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Summary

Progenitor cells play fundamental roles in preserving optimal organismal functions under normal, aging,
and disease conditions. However, progenitor cells are incompletely characterized, especially in the brain,
partly because conventional methods are restricted by inadequate throughput and resolution for
deciphering cell-type-specific proliferation and differentiation dynamics in vivo. Here, we developed
TrackerSci, a new technique that combines in vivo labeling of newborn cells with single-cell combinatorial
indexing to profile the single-cell chromatin landscape and transcriptome of rare progenitor cells and
track cellular differentiation trajectories in vivo. We applied TrackerSci to analyze the epigenetic and
gene expression dynamics of newborn cells across entire mouse brains spanning three age stages and
in a mouse model of Alzheimer's disease. Leveraging the dataset, we identified diverse progenitor cell
types less-characterized in conventional single cell analysis, and recovered their unique epigenetic
signatures. We further quantified the cell-type-specific proliferation and differentiation potentials of
progenitor cells, and identified the molecular programs underlying their aging-associated changes (e.g.,
reduced neurogenesis/oligodendrogenesis). Finally, we expanded our analysis to study progenitor cells
in the aged human brain through profiling ~800,000 single-cell transcriptomes across five anatomical
regions from six aged human brains. We further explored the transcriptome signatures that are shared or
divergent between human and mouse oligodendrogenesis, as well as the region-specific down-regulation
of oligodendrogenesis in the human cerebellum. Together, the data provide an in-depth view of rare
progenitor cells in mammalian brains. We anticipate TrackerSci will be broadly applicable to characterize
cell-type-specific temporal dynamics in diverse systems.
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Introduction

New neurons and glial cells are continuously produced in the adult mammalian brains, a critical process
associated with memory, learning, and stress (Lugert et al., 2010; Spalding et al., 2013). There is a
consensus that adult neurogenesis and oligodendrogenesis decline with advancing ages and in
neuropathological conditions (Galvan and Jin, 2007; Pollina and Brunet, 2011), but to what extent is
debated (Mathews et al., 2017; Sorrells et al., 2018). The ambiguity stems partly from technical
limitations - most studies rely upon the utilization of proxy markers, which may introduce bias for
quantifying the dynamics of extremely rare progenitor cells, especially in aged tissues. Furthermore, the
identity of progenitor cells is established as a result of tightly controlled epigenetic programs, driven in
part by transcription factors that interact with cis-regulatory sequences in a cell-type-specific manner.
While previous single-cell studies have provided critical insight into the gene expression signatures of
progenitor cells in the adult brain (Franjic et al., 2022; Habib et al., 2016; Kalinina and Lagace, 2022),
little is known about how the epigenetic landscape regulates the dynamics of rare progenitor cells in vivo.
Therefore, novel approaches for quantitatively capturing newborn cells and tracking their transcriptome
and chromatin state changes are critical to understanding cell population dynamics in development,
aging, and disease states.

Here we describe a novel method, TrackerSci, to track the proliferation and differentiation dynamics of
newborn cells in the mammalian brain. TrackerSci integrated protocols for labeling newly synthesized
DNA with a thymidine analog 5-Ethynyl-2-deoxyuridine (EdU) (Salic and Mitchison, 2008) and single-cell
combinatorial indexing sequencing for both transcriptome (Cao et al., 2019) and chromatin accessibility
profiling (Cusanovich et al., 2015). As a demonstration, we applied TrackerSci to profiling the single-cell
transcriptome or chromatin accessibility dynamics of 14,689 newborn cells from entire mouse brains
spanning three age stages and two genotypes. With the resulting datasets, we recovered rare progenitor
cell populations less represented in conventional single-cell analysis and tracked their cell-type-specific
proliferation and differentiation dynamics across ages. Furthermore, we identified the genetic and
epigenetic signatures associated with the alteration of cellular dynamics (e.g., adult neurogenesis,
oligodendrogenesis) that occurs in the aged mammalian brain. Finally, to compare rare progenitor cells
across species, we generated a human brain cell atlas profiling ~800,000 single-nucleus transcriptomes
of the human brain across five anatomic regions. By integration analysis with the TrackerSci dataset, we
identified region- and cell-type-specific signatures of rare progenitor cells in the aged human brain and
recovered conserved and divergent molecular signatures of oligodendrogenesis cells between human
and mouse. The experimental and computational methods described here could be broadly applied to
track cellular regenerative capacity and differentiation potential across mammalian organs and other
biological systems.

Results

Overview of TrackerSci

The optimized TrackerSci protocol follows these steps (Figure 1A): (i) Mice are labeled with 5-Ethynyl-2-
deoxyuridine (EdU), a thymidine analog that can be incorporated into replicating DNA for labeling in vivo

cellular proliferation (Lin et al., 2009; Salic and Mitchison, 2008). (ii) Brains are dissected, and nuclei are
extracted, fixed, and then subjected to click chemistry-based in situ ligation (Clarke et al., 2017) to an
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azide-containing fluorophore, followed by fluorescence-activated cell sorting (FACS) to enrich the EAU+
cells (Figure S1A). (iii) Indexed reverse transcription or transposition is used to introduce the first round
of indexing. Cells from all wells are pooled and then redistributed into multiple 96-well plates through
FACS sorting to further purify the EdU+ cells (Figure S1B). (iv) We then follow library preparation
protocols similar to sci-RNA-seq (Cao et al., 2019) for transcriptome profiling or sci-ATAC-seq
(Cusanovich et al., 2015) for chromatin accessibility analysis. Most cells pass through a unique
combination of wells, such that their contents are marked by a unique combination of barcodes that can
be used to group reads derived from the same cell. Notably, the two sorting steps implemented in
TrackerSci are essential for excluding contaminating cells and enriching extremely rare proliferating cell
populations, especially in the aged brain (less than 0.1% of the total cell population are EAU+ cells).

We extensively optimized the reaction conditions (e.g., fixation, permeabilization, and click-chemistry
reaction) to ensure the approach is fully compatible with FACS sorting and single-cell transcriptome and
chromatin accessibility profiling (Figure S2 and S3). For instance, the active Cu(l) catalyst and additive
included in the conventional click-chemistry reaction (Habib et al., 2016) significantly reduced the nuclei
quality for single-cell gene expression analysis (Figure S2A). To solve this problem, we tested a
commercialized click-chemistry method using picolyl azide dye and copper protectant, which resulted in
a minimal defect on library complexity (Figure S2B, Method) or cell purity for single-cell RNA-seq
analysis, as shown in an experiment profiling a mixture of human HEK293T and mouse NIH/3T3 cells
(Figure S1C and S1D). As a quality control, we further compared the TrackerSci chromatin accessibility
profile with the conventional sci-ATAC-seq profile in a mixture of human HEK293T and mouse NIH/3T3
cells. Both methods showed similar cellular purity (Figure S3A), fragment length distributions (Figure
S3B), a comparable number of unique fragments per cell, and a similar ratio of reads overlapping with
promoters in both cell lines and mouse brain nuclei (Figure S3C and S3D).

Additionally, the aggregated transcriptome and chromatin accessibility profiles derived from TrackerSci
(both cultured cell lines and tissues) were highly correlated with conventional single-cell combinatorial
indexing profiling (Figure S2E and S3E), suggesting that the labeling and conjugating reactions (e.g.,
EdU labeling and click-chemistry) in TrackerSci do not substantially interfere with downstream single-cell
transcriptome and chromatin accessibility profiling by combinatorial indexing.

A global view of newborn cells across the mammalian brain

We next applied TrackerSci to capture rare newborn cells from mouse brains spanning three age stages
and two genotypes. Briefly, following three to five days of continuous EdU labeling, we isolated nuclei
from the whole brain of 38 sex-balanced C57BL/6 mice (Figure 1A; Table S1), including 33 wild-type
mice across multiple development stages (Young: 6-9 weeks, Adult: 11-20 weeks, and Aged: 88-98
weeks) as well as five 5xFAD mutant mice (11-20 weeks) harboring multiple Alzheimer’s Disease (AD)
mutations (Oakley et al., 2006). Following TrackerSci protocol, we obtained transcriptomic profiles for
5,715 newborn cells (median 2,909 UMIs) (Figure S4A and S4B) and chromatin accessibility profiles for
8,974 newborn cells (median 50,225 unique reads) (Figure S5A and S5B). In addition, to characterize
the global brain cell population as a background control, we included DAPI singlets representing ‘all’
brain cells (i.e., without enrichment of the EdU+ cells) and obtained transcriptomic profiles for 8,380
nuclei (median 1,553 UMIs) and chromatin accessibility profiles for 342 nuclei (median 24,521 unique
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reads). The EdU+ nuclei and DAPI singlets were collected from the same set of samples and processed
in parallel to minimize any batch effect.

We first subjected the 14,095 TrackerSci transcriptome profiles, including both EdU+ nuclei and DAPI
singlets, to Louvain clustering (Blondel et al., 2008) and UMAP visualization (Mclnnes et al., 2018)
(Figure 1B; Figure S4C and S4D). Sixteen cell clusters were identified and annotated based on
established markers (Figure 1C; Table S2), ranging in size from 25 cells (Choroid plexus epithelial cells)
to 3,141 cells (Mature neurons). We next performed a semi-supervised clustering analysis of 9,316
TrackerSci chromatin accessibility profiles (8,974 EdU+ nuclei and 342 DAPI singlets), and identified
fourteen clusters (Figure 1B; Figure S5C and S5D; Methods), which mapped 1:1 to the main cell types
identified in the transcriptome analysis. Two rare cell types (i.e., ependymal cells and choroid plexus
epithelial cells) were only detected in the RNA dataset, mainly due to the low abundance of these cell
types. As expected, the corresponding cell types defined by the two molecular layers overlapped well in
the integration analysis (Figure 1D).

We observed a notably altered distribution of cell-type-specific fractions between ‘all’ brain cells and the
EdU+ cells (Figure 2A). For example, in contrast to the ‘all’ brain cells that are dominated by mature
neurons (e.g., cerebellum granule neurons: 32.7% in DAPI singlets vs. 2.85% in EdU+ cells) and
differentiated glial cells (e.g., myelin-forming oligodendrocytes: 11.9 % in DAPI singlets vs. 0.75% in
EdU+ cells), the EdU+ population showed prominent enrichment of progenitor cells such as immature
neurons (e.g., olfactory bulb neuroblasts: 0.14% in DAPI singlets vs. 13.4% in EdU+ cells) and glia
progenitors (e.g., oligodendrocyte progenitor cells: 1.11% in DAPI singlets vs. 45.4% in EdU+ cells).
Intriguingly, we detected newly-generated erythroblasts (Hbb-bt+, Hbb-bs+) and immune cells (Ptprc+),
which may correspond to newborn blood cells circulating in the brain, as they exclusively exist in the
EdU+ nuclei. Of note, the cell-type-specific distribution of newborn cells was highly correlated between
TrackerSci transcriptome and chromatin accessibility datasets (Spearman’s correlation r = 0.92; Figure
3B) and across conditions (Figure S6).

We next integrated TrackerSci datasets with a global brain cell atlas from our companion study (Sziraki
et al., 2022), for which we profiled 1.5 million cells from entire mouse brains spanning three age groups
and two mutants associated with AD. Briefly, we integrated EdU+ brain cells (5,715 single-cell
transcriptomes from TrackerSci), ‘All’ brain cells (8,380 DAPI singlets from TrackerSci), and “All” brain
cells from the global brain cell atlas (sampling 5,000 cells for each main cell type) into the same UMAP
space. As expected, ‘All’ brain cells from the TrackerSci highly overlapped with cells from the global brain
cell atlas in the integrated UMAP space (Figure 2C). Remarkably, the EdU+ cells (from TrackerSci)
formed continuous cellular differentiation trajectories bridging several terminally differentiated cell types,
including the oligodendrogenesis trajectory from the oligodendrocyte progenitor cells to differentiated
oligodendrocytes, and the neurogenesis trajectory connecting astrocytes and OB neurons (Figure 2C).
Of note, the bridge cells are validated by the expression of known progenitor markers, such as Bmp4 and
Enpp6 for committed oligodendrocyte precursors (Marques et al., 2018; Zhang et al., 2014) and Mki67,
Egfr for neuronal progenitor cells (Pastrana et al., 2009) (Figure S7A). While the 1.5 million global brain
cell atlas is one of the most extensive single-cell analyses of adult mouse brains, these “bridge” cells
were still missing in the original trajectory analysis (Figure S7B), highlighting the application of the
TrackerSci method for recovering continuous cellular differentiation trajectories in adult tissues.
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Figure 1. TrackerSci enables single-cell transcriptome and chromatin accessibility profiling of
rare proliferating cells in the mammalian brain.

(A) TrackerSci workflow and experiment scheme. Key steps are outlined in the text.

(B) UMAP visualization of single-cell transcriptomes (top) and single-cell chromatin accessibility profiles
(bottom), including EdU+ cells (profiled by TrackerSci) and all brain cells (without enrichment of EdU+
cells), colored by main cell types. Dimension reduction analysis for scRNA-seq and scATAC-seq was
performed independently.

(C) Dotplot and heatmap showing gene expression and gene activity of known marker genes for each
cluster defined by TrackerSci-RNA (top) and TrackerSci-ATAC (bottom), respectively.

(D-E) UMAP visualization of mouse brain cells, integrating the single-cell transcriptome and chromatin
accessibility profiles of EAU+ cells and DAPI singlets (representing the global brain cell population). Cells
are colored by sources (D, top), molecular layers (D, bottom), and main cell types (D). The identified
neurogenesis and oligodendrogenesis trajectories are both annotated in (E).
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Figure 2. TrackerSci captures rare newborn cells that are less represented in conventional single-
cell studies.

(A) Pie plots showing the proportion of main cell types identified in the global cell population (left) and the
enriched EdU+ cell population (right).

(B) Scatter plot showing the fraction of each cell type in the enriched EdU+ cell population by single-cell
transcriptome (x-axis) or chromatin accessibility analysis (y-axis) in TrackerSci, together with a linear
regression line.

(C) We integrated the TrackerSci dataset, including both EdU+ cells and DAPI singlets, with a large-
scale brain cell atlas (Sziraki et al., 2022) comprising 1,469,111 cells. For the brain cell atlas, we
sampled 5,000 cells of each cell type for the integration analysis. The UMAP plots show the integrated
cells, colored by assay types (left, cell types from TrackerSci are annotated) or cell annotations from the
brain cell atlas (right, cells from TrackerSci are colored in grey).
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Identify cell-type-specific epigenetic signatures and TF regulators of newborn cells

Toward a better understanding of the molecular signatures of newborn cells, we performed differential
expression (DE) and differential accessibility (DA) analysis, yielding 5,610 DE genes (FDR of 5%, Figure
3A; Table S3; Methods) and 68,556 DA sites (FDR of 5%, Table S4; Methods) with significant changes
across cell types. Notably, 1,744 (34.8%) of DE genes have DA promoters enriched in the same cell type
(median Pearson r = 0.81, Figure 3A). While canonical gene markers were observed and used for our
annotation of different cell types (Figure $8), we detected many novel markers that are highly cell-type-
specific but have not been reported in prior research, including markers for neuronal progenitor cells (e.g.,
Adgrv1 and Rmi2), DG neuroblasts (e.g., Prdm8 and Marchf4), OB neuroblasts (e.g., Zfp618 and Sdk2)
and committed oligodendrocyte precursors (e.g., Ccdc134 and Mroh3) (Figure S8). The cell type
specificity of these markers were cross-validated by both gene expression and promoter accessibility.
For comparison, some of the widely used neurogenesis markers, such as Sox2 and Dcx, were found to
be expressed across multiple cell types (e.g., oligodendrocyte progenitor cells; Figure $9), which may
affect their accuracy for labeling cells in neurogenesis (Hodge and Hevner, 2011).

To investigate the epigenetic landscape that shapes the transcriptome of newborn cells, we next sought
to identify the cis-regulatory elements underlying the cell-type-specific expression of gene markers. We
first computed the correlation between the expression of each gene marker and the accessibility of its
nearby DA sites across 88 ‘pseudo-cells’ (a subset of cells with adjacent integrative UMAP coordinates
grouped by k-means clustering, Figure S10A; Methods). To control for any potential artifacts of the
analysis, we permuted the sample IDs of the data matrix followed by the same analysis pipeline.
Altogether, we identified 15,485 positive links between genes and distal sites (plus 2,832 associations
between genes and promoters) at an empirically defined significance threshold of FDR = 0.05 and based
on their cell-type-specificity (Figure 3B; Table S5; Methods).

The identified distal site-gene linkages were significantly closer than all possible pairs tested (median
159 kb for identified links vs. 251 kb for all pairs tested; p-value < 5 x 107°, unpaired permutation test

based on 20,000 simulations, Figure $10B). Most genes were associated with a few links (median two
distal sites per gene, out of a median of 94 distal sites within 500 kb of the TSS tested, Figure S10B).
For example, DIx2, a canonical neurogenesis marker (Petryniak et al., 2007), was significantly linked to
four distal peaks, all exhibiting remarkable cell-type-specificity similar to its gene expression (Figure 3D
and 3E; Figure S10C). By contrast, a small subset of genes (3.5%) were linked with a large number of
peaks (>= 10 peaks). For instance, Olig2 was linked to 10 distal peaks (Figure 3D), all highly enriched in
the oligodendrocyte progenitor cells (OPC) and committed oligodendrocyte precursors (COP) (Figure 3E;
Figure S10D). Some genes (e.g., DIx2) showed strong cell-type-specificity in their linked distal sites
compared to their promoters (Figure S10E), indicating that long-range transcriptional control could play a
key role in determining cell type specificities.

To further characterize transcription factors (TFs) that contribute to the cell type specification of
progenitor cells, we computed the Pearson correlation coefficient between TF expression and motif
accessibility across all afore-described “pseudo-cells”. We then performed the same analysis using the
permuted data as the background control. At an empirically defined significance threshold of FDR = 0.05,
we identified a total of 70 cell-type-specific TF regulators, including 19 potential repressors featured with
negative correlations between gene expression and motif accessibility (e.g., Olig2, Figure 3C and 3F).
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Most cell-type-specific TFs are readily validated by previous studies. For example, Olig2 has been
reported to encode a transcriptional repressor during motor neuron differentiation and myelinogenesis
(Zhang et al., 2022). Other examples include Spi1 and Runx1 in immune cells (lwasaki and Akashi, 2007;
Yeh and Ikezu, 2019); Maf, Mef2a, and Tfe3 in microglia (Solé-Doménech et al., 2016; Yeh and lkezu,
2019); and Pax6, Nfib, and Arx in neuronal progenitor cells and neuroblasts (Colombo et al., 2007;
Ninkovic et al., 2013; Osumi et al., 2008). Notably, several less-characterized TFs were identified and
validated by the cell-type-specific enrichment of both gene expression and motif accessibility, such as
Pou6f1, Hmbox1, KIf8, and Smarcc1 enriched in immature neurons and Zfx enriched in microglia,
representing potentially regulators of progenitor cells in the adult brain (Figure 3G; Figure S$11).
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Figure 3. Identifying epigenetic elements and transcription factors associated with
heterogeneous cellular states of newborn cells in the mouse brain.

(A) Heatmap showing the relative expression (top) and chromatin accessibility (bottom) of cell-type-
specific genes across cell types. The UMI count matrix (gene expression) and read count matrix (ATAC-
seq) were normalized by the library size and then log-transformed, column centered, and scaled. The
resulting values clamped to [-2, 2].

(B) Density plot showing the distribution of Pearson correlation coefficients between gene expression
and the accessibility of promoter (colored in red) or nearby accessible elements (within £500 kb of the
promoter, colored in blue) across pseudo-cells. In addition, we plotted the background distribution of the
Pearson correlation coefficient after permuting the accessibility of peaks across pseudo-cells.

(C) Density plot showing the distribution of Pearson correlation coefficients between TF expression and
their motif accessibility across pseudo-cells. The background distribution was calculated after permuting
the motif accessibility of TFs across pseudo-cells.

(D) Genome browser plot showing links between distal regulatory sites and genes for a neurogenesis
marker (DIx2, top) and an oligodendrogenesis marker (Olig2, bottom).

(E) UMAP plots showing the cell-type-specific expression (left), the accessibility of promoter (middle),
and linked distal site (right) for genes DIx2 (top) and Olig2 (bottom). The single-cell expression data (UMI
count) and ATAC-seq data (read count) were normalized first by library size and then log-transformed,
column centered, and scaled.

(F) Scatter plots showing the correlation between the scaled gene expression and motif accessibility
across cell types for DIx2 (top) and Olig2 (bottom), together with a linear regression line. ASC: astrocytes,
CBGN: cerebellum granule neurons, COP: committed oligodendrocyte precursors, DGNB: dentate gyrus
neuroblasts, ERY: erythroblasts, MFO: myelin-forming oligodendrocytes, MG: microglia, NPC: neuronal
progenitor cells, OBNB: olfactory bulb neuroblasts, OBIN: olfactory bulb inhibitory neurons, OPC:
oligodendrocyte progenitor cells, VC: vascular cells.

(G) Scatter plots showing the correlation between the scaled gene expression and motif accessibility of
less-characterized TF regulators, together with a linear regression line.
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A global view of cell-type-specific proliferation rates across the adult lifespan

We next compared the fraction of EAU+ cells across young, adult, and aged mice brains, and observed a
marked reduction of cellular proliferation associated with age (Figure 4A). To investigate the cell-type-
specific changes in proliferation rates, we then quantified the relative fractions of each newborn cell type
by their fractions in the EdU+ cell population, multiplied by the ratio of EdU+ cells in the global cell
population. Interestingly, we detected highly heterogeneous responses to aging across various
progenitor cell types, validated by both single-cell transcriptome and chromatin accessibility profiles
(Figure 5B). For example, dentate gyrus neuroblasts showed an 18-fold reduction in the aged brain (vs.
the adult brain), while the proliferation of vascular cells were only mildly affected. In contrast, microglia
and other immune cells showed a remarkable boost in the production of newborn cells (Figure 4B-D),
possibly due to the elevated inflammatory signaling in the aged brain (Corlier et al., 2018). Compared
with the aged brain, we detected overall mild changes in cellular proliferation (except the microglia) in the
AD-associated mouse model (5xFAD), probably because the mutant mice were profiled at a relatively
early stage (before three months).

To further validate the cell-type-specific dynamics in brain aging, we integrated the newborn cells
recovered from TrackerSci and a global mice brain cell atlas (Sziraki et al., 2022) for sub-clustering
analysis. Indeed, the integration analysis at the sub-cluster level facilitated the identification of rare
progenitor cells in the global brain cell atlas, such as neuronal progenitor cells (marked by Mki67, Top2a,
and Egfr) and committed oligodendrocyte precursors (marked by high expression of Bmp4 and Enpp6)
(Figure 4E). both of these cell types are remarkably reduced upon aging, validated in both datasets
(Figure 4F). In addition, the integration analysis revealed a reactive microglia subtype, marked by high
expression of Apoe and Csf1 in both datasets. This microglia subtype has been previously reported to be
enriched in aged and AD mammalian brains (Keren-Shaul et al., 2017). Consistent with prior studies, we
found the proliferation rate of the Apoe+, Csf1+ microglia increased significantly in both aged (p-value =
0.0045, Wilcoxon rank-sum test) and 5xFAD brains (p-value = 0.028, Wilcoxon rank-sum test), which
readily explained its rapid expansion in both aged and disease conditions (Figure 4F).

We next sought to investigate the impact of aging on the self-renewal and differential potential of
progenitor cells in vivo. We first defined the self-renewal potential by the number of newly generated
progenitor cells divided by the number of total progenitor cells in the brain (i.e., the number of new cells
generated per progenitor cell in a fixed time, Figure 4G). For instance, the neuronal progenitor cells
exhibited down-regulated self-renewal potential over ages (Figure 4H), which readily explained the
depleted neural stem cell pool in the aged brain. Meanwhile, the differentiation potential of a cell type can
be defined by the fraction of newly generated differentiated cells divided by all newborn cells in the same
lineage (Figure 4G). For example, we observed a substantially reduced differentiation potential in
oligodendrocyte progenitor cells across the adult lifespan, especially during the early growth stage
(Figure 4H). This analysis represents a unique application of TrackerSci for quantitative measurement of
cell-type-specific self-renewal and differentiation capacities in vivo.
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Figure 4. Deciphering the impact of aging on the proliferation status and differentiation dynamics
of different cell types in the mammalian brain.

(A) Boxplot showing the fraction of EAU+ cells in the mouse brain after five days of EdU labeling. The
plot includes data from both single-cell transcriptome and chromatin accessibility experiments in
TrackerSci. For all box plots in this figure: middle lines, medians; upper and lower box edges, first and
third quartiles, respectively; whiskers, 1.5 times the interquartile range; and all individual data points are
shown.

(B) With the single-cell RNA-seq or ATAC-seq data of TrackerSci, we first calculated the cell-type-
specific fractions in each condition (i.e., young, adult, aged, and 5xFAD), multiplied by the fraction of
EdU+ cells in the entire brain. We then quantified the fold changes of normalized cell-type-specific
fractions between the aged and adult brains. The scatter plot shows the log-transformed fold changes
(aged vs. adult) correlation between single-cell transcriptome and chromatin accessibility analysis in
TrackerSci.

(C) Similar to the analysis in (B), the dot plot shows the log-transformed cell-type-specific fold changes
between each condition and the adult brain. For the comparison between 5xFAD and wild-type, we used
mice of the same age (11-week-old) from both groups.

(D) Area plot showing the cell-type-specific proportions in EdU+ cells over time.

(E) We integrated cells corresponding to OB neurogenesis (top), oligodendrogenesis (middle), and
microglia (bottom) in TrackerSci and brain cell atlas (Sziraki et al., 2022); the left UMAP plot shows the
integrated cells, colored by cell type annotations in TrackerSci or grey (brain cell atlas). The two UMAP
plots on the right show cells from the brain cell atlas or the EdU+ cells recovered by TrackerSci, colored
by the expression of the neuronal progenitor marker Mki67 (top), the committed oligodendrocyte
precursor cells marker Bmp4 (middle) and the aging/AD-associated microglia marker Csf1 (bottom).

(F) Box plots showing the cell-type-specific fractions of neuronal progenitor cells (top), committed
oligodendrocyte precursors (middle) and aging/AD-associated microglia (bottom) across different
conditions in the brain cell atlas (left) or newborn cells from TrackerSci (right).

(G) Schematic showing the calculation of the self-renewal and differentiation potential of progenitor cells.
(H) Left: Line plot showing the estimated self-renewal potential of neuronal progenitor cells over time.
Right: Line plot showing the estimated differentiation potential of the newly generated oligodendrocyte
progenitor cells across three age groups.
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The impact of aging on adult neurogenesis

Adult neurogenesis and oligodendrogenesis have been reported to decline upon aging (Galvan and Jin,
2007; Pollina and Brunet, 2011); however, the detailed gene regulatory mechanism is still unclear due to
technical limitations. We next sought to interrogate the impact of aging on adult neurogenesis and
oligodendrogenesis, and delineate underlying transcriptional and epigenetic controls.

For adult neurogenesis, we identified three main trajectories that differentiated into DG neuroblasts, OB
neuroblasts, and astrocytes, consistent with the cell state transition directions inferred by the RNA
velocity analysis (Bergen et al., 2020) and prior report (Ratz et al., 2022) (Figure 5A). The trajectory was
further validated through a pulse-chase experiment, where we harvested cells for TrackerSci profiling at
different time points (i.e., one day, three days, and nine days post-labeling). Indeed, we observed a
gradual accumulation of more differentiated cell states with longer chasing time (Figure 5B). Through DE
gene analysis, we identified 2,072 and 6,473 DE genes along the DG neurogenesis and OB
neurogenesis trajectories, respectively (Table S7 and S$8). Of all DE genes, 1,799 genes were shared
between the two trajectories, including up-regulated genes (e.g., Dcx) enriched in neuron development
(g-value = 2.7e-8) (Chen et al., 2013) and down-regulated genes (e.g., Notum) enriched in negative Wnt
signaling regulation (g-value = 0.0004) (Chen et al., 2013) (Figure S12A). In addition, putative trajectory-
and region-specific neurogenesis programs were identified, such as Neurod1, Neurod2, and Emx1
enriched in the DG trajectory (Figure S12B). This is consistent with previous reports about their
important roles in hippocampal neurogenesis (Brulet et al., 2017; Hong et al., 2007; Micheli et al., 2017).

With the chromatin accessibility profiling, we identified 3,095 and 13,790 sites showing dynamics
patterns along the DG neurogenesis and OB neurogenesis trajectories, respectively (Table S9 and S$10),
from which we further identified 20 TFs exhibiting significantly changed motif accessibility in the DG
neurogenesis trajectory (FDR of 0.05, Table $S11) and 318 TFs in OB neurogenesis (FDR of 0.05, Table
$12). Key TFs were further validated by strong correlations between their expression and motif
accessibility dynamics (Figure 5C). For example, the expression of the above-mentioned neurogenesis
regulators, Neurod1 and Neurod2, are positively correlated with their motif accessibility. In contrast,
Myt1l, a known repressor of neural differentiation (Mall et al., 2017), shows a negatively correlated gene
expression and motif accessibility. Leveraging this approach, we identified TFs shared between two
neurogenesis trajectories (e.g., Myt1l, Ascl1, and E2f7); as well as TFs that regulate the specification of
different neuron types (e.g., DIx6, Sp8, Sp9 uniquely enriched in OB neurogenesis (Diaz-Guerra et al.,
2013; Li et al., 2018a)). Meanwhile, we identified several TFs (e.g., Irf2, Stat2, and Etv6) showing strong
enrichment of gene expression and motif accessibility in neuronal progenitor cells. While their functions
in neurogenesis were less-characterized, some of them have been reported as essential regulators of
other stem cell types, such as colonic stem cells (/rf2) (Minamide et al., 2020), mesenchymal stem cells
(Stat2) (Yi et al., 2012), and hematopoietic stem cells (Etv6) (Hock et al., 2004; Yi et al., 2012).

To investigate the impact of aging on adult neurogenesis, we next compared the cellular density
recovered from TrackerSci transcriptome profiling across different conditions along the neurogenesis
trajectory. Consistent with the cell type level analysis (Figure 4C), we observed a dramatic age-
dependent reduction in the cellular density of neural progenitor cells (NPC) and DG neuroblasts (DGNB),
but not in OB neuroblasts (Figure 5D). The finding was consistent with the chromatin accessibility
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profiles, where we applied a recently published differential abundance testing algorithm, Milo (Dann et al.,
2021), to identify the cellular neighborhoods that are significantly altered upon aging. Thirty-one
differentially decreased cellular neighborhoods were identified (Figure 5E, 5% FDR), mostly from the
neural progenitor cells (NPC) and DG neuroblasts (DGNB). This analysis further validated that aging
affects neurogenesis by down-regulating the proliferation rate of its progenitor cells.

To further decipher the molecular mechanisms underlying the age-dependent changes in neuronal
progenitor cells, we then performed differential gene expression analysis across young, adult, and aged
conditions, yielding thirty genes showing concordant changes over time, supported by both gene
expression and the accessibility of promoters or linked distal sites (Figure 5F; Table S13; Methods). For
example, two neurotrophic factors involved in the Erbb pathway, Nrg? and Nrg3, exhibited strongly
reduced expression and promoter accessibility upon aging. Indeed, they have been reported to maintain
neurogenesis upon in vivo administration (Mahar et al., 2016). In addition, we identified several other
known regulators of neurogenesis, such as Nr2f1 and Nap1/1 (Bertacchi et al., 2020; Qiao et al., 2018),
that were significantly down-regulated upon aging, which serve as potential targets for restoring adult
neurogenesis in aged brains.
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Figure 5. Characterizing the impact of aging on neurogenesis.

(A) UMAP plots showing the differentiation trajectory of neurogenesis, colored by main cell types (top) or
pseudotime (bottom). The differentiation trajectories are inferred by RNA velocity analysis (top) and
annotated on the bottom plot.

(B) Mice brains were harvested one day, three days and nine days after EAU labeling (EdU was
administered daily through i.p. injection during the first five days), followed by TrackerSci profiling. The
contour plots show the distribution of EdU+ cells in the neurogenesis trajectory across different harvest
time points and the distribution of all brain cells without enrichment of EdU+ cells.

(C) Heatmap showing the dynamics of gene expression and motif accessibility of cell-type-specific TFs
across the pseudotime of neurogenesis trajectories.

(D) Contour plots showing the distribution of EdU+ cells from TrackerSci-RNA in the neurogenesis
trajectory across conditions. The arrows point to the significantly reduced cell states in each trajectory.
(E) A neighborhood graph from Milo differential abundance analysis on the neurogenesis trajectory. The
layout of the graph is determined by the position of the neighborhood index cell in (A). Nodes represent
cellular neighborhoods from the KNN graph. Differential abundance neighborhoods are colored by the
log-transformed fold change across ages. Graph edges depict the number of cells shared between
neighborhoods.
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484  (F) The dot plots and heatmaps show the scaled gene expression and promoter accessibility of top
485  differentially expressed genes in the neuronal progenitor cells.
486
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The impact of aging on adult oligodendrogenesis

We next in silico isolated cell types that span multiple stages of oligodendrogenesis for pseudotime
analysis, yielding a simple trajectory defined by integrated transcriptome and chromatin accessibility
profiles (Figure 6A). The oligodendrogenesis trajectory was further validated by the RNA velocity
analysis and the time-dependent labeling experiment mentioned above (Figure 6B). Through differential
expression (DE) and differential accessibility (DA) analysis, we identified 8,443 DE genes and 15,164 DA
sites that were significantly changed along the trajectory (5% FDR, Table S14). This analysis identified
known oligodendrogenesis regulators (e.g., Zfp276 (Aberle et al., 2022) and Myrf (Aberle et al., 2022;
Fletcher et al., 2021)) and associated pathways (e.g., cholesterol biosynthesis (Mathews and Appel,
2016)), as well as novel gene markers (e.g., Snx10, Rfbox2, and Tenm2, (Figure $12C) with highly
correlated changes of both molecular layers (i.e., RNA and promoter accessibility) along the trajectory of
oligodendrogenesis.

Moreover, we identified 97 TFs that exhibited highly correlated gene expression and motif accessibility in
oligodendrogenesis (FDR of 5%, Table $15 and $16), including known regulators of oligodendrocyte
differentiation, such as Sox5, Sox10, Pknox1, and Nkx6-2 (Emery and Lu, 2015; Kato et al., 2015). In
addition, several less-characterized TF markers were recovered, including lkzf4, a known regulator of
Mdaller glia differentiation in the retina (Javed et al., 2021), and several potential transcriptional
'repressors’ (e.qg., Esrra, Esrrg, EIk3, Zeb1) characterized by the negative correlation between their
expression and motif accessibility along the trajectory of oligodendrogenesis (Figure 6C).

We further investigated the impact of aging on adult oligodendrogenesis by examining cellular density
along the cellular differentiation trajectory across different conditions. Unlike adult neurogenesis, we
observed a remarkable reduction in committed oligodendrocyte precursors (COPs) rather than the early
progenitor cells in single-cell transcriptome analysis (Figure 6D). The result is further validated through
the Milo (Dann et al., 2021) analysis of chromatin accessibility profiles, where significantly decreased
cellular neighborhoods exclusively overlapped with the committed oligodendrocyte precursors (COPs)
(Figure 6E, 5% FDR). This observation is in accordance with the aging-associated depletion of newly
formed oligodendrocytes in our companion study (Sziraki et al., 2022) and previous reports (Givre, 2003).

Finally, to delineate the molecular programs contributing to down-regulated oligodendrogenesis upon
aging, we examined the significantly dysregulated genes in OPCs and identified 242 DE genes (FDR of
10%, Table S17). Many of the top DE genes are cross-validated by two independent molecular layers
(i.e., both gene expression and promoter accessibility) (Figure 6F). A lot of these genes are involved in
molecular processes critical for oligodendrocyte differentiations, such as cell cycle (e.g., Cables1 (He et
al., 2019)) or cell migration pathway (e.g., Ephb1, Epha4, Plxna4) (Linneberg et al., 2015; Smith et al.,
1997) (Figure 6F). For example, we detected age-dependent down-regulation of Ryr2, a ryanodine
receptor that mediates endoplasmic reticulum Ca?* release, a process essential for initiating OPC
differentiation (Li et al., 2018b). Intriguingly, two sphingomyelin metabolism-related genes exhibited
opposite dynamics between young and aged OPCs (Figure 6F). Sgms?1, a gene encoding a
sphingomyelin synthase critical for converting phosphatidylcholine and ceramide to ceramide
phosphocholine (sphingomyelin) and diacylglycerol at the Golgi apparatus (Huitema et al., 2004; Tafesse
et al., 2007), was substantially down-regulated in the aged OPCs. By contrast, Smpd4, encoding a
sphingomyelin phosphodiesterase that catalyzes the reverse reaction (Krut et al., 2006)(Figure S13),
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was significantly up-regulated in OPCs upon aging (Figure 6F). As a result, the age-dependent changes
of both Sgms1 and Smpd4 could lead to the accumulation of ceramide and depletion of sphingomyelin in
OPCs, which has been reported to increase cellular susceptibility to senescence and cell death (Hannun
and Obeid, 2008; Jana et al., 2009). In fact, a recent report showed inhibiting another sphingomyelin
hydrolase nSMase2 enhances the myelination and differentiation of OPCs (Yoo et al., 2020), suggesting
a critical role of the dysregulated sphingomyelin metabolism in blocking oligodendrocyte differentiation in
the aged brain. Furthermore, the down-regulated differentiation of oligodendrocytes is associated with
dysregulated immune responses during aging, such as the accelerated proliferation of the reaction
microglia subtype (Figure 4F) and an increased C4b expression in OPCs from both the EdU+ population
and the global pool (Figure S$14). Further investigation could be critical for deciphering the regulatory
links between the elevated inflammation signaling and the dysregulation of oligodendrocyte
differentiation in the aged brain.
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Figure 6. Characterizing the impact of aging on oligodendrogenesis.

(A) UMAP plots showing the differentiation trajectory of oligodendrogenesis, colored by main cell types
(top) or pseudotime (bottom). The differentiation trajectories are inferred by RNA velocity analysis (top)
and annotated on the bottom plot.

(B) Mice brains were harvested one day, three days and nine days after EdU labeling (EdU was
administered daily through i.p. injection during the first five days), followed by TrackerSci profiling. The
contour plots show the distribution of EdU+ cells in the oligodendrogenesis trajectory across different
harvest time points and the distribution of all brain cells without enrichment of EdU+ cells.

(C) Heatmap showing the dynamics of gene expression and motif accessibility of cell-type-specific TFs
across the pseudotime of the oligodendrogenesis trajectory.

(D) Contour plots showing the distribution of EdU+ cells from TrackerSci-RNA in the oligodendrogenesis
trajectory across conditions. The arrows point to the significantly reduced cell states in each trajectory.
(E) A neighborhood graph from Milo differential abundance analysis on the oligodendrogenesis trajectory.
The layout of the graph is determined by the position of the neighborhood index cell in (A). Nodes
represent cellular neighborhoods from the KNN graph. Differential abundance neighborhoods are
colored by the log-transformed fold change across ages. Graph edges depict the number of cells shared
between neighborhoods.
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566 (F) The dot plots and heatmaps show the scaled gene expression and promoter accessibility of top
567  differentially expressed genes in the oligodendrocyte progenitor cells.
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TrackerSci facilitates the identification of rare progenitor cells in the aged human brain.

We next sought to investigate whether the TrackerSci dataset can be applied to facilitate the
identification of rare progenitor cell types in the aged human brain. We first applied an extensively
optimized single-cell RNA-seq by combinatorial indexing to profiling twenty-nine human brain samples
derived from six individuals ranging from 70 to 94 in age at death (Table S18). Up to five regions
(cerebellum, hippocampus, inferior parietal, motor cortex, and superior and middle temporal lobe (SMTG))
for each individual were included to characterize the region-specific effect of cellular dynamics. After
removing low-signal cells and potential doublets, we recovered gene expression profiles in 798,434
single nuclei for downstream analysis (a median of 23,504 nuclei per brain sample, with a median of
1,013 UMIs per nucleus, Figure S15A and S15B)

Although this is one of the largest single-cell datasets of the aged human brain up to date, it was
challenging to recover cycling or differentiating cells in the initial unsupervised clustering analysis (Figure
8$15C), potentially due to the extreme rarity of those cells in the aged human brain. We next integrated
the TrackerSci dataset (including 5,715 EdU+ mouse brain cells and 8,380 mouse brain cells without
EdU enrichment) with the human brain dataset followed by UMAP visualization (Figure 7A). Despite the
species differences, the integration analysis facilitates the identification of extremely rare proliferating
and differentiating cell populations in the aged human brain. For example, we identified a rare human
cycling cell population that overlapped with cycling progenitor cells from mice (Figure 7A). Further sub-
clustering analysis separated the population into three distinct subtypes (Figure 7B), corresponding to
cycling microglia (569 cells, 0.07% of the total cell population, marked by P2RY12 and LY86), cycling
oligodendrocyte progenitor cells (56 cells, 0.007% of the total cell population, marked by VCAN and
PDGFRA) and cycling erythroblasts (51 cells, 0.006% of the total cell population, marked by CD36 and
KEL). All of these clusters were marked by conventional proliferating markers such as MKI67 and
TOP2A (Figure 7C) and novel noncoding RNA markers such as RP11-736124.5, RP5-1086D14.6 and
LINC0O1572 (Figure S16A), demonstrating the application of TrackerSci as an anchor to capture
extremely rare proliferating cells missed in the conventional single cell analysis. Interestingly, while the
cycling microglia population expressed a common set of cell cycle-related genes (e.g., MKI67, TOP2A,
BUB1, SMC4) and exhibited a similar ratio to the non-cycling microglia across brain regions (Figure
S$16B), we identified gene expression signatures unique to each region, suggesting a local control of
microglia proliferation (Figure S$16C). Of note, we detected very few neurogenesis cells in the aged
human brains.

Furthermore, integration analysis with the TrackerSci dataset facilitates the recovery of a stereotypical
cell differentiation trajectory. For example, 188 committed oligodendrocyte precursors were identified in
the aged human brain (0.02% of the total cell population), corresponding to the intermediate cells
connecting the oligodendrocyte progenitor cells to mature oligodendrocytes (Figure 7A). To decipher the
conserved gene dynamics underlying oligodendrogenesis between human and mouse, we extracted
oligodendrogenesis-related cells from both species for integration analysis, yielding a smooth cell
transition trajectory from progenitors to differentiated cell state (Figure 7D). We identified 5,680 genes
that significantly changed along the human oligodendrogenesis trajectory (FDR of 5%), out of which
1,162 genes (48 TFs) were shared between human and mouse (Figure 7E, Table $19). While most of
the conserved TFs have been previously reported as key regulators of oligodendrocyte differentiation
(e.g., TCF7L1 and TCF7L2 (Weng et al., 2017)), several TFs have not been well characterized in the
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relevant context, such as ZEB1, ESRRG, BCL6, RARB. Notably, some less-characterized TFs were also
nominated in our previous motif analysis (Figure 6C). In addition, we identified gene signatures that
contribute to interspecies differences in oligodendrogenesis (Figure 7F). For example, the human-
specific genes are enriched in ribosome biogenesis (e.g., NOM1, NOP56, NOP14, and LAS1L), while
genes specifically linked to mouse oligodendrogenesis are involved in multiple pathways such as primary
miRNA processing (e.g., DGCR8 and SRRT), mRNA 3'-end processing (e.g., PABPN1, SSU72, and
PABPC1) and isoprenoid biosynthetic processes (e.g., PDSS1 and HMUGCR).

Leveraging the dataset, we next investigated the differences in oligodendrogenesis across brain regions.
Interestingly, we observed a depletion of the committed oligodendrocyte precursors in all cerebellum
samples compared with other brain regions (Figure 7G and Figure S17B; p-value = 0.001, Fisher’s
exact test), suggesting a reduced rate of oligodendrogenesis in the cerebellum. To gain more insight into
the detailed molecular programs underlying the region-specific change of oligodendrogenesis, we
performed DE analysis across regions and identified 45, 32, and 25 region-specific DE genes in OPC,
COP, and OLG, respectively (Table $20). For example, region-specific gene signatures of COP were
identified, such as PTCH1 and PTPRM (hippocampus), CACNA1C and ADRA1A (inferior parietal), RNF3
and HNRNPC (motor cortex), and HFM1 and ARHGAP32 (SMTG) (Figure 7H). Strikingly, 40 out of the
45 region-associated genes of OPC (e.g., EBF1, PAX3, CALN1, and UNC30) were highly enriched in the
cerebellum (Figure 7H), indicating a unique molecular state of OPC in the cerebellum compared with
other regions. Furthermore, one of the cerebellum-specific markers, PAX3, encodes a paired box
transcription factor and has been reported to maintain the non-differentiating state of Schwann cells in
the peripheral nervous system (Kioussi et al., 1995). This is consistent with our observation that the COP
is depleted in the cerebellum. As a further illustration of this point, the cerebellum exhibited a higher
fraction of OPCs accompanied by a decreased ratio of mature oligodendrocytes compared to other
regions (Figure S17A). These analyses indicate a region-specific down-regulation of oligodendrogenesis
in the cerebellum of the aged human brain.
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Figure 7. TrackerSci facilitates the identification of proliferating and differentiating cells in the
human brain.

(A) We integrated the TrackerSci dataset, including both EdU+ cells and DAPI singlets, with a large-
scale human brain dataset comprising 798,434 cells. The UMAP plots show the integrated cells, colored
by assay types (left, cell types from TrackerSci are annotated) or cell annotations from the human brain
dataset (right, cells from TrackerSci are colored in grey).

(B) UMAP plots showing the sub-clustering analysis of cycling cells from the human dataset, colored by
cell annotation (B) and the expression level of markers for proliferation (MKI67 and TOP2A; C), microglia
(P2RY12 and LY86; C), oligodendrocyte progenitor cells (VCAN and PDGFRA; C) and erythroblasts
(CD36 and KEL; C).

(D) We integrated the oligodendrogenesis-related cells from TrackerSci and the human dataset. For the
human brain dataset, we included all cells from committed oligodendrocyte precursors and randomly
sampled 1,000 cells from oligodendrocyte progenitor cells and mature oligodendrocytes for the
integration analysis. The UMAP plots show the resulting differentiation trajectory, colored by species
(top), cell type annotations (middle) and pseudotime (bottom).

(E) Heatmaps showing conserved gene expression dynamics along the oligodendrogenesis trajectory for
human (left) and mouse (right), with key TF regulators annotated on the left.

(F) Heatmaps showing divergent gene expression dynamics along the oligodendrogenesis trajectory
enriched only in human (top) and mouse (bottom), with key genes annotated on the left.

(G) Boxplot showing the fraction of committed oligodendrocyte precursors (COP) among
oligodendrogenesis-related cells across different brain regions in each sample. For all box plots: middle
lines, medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the
interquartile range; and all data points are shown.

(H) Dotplot showing examples of commonly-changed and region-specific gene expression signatures
across three differentiation stages along oligodendrogenesis trajectories.
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Discussion

The field of single-cell biology is progressing at a rapid rate to catalog and characterize each specific cell
type across diverse biological systems. Although the adult or aged brains have been intensively profiled
with single-cell methods (Li et al., 2021; Saunders et al., 2018; Zeisel et al.,, 2018), it has been
challenging to capture rare progenitor cells and characterize their proliferation and differentiation
potentials. Compared with prior studies (e.g., Div-seq (Habib et al., 2016)), TrackerSci represents a
unique approach to track both epigenetic and transcriptional dynamics of proliferating cells based on the
strategy of combinatorial indexing. Like other sci-seq techniques (Cao et al., 2020; Domcke et al., 2020),
TrackerSci is compatible with fresh or fixed nuclei, and can process multiple samples concurrently per
experiment to reduce the batch effect. In this study, we applied TrackerSci to profile the single-cell
transcriptome or chromatin accessibility dynamics for a total of 14,689 newborn cells from entire mouse
brains spanning three age stages and two genotypes. Considering the rarity of the progenitor cells,
especially in aged brains, it required deep sequencing of up to 15 million brain cells to recover the same
amount of progenitor cells by conventional single-cell techniques.

Our analyses demonstrated unique advantages of TrackerSci over solely profiling global cell populations.
For example, TrackerSci enabled us to reconstruct continuous cellular differentiation trajectories in adult
or even aged organs by detecting intermediate progenitor cell states that are often missed in traditional
single-cell analysis. Moreover, we were able to calculate the proliferation and differentiation potential of
rare progenitor cells, facilitating the quantitative investigation of the impact of aging on adult
neurogenesis and oligodendrogenesis. In addition, we further investigated age-dependent changes in
cell-type-specific proliferation and differentiation dynamics and provided novel insights into the underlying
transcriptional and epigenetic mechanisms.

There is a consensus that the self-renewal and regeneration capacity of progenitor cells reduces as we
age. Through a comprehensive and quantitative view of the cell-type-specific proliferation and
differentiation dynamics, however, we observed heterogeneous cellular responses to aging across
progenitor cell types. While aging was associated with a depleted pool of neuronal progenitors as we
expected, we found newborn oligodendrocyte progenitors were only mildly affected. Instead, the
intermediate differentiation precursors were remarkably reduced especially at a relatively early stage
(before six months), suggesting that aging affects oligodendrocytes mainly by blocking their
differentiation process, consistent with the age-dependent downregulation of myelination in previous
studies(Wang et al., 2020; Zhang et al., 2021). Intriguingly, we detected an age-dependent increase of
Smpd4 (sphingomyelin phosphodiesterase) and a decrease of Sgms7 (sphingomyelin synthase)
expression in the oligodendrocyte progenitor cells, suggesting that a high cellular ceramide level was
associated with the aging-induced inhibition of oligodendrocyte differentiation.

To further investigate rare progenitor cell types in human brains, we generated a single-cell
transcriptome atlas of human brains comprising almost 800,000 cells. While conventional clustering
analysis failed to identify the rare progenitor cells in the dataset, integrative analysis with the TrackerSci
dataset facilitated the identification of extremely rare cycling cells of microglia (0.07% of the total cell
population) and OPCs (0.007% of the total cell population) in the aged human brain. The integration
analysis enabled us to identify committed oligodendrocyte precursors (0.02% of the total cell population)
across different brain regions, which confirmed the existence of oligodendrogenesis in the aged human
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brain. Further analysis of the data also nominated oligodendrogenesis-associated gene signatures that
are shared or divergent between species. For example, we observed an increased expression of
ribosome biogenesis factors in human oligodendrogenesis, while several genes involved in microRNA
processing and mRNA polyadenylation are uniquely upregulated in mouse brains, suggesting a species-
specific preference of regulation in global ftranslation or transcription during oligodendrocyte
differentiation. In addition, we recovered the differences of human oligodendrogenesis across anatomical
locations, and identified molecular programs contributing to the down-regulated oligodendrogenesis in
the aged human cerebellum.

In summary, the study represents a key step toward understanding the impact of aging on the
proliferation and differentiation potential of progenitor cells in the mammalian brain. We anticipate that
TrackerSci will be broadly used to identify and quantify cell-genesis processes across diverse systems,
including other mammalian organs and humanized organoids. In addition, we envision similar strategies
(i.e., coupling the sci-seq platform with in vivo cellular labeling) can be expanded to study other critical
molecular aspects, such as the cell-type specific survival, apoptosis, and senescent states. This will
facilitate a comprehensive view of the global molecular programs regulating cell-type-specific dynamics
during aging, thereby informing potential pathways to restore tissue homeostasis for patients with aging-
related diseases.
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Figure S1. TrackerSci relies on two rounds of sorting to enrich and purify rare EdU+ proliferating

cells in mammalian brains.

(A) Representative Fluorescent-activated cell sorting (FACS) scatter plots showing the percentage of

EdU+ cells in mouse brains across different conditions during the first round of sorting.

(B) FACS scatter plot (left) and contour plot (right) showing the percentage of EdU+ cells during the
second round of sorting in TrackerSci.

29


https://doi.org/10.1101/2022.10.01.509820
http://creativecommons.org/licenses/by-nc-nd/4.0/

771
772

773
774
775
776
777
778
779
780

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.01.509820; this version posted October 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Standard sci-RNA-seq )—-—Mw L2 I R R = 10000 L] :
wihce | llH ¢ ¢ - ’
Replace reaction buffer with nuclei lysis buffer l4 LI X1 U i{? -4 "
o
cConice|fHe 2 6000 i
Replace washing buffer with nuclei lysis buffer I—w " @
Reduced CC time | —uees + 8 4000
Remove copper in CC I—-—4 - et + %’
Remove azide in GC | [ ## 2 2000
o
Remove reaction additive in GC | — N */ =
0 5000 10000 15000 20000 ] 3 = v
# of UMIs per cell (HEK293T cells) el ECHus
No EdU labeling, No CC:403 cells No EdU labeling, CC plus reaction:826 cells
e collsion rate:3.23% 066 collsion rate:5.57% 3
® 203T B EdU, CC plus
& 125000 H EdU, no CC
T 80000 F 80000 13 _ $ B o EdU, GG plus
é é Doublets ~ 100000 + H no EdU, no CC
= = @
o 60000| 5 60000 2 75000
= = =
5 . i) =
5 40000 |g % 40000 i = 50000
Q
*® } £ g
20000 20000 25000
B :
0 e @ e oW @ 8 0 LUK ] °
0 25000 50000 75000 100000 0 25000 50000 75000 100000
# of UMIs (Human) # of UMIs (Human)
EdU labeling, no CC:144 cells EdU labeling, CC plus:231 cells
collsion rate:2.78% 100000 collsion rate:6.06%
® 203T
3 12000
o
F] 5 e oo £ 10000
2 . Doublets g W EdU, CC plus
% % 60000 % 8000 W EdU,. no CC
% % 3 - B no EdU, CC plus
2 2 40000, @ M no EdU, no CC
j=
& ¥ & 4000
20000 G
% 2000
0 Q mammes ® o 0 -
0 25000 50000 75000 100000 0 25000 50000 75000 100000 203T aT3
E # of UMIs (Human) # of UMIs (Human)
= .
S s o
B4 g, Pearsonr:0.96 ‘2 =107 Pearsonr:0.91
5D [
x © as
ol &g 8
c 3 [
o N 6+ S2
g’ (=3 o E
@ B g 6
E< £3
& 41 53
£3 2 4
55L& ]
o gL
= .
S 2- g 2 " , : :

2 4 6 8
Log transformed gene expression
(TrackerSci, 293T cells)

4 6 8 10
Log transformed gene expression

(TrackerSci, mouse brain)

Figure S2. Quality control of TrackerSci for single-cell transcriptome profiling.

(A) Boxplot showing the number of unique transcripts detected per cell (HEK293T nuclei) after different
treatment conditions of click-chemistry (CC). The result indicated copper and reaction addictive in the
conventional click-chemistry reaction decreased the scRNA-seq efficiency. For all box plots: middle lines,
medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the
interquartile range; and diamonds are outliers.
(B) Boxplot showing the number of unique transcripts detected per cell (mouse brain nuclei) across three
conditions: no click-chemistry (No CC), conventional click-chemistry (CC), and click-chemistry plus
condition (with picolyl azide dye and copper protectant, CC Plus).
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(C) Scatter plots showing the number of unique human and mouse transcripts detected per cell across
different conditions (with/without EdU labeling, with/without click chemistry plus reaction).

(D) Boxplot showing the number of unique transcripts (top) and genes (bottom) detected per cell in
HEK293T and NIH/3T3 nuclei across the four conditions described in (C).

(E) Scatter plot showing the correlation between log-transformed aggregated gene expression profiled by
TrackerSci and sci-RNA-seq in HEK293T cells (left) and mouse brain cells (right), together with the linear
regression line (blue).
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Figure S3. Quality control of TrackerSci for single-cell chromatin accessibility profiling.

(A) Scatter plots showing the number of unigue human and mouse ATAC-seq fragments detected per
cell across different conditions (with/without EdU labeling, with/without click chemistry plus reaction).

(B) The aggregated fragment length distribution in ATAC-seq from TrackerSci of all cells across the four
conditions described in (A). No CC: no click-chemistry. CC plus: click-chemistry plus condition (with
picolyl azide dye and copper protectant).

(C-D) Boxplots showing the number of unique ATAC-seq reads (top) and the fraction of reads in
promoters (bottom) in HEK293T and NIH/3T3 nuclei (C) and mouse brain nuclei (D). For all box plots:
middle lines, medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5
times the interquartile range; and diamonds are outliers.

(E) Scatter plot showing the correlation between log-transformed aggregated ATAC-seq peak
accessibility (reads per million) profiled by TrackerSci and sci-ATAC-seq in HEK293T cells (top) and
mouse brain cells (bottom), together with the linear regression line (blue).
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805 Figure S4. TrackerSci recovered single-cell transcriptomes of rare newborn cells in the
806 mammalian brain.

807  (A) Scatter plots showing the number of single-cell transcriptomes profiled in each mouse individual
808  across four conditions, colored by sexes. Only mice from the main experiment group (EdU labeling for 5
809  days) are shown.

810  (B) Boxplot showing the log-transformed number of unique transcripts (left) and genes (right) detected
811  per cell profiled by TrackerSci and the DAPI singlet (without enrichment of EdU+ cells, adult mouse
812  brain). For all box plots: middle lines, medians; upper and lower box edges, first and third quartiles,
813  respectively; whiskers, 1.5 times the interquartile range; and circles are outliers.

814  (C-D) UMAP visualization of single-cell transcriptomes, including EdU+ cells (profiled by TrackerSci) and
815  all brain cells (without enrichment of EdU+ cells), colored by experiments (C) and conditions (D).
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Figure S5. TrackerSci recovered single-cell chromatin accessibility of rare newborn cells in the
mammalian brain.

(A) Scatter plot showing the number of single-cell chromatin accessibility profiles in mouse individuals
across four conditions, colored by sexes. Only mice from the main experiment group (EdU labeling for 5
days) are shown.

(B) Boxplot showing the fraction of reads in promoters and peaks (left) and the log-transformed number
of unique ATAC-seq reads (right) detected per cell across different conditions in TrackerSci and the
DAPI singlet (adult mouse brain, without enrichment of EdU+ cells). For all box plots: middle lines,
medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the
interquartile range; and circles are outliers.

(C-D) UMAP visualization of single-cell chromatin accessibility profiles, including EAU+ cells (profiled by
TrackerSci) and all brain cells (without enrichment of EdU+ cells), colored by experiments (C) and
conditions (D)
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Figure S6. The cell population distributions are correlated between single-cell transcriptome and
chromatin accessibility profiling of newborn cells in the mouse brain. Scatter plot showing the
fraction of each cell type in the enriched EdU+ cell population by single-cell transcriptome (x-axis) or
chromatin accessibility analysis (y-axis) in TrackerSci across different conditions.
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Figure S7. TrackerSci facilitates identifying continuous cell transition trajectory missed in global
profiling.

(A) UMAP visualization integrating TrackerSci dataset and EasySci brain cell atlas, same as Figure 3C.
EdU+ cells profiled by TrackerSci are colored by markers for committed oligodendrocyte precursors (top)
and neuronal progenitor cells (bottom); and the rest of cells are colored in grey.

(B) UMAP visualization of the full brain atlas dataset (~1.5 million cells) with the same parameter settings
as in Figure 3C. Neurogenesis and oligodendrogenesis-related cell types are separated into distinct
clusters, while the “bridge” cells in the intermediate stages are missing.
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Figure S9. Low cell-type-specificity of certain canonical neurogenesis markers. UMAP plots
showing the expression of canonical neurogenesis markers (Sox2 and Dcx) across different cell types.
The single-cell expression data (UMI count) were normalized first by the total number of reads for each
cell and then log-transformed, column centered, and scaled.
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(A) UMAP visualization of EdU+ cells as in Figure 1D and 1E, colored by k-means clustering ID.
(B) The left histogram shows the number of accessible sites per gene. The right histogram shows the
distance distribution of accessible sites within 500 kb of genes. Both plots include all nearby accessible
sites (colored in black) and the linked accessible sites (colored in red).
(C) Heatmap showing the cell-type-specific peak accessibility of four DIx2 linked sites. Cell types are
ordered by hierarchical clustering.
(D) Heatmap showing the cell-type-specific peak accessibility of ten Olig2 linked sites. Cell types are
ordered by hierarchical clustering.
(E) Barplots showing the average expression, the accessibility of promoter and linked distal sites for
neurogenesis marker DIx2 across different cell types. Gene expression values for each cell type were
quantified by transcripts per million (TPM). Site accessibilities for each cell were quantified by the
number of reads per million. Error bars represent standard errors of the means.
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888  Figure S11. ldentifying key transcription factor regulators of the newborn cells. Each scatter plot
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Figure S12. Characterizing gene expression and chromatin accessibility dynamics along adult
neurogenesis and oligodendrogenesis.

(A) Heatmap showing the dynamics of gene expression of 1,799 shared DE genes along DG
neurogenesis (left) and OB neurogenesis (right). Genes are ordered and clustered by hierarchical
clustering. Representative gene names (left) and enriched pathways (right) for each gene group are
labeled.

(B) Heatmap showing examples TFs exhibiting trajectory-specific gene expression dynamics: Neurod1,
Neurod2, Emx1, Stat3 and Rarb are uniquely upregulated in DG neurogenesis, while DIx6, Ets1, Pbx1,
Zip711, Foxp2, Meis1 and Mef2c are uniquely upregulated in OB neurogenesis.

(C) Heatmap showing the dynamics of 8,443 DE genes (top) and 15,164 DA sites (bottom) along the
oligodendrogenesis trajectory. Genes are ordered and clustered based on hierarchical clustering.
Representative gene names (left) and enriched pathways (right) for each gene group are labeled. Peaks
are ordered based on hierarchical clustering, and peaks corresponding to promoters of known and novel
oligodendrogenesis markers are labeled.
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Figure S14. Increased expression of C4b in oligodendrocyte progenitor cells. Barplots showing the
gene expression (left) and promoter accessibility (middle) of C4b from the TrackerSci dataset, and the
gene expression of C4b from the EasySci dataset (right) in oligodendrocyte progenitor cells(OPC) and
committed oligodendrocyte precursors(COP), quantified by transcripts per million(TPM) for gene

expression and reads per million for promoter accessibility. Error bars represent standard errors of the
means.
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Figure S15. Performance, quality control and characterization of proliferating and differentiating
cells in the human brain dataset.
(A) Scatter plot showing the number of single-cell transcriptomes profiled in each human sample across
five regions, colored by sexes.
(B) Boxplots showing the number of unique transcripts (left) and genes (right) detected per nucleus
profiled by EasySci in the human dataset. For all box plots: middle lines, medians; upper and lower box
edges, first and third quartiles, respectively; whiskers, 1.5 times the interquartile range; and circles are
outliers.
(C) UMAP visualization of the full human brain dataset (~800,000 cells) with the same parameter settings
as in Figure 7A, colored by main cell types (left) and cycling and differentiating cells (right). Note that rare
cycling and differentiating cells are masked in the main clustering analysis.
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Figure S16. Identifications of cycling cells and region-specific gene expression signatures of
cycling microglia in the human brain.

(A) Dotplot showing the markers for cycling cells, including novel noncoding RNA (RP11-736124.5, RP5-
1086D14.6 and LINC01572) and canonical cycling markers (MKI67 and TOP2A).

(B) Boxplot showing the fraction of cycling microglia to the rest of microglia cells across different brain
regions in each sample. For all box plots: middle lines, medians; upper and lower box edges, first and
third quartiles, respectively; whiskers, 1.5 times the interquartile range; and all data points are shown.

(C) Dotplot showing examples of region-specific and shared gene expression signatures for cycling
microglia across brain regions.
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Figure S17. Reduction of oligodendrogenesis in the human cerebellum.

(A) Boxplot showing the fraction of oligodendrocyte progenitor cells (OPC, left) and mature
oligodendrocytes (OLG) among oligodendrogenesis-related cells across different brain regions in each
sample. For all box plots: middle lines, medians; upper and lower box edges, first and third quartiles,
respectively; whiskers, 1.5 times the interquartile range; and all data points are shown.

(B) UMAP plot same as in Figure 7A splitted by five brain regions colored by main cell types, indicating
the loss of intermediate oligodendrogenesis cells in the cerebrum.
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Materials and Methods:
Animals

The C57BL/6 mice were obtained from The Jackson Laboratory. All animal procedures were in
accordance with institutional, state, and government regulations and approved under the IACUC protocol
21049.

EdU Labeling of Mammalian Cell Culture

HEK293T and NIH/3T3 cells (gift from B. Martin, University of Washington) were cultured in 10 cm
dishes at 37°C with 5% CO: in high glucose DMEM (Gibco, 11965-118) supplemented with 10% Fetal
Bovine Serum (Sigma-Aldrich, F4135) and 1X penicillin-streptomycin (Gibco, 15140-122).

EdU (5-ethynyl-2’-deoxyuridine) (Thermo Fisher Scientific, A10044) was added to culture media at 10
UM

final concentration for 1 hour. After labeling, cells were harvested with 0.25% trypsin-EDTA. HEK293T
and NIH/3T3 cells were combined at a 1:1 ratio, washed with ice-cold PBS, and lysed in 1 mL ice-cold
EZ lysis buffer (Millipore Sigma, NUC101). The nuclei were then fixed on ice with 1% formaldehyde
(Thermo Fisher Scientific, 28906) for 10 minutes and washed with EZ lysis buffer, filtered with 40 pm cell
strainers (Ward’s Science, 470236-276), and resuspended in Nuclei Suspension Buffer (NSB) (10 mM
Tris-HCI pH 7.5 (VWR, 97062-936), 10 mM NaCl (VWR, 97062-858), 3 mM MgCl. (VWR, 97062-848)
supplemented with 0.1% SUPERase*In™ RNase Inhibitor (Thermo Fisher Scientific, AM2696) and 1%
BSA for TrackerSci-RNA or supplemented with 0.1% Tween-20 (Sigma, P9416-100ML), 1x cOmplete ™,
EDTA-free Protease Inhibitor Cocktail (Sigma, 11873580001) and 0.1% IGEPAL® CA-630 (VWR,
1C0219859650) for TrackerSci-ATAC experiments).

EdU Labeling of Mouse Tissues

C57BL/6J mice of different age groups and 5xFAD transgenic mice (MMRRC Strain #034840-JAX) were
obtained from The Jackson Laboratory. Mice were injected intraperitoneally with 50 mg/kg of EdU in PBS
at 24-hour intervals for five days, and mouse brains were harvested 24 hours after the final injection.

C57BL/6J mice obtained from The Jackson Laboratory were labeled and harvested for pulse-chase
labeling at various time points. Specifically, four mice (two male and two female) were injected
intraperitoneally with 50 mg/kg of EAU in PBS for 3 days at 24-hour intervals, and brains were harvested
24 hours after the final injection. 12 mice were injected intraperitoneally with 50 mg/kg of EdU in PBS for
five days at 24-hour intervals. In addition, for five-day injections, four mice (two male and two female)
were harvested 1 day, 3 days, and 5 days after the final injection.

Tissue collection and nuclei isolation
Whole brains were extracted from mice, immediately snap-frozen in liquid nitrogen, and stored at -80°C

upon further usage. For nuclei isolations, thawed brains were cut into small pieces with fine scissors
(Fine Science Tools, 14060-09) in 1 mL ice-cold PBS with 1% SUPERase*In™ RNase Inhibitor and 1%
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BSA, pelleted, resuspended in 1.5 mL Nuclei Isolation Buffer (EZ Lysis Buffer supplemented with 1%
SUPERase*In™ RNase Inhibitor, 1% BSA and 1X cOmplete™ EDTA-free Protease Inhibitor Cocktail) for
5 minutes on ice, and homogenized through 40 um cell strainers (VWR, 470236-276) with the rubber tips
of syringes. Then, extracted nuclei were pelleted, fixed in 1% formaldehyde on ice for 10 minutes,
washed twice with NSB, and divided into two aliquots for both sci-RNA-seq and sci-ATAC-seq profiling.
Nuclei subjected to sci-RNA-seq were briefly sonicated (Diagenode, low power mode for 12 seconds) to
reduce clumping. Finally, nuclei were filtered through pluriStrainer Mini 20 um filters (Pluriselect, 43-
10020-70), resuspended in 100 yL NSB, snap frozen in liquid nitrogen, and stored at -80°C until further
usage.

Human brain sample

Twenty-nine post-mortem human brain samples across five regions and six individuals (who were
cognitively normal proximal to death) ranging from 70-94 years of age at death, were collected from the
University of Kentucky AD Center Tissue Bank (Nelson et al., 2018; Schmitt et al., 2012). Each surveyed
sample underwent rigorous quality control including short PMI (<4 hrs). Established strategies were used
to extract high-quality nuclei from frozen postmortem brain samples. Extracted nuclei were then fixed
with formaldehyde, diluted, and flash-frozen for storage. For EasySci transcriptome profiling, nuclei from
all samples were thawed and deposited into different wells for barcoded reverse transcription (RT), such
that the first index identifies the source of each cell. The library was sequenced across two lllumina
NovaSeq™ 6000 sequencer runs, altogether yielding 12 billion reads for ~900,000 cells (~13,000
sequencing reads per cell).

TrackerSci-RNA

Detailed step-by-step TrackerSci-RNA protocol is included as a supplementary file (Supplementary file
1). Briefly, EdU staining was performed on thawed nuclei using Click-iT Plus EAU Alexa Fluor™ 647
Flow Cytometry assay Kit (Thermo Fisher Scientific, 10634). A 500 pL reaction buffer (prepared
following the manufacturer’s protocol) supplemented with 1% SUPERase«In™ RNase Inhibitor was
added directly to the nuclei suspension, mixed well and left in RT for 30 minutes. Then, nuclei were spun
down for 5 minutes at 500g (4°C), washed once with 500 pL of 1X Click-iT saponin-based
permeabilization and wash reagent, resuspended in 1 mL NSB with 1:20 dilution of 0.25 mg/ml 4',6-
diamidino-2-phenylindole (DAPI, Invitrogen D1306) and FACS sorted. Alexa647 and DAPI positive nuclei
were sorted into 96-well plates with each well (250~500 nuclei/well) containing 4 uL of NSB. Sorted
plates were briefly centrifuged, mixed with 1 uL of 50 uM oligo-dT primer (5'-
ACGACGCTCTTCCGATCTNNNNNNNNI10bp-index]TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN-3',

where “N” is any base and “V” is either “A”, “C” or “G”, IDT) and 0.5 yL 10 mM dNTP mix (Thermo Fisher
Scientific, R0194) and denatured at 55°C for 5 minutes and immediately placed on ice. 3.5 pL of first-
strand reaction mix, containing 2 yL 5X SuperScript™ IV Reverse Transcriptase Buffer (Invitrogen,
18090200), 0.5 yL 100 mM DTT (Invitrogen, P2325), 0.5 pyL SuperScript™ |V Reverse Transcriptase
(Invitrogen, 18090200), 0.5 uyL RNaseOUT™ Recombinant Ribonuclease Inhibitor (Invitrogen, 10777019)
was then added to each well. Reverse transcription was carried out by incubating plates at the following
temperature gradient: 4°C 2 minutes, 10°C 2 minutes, 20°C 2 minutes, 30°C 2 minutes, 40°C 2 minutes,
50°C 2 minutes and 55°C 10 minutes, and was stopped by adding 1 uL of 18 mM EDTA (VWR, 97062-
656) to each well. All nuclei were then pooled, stained with DAPI at a final concentration of 3 yM, and
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sorted at 25 nuclei per well into 5 yL EB buffer. Cells were gated based on DAPI and Alexa647 such that
singlets were discriminated from doublets and EdU+ cells were purified. 0.66 uL mRNA Second Strand
Synthesis buffer and 0.34 yL mRNA Second Strand Synthesis enzyme (NEB, E6111L) were then added
to each well. Second strand synthesis was carried out at 16°C for 1 hour. 6 L tagmentation reaction mix
(made by mixing 0.5 L self-loaded Tn5 with 200 yL Tagmentation buffer containing 20 mM Tris-HCI pH
7.5, 20 mM MgCl,, 20% Dimethylformamide (Fisher, AC327175000)) was added to each well and
tagmentation was performed at 55°C for 5 minutes. After tagmentation, each well was mixed with 0.4 uL
1% SDS, 04 uyL BSA (NEB, B90000S), and 2 ppL of 10 pM PS5 primer (5-
AATGATACGGCGACCACCGAGATCTACA[5]CCCTACACGACGCTCTTCCGATCT-3', IDT), and
incubated at 55°C for 15 minutes. Then, 2 yL 10% Tween-20, 1.2 yL nuclease-free water and 2 uL of 10
MM indexed P7 primer (5-CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG-3, IDT), and
20 pyL NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541L) were added to each well. Amplification
was carried out using the following program: 72°C for 5 minutes, 98°C for 30 seconds, 18-22 cycles of
(98°C for 10 seconds, 66°C for 30 seconds, 72°C for 1 minute), and a final 72°C for 5 minutes. After
PCR, samples were pooled and purified using 0.8 volumes of AMPure XP beads (Beckman Coulter,
A63882) twice. Library concentrations were determined by Qubit (Invitrogen, Q33231), and the libraries
were visualized by electrophoresis on a 2% E-Gel™ EX Agarose Gels (Invitrogen, G402022). All RNA-
seq libraries were sequenced on the NextSeq 1000 platform (lllumina) using a 100 cycle kit (Read 1: 58
cycles, Read 2: 60 cycles, Index 1: 10 cycles, Index 2: 10 cycles). The TrackerSci-RNA libraries were
sequenced to ~70,000 reads per cell.

TrackerSci-ATAC

Detailed step-by-step TrackerSci-ATAC protocol is included as a supplementary file (Supplementary file
1). EdU staining was performed on thawed nuclei using Click-iT Plus EdU Alexa Fluor™ 647 Flow
Cytometry assay Kit (Thermo Fisher Scientific, 10634). A 500 uL reaction buffer (prepared following the
manufacturer’s protocol) supplemented with 1X cOmplete™ EDTA-free Protease Inhibitor Cocktail was
added directly to the nuclei suspension, mixed well, and left in RT for 30 minutes. Then, nuclei were spun
down for 5 minutes at 500g (4°C), washed once with 500 pL of 1X Click-iT saponin-based
permeabilization and wash reagent, resuspended in 1 mL NSB with 1:20 dilution of 0.25 mg/ml 4',6-
diamidino-2-phenylindole (DAPI) and FACS sorted. Alexa647 and DAPI positive nuclei were sorted into
96-well plates with each well (250~500 nuclei/well) containing 4 uL of NSB. Sorted plates were briefly
centrifuged, mixed with 5 pL 2x TD buffer (20 mM Tris-HCI pH 7.5, 20 mM MgCl;, 20%
Dimethylformamide) and 1 pyL barcoded Tn5. Tagmentation reaction was performed at 55°C for 30
minutes and stopped by adding 11 pL 2X Stop buffer (40 mM EDTA, 1 mM Spermidine (Sigma, S0266))
to each well. All nuclei were then pooled, stained with DAPI at a final concentration of 3 uM, and sorted
at 25 nuclei per well into 5 yL EB buffer. Cells were gated based on DAPI and Alexa647 such that
singlets were discriminated from doublets and EdU+ cells were purified. After sorting, each well was
mixed with 0.25 pyL 18.9 mg / mL proteinase K (Sigma, 3115828001), 0.25 yL 1% SDS and 0.5 pL
nuclease-free water, and reverse crosslinking was performed at 65°C for 16 hours. Then, 2 uL 10%
Tween-20 was added to each well to quench the SDS. Following on, 1 pyL of 10 uM indexed P5 primer
(5-AATGATACGGCGACCACCGAGATCTACA[I5]CCCTACACGACGCTCTTCCGATCT-3', IDT), 1 pL of
10 UM indexed P7 primer (5'-
CAAGCAGAAGACGGCATACGAGATIi7]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3, IDT)
and 10 yL NEBNext High-Fidelity 2X PCR Master Mix were added into each well. Amplification was

50


https://doi.org/10.1101/2022.10.01.509820
http://creativecommons.org/licenses/by-nc-nd/4.0/

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.01.509820; this version posted October 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

carried out using the following program: 72°C for 5 minutes, 98°C for 30 seconds, 15-16 cycles of (98°C
for 10 seconds, 66°C for 30 seconds, 72°C for 1 minute), and a final 72°C for 5 minutes. Final PCR
products were pooled and purified by a Zymoclean DNA clean and concentration kit (Zymoresearch,
D4014). Library concentrations were determined by Qubit, and the libraries were visualized by
electrophoresis on a 2% E-Gel™ EX Agarose Gels. All ATAC-seq libraries were sequenced on the
NextSeq 1000 platform (Illumina) using a 100 cycle kit (Read 1: 58 cycles, Read 2: 60 cycles, Index 1: 10
cycles, Index 2: 10 cycles). The TrackerSci-ATAC libraries were sequenced to ~120,000 reads per cell.

TrackerSci-RNA data processing

Read alignment and gene count matrix generation for the scRNA-seq were performed using the pipeline
we developed before (Cao et al.,, 2017). Briefly, base calls were converted to fastq format and
demultiplexed using lllumina’s bcl2fastq/v2.19.0.316 tolerating one mismatched base in barcodes (edit
distance (ED) < 2). The RT barcode for each read was corrected to its nearest barcode (edit distance
(ED) < 2), and reads with uncorrected barcodes (ED >= 2) were removed. Demultiplexed reads were
then adaptor clipped using trim_galore/v0.4.1 (https://github.com/FelixKrueger/TrimGalore) with default
settings. Trimmed reads were mapped to a chimeric reference genome of human and mouse
(hg19/mm10) for the species-mixing experiment and to the mouse only (mm39) for mouse brain
experiments, using STAR/v2.5.2b (Dobin et al., 2013) with default settings. Uniquely mapping reads
were extracted, and duplicates were removed using the unique molecular identifier (UMI) sequence,
reverse transcription (RT) index, and read 2 end-coordinate (i.e. reads with identical UMI, RT index, and
tagmentation site were considered duplicates). Finally, mapped reads were split into constituent cellular
indices by further demultiplexing reads using the RT index.

To generate digital expression matrices, we calculated the number of strand-specific UMIs for each cell
mapping to the exonic and intronic regions of each gene with python/v2.7.18 HTseq package (Anders et
al., 2015). For multi-mapped reads, reads were assigned to the closest gene, except in cases where
another intersected gene fell within 100 bp to the end of the closest gene, in which case the read was
discarded. For most analyses, we included both expected-strand intronic and exonic UMIs in per-gene
single-cell expression matrices. Exonic and intronic gene count matrices were used in RNA velocity
analysis.

For the species-mixing experiment, RNA barcodes with more than 200 UMIs and 100 unique genes were
identified as real cells, and those with fewer than that were discarded. The percentage of uniquely
mapping reads for genomes of each species was calculated. Cells with over 90% of UMIs assigned to
one species were regarded as species-specific cells, with the remaining cells classified as mixed cells or
“collisions”. The collision rate was calculated as the ratio of mixed cells.

TrackerSci-ATAC data processing

Single-cell ATAC-seq data was performed using a published pipeline (Cao et al., 2018; Cusanovich et al.,
2015) with mild modifications. Base calls were converted to fastq format and demultiplexed using
lllumina’s bcl2fastq/v2.19.0.316 tolerating one mismatched base in barcodes (edit distance (ED) < 2).
The indexed Tn5 barcode for each read was corrected to its nearest barcode (edit distance (ED) < 2),
and reads with uncorrected barcodes (ED >= 2) were removed. Demultiplexed reads were then adaptor-
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clipped using trim_galore/0.4.1 with default settings. Trimmed reads were mapped to a chimeric
reference genome of human and mouse (hg19/mm10) for the species-mixing experiment and to the
mouse only (mm39) for mouse brain experiments, using STAR/v2.5.2b (Dobin et al., 2013) with default
settings. Duplicates were removed by picard MarkDuplicates/v2.25.2 (Broad Institute, 2019) per PCR
sample. Deduplicated reads were split into constituent cellular indices by further demultiplexing reads
using the Tn5 index.

A snap-format (Single-Nucleus Accessibility Profiles) file was generated from deduplicated bam files
using SnapTools/v1.4.8 with default settings (https://github.com/r3fang/SnapTools) (Fang et al., 2021). A
cell-by-bin count matrix with 5kb bin size was created from the resulting snapfile. The promoter ratio for
each cell was calculated as the number of fragments mapping to genomic bins overlapping with promoter
regions(defined as 2kb upstream of the gene body).

For the species-mixing experiment, ATAC barcodes with more than 1000 fragments and more than 0.2
promoter ratio were identified as real cells, and those with fewer than that were discarded. The
percentage of uniquely mapping reads for genomes of each species was calculated. Cells with over 90%
of reads assigned to one species were considered species-specific cells, with the remaining cells
classified as mixed cells or “collisions”. The collision rate was calculated as the ratio of mixed cells.

Cell filtering, clustering, and annotation for TrackerSci-RNA

A digital gene expression matrix was constructed from the raw sequencing data as described above.
EdU+ cells and global cells were combined and analyzed together. Cells with less than 200 UMIs and
100 unique genes were discarded. Potential doublet cells and doublet-derived subclusters were detected
using an iterative clustering strategy similar to before (Cao et al., 2020). Cells labeled as doublets(by
scanpy/v1.6.0 and scrublet/v0.2.3) (Wolf et al., 2018; Wolock et al., 2019) or from doublet-derived sub-
clusters were filtered. The downstream dimension reduction and clustering analysis were done by
Seurat/v4.0.2 (Hao et al., 2021). Briefly, the dimensionality of the data was reduced by PCA (30
components) first and then with UMAP, followed by Louvain clustering. Clusters were assigned to known
cell types based on cell type-specific markers (Table S2).

Differentially expressed genes across different cell types were identified using monocle/v2.22.0 (Qiu et
al., 2017) with the differentialGeneTest() function. Genes detected in less than 10 cells were filtered out
before the analysis. To identify cell type-specific gene markers, we selected genes that were differentially
expressed across different cell types (5% FDR, likelihood ratio test), with FC > 2 between the target cell
type and the second highest expressed cell type, and with maximum transcripts per million (TPM) > 10 in
the target cell types.

Cell filtering, clustering, and annotation for TrackerSci-ATAC

Single-cell ATAC-seq profiles were generated as described above. EdU+ cells and global cells are
combined and analyzed together. Cells with less than 1000 fragments and less than 0.2 promoter ratio
were discarded. Dimensionality reduction for ATAC-seq data was performed using the snapATAC/v1.0.0
(Fang et al., 2021). A cell-by-bin matrix at 5-kb resolution was used. We focused on bins on
chromosomes 1-19, X and Y. High-coverage bins (top 5% bins that overlap with invariant features) or
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low-coverage bins (bottom 5% bins that represent general inaccessible regions) were filtered out before
the analysis. Diffusion maps dimensionality reduction was performed on the filtered cell-by-bin matrix
after binarization. UMAP analyses were performed on the top 20 eigenvectors, followed by unsupervised
clustering via the densityPeak algorithm implemented in R package densityClust/v0.3 (Rodriguez
and Laio, 2014)

We performed integration analysis between the TrackerSci-RNA dataset and TrackerSci-ATAC dataset
to annotate the ATAC dataset. The gene activity score for ATAC cells was computed using the
snapATAC function createGmatFromMat() by summing up the counts of bins overlapping with the gene
body. A Seurat object was generated using the gene activity matrix and previously calculated diffusion
map embeddings for single cell ATAC-seq. Then, variable genes were identified from TrackerSci-RNA
data and used for identifying anchors between these two modalities. Next, we co-embedded the RNA-
seq and ATAC-seq profiles in the same low-dimensional space to visualize all the cells together. We then
used overlapped RNA clusters to annotate ATAC cells in the integrated UMAP space. ATAC cells
without overlapped RNA cells were removed with careful inspection since they usually represent
potential doublets or low-quality cells. Finally, single-cell ATAC dimension reduction, clustering, and
integration analysis were rerun on the remaining dataset following the same procedure.

Peak calling and identifications of cell-type-specific peaks

To define peaks of accessibility across all sites, we used MACS2/v2.1.1 (Zhang et al.,, 2008).
Nonduplicate ATAC-seq reads of cells from each main cell type were aggregated, and peaks were called
on each group separately with these parameters: --nomodel --extsize 200 --shift -100 -q 0.1. Peak
summits were extended by 250bp on either side and then merged with bedtools/v2.30.0 (Quinlan and
Hall, 2010; Zhang et al., 2008) , together with gene promoter regions (annotated transcription start site
(TSS) in GENCODE VM27 minus/plus 1000 base pairs in a strand-specific manner). Each read
alignment was extended by 100 bp upstream and downstream from the insertion site of tagmentation.
Cells were determined to be accessible at a given peak if a read from a cell overlapped with the peak.
The peak count matrix was generated by a custom python script with the HTseq package (Anders et al.,
2015; Quinlan and Hall, 2010; Zhang et al., 2008). Differentially accessible peaks across cell types were
identified using monocle/v2.22.0 (Qiu et al., 2017) with the differentialGeneTest() function. Peaks
detected in less than 10 cells were filtered out before the analysis. To determine cell-type-specific peak
markers, we selected peaks that were differentially accessible across different cell types (5% FDR,
likelihood ratio test), with FC > 2 between the target cell type and the second highest expressed cell type,
and with TPM > 10 in the target cell types.

Analysis for linking cis-regulatory elements (CRE) to regulated genes

We aim to identify links between chromatin accessible sites and regulated genes based on their
covariance. Only EdU+ cells were kept in this analysis. We first constructed pseudo-cells by aggregating
the RNA-seq and ATAC-seq profiles of highly similar cells through k-means clustering the integrative
UMAP coordinates using the kmeans function from R package stats/v4.1.2. The k was selected so that
the average cell number per subcluster is 150. Subclusters overrepresented by one molecular layer(the
percentage of cells from either RNA-seq or ATAC-seq profile greater than ninety percent) were merged
with a nearby subcluster. After aggregating cells within each sub-cluster, we obtained a total of 88
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pseudo-cells, with a median of 54 cells from RNA-seq profile and 93 cells from ATAC-seq profile.
Aggregated count matrices for RNA-seq and ATAC-seq were normalized to transcripts per million(TPM)
and log1p transformed. We only retained genes and peaks with TPM value greater than 10 in the
maximum expressed pseudo-cells. Then, for each gene, we calculated the Pearson Correlation
Coefficient (PCC) between its gene expression and the chromatin accessibility of its nearby accessible
sites(minus/plus 500 kb from the TSS) across pseudo-cells. Sites overlapping with minus/plus 1kb from
the TSS were considered promoters, while the rest were considered distal regions. To define a threshold
at PCC score, we also generated a set of background pairs by permuting the pseudo cell id of the ATAC-
seq matrix and with an empirically defined significance threshold of FDR < 0.05, to select significant
positively correlated cCRE-gene pairs. We further filtered the linkage by requiring that either the
maximum expressed cell types in the RNA profile and the ATAC profile were the same or the top two or
top three highest expressed cell types were in the same cell trajectory (Oligodendrogenesis trajectory:
OPC, COP, OLG; Astrocytes trajectory: ASC, NPC; DG neurogenesis trajectory: NPC, DGNB; OB
neurogenesis trajectory: NPC, OBNB, OBIN). Finally, we only keep the one top linked gene with the
highest PCC for each peak.

Transcription factor analysis

To identify key TF regulators of each main cell type, we searched for TF that can be validated in two
molecular layers by correlating gene expression and motif accessibility. First, using the TrackerSci-ATAC
dataset, we selected the top 300 sites per main cell type (from the differential peak analysis described
above, filtered by g-value < 0.05, maximum expressed TPM > 10 and ranked by FC between the highest
and the second expressed cell type) to a combined peak set. We then resized the peaks to a fixed length
of 500 bp (£ 250 bp around the center) and generated a binarized peak-by-motif matrix using the R
package motifmatchr/v1.16.0 (Schep, 2017) with the matchMotifs() function to identify the occurrences of
motifs in each peak from a filtered collection of the cisBP motif database curated by
chromVARmotifs/v0.2.0 (Weirauch et al., 2014; Schep et al., 2017). A matrix of motif-by-cell counts was
obtained by multiplying the peak-by-cell matrix with the peak-by-motif matrix, and was aggregated into
pseudo-cells based on the k-means clustering described before. We then computed the PCC between
the scaled TF motif accessibility and the scaled TF gene expression across pseudo-cells. To select
significantly positive and negative correlations of TF gene expression and motif accessibility pairs, we
permuted the pseudo cell id of the motif-by-cell matrix to compute a background PCC distribution and
selected the TF pairs with an empirically defined significance threshold of FDR < 0.05. In addition, we
only keep TF with TPM > 10 in the maximum expressed cell type.

Trajectory analysis

Cells corresponding to the neurogenesis trajectory (ASC, NPC, DGNB, OBNB and OBIN) or the
oligodendrogenesis trajectory (OPC, COP and OLG) from both RNA-seq data and ATAC-seq data were
selected for detailed investigation. We next performed UMAP dimension reduction at the trajectory level
with the integration function from Seurat (Hao et al., 2021), using the top 3,000 highly variable genes and
top 50 PCs. Each cell was assigned a pseudotime value based on its position along the trajectory using
monocle3/v1.0.0 function order_cells() (Trapnell et al., 2014). RNA velocity analyses were performed
using scVelo/v0.2.3 (Bergen et al., 2020) using the exonic and intronic gene count matrix generated from
sci-RNA-seq pipeline to validate the cell differentiation direction and estimate the position of the
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progenitor cell state. For the two neurogenesis trajectories (DG neurogenesis and OB neurogenesis),
pseudotime assignment was calculated separately and scaled so that the cells shared between two
trajectories received the same pseudotime value. Specifically, we first used the pseudotime value
calculated from the OB trajectory for common progenitor cells in both DG and OB trajectories. We then
fitted a linear regression line using R function Im() to predict the OB-pseudotime based on the DG-
pseudotime. Then, for cells unique to the DG neurogenesis, we adjusted their pseudotime using the
predict() function using DG-pseudotime as input. Gene expression and peak accessibility dynamics
along pseudotime were identified using monocle/v2.22.0 (Qiu et al., 2017) with the differential GeneTest()
function with pseudotime values and their main cluster identity as variables. Genes or peaks that passed
a significant test (FDR of 5%) were considered as dynamically regulated genes or sites. Furthermore,
differential accessible sites along pseudotime were used to infer TF motif accessibility dynamics. We
computed a motif deviation score for each single cell using chromVar/v1.4.1 (Schep et al., 2017) with
the dynamic peak set (resized to 500 bp) as input. Then, the motif deviation scores of each single cell
were rescaled to (0, 10) using R function rescale() and differential accessible motifs were identified using
monocle/v2.22.0 with the differentialGeneTest() function. TF motifs that passed a significant test (FDR of
5%) were considered as dynamically regulated motifs. For gene enrichment analysis we used the
enrichR (Chen et al., 2013) and the following pathways collections were considered: Panther_2016,
Reactome_ 2016, KEGG_2019 Mouse, GO_Biological Process 2018, GO_Molecular_Function_2018.
For visualizing the dynamics of gene expression, peak accessibility and motif accessibility, we used R
package ComplexHeatmap/v2.10.0 (Gu et al., 2016).

Cell proportion analysis

To quantify the cell-type-specific changes in the proliferation dynamics across conditions, we calculated
the fraction of each cell type within EdU+ population from each condition for RNA-seq data and ATAC-
seq data separately, which was further multiplied by the median of EdU+ ratio for each group obtained
from FACS sorting. For adult WT mice, we only included those that were harvested 24h after five-day
labeling to avoid artifacts introduced by the labeling time.

To quantify the effects of aging on cell differentiation dynamics along neurogenesis and
oligodendrogenesis trajectories, we applied miloR/v1.3.1 (Dann et al., 2021), a single-cell differential
abundance testing framework using k-nearest neighbor (KNN) graphs. We first constructed the KNN
graph on the UMAP space for each trajectory using the buildGraph() function with k = 120 for the
neurogenesis trajectory and k = 250 for the oligodendrogenesis trajectory. Cell neighborhoods were then
defined using the makeNhoods() function and the number of cells from each experiment sample were
counted for each neighborhood using the countCells() function. Testing for differential abundance in
neighborhoods was performed using the testNhoods() function and

significance levels for Spatial FDR of 0.05 were used. Visualization of differential abundance
neighborhoods was done using the plotNhoodGraphDA() function.

Differential analysis of NPC and OPC across aged groups
Differential gene expression analysis across young, adult, and aged groups of NPC and OPC was

performed using monocle/v2.22.0 (Qiu et al., 2017) function differentialGeneTest() with the number of
genes detected per cell included as a covariant. For adult WT mice, only cells from the animals
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harvested at 24h after 5-day labeling were included to avoid artifacts introduced by the labeling time. In
addition, only differentially expressed genes (> expressed in more than 10 cells) along the neurogenesis
or the oligodendrogenesis trajectory were included in the differential gene test. Differentially expressed
genes were selected by a g-value cutoff of 0.1, a TPM cutoff of 50 in the maximum expressed group, and
with at least 1.5 FC between the maximum expressed group and the minimum expressed group. Next,
differentially expressed genes were grouped to aged-depleted genes and aged-enriched genes by the
following criteria: for aging-depleted genes, we first selected the genes with minimum expression in aged
mice, and only kept those with either maximum expression in young mice or within less than 2 FC
between the young group and the adult group. For aging-enriched genes, we first selected the genes
with maximum expression in aged mice, and only kept those with either minimum expression in young
mice or with less than 2 FC between the young group and the adult group. We then further filtered the
DE genes based on the consistency on their promoters or linked sites. For aging-depleted genes, we
required that the mean of promoter accessibility or linked site accessibility was at the minimum level in
the aged group compared to young and adults. For aging-enriched genes, we required that the mean of
promoter accessibility or the linked site accessibility was at the maximum level in the aged group
compared to young and adults. Genes that were lowly detected in both promoter accessibility and linked
sites (represented by the mean of TPM < 10 in all conditions) were also discarded.

Integration analysis between TrackerSci-RNA and EasySci-RNA

Integration analysis of scRNA-seq dataset profiled using TrackerSci and EasySci was performed using
Seurat/v4.0.2 (Hao et al., 2021). We first integrated 14,095 TrackerSci-RNA cells (including 5,715 EdU+
cells and 8,380 all brain cells without EdU enrichment) with 126,285 EasySci-RNA cells (up to 5,000 cells
randomly sampled from each of 31 cell types) in our companion study (Sziraki et al., 2022). Shared
variable genes, selected by SelectintegrationFeatures() function, were used for identifying anchors using
FindintegrationAnchors(). The two datasets were then integrated together with the IntegrateData()
function. To visualize all the cells together, we co-embedded all the cells in the same low-dimensional
space. We further applied the same integrative analysis strategy to cells matching the same cellular state
from both datasets. Specifically, for the neurogenesis trajectory, we integrated 1,214 EdU+ cells from
TrackerSci-RNA (NPC, OBNB, and OBIN) with 37,258 OB neurons 1 cells from EasySci-RNA. For the
oligodendrogenesis trajectory, we integrated 3,044 EdU+ cells from TrackerSci-RNA (OPC and COP) to
22,718 oligodendrocyte progenitor cells from EasySci-RNA. For the microglia, we integrated 600 EdU+
microglia from TrackerSci-RNA to 15,754 microglia from EasySci-RNA. Microglia subclusters
corresponding to peripheral immune cells were excluded before the analysis.

Quantifications of the self-renewal potential and the differentiation potential

The self-renewal potential was defined as the ratio of newly generated progenitor cells within 5 days of
EdU labeling divided by the ratio of total progenitor cells detected from the global population. To account
for potential variations due to slight differences of animal ages between TrackerSci and the brain cell
atlas, we first fitted a linear model between the ages and the ratio of progenitor cells using the EasySci
data for the following cell type: neuronal progenitor cells, oligodendrocyte progenitor cells, and microglia.
We used that to predict the ratio of progenitor cells for each individual mice profiled by TrackerSci. We
then divided the ratio of newly generated progenitor cells from each 5-day labeled mice by the predicted
cellular fraction of the global progenitor pool for the same cell type. A line plot was generated using the

56


https://doi.org/10.1101/2022.10.01.509820
http://creativecommons.org/licenses/by-nc-nd/4.0/

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.01.509820; this version posted October 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

median values of proliferation potential for each aged group normalized to the young mice. RNA and
ATAC cells were both included, and samples with less than 50 cells were excluded from the calculation.
The differentiation potential was quantified by the ratio of differentiated cells divided by all EdU+ cells in
the same trajectory. We calculated such a ratio only for oligodendrogenesis trajectory since it's a
unidirectional route. For this analysis, we divided the ratio of committed oligodendrocytes and myelin-
forming oligodendrocytes to the ratio of oligodendrocyte progenitor cells for each sample and median
values of each age group were used to generate the line plot. RNA and ATAC cells were included, and
samples with less than 50 cells were excluded from the calculation.

Cell filtering, clustering, and annotation for the human dataset

A digital gene expression matrix was constructed from the raw sequencing data as described in our
companion study (Sziraki et al., 2022). Potential doublet cells and doublet-derived subclusters were
detected using an iterative clustering strategy similar to before (Cao et al.,, 2020). Cells labeled as
doublets(by scanpy/v1.6.0 and scrublet/v0.2.3) (Wolf et al., 2018; Wolock et al., 2019) or from doublet-
derived sub-clusters were filtered. To identify distinct clusters of cells corresponding to different cell types
in the human data, we performed the downstream dimension reduction and clustering analysis using
Seurat/v4.0.2 (Hao et al., 2021). Briefly, the dimensionality of the data was reduced by PCA (50
components) first and then with UMAP, followed by Louvain clustering. We then co-embedded the
human data with the mouse brain atlas from profiled in our companion study (Sziraki et al., 2022) through
Seurat (Stuart et al.,, 2019), and clusters were annotated based on overlapped cell types. The
annotations were manually verified and refined based on marker genes.

Integration analysis between human and mouse

Integration analysis of scRNA-seq dataset of human and mouse was performed using Seurat/v4.0.2
(Hao et al., 2021). Similar to the integration of mouse dataset profiled between TrackerSci-RNA and
EasySci-RNA, we first integrated 14,095 mouse cells (including 5,715 EdU+ cells and 8,380 all brain
cells without EAU enrichment) with 71,743 human cells (up to 5,000 cells randomly sampled from each of
18 cell types) to construct a coembedding UMAP space. We then project the rest of human cells into this
UMAP structure using MapQuery() and TransferData() function. Cycling cells and committed
oligodendrocytes from the human dataset were extracted based on the UMAP coordinates overlapping
with mouse cells. Cycling cells were subjected to sub-clustering analysis for identifying their cell types.
Markers for cycling cells were identified by comparing them to the rest of all cells using the Seurat
function FindMarkers().

Identifications of shared and unique features between human and mouse oligodendrogenesis

To construct a continuous oligodendrogenesis trajectory shared between human and mouse, we
subjected all 4,194 oligodendrogenesis-related cells (OPC, COP and OLG) from mouse data and took
2,188 oligodendrogenesis-related cells from human data (including all of 188 cells from COP and
randomly sampled 1,000 cells from OPC and OLG) to integration analysis using Seurat/v4.0.2. Each cell
was assigned a pseudotime value based on its position along the trajectory using monocle3 function
order_cells(). For human cells, gene expression dynamics along pseudotime were identified using
monocle/v2.22.0 (Qiu et al., 2017) with the differentialGeneTest() function with pseudotime values and
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their main cluster identity (i.e, OPC, COP and OLG) as variables. For mouse cells, we used the results
from DE gene analysis along pseudotime calculated before. Conserved gene expression dynamics were
selected by a g-value cutoff of 0.05, a TPM (transcript per million) cutoff of 50 in the same maximum
expressed stage in both species. This reveals 1,162 DE genes along oligodendrogenesis shared
between human and mouse. To select genes with species-unique expression dynamics, we filtered the
DE genes with the following criteria: significantly changed along pseudotime (g-value <0.05) and TPM of
the maximum expressed stage larger than 50 in one species, while no significantly changed (g-
value >0.05) and TPM of the maximum expressed stage less than 50 in the other species. This reveals
458 and 361 DE genes along oligodendrogenesis unique to human and mouse respectively. For
visualizations of gene expression dynamics, we use R package ComplexHeatmap/v2.10.0 and the genes
were ordered by the hierarchical clustering implemented in the function Heatmap().

Analysis of region-specific oligodendrogenesis

To study region-specific effects of oligodendrogenesis, we quantified the ratio of each stage (OPC, COP
and OLG) within all the cells along the oligodendrogenesis trajectory for each region. Cycling
Oligodendrocyte progenitor cells were not included into the calculation. Statistical analysis was
performed by comparing the ratio of COP to OPC in cerebellum vs. non-cerebellum cells using Fisher
exact test. To study the region-specific transcriptional controls of each stage along oligodendrogenesis,
we performed differential expression analysis across regions using monocle/v2.22.0 with the
differentialGeneTest() function. Region-specific gene expression signatures were selected by the
following cutoffs: g-value < 0.05, with FC > 2 between the maximum expressed region and the second
highest expressed region, and with maximum transcripts per million (TPM) > 50 in the highest expressed
region.

Code Availability

The detailed experimental protocols and computation scripts of TrackerSci were included as
supplementary files.

58


https://doi.org/10.1101/2022.10.01.509820
http://creativecommons.org/licenses/by-nc-nd/4.0/

1447
1448

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.01.509820; this version posted October 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Tables (provided as Microsoft Excel files)

Supplementary Table 1: Metadata for animal individuals included in the TrackerSci profiling, including
38 animals injected with EdU and 2 animals injected with PBS. For each mouse, the metadata includes
the mouse genotype (WT, 5xFAD), age group (young, adult, aged), gender, the exact day of age, DOB
(date of birth), DOD (date of death), the time of EdU labeling, and number of cells recovered from
TrackerSci-RNA and TrackerSci-ATAC.

Supplementary Table 2: Annotated cell types together with reference gene markers for annotation,
number of cells per cell type identified in TrackerSci-RNA and TrackerSci-ATAC dataset, as well as the
medium and mean values for the number of UMIs/genes/unique reads for each cell type.

Supplementary Table 3: Differentially expressed genes across newborn cell types. For each gene, the
“‘max.cluster” is the cell type with the highest expression (“max.expr”). The “second.cluster” is the cell
type with the second highest expression (“second.expr”). The “fold.change” is the fold change between
the max expression and second max expression. The “qval’ is the false detection rate (one-sided
likelihood ratio test with adjustment for multiple comparisons) for the differential expression test across
different cell clusters.

Supplementary Table 4: Differentially accessible sites for all newborn cell types. For each gene, the
“‘max.cluster” is the cell type with the highest accessibility (“max.expr’). The “second.cluster” is the cell
type with the second highest accessibility (“second.expr”). The “fold.change” is the fold change between
the max accessibility and second max accessibility. The “gval” is the false detection rate (one-sided
likelihood ratio test with adjustment for multiple comparisons) for the differential accessibility test across
different cell clusters. The “is_promoter”’ indicates whether a site is a promoter or not, and if True,

information of corresponding genes is included in “promoter_gene_id”, “promoter_gene_short_name”
and “promoter_gene_type”.

Supplementary Table 5: Identified linkages between cis-regulatory elements and regulated genes. For
each linkage, the “pearson_correlation_coefficient” is Pearson correlation between peak accessibility and
gene expression across pseudo-cells. The “region” is either “promoter” or “distal”, indicating whether a
site overlaps with the promoter of the linked gene. The “max.cluster.RNA” is the cell type with the highest
expression, and the “max.cluster. ATAC” is the cell type with the highest accessibility.

Supplementary Table 6: Transcription factors significantly correlated in gene expression and motif
accessibility. For each TF, the “PCC” is the Pearson correlation between motif accessibility and gene
expression across pseudo-cells. The “max.RNA” is the cell type with the highest gene expression
(“max.expr.RNA”). The “second.RNA” is the cell type with the second highest expression
(“second.expr.RNA”).

Supplementary Table 7: Differentially expressed genes along DG neurogenesis. The “qval” is the false

detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential
test.
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Supplementary Table 8: Differentially expressed genes along OB neurogenesis. The “qval”’ is the false
detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential
test.

Supplementary Table 9: Differentially accessible sites along DG neurogenesis. The “gqval” is the false
detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential
test.

Supplementary Table 10: Differentially accessible sites along OB neurogenesis. The “gqval” is the false
detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential
test.

Supplementary Table 11: Differentially accessible transcription factors along DG neurogenesis. The
“qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)
for the differential test.

Supplementary Table 12: Differentially accessible transcription factors along OB neurogenesis. The
“gval’ is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)
for the differential test.

Supplementary Table 13: Differentially expressed genes across different age groups for neuronal
progenitor cells. For each gene, the “max.group” is the age group with the highest expression
(“max.expr”). The “second.group” is the age group with the second highest expression (“second.expr”).
The “third.group” is the age group with the minimum expression (“third.expr”). The “gval” is the false
detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential
test. The “promoter_consistent” and “distal_consistent” indicate whether a differentially expressed gene
can be supported by its promoter accessibility or its linked distal sites accessibility. The “comments”
refers to either “aging_depleted_genes” or “aging_enriched_genes” based on the change of direction.

Supplementary Table 14: Differentially expressed genes along oligodendrogenesis. The “qval’ is the
false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the
differential test.

Supplementary Table 15: Differentially accessible sites along oligodendrogenesis. The “qval’ is the
false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the
differential test.

Supplementary Table 16: Differentially accessible transcription factors along oligodendrogenesis. The
“gval’ is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)
for the differential test.

Supplementary Table 17: Differentially expressed genes across different age groups for
oligodendrocyte progenitor cells. For each gene, the “max.group” is the age group with the highest
expression (“max.expr’). The “second.group” is the age group with the second highest expression
(“second.expr”). The “third.group” is the age group with the minimum expression (“third.expr”). The “qval”

60


https://doi.org/10.1101/2022.10.01.509820
http://creativecommons.org/licenses/by-nc-nd/4.0/

1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556

1557
1558

1559
1560
1561

1562

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.01.509820; this version posted October 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the
differential test. The “promoter _consistent” and “distal_consistent” indicate whether a differentially
expressed gene can be supported by its promoter accessibility or its linked distal sites accessibility. The
“‘comments” refers to either “aging_depleted_genes” or “aging_enriched_genes” based on the change of
direction.

Supplementary Table 18: Metadata for human individuals included in this study.

Supplementary Table 19: Differentially expressed genes along oligodendrogenesis for human cells.
The “gval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple
comparisons) for the differential test.

Supplementary Table 20: Differentially expressed genes across regions for each stage along
oligodendrogenesis. For each gene, the “max.region” is the region with the highest expression
(“max.expr”). The “second.region” is the region with the second highest expression (“second.expr”). The
“gval’ is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)
for the differential test. The “fold.change” is the fold change between the max expression and second
max expression. The “stage” indicates which differentiation stage (i.e, OPC, COP or OLG) the test was
performed on.

Supplementary files

Supplementary file 1: Detailed experiment protocols for TrackerSci-RNA and TrackerSci-ATAC,
including all materials and equipment needed, step-by-step descriptions, and representative gel images.

Supplementary file 2: Computational pipeline scripts for processing TrackerSci data, from sequencer-

generated files to single-cell gene count matrix for TrackerSci-RNA and single-cell read files for
TrackerSci-ATAC.
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