology by the Numbers*, New York: Garland Science.

Mori, Y, Yoshida, Y, Satoh, A, and Moriya, H (2020). Development of an experimental method of systematically estimating protein expression limits in HEK293 cells. *Sci Rep-Uk* 10, 4798.

Myšková, J, Rybakova, O, Brynda, J, Khoroshyy, P, Bondar, A, and Lazar, J (2020). Directionality of light absorption and emission in representative fluorescent proteins. *P Natl Acad Sci Usa* 117, 32395–32401.

Nordenfelt, P et al. (2017). Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration. *Nat Commun* 8, 2047.

Oheim, M, Salomon, A, and Brunstein, M (2020). Supercritical angle fluorescence microscopy and spectroscopy. *Biophys J* 118, 2339–2348.

Ojha, N, Rainey, KH, and Patterson, GH (2019). Imaging of fluorescence anisotropy during photoswitching provides a simple readout for protein self-association. *Nature Communications* 11, 1–11.

Patterson, GH, Piston, DW, and Barisas, BG (2000). Förster Distances between Green Fluorescent Protein Pairs. *Anal Biochem* 284, 438–440.

Perrin, F (1926). Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l'état excité. *J Phys Radium* 7, 390–401.

Piston, DW, and Kremers, G-J (2007). Fluorescent protein FRET: the good, the bad and the ugly. *Trends in Biochemical Sciences* 32, 407–414.

Piston, DW, and Rizzo, MA (2008). FRET by fluorescence polarization microscopy. *Methods Cell Biol* 85, 415–430.

Prior, IA, Muncke, C, Parton, RG, and Hancock, JF (2003). Direct visualization of Ras proteins in spatially distinct cell surface microdomains. *Journal of Cell Biology* 160, 165–170.

Raghupathy, R et al. (2015). Transbilayer Lipid Interactions Mediate Nanoclustering of Lipid-Anchored Proteins. *Cell* 161, 581–594.

Rao, M, and Mayor, S (2005). Use of Forster's resonance energy transfer microscopy to study lipid rafts. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research* 1746, 221–233.

Rimoli, CV, Valades-Cruz, CA, Curcio, V, Mavrakis, M, and Brasselet, S (2022). 4polar-STORM polarized super-resolution imaging of actin filament organization in cells. *Nat Commun* 13, 301.

Rizzo, MA, and Piston, DW (2005). High-Contrast Imaging of Fluorescent Protein FRET by Fluorescence Polarization Microscopy. *Biophysj* 88, L14–L16.

Rizzo, MA, Springer, G, Segawa, K, Zipfel, WR, and Piston, DW (2006). Optimization of Pairings and Detection Conditions for Measurement of FRET between Cyan and Yellow Fluorescent Proteins. *Microsc Microanal* 12, 238–254.

Sergé, A, Bertaux, N, Rigneault, H, and Marguet, D (2008). Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. *Nature Methods* 5, 687–694.

Sharma, P, Varma, R, Saraij, RC, Ira, Gousset, K, Krishnamoorthy, G, Rao, M, and Mayor, S (2004). Nanoscale Organization of Multiple GPI-Anchored Proteins in Living Cell Membranes. *Cell* 116, 577–589.

Squire, A, Verveer, PJ, Rocks, O, and Bastiaens, PIH (2004). Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. *Journal of Structural Biology* 147, 62–69.

Strickler, SJ, and Berg, RA (1962). Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules. *J Chem Phys* 37, 814–822.

Stryer, L (1978). Fluorescence Energy Transfer as a Spectroscopic Ruler. *Annual Review of Biochemistry* 47, 819–846.

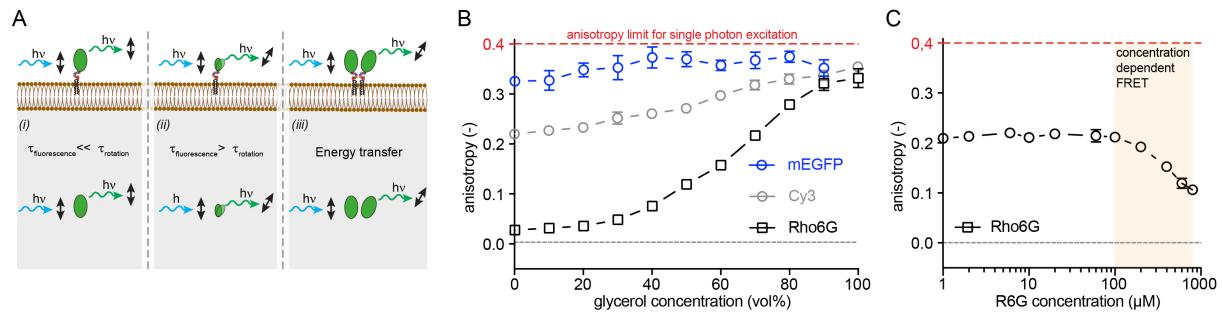
Suhling, K, Siegel, J, Phillips, D, French, PMW, Lévéque-Fort, S, Webb, SED, and Davis, DM (2002). Imaging the Environment of Green Fluorescent Protein. *Biophys J* 83, 3589–3595.

Tramier, M, Piolot, T, Gautier, I, Mignotte, V, Coppey, J, Kemnitz, K, Durieux, C, and Coppey-Moisan, M (2003). Homo-FRET versus hetero-FRET to probe homodimers in living cells. *Methods in Enzymology* 360, 580–597.

Varma, R, and Mayor, S (1998). GPI-anchored proteins are organized in submicron domains at the cell surface. *Nature* 394, 798–801.

Vliet, LJ van, Sudar, D, and Young, IT (1998). Digital Fluorescence Imaging Using Cooled CCD Array Cameras. ed. JE Celis, New York: Academic Press, 109–120.

Volkmer, A, Subramaniam, V, Birch, DJS, and Jovin, TM (2000). One- and Two-Photon Excited Fluorescence Lifetimes and Anisotropy Decays of Green Fluorescent Proteins. *Biophysj* 78, 1589–1598.


Wallrabe, H, and Periasamy, A (2005). Imaging protein molecules using FRET and FLIM microscopy. *Curr Opin Biotech* 16, 19–27.

Weber, G (1954). Dependence of the polarization of the fluorescence on the concentration. *Transactions of the Faraday Society* 50, 552–554.

Zanten, TS van, Cambi, A, Koopman, M, Joosten, B, Figidor, CG, and Garcia-Parajo, MF (2009). Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. *Proceedings of the National Academy of Sciences* 106, 18557–18562.

Zanten, TS van, and Mayor, S (2015). Current approaches to studying membrane organization. *F1000research* 4, F1000 Faculty Rev-1380.

FIGURES

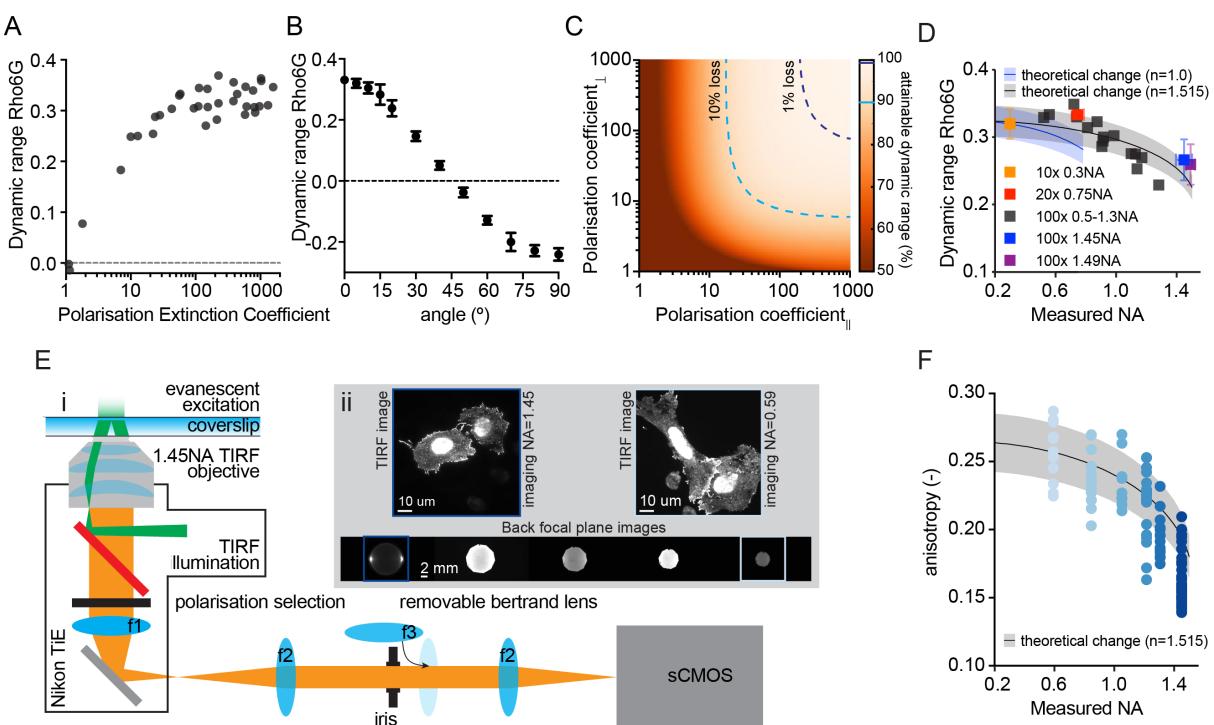


Figure 1. Concept and experiments displaying examples of polarized fluorescence emission anisotropy.

(A) Fluorophores that have their dipole aligned with the excitation polarization get excited through photoselection. **(i)** A fluorophore with limited rotational mobility during its fluorescence lifetime, such as typical fluorescent protein, will emit a photon that has a polarization aligned to the excitation polarization. **(ii)** Smaller molecules can rotate much faster and depolarise their emission with respect to the excitation polarization. **(iii)** If the energy is transferred to a nearby fluorophore the resulting emitted photon will be depolarised with respect to the excitation polarization, because the second fluorophore is more likely to be differently oriented with respect to the first fluorophore.

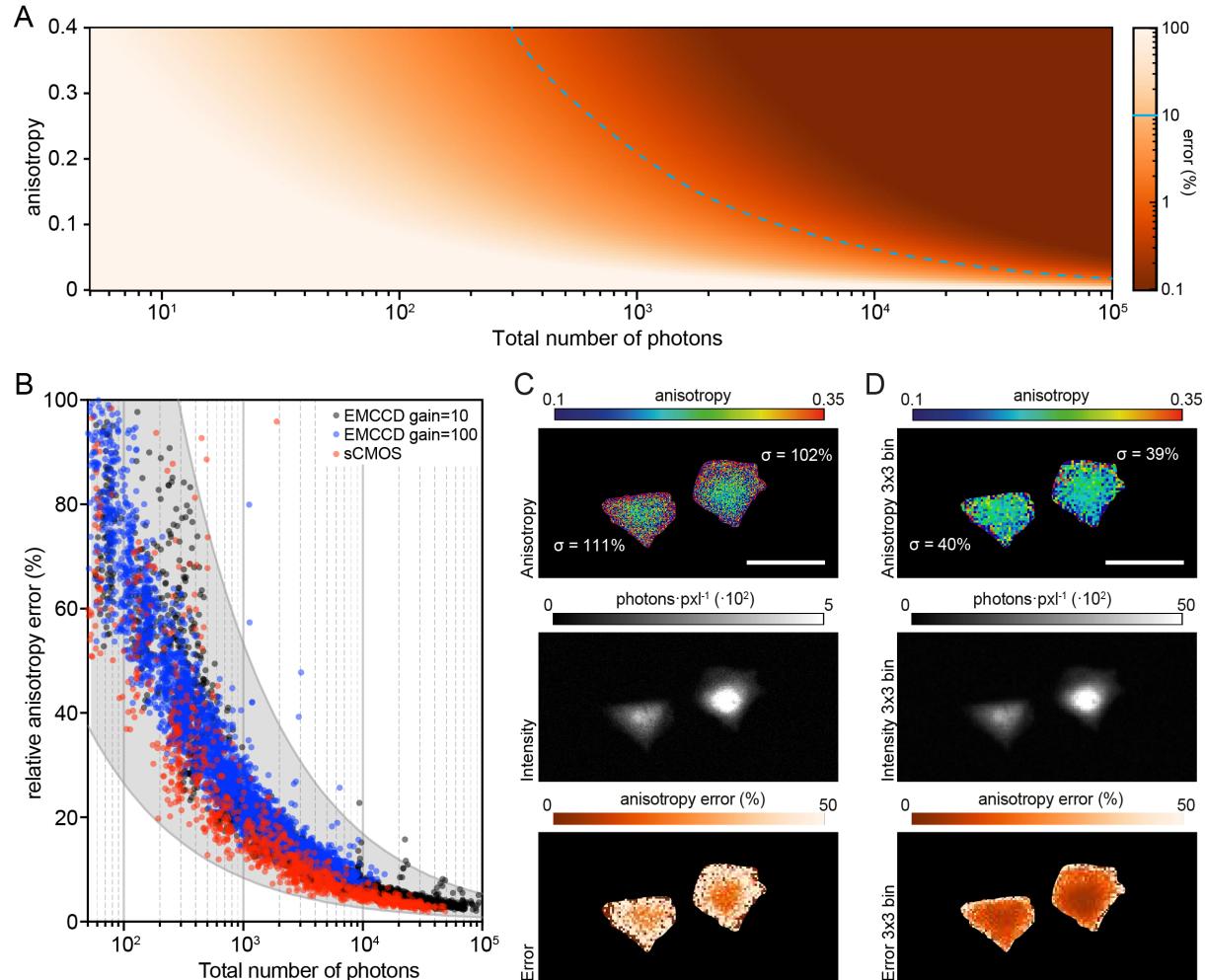
(B) Experimental data showing the effect of fluorescence lifetime and rotational time on the steady state emission anisotropy measurement. Anisotropy increases as the rotational timescale is slowed down through increasing the viscosity of the solution by increasing the glycerol content (x-axis, from 10^{-3} Pa·s to 1.412 Pa·s) or due to a size increase of the fluorophore (EGFP versus Rho6G; Mw of 26.9 kDa versus 0.8 kDa resulting in a ϕ of 14 ns versus 0.12 ns). The influence of fluorescence lifetime is exemplified by the higher anisotropy of Cy3 compared to Rho6G due to the shorter lifetime of Cy3 ($\tau=0.3$ ns versus $\tau=3.43$ ns).

(C) Experimental data displaying the effect of molecular proximity on the anisotropy measurement. Concentration dependent anisotropy of Rho6G in a 70% glycerol solution ($\sim 2.3 \cdot 10^{-2}$ Pa·s) contains two regimes: (1) a regime determined only by rotational diffusion and (2) a regime where Rho6G is undergoing increasing collisional homo-FRET upon an increasing concentration (above 100 mM).

Figure 2. Effects of polarization characteristics on the dynamic range of an anisotropy experiment.

(A) Lowering the excitation polarization extinction coefficient, by rotating a $\lambda/4$ waveplate that is placed in the excitation path, dramatically lowers the dynamic range of an anisotropy experiment. The dynamic range is experimentally determined as the difference between Rho6G dissolved in glycerol versus water.

(B) The orientation of the polarization of the excitation source can be misaligned with respect to the detection polarization axis by rotating a $\lambda/2$ waveplate that is placed in the excitation path. Misalignment significantly reduces the dynamic range eventually flipping the sign of the anisotropy because the parallel and perpendicular detection axes with respect to the excitation polarization become interchanged above 45°.


(C) The maximum attainable dynamic range is also determined by the polarization extinction coefficients (or signal-to-noise) for each of the two detector channels. The dynamic range is most sensitive to the extinction coefficient of the parallel channel (x-axis). Nevertheless, to avoid loss of dynamic range (colour scale) both the extinction coefficients should remain ideally above 100:1. The blue dashed lines indicate a 1% and 10% loss of the dynamic range.

(D) The depolarisation effect associated to high Numerical Aperture (NA) objectives changes the detected anisotropy values and thereby the dynamic range. The NA of a microscope system can be changed by using different NA objectives (different coloured squares) or through changing the aperture size of a variable NA objective (black squares). As expected from theory, the dynamic range decreases with increasing NA. The theoretical change in dynamic range is dependent on the refractive index and was adjusted to the mean (blue and black line for $n=1.0$ and $n=1.515$, respectively) and standard deviation (blue and black shaded region) of the measurement using the 10x 0.3NA objective (see [Materials and Methods](#)).

(E) A high NA objective is essential for TIRF illumination and NA reduction should therefore occur at a part of the optical path where excitation and collection are not shared. **(i)** Schematic setup used to change the NA selectively at the emission collection side. The focussed sample plane from the microscope tube lens (f1: 200mm) is relayed on a sCMOS camera using two achromatic plano-convex lenses (f2: 100mm). The position and relative opening of the iris in the conjugate back focal plane is monitored using a removable Bertrand lens (f3: 30mm). **(ii)** With the Bertrand lens in place the back focal plane can be visualized

and controllably constricted using an iris. The resultant change in the detection NA does not affect the evanescent field excitation conditions used to illuminate only the basal cell membrane.

(F) Steady state anisotropy values of VsV-G-EGFP measured from the basal membrane of cells using TIRF excitation at different collection NAs shows the expected trend of a decreased anisotropy at higher collection NAs. Each point is a single cell. The theoretical change in dynamic range (black line and shaded area as mean and standard deviation, respectively) was adjusted to the mean and standard deviation of the measurement at the lowest NA (see [Materials and Methods](#)).

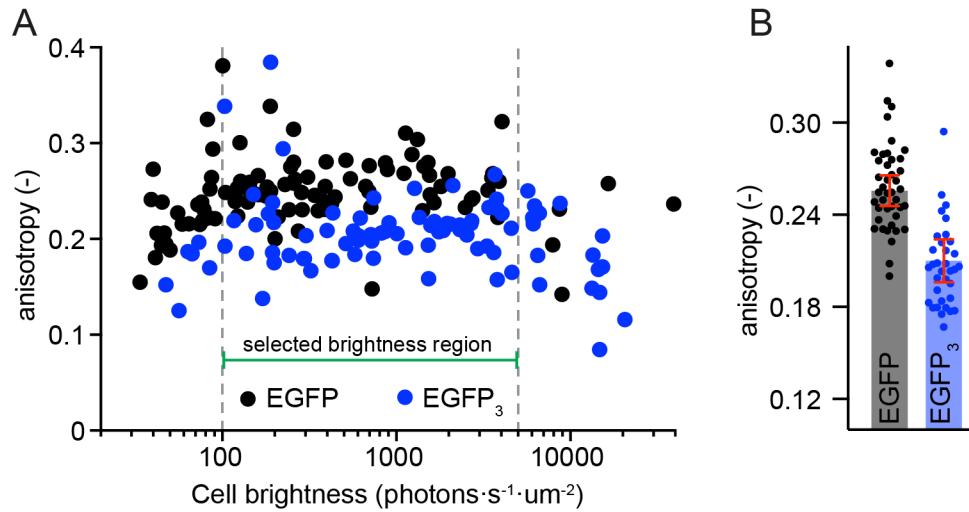


Figure 3. Error in the anisotropy measurement due to photon statistics.

(A) The relative theoretical error in anisotropy determination (pseudo coloured) is related to both the number of detected photons (x-axis) and well as to the calculated anisotropy (y-axis). The majority of anisotropy measurements from cells collect around 10-1000 photons per pixel constituting a rather large error. This is one of the reasons 10-40 pixel-square regions-of-interest or whole cell regions are collected for quantification. Blue dashed line represents a 10% error.

(B) The error can also be experimentally measured by recording multiple measurements from an object with a determined anisotropy, such as a $3\mu\text{m}$ fluorescent bead. The measurement records mean intensity, mean anisotropy and anisotropy standard deviation of each bead. Measured error in the anisotropy from the beads using an sCMOS (red) and an EMCCD with set gain at 100 (blue) or set gain at 10 (black). The errors for all three detectors lie within the grey area associated with the theoretical value.

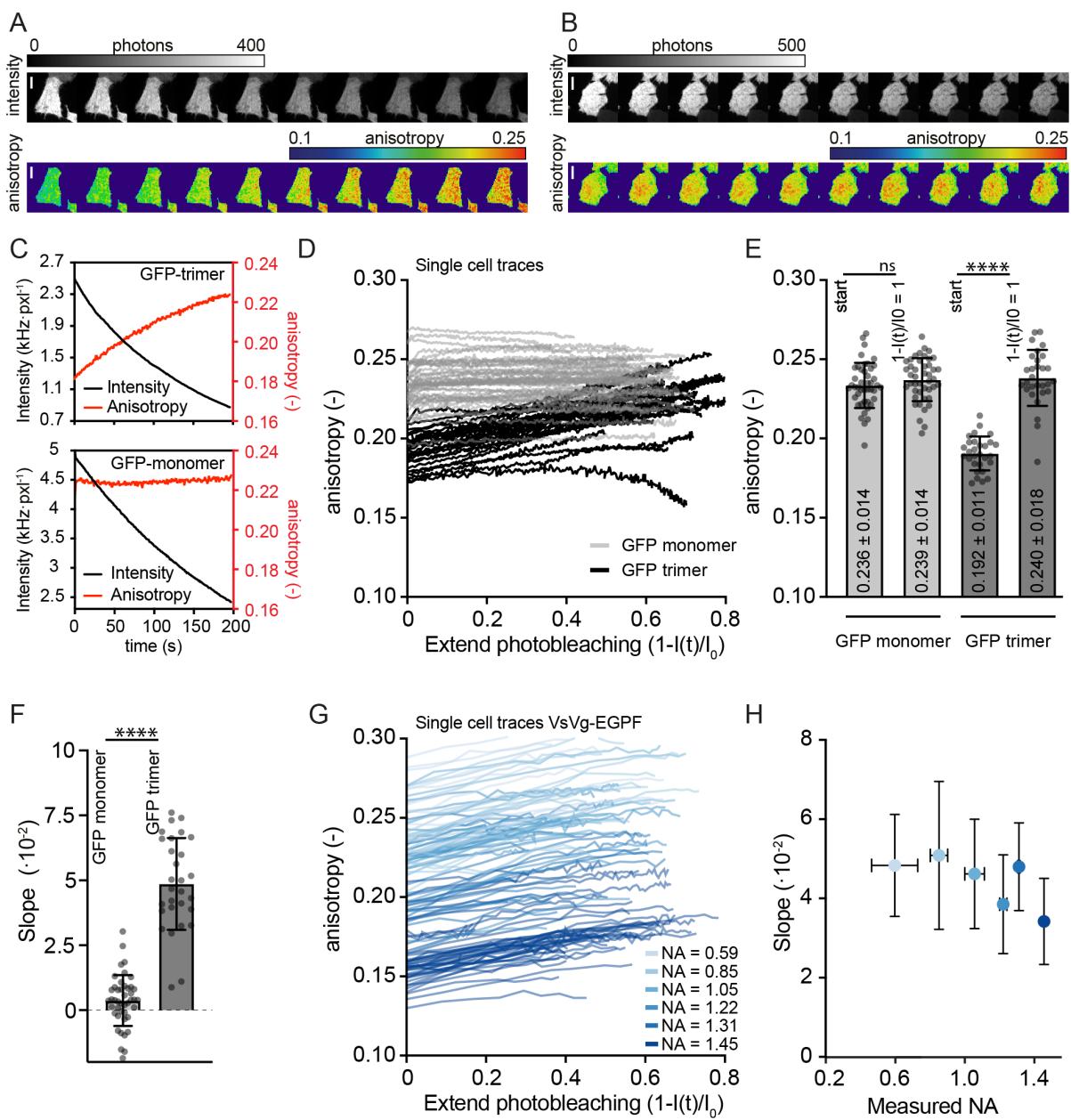

(C-D) Images of anisotropy (top panel), total intensity (center panel) and associated pixelwise error (bottom panel) for cells expressing cytosolic EGFP trimers obtained from **(C)** raw and **(D)** 3x3 binned data. Note that increasing the binning of the images in post processing increases the number of photons per pixel and thereby decreases the variability in the anisotropy. Scale bar is $50\mu\text{m}$.

Figure 4. Measurements of GFP anisotropy in living cells.

(A) Scatter plots of brightness versus anisotropy for cells expressing cytosolic EGFP monomers and cells expressing cytosolic EGFP trimers imaged with a spinning disk confocal microscope. Each point is associated to a single cell. The anisotropy was calculated using the total number of photons collected in the two channels for each whole cell. The brightness was calculated by dividing the total photons collected per cell by its area and the camera integration time. Note that the x-axis will shift depending on the excitation power density and is therefore dependent on the imaging mode (e.g. EPI, TIRF, spinning disk confocal, point-scanning confocal, etc) and excitation power.

(B) Anisotropy values of cells having expression levels between the indicated levels in panel (A). Please note that in order to compare two or more sets of data the anisotropy values have to be taken from in between two identical limiting values. In this case the boundaries are set by a lower limit from photon statistics and an upper limit after which collisional FRET dominates the anisotropy value.

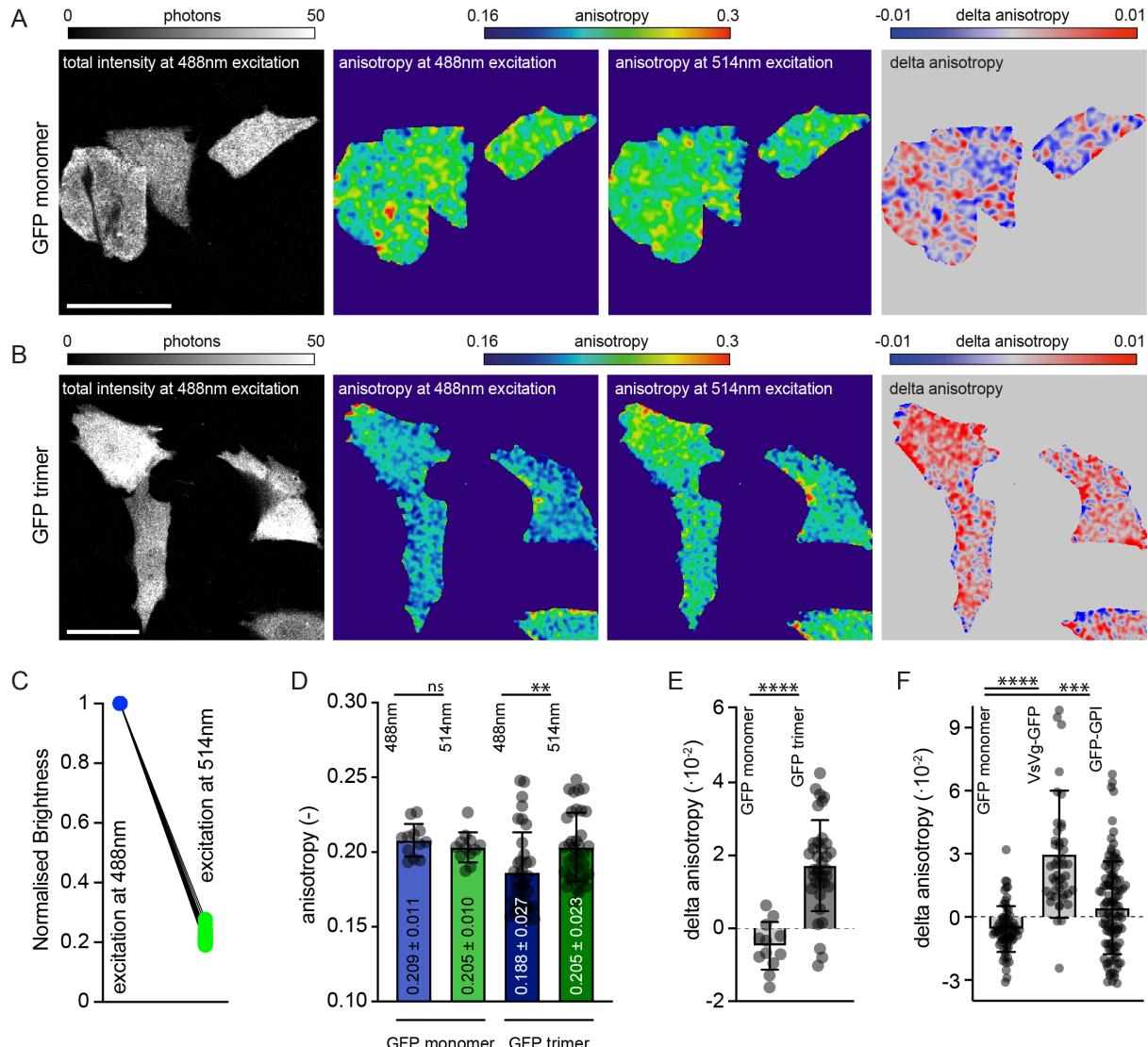
Figure 5. Loss of homo-FRET due to emitter dilution using photobleaching.

(A) Montage of total intensity (top panel) and associated anisotropy (bottom panel) images of a cell expressing EGFP trimers upon photobleaching from 0 to 200s. Note the increase in anisotropy of the cell as it gradually becomes dimmer upon photobleaching. Scale bar is 10 μ m.

(B) Montage of total intensity (top panel) and associated anisotropy (bottom panel) images of a cell expressing monomeric EGFP upon photobleaching. In contrast to the cell in (A) this cell does not show an anisotropy change even though it is becoming dimmer in time. Scale bar is 10 μ m.

(C) Graphs quantitatively displaying the detected brightness and anisotropy of the cell depicted in panel (A), top, and panel (B), bottom. Note that the brightness values are much higher than the cell brightness associated to the steady state anisotropy measurements of cells in Figure 3C and Figure 4A. This is due to the higher excitation conditions required for photobleaching (4.2 mWatt for photobleaching and 0.35 mWatt for imaging).

(D) Graphs from various cells relating the extent of photobleaching versus anisotropy for cells expressing cytosolic EGFP monomers (gray lines) and cells expressing cytosolic EGFP


trimers (black lines). Each line corresponds to a single cell. The majority of the cells were photobleached to around 20-40% of their original brightness in 100-200 s. Note that the majority of the curves can be represented by straight lines.

(E) Starting anisotropy and the anisotropy estimated from a straight line extrapolation from the photobleaching curves. The anisotropy from cells expressing the cytosolic EGFP monomer remained largely similar (from 0.236 to 0.239). Cells expressing the EGFP trimer, on the other hand, have a very distinct anisotropy at both ends of the photobleaching (from 0.192 to 0.240). Note that the anisotropy extrapolated to full photobleaching of the EGFP trimer is equivalent to the anisotropy from EGFP monomers. Each point corresponds to a single cell.

(F) The slopes of the graphs depicted in (D). Each point corresponds to a single cell.

(G) Graphs from various cells relating the extent of photobleaching versus anisotropy for cells expressing VsV-G-EGFP measured on the basal membrane of cells using TIRF excitation at different collection NAs. Each line corresponds to a single cell. Note that the absolute value of the anisotropy is dramatically altered ranging from 0.13 all the way up to 0.28 upon lowering the collection NA. Nevertheless, all of the examples display a positive slope upon photobleaching reflecting a decrease in homo-FRET of the trimeric complex as it photobleaches.

(H) The average and standard deviation of the anisotropy versus photobleaching slopes from multiple cells expressing the VsV-G-EGFP trimer at the plasma membrane, measured with a collection NA ranging from 0.59 to 1.45.

Figure 6. Loss of homo-FRET upon red-edge excitation.

(A-B) Total intensity, anisotropy at 488nm excitation, anisotropy at 514nm excitation and anisotropy difference upon red-edge excitation of cells expressing **(A)** monomeric EGFP or **(B)** trimeric EGFP. The anisotropy calculations have been obtained from 3x3 binned raw data images.

(C) Excitation power-dependent decrease in emission intensity upon excitation with 514nm normalized to excitation at 488nm. Since the excitation with 514 nm is at the shoulder of the absorption spectrum of GFP about 5 times more power (or integration) is required to obtain a similar emission intensity,

(D) Anisotropy measured at 488nm and red-edge excitation of 514nm for cells expressing monomeric or trimeric EGFP. Each point is a single cell.

(E) The difference in anisotropy between 488nm and 514nm excitation of the same cell expressing either monomeric or trimeric EGFP. Each point is a single cell.

(F) The change in anisotropy values upon exciting at the red-edge of monomeric EGFP compared to membrane bound trimeric VsV-G-EGFP and EGFP-GPI. Each point is a single cell.