

1 **A comprehensive view of cell-type-specific temporal dynamics in human and mouse brains**
2

3 **Authors:** Ziyu Lu^{1,2,5}, Melissa Zhang^{1,5}, Jasper Lee¹, Andras Sziraki^{1,2}, Sonya Anderson³, Shaoyu Ge⁴,
4 Peter T. Nelson³, Wei Zhou^{1,6*}, Junyue Cao^{1,6,7*}
5

6 **Affiliations:**
7

8 ¹Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York,
9 NY, USA
10

11 ²The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY,
12 USA
13

14 ³Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY,
15 USA
16

17 ⁴Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY, USA
18

19 ⁵These authors contributed equally
20

21 ⁶Senior author
22

23 ⁷Lead Contact
24

25 *Correspondence: wzhou@rockefeller.edu (W.Z.), jcao@rockefeller.edu (J.C.)
26

23 **Summary**

24 Progenitor cells play fundamental roles in preserving optimal organismal functions under normal, aging,
25 and disease conditions. However, progenitor cells are incompletely characterized, especially in the brain,
26 partly because conventional methods are restricted by inadequate throughput and resolution for
27 deciphering cell-type-specific proliferation and differentiation dynamics *in vivo*. Here, we developed
28 *TrackerSci*, a new technique that combines *in vivo* labeling of newborn cells with single-cell combinatorial
29 indexing to profile the single-cell chromatin landscape and transcriptome of rare progenitor cells and
30 track cellular differentiation trajectories *in vivo*. We applied *TrackerSci* to analyze the epigenetic and
31 gene expression dynamics of newborn cells across entire mouse brains spanning three age stages and
32 in a mouse model of Alzheimer's disease. Leveraging the dataset, we identified diverse progenitor cell
33 types less-characterized in conventional single cell analysis, and recovered their unique epigenetic
34 signatures. We further quantified the cell-type-specific proliferation and differentiation potentials of
35 progenitor cells, and identified the molecular programs underlying their aging-associated changes (e.g.,
36 reduced neurogenesis/oligodendrogenesis). Finally, we expanded our analysis to study progenitor cells
37 in the aged human brain through profiling ~800,000 single-cell transcriptomes across five anatomical
38 regions from six aged human brains. We further explored the transcriptome signatures that are shared or
39 divergent between human and mouse oligodendrogenesis, as well as the region-specific down-regulation
40 of oligodendrogenesis in the human cerebellum. Together, the data provide an in-depth view of rare
41 progenitor cells in mammalian brains. We anticipate *TrackerSci* will be broadly applicable to characterize
42 cell-type-specific temporal dynamics in diverse systems.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67 **Introduction**

68
69 New neurons and glial cells are continuously produced in the adult mammalian brains, a critical process
70 associated with memory, learning, and stress (Lugert et al., 2010; Spalding et al., 2013). There is a
71 consensus that adult neurogenesis and oligodendrogenesis decline with advancing ages and in
72 neuropathological conditions (Galvan and Jin, 2007; Pollina and Brunet, 2011), but to what extent is
73 debated (Mathews et al., 2017; Sorrells et al., 2018). The ambiguity stems partly from technical
74 limitations - most studies rely upon the utilization of proxy markers, which may introduce bias for
75 quantifying the dynamics of extremely rare progenitor cells, especially in aged tissues. Furthermore, the
76 identity of progenitor cells is established as a result of tightly controlled epigenetic programs, driven in
77 part by transcription factors that interact with cis-regulatory sequences in a cell-type-specific manner.
78 While previous single-cell studies have provided critical insight into the gene expression signatures of
79 progenitor cells in the adult brain (Franjic et al., 2022; Habib et al., 2016; Kalinina and Lagace, 2022),
80 little is known about how the epigenetic landscape regulates the dynamics of rare progenitor cells *in vivo*.
81 Therefore, novel approaches for quantitatively capturing newborn cells and tracking their transcriptome
82 and chromatin state changes are critical to understanding cell population dynamics in development,
83 aging, and disease states.

84
85 Here we describe a novel method, *TrackerSci*, to track the proliferation and differentiation dynamics of
86 newborn cells in the mammalian brain. *TrackerSci* integrated protocols for labeling newly synthesized
87 DNA with a thymidine analog 5-Ethynyl-2-deoxyuridine (EdU) (Salic and Mitchison, 2008) and single-cell
88 combinatorial indexing sequencing for both transcriptome (Cao et al., 2019) and chromatin accessibility
89 profiling (Cusanovich et al., 2015). As a demonstration, we applied *TrackerSci* to profiling the single-cell
90 transcriptome or chromatin accessibility dynamics of 14,689 newborn cells from entire mouse brains
91 spanning three age stages and two genotypes. With the resulting datasets, we recovered rare progenitor
92 cell populations less represented in conventional single-cell analysis and tracked their cell-type-specific
93 proliferation and differentiation dynamics across ages. Furthermore, we identified the genetic and
94 epigenetic signatures associated with the alteration of cellular dynamics (e.g., adult neurogenesis,
95 oligodendrogenesis) that occurs in the aged mammalian brain. Finally, to compare rare progenitor cells
96 across species, we generated a human brain cell atlas profiling ~800,000 single-nucleus transcriptomes
97 of the human brain across five anatomic regions. By integration analysis with the *TrackerSci* dataset, we
98 identified region- and cell-type-specific signatures of rare progenitor cells in the aged human brain and
99 recovered conserved and divergent molecular signatures of oligodendrogenesis cells between human
100 and mouse. The experimental and computational methods described here could be broadly applied to
101 track cellular regenerative capacity and differentiation potential across mammalian organs and other
102 biological systems.

103
104 **Results**

105
106 **Overview of *TrackerSci***

107
108 The optimized *TrackerSci* protocol follows these steps (**Figure 1A**): (i) Mice are labeled with 5-Ethynyl-2-
109 deoxyuridine (EdU), a thymidine analog that can be incorporated into replicating DNA for labeling *in vivo*
110 cellular proliferation (Lin et al., 2009; Salic and Mitchison, 2008). (ii) Brains are dissected, and nuclei are
111 extracted, fixed, and then subjected to click chemistry-based *in situ* ligation (Clarke et al., 2017) to an

112 azide-containing fluorophore, followed by fluorescence-activated cell sorting (FACS) to enrich the EdU+
113 cells (**Figure S1A**). (iii) Indexed reverse transcription or transposition is used to introduce the first round
114 of indexing. Cells from all wells are pooled and then redistributed into multiple 96-well plates through
115 FACS sorting to further purify the EdU+ cells (**Figure S1B**). (iv) We then follow library preparation
116 protocols similar to sci-RNA-seq (Cao et al., 2019) for transcriptome profiling or sci-ATAC-seq
117 (Cusanovich et al., 2015) for chromatin accessibility analysis. Most cells pass through a unique
118 combination of wells, such that their contents are marked by a unique combination of barcodes that can
119 be used to group reads derived from the same cell. Notably, the two sorting steps implemented in
120 *TrackerSci* are essential for excluding contaminating cells and enriching extremely rare proliferating cell
121 populations, especially in the aged brain (less than 0.1% of the total cell population are EdU+ cells).
122

123 We extensively optimized the reaction conditions (e.g., fixation, permeabilization, and click-chemistry
124 reaction) to ensure the approach is fully compatible with FACS sorting and single-cell transcriptome and
125 chromatin accessibility profiling (**Figure S2 and S3**). For instance, the active Cu(I) catalyst and additive
126 included in the conventional click-chemistry reaction (Habib et al., 2016) significantly reduced the nuclei
127 quality for single-cell gene expression analysis (**Figure S2A**). To solve this problem, we tested a
128 commercialized click-chemistry method using picolyl azide dye and copper protectant, which resulted in
129 a minimal defect on library complexity (**Figure S2B, Method**) or cell purity for single-cell RNA-seq
130 analysis, as shown in an experiment profiling a mixture of human HEK293T and mouse NIH/3T3 cells
131 (**Figure S1C and S1D**). As a quality control, we further compared the *TrackerSci* chromatin accessibility
132 profile with the conventional sci-ATAC-seq profile in a mixture of human HEK293T and mouse NIH/3T3
133 cells. Both methods showed similar cellular purity (**Figure S3A**), fragment length distributions (**Figure**
134 **S3B**), a comparable number of unique fragments per cell, and a similar ratio of reads overlapping with
135 promoters in both cell lines and mouse brain nuclei (**Figure S3C and S3D**).
136

137 Additionally, the aggregated transcriptome and chromatin accessibility profiles derived from *TrackerSci*
138 (both cultured cell lines and tissues) were highly correlated with conventional single-cell combinatorial
139 indexing profiling (**Figure S2E and S3E**), suggesting that the labeling and conjugating reactions (e.g.,
140 EdU labeling and click-chemistry) in *TrackerSci* do not substantially interfere with downstream single-cell
141 transcriptome and chromatin accessibility profiling by combinatorial indexing.
142

143 **A global view of newborn cells across the mammalian brain**

144

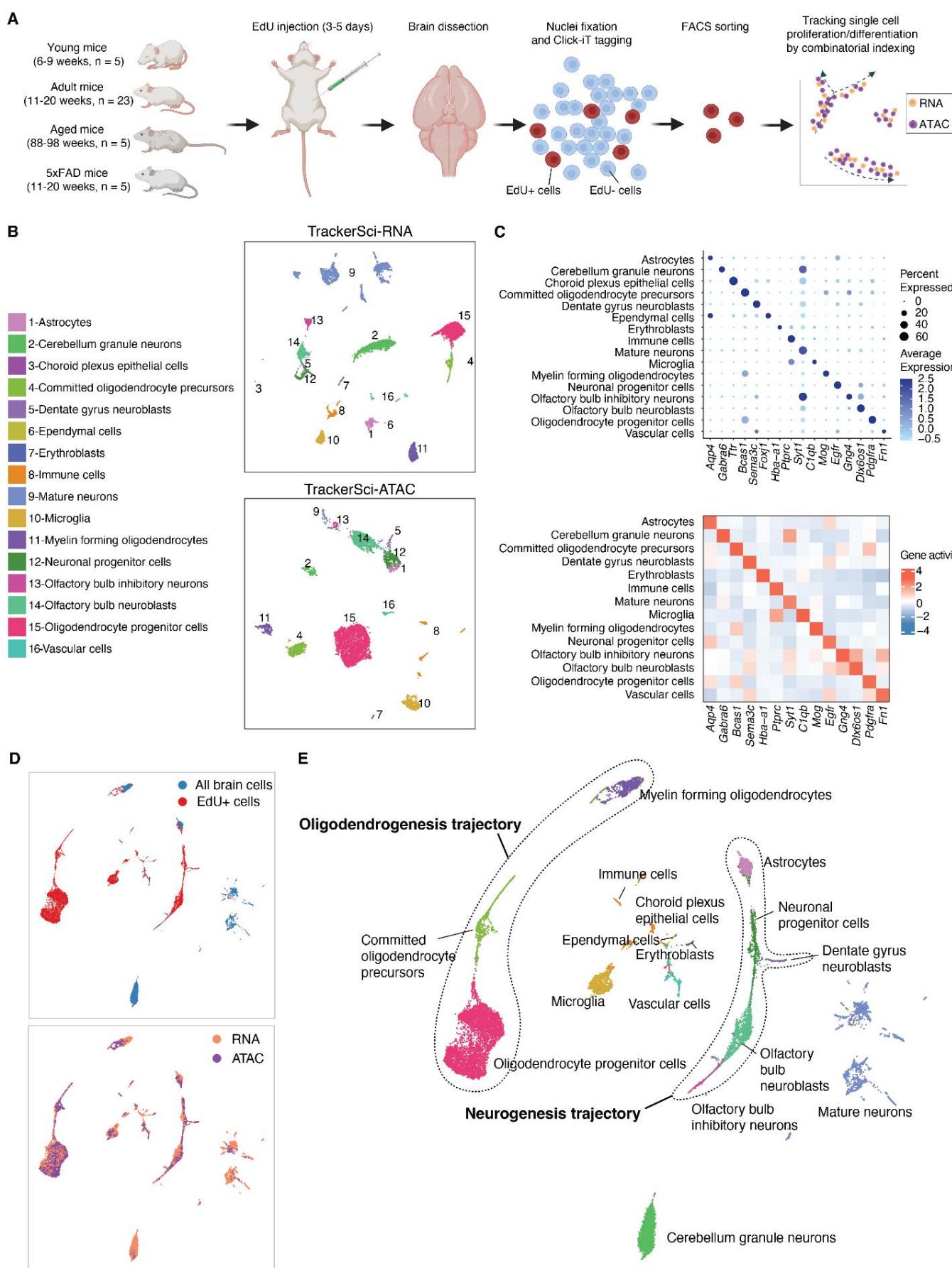
145 We next applied *TrackerSci* to capture rare newborn cells from mouse brains spanning three age stages
146 and two genotypes. Briefly, following three to five days of continuous EdU labeling, we isolated nuclei
147 from the whole brain of 38 sex-balanced C57BL/6 mice (**Figure 1A; Table S1**), including 33 wild-type
148 mice across multiple development stages (Young: 6-9 weeks, Adult: 11-20 weeks, and Aged: 88-98
149 weeks) as well as five 5xFAD mutant mice (11-20 weeks) harboring multiple Alzheimer's Disease (AD)
150 mutations (Oakley et al., 2006). Following *TrackerSci* protocol, we obtained transcriptomic profiles for
151 5,715 newborn cells (median 2,909 UMIs) (**Figure S4A and S4B**) and chromatin accessibility profiles for
152 8,974 newborn cells (median 50,225 unique reads) (**Figure S5A and S5B**). In addition, to characterize
153 the global brain cell population as a background control, we included DAPI singlets representing 'all'
154 brain cells (i.e., without enrichment of the EdU+ cells) and obtained transcriptomic profiles for 8,380
155 nuclei (median 1,553 UMIs) and chromatin accessibility profiles for 342 nuclei (median 24,521 unique

156 reads). The EdU+ nuclei and DAPI singlets were collected from the same set of samples and processed
157 in parallel to minimize any batch effect.

158
159 We first subjected the 14,095 *TrackerSci* transcriptome profiles, including both EdU+ nuclei and DAPI
160 singlets, to Louvain clustering (Blondel et al., 2008) and UMAP visualization (McInnes et al., 2018)
161 (**Figure 1B; Figure S4C and S4D**). Sixteen cell clusters were identified and annotated based on
162 established markers (**Figure 1C; Table S2**), ranging in size from 25 cells (Choroid plexus epithelial cells)
163 to 3,141 cells (Mature neurons). We next performed a semi-supervised clustering analysis of 9,316
164 *TrackerSci* chromatin accessibility profiles (8,974 EdU+ nuclei and 342 DAPI singlets), and identified
165 fourteen clusters (**Figure 1B; Figure S5C and S5D; Methods**), which mapped 1:1 to the main cell types
166 identified in the transcriptome analysis. Two rare cell types (*i.e.*, ependymal cells and choroid plexus
167 epithelial cells) were only detected in the RNA dataset, mainly due to the low abundance of these cell
168 types. As expected, the corresponding cell types defined by the two molecular layers overlapped well in
169 the integration analysis (**Figure 1D**).
170

171 We observed a notably altered distribution of cell-type-specific fractions between ‘all’ brain cells and the
172 EdU+ cells (**Figure 2A**). For example, in contrast to the ‘all’ brain cells that are dominated by mature
173 neurons (*e.g.*, cerebellum granule neurons: 32.7% in DAPI singlets vs. 2.85% in EdU+ cells) and
174 differentiated glial cells (*e.g.*, myelin-forming oligodendrocytes: 11.9 % in DAPI singlets vs. 0.75% in
175 EdU+ cells), the EdU+ population showed prominent enrichment of progenitor cells such as immature
176 neurons (*e.g.*, olfactory bulb neuroblasts: 0.14% in DAPI singlets vs. 13.4% in EdU+ cells) and glia
177 progenitors (*e.g.*, oligodendrocyte progenitor cells: 1.11% in DAPI singlets vs. 45.4% in EdU+ cells).
178 Intriguingly, we detected newly-generated erythroblasts (*Hbb-bt+*, *Hbb-bs+*) and immune cells (*Ptprc+*),
179 which may correspond to newborn blood cells circulating in the brain, as they exclusively exist in the
180 EdU+ nuclei. Of note, the cell-type-specific distribution of newborn cells was highly correlated between
181 *TrackerSci* transcriptome and chromatin accessibility datasets (Spearman’s correlation $r = 0.92$; **Figure**
182 **3B**) and across conditions (**Figure S6**).
183

184 We next integrated *TrackerSci* datasets with a global brain cell atlas from our companion study (Sziraki
185 et al., 2022), for which we profiled 1.5 million cells from entire mouse brains spanning three age groups
186 and two mutants associated with AD. Briefly, we integrated EdU+ brain cells (5,715 single-cell
187 transcriptomes from *TrackerSci*), ‘All’ brain cells (8,380 DAPI singlets from *TrackerSci*), and “All” brain
188 cells from the global brain cell atlas (sampling 5,000 cells for each main cell type) into the same UMAP
189 space. As expected, ‘All’ brain cells from the *TrackerSci* highly overlapped with cells from the global brain
190 cell atlas in the integrated UMAP space (**Figure 2C**). Remarkably, the EdU+ cells (from *TrackerSci*)
191 formed continuous cellular differentiation trajectories bridging several terminally differentiated cell types,
192 including the oligodendrogenesis trajectory from the oligodendrocyte progenitor cells to differentiated
193 oligodendrocytes, and the neurogenesis trajectory connecting astrocytes and OB neurons (**Figure 2C**).
194 Of note, the bridge cells are validated by the expression of known progenitor markers, such as *Bmp4* and
195 *Enpp6* for committed oligodendrocyte precursors (Marques et al., 2018; Zhang et al., 2014) and *Mki67*,
196 *Egfr* for neuronal progenitor cells (Pastrana et al., 2009) (**Figure S7A**). While the 1.5 million global brain
197 cell atlas is one of the most extensive single-cell analyses of adult mouse brains, these “bridge” cells
198 were still missing in the original trajectory analysis (**Figure S7B**), highlighting the application of the
199 *TrackerSci* method for recovering continuous cellular differentiation trajectories in adult tissues.



201 **Figure 1. *TrackerSci* enables single-cell transcriptome and chromatin accessibility profiling of**
202 **rare proliferating cells in the mammalian brain.**

203 (A) *TrackerSci* workflow and experiment scheme. Key steps are outlined in the text.
204 (B) UMAP visualization of single-cell transcriptomes (top) and single-cell chromatin accessibility profiles
205 (bottom), including EdU+ cells (profiled by *TrackerSci*) and all brain cells (without enrichment of EdU+
206 cells), colored by main cell types. Dimension reduction analysis for scRNA-seq and scATAC-seq was
207 performed independently.

208 (C) Dotplot and heatmap showing gene expression and gene activity of known marker genes for each
209 cluster defined by *TrackerSci-RNA* (top) and *TrackerSci-ATAC* (bottom), respectively.

210 (D-E) UMAP visualization of mouse brain cells, integrating the single-cell transcriptome and chromatin
211 accessibility profiles of EdU+ cells and DAPI singlets (representing the global brain cell population). Cells
212 are colored by sources (D, top), molecular layers (D, bottom), and main cell types (D). The identified
213 neurogenesis and oligodendrogenesis trajectories are both annotated in (E).

214

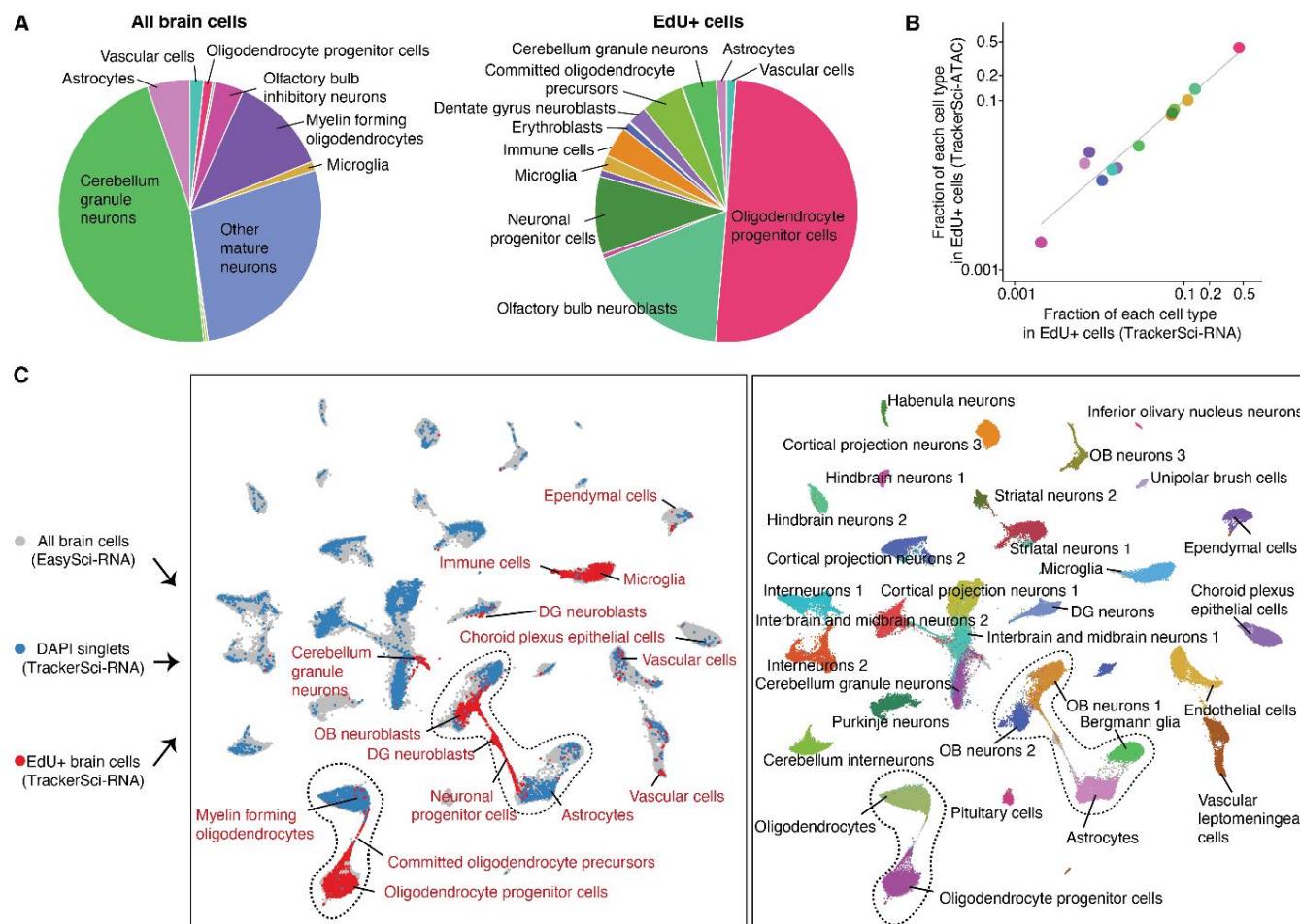
215

216

217

218

219



220

221 **Figure 2. TrackerSci captures rare newborn cells that are less represented in conventional single-cell studies.**

222 (A) Pie plots showing the proportion of main cell types identified in the global cell population (left) and the
223 enriched EdU+ cell population (right).

224 (B) Scatter plot showing the fraction of each cell type in the enriched EdU+ cell population by single-cell
225 transcriptome (x-axis) or chromatin accessibility analysis (y-axis) in *TrackerSci*, together with a linear
226 regression line.

227 (C) We integrated the *TrackerSci* dataset, including both EdU+ cells and DAPI singlets, with a large-
228 scale brain cell atlas (Sziraki et al., 2022) comprising 1,469,111 cells. For the brain cell atlas, we
229 sampled 5,000 cells of each cell type for the integration analysis. The UMAP plots show the integrated
230 cells, colored by assay types (left, cell types from *TrackerSci* are annotated) or cell annotations from the
231 brain cell atlas (right, cells from *TrackerSci* are colored in grey).

232

233

234 **Identify cell-type-specific epigenetic signatures and TF regulators of newborn cells**
235

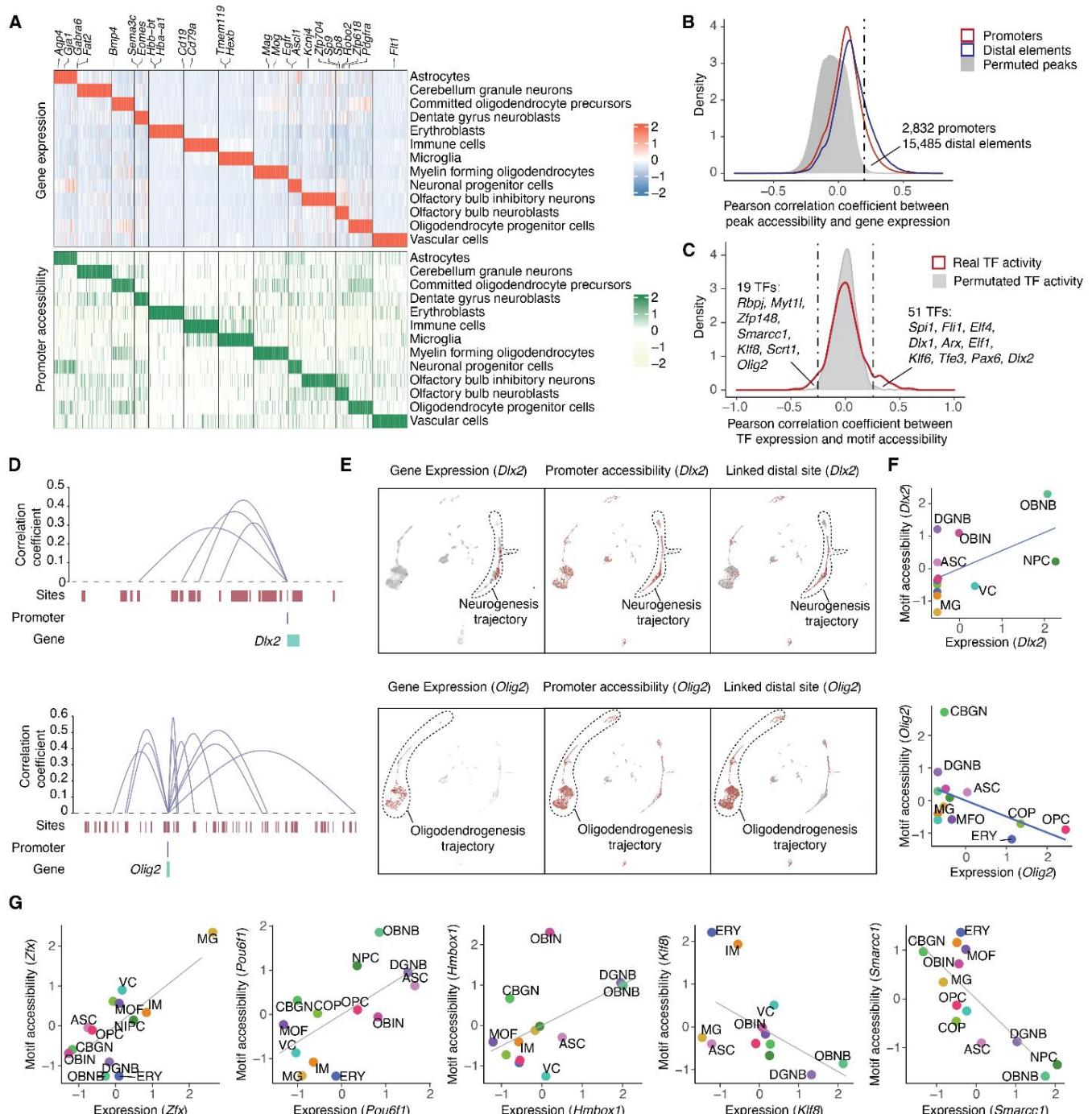
236 Toward a better understanding of the molecular signatures of newborn cells, we performed differential
237 expression (DE) and differential accessibility (DA) analysis, yielding 5,610 DE genes (FDR of 5%, **Figure**
238 **3A; Table S3; Methods**) and 68,556 DA sites (FDR of 5%, **Table S4; Methods**) with significant changes
239 across cell types. Notably, 1,744 (34.8%) of DE genes have DA promoters enriched in the same cell type
240 (median Pearson $r = 0.81$, **Figure 3A**). While canonical gene markers were observed and used for our
241 annotation of different cell types (**Figure S8**), we detected many novel markers that are highly cell-type-
242 specific but have not been reported in prior research, including markers for neuronal progenitor cells (e.g.,
243 *Adgrv1* and *Rmi2*), DG neuroblasts (e.g., *Prdm8* and *Marchf4*), OB neuroblasts (e.g., *Zfp618* and *Sdk2*)
244 and committed oligodendrocyte precursors (e.g., *Ccdc134* and *Mroh3*) (**Figure S8**). The cell type
245 specificity of these markers were cross-validated by both gene expression and promoter accessibility.
246 For comparison, some of the widely used neurogenesis markers, such as *Sox2* and *Dcx*, were found to
247 be expressed across multiple cell types (e.g., oligodendrocyte progenitor cells; **Figure S9**), which may
248 affect their accuracy for labeling cells in neurogenesis (Hodge and Hevner, 2011).
249

250 To investigate the epigenetic landscape that shapes the transcriptome of newborn cells, we next sought
251 to identify the cis-regulatory elements underlying the cell-type-specific expression of gene markers. We
252 first computed the correlation between the expression of each gene marker and the accessibility of its
253 nearby DA sites across 88 ‘pseudo-cells’ (a subset of cells with adjacent integrative UMAP coordinates
254 grouped by k-means clustering, **Figure S10A; Methods**). To control for any potential artifacts of the
255 analysis, we permuted the sample IDs of the data matrix followed by the same analysis pipeline.
256 Altogether, we identified 15,485 positive links between genes and distal sites (plus 2,832 associations
257 between genes and promoters) at an empirically defined significance threshold of FDR = 0.05 and based
258 on their cell-type-specificity (**Figure 3B; Table S5; Methods**).
259

260 The identified distal site-gene linkages were significantly closer than all possible pairs tested (median
261 159 kb for identified links vs. 251 kb for all pairs tested; p -value $< 5 \times 10^{-5}$, unpaired permutation test
262 based on 20,000 simulations, **Figure S10B**). Most genes were associated with a few links (median two
263 distal sites per gene, out of a median of 94 distal sites within 500 kb of the TSS tested, **Figure S10B**).
264 For example, *Dlx2*, a canonical neurogenesis marker (Petryniak et al., 2007), was significantly linked to
265 four distal peaks, all exhibiting remarkable cell-type-specificity similar to its gene expression (**Figure 3D**
266 and **3E**; **Figure S10C**). By contrast, a small subset of genes (3.5%) were linked with a large number of
267 peaks (≥ 10 peaks). For instance, *Olig2* was linked to 10 distal peaks (**Figure 3D**), all highly enriched in
268 the oligodendrocyte progenitor cells (OPC) and committed oligodendrocyte precursors (COP) (**Figure 3E**;
269 **Figure S10D**). Some genes (e.g., *Dlx2*) showed strong cell-type-specificity in their linked distal sites
270 compared to their promoters (**Figure S10E**), indicating that long-range transcriptional control could play a
271 key role in determining cell type specificities.
272

273 To further characterize transcription factors (TFs) that contribute to the cell type specification of
274 progenitor cells, we computed the Pearson correlation coefficient between TF expression and motif
275 accessibility across all afore-described ‘pseudo-cells’. We then performed the same analysis using the
276 permuted data as the background control. At an empirically defined significance threshold of FDR = 0.05,
277 we identified a total of 70 cell-type-specific TF regulators, including 19 potential repressors featured with
278 negative correlations between gene expression and motif accessibility (e.g., *Olig2*, **Figure 3C and 3F**).

279 Most cell-type-specific TFs are readily validated by previous studies. For example, *Olig2* has been
 280 reported to encode a transcriptional repressor during motor neuron differentiation and myelinogenesis
 281 (Zhang et al., 2022). Other examples include *Spi1* and *Runx1* in immune cells (Iwasaki and Akashi, 2007;
 282 Yeh and Ikezu, 2019); *Maf*, *Mef2a*, and *Tfe3* in microglia (Solé-Domènec et al., 2016; Yeh and Ikezu,
 283 2019); and *Pax6*, *Nfib*, and *Arx* in neuronal progenitor cells and neuroblasts (Colombo et al., 2007;
 284 Ninkovic et al., 2013; Osumi et al., 2008). Notably, several less-characterized TFs were identified and
 285 validated by the cell-type-specific enrichment of both gene expression and motif accessibility, such as
 286 *Pou6f1*, *Hmbox1*, *Klf8*, and *Smarcc1* enriched in immature neurons and *Zfx* enriched in microglia,
 287 representing potentially regulators of progenitor cells in the adult brain (Figure 3G; Figure S11).



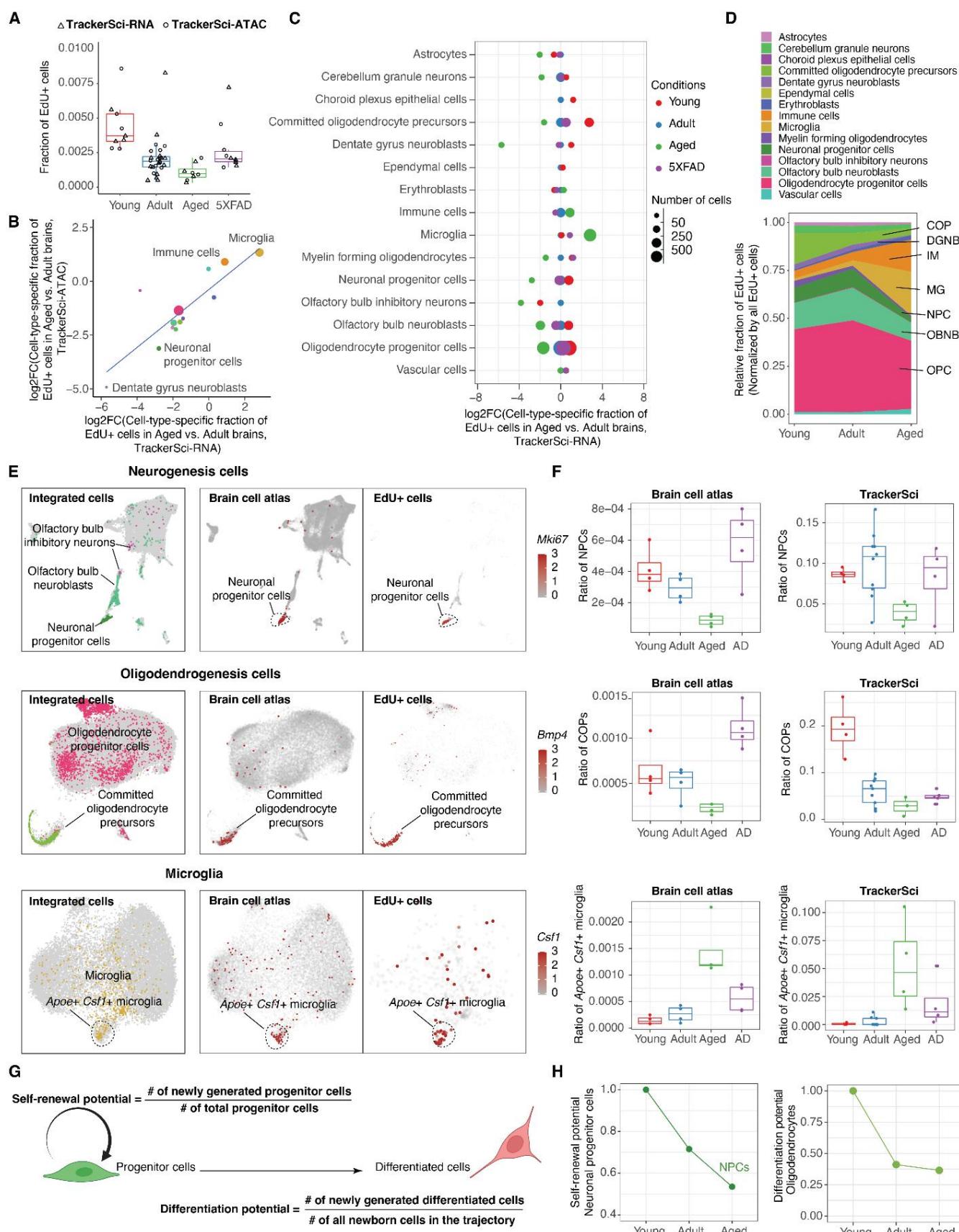
289 **Figure 3. Identifying epigenetic elements and transcription factors associated with**
290 **heterogeneous cellular states of newborn cells in the mouse brain.**
291 (A) Heatmap showing the relative expression (top) and chromatin accessibility (bottom) of cell-type-
292 specific genes across cell types. The UMI count matrix (gene expression) and read count matrix (ATAC-
293 seq) were normalized by the library size and then log-transformed, column centered, and scaled. The
294 resulting values clamped to [-2, 2].
295 (B) Density plot showing the distribution of Pearson correlation coefficients between gene expression
296 and the accessibility of promoter (colored in red) or nearby accessible elements (within ± 500 kb of the
297 promoter, colored in blue) across pseudo-cells. In addition, we plotted the background distribution of the
298 Pearson correlation coefficient after permuting the accessibility of peaks across pseudo-cells.
299 (C) Density plot showing the distribution of Pearson correlation coefficients between TF expression and
300 their motif accessibility across pseudo-cells. The background distribution was calculated after permuting
301 the motif accessibility of TFs across pseudo-cells.
302 (D) Genome browser plot showing links between distal regulatory sites and genes for a neurogenesis
303 marker (*Dlx2*, top) and an oligodendrogenesis marker (*Olig2*, bottom).
304 (E) UMAP plots showing the cell-type-specific expression (left), the accessibility of promoter (middle),
305 and linked distal site (right) for genes *Dlx2* (top) and *Olig2* (bottom). The single-cell expression data (UMI
306 count) and ATAC-seq data (read count) were normalized first by library size and then log-transformed,
307 column centered, and scaled.
308 (F) Scatter plots showing the correlation between the scaled gene expression and motif accessibility
309 across cell types for *Dlx2* (top) and *Olig2* (bottom), together with a linear regression line. ASC: astrocytes,
310 CBGN: cerebellum granule neurons, COP: committed oligodendrocyte precursors, DGNB: dentate gyrus
311 neuroblasts, ERY: erythroblasts, MFO: myelin-forming oligodendrocytes, MG: microglia, NPC: neuronal
312 progenitor cells, OBNB: olfactory bulb neuroblasts, OBIN: olfactory bulb inhibitory neurons, OPC:
313 oligodendrocyte progenitor cells, VC: vascular cells.
314 (G) Scatter plots showing the correlation between the scaled gene expression and motif accessibility of
315 less-characterized TF regulators, together with a linear regression line.

316 **A global view of cell-type-specific proliferation rates across the adult lifespan**
317

318 We next compared the fraction of EdU+ cells across young, adult, and aged mice brains, and observed a
319 marked reduction of cellular proliferation associated with age (**Figure 4A**). To investigate the cell-type-
320 specific changes in proliferation rates, we then quantified the relative fractions of each newborn cell type
321 by their fractions in the EdU+ cell population, multiplied by the ratio of EdU+ cells in the global cell
322 population. Interestingly, we detected highly heterogeneous responses to aging across various
323 progenitor cell types, validated by both single-cell transcriptome and chromatin accessibility profiles
324 (**Figure 5B**). For example, dentate gyrus neuroblasts showed an 18-fold reduction in the aged brain (vs.
325 the adult brain), while the proliferation of vascular cells were only mildly affected. In contrast, microglia
326 and other immune cells showed a remarkable boost in the production of newborn cells (**Figure 4B-D**),
327 possibly due to the elevated inflammatory signaling in the aged brain (Corlier et al., 2018). Compared
328 with the aged brain, we detected overall mild changes in cellular proliferation (except the microglia) in the
329 AD-associated mouse model (5xFAD), probably because the mutant mice were profiled at a relatively
330 early stage (before three months).

331
332 To further validate the cell-type-specific dynamics in brain aging, we integrated the newborn cells
333 recovered from *TrackerSci* and a global mice brain cell atlas (Sziraki et al., 2022) for sub-clustering
334 analysis. Indeed, the integration analysis at the sub-cluster level facilitated the identification of rare
335 progenitor cells in the global brain cell atlas, such as neuronal progenitor cells (marked by *Mki67*, *Top2a*,
336 and *Egfr*) and committed oligodendrocyte precursors (marked by high expression of *Bmp4* and *Enpp6*)
337 (**Figure 4E**). Both of these cell types are remarkably reduced upon aging, validated in both datasets
338 (**Figure 4F**). In addition, the integration analysis revealed a reactive microglia subtype, marked by high
339 expression of *Apoe* and *Csf1* in both datasets. This microglia subtype has been previously reported to be
340 enriched in aged and AD mammalian brains (Keren-Shaul et al., 2017). Consistent with prior studies, we
341 found the proliferation rate of the *Apoe*+, *Csf1*+ microglia increased significantly in both aged (p-value =
342 0.0045, Wilcoxon rank-sum test) and 5xFAD brains (p-value = 0.028, Wilcoxon rank-sum test), which
343 readily explained its rapid expansion in both aged and disease conditions (**Figure 4F**).
344

345 We next sought to investigate the impact of aging on the self-renewal and differential potential of
346 progenitor cells *in vivo*. We first defined the self-renewal potential by the number of newly generated
347 progenitor cells divided by the number of total progenitor cells in the brain (*i.e.*, the number of new cells
348 generated per progenitor cell in a fixed time, **Figure 4G**). For instance, the neuronal progenitor cells
349 exhibited down-regulated self-renewal potential over ages (**Figure 4H**), which readily explained the
350 depleted neural stem cell pool in the aged brain. Meanwhile, the differentiation potential of a cell type can
351 be defined by the fraction of newly generated differentiated cells divided by all newborn cells in the same
352 lineage (**Figure 4G**). For example, we observed a substantially reduced differentiation potential in
353 oligodendrocyte progenitor cells across the adult lifespan, especially during the early growth stage
354 (**Figure 4H**). This analysis represents a unique application of *TrackerSci* for quantitative measurement of
355 cell-type-specific self-renewal and differentiation capacities *in vivo*.



357 **Figure 4. Deciphering the impact of aging on the proliferation status and differentiation dynamics**
358 **of different cell types in the mammalian brain.**

359 (A) Boxplot showing the fraction of EdU+ cells in the mouse brain after five days of EdU labeling. The
360 plot includes data from both single-cell transcriptome and chromatin accessibility experiments in
361 *TrackerSci*. For all box plots in this figure: middle lines, medians; upper and lower box edges, first and
362 third quartiles, respectively; whiskers, 1.5 times the interquartile range; and all individual data points are
363 shown.

364 (B) With the single-cell RNA-seq or ATAC-seq data of *TrackerSci*, we first calculated the cell-type-
365 specific fractions in each condition (*i.e.*, young, adult, aged, and 5xFAD), multiplied by the fraction of
366 EdU+ cells in the entire brain. We then quantified the fold changes of normalized cell-type-specific
367 fractions between the aged and adult brains. The scatter plot shows the log-transformed fold changes
368 (aged vs. adult) correlation between single-cell transcriptome and chromatin accessibility analysis in
369 *TrackerSci*.

370 (C) Similar to the analysis in (B), the dot plot shows the log-transformed cell-type-specific fold changes
371 between each condition and the adult brain. For the comparison between 5xFAD and wild-type, we used
372 mice of the same age (11-week-old) from both groups.

373 (D) Area plot showing the cell-type-specific proportions in EdU+ cells over time.

374 (E) We integrated cells corresponding to OB neurogenesis (top), oligodendrogenesis (middle), and
375 microglia (bottom) in *TrackerSci* and brain cell atlas (Sziraki et al., 2022); the left UMAP plot shows the
376 integrated cells, colored by cell type annotations in *TrackerSci* or grey (brain cell atlas). The two UMAP
377 plots on the right show cells from the brain cell atlas or the EdU+ cells recovered by *TrackerSci*, colored
378 by the expression of the neuronal progenitor marker *Mki67* (top), the committed oligodendrocyte
379 precursor cells marker *Bmp4* (middle) and the aging/AD-associated microglia marker *Csf1* (bottom).

380 (F) Box plots showing the cell-type-specific fractions of neuronal progenitor cells (top), committed
381 oligodendrocyte precursors (middle) and aging/AD-associated microglia (bottom) across different
382 conditions in the brain cell atlas (left) or newborn cells from *TrackerSci* (right).

383 (G) Schematic showing the calculation of the self-renewal and differentiation potential of progenitor cells.

384 (H) Left: Line plot showing the estimated self-renewal potential of neuronal progenitor cells over time.
385 Right: Line plot showing the estimated differentiation potential of the newly generated oligodendrocyte
386 progenitor cells across three age groups.

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403 **The impact of aging on adult neurogenesis**

404

405 Adult neurogenesis and oligodendrogenesis have been reported to decline upon aging (Galvan and Jin,
406 2007; Pollina and Brunet, 2011); however, the detailed gene regulatory mechanism is still unclear due to
407 technical limitations. We next sought to interrogate the impact of aging on adult neurogenesis and
408 oligodendrogenesis, and delineate underlying transcriptional and epigenetic controls.

409

410 For adult neurogenesis, we identified three main trajectories that differentiated into DG neuroblasts, OB
411 neuroblasts, and astrocytes, consistent with the cell state transition directions inferred by the RNA
412 velocity analysis (Bergen et al., 2020) and prior report (Ratz et al., 2022) (**Figure 5A**). The trajectory was
413 further validated through a pulse-chase experiment, where we harvested cells for *TrackerSci* profiling at
414 different time points (*i.e.*, one day, three days, and nine days post-labeling). Indeed, we observed a
415 gradual accumulation of more differentiated cell states with longer chasing time (**Figure 5B**). Through DE
416 gene analysis, we identified 2,072 and 6,473 DE genes along the DG neurogenesis and OB
417 neurogenesis trajectories, respectively (**Table S7 and S8**). Of all DE genes, 1,799 genes were shared
418 between the two trajectories, including up-regulated genes (*e.g.*, *Dcx*) enriched in neuron development
419 (*q-value* = 2.7e-8) (Chen et al., 2013) and down-regulated genes (*e.g.*, *Notum*) enriched in negative Wnt
420 signaling regulation (*q-value* = 0.0004) (Chen et al., 2013) (**Figure S12A**). In addition, putative trajectory-
421 and region-specific neurogenesis programs were identified, such as *Neurod1*, *Neurod2*, and *Emx1*
422 enriched in the DG trajectory (**Figure S12B**). This is consistent with previous reports about their
423 important roles in hippocampal neurogenesis (Brulet et al., 2017; Hong et al., 2007; Micheli et al., 2017).

424

425 With the chromatin accessibility profiling, we identified 3,095 and 13,790 sites showing dynamics
426 patterns along the DG neurogenesis and OB neurogenesis trajectories, respectively (**Table S9 and S10**),
427 from which we further identified 20 TFs exhibiting significantly changed motif accessibility in the DG
428 neurogenesis trajectory (FDR of 0.05, **Table S11**) and 318 TFs in OB neurogenesis (FDR of 0.05, **Table**
429 **S12**). Key TFs were further validated by strong correlations between their expression and motif
430 accessibility dynamics (**Figure 5C**). For example, the expression of the above-mentioned neurogenesis
431 regulators, *Neurod1* and *Neurod2*, are positively correlated with their motif accessibility. In contrast,
432 *Myt1l*, a known repressor of neural differentiation (Mall et al., 2017), shows a negatively correlated gene
433 expression and motif accessibility. Leveraging this approach, we identified TFs shared between two
434 neurogenesis trajectories (*e.g.*, *Myt1l*, *Ascl1*, and *E2f7*); as well as TFs that regulate the specification of
435 different neuron types (*e.g.*, *Dlx6*, *Sp8*, *Sp9* uniquely enriched in OB neurogenesis (Díaz-Guerra et al.,
436 2013; Li et al., 2018a)). Meanwhile, we identified several TFs (*e.g.*, *Irf2*, *Stat2*, and *Etv6*) showing strong
437 enrichment of gene expression and motif accessibility in neuronal progenitor cells. While their functions
438 in neurogenesis were less-characterized, some of them have been reported as essential regulators of
439 other stem cell types, such as colonic stem cells (*Irf2*) (Minamide et al., 2020), mesenchymal stem cells
440 (*Stat2*) (Yi et al., 2012), and hematopoietic stem cells (*Etv6*) (Hock et al., 2004; Yi et al., 2012).

441

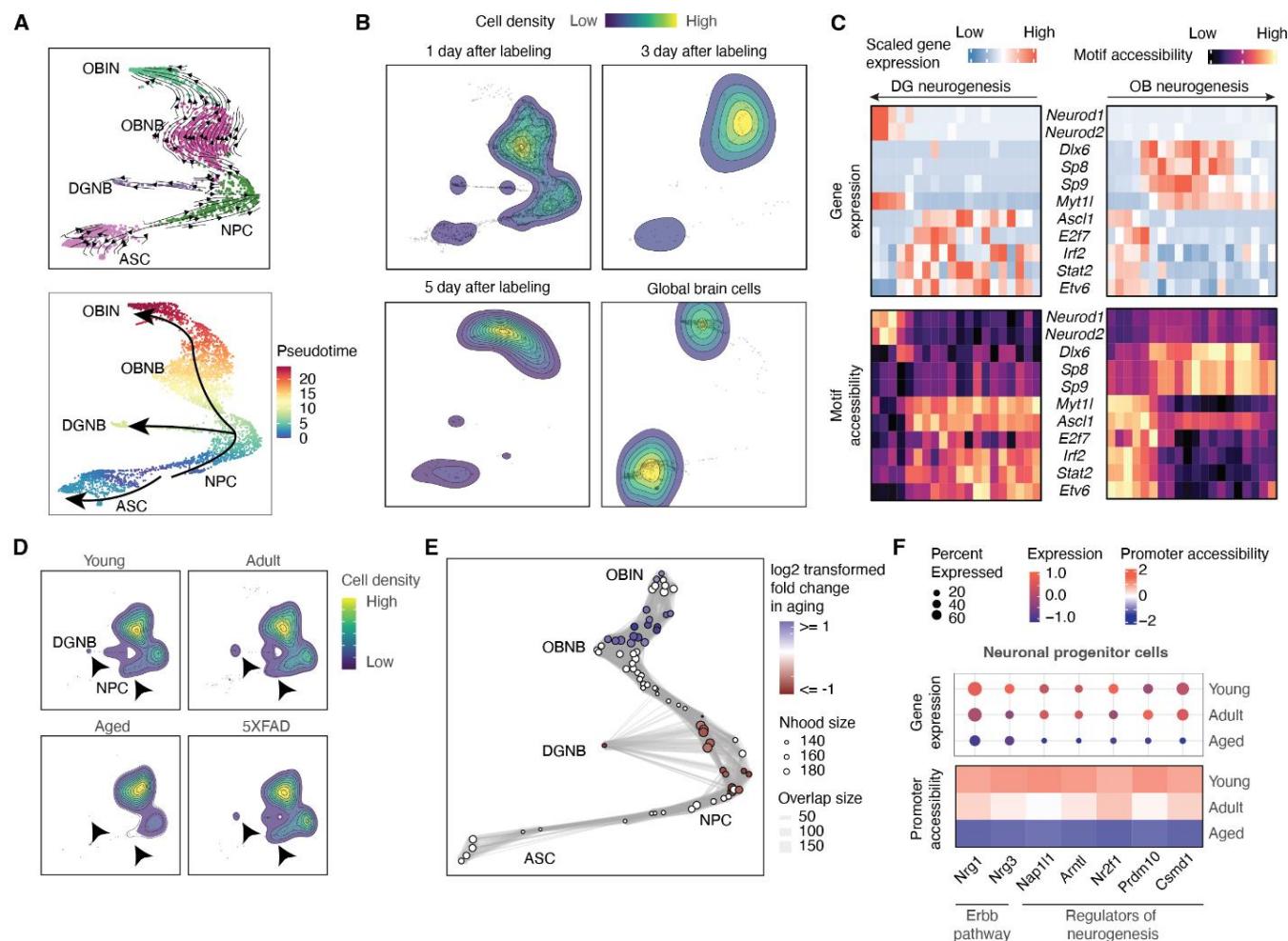
442 To investigate the impact of aging on adult neurogenesis, we next compared the cellular density
443 recovered from *TrackerSci* transcriptome profiling across different conditions along the neurogenesis
444 trajectory. Consistent with the cell type level analysis (**Figure 4C**), we observed a dramatic age-
445 dependent reduction in the cellular density of neural progenitor cells (NPC) and DG neuroblasts (DGNB),
446 but not in OB neuroblasts (**Figure 5D**). The finding was consistent with the chromatin accessibility

447 profiles, where we applied a recently published differential abundance testing algorithm, *Milo* (Dann *et al.*,
448 2021), to identify the cellular neighborhoods that are significantly altered upon aging. Thirty-one
449 differentially decreased cellular neighborhoods were identified (**Figure 5E**, 5% FDR), mostly from the
450 neural progenitor cells (NPC) and DG neuroblasts (DGNB). This analysis further validated that aging
451 affects neurogenesis by down-regulating the proliferation rate of its progenitor cells.
452

453 To further decipher the molecular mechanisms underlying the age-dependent changes in neuronal
454 progenitor cells, we then performed differential gene expression analysis across young, adult, and aged
455 conditions, yielding thirty genes showing concordant changes over time, supported by both gene
456 expression and the accessibility of promoters or linked distal sites (**Figure 5F; Table S13; Methods**). For
457 example, two neurotrophic factors involved in the Erbb pathway, *Nrg1* and *Nrg3*, exhibited strongly
458 reduced expression and promoter accessibility upon aging. Indeed, they have been reported to maintain
459 neurogenesis upon *in vivo* administration (Mahar *et al.*, 2016). In addition, we identified several other
460 known regulators of neurogenesis, such as *Nr2f1* and *Nap1l1* (Bertacchi *et al.*, 2020; Qiao *et al.*, 2018),
461 that were significantly down-regulated upon aging, which serve as potential targets for restoring adult
462 neurogenesis in aged brains.
463

464

465



466

467

Figure 5. Characterizing the impact of aging on neurogenesis.

468 (A) UMAP plots showing the differentiation trajectory of neurogenesis, colored by main cell types (top) or
 469 pseudotime (bottom). The differentiation trajectories are inferred by RNA velocity analysis (top) and
 470 annotated on the bottom plot.

471 (B) Mice brains were harvested one day, three days and nine days after EdU labeling (EdU was
 472 administered daily through i.p. injection during the first five days), followed by *TrackerSci* profiling. The
 473 contour plots show the distribution of EdU+ cells in the neurogenesis trajectory across different harvest
 474 time points and the distribution of all brain cells without enrichment of EdU+ cells.

475 (C) Heatmap showing the dynamics of gene expression and motif accessibility of cell-type-specific TFs
 476 across the pseudotime of neurogenesis trajectories.

477 (D) Contour plots showing the distribution of EdU+ cells from *TrackerSci*-RNA in the neurogenesis
 478 trajectory across conditions. The arrows point to the significantly reduced cell states in each trajectory.

479 (E) A neighborhood graph from Milo differential abundance analysis on the neurogenesis trajectory. The
 480 layout of the graph is determined by the position of the neighborhood index cell in (A). Nodes represent
 481 cellular neighborhoods from the KNN graph. Differential abundance neighborhoods are colored by the
 482 log-transformed fold change across ages. Graph edges depict the number of cells shared between
 483 neighborhoods.

484 (F) The dot plots and heatmaps show the scaled gene expression and promoter accessibility of top
485 differentially expressed genes in the neuronal progenitor cells.
486

487 **The impact of aging on adult oligodendrogenesis**

488

489 We next *in silico* isolated cell types that span multiple stages of oligodendrogenesis for pseudotime
490 analysis, yielding a simple trajectory defined by integrated transcriptome and chromatin accessibility
491 profiles (**Figure 6A**). The oligodendrogenesis trajectory was further validated by the RNA velocity
492 analysis and the time-dependent labeling experiment mentioned above (**Figure 6B**). Through differential
493 expression (DE) and differential accessibility (DA) analysis, we identified 8,443 DE genes and 15,164 DA
494 sites that were significantly changed along the trajectory (5% FDR, **Table S14**). This analysis identified
495 known oligodendrogenesis regulators (e.g., *Zfp276* (Aberle *et al.*, 2022) and *Myrf* (Aberle *et al.*, 2022;
496 *Fletcher et al.*, 2021)) and associated pathways (e.g., cholesterol biosynthesis (Mathews and Appel,
497 2016)), as well as novel gene markers (e.g., *Snx10*, *Rfbox2*, and *Tenm2*, (**Figure S12C**) with highly
498 correlated changes of both molecular layers (i.e., RNA and promoter accessibility) along the trajectory of
499 oligodendrogenesis.

500

501 Moreover, we identified 97 TFs that exhibited highly correlated gene expression and motif accessibility in
502 oligodendrogenesis (FDR of 5%, **Table S15 and S16**), including known regulators of oligodendrocyte
503 differentiation, such as *Sox5*, *Sox10*, *Pknox1*, and *Nkx6-2* (Emery and Lu, 2015; Kato *et al.*, 2015). In
504 addition, several less-characterized TF markers were recovered, including *Ikzf4*, a known regulator of
505 Müller glia differentiation in the retina (Javed *et al.*, 2021), and several potential transcriptional
506 'repressors' (e.g., *Esrra*, *Esrrg*, *Elk3*, *Zeb1*) characterized by the negative correlation between their
507 expression and motif accessibility along the trajectory of oligodendrogenesis (**Figure 6C**).

508

509 We further investigated the impact of aging on adult oligodendrogenesis by examining cellular density
510 along the cellular differentiation trajectory across different conditions. Unlike adult neurogenesis, we
511 observed a remarkable reduction in committed oligodendrocyte precursors (COPs) rather than the early
512 progenitor cells in single-cell transcriptome analysis (**Figure 6D**). The result is further validated through
513 the *Milo* (Dann *et al.*, 2021) analysis of chromatin accessibility profiles, where significantly decreased
514 cellular neighborhoods exclusively overlapped with the committed oligodendrocyte precursors (COPs)
515 (**Figure 6E**, 5% FDR). This observation is in accordance with the aging-associated depletion of newly
516 formed oligodendrocytes in our companion study (Sziraki *et al.*, 2022) and previous reports (Givre, 2003).

517

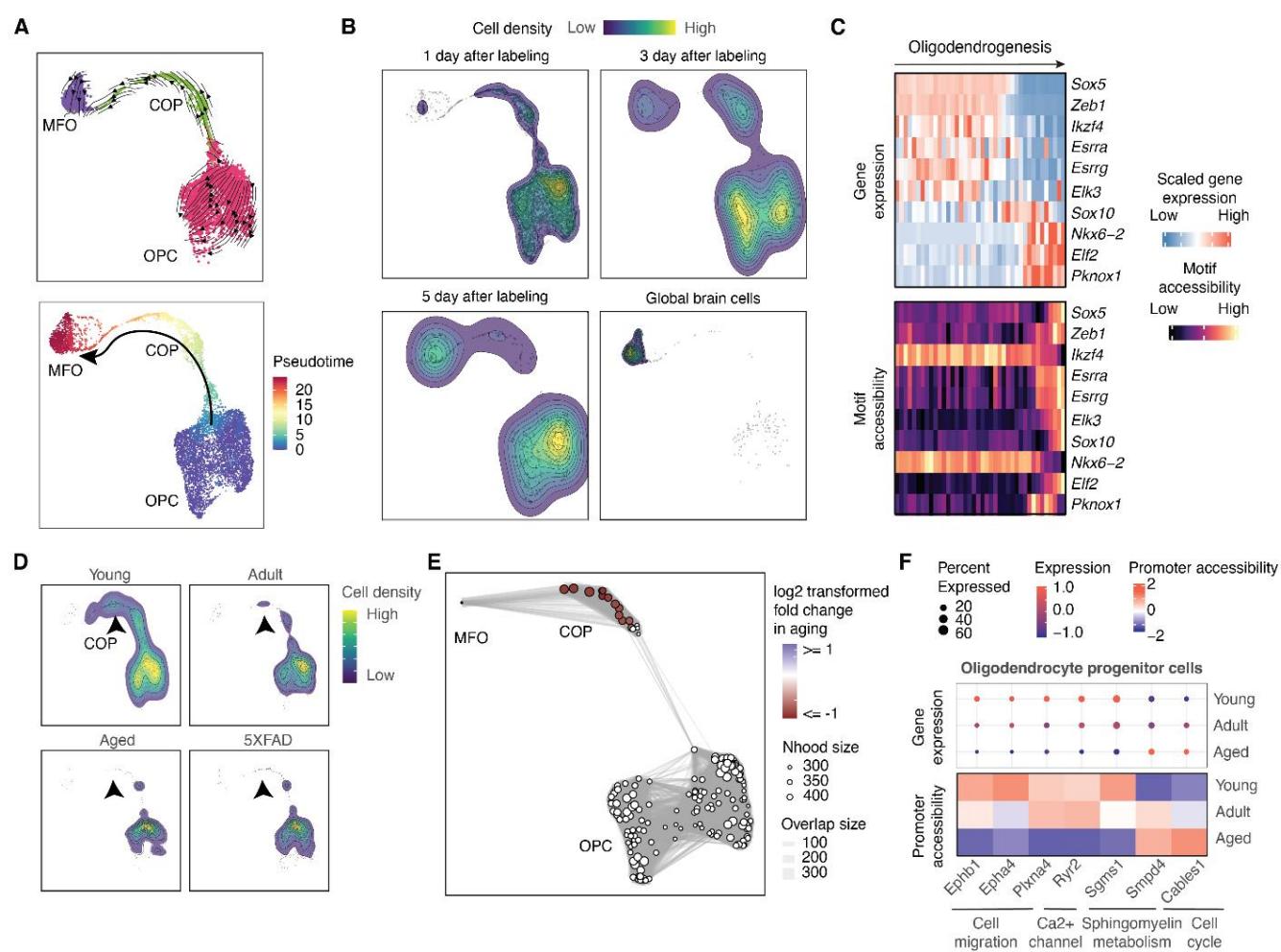
518 Finally, to delineate the molecular programs contributing to down-regulated oligodendrogenesis upon
519 aging, we examined the significantly dysregulated genes in OPCs and identified 242 DE genes (FDR of
520 10%, **Table S17**). Many of the top DE genes are cross-validated by two independent molecular layers
521 (i.e., both gene expression and promoter accessibility) (**Figure 6F**). A lot of these genes are involved in
522 molecular processes critical for oligodendrocyte differentiations, such as cell cycle (e.g., *Cables1* (He *et*
523 *al.*, 2019)) or cell migration pathway (e.g., *Ephb1*, *Epha4*, *Plxna4*) (Linneberg *et al.*, 2015; Smith *et al.*,
524 1997) (**Figure 6F**). For example, we detected age-dependent down-regulation of *Ryr2*, a ryanodine
525 receptor that mediates endoplasmic reticulum Ca^{2+} release, a process essential for initiating OPC
526 differentiation (Li *et al.*, 2018b). Intriguingly, two sphingomyelin metabolism-related genes exhibited
527 opposite dynamics between young and aged OPCs (**Figure 6F**): *Sgms1*, a gene encoding a
528 sphingomyelin synthase critical for converting phosphatidylcholine and ceramide to ceramide
529 phosphocholine (sphingomyelin) and diacylglycerol at the Golgi apparatus (Huitema *et al.*, 2004; Tafesse
530 *et al.*, 2007), was substantially down-regulated in the aged OPCs. By contrast, *Smpd4*, encoding a
531 sphingomyelin phosphodiesterase that catalyzes the reverse reaction (Krut *et al.*, 2006) (**Figure S13**),

532 was significantly up-regulated in OPCs upon aging (**Figure 6F**). As a result, the age-dependent changes
533 of both *Sgms1* and *Smpd4* could lead to the accumulation of ceramide and depletion of sphingomyelin in
534 OPCs, which has been reported to increase cellular susceptibility to senescence and cell death (Hannun
535 and Obeid, 2008; Jana et al., 2009). In fact, a recent report showed inhibiting another sphingomyelin
536 hydrolase nSMase2 enhances the myelination and differentiation of OPCs (Yoo et al., 2020), suggesting
537 a critical role of the dysregulated sphingomyelin metabolism in blocking oligodendrocyte differentiation in
538 the aged brain. Furthermore, the down-regulated differentiation of oligodendrocytes is associated with
539 dysregulated immune responses during aging, such as the accelerated proliferation of the reaction
540 microglia subtype (**Figure 4F**) and an increased *C4b* expression in OPCs from both the EdU+ population
541 and the global pool (**Figure S14**). Further investigation could be critical for deciphering the regulatory
542 links between the elevated inflammation signaling and the dysregulation of oligodendrocyte
543 differentiation in the aged brain.

544
545

546

547



548

549

550 **Figure 6. Characterizing the impact of aging on oligodendrogenesis.**

551 (A) UMAP plots showing the differentiation trajectory of oligodendrogenesis, colored by main cell types

552 (B) Mice brains were harvested one day, three days and nine days after EdU labeling (EdU was

553 administered daily through i.p. injection during the first five days), followed by *TrackerSci* profiling. The

554 contour plots show the distribution of EdU+ cells in the oligodendrogenesis trajectory across different

555 harvest time points and the distribution of all brain cells without enrichment of EdU+ cells.

556 (C) Heatmap showing the dynamics of gene expression and motif accessibility of cell-type-specific TFs

557 across the pseudotime of the oligodendrogenesis trajectory.

558 (D) Contour plots showing the distribution of EdU+ cells from *TrackerSci*-RNA in the oligodendrogenesis

559 trajectory across conditions. The arrows point to the significantly reduced cell states in each trajectory.

560 (E) A neighborhood graph from Milo differential abundance analysis on the oligodendrogenesis trajectory.

561 The layout of the graph is determined by the position of the neighborhood index cell in (A). Nodes

562 represent cellular neighborhoods from the KNN graph. Differential abundance neighborhoods are

563 colored by the log-transformed fold change across ages. Graph edges depict the number of cells shared

564 between neighborhoods.

565

566 (F) The dot plots and heatmaps show the scaled gene expression and promoter accessibility of top
567 differentially expressed genes in the oligodendrocyte progenitor cells.

568 **TrackerSci facilitates the identification of rare progenitor cells in the aged human brain.**

569

570 We next sought to investigate whether the *TrackerSci* dataset can be applied to facilitate the
571 identification of rare progenitor cell types in the aged human brain. We first applied an extensively
572 optimized single-cell RNA-seq by combinatorial indexing to profiling twenty-nine human brain samples
573 derived from six individuals ranging from 70 to 94 in age at death (**Table S18**). Up to five regions
574 (cerebellum, hippocampus, inferior parietal, motor cortex, and superior and middle temporal lobe (SMTG))
575 for each individual were included to characterize the region-specific effect of cellular dynamics. After
576 removing low-signal cells and potential doublets, we recovered gene expression profiles in 798,434
577 single nuclei for downstream analysis (a median of 23,504 nuclei per brain sample, with a median of
578 1,013 UMIs per nucleus, **Figure S15A and S15B**)

579

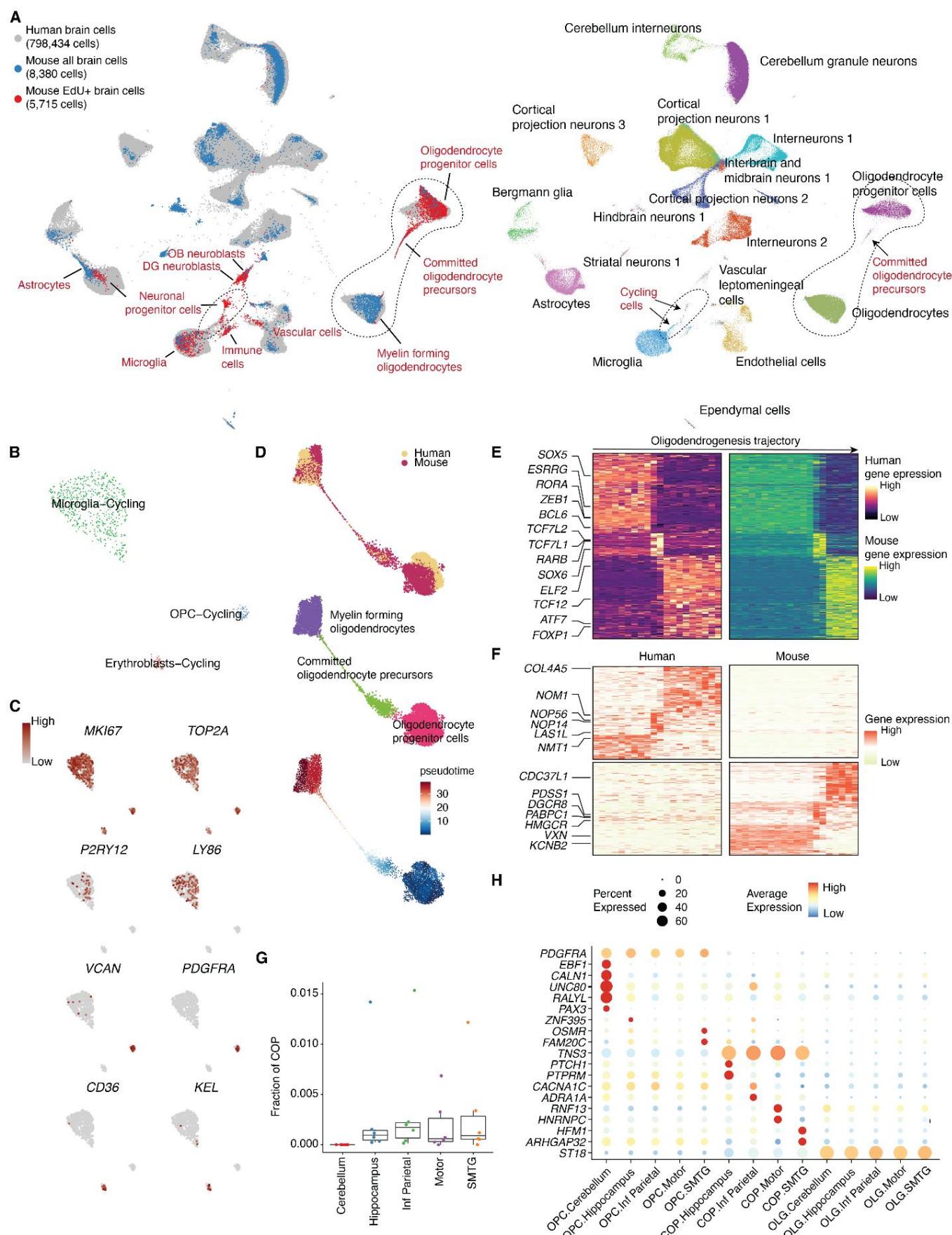
580 Although this is one of the largest single-cell datasets of the aged human brain up to date, it was
581 challenging to recover cycling or differentiating cells in the initial unsupervised clustering analysis (**Figure**
582 **S15C**), potentially due to the extreme rarity of those cells in the aged human brain. We next integrated
583 the *TrackerSci* dataset (including 5,715 EdU+ mouse brain cells and 8,380 mouse brain cells without
584 EdU enrichment) with the human brain dataset followed by UMAP visualization (**Figure 7A**). Despite the
585 species differences, the integration analysis facilitates the identification of extremely rare proliferating
586 and differentiating cell populations in the aged human brain. For example, we identified a rare human
587 cycling cell population that overlapped with cycling progenitor cells from mice (**Figure 7A**). Further sub-
588 clustering analysis separated the population into three distinct subtypes (**Figure 7B**), corresponding to
589 cycling microglia (569 cells, 0.07% of the total cell population, marked by *P2RY12* and *LY86*), cycling
590 oligodendrocyte progenitor cells (56 cells, 0.007% of the total cell population, marked by *VCAN* and
591 *PDGFRA*) and cycling erythroblasts (51 cells, 0.006% of the total cell population, marked by *CD36* and
592 *KEL*). All of these clusters were marked by conventional proliferating markers such as *MKI67* and
593 *TOP2A* (**Figure 7C**) and novel noncoding RNA markers such as *RP11-736I24.5*, *RP5-1086D14.6* and
594 *LINC01572* (**Figure S16A**), demonstrating the application of *TrackerSci* as an anchor to capture
595 extremely rare proliferating cells missed in the conventional single cell analysis. Interestingly, while the
596 cycling microglia population expressed a common set of cell cycle-related genes (e.g., *MKI67*, *TOP2A*,
597 *BUB1*, *SMC4*) and exhibited a similar ratio to the non-cycling microglia across brain regions (**Figure**
598 **S16B**), we identified gene expression signatures unique to each region, suggesting a local control of
599 microglia proliferation (**Figure S16C**). Of note, we detected very few neurogenesis cells in the aged
600 human brains.

601

602 Furthermore, integration analysis with the *TrackerSci* dataset facilitates the recovery of a stereotypical
603 cell differentiation trajectory. For example, 188 committed oligodendrocyte precursors were identified in
604 the aged human brain (0.02% of the total cell population), corresponding to the intermediate cells
605 connecting the oligodendrocyte progenitor cells to mature oligodendrocytes (**Figure 7A**). To decipher the
606 conserved gene dynamics underlying oligodendrogenesis between human and mouse, we extracted
607 oligodendrogenesis-related cells from both species for integration analysis, yielding a smooth cell
608 transition trajectory from progenitors to differentiated cell state (**Figure 7D**). We identified 5,680 genes
609 that significantly changed along the human oligodendrogenesis trajectory (FDR of 5%), out of which
610 1,162 genes (48 TFs) were shared between human and mouse (**Figure 7E, Table S19**). While most of
611 the conserved TFs have been previously reported as key regulators of oligodendrocyte differentiation
612 (e.g., *TCF7L1* and *TCF7L2* (Weng et al., 2017)), several TFs have not been well characterized in the

613 relevant context, such as *ZEB1*, *ESRRG*, *BCL6*, *RARB*. Notably, some less-characterized TFs were also
614 nominated in our previous motif analysis (**Figure 6C**). In addition, we identified gene signatures that
615 contribute to interspecies differences in oligodendrogenesis (**Figure 7F**). For example, the human-
616 specific genes are enriched in ribosome biogenesis (e.g., *NOM1*, *NOP56*, *NOP14*, and *LAS1L*), while
617 genes specifically linked to mouse oligodendrogenesis are involved in multiple pathways such as primary
618 miRNA processing (e.g., *DGCR8* and *SRRT*), mRNA 3'-end processing (e.g., *PABPN1*, *SSU72*, and
619 *PABPC1*) and isoprenoid biosynthetic processes (e.g., *PDSS1* and *HMGCR*).
620

621 Leveraging the dataset, we next investigated the differences in oligodendrogenesis across brain regions.
622 Interestingly, we observed a depletion of the committed oligodendrocyte precursors in all cerebellum
623 samples compared with other brain regions (**Figure 7G and Figure S17B**; p-value = 0.001, Fisher's
624 exact test), suggesting a reduced rate of oligodendrogenesis in the cerebellum. To gain more insight into
625 the detailed molecular programs underlying the region-specific change of oligodendrogenesis, we
626 performed DE analysis across regions and identified 45, 32, and 25 region-specific DE genes in OPC,
627 COP, and OLG, respectively (**Table S20**). For example, region-specific gene signatures of COP were
628 identified, such as *PTCH1* and *PTPRM* (hippocampus), *CACNA1C* and *ADRA1A* (inferior parietal), *RNF3*
629 and *HNRNPC* (motor cortex), and *HFM1* and *ARHGAP32* (SMTG) (**Figure 7H**). Strikingly, 40 out of the
630 45 region-associated genes of OPC (e.g., *EBF1*, *PAX3*, *CALN1*, and *UNC30*) were highly enriched in the
631 cerebellum (**Figure 7H**), indicating a unique molecular state of OPC in the cerebellum compared with
632 other regions. Furthermore, one of the cerebellum-specific markers, *PAX3*, encodes a paired box
633 transcription factor and has been reported to maintain the non-differentiating state of Schwann cells in
634 the peripheral nervous system (Kioussi et al., 1995). This is consistent with our observation that the COP
635 is depleted in the cerebellum. As a further illustration of this point, the cerebellum exhibited a higher
636 fraction of OPCs accompanied by a decreased ratio of mature oligodendrocytes compared to other
637 regions (**Figure S17A**). These analyses indicate a region-specific down-regulation of oligodendrogenesis
638 in the cerebellum of the aged human brain.
639
640
641



643 **Figure 7. *TrackerSci* facilitates the identification of proliferating and differentiating cells in the**
644 **human brain.**

645 (A) We integrated the *TrackerSci* dataset, including both EdU+ cells and DAPI singlets, with a large-
646 scale human brain dataset comprising 798,434 cells. The UMAP plots show the integrated cells, colored
647 by assay types (left, cell types from *TrackerSci* are annotated) or cell annotations from the human brain
648 dataset (right, cells from *TrackerSci* are colored in grey).

649 (B) UMAP plots showing the sub-clustering analysis of cycling cells from the human dataset, colored by
650 cell annotation (B) and the expression level of markers for proliferation (*MKI67* and *TOP2A*; C), microglia
651 (*P2RY12* and *LY86*; C), oligodendrocyte progenitor cells (*VCAN* and *PDGFRA*; C) and erythroblasts
652 (*CD36* and *KEL*; C).

653 (D) We integrated the oligodendrogenesis-related cells from *TrackerSci* and the human dataset. For the
654 human brain dataset, we included all cells from committed oligodendrocyte precursors and randomly
655 sampled 1,000 cells from oligodendrocyte progenitor cells and mature oligodendrocytes for the
656 integration analysis. The UMAP plots show the resulting differentiation trajectory, colored by species
657 (top), cell type annotations (middle) and pseudotime (bottom).

658 (E) Heatmaps showing conserved gene expression dynamics along the oligodendrogenesis trajectory for
659 human (left) and mouse (right), with key TF regulators annotated on the left.

660 (F) Heatmaps showing divergent gene expression dynamics along the oligodendrogenesis trajectory
661 enriched only in human (top) and mouse (bottom), with key genes annotated on the left.

662 (G) Boxplot showing the fraction of committed oligodendrocyte precursors (COP) among
663 oligodendrogenesis-related cells across different brain regions in each sample. For all box plots: middle
664 lines, medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the
665 interquartile range; and all data points are shown.

666 (H) Dotplot showing examples of commonly-changed and region-specific gene expression signatures
667 across three differentiation stages along oligodendrogenesis trajectories.

668
669

670 **Discussion**

671

672 The field of single-cell biology is progressing at a rapid rate to catalog and characterize each specific cell
673 type across diverse biological systems. Although the adult or aged brains have been intensively profiled
674 with single-cell methods (Li et al., 2021; Saunders et al., 2018; Zeisel et al., 2018), it has been
675 challenging to capture rare progenitor cells and characterize their proliferation and differentiation
676 potentials. Compared with prior studies (e.g., Div-seq (Habib et al., 2016)), *TrackerSci* represents a
677 unique approach to track both epigenetic and transcriptional dynamics of proliferating cells based on the
678 strategy of combinatorial indexing. Like other sci-seq techniques (Cao et al., 2020; Domcke et al., 2020),
679 *TrackerSci* is compatible with fresh or fixed nuclei, and can process multiple samples concurrently per
680 experiment to reduce the batch effect. In this study, we applied *TrackerSci* to profile the single-cell
681 transcriptome or chromatin accessibility dynamics for a total of 14,689 newborn cells from entire mouse
682 brains spanning three age stages and two genotypes. Considering the rarity of the progenitor cells,
683 especially in aged brains, it required deep sequencing of up to 15 million brain cells to recover the same
684 amount of progenitor cells by conventional single-cell techniques.

685

686 Our analyses demonstrated unique advantages of *TrackerSci* over solely profiling global cell populations.
687 For example, *TrackerSci* enabled us to reconstruct continuous cellular differentiation trajectories in adult
688 or even aged organs by detecting intermediate progenitor cell states that are often missed in traditional
689 single-cell analysis. Moreover, we were able to calculate the proliferation and differentiation potential of
690 rare progenitor cells, facilitating the quantitative investigation of the impact of aging on adult
691 neurogenesis and oligodendrogenesis. In addition, we further investigated age-dependent changes in
692 cell-type-specific proliferation and differentiation dynamics and provided novel insights into the underlying
693 transcriptional and epigenetic mechanisms.

694

695 There is a consensus that the self-renewal and regeneration capacity of progenitor cells reduces as we
696 age. Through a comprehensive and quantitative view of the cell-type-specific proliferation and
697 differentiation dynamics, however, we observed heterogeneous cellular responses to aging across
698 progenitor cell types. While aging was associated with a depleted pool of neuronal progenitors as we
699 expected, we found newborn oligodendrocyte progenitors were only mildly affected. Instead, the
700 intermediate differentiation precursors were remarkably reduced especially at a relatively early stage
701 (before six months), suggesting that aging affects oligodendrocytes mainly by blocking their
702 differentiation process, consistent with the age-dependent downregulation of myelination in previous
703 studies(Wang et al., 2020; Zhang et al., 2021). Intriguingly, we detected an age-dependent increase of
704 *Smpd4* (sphingomyelin phosphodiesterase) and a decrease of *Sgms1* (sphingomyelin synthase)
705 expression in the oligodendrocyte progenitor cells, suggesting that a high cellular ceramide level was
706 associated with the aging-induced inhibition of oligodendrocyte differentiation.

707

708 To further investigate rare progenitor cell types in human brains, we generated a single-cell
709 transcriptome atlas of human brains comprising almost 800,000 cells. While conventional clustering
710 analysis failed to identify the rare progenitor cells in the dataset, integrative analysis with the *TrackerSci*
711 dataset facilitated the identification of extremely rare cycling cells of microglia (0.07% of the total cell
712 population) and OPCs (0.007% of the total cell population) in the aged human brain. The integration
713 analysis enabled us to identify committed oligodendrocyte precursors (0.02% of the total cell population)
714 across different brain regions, which confirmed the existence of oligodendrogenesis in the aged human

715 brain. Further analysis of the data also nominated oligodendrogenesis-associated gene signatures that
716 are shared or divergent between species. For example, we observed an increased expression of
717 ribosome biogenesis factors in human oligodendrogenesis, while several genes involved in microRNA
718 processing and mRNA polyadenylation are uniquely upregulated in mouse brains, suggesting a species-
719 specific preference of regulation in global translation or transcription during oligodendrocyte
720 differentiation. In addition, we recovered the differences of human oligodendrogenesis across anatomical
721 locations, and identified molecular programs contributing to the down-regulated oligodendrogenesis in
722 the aged human cerebellum.

723
724 In summary, the study represents a key step toward understanding the impact of aging on the
725 proliferation and differentiation potential of progenitor cells in the mammalian brain. We anticipate that
726 *TrackerSci* will be broadly used to identify and quantify cell-genesis processes across diverse systems,
727 including other mammalian organs and humanized organoids. In addition, we envision similar strategies
728 (i.e., coupling the sci-seq platform with *in vivo* cellular labeling) can be expanded to study other critical
729 molecular aspects, such as the cell-type specific survival, apoptosis, and senescent states. This will
730 facilitate a comprehensive view of the global molecular programs regulating cell-type-specific dynamics
731 during aging, thereby informing potential pathways to restore tissue homeostasis for patients with aging-
732 related diseases.

733

734

735 Endnotes

736

737 **Acknowledgments:** We thank members of the Cao lab, especially Z. Zhang, Z. Xu, for helpful
738 discussions and feedback. We are grateful to R. Satija (New York Genome Center) and J. Shendure
739 (University of Washington) for insightful feedback related to this work. We also thank members from the
740 Rockefeller University Flow Cytometry Resource Center and Comparative Bioscience Center for their
741 help on FACS sorting experiments and animal maintenance.

742

743 **Funding:** This work was funded by grants from the NIH (1DP2HG012522, 1R01AG076932 and
744 RM1HG011014 to J.C; P30AG072946 and P01AG078116 to P.T.N.; R01AG066912 to S.G.). This
745 research was conducted while J.C. was a Sagol Network GerOmic Award for Junior Faculty awardee.

746

747 **Author contributions:** J.C. and W.Z.. conceptualized and supervised the project. Z.L. and M.Z.
748 performed the EdU injection, mouse brain dissection, nuclei extraction, and fixation. M.Z. and Z.L
749 developed and performed the *TrackerSci-RNA* experiments. Z.L developed and performed *TrackerSci*-
750 ATAC experiments. S.A. and P.T.N. processed the human brain samples for single-cell profiling
751 experiment. J.L. performed the *EasySci-RNA* experiments for the human dataset. Z.L. performed
752 computational analyses with input from J.L. and A.S.. J.C., W.Z., and Z.L. wrote the manuscript with
753 input and biological insight from M.Z., S.G., P.T.N. and other co-authors.

754

755 **Competing interests statement:** J.C., W.Z., Z.L. and M.Z. are inventors on pending patent applications
756 related to *TrackerSci*. Other authors declare no competing interests.

757

758

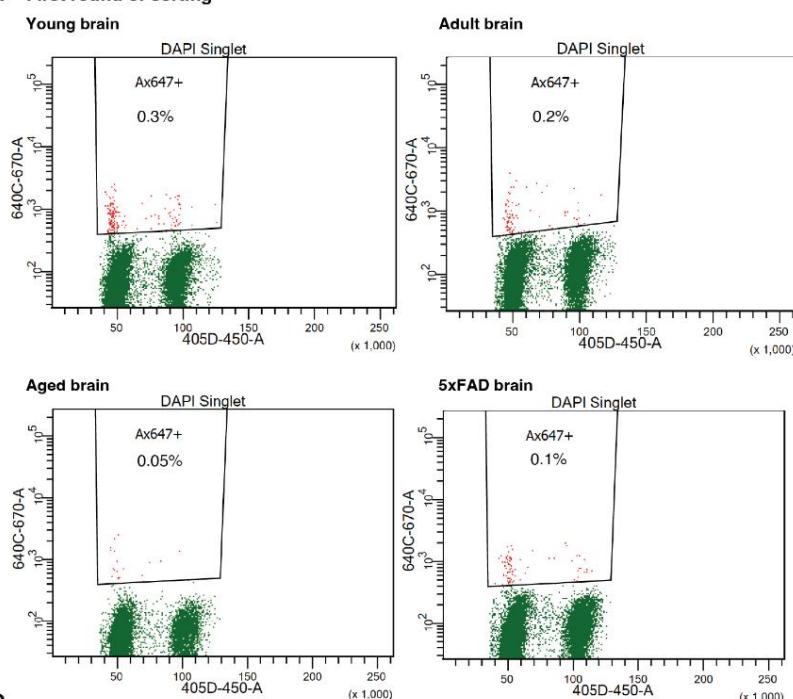
759

760

Supplementary Figures

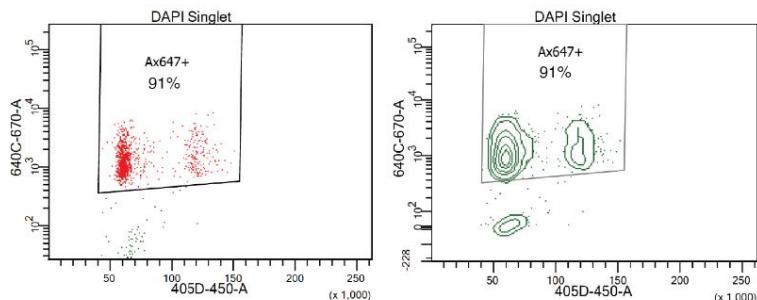
761

A First round of sorting



B

Second round of sorting



762

763

Figure S1. *TrackerSci* relies on two rounds of sorting to enrich and purify rare EdU+ proliferating cells in mammalian brains.

764

765

(A) Representative Fluorescent-activated cell sorting (FACS) scatter plots showing the percentage of EdU+ cells in mouse brains across different conditions during the first round of sorting.

766

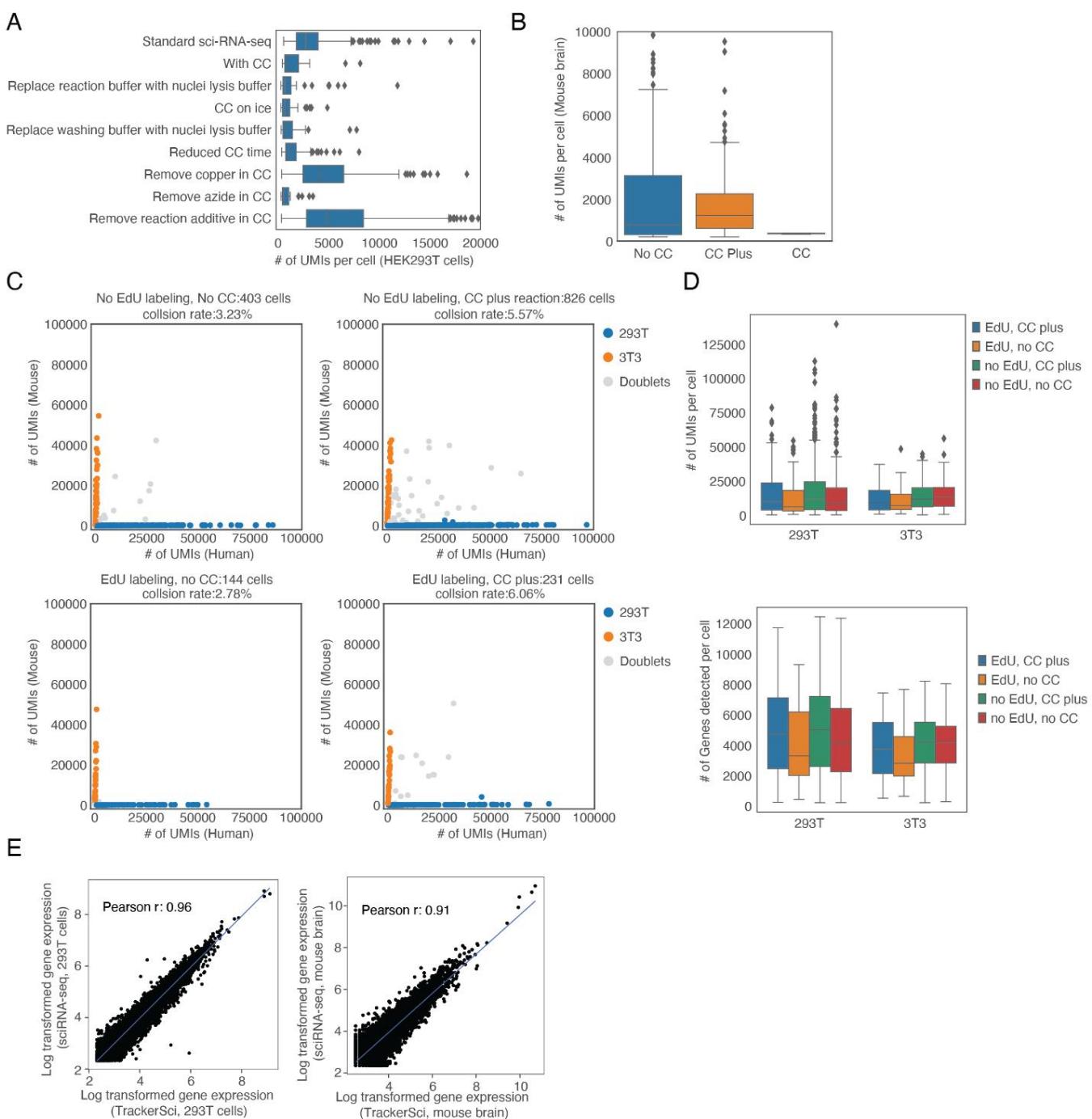
767

768

(B) FACS scatter plot (left) and contour plot (right) showing the percentage of EdU+ cells during the second round of sorting in *TrackerSci*.

769

770



771

772

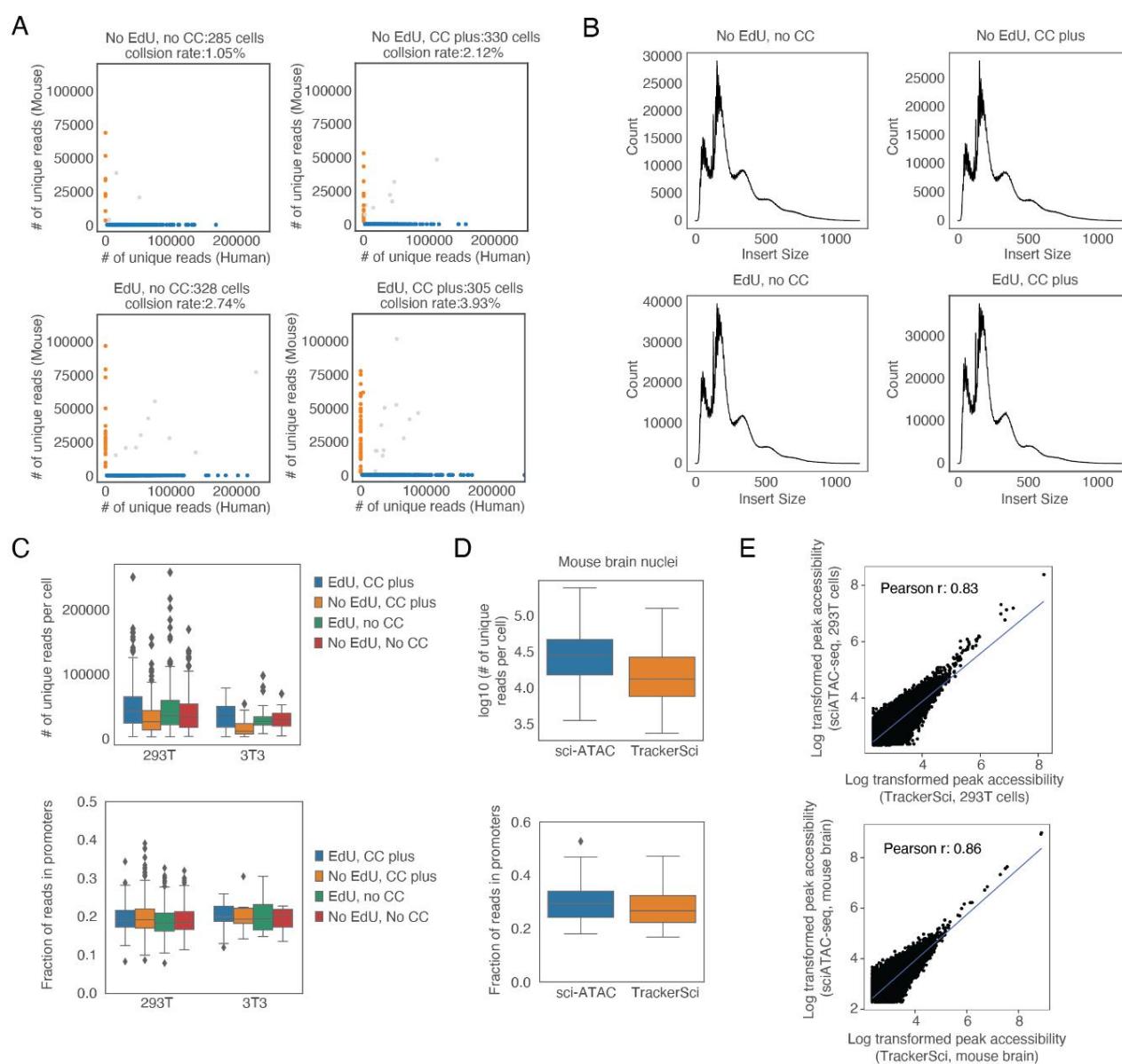
Figure S2. Quality control of *TrackerSci* for single-cell transcriptome profiling.

773 (A) Boxplot showing the number of unique transcripts detected per cell (HEK293T nuclei) after different
 774 treatment conditions of click-chemistry (CC). The result indicated copper and reaction additive in the
 775 conventional click-chemistry reaction decreased the scRNA-seq efficiency. For all box plots: middle lines,
 776 medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the
 777 interquartile range; and diamonds are outliers.

778 (B) Boxplot showing the number of unique transcripts detected per cell (mouse brain nuclei) across three
 779 conditions: no click-chemistry (No CC), conventional click-chemistry (CC), and click-chemistry plus
 780 condition (with picolyl azide dye and copper protectant, CC Plus).

781 (C) Scatter plots showing the number of unique human and mouse transcripts detected per cell across
782 different conditions (with/without EdU labeling, with/without click chemistry plus reaction).
783 (D) Boxplot showing the number of unique transcripts (top) and genes (bottom) detected per cell in
784 HEK293T and NIH/3T3 nuclei across the four conditions described in (C).
785 (E) Scatter plot showing the correlation between log-transformed aggregated gene expression profiled by
786 *TrackerSci* and sci-RNA-seq in HEK293T cells (left) and mouse brain cells (right), together with the linear
787 regression line (blue).

788



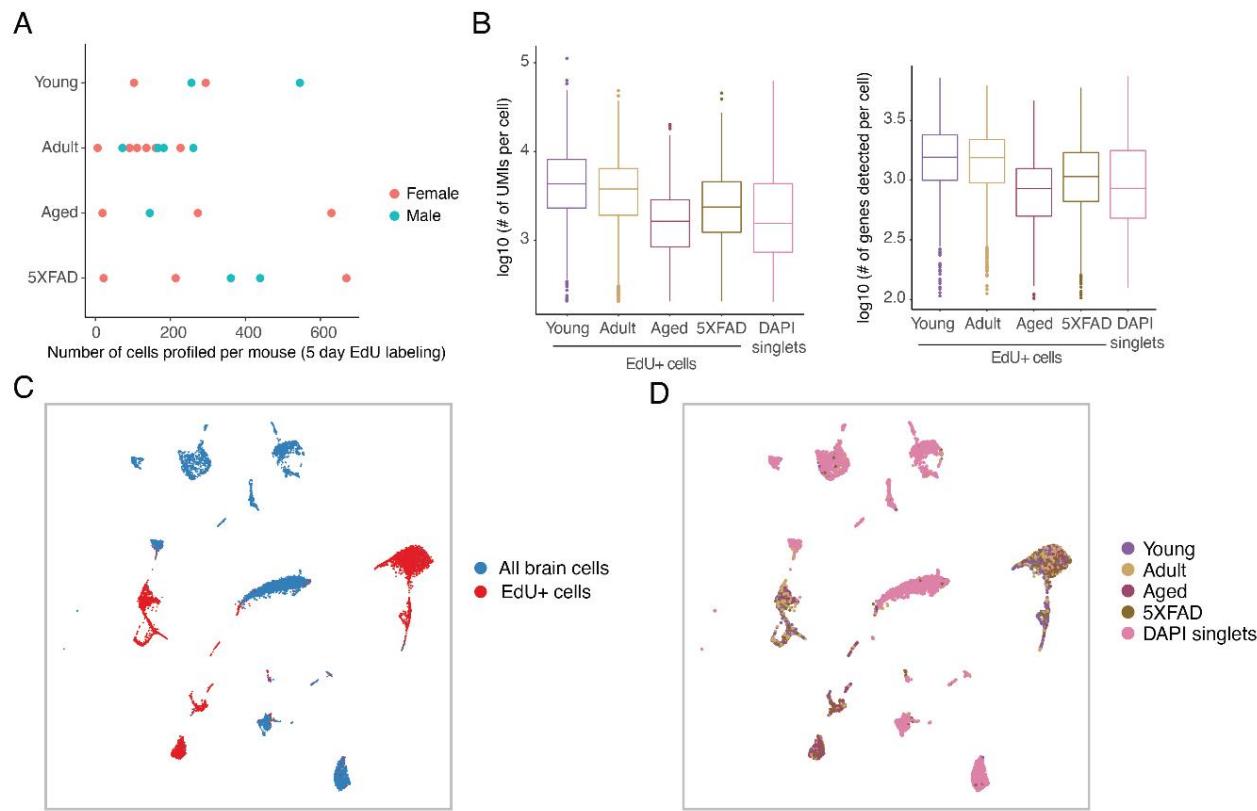
789

790

Figure S3. Quality control of *TrackerSci* for single-cell chromatin accessibility profiling.

791 (A) Scatter plots showing the number of unique human and mouse ATAC-seq fragments detected per
 792 conditions (with/without EdU labeling, with/without click chemistry plus reaction).
 793 (B) The aggregated fragment length distribution in ATAC-seq from *TrackerSci* of all cells across the four
 794 conditions described in (A). No CC: no click-chemistry. CC plus: click-chemistry plus condition (with
 795 picolyl azide dye and copper protectant).
 796 (C-D) Boxplots showing the number of unique ATAC-seq reads (top) and the fraction of reads in
 797 promoters (bottom) in HEK293T and NIH/3T3 nuclei (C) and mouse brain nuclei (D). For all box plots:
 798 middle lines, medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5
 799 times the interquartile range; and diamonds are outliers.
 800 (E) Scatter plot showing the correlation between log-transformed aggregated ATAC-seq peak
 801 accessibility (reads per million) profiled by *TrackerSci* and sci-ATAC-seq in HEK293T cells (top) and
 802 mouse brain cells (bottom), together with the linear regression line (blue).

803



804

805
806
807

Figure S4. *TrackerSci* recovered single-cell transcriptomes of rare newborn cells in the mammalian brain.

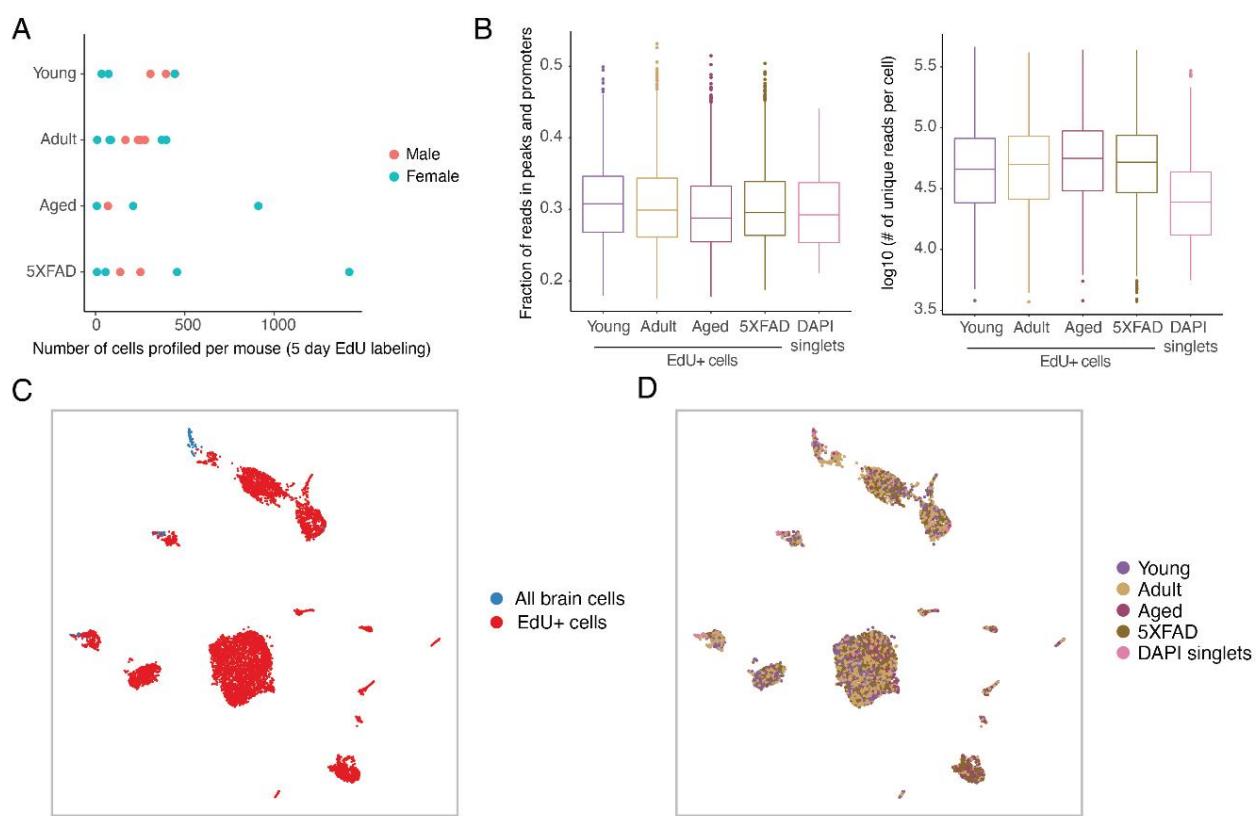
808
809

(A) Scatter plots showing the number of single-cell transcriptomes profiled in each mouse individual across four conditions, colored by sexes. Only mice from the main experiment group (EdU labeling for 5 days) are shown.

810
811
812
813
814
815
816

(B) Boxplot showing the log-transformed number of unique transcripts (left) and genes (right) detected per cell profiled by *TrackerSci* and the DAPI singlet (without enrichment of EdU+ cells, adult mouse brain). For all box plots: middle lines, medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the interquartile range; and circles are outliers.

(C-D) UMAP visualization of single-cell transcriptomes, including EdU+ cells (profiled by *TrackerSci*) and all brain cells (without enrichment of EdU+ cells), colored by experiments (C) and conditions (D).



817

818 **Figure S5. *TrackerSci* recovered single-cell chromatin accessibility of rare newborn cells in the**
819 **mammalian brain.**

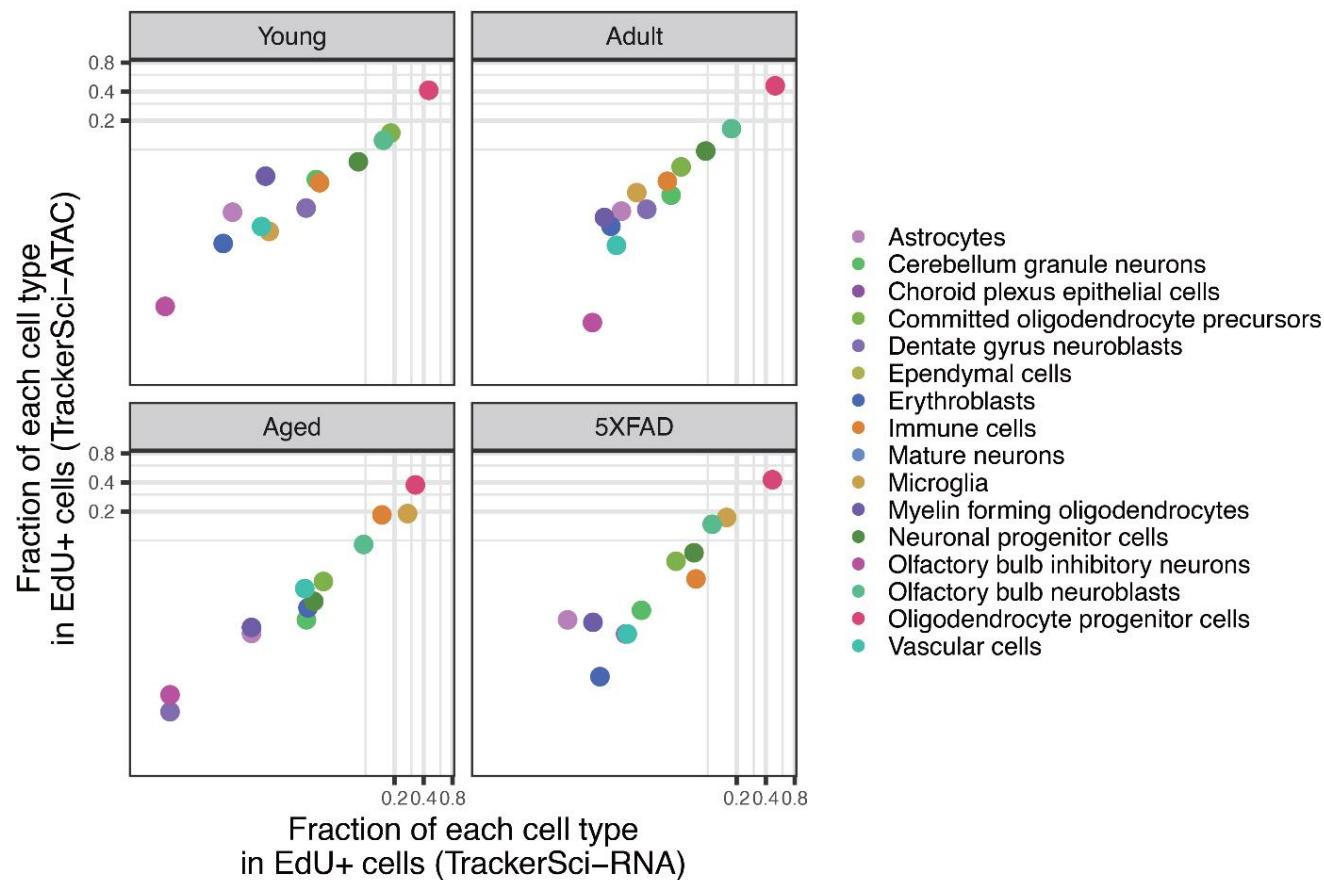
820 (A) Scatter plot showing the number of single-cell chromatin accessibility profiles in mouse individuals
821 across four conditions, colored by sexes. Only mice from the main experiment group (EdU labeling for 5
822 days) are shown.

823 (B) Boxplot showing the fraction of reads in promoters and peaks (left) and the log-transformed number
824 of unique ATAC-seq reads (right) detected per cell across different conditions in *TrackerSci* and the
825 DAPI singlet (adult mouse brain, without enrichment of EdU+ cells). For all box plots: middle lines,
826 medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the
827 interquartile range; and circles are outliers.

828 (C-D) UMAP visualization of single-cell chromatin accessibility profiles, including EdU+ cells (profiled by
829 *TrackerSci*) and all brain cells (without enrichment of EdU+ cells), colored by experiments (C) and
830 conditions (D)

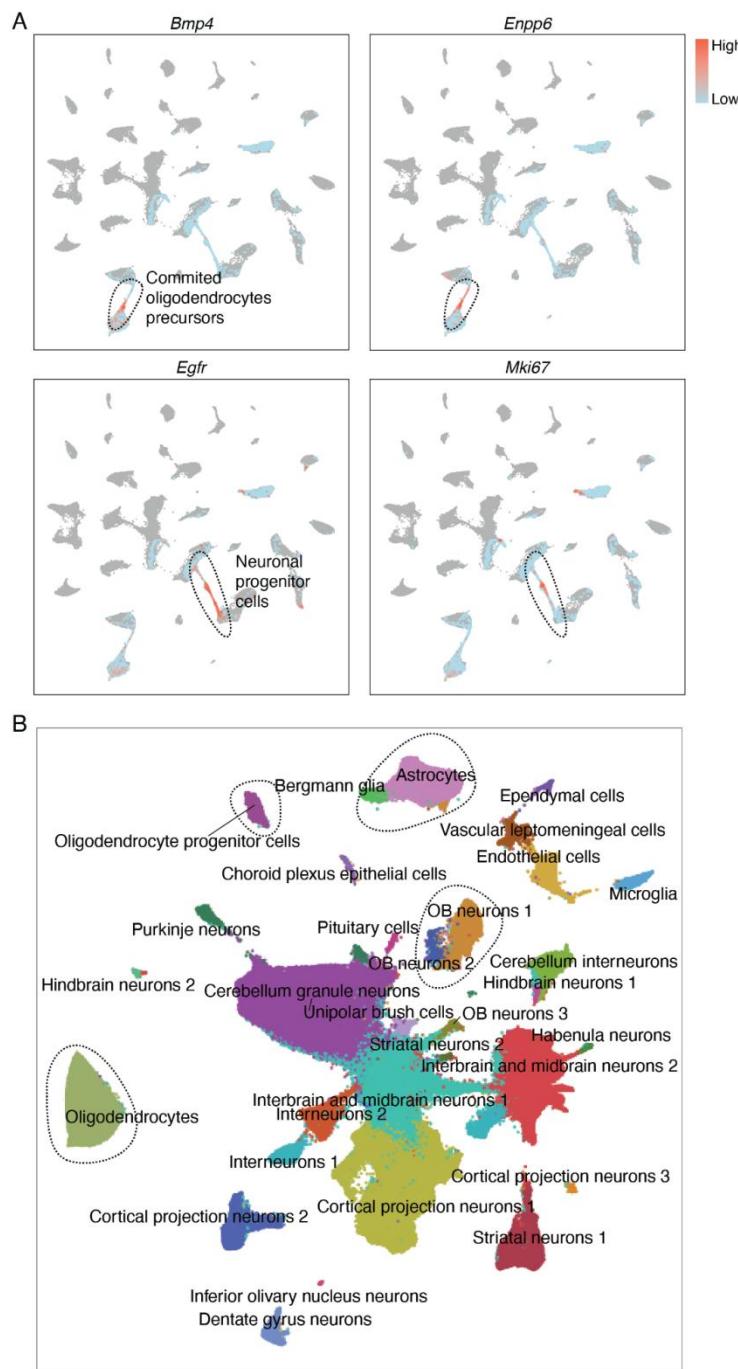
831

832



833
834
835
836
837
838

Figure S6. The cell population distributions are correlated between single-cell transcriptome and chromatin accessibility profiling of newborn cells in the mouse brain. Scatter plot showing the fraction of each cell type in the enriched EdU+ cell population by single-cell transcriptome (x-axis) or chromatin accessibility analysis (y-axis) in *TrackerSci* across different conditions.



839

840

841

Figure S7. *TrackerSci* facilitates identifying continuous cell transition trajectory missed in global profiling.

842

(A) UMAP visualization integrating *TrackerSci* dataset and *EasySci* brain cell atlas, same as Figure 3C. EdU+ cells profiled by *TrackerSci* are colored by markers for committed oligodendrocyte precursors (top) and neuronal progenitor cells (bottom); and the rest of cells are colored in grey.

843

(B) UMAP visualization of the full brain atlas dataset (~1.5 million cells) with the same parameter settings as in Figure 3C. Neurogenesis and oligodendrogenesis-related cell types are separated into distinct clusters, while the “bridge” cells in the intermediate stages are missing.

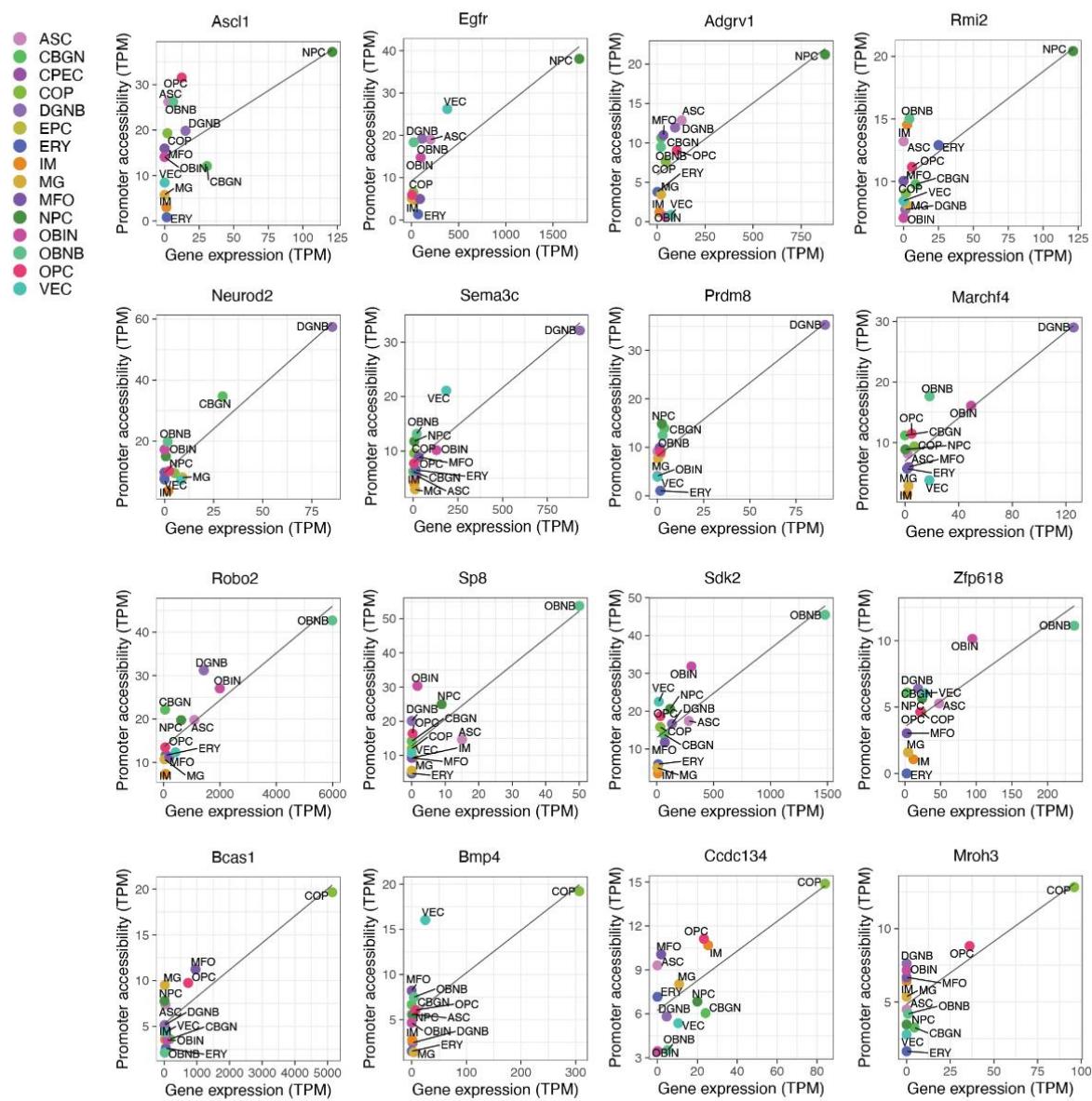
844

845

846

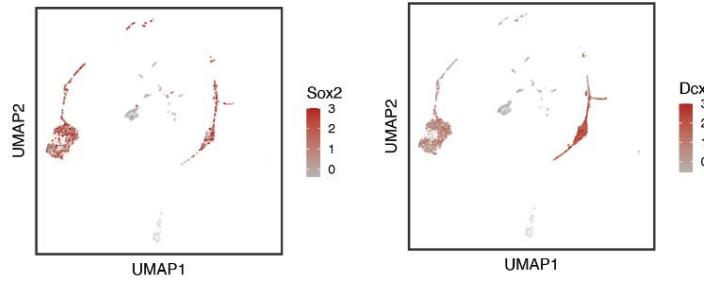
847

848



849
850
851
852
853
854
855

Figure S8. Identifying canonical and novel gene markers of neuronal progenitors and oligodendrocyte precursors. Each scatter plot shows the correlation between expression and promoter accessibility of known (left two columns) or novel (right two columns) cell-type-specific gene markers, together with a linear regression line.



856
857 **Figure S9. Low cell-type-specificity of certain canonical neurogenesis markers.** UMAP plots
858 showing the expression of canonical neurogenesis markers (*Sox2* and *Dcx*) across different cell types.
859 The single-cell expression data (UMI count) were normalized first by the total number of reads for each
860 cell and then log-transformed, column centered, and scaled.
861
862
863
864
865
866
867
868
869
870
871

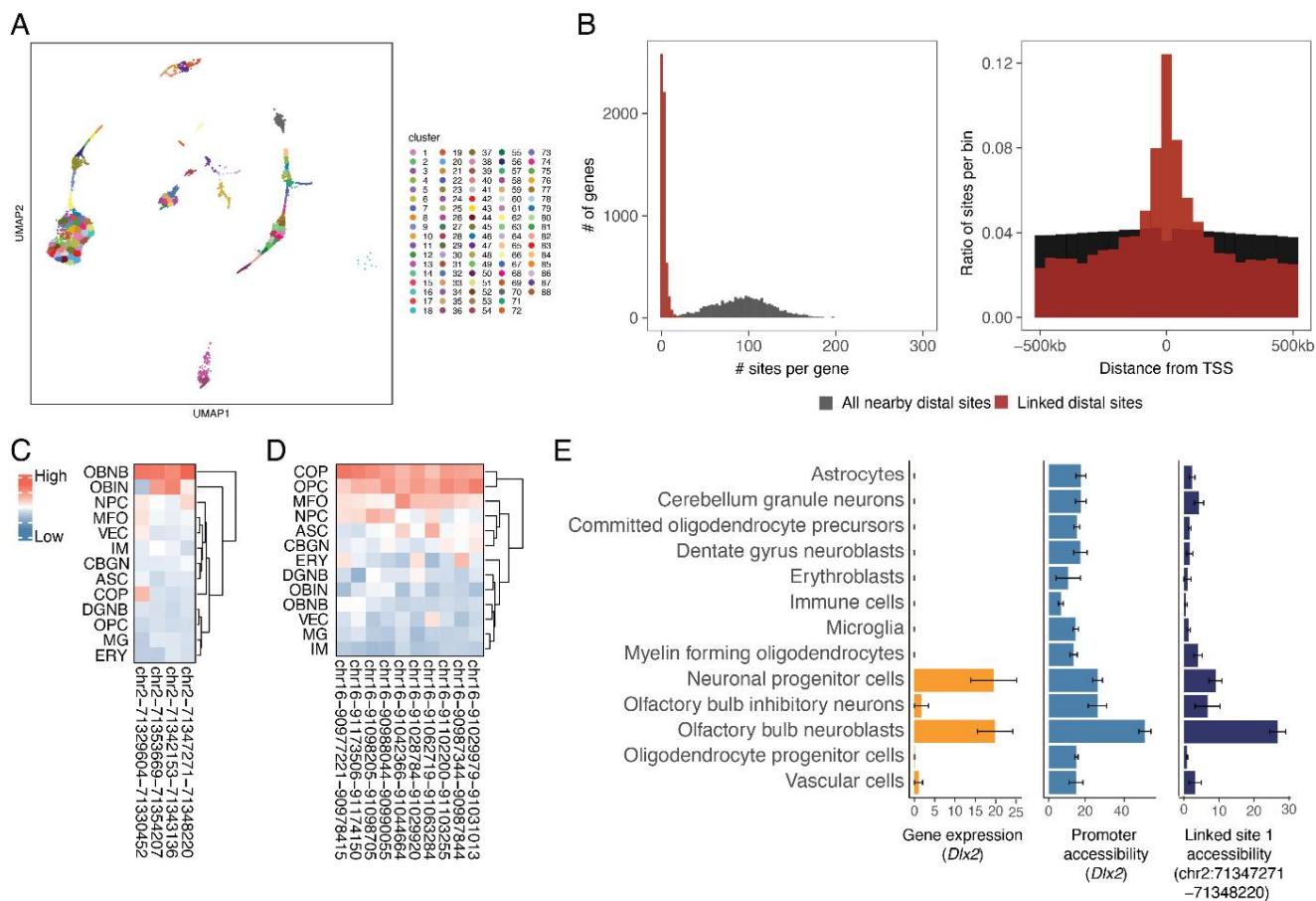
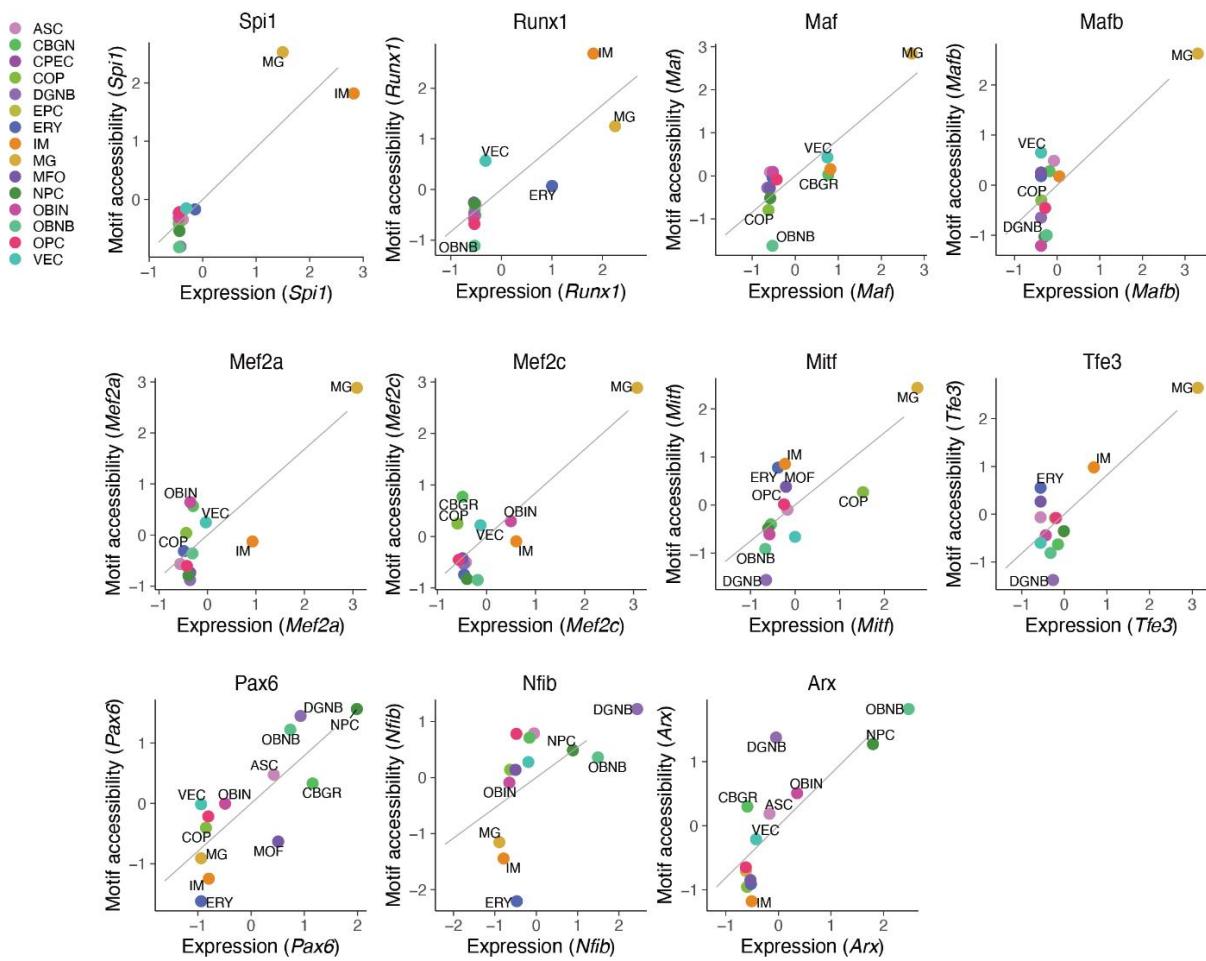


Figure S10. Linking cis-regulatory elements and their regulated genes.

- (A) UMAP visualization of EdU+ cells as in Figure 1D and 1E, colored by k-means clustering ID.
- (B) The left histogram shows the number of accessible sites per gene. The right histogram shows the distance distribution of accessible sites within 500 kb of genes. Both plots include all nearby accessible sites (colored in black) and the linked accessible sites (colored in red).
- (C) Heatmap showing the cell-type-specific peak accessibility of four *Dlx2* linked sites. Cell types are ordered by hierarchical clustering.
- (D) Heatmap showing the cell-type-specific peak accessibility of ten *Olig2* linked sites. Cell types are ordered by hierarchical clustering.
- (E) Barplots showing the average expression, the accessibility of promoter and linked distal sites for neurogenesis marker *Dlx2* across different cell types. Gene expression values for each cell type were quantified by transcripts per million (TPM). Site accessibilities for each cell were quantified by the number of reads per million. Error bars represent standard errors of the means.



887

888

889

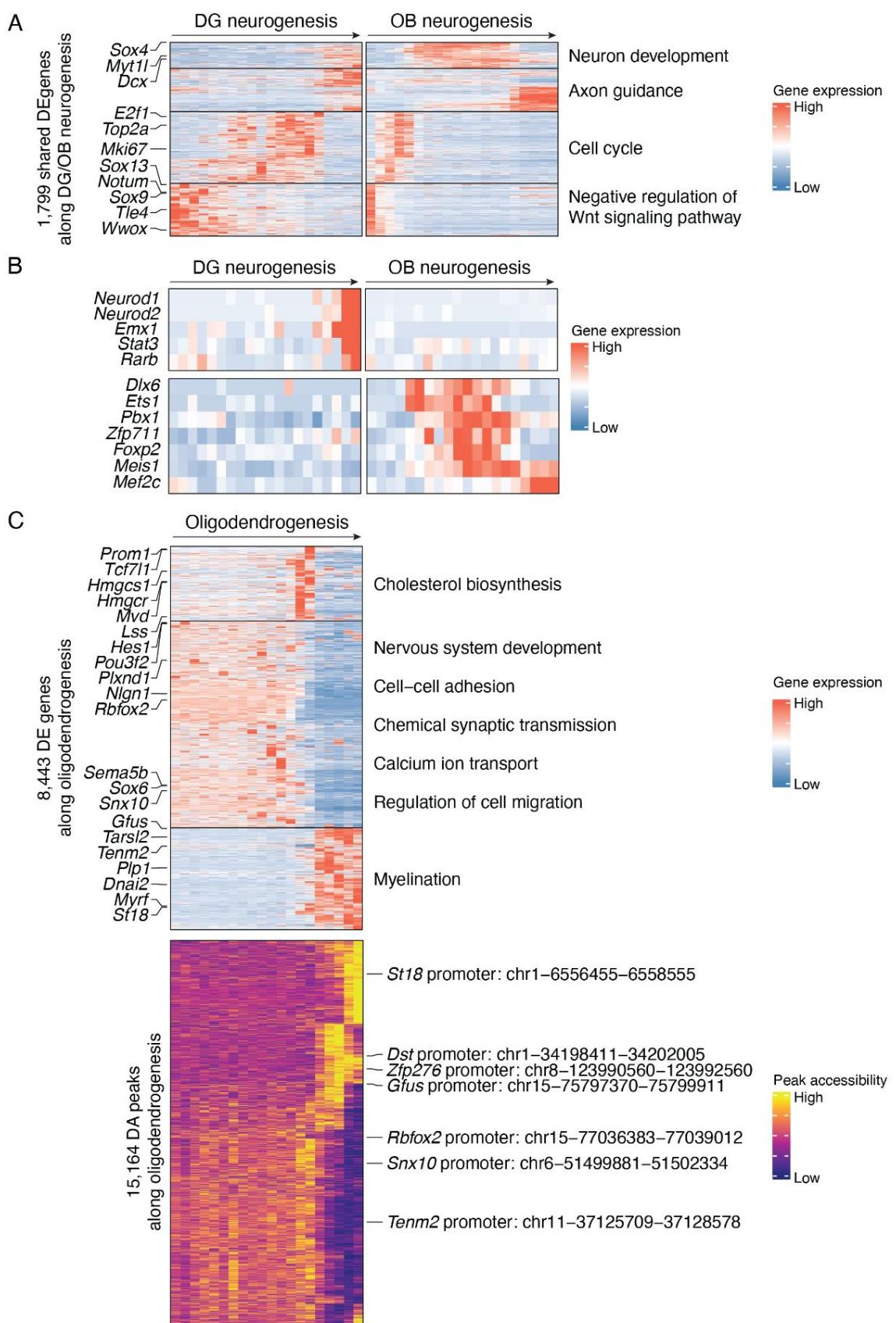
890

891

892

893

Figure S11. Identifying key transcription factor regulators of the newborn cells. Each scatter plot shows the correlation between cell-type-specific gene expression and motif accessibility for known TF regulators, together with a linear regression line.



895 **Figure S12. Characterizing gene expression and chromatin accessibility dynamics along adult**
896 **neurogenesis and oligodendrogenesis.**

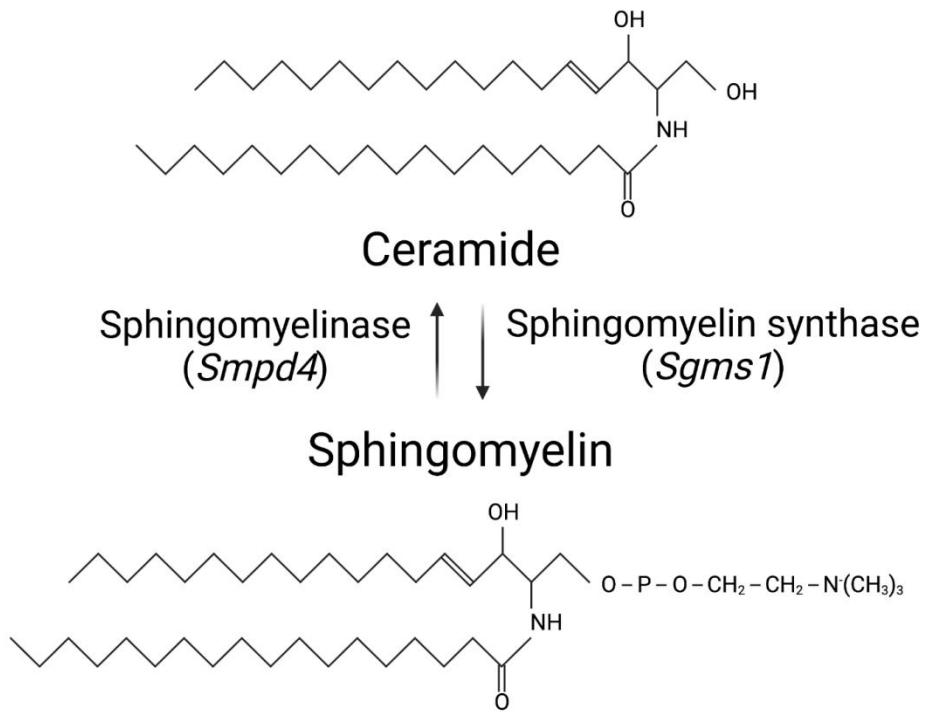
897 (A) Heatmap showing the dynamics of gene expression of 1,799 shared DE genes along DG
898 neurogenesis (left) and OB neurogenesis (right). Genes are ordered and clustered by hierarchical
899 clustering. Representative gene names (left) and enriched pathways (right) for each gene group are
900 labeled.

901 (B) Heatmap showing examples TFs exhibiting trajectory-specific gene expression dynamics: *Neurod1*,
902 *Neurod2*, *Emx1*, *Stat3* and *Rarb* are uniquely upregulated in DG neurogenesis, while *Dlx6*, *Ets1*, *Pbx1*,
903 *Zfp711*, *Foxp2*, *Meis1* and *Mef2c* are uniquely upregulated in OB neurogenesis.

904 (C) Heatmap showing the dynamics of 8,443 DE genes (top) and 15,164 DA sites (bottom) along the
905 oligodendrogenesis trajectory. Genes are ordered and clustered based on hierarchical clustering.
906 Representative gene names (left) and enriched pathways (right) for each gene group are labeled. Peaks
907 are ordered based on hierarchical clustering, and peaks corresponding to promoters of known and novel
908 oligodendrogenesis markers are labeled.

909

910



911

912

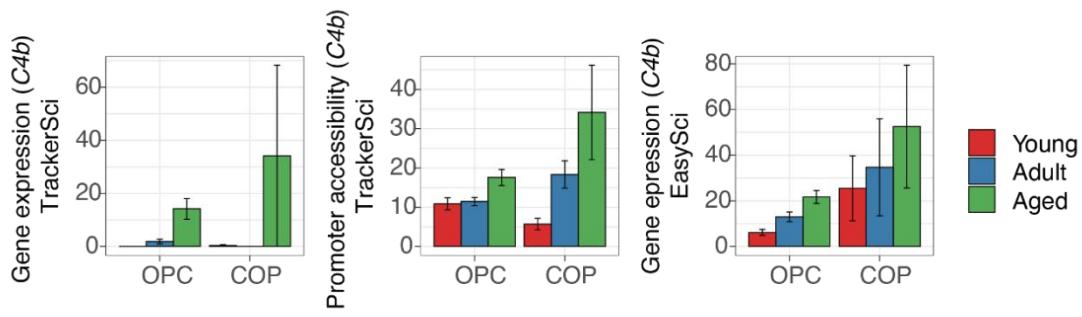
913

914

915

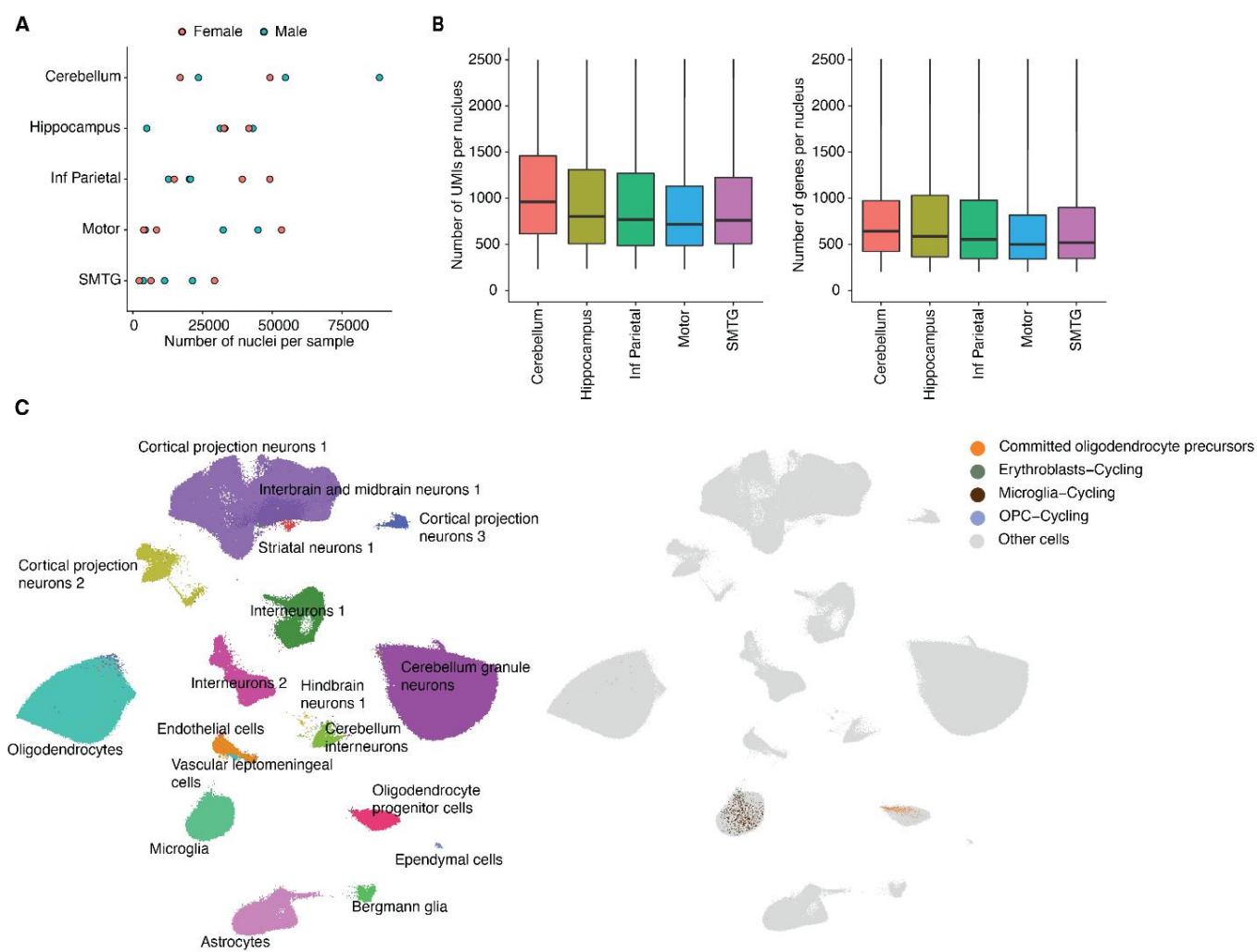
Figure S13. Overview of ceramide/sphingomyelin metabolism. Sphingomyelin production from ceramide is catalyzed by sphingomyelin synthase and is hydrolyzed to ceramide by sphingomyelinase.

916
917



918
919 **Figure S14. Increased expression of *C4b* in oligodendrocyte progenitor cells.** Barplots showing the
920 gene expression (left) and promoter accessibility (middle) of *C4b* from the *TrackerSci* dataset, and the
921 gene expression of *C4b* from the *EasySci* dataset (right) in oligodendrocyte progenitor cells(OPC) and
922 committed oligodendrocyte precursors(COP), quantified by transcripts per million(TPM) for gene
923 expression and reads per million for promoter accessibility. Error bars represent standard errors of the
924 means.

925
926



927

928 **Figure S15. Performance, quality control and characterization of proliferating and differentiating**
929 **cells in the human brain dataset.**

930 (A) Scatter plot showing the number of single-cell transcriptomes profiled in each human sample across
931 five regions, colored by sexes.

932 (B) Boxplots showing the number of unique transcripts (left) and genes (right) detected per nucleus
933 profiled by *EasySci* in the human dataset. For all box plots: middle lines, medians; upper and lower box
934 edges, first and third quartiles, respectively; whiskers, 1.5 times the interquartile range; and circles
935 are outliers.

936 (C) UMAP visualization of the full human brain dataset (~800,000 cells) with the same parameter settings
937 as in Figure 7A, colored by main cell types (left) and cycling and differentiating cells (right). Note that rare
938 cycling and differentiating cells are masked in the main clustering analysis.

939

940

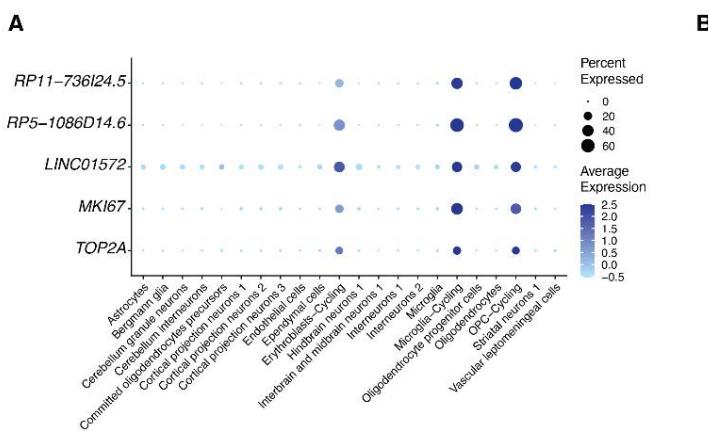
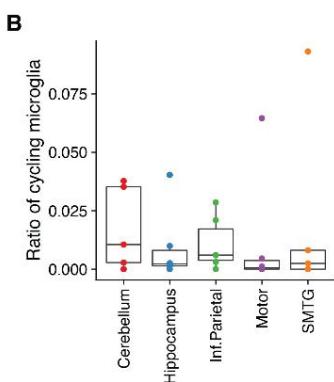
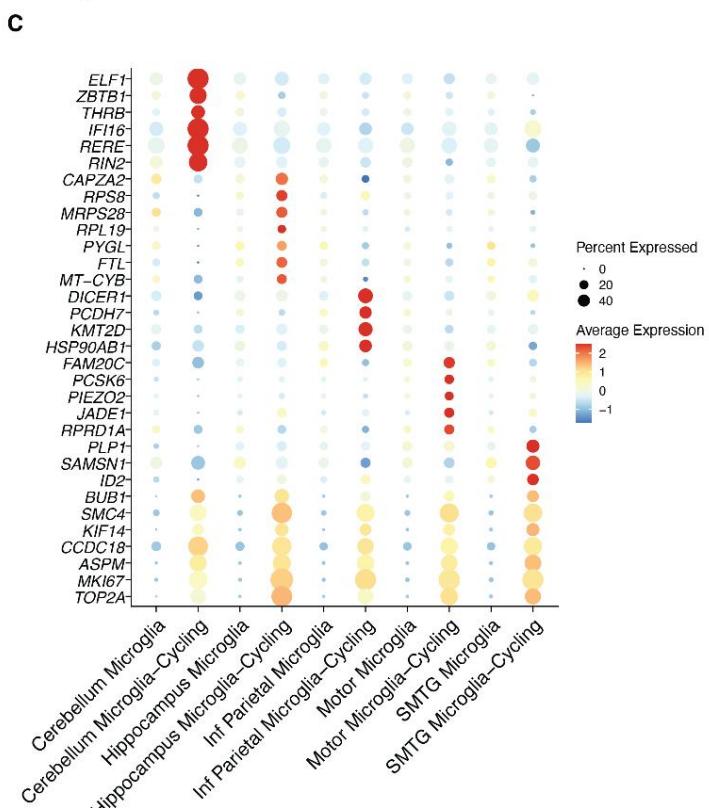
941

942

943

944

945



946

947

948

Figure S16. Identifications of cycling cells and region-specific gene expression signatures of cycling microglia in the human brain.

949

950

(A) Dotplot showing the markers for cycling cells, including novel noncoding RNA (*RP11-736I24.5*, *RP5-1086D14.6* and *LINC01572*) and canonical cycling markers (*MKI67* and *TOP2A*).

951

952

(B) Boxplot showing the fraction of cycling microglia to the rest of microglia cells across different brain regions in each sample. For all box plots: middle lines, medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the interquartile range; and all data points are shown.

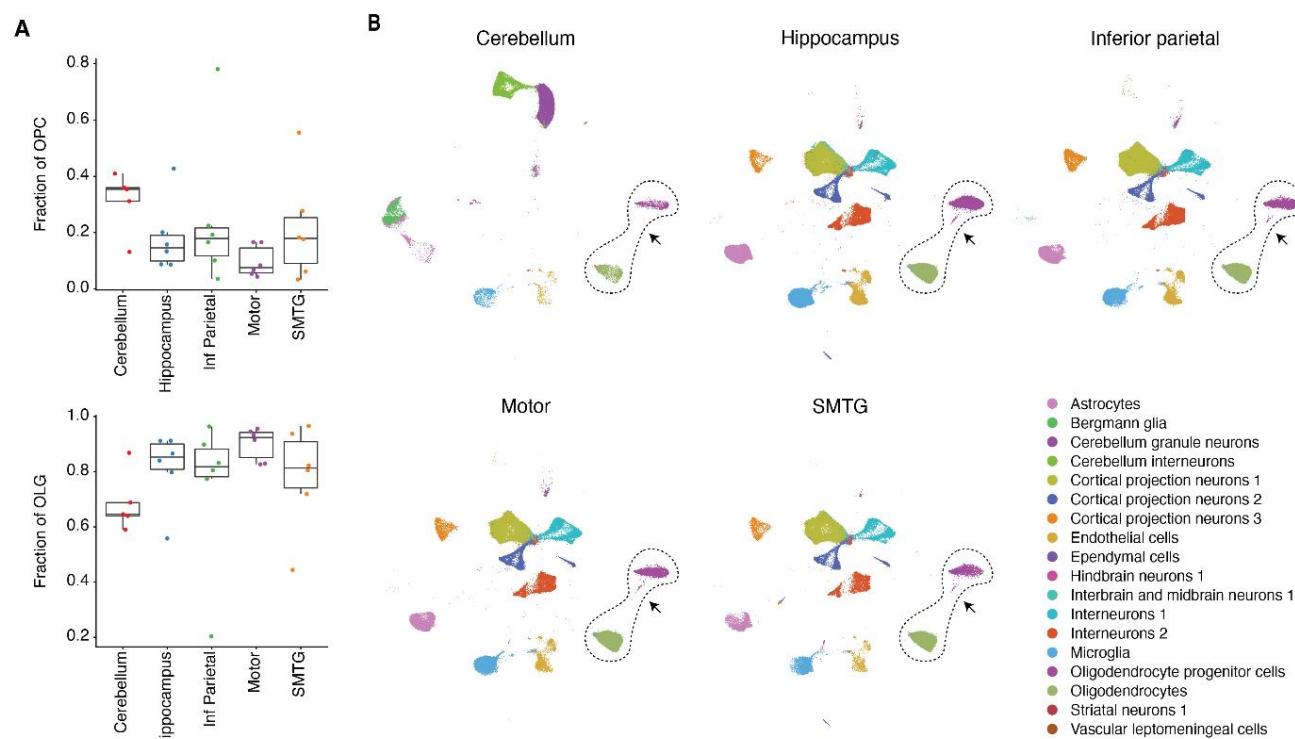
953

954

(C) Dotplot showing examples of region-specific and shared gene expression signatures for cycling microglia across brain regions.

955

956



957

958

Figure S17. Reduction of oligodendrogenesis in the human cerebellum.

959 (A) Boxplot showing the fraction of oligodendrocyte progenitor cells (OPC, left) and mature
960 oligodendrocytes (OLG) among oligodendrogenesis-related cells across different brain regions in each
961 sample. For all box plots: middle lines, medians; upper and lower box edges, first and third quartiles,
962 respectively; whiskers, 1.5 times the interquartile range; and all data points are shown.
963 (B) UMAP plot same as in Figure 7A splitted by five brain regions colored by main cell types, indicating
964 the loss of intermediate oligodendrogenesis cells in the cerebrum.
965

966 **Materials and Methods:**

967

968 **Animals**

969

970 The C57BL/6 mice were obtained from The Jackson Laboratory. All animal procedures were in
971 accordance with institutional, state, and government regulations and approved under the IACUC protocol
972 21049.

973

974 **EdU Labeling of Mammalian Cell Culture**

975

976 HEK293T and NIH/3T3 cells (gift from B. Martin, University of Washington) were cultured in 10 cm
977 dishes at 37°C with 5% CO₂ in high glucose DMEM (Gibco, 11965-118) supplemented with 10% Fetal
978 Bovine Serum (Sigma-Aldrich, F4135) and 1X penicillin-streptomycin (Gibco, 15140-122).

979

980 EdU (5-ethynyl-2'-deoxyuridine) (Thermo Fisher Scientific, A10044) was added to culture media at 10
981 μM

982 final concentration for 1 hour. After labeling, cells were harvested with 0.25% trypsin-EDTA. HEK293T
983 and NIH/3T3 cells were combined at a 1:1 ratio, washed with ice-cold PBS, and lysed in 1 mL ice-cold
984 EZ lysis buffer (Millipore Sigma, NUC101). The nuclei were then fixed on ice with 1% formaldehyde
985 (Thermo Fisher Scientific, 28906) for 10 minutes and washed with EZ lysis buffer, filtered with 40 μm cell
986 strainers (Ward's Science, 470236-276), and resuspended in Nuclei Suspension Buffer (NSB) (10 mM
987 Tris-HCl pH 7.5 (VWR, 97062-936), 10 mM NaCl (VWR, 97062-858), 3 mM MgCl₂ (VWR, 97062-848)
988 supplemented with 0.1% SUPERase•In™ RNase Inhibitor (Thermo Fisher Scientific, AM2696) and 1%
989 BSA for *TrackerSci*-RNA or supplemented with 0.1% Tween-20 (Sigma, P9416-100ML), 1x cComplete™,
990 EDTA-free Protease Inhibitor Cocktail (Sigma, 11873580001) and 0.1% IGEPAL® CA-630 (VWR,
991 IC0219859650) for *TrackerSci*-ATAC experiments).

992

993 **EdU Labeling of Mouse Tissues**

994

995 C57BL/6J mice of different age groups and 5xFAD transgenic mice (MMRRC Strain #034840-JAX) were
996 obtained from The Jackson Laboratory. Mice were injected intraperitoneally with 50 mg/kg of EdU in PBS
997 at 24-hour intervals for five days, and mouse brains were harvested 24 hours after the final injection.

998

999 C57BL/6J mice obtained from The Jackson Laboratory were labeled and harvested for pulse-chase
1000 labeling at various time points. Specifically, four mice (two male and two female) were injected
1001 intraperitoneally with 50 mg/kg of EdU in PBS for 3 days at 24-hour intervals, and brains were harvested
1002 24 hours after the final injection. 12 mice were injected intraperitoneally with 50 mg/kg of EdU in PBS for
1003 five days at 24-hour intervals. In addition, for five-day injections, four mice (two male and two female)
1004 were harvested 1 day, 3 days, and 5 days after the final injection.

1005

1006 **Tissue collection and nuclei isolation**

1007

1008 Whole brains were extracted from mice, immediately snap-frozen in liquid nitrogen, and stored at -80°C
1009 upon further usage. For nuclei isolations, thawed brains were cut into small pieces with fine scissors
1010 (Fine Science Tools, 14060-09) in 1 mL ice-cold PBS with 1% SUPERase•In™ RNase Inhibitor and 1%

1011 BSA, pelleted, resuspended in 1.5 mL Nuclei Isolation Buffer (EZ Lysis Buffer supplemented with 1%
1012 SUPERase•In™ RNase Inhibitor, 1% BSA and 1X cOmplete™ EDTA-free Protease Inhibitor Cocktail) for
1013 5 minutes on ice, and homogenized through 40 μ m cell strainers (VWR, 470236-276) with the rubber tips
1014 of syringes. Then, extracted nuclei were pelleted, fixed in 1% formaldehyde on ice for 10 minutes,
1015 washed twice with NSB, and divided into two aliquots for both sci-RNA-seq and sci-ATAC-seq profiling.
1016 Nuclei subjected to sci-RNA-seq were briefly sonicated (Diagenode, low power mode for 12 seconds) to
1017 reduce clumping. Finally, nuclei were filtered through pluriStrainer Mini 20 μ m filters (Pluriselect, 43-
1018 10020-70), resuspended in 100 μ L NSB, snap frozen in liquid nitrogen, and stored at -80°C until further
1019 usage.

1020

1021 **Human brain sample**

1022

1023 Twenty-nine post-mortem human brain samples across five regions and six individuals (who were
1024 cognitively normal proximal to death) ranging from 70-94 years of age at death, were collected from the
1025 University of Kentucky AD Center Tissue Bank (Nelson et al., 2018; Schmitt et al., 2012). Each surveyed
1026 sample underwent rigorous quality control including short PMI (<4 hrs). Established strategies were used
1027 to extract high-quality nuclei from frozen postmortem brain samples. Extracted nuclei were then fixed
1028 with formaldehyde, diluted, and flash-frozen for storage. For *EasySci* transcriptome profiling, nuclei from
1029 all samples were thawed and deposited into different wells for barcoded reverse transcription (RT), such
1030 that the first index identifies the source of each cell. The library was sequenced across two Illumina
1031 NovaSeq™ 6000 sequencer runs, altogether yielding 12 billion reads for ~900,000 cells (~13,000
1032 sequencing reads per cell).

1033

1034 **TrackerSci-RNA**

1035

1036 Detailed step-by-step *TrackerSci-RNA* protocol is included as a supplementary file (**Supplementary file**
1037 **1**). Briefly, EdU staining was performed on thawed nuclei using Click-iT Plus EdU Alexa Fluor™ 647
1038 Flow Cytometry assay Kit (Thermo Fisher Scientific, 10634). A 500 μ L reaction buffer (prepared
1039 following the manufacturer's protocol) supplemented with 1% SUPERase•In™ RNase Inhibitor was
1040 added directly to the nuclei suspension, mixed well and left in RT for 30 minutes. Then, nuclei were spun
1041 down for 5 minutes at 500g (4°C), washed once with 500 μ L of 1X Click-iT saponin-based
1042 permeabilization and wash reagent, resuspended in 1 mL NSB with 1:20 dilution of 0.25 mg/ml 4',6-
1043 diamidino-2-phenylindole (DAPI, Invitrogen D1306) and FACS sorted. Alexa647 and DAPI positive nuclei
1044 were sorted into 96-well plates with each well (250~500 nuclei/well) containing 4 μ L of NSB. Sorted
1045 plates were briefly centrifuged, mixed with 1 μ L of 50 μ M oligo-dT primer (5'-
1046 ACGACGCTTCCGATCTNNNNNNNN[10bp-index]TTTTTTTTTTTTTTTTTTTTTTTTVN-3',
1047 where "N" is any base and "V" is either "A", "C" or "G", IDT) and 0.5 μ L 10 mM dNTP mix (Thermo Fisher
1048 Scientific, R0194) and denatured at 55°C for 5 minutes and immediately placed on ice. 3.5 μ L of first-
1049 strand reaction mix, containing 2 μ L 5X SuperScript™ IV Reverse Transcriptase Buffer (Invitrogen,
1050 18090200), 0.5 μ L 100 mM DTT (Invitrogen, P2325), 0.5 μ L SuperScript™ IV Reverse Transcriptase
1051 (Invitrogen, 18090200), 0.5 μ L RNaseOUT™ Recombinant Ribonuclease Inhibitor (Invitrogen, 10777019)
1052 was then added to each well. Reverse transcription was carried out by incubating plates at the following
1053 temperature gradient: 4°C 2 minutes, 10°C 2 minutes, 20°C 2 minutes, 30°C 2 minutes, 40°C 2 minutes,
1054 50°C 2 minutes and 55°C 10 minutes, and was stopped by adding 1 μ L of 18 mM EDTA (VWR, 97062-
1055 656) to each well. All nuclei were then pooled, stained with DAPI at a final concentration of 3 μ M, and

1056 sorted at 25 nuclei per well into 5 μ L EB buffer. Cells were gated based on DAPI and Alexa647 such that
1057 singlets were discriminated from doublets and EdU+ cells were purified. 0.66 μ L mRNA Second Strand
1058 Synthesis buffer and 0.34 μ L mRNA Second Strand Synthesis enzyme (NEB, E6111L) were then added
1059 to each well. Second strand synthesis was carried out at 16°C for 1 hour. 6 μ L Tgmentation reaction mix
1060 (made by mixing 0.5 μ L self-loaded Tn5 with 200 μ L Tgmentation buffer containing 20 mM Tris-HCl pH
1061 7.5, 20 mM MgCl₂, 20% Dimethylformamide (Fisher, AC327175000)) was added to each well and
1062 Tgmentation was performed at 55°C for 5 minutes. After Tgmentation, each well was mixed with 0.4 μ L
1063 1% SDS, 0.4 μ L BSA (NEB, B90000S), and 2 μ L of 10 μ M P5 primer (5'-
1064 AATGATACGGCGACCACCGAGATCTACA[i5]CCCTACACGACGCTCTCCGATCT-3', IDT), and
1065 incubated at 55°C for 15 minutes. Then, 2 μ L 10% Tween-20, 1.2 μ L nuclease-free water and 2 μ L of 10
1066 μ M indexed P7 primer (5'-CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGCTCGG-3', IDT), and
1067 20 μ L NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541L) were added to each well. Amplification
1068 was carried out using the following program: 72°C for 5 minutes, 98°C for 30 seconds, 18-22 cycles of
1069 (98°C for 10 seconds, 66°C for 30 seconds, 72°C for 1 minute), and a final 72°C for 5 minutes. After
1070 PCR, samples were pooled and purified using 0.8 volumes of AMPure XP beads (Beckman Coulter,
1071 A63882) twice. Library concentrations were determined by Qubit (Invitrogen, Q33231), and the libraries
1072 were visualized by electrophoresis on a 2% E-Gel™ EX Agarose Gels (Invitrogen, G402022). All RNA-
1073 seq libraries were sequenced on the NextSeq 1000 platform (Illumina) using a 100 cycle kit (Read 1: 58
1074 cycles, Read 2: 60 cycles, Index 1: 10 cycles, Index 2: 10 cycles). The *TrackerSci-RNA* libraries were
1075 sequenced to ~70,000 reads per cell.

1076

1077 **TrackerSci-ATAC**

1078

1079 Detailed step-by-step *TrackerSci-ATAC* protocol is included as a supplementary file (**Supplementary file**
1080 **1**). EdU staining was performed on thawed nuclei using Click-iT Plus EdU Alexa Fluor™ 647 Flow
1081 Cytometry assay Kit (Thermo Fisher Scientific, 10634). A 500 μ L reaction buffer (prepared following the
1082 manufacturer's protocol) supplemented with 1X cOmplete™ EDTA-free Protease Inhibitor Cocktail was
1083 added directly to the nuclei suspension, mixed well, and left in RT for 30 minutes. Then, nuclei were spun
1084 down for 5 minutes at 500g (4°C), washed once with 500 μ L of 1X Click-iT saponin-based
1085 permeabilization and wash reagent, resuspended in 1 mL NSB with 1:20 dilution of 0.25 mg/ml 4',6-
1086 diamidino-2-phenylindole (DAPI) and FACS sorted. Alexa647 and DAPI positive nuclei were sorted into
1087 96-well plates with each well (250~500 nuclei/well) containing 4 μ L of NSB. Sorted plates were briefly
1088 centrifuged, mixed with 5 μ L 2x TD buffer (20 mM Tris-HCl pH 7.5, 20 mM MgCl₂, 20%
1089 Dimethylformamide) and 1 μ L barcoded Tn5. Tgmentation reaction was performed at 55°C for 30
1090 minutes and stopped by adding 11 μ L 2X Stop buffer (40 mM EDTA, 1 mM Spermidine (Sigma, S0266))
1091 to each well. All nuclei were then pooled, stained with DAPI at a final concentration of 3 μ M, and sorted
1092 at 25 nuclei per well into 5 μ L EB buffer. Cells were gated based on DAPI and Alexa647 such that
1093 singlets were discriminated from doublets and EdU+ cells were purified. After sorting, each well was
1094 mixed with 0.25 μ L 18.9 mg / mL proteinase K (Sigma, 3115828001), 0.25 μ L 1% SDS and 0.5 μ L
1095 nuclease-free water, and reverse crosslinking was performed at 65°C for 16 hours. Then, 2 μ L 10%
1096 Tween-20 was added to each well to quench the SDS. Following on, 1 μ L of 10 μ M indexed P5 primer
1097 (5'-AATGATACGGCGACCACCGAGATCTACA[i5]CCCTACACGACGCTCTCCGATCT-3', IDT), 1 μ L of
1098 10 μ M indexed P7 primer (5'-
1099 CAAGCAGAAGACGGCATACGAGAT[i7]GTGACTGGAGTTCAGACGTGTGCTCTCCGATCT-3', IDT)
1100 and 10 μ L NEBNext High-Fidelity 2X PCR Master Mix were added into each well. Amplification was

1101 carried out using the following program: 72°C for 5 minutes, 98°C for 30 seconds, 15-16 cycles of (98°C
1102 for 10 seconds, 66°C for 30 seconds, 72°C for 1 minute), and a final 72°C for 5 minutes. Final PCR
1103 products were pooled and purified by a Zymoclean DNA clean and concentration kit (Zymoresearch,
1104 D4014). Library concentrations were determined by Qubit, and the libraries were visualized by
1105 electrophoresis on a 2% E-Gel™ EX Agarose Gels. All ATAC-seq libraries were sequenced on the
1106 NextSeq 1000 platform (Illumina) using a 100 cycle kit (Read 1: 58 cycles, Read 2: 60 cycles, Index 1: 10
1107 cycles, Index 2: 10 cycles). The *TrackerSci*-ATAC libraries were sequenced to ~120,000 reads per cell.
1108

1109 ***TrackerSci*-RNA data processing**

1110
1111 Read alignment and gene count matrix generation for the scRNA-seq were performed using the pipeline
1112 we developed before (Cao et al., 2017). Briefly, base calls were converted to fastq format and
1113 demultiplexed using Illumina's bcl2fastq/v2.19.0.316 tolerating one mismatched base in barcodes (edit
1114 distance (ED) < 2). The RT barcode for each read was corrected to its nearest barcode (edit distance
1115 (ED) < 2), and reads with uncorrected barcodes (ED >= 2) were removed. Demultiplexed reads were
1116 then adaptor clipped using trim_galore/v0.4.1 (<https://github.com/FelixKrueger/TrimGalore>) with default
1117 settings. Trimmed reads were mapped to a chimeric reference genome of human and mouse
1118 (hg19/mm10) for the species-mixing experiment and to the mouse only (mm39) for mouse brain
1119 experiments, using STAR/v2.5.2b (Dobin et al., 2013) with default settings. Uniquely mapping reads
1120 were extracted, and duplicates were removed using the unique molecular identifier (UMI) sequence,
1121 reverse transcription (RT) index, and read 2 end-coordinate (i.e. reads with identical UMI, RT index, and
1122 tagmentation site were considered duplicates). Finally, mapped reads were split into constituent cellular
1123 indices by further demultiplexing reads using the RT index.
1124

1125 To generate digital expression matrices, we calculated the number of strand-specific UMIs for each cell
1126 mapping to the exonic and intronic regions of each gene with python/v2.7.18 HTseq package (Anders et
1127 al., 2015). For multi-mapped reads, reads were assigned to the closest gene, except in cases where
1128 another intersected gene fell within 100 bp to the end of the closest gene, in which case the read was
1129 discarded. For most analyses, we included both expected-strand intronic and exonic UMIs in per-gene
1130 single-cell expression matrices. Exonic and intronic gene count matrices were used in RNA velocity
1131 analysis.
1132

1133 For the species-mixing experiment, RNA barcodes with more than 200 UMIs and 100 unique genes were
1134 identified as real cells, and those with fewer than that were discarded. The percentage of uniquely
1135 mapping reads for genomes of each species was calculated. Cells with over 90% of UMIs assigned to
1136 one species were regarded as species-specific cells, with the remaining cells classified as mixed cells or
1137 "collisions". The collision rate was calculated as the ratio of mixed cells.
1138

1139 ***TrackerSci*-ATAC data processing**

1140
1141 Single-cell ATAC-seq data was performed using a published pipeline (Cao et al., 2018; Cusanovich et al.,
1142 2015) with mild modifications. Base calls were converted to fastq format and demultiplexed using
1143 Illumina's bcl2fastq/v2.19.0.316 tolerating one mismatched base in barcodes (edit distance (ED) < 2).
1144 The indexed Tn5 barcode for each read was corrected to its nearest barcode (edit distance (ED) < 2),
1145 and reads with uncorrected barcodes (ED >= 2) were removed. Demultiplexed reads were then adaptor-

1146 clipped using trim_galore/0.4.1 with default settings. Trimmed reads were mapped to a chimeric
1147 reference genome of human and mouse (hg19/mm10) for the species-mixing experiment and to the
1148 mouse only (mm39) for mouse brain experiments, using STAR/v2.5.2b (Dobin et al., 2013) with default
1149 settings. Duplicates were removed by picard MarkDuplicates/v2.25.2 (Broad Institute, 2019) per PCR
1150 sample. Deduplicated reads were split into constituent cellular indices by further demultiplexing reads
1151 using the Tn5 index.

1152
1153 A snap-format (Single-Nucleus Accessibility Profiles) file was generated from deduplicated bam files
1154 using SnapTools/v1.4.8 with default settings (<https://github.com/r3fang/SnapTools>) (Fang et al., 2021). A
1155 cell-by-bin count matrix with 5kb bin size was created from the resulting snapfile. The promoter ratio for
1156 each cell was calculated as the number of fragments mapping to genomic bins overlapping with promoter
1157 regions (defined as 2kb upstream of the gene body).

1158
1159 For the species-mixing experiment, ATAC barcodes with more than 1000 fragments and more than 0.2
1160 promoter ratio were identified as real cells, and those with fewer than that were discarded. The
1161 percentage of uniquely mapping reads for genomes of each species was calculated. Cells with over 90%
1162 of reads assigned to one species were considered species-specific cells, with the remaining cells
1163 classified as mixed cells or “collisions”. The collision rate was calculated as the ratio of mixed cells.

1164
1165 **Cell filtering, clustering, and annotation for *TrackerSci-RNA***

1166
1167 A digital gene expression matrix was constructed from the raw sequencing data as described above.
1168 EdU+ cells and global cells were combined and analyzed together. Cells with less than 200 UMLs and
1169 100 unique genes were discarded. Potential doublet cells and doublet-derived subclusters were detected
1170 using an iterative clustering strategy similar to before (Cao et al., 2020). Cells labeled as doublets (by
1171 scanpy/v1.6.0 and scrublet/v0.2.3) (Wolf et al., 2018; Wolock et al., 2019) or from doublet-derived sub-
1172 clusters were filtered. The downstream dimension reduction and clustering analysis were done by
1173 Seurat/v4.0.2 (Hao et al., 2021). Briefly, the dimensionality of the data was reduced by PCA (30
1174 components) first and then with UMAP, followed by Louvain clustering. Clusters were assigned to known
1175 cell types based on cell type-specific markers (**Table S2**).

1176
1177 Differentially expressed genes across different cell types were identified using monocle/v2.22.0 (Qiu et
1178 al., 2017) with the differentialGeneTest() function. Genes detected in less than 10 cells were filtered out
1179 before the analysis. To identify cell type-specific gene markers, we selected genes that were differentially
1180 expressed across different cell types (5% FDR, likelihood ratio test), with FC > 2 between the target cell
1181 type and the second highest expressed cell type, and with maximum transcripts per million (TPM) > 10 in
1182 the target cell types.

1183
1184 **Cell filtering, clustering, and annotation for *TrackerSci-ATAC***

1185
1186 Single-cell ATAC-seq profiles were generated as described above. EdU+ cells and global cells are
1187 combined and analyzed together. Cells with less than 1000 fragments and less than 0.2 promoter ratio
1188 were discarded. Dimensionality reduction for ATAC-seq data was performed using the snapATAC/v1.0.0
1189 (Fang et al., 2021). A cell-by-bin matrix at 5-kb resolution was used. We focused on bins on
1190 chromosomes 1–19, X and Y. High-coverage bins (top 5% bins that overlap with invariant features) or

1191 low-coverage bins (bottom 5% bins that represent general inaccessible regions) were filtered out before
1192 the analysis. Diffusion maps dimensionality reduction was performed on the filtered cell-by-bin matrix
1193 after binarization. UMAP analyses were performed on the top 20 eigenvectors, followed by unsupervised
1194 clustering via the densityPeak algorithm implemented in R package densityClust/v0.3 (Rodriguez
1195 and Laio, 2014)

1196
1197 We performed integration analysis between the *TrackerSci-RNA* dataset and *TrackerSci-ATAC* dataset
1198 to annotate the ATAC dataset. The gene activity score for ATAC cells was computed using the
1199 snapATAC function createGmatFromMat() by summing up the counts of bins overlapping with the gene
1200 body. A Seurat object was generated using the gene activity matrix and previously calculated diffusion
1201 map embeddings for single cell ATAC-seq. Then, variable genes were identified from *TrackerSci-RNA*
1202 data and used for identifying anchors between these two modalities. Next, we co-embedded the RNA-
1203 seq and ATAC-seq profiles in the same low-dimensional space to visualize all the cells together. We then
1204 used overlapped RNA clusters to annotate ATAC cells in the integrated UMAP space. ATAC cells
1205 without overlapped RNA cells were removed with careful inspection since they usually represent
1206 potential doublets or low-quality cells. Finally, single-cell ATAC dimension reduction, clustering, and
1207 integration analysis were rerun on the remaining dataset following the same procedure.

1208
1209 **Peak calling and identifications of cell-type-specific peaks**
1210

1211 To define peaks of accessibility across all sites, we used MACS2/v2.1.1 (Zhang et al., 2008).
1212 Nonduplicate ATAC-seq reads of cells from each main cell type were aggregated, and peaks were called
1213 on each group separately with these parameters: --nomodel --extsize 200 --shift -100 -q 0.1. Peak
1214 summits were extended by 250bp on either side and then merged with bedtools/v2.30.0 (Quinlan and
1215 Hall, 2010; Zhang et al., 2008), together with gene promoter regions (annotated transcription start site
1216 (TSS) in GENCODE VM27 minus/plus 1000 base pairs in a strand-specific manner). Each read
1217 alignment was extended by 100 bp upstream and downstream from the insertion site of tagmentation.
1218 Cells were determined to be accessible at a given peak if a read from a cell overlapped with the peak.
1219 The peak count matrix was generated by a custom python script with the HTseq package (Anders et al.,
1220 2015; Quinlan and Hall, 2010; Zhang et al., 2008). Differentially accessible peaks across cell types were
1221 identified using monocle/v2.22.0 (Qiu et al., 2017) with the differentialGeneTest() function. Peaks
1222 detected in less than 10 cells were filtered out before the analysis. To determine cell-type-specific peak
1223 markers, we selected peaks that were differentially accessible across different cell types (5% FDR,
1224 likelihood ratio test), with FC > 2 between the target cell type and the second highest expressed cell type,
1225 and with TPM > 10 in the target cell types.

1226
1227 **Analysis for linking cis-regulatory elements (CRE) to regulated genes**
1228

1229 We aim to identify links between chromatin accessible sites and regulated genes based on their
1230 covariance. Only EdU+ cells were kept in this analysis. We first constructed pseudo-cells by aggregating
1231 the RNA-seq and ATAC-seq profiles of highly similar cells through k-means clustering the integrative
1232 UMAP coordinates using the kmeans function from R package stats/v4.1.2. The k was selected so that
1233 the average cell number per subcluster is 150. Subclusters overrepresented by one molecular layer(the
1234 percentage of cells from either RNA-seq or ATAC-seq profile greater than ninety percent) were merged
1235 with a nearby subcluster. After aggregating cells within each sub-cluster, we obtained a total of 88

1236 pseudo-cells, with a median of 54 cells from RNA-seq profile and 93 cells from ATAC-seq profile.
1237 Aggregated count matrices for RNA-seq and ATAC-seq were normalized to transcripts per million(TPM)
1238 and log1p transformed. We only retained genes and peaks with TPM value greater than 10 in the
1239 maximum expressed pseudo-cells. Then, for each gene, we calculated the Pearson Correlation
1240 Coefficient (PCC) between its gene expression and the chromatin accessibility of its nearby accessible
1241 sites(minus/plus 500 kb from the TSS) across pseudo-cells. Sites overlapping with minus/plus 1kb from
1242 the TSS were considered promoters, while the rest were considered distal regions. To define a threshold
1243 at PCC score, we also generated a set of background pairs by permuting the pseudo cell id of the ATAC-
1244 seq matrix and with an empirically defined significance threshold of FDR < 0.05, to select significant
1245 positively correlated cCRE-gene pairs. We further filtered the linkage by requiring that either the
1246 maximum expressed cell types in the RNA profile and the ATAC profile were the same or the top two or
1247 top three highest expressed cell types were in the same cell trajectory (Oligodendrogenesis trajectory:
1248 OPC, COP, OLG; Astrocytes trajectory: ASC, NPC; DG neurogenesis trajectory: NPC, DGNB; OB
1249 neurogenesis trajectory: NPC, OBNB, OBIN). Finally, we only keep the one top linked gene with the
1250 highest PCC for each peak.

1251

1252 **Transcription factor analysis**

1253

1254 To identify key TF regulators of each main cell type, we searched for TF that can be validated in two
1255 molecular layers by correlating gene expression and motif accessibility. First, using the *TrackerSci-ATAC*
1256 dataset, we selected the top 300 sites per main cell type (from the differential peak analysis described
1257 above, filtered by q-value < 0.05, maximum expressed TPM > 10 and ranked by FC between the highest
1258 and the second expressed cell type) to a combined peak set. We then resized the peaks to a fixed length
1259 of 500 bp (\pm 250 bp around the center) and generated a binarized peak-by-motif matrix using the R
1260 package motifmatchr/v1.16.0 (Schep, 2017) with the matchMotifs() function to identify the occurrences of
1261 motifs in each peak from a filtered collection of the *cisBP* motif database curated by
1262 chromVARmotifs/v0.2.0 (Weirauch et al., 2014; Schep et al., 2017). A matrix of motif-by-cell counts was
1263 obtained by multiplying the peak-by-cell matrix with the peak-by-motif matrix, and was aggregated into
1264 pseudo-cells based on the k-means clustering described before. We then computed the PCC between
1265 the scaled TF motif accessibility and the scaled TF gene expression across pseudo-cells. To select
1266 significantly positive and negative correlations of TF gene expression and motif accessibility pairs, we
1267 permuted the pseudo cell id of the motif-by-cell matrix to compute a background PCC distribution and
1268 selected the TF pairs with an empirically defined significance threshold of FDR < 0.05. In addition, we
1269 only keep TF with TPM > 10 in the maximum expressed cell type.

1270

1271 **Trajectory analysis**

1272

1273 Cells corresponding to the neurogenesis trajectory (ASC, NPC, DGNB, OBNB and OBIN) or the
1274 oligodendrogenesis trajectory (OPC, COP and OLG) from both RNA-seq data and ATAC-seq data were
1275 selected for detailed investigation. We next performed UMAP dimension reduction at the trajectory level
1276 with the integration function from Seurat (Hao et al., 2021), using the top 3,000 highly variable genes and
1277 top 50 PCs. Each cell was assigned a pseudotime value based on its position along the trajectory using
1278 monocle3/v1.0.0 function order_cells() (Trapnell et al., 2014). RNA velocity analyses were performed
1279 using scVelo/v0.2.3 (Bergen et al., 2020) using the exonic and intronic gene count matrix generated from
1280 sci-RNA-seq pipeline to validate the cell differentiation direction and estimate the position of the

1281 progenitor cell state. For the two neurogenesis trajectories (DG neurogenesis and OB neurogenesis),
1282 pseudotime assignment was calculated separately and scaled so that the cells shared between two
1283 trajectories received the same pseudotime value. Specifically, we first used the pseudotime value
1284 calculated from the OB trajectory for common progenitor cells in both DG and OB trajectories. We then
1285 fitted a linear regression line using R function lm() to predict the OB-pseudotime based on the DG-
1286 pseudotime. Then, for cells unique to the DG neurogenesis, we adjusted their pseudotime using the
1287 predict() function using DG-pseudotime as input. Gene expression and peak accessibility dynamics
1288 along pseudotime were identified using monocle/v2.22.0 (Qiu et al., 2017) with the differentialGeneTest()
1289 function with pseudotime values and their main cluster identity as variables. Genes or peaks that passed
1290 a significant test (FDR of 5%) were considered as dynamically regulated genes or sites. Furthermore,
1291 differential accessible sites along pseudotime were used to infer TF motif accessibility dynamics. We
1292 computed a motif deviation score for each single cell using chromVar/v1.4.1 (Schep et al., 2017) with
1293 the dynamic peak set (resized to 500 bp) as input. Then, the motif deviation scores of each single cell
1294 were rescaled to (0, 10) using R function rescale() and differential accessible motifs were identified using
1295 monocle/v2.22.0 with the differentialGeneTest() function. TF motifs that passed a significant test (FDR of
1296 5%) were considered as dynamically regulated motifs. For gene enrichment analysis we used the
1297 enrichR (Chen et al., 2013) and the following pathways collections were considered: Panther_2016,
1298 Reactome_2016, KEGG_2019_Mouse, GO_Biological_Process_2018, GO_Molecular_Function_2018.
1299 For visualizing the dynamics of gene expression, peak accessibility and motif accessibility, we used R
1300 package ComplexHeatmap/v2.10.0 (Gu et al., 2016).

1301 1302 **Cell proportion analysis**

1303 To quantify the cell-type-specific changes in the proliferation dynamics across conditions, we calculated
1304 the fraction of each cell type within EdU+ population from each condition for RNA-seq data and ATAC-
1305 seq data separately, which was further multiplied by the median of EdU+ ratio for each group obtained
1306 from FACS sorting. For adult WT mice, we only included those that were harvested 24h after five-day
1307 labeling to avoid artifacts introduced by the labeling time.

1308 To quantify the effects of aging on cell differentiation dynamics along neurogenesis and
1309 oligodendrogenesis trajectories, we applied miloR/v1.3.1 (Dann et al., 2021), a single-cell differential
1310 abundance testing framework using k-nearest neighbor (KNN) graphs. We first constructed the KNN
1311 graph on the UMAP space for each trajectory using the buildGraph() function with k = 120 for the
1312 neurogenesis trajectory and k = 250 for the oligodendrogenesis trajectory. Cell neighborhoods were then
1313 defined using the makeNhoods() function and the number of cells from each experiment sample were
1314 counted for each neighborhood using the countCells() function. Testing for differential abundance in
1315 neighborhoods was performed using the testNhoods() function and
1316 significance levels for Spatial FDR of 0.05 were used. Visualization of differential abundance
1317 neighborhoods was done using the plotNhoodGraphDA() function.

1318 1319 **Differential analysis of NPC and OPC across aged groups**

1320 Differential gene expression analysis across young, adult, and aged groups of NPC and OPC was
1321 performed using monocle/v2.22.0 (Qiu et al., 2017) function differentialGeneTest() with the number of
1322 genes detected per cell included as a covariant. For adult WT mice, only cells from the animals

1326 harvested at 24h after 5-day labeling were included to avoid artifacts introduced by the labeling time. In
1327 addition, only differentially expressed genes (> expressed in more than 10 cells) along the neurogenesis
1328 or the oligodendrogenesis trajectory were included in the differential gene test. Differentially expressed
1329 genes were selected by a q-value cutoff of 0.1, a TPM cutoff of 50 in the maximum expressed group, and
1330 with at least 1.5 FC between the maximum expressed group and the minimum expressed group. Next,
1331 differentially expressed genes were grouped to aged-depleted genes and aged-enriched genes by the
1332 following criteria: for aging-depleted genes, we first selected the genes with minimum expression in aged
1333 mice, and only kept those with either maximum expression in young mice or within less than 2 FC
1334 between the young group and the adult group. For aging-enriched genes, we first selected the genes
1335 with maximum expression in aged mice, and only kept those with either minimum expression in young
1336 mice or with less than 2 FC between the young group and the adult group. We then further filtered the
1337 DE genes based on the consistency on their promoters or linked sites. For aging-depleted genes, we
1338 required that the mean of promoter accessibility or linked site accessibility was at the minimum level in
1339 the aged group compared to young and adults. For aging-enriched genes, we required that the mean of
1340 promoter accessibility or the linked site accessibility was at the maximum level in the aged group
1341 compared to young and adults. Genes that were lowly detected in both promoter accessibility and linked
1342 sites (represented by the mean of TPM < 10 in all conditions) were also discarded.

1343

1344 **Integration analysis between *TrackerSci*-RNA and *EasySci*-RNA**

1345

1346 Integration analysis of scRNA-seq dataset profiled using *TrackerSci* and *EasySci* was performed using
1347 Seurat/v4.0.2 (Hao et al., 2021). We first integrated 14,095 *TrackerSci*-RNA cells (including 5,715 EdU+
1348 cells and 8,380 all brain cells without EdU enrichment) with 126,285 *EasySci*-RNA cells (up to 5,000 cells
1349 randomly sampled from each of 31 cell types) in our companion study (Sziraki et al., 2022). Shared
1350 variable genes, selected by *SelectIntegrationFeatures()* function, were used for identifying anchors using
1351 *FindIntegrationAnchors()*. The two datasets were then integrated together with the *IntegrateData()*
1352 function. To visualize all the cells together, we co-embedded all the cells in the same low-dimensional
1353 space. We further applied the same integrative analysis strategy to cells matching the same cellular state
1354 from both datasets. Specifically, for the neurogenesis trajectory, we integrated 1,214 EdU+ cells from
1355 *TrackerSci*-RNA (NPC, OBNB, and OBIN) with 37,258 OB neurons 1 cells from *EasySci*-RNA. For the
1356 oligodendrogenesis trajectory, we integrated 3,044 EdU+ cells from *TrackerSci*-RNA (OPC and COP) to
1357 22,718 oligodendrocyte progenitor cells from *EasySci*-RNA. For the microglia, we integrated 600 EdU+
1358 microglia from *TrackerSci*-RNA to 15,754 microglia from *EasySci*-RNA. Microglia subclusters
1359 corresponding to peripheral immune cells were excluded before the analysis.

1360

1361 **Quantifications of the self-renewal potential and the differentiation potential**

1362

1363 The self-renewal potential was defined as the ratio of newly generated progenitor cells within 5 days of
1364 EdU labeling divided by the ratio of total progenitor cells detected from the global population. To account
1365 for potential variations due to slight differences of animal ages between *TrackerSci* and the brain cell
1366 atlas, we first fitted a linear model between the ages and the ratio of progenitor cells using the *EasySci*
1367 data for the following cell type: neuronal progenitor cells, oligodendrocyte progenitor cells, and microglia.
1368 We used that to predict the ratio of progenitor cells for each individual mice profiled by *TrackerSci*. We
1369 then divided the ratio of newly generated progenitor cells from each 5-day labeled mice by the predicted
1370 cellular fraction of the global progenitor pool for the same cell type. A line plot was generated using the

1371 median values of proliferation potential for each aged group normalized to the young mice. RNA and
1372 ATAC cells were both included, and samples with less than 50 cells were excluded from the calculation.
1373 The differentiation potential was quantified by the ratio of differentiated cells divided by all EdU+ cells in
1374 the same trajectory. We calculated such a ratio only for oligodendrogenesis trajectory since it's a
1375 unidirectional route. For this analysis, we divided the ratio of committed oligodendrocytes and myelin-
1376 forming oligodendrocytes to the ratio of oligodendrocyte progenitor cells for each sample and median
1377 values of each age group were used to generate the line plot. RNA and ATAC cells were included, and
1378 samples with less than 50 cells were excluded from the calculation.

1379

1380 **Cell filtering, clustering, and annotation for the human dataset**

1381

1382 A digital gene expression matrix was constructed from the raw sequencing data as described in our
1383 companion study (Sziraki et al., 2022). Potential doublet cells and doublet-derived subclusters were
1384 detected using an iterative clustering strategy similar to before (Cao et al., 2020). Cells labeled as
1385 doublets (by scanpy/v1.6.0 and scrublet/v0.2.3) (Wolf et al., 2018; Wolock et al., 2019) or from doublet-
1386 derived sub-clusters were filtered. To identify distinct clusters of cells corresponding to different cell types
1387 in the human data, we performed the downstream dimension reduction and clustering analysis using
1388 Seurat/v4.0.2 (Hao et al., 2021). Briefly, the dimensionality of the data was reduced by PCA (50
1389 components) first and then with UMAP, followed by Louvain clustering. We then co-embedded the
1390 human data with the mouse brain atlas from profiled in our companion study (Sziraki et al., 2022) through
1391 Seurat (Stuart et al., 2019), and clusters were annotated based on overlapped cell types. The
1392 annotations were manually verified and refined based on marker genes.

1393

1394 **Integration analysis between human and mouse**

1395

1396 Integration analysis of scRNA-seq dataset of human and mouse was performed using Seurat/v4.0.2
1397 (Hao et al., 2021). Similar to the integration of mouse dataset profiled between *TrackerSci-RNA* and
1398 *EasySci-RNA*, we first integrated 14,095 mouse cells (including 5,715 EdU+ cells and 8,380 all brain
1399 cells without EdU enrichment) with 71,743 human cells (up to 5,000 cells randomly sampled from each of
1400 18 cell types) to construct a coembedding UMAP space. We then project the rest of human cells into this
1401 UMAP structure using MapQuery() and TransferData() function. Cycling cells and committed
1402 oligodendrocytes from the human dataset were extracted based on the UMAP coordinates overlapping
1403 with mouse cells. Cycling cells were subjected to sub-clustering analysis for identifying their cell types.
1404 Markers for cycling cells were identified by comparing them to the rest of all cells using the Seurat
1405 function FindMarkers().

1406

1407 **Identifications of shared and unique features between human and mouse oligodendrogenesis**

1408

1409 To construct a continuous oligodendrogenesis trajectory shared between human and mouse, we
1410 subjected all 4,194 oligodendrogenesis-related cells (OPC, COP and OLG) from mouse data and took
1411 2,188 oligodendrogenesis-related cells from human data (including all of 188 cells from COP and
1412 randomly sampled 1,000 cells from OPC and OLG) to integration analysis using Seurat/v4.0.2. Each cell
1413 was assigned a pseudotime value based on its position along the trajectory using monocle3 function
1414 order_cells(). For human cells, gene expression dynamics along pseudotime were identified using
1415 monocle/v2.22.0 (Qiu et al., 2017) with the differentialGeneTest() function with pseudotime values and

1416 their main cluster identity (i.e, OPC, COP and OLG) as variables. For mouse cells, we used the results
1417 from DE gene analysis along pseudotime calculated before. Conserved gene expression dynamics were
1418 selected by a q-value cutoff of 0.05, a TPM (transcript per million) cutoff of 50 in the same maximum
1419 expressed stage in both species. This reveals 1,162 DE genes along oligodendrogenesis shared
1420 between human and mouse. To select genes with species-unique expression dynamics, we filtered the
1421 DE genes with the following criteria: significantly changed along pseudotime (q-value <0.05) and TPM of
1422 the maximum expressed stage larger than 50 in one species, while no significantly changed (q-
1423 value >0.05) and TPM of the maximum expressed stage less than 50 in the other species. This reveals
1424 458 and 361 DE genes along oligodendrogenesis unique to human and mouse respectively. For
1425 visualizations of gene expression dynamics, we use R package ComplexHeatmap/v2.10.0 and the genes
1426 were ordered by the hierarchical clustering implemented in the function Heatmap().
1427

1428 **Analysis of region-specific oligodendrogenesis**

1429
1430 To study region-specific effects of oligodendrogenesis, we quantified the ratio of each stage (OPC, COP
1431 and OLG) within all the cells along the oligodendrogenesis trajectory for each region. Cycling
1432 Oligodendrocyte progenitor cells were not included into the calculation. Statistical analysis was
1433 performed by comparing the ratio of COP to OPC in cerebellum vs. non-cerebellum cells using Fisher
1434 exact test. To study the region-specific transcriptional controls of each stage along oligodendrogenesis,
1435 we performed differential expression analysis across regions using monocle/v2.22.0 with the
1436 differentialGeneTest() function. Region-specific gene expression signatures were selected by the
1437 following cutoffs: q-value < 0.05, with FC > 2 between the maximum expressed region and the second
1438 highest expressed region, and with maximum transcripts per million (TPM) > 50 in the highest expressed
1439 region.
1440

1441 **Code Availability**

1442
1443 The detailed experimental protocols and computation scripts of *TrackerSci* were included as
1444 supplementary files.
1445
1446

1447

1448 **Supplementary Tables (provided as Microsoft Excel files)**

1449 **Supplementary Table 1:** Metadata for animal individuals included in the *TrackerSci* profiling, including
1450 38 animals injected with EdU and 2 animals injected with PBS. For each mouse, the metadata includes
1451 the mouse genotype (WT, 5xFAD), age group (young, adult, aged), gender, the exact day of age, DOB
1452 (date of birth), DOD (date of death), the time of EdU labeling, and number of cells recovered from
1453 *TrackerSci-RNA* and *TrackerSci-ATAC*.

1454

1455 **Supplementary Table 2:** Annotated cell types together with reference gene markers for annotation,
1456 number of cells per cell type identified in *TrackerSci-RNA* and *TrackerSci-ATAC* dataset, as well as the
1457 medium and mean values for the number of UMIs/genes/unique reads for each cell type.

1458

1459 **Supplementary Table 3:** Differentially expressed genes across newborn cell types. For each gene, the
1460 “max.cluster” is the cell type with the highest expression (“max.expr”). The “second.cluster” is the cell
1461 type with the second highest expression (“second.expr”). The “fold.change” is the fold change between
1462 the max expression and second max expression. The “qval” is the false detection rate (one-sided
1463 likelihood ratio test with adjustment for multiple comparisons) for the differential expression test across
1464 different cell clusters.

1465

1466 **Supplementary Table 4:** Differentially accessible sites for all newborn cell types. For each gene, the
1467 “max.cluster” is the cell type with the highest accessibility (“max.expr”). The “second.cluster” is the cell
1468 type with the second highest accessibility (“second.expr”). The “fold.change” is the fold change between
1469 the max accessibility and second max accessibility. The “qval” is the false detection rate (one-sided
1470 likelihood ratio test with adjustment for multiple comparisons) for the differential accessibility test across
1471 different cell clusters. The “is_promoter” indicates whether a site is a promoter or not, and if True,
1472 information of corresponding genes is included in “promoter_gene_id”, “promoter_gene_short_name”
1473 and “promoter_gene_type”.

1474

1475 **Supplementary Table 5:** Identified linkages between cis-regulatory elements and regulated genes. For
1476 each linkage, the “pearson_correlation_coefficient” is Pearson correlation between peak accessibility and
1477 gene expression across pseudo-cells. The “region” is either “promoter” or “distal”, indicating whether a
1478 site overlaps with the promoter of the linked gene. The “max.cluster.RNA” is the cell type with the highest
1479 expression, and the “max.cluster.ATAC” is the cell type with the highest accessibility.

1480

1481 **Supplementary Table 6:** Transcription factors significantly correlated in gene expression and motif
1482 accessibility. For each TF, the “PCC” is the Pearson correlation between motif accessibility and gene
1483 expression across pseudo-cells. The “max.RNA” is the cell type with the highest gene expression
1484 (“max.expr.RNA”). The “second.RNA” is the cell type with the second highest expression
1485 (“second.expr.RNA”).

1486

1487 **Supplementary Table 7:** Differentially expressed genes along DG neurogenesis. The “qval” is the false
1488 detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential
1489 test.

1490

1491 **Supplementary Table 8:** Differentially expressed genes along OB neurogenesis. The “qval” is the false
1492 detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential
1493 test.

1494
1495 **Supplementary Table 9:** Differentially accessible sites along DG neurogenesis. The “qval” is the false
1496 detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential
1497 test.

1498
1499 **Supplementary Table 10:** Differentially accessible sites along OB neurogenesis. The “qval” is the false
1500 detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential
1501 test.

1502
1503 **Supplementary Table 11:** Differentially accessible transcription factors along DG neurogenesis. The
1504 “qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)
1505 for the differential test.

1506
1507 **Supplementary Table 12:** Differentially accessible transcription factors along OB neurogenesis. The
1508 “qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)
1509 for the differential test.

1510
1511 **Supplementary Table 13:** Differentially expressed genes across different age groups for neuronal
1512 progenitor cells. For each gene, the “max.group” is the age group with the highest expression
1513 (“max.expr”). The “second.group” is the age group with the second highest expression (“second.expr”).
1514 The “third.group” is the age group with the minimum expression (“third.expr”). The “qval” is the false
1515 detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential
1516 test. The “promoter_consistent” and “distal_consistent” indicate whether a differentially expressed gene
1517 can be supported by its promoter accessibility or its linked distal sites accessibility. The “comments”
1518 refers to either “aging_depleted_genes” or “aging_enriched_genes” based on the change of direction.

1519
1520 **Supplementary Table 14:** Differentially expressed genes along oligodendrogenesis. The “qval” is the
1521 false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the
1522 differential test.

1523
1524 **Supplementary Table 15:** Differentially accessible sites along oligodendrogenesis. The “qval” is the
1525 false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the
1526 differential test.

1527
1528 **Supplementary Table 16:** Differentially accessible transcription factors along oligodendrogenesis. The
1529 “qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)
1530 for the differential test.

1531
1532 **Supplementary Table 17:** Differentially expressed genes across different age groups for
1533 oligodendrocyte progenitor cells. For each gene, the “max.group” is the age group with the highest
1534 expression (“max.expr”). The “second.group” is the age group with the second highest expression
1535 (“second.expr”). The “third.group” is the age group with the minimum expression (“third.expr”). The “qval”

1536 is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the
1537 differential test. The “promoter_consistent” and “distal_consistent” indicate whether a differentially
1538 expressed gene can be supported by its promoter accessibility or its linked distal sites accessibility. The
1539 “comments” refers to either “aging_depleted_genes” or “aging_enriched_genes” based on the change of
1540 direction.

1541
1542 **Supplementary Table 18:** Metadata for human individuals included in this study.
1543

1544 **Supplementary Table 19:** Differentially expressed genes along oligodendrogenesis for human cells.
1545 The “qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple
1546 comparisons) for the differential test.

1547
1548 **Supplementary Table 20:** Differentially expressed genes across regions for each stage along
1549 oligodendrogenesis. For each gene, the “max.region” is the region with the highest expression
1550 (“max.expr”). The “second.region” is the region with the second highest expression (“second.expr”). The
1551 “qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)
1552 for the differential test. The “fold.change” is the fold change between the max expression and second
1553 max expression. The “stage” indicates which differentiation stage (i.e, OPC, COP or OLG) the test was
1554 performed on.

1555
1556 **Supplementary files**

1557 **Supplementary file 1:** Detailed experiment protocols for *TrackerSci-RNA* and *TrackerSci-ATAC*,
1558 including all materials and equipment needed, step-by-step descriptions, and representative gel images.

1559 **Supplementary file 2:** Computational pipeline scripts for processing *TrackerSci* data, from sequencer-
1560 generated files to single-cell gene count matrix for *TrackerSci-RNA* and single-cell read files for
1561 *TrackerSci-ATAC*.

1562

1563

1564 **References:**

1565 Aberle, T., Piefke, S., Hillgärtner, S., Tamm, E.R., Wegner, M., and Küspert, M. (2022). Transcription
1566 factor Zfp276 drives oligodendroglial differentiation and myelination by switching off the progenitor cell
1567 program. *Nucleic Acids Res.* 50, 1951–1968. .

1568 Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with high-throughput
1569 sequencing data. *Bioinformatics* 31, 166–169. .

1570 Bergen, V., Lange, M., Peidli, S., Wolf, F.A., and Theis, F.J. (2020). Generalizing RNA velocity to
1571 transient cell states through dynamical modeling. *Nat. Biotechnol.* 38, 1408–1414. .

1572 Bertacchi, M., Romano, A.L., Loubat, A., Tran Mau-Them, F., Willems, M., Faivre, L., Khau van Kien, P.,
1573 Perrin, L., Devillard, F., Sorlin, A., et al. (2020). NR2F1 regulates regional progenitor dynamics in the
1574 mouse neocortex and cortical gyration in BBSOAS patients. *EMBO J.* 39, e104163. .

1575 Blondel, V.D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in
1576 large networks. *Journal of Statistical Mechanics: Theory and Experiment* 2008, P10008.
1577 <https://doi.org/10.1088/1742-5468/2008/10/p10008>.

1578 Broad Institute (2019). Picard toolkit. Broad Institute, GitHub Repository.

1579 Brulet, R., Zhu, J., Aktar, M., Hsieh, J., and Cho, K.-O. (2017). Mice with conditional NeuroD1 knockout
1580 display reduced aberrant hippocampal neurogenesis but no change in epileptic seizures. *Exp. Neurol.*
1581 293, 190–198. .

1582 Cao, J., Packer, J.S., Ramani, V., Cusanovich, D.A., Huynh, C., Daza, R., Qiu, X., Lee, C., Furlan, S.N.,
1583 Steemers, F.J., et al. (2017). Comprehensive single-cell transcriptional profiling of a multicellular
1584 organism. *Science* 357, 661–667. .

1585 Cao, J., Cusanovich, D.A., Ramani, V., Aghamirzaie, D., Pliner, H.A., Hill, A.J., Daza, R.M., McFaline-
1586 Figueroa, J.L., Packer, J.S., Christiansen, L., et al. (2018). Joint profiling of chromatin accessibility and
1587 gene expression in thousands of single cells. *Science* 361, 1380–1385. .

1588 Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen,
1589 L., Steemers, F.J., et al. (2019). The single-cell transcriptional landscape of mammalian organogenesis.
1590 *Nature* 566, 496–502. .

1591 Cao, J., O'Day, D.R., Pliner, H.A., Kingsley, P.D., Deng, M., Daza, R.M., Zager, M.A., Aldinger, K.A.,
1592 Blecher-Gonen, R., Zhang, F., et al. (2020). A human cell atlas of fetal gene expression. *Science* 370.
1593 <https://doi.org/10.1126/science.aba7721>.

1594 Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., and Ma'ayan, A. (2013).
1595 Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC Bioinformatics* 14,
1596 128. .

1597 Clarke, S.T., Calderon, V., and Bradford, J.A. (2017). Click Chemistry for Analysis of Cell Proliferation in

1598 Flow Cytometry. *Curr. Protoc. Cytom.* 82, 7.49.1–7.49.30. .

1599 Colombo, E., Collombat, P., Colasante, G., Bianchi, M., Long, J., Mansouri, A., Rubenstein, J.L.R., and
1600 Broccoli, V. (2007). Inactivation of Arx, the Murine Ortholog of the X-Linked Lissencephaly with
1601 Ambiguous Genitalia Gene, Leads to Severe Disorganization of the Ventral Telencephalon with Impaired
1602 Neuronal Migration and Differentiation. *Journal of Neuroscience* 27, 4786–4798.
1603 <https://doi.org/10.1523/jneurosci.0417-07.2007>.

1604 Corlier, F., Hafzalla, G., Faskowitz, J., Kuller, L.H., Becker, J.T., Lopez, O.L., Thompson, P.M., and
1605 Braskie, M.N. (2018). Systemic inflammation as a predictor of brain aging: Contributions of physical
1606 activity, metabolic risk, and genetic risk. *Neuroimage* 172, 118–129. .

1607 Cusanovich, D.A., Daza, R., Adey, A., Pliner, H.A., Christiansen, L., Gunderson, K.L., Steemers, F.J.,
1608 Trapnell, C., and Shendure, J. (2015). Multiplex single cell profiling of chromatin accessibility by
1609 combinatorial cellular indexing. *Science* 348, 910–914. .

1610 Dann, E., Henderson, N.C., Teichmann, S.A., Morgan, M.D., and Marioni, J.C. (2021). Differential
1611 abundance testing on single-cell data using k-nearest neighbor graphs. *Nat. Biotechnol.*
1612 <https://doi.org/10.1038/s41587-021-01033-z>.

1613 Díaz-Guerra, E., Pignatelli, J., Nieto-Estevez, V., and Vicario-Abejón, C. (2013). Transcriptional
1614 regulation of olfactory bulb neurogenesis. *Anat. Rec.* 296, 1364–1382. .

1615 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
1616 Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15–21. .

1617 Domcke, S., Hill, A.J., Daza, R.M., Cao, J., O'Day, D.R., Pliner, H.A., Aldinger, K.A., Pokholok, D., Zhang,
1618 F., Milbank, J.H., et al. (2020). A human cell atlas of fetal chromatin accessibility. *Science* 370.
1619 <https://doi.org/10.1126/science.aba7612>.

1620 Emery, B., and Lu, Q.R. (2015). Transcriptional and Epigenetic Regulation of Oligodendrocyte
1621 Development and Myelination in the Central Nervous System. *Cold Spring Harb. Perspect. Biol.* 7,
1622 a020461. .

1623 Fang, R., Preissl, S., Li, Y., Hou, X., Lucero, J., Wang, X., Motamedi, A., Shiao, A.K., Zhou, X., Xie, F., et
1624 al. (2021). Comprehensive analysis of single cell ATAC-seq data with SnapATAC. *Nat. Commun.* 12,
1625 1337. .

1626 Fletcher, J.L., Makowiecki, K., Cullen, C.L., and Young, K.M. (2021). Oligodendrogenesis and
1627 myelination regulate cortical development, plasticity and circuit function. *Semin. Cell Dev. Biol.* 118, 14–
1628 23. .

1629 Franjic, D., Skarica, M., Ma, S., Arellano, J.I., Tebbenkamp, A.T.N., Choi, J., Xu, C., Li, Q., Morozov,
1630 Y.M., Andrijevic, D., et al. (2022). Transcriptomic taxonomy and neurogenic trajectories of adult human,
1631 macaque, and pig hippocampal and entorhinal cells. *Neuron* 110, 452–469.e14. .

1632 Galvan, V., and Jin, K. (2007). Neurogenesis in the aging brain. *Clin. Interv. Aging* 2, 605–610. .

1633 Givre, S. (2003). Sim FJ, Zhao C, Penderis J, Franklin RJM. The age-related decrease in CNS
1634 remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment
1635 and differentiation. *Journal of Neuro-Ophthalmology* 23, 168. <https://doi.org/10.1097/00041327-200306000-00025>.

1637 Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in
1638 multidimensional genomic data. *Bioinformatics* 32, 2847–2849. .

1639 Habib, N., Li, Y., Heidenreich, M., Swiech, L., Avraham-David, I., Trombetta, J.J., Hession, C., Zhang, F.,
1640 and Regev, A. (2016). Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn
1641 neurons. *Science* 353, 925–928. .

1642 Hannun, Y.A., and Obeid, L.M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids.
1643 *Nat. Rev. Mol. Cell Biol.* 9, 139–150. .

1644 Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J.,
1645 Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. *Cell* 184, 3573–
1646 3587.e29. .

1647 He, L., Beghi, F., Baral, V., Dépond, M., Zhang, Y., Joulin, V., Rueda, B.R., Gonin, P., Foudi, A., Wittner,
1648 M., et al. (2019). CABLES1 Deficiency Impairs Quiescence and Stress Responses of Hematopoietic
1649 Stem Cells in Intrinsic and Extrinsic Manners. *Stem Cell Reports* 13, 274–290. .

1650 Hock, H., Meade, E., Medeiros, S., Schindler, J.W., Valk, P.J.M., Fujiwara, Y., and Orkin, S.H. (2004).
1651 Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. *Genes Dev.* 18,
1652 2336–2341. .

1653 Hodge, R.D., and Hevner, R.F. (2011). Expression and actions of transcription factors in adult
1654 hippocampal neurogenesis. *Dev. Neurobiol.* 71, 680–689. .

1655 Hong, S.M., Liu, Z., Fan, Y., Neumann, M., Won, S.J., Lac, D., Lum, X., Weinstein, P.R., and Liu, J.
1656 (2007). Reduced hippocampal neurogenesis and skill reaching performance in adult Emx1 mutant mice.
1657 *Exp. Neurol.* 206, 24–32. .

1658 Huitema, K., van den Dikkenberg, J., Brouwers, J.F.H.M., and Holthuis, J.C.M. (2004). Identification of a
1659 family of animal sphingomyelin synthases. *EMBO J.* 23, 33–44. .

1660 Iwasaki, H., and Akashi, K. (2007). Myeloid lineage commitment from the hematopoietic stem cell.
1661 *Immunity* 26, 726–740. .

1662 Jana, A., Hogan, E.L., and Pahan, K. (2009). Ceramide and neurodegeneration: susceptibility of neurons
1663 and oligodendrocytes to cell damage and death. *J. Neurol. Sci.* 278, 5–15. .

1664 Javed, A., Mattar, P., Cui, A., and Cayouette, M. (2021). Ikaros family proteins regulate developmental
1665 windows in the mouse retina through convergent and divergent transcriptional programs.

1666 Kalinina, A., and Lagace, D. (2022). Single-Cell and Single-Nucleus RNAseq Analysis of Adult
1667 Neurogenesis. *Cells* 11. <https://doi.org/10.3390/cells11101633>.

1668 Kato, K., Konno, D., Berry, M., Matsuzaki, F., Logan, A., and Hidalgo, A. (2015). Prox1 Inhibits
1669 Proliferation and Is Required for Differentiation of the Oligodendrocyte Cell Lineage in the Mouse. PLoS
1670 One 10, e0145334. .

1671 Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T.K., David,
1672 E., Baruch, K., Lara-Astaiso, D., Toth, B., et al. (2017). A Unique Microglia Type Associated with
1673 Restricting Development of Alzheimer's Disease. Cell 169, 1276–1290.e17.
1674 <https://doi.org/10.1016/j.cell.2017.05.018>.

1675 Kioussi, C., Gross, M.K., and Gruss, P. (1995). Pax3: a paired domain gene as a regulator in PNS
1676 myelination. Neuron 15, 553–562. .

1677 Krut, O., Wiegmann, K., Kashkar, H., Yazdanpanah, B., and Krönke, M. (2006). Novel tumor necrosis
1678 factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J. Biol. Chem.
1679 281, 13784–13793. .

1680 Li, J., Wang, C., Zhang, Z., Wen, Y., An, L., Liang, Q., Xu, Z., Wei, S., Li, W., Guo, T., et al. (2018a).
1681 Transcription Factors Sp8 and Sp9 Coordinateably Regulate Olfactory Bulb Interneuron Development.
1682 Cereb. Cortex 28, 3278–3294. .

1683 Li, T., Wang, L., Ma, T., Wang, S., Niu, J., Li, H., and Xiao, L. (2018b). Dynamic Calcium Release From
1684 Endoplasmic Reticulum Mediated by Ryanodine Receptor 3 Is Crucial for Oligodendroglial Differentiation.
1685 Front. Mol. Neurosci. 11, 162. .

1686 Li, Y.E., Preissl, S., Hou, X., Zhang, Z., Zhang, K., Qiu, Y., Poirion, O.B., Li, B., Chiou, J., Liu, H., et al.
1687 (2021). An atlas of gene regulatory elements in adult mouse cerebrum. Nature 598, 129–136. .

1688 Lin, G., Huang, Y.-C., Shindel, A.W., Banie, L., Wang, G., Lue, T.F., and Lin, C.-S. (2009). Labeling and
1689 tracking of mesenchymal stromal cells with EdU. Cytotherapy 11, 864–873. .

1690 Linneberg, C., Harboe, M., and Laursen, L.S. (2015). Axo-Glia Interaction Preceding CNS Myelination Is
1691 Regulated by Bidirectional Eph-Ephrin Signaling. ASN Neuro 7.
1692 <https://doi.org/10.1177/1759091415602859>.

1693 Lugert, S., Basak, O., Knuckles, P., Haussler, U., Fabel, K., Götz, M., Haas, C.A., Kempermann, G.,
1694 Taylor, V., and Giachino, C. (2010). Quiescent and active hippocampal neural stem cells with distinct
1695 morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6,
1696 445–456. .

1697 Mahar, I., MacIsaac, A., Kim, J.J., Qiang, C., Davoli, M.A., Turecki, G., and Mechawar, N. (2016). Effects
1698 of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, and characterization of
1699 immature neurons along the septotemporal axis. Sci. Rep. 6, 30467. .

1700 Mall, M., Karet, M.S., Chanda, S., Ahlenius, H., Perotti, N., Zhou, B., Grieder, S.D., Ge, X., Drake, S.,
1701 Euong Ang, C., et al. (2017). Myt1l safeguards neuronal identity by actively repressing many non-
1702 neuronal fates. Nature 544, 245–249. .

1703 Marques, S., van Bruggen, D., Vanichkina, D.P., Floriddia, E.M., Munguba, H., Väremo, L., Giacomello,

1704 S., Falcão, A.M., Meijer, M., Björklund, Å.K., et al. (2018). Transcriptional Convergence of
1705 Oligodendrocyte Lineage Progenitors during Development. *Dev. Cell* 46, 504–517.e7. .

1706 Mathews, E.S., and Appel, B. (2016). Cholesterol Biosynthesis Supports Myelin Gene Expression and
1707 Axon Ensheathment through Modulation of P13K/Akt/mTor Signaling. *J. Neurosci.* 36, 7628–7639. .

1708 Mathews, K.J., Allen, K.M., Boerrigter, D., Ball, H., Shannon Weickert, C., and Double, K.L. (2017).
1709 Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers.
1710 *Aging Cell* 16, 1195–1199. .

1711 McInnes, L., Healy, J., Saul, N., and Großberger, L. (2018). UMAP: Uniform Manifold Approximation and
1712 Projection. *Journal of Open Source Software* 3, 861. <https://doi.org/10.21105/joss.00861>.

1713 Micheli, L., Ceccarelli, M., Gioia, R., D'Andrea, G., Farioli-Vecchioli, S., Costanzi, M., Saraulli, D., Cestari,
1714 V., and Tirone, F. (2017). Terminal Differentiation of Adult Hippocampal Progenitor Cells Is a Step
1715 Functionally Dissociable from Proliferation and Is Controlled by Tis21, Id3 and NeuroD2. *Front. Cell.*
1716 *Neurosci.* 11, 186. .

1717 Minamide, K., Sato, T., Nakanishi, Y., Ohno, H., Kato, T., Asano, J., and Ohteki, T. (2020). IRF2
1718 maintains the stemness of colonic stem cells by limiting physiological stress from interferon. *Sci. Rep.* 10,
1719 14639. .

1720 Nelson, P.T., Wang, W.-X., Janse, S.A., and Thompson, K.L. (2018). MicroRNA expression patterns in
1721 human anterior cingulate and motor cortex: A study of dementia with Lewy bodies cases and controls.
1722 *Brain Res.* 1678, 374–383. .

1723 Ninkovic, J., Steiner-Mezzadri, A., Jawerka, M., Akinci, U., Masserdotti, G., Petricca, S., Fischer, J., von
1724 Holst, A., Beckers, J., Lie, C.D., et al. (2013). The BAF complex interacts with Pax6 in adult neural
1725 progenitors to establish a neurogenic cross-regulatory transcriptional network. *Cell Stem Cell* 13, 403–
1726 418. .

1727 Oakley, H., Cole, S.L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A., Ohno, M.,
1728 Disterhoft, J., Van Eldik, L., et al. (2006). Intraneuronal beta-amyloid aggregates, neurodegeneration,
1729 and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in
1730 amyloid plaque formation. *J. Neurosci.* 26, 10129–10140. .

1731 Osumi, N., Shinohara, H., Numayama-Tsuruta, K., and Maekawa, M. (2008). Concise review: Pax6
1732 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator.
1733 *Stem Cells* 26, 1663–1672. .

1734 Pastrana, E., Cheng, L.-C., and Doetsch, F. (2009). Simultaneous prospective purification of adult
1735 subventricular zone neural stem cells and their progeny. *Proc. Natl. Acad. Sci. U. S. A.* 106, 6387–6392. .

1736 Petryniak, M.A., Potter, G.B., Rowitch, D.H., and Rubenstein, J.L.R. (2007). Dlx1 and Dlx2 control
1737 neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. *Neuron* 55, 417–433. .

1738 Pollina, E.A., and Brunet, A. (2011). Epigenetic regulation of aging stem cells. *Oncogene* 30, 3105–
1739 3126. .

1740 Qiao, H., Li, Y., Feng, C., Duo, S., Ji, F., and Jiao, J. (2018). Nap1l1 Controls Embryonic Neural
1741 Progenitor Cell Proliferation and Differentiation in the Developing Brain. *Cell Rep.* **22**, 2279–2293. .

1742 Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., and Trapnell, C. (2017). Reversed graph
1743 embedding resolves complex single-cell trajectories. *Nat. Methods* **14**, 979–982. .

1744 Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features.
1745 *Bioinformatics* **26**, 841–842. .

1746 Ratz, M., von Berlin, L., Larsson, L., Martin, M., Westholm, J.O., La Manno, G., Lundeberg, J., and
1747 Frisén, J. (2022). Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics.
1748 *Nat. Neurosci.* **25**, 285–294. .

1749 Rodriguez, A., and Laio, A. (2014). Machine learning. Clustering by fast search and find of density peaks.
1750 *Science* **344**, 1492–1496. .

1751 Salic, A., and Mitchison, T.J. (2008). A chemical method for fast and sensitive detection of DNA
1752 synthesis in vivo. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 2415–2420. .

1753 Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., de Rivera, H., Bien, E., Baum,
1754 M., Bortolin, L., Wang, S., et al. (2018). Molecular Diversity and Specializations among the Cells of the
1755 Adult Mouse Brain. *Cell* **174**, 1015–1030.e16. .

1756 Schep, A. (2017). motifmatchr: Fast Motif Matching in R, <https://github.com/GreenleafLab/motifmatchr/>.

1757 Schep, A.N., Wu, B., Buenrostro, J.D., and Greenleaf, W.J. (2017). chromVAR: inferring transcription-
1758 factor-associated accessibility from single-cell epigenomic data. *Nat. Methods* **14**, 975–978. .

1759 Schmitt, F.A., Nelson, P.T., Abner, E., Scheff, S., Jicha, G.A., Smith, C., Cooper, G., Mendiondo, M.,
1760 Danner, D.D., Van Eldik, L.J., et al. (2012). University of Kentucky Sanders-Brown healthy brain aging
1761 volunteers: donor characteristics, procedures and neuropathology. *Curr. Alzheimer Res.* **9**, 724–733. .

1762 Smith, A., Robinson, V., Patel, K., and Wilkinson, D.G. (1997). The EphA4 and EphB1 receptor tyrosine
1763 kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. *Curr. Biol.* **7**,
1764 561–570. .

1765 Solé-Domènech, S., Cruz, D.L., Capetillo-Zarate, E., and Maxfield, F.R. (2016). The endocytic pathway
1766 in microglia during health, aging and Alzheimer's disease. *Ageing Res. Rev.* **32**, 89–103. .

1767 Sorrells, S.F., Paredes, M.F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K.W., James, D., Mayer, S.,
1768 Chang, J., Auguste, K.I., et al. (2018). Human hippocampal neurogenesis drops sharply in children to
1769 undetectable levels in adults. *Nature* **555**, 377–381. .

1770 Spalding, K.L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H.B., Boström, E.,
1771 Westerlund, I., Vial, C., Buchholz, B.A., et al. (2013). Dynamics of hippocampal neurogenesis in adult
1772 humans. *Cell* **153**, 1219–1227. .

1773 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalex, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius,
1774 M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888–

1775 1902.e21..

1776 Sziraki, A., Lu, Z., Lee, J., Banyai, G., Anderson, S., Abdulraouf, A., Metzner, E., Liao, A., Epstein, A., Xu,
1777 Z., et al. (2022). A global view of aging and Alzheimer's pathogenesis-associated cell population
1778 dynamics and molecular signatures in the human and mouse brains.

1779 Tafesse, F.G., Huitema, K., Hermansson, M., van der Poel, S., van den Dikkenberg, J., Uphoff, A.,
1780 Somerharju, P., and Holthuis, J.C.M. (2007). Both sphingomyelin synthases SMS1 and SMS2 are
1781 required for sphingomyelin homeostasis and growth in human HeLa cells. *J. Biol. Chem.* 282, 17537–
1782 17547..

1783 Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J.,
1784 Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions are revealed
1785 by pseudotemporal ordering of single cells. *Nat. Biotechnol.* 32, 381–386. .

1786 Wang, F., Ren, S.-Y., Chen, J.-F., Liu, K., Li, R.-X., Li, Z.-F., Hu, B., Niu, J.-Q., Xiao, L., Chan, J.R., et al.
1787 (2020). Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory.
1788 *Nat. Neurosci.* 23, 481–486. .

1789 Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P., Najafabadi, H.S.,
1790 Lambert, S.A., Mann, I., Cook, K., et al. (2014). Determination and inference of eukaryotic transcription
1791 factor sequence specificity. *Cell* 158, 1431–1443. .

1792 Weng, C., Ding, M., Fan, S., Cao, Q., and Lu, Z. (2017). Transcription factor 7 like 2 promotes
1793 oligodendrocyte differentiation and remyelination. *Mol. Med. Rep.* 16, 1864–1870. .

1794 Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene expression data
1795 analysis. *Genome Biol.* 19, 15. .

1796 Wolock, S.L., Lopez, R., and Klein, A.M. (2019). Scrublet: Computational Identification of Cell Doublets in
1797 Single-Cell Transcriptomic Data. *Cell Syst* 8, 281–291.e9. .

1798 Yeh, H., and Ikezu, T. (2019). Transcriptional and Epigenetic Regulation of Microglia in Health and
1799 Disease. *Trends Mol. Med.* 25, 96–111. .

1800 Yi, T., Lee, D.-S., Jeon, M.-S., Kwon, S.W., and Song, S.U. (2012). Gene expression profile reveals that
1801 STAT2 is involved in the immunosuppressive function of human bone marrow-derived mesenchymal
1802 stem cells. *Gene* 497, 131–139. .

1803 Yoo, S.-W., Agarwal, A., Smith, M.D., Khuder, S.S., Baxi, E.G., Thomas, A.G., Rojas, C., Moniruzzaman,
1804 M., Slusher, B.S., Bergles, D.E., et al. (2020). Inhibition of neutral sphingomyelinase 2 promotes
1805 remyelination. *Sci Adv* 6. <https://doi.org/10.1126/sciadv.aba5210>.

1806 Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Häring, M., Braun,
1807 E., Borm, L.E., La Manno, G., et al. (2018). Molecular Architecture of the Mouse Nervous System. *Cell*
1808 174, 999–1014.e22. .

1809 Zhang, K., Chen, S., Yang, Q., Guo, S., Chen, Q., Liu, Z., Li, L., Jiang, M., Li, H., Hu, J., et al. (2022).

1810 The Oligodendrocyte Transcription Factor 2 OLIG2 regulates transcriptional repression during
1811 myelinogenesis in rodents. *Nat. Commun.* 13, 1423. .

1812 Zhang, X., Huang, N., Xiao, L., Wang, F., and Li, T. (2021). Replenishing the Aged Brains: Targeting
1813 Oligodendrocytes and Myelination? *Front. Aging Neurosci.* 13, 760200. .

1814 Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers,
1815 R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). *Genome Biol.* 9,
1816 R137. .

1817 Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O'Keeffe, S., Phatnani, H.P., Guarnieri,
1818 P., Caneda, C., Ruderisch, N., et al. (2014). An RNA-sequencing transcriptome and splicing database of
1819 glia, neurons, and vascular cells of the cerebral cortex. *J. Neurosci.* 34, 11929–11947. .

1820