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2

Summary23

Progenitor cells play fundamental roles in preserving optimal organismal functions under normal, aging,24
and disease conditions. However, progenitor cells are incompletely characterized, especially in the brain,25
partly because conventional methods are restricted by inadequate throughput and resolution for26
deciphering cell-type-specific proliferation and differentiation dynamics in vivo. Here, we developed27
TrackerSci, a new technique that combines in vivo labeling of newborn cells with single-cell combinatorial28
indexing to profile the single-cell chromatin landscape and transcriptome of rare progenitor cells and29
track cellular differentiation trajectories in vivo. We applied TrackerSci to analyze the epigenetic and30
gene expression dynamics of newborn cells across entire mouse brains spanning three age stages and31
in a mouse model of Alzheimer's disease. Leveraging the dataset, we identified diverse progenitor cell32
types less-characterized in conventional single cell analysis, and recovered their unique epigenetic33
signatures. We further quantified the cell-type-specific proliferation and differentiation potentials of34
progenitor cells, and identified the molecular programs underlying their aging-associated changes (e.g.,35
reduced neurogenesis/oligodendrogenesis). Finally, we expanded our analysis to study progenitor cells36
in the aged human brain through profiling ~800,000 single-cell transcriptomes across five anatomical37
regions from six aged human brains. We further explored the transcriptome signatures that are shared or38
divergent between human and mouse oligodendrogenesis, as well as the region-specific down-regulation39
of oligodendrogenesis in the human cerebellum. Together, the data provide an in-depth view of rare40
progenitor cells in mammalian brains. We anticipate TrackerSci will be broadly applicable to characterize41
cell-type-specific temporal dynamics in diverse systems.42
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Introduction67
68

New neurons and glial cells are continuously produced in the adult mammalian brains, a critical process69
associated with memory, learning, and stress (Lugert et al., 2010; Spalding et al., 2013). There is a70
consensus that adult neurogenesis and oligodendrogenesis decline with advancing ages and in71
neuropathological conditions (Galvan and Jin, 2007; Pollina and Brunet, 2011), but to what extent is72
debated (Mathews et al., 2017; Sorrells et al., 2018). The ambiguity stems partly from technical73
limitations - most studies rely upon the utilization of proxy markers, which may introduce bias for74
quantifying the dynamics of extremely rare progenitor cells, especially in aged tissues. Furthermore, the75
identity of progenitor cells is established as a result of tightly controlled epigenetic programs, driven in76
part by transcription factors that interact with cis-regulatory sequences in a cell-type-specific manner.77
While previous single-cell studies have provided critical insight into the gene expression signatures of78
progenitor cells in the adult brain (Franjic et al., 2022; Habib et al., 2016; Kalinina and Lagace, 2022),79
little is known about how the epigenetic landscape regulates the dynamics of rare progenitor cells in vivo.80
Therefore, novel approaches for quantitatively capturing newborn cells and tracking their transcriptome81
and chromatin state changes are critical to understanding cell population dynamics in development,82
aging, and disease states.83

84
Here we describe a novel method, TrackerSci, to track the proliferation and differentiation dynamics of85
newborn cells in the mammalian brain. TrackerSci integrated protocols for labeling newly synthesized86
DNA with a thymidine analog 5-Ethynyl-2-deoxyuridine (EdU) (Salic and Mitchison, 2008) and single-cell87
combinatorial indexing sequencing for both transcriptome (Cao et al., 2019) and chromatin accessibility88
profiling (Cusanovich et al., 2015). As a demonstration, we applied TrackerSci to profiling the single-cell89
transcriptome or chromatin accessibility dynamics of 14,689 newborn cells from entire mouse brains90
spanning three age stages and two genotypes. With the resulting datasets, we recovered rare progenitor91
cell populations less represented in conventional single-cell analysis and tracked their cell-type-specific92
proliferation and differentiation dynamics across ages. Furthermore, we identified the genetic and93
epigenetic signatures associated with the alteration of cellular dynamics (e.g., adult neurogenesis,94
oligodendrogenesis) that occurs in the aged mammalian brain. Finally, to compare rare progenitor cells95
across species, we generated a human brain cell atlas profiling ~800,000 single-nucleus transcriptomes96
of the human brain across five anatomic regions. By integration analysis with the TrackerSci dataset, we97
identified region- and cell-type-specific signatures of rare progenitor cells in the aged human brain and98
recovered conserved and divergent molecular signatures of oligodendrogenesis cells between human99
and mouse. The experimental and computational methods described here could be broadly applied to100
track cellular regenerative capacity and differentiation potential across mammalian organs and other101
biological systems.102

103
Results104

105
Overview of TrackerSci106

107
The optimized TrackerSci protocol follows these steps (Figure 1A): (i) Mice are labeled with 5-Ethynyl-2-108
deoxyuridine (EdU), a thymidine analog that can be incorporated into replicating DNA for labeling in vivo109
cellular proliferation (Lin et al., 2009; Salic and Mitchison, 2008). (ii) Brains are dissected, and nuclei are110
extracted, fixed, and then subjected to click chemistry-based in situ ligation (Clarke et al., 2017) to an111
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azide-containing fluorophore, followed by fluorescence-activated cell sorting (FACS) to enrich the EdU+112
cells (Figure S1A). (iii) Indexed reverse transcription or transposition is used to introduce the first round113
of indexing. Cells from all wells are pooled and then redistributed into multiple 96-well plates through114
FACS sorting to further purify the EdU+ cells (Figure S1B). (iv) We then follow library preparation115
protocols similar to sci-RNA-seq (Cao et al., 2019) for transcriptome profiling or sci-ATAC-seq116
(Cusanovich et al., 2015) for chromatin accessibility analysis. Most cells pass through a unique117
combination of wells, such that their contents are marked by a unique combination of barcodes that can118
be used to group reads derived from the same cell. Notably, the two sorting steps implemented in119
TrackerSci are essential for excluding contaminating cells and enriching extremely rare proliferating cell120
populations, especially in the aged brain (less than 0.1% of the total cell population are EdU+ cells).121

122
We extensively optimized the reaction conditions (e.g., fixation, permeabilization, and click-chemistry123
reaction) to ensure the approach is fully compatible with FACS sorting and single-cell transcriptome and124
chromatin accessibility profiling (Figure S2 and S3). For instance, the active Cu(I) catalyst and additive125
included in the conventional click-chemistry reaction (Habib et al., 2016) significantly reduced the nuclei126
quality for single-cell gene expression analysis (Figure S2A). To solve this problem, we tested a127
commercialized click-chemistry method using picolyl azide dye and copper protectant, which resulted in128
a minimal defect on library complexity (Figure S2B, Method) or cell purity for single-cell RNA-seq129
analysis, as shown in an experiment profiling a mixture of human HEK293T and mouse NIH/3T3 cells130
(Figure S1C and S1D). As a quality control, we further compared the TrackerSci chromatin accessibility131
profile with the conventional sci-ATAC-seq profile in a mixture of human HEK293T and mouse NIH/3T3132
cells. Both methods showed similar cellular purity (Figure S3A), fragment length distributions (Figure133
S3B), a comparable number of unique fragments per cell, and a similar ratio of reads overlapping with134
promoters in both cell lines and mouse brain nuclei (Figure S3C and S3D).135

136
Additionally, the aggregated transcriptome and chromatin accessibility profiles derived from TrackerSci137
(both cultured cell lines and tissues) were highly correlated with conventional single-cell combinatorial138
indexing profiling (Figure S2E and S3E), suggesting that the labeling and conjugating reactions (e.g.,139
EdU labeling and click-chemistry) in TrackerSci do not substantially interfere with downstream single-cell140
transcriptome and chromatin accessibility profiling by combinatorial indexing.141

142
A global view of newborn cells across the mammalian brain143

144
We next applied TrackerSci to capture rare newborn cells from mouse brains spanning three age stages145
and two genotypes. Briefly, following three to five days of continuous EdU labeling, we isolated nuclei146
from the whole brain of 38 sex-balanced C57BL/6 mice (Figure 1A; Table S1), including 33 wild-type147
mice across multiple development stages (Young: 6-9 weeks, Adult: 11-20 weeks, and Aged: 88-98148
weeks) as well as five 5xFAD mutant mice (11-20 weeks) harboring multiple Alzheimer’s Disease (AD)149
mutations (Oakley et al., 2006). Following TrackerSci protocol, we obtained transcriptomic profiles for150
5,715 newborn cells (median 2,909 UMIs) (Figure S4A and S4B) and chromatin accessibility profiles for151
8,974 newborn cells (median 50,225 unique reads) (Figure S5A and S5B). In addition, to characterize152
the global brain cell population as a background control, we included DAPI singlets representing ‘all’153
brain cells (i.e., without enrichment of the EdU+ cells) and obtained transcriptomic profiles for 8,380154
nuclei (median 1,553 UMIs) and chromatin accessibility profiles for 342 nuclei (median 24,521 unique155
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reads). The EdU+ nuclei and DAPI singlets were collected from the same set of samples and processed156
in parallel to minimize any batch effect.157

158
We first subjected the 14,095 TrackerSci transcriptome profiles, including both EdU+ nuclei and DAPI159
singlets, to Louvain clustering (Blondel et al., 2008) and UMAP visualization (McInnes et al., 2018)160
(Figure 1B; Figure S4C and S4D). Sixteen cell clusters were identified and annotated based on161
established markers (Figure 1C; Table S2), ranging in size from 25 cells (Choroid plexus epithelial cells)162
to 3,141 cells (Mature neurons). We next performed a semi-supervised clustering analysis of 9,316163
TrackerSci chromatin accessibility profiles (8,974 EdU+ nuclei and 342 DAPI singlets), and identified164
fourteen clusters (Figure 1B; Figure S5C and S5D; Methods), which mapped 1:1 to the main cell types165
identified in the transcriptome analysis. Two rare cell types (i.e., ependymal cells and choroid plexus166
epithelial cells) were only detected in the RNA dataset, mainly due to the low abundance of these cell167
types. As expected, the corresponding cell types defined by the two molecular layers overlapped well in168
the integration analysis (Figure 1D).169

170
We observed a notably altered distribution of cell-type-specific fractions between ‘all’ brain cells and the171
EdU+ cells (Figure 2A). For example, in contrast to the ‘all’ brain cells that are dominated by mature172
neurons (e.g., cerebellum granule neurons: 32.7% in DAPI singlets vs. 2.85% in EdU+ cells) and173
differentiated glial cells (e.g., myelin-forming oligodendrocytes: 11.9 % in DAPI singlets vs. 0.75% in174
EdU+ cells), the EdU+ population showed prominent enrichment of progenitor cells such as immature175
neurons (e.g., olfactory bulb neuroblasts: 0.14% in DAPI singlets vs. 13.4% in EdU+ cells) and glia176
progenitors (e.g., oligodendrocyte progenitor cells: 1.11% in DAPI singlets vs. 45.4% in EdU+ cells).177
Intriguingly, we detected newly-generated erythroblasts (Hbb-bt+, Hbb-bs+) and immune cells (Ptprc+),178
which may correspond to newborn blood cells circulating in the brain, as they exclusively exist in the179
EdU+ nuclei. Of note, the cell-type-specific distribution of newborn cells was highly correlated between180
TrackerSci transcriptome and chromatin accessibility datasets (Spearman’s correlation r = 0.92; Figure181
3B) and across conditions (Figure S6).182

183
We next integrated TrackerSci datasets with a global brain cell atlas from our companion study (Sziraki184
et al., 2022), for which we profiled 1.5 million cells from entire mouse brains spanning three age groups185
and two mutants associated with AD. Briefly, we integrated EdU+ brain cells (5,715 single-cell186
transcriptomes from TrackerSci), ‘All’ brain cells (8,380 DAPI singlets from TrackerSci), and “All” brain187
cells from the global brain cell atlas (sampling 5,000 cells for each main cell type) into the same UMAP188
space. As expected, ‘All’ brain cells from the TrackerSci highly overlapped with cells from the global brain189
cell atlas in the integrated UMAP space (Figure 2C). Remarkably, the EdU+ cells (from TrackerSci)190
formed continuous cellular differentiation trajectories bridging several terminally differentiated cell types,191
including the oligodendrogenesis trajectory from the oligodendrocyte progenitor cells to differentiated192
oligodendrocytes, and the neurogenesis trajectory connecting astrocytes and OB neurons (Figure 2C).193
Of note, the bridge cells are validated by the expression of known progenitor markers, such as Bmp4 and194
Enpp6 for committed oligodendrocyte precursors (Marques et al., 2018; Zhang et al., 2014) and Mki67,195
Egfr for neuronal progenitor cells (Pastrana et al., 2009) (Figure S7A). While the 1.5 million global brain196
cell atlas is one of the most extensive single-cell analyses of adult mouse brains, these “bridge” cells197
were still missing in the original trajectory analysis (Figure S7B), highlighting the application of the198
TrackerSci method for recovering continuous cellular differentiation trajectories in adult tissues.199
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Figure 1. TrackerSci enables single-cell transcriptome and chromatin accessibility profiling of201
rare proliferating cells in the mammalian brain.202
(A) TrackerSci workflow and experiment scheme. Key steps are outlined in the text.203
(B) UMAP visualization of single-cell transcriptomes (top) and single-cell chromatin accessibility profiles204
(bottom), including EdU+ cells (profiled by TrackerSci) and all brain cells (without enrichment of EdU+205
cells), colored by main cell types. Dimension reduction analysis for scRNA-seq and scATAC-seq was206
performed independently.207
(C) Dotplot and heatmap showing gene expression and gene activity of known marker genes for each208
cluster defined by TrackerSci-RNA (top) and TrackerSci-ATAC (bottom), respectively.209
(D-E) UMAP visualization of mouse brain cells, integrating the single-cell transcriptome and chromatin210
accessibility profiles of EdU+ cells and DAPI singlets (representing the global brain cell population). Cells211
are colored by sources (D, top), molecular layers (D, bottom), and main cell types (D). The identified212
neurogenesis and oligodendrogenesis trajectories are both annotated in (E).213

214
215
216
217
218
219
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220
Figure 2. TrackerSci captures rare newborn cells that are less represented in conventional single-221
cell studies.222
(A) Pie plots showing the proportion of main cell types identified in the global cell population (left) and the223
enriched EdU+ cell population (right).224
(B) Scatter plot showing the fraction of each cell type in the enriched EdU+ cell population by single-cell225
transcriptome (x-axis) or chromatin accessibility analysis (y-axis) in TrackerSci, together with a linear226
regression line.227
(C) We integrated the TrackerSci dataset, including both EdU+ cells and DAPI singlets, with a large-228
scale brain cell atlas (Sziraki et al., 2022) comprising 1,469,111 cells. For the brain cell atlas, we229
sampled 5,000 cells of each cell type for the integration analysis. The UMAP plots show the integrated230
cells, colored by assay types (left, cell types from TrackerSci are annotated) or cell annotations from the231
brain cell atlas (right, cells from TrackerSci are colored in grey).232

233
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Identify cell-type-specific epigenetic signatures and TF regulators of newborn cells234
235

Toward a better understanding of the molecular signatures of newborn cells, we performed differential236
expression (DE) and differential accessibility (DA) analysis, yielding 5,610 DE genes (FDR of 5%, Figure237
3A; Table S3; Methods) and 68,556 DA sites (FDR of 5%, Table S4; Methods) with significant changes238
across cell types. Notably, 1,744 (34.8%) of DE genes have DA promoters enriched in the same cell type239
(median Pearson r = 0.81, Figure 3A). While canonical gene markers were observed and used for our240
annotation of different cell types (Figure S8), we detected many novel markers that are highly cell-type-241
specific but have not been reported in prior research, including markers for neuronal progenitor cells (e.g.,242
Adgrv1 and Rmi2), DG neuroblasts (e.g., Prdm8 and Marchf4), OB neuroblasts (e.g., Zfp618 and Sdk2)243
and committed oligodendrocyte precursors (e.g., Ccdc134 and Mroh3) (Figure S8). The cell type244
specificity of these markers were cross-validated by both gene expression and promoter accessibility.245
For comparison, some of the widely used neurogenesis markers, such as Sox2 and Dcx, were found to246
be expressed across multiple cell types (e.g., oligodendrocyte progenitor cells; Figure S9), which may247
affect their accuracy for labeling cells in neurogenesis (Hodge and Hevner, 2011).248

249
To investigate the epigenetic landscape that shapes the transcriptome of newborn cells, we next sought250
to identify the cis-regulatory elements underlying the cell-type-specific expression of gene markers. We251
first computed the correlation between the expression of each gene marker and the accessibility of its252
nearby DA sites across 88 ‘pseudo-cells’ (a subset of cells with adjacent integrative UMAP coordinates253
grouped by k-means clustering, Figure S10A; Methods). To control for any potential artifacts of the254
analysis, we permuted the sample IDs of the data matrix followed by the same analysis pipeline.255
Altogether, we identified 15,485 positive links between genes and distal sites (plus 2,832 associations256
between genes and promoters) at an empirically defined significance threshold of FDR = 0.05 and based257
on their cell-type-specificity (Figure 3B; Table S5; Methods).258

259
The identified distal site-gene linkages were significantly closer than all possible pairs tested (median260

159 kb for identified links vs. 251 kb for all pairs tested; p-value < 5 × 10−5, unpaired permutation test261

based on 20,000 simulations, Figure S10B). Most genes were associated with a few links (median two262
distal sites per gene, out of a median of 94 distal sites within 500 kb of the TSS tested, Figure S10B).263
For example, Dlx2, a canonical neurogenesis marker (Petryniak et al., 2007), was significantly linked to264
four distal peaks, all exhibiting remarkable cell-type-specificity similar to its gene expression (Figure 3D265
and 3E; Figure S10C). By contrast, a small subset of genes (3.5%) were linked with a large number of266
peaks (>= 10 peaks). For instance, Olig2 was linked to 10 distal peaks (Figure 3D), all highly enriched in267
the oligodendrocyte progenitor cells (OPC) and committed oligodendrocyte precursors (COP) (Figure 3E;268
Figure S10D). Some genes (e.g., Dlx2) showed strong cell-type-specificity in their linked distal sites269
compared to their promoters (Figure S10E), indicating that long-range transcriptional control could play a270
key role in determining cell type specificities.271

272
To further characterize transcription factors (TFs) that contribute to the cell type specification of273
progenitor cells, we computed the Pearson correlation coefficient between TF expression and motif274
accessibility across all afore-described “pseudo-cells”. We then performed the same analysis using the275
permuted data as the background control. At an empirically defined significance threshold of FDR = 0.05,276
we identified a total of 70 cell-type-specific TF regulators, including 19 potential repressors featured with277
negative correlations between gene expression and motif accessibility (e.g., Olig2, Figure 3C and 3F).278
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Most cell-type-specific TFs are readily validated by previous studies. For example, Olig2 has been279
reported to encode a transcriptional repressor during motor neuron differentiation and myelinogenesis280
(Zhang et al., 2022). Other examples include Spi1 and Runx1 in immune cells (Iwasaki and Akashi, 2007;281
Yeh and Ikezu, 2019); Maf, Mef2a, and Tfe3 in microglia (Solé-Domènech et al., 2016; Yeh and Ikezu,282
2019); and Pax6, Nfib, and Arx in neuronal progenitor cells and neuroblasts (Colombo et al., 2007;283
Ninkovic et al., 2013; Osumi et al., 2008). Notably, several less-characterized TFs were identified and284
validated by the cell-type-specific enrichment of both gene expression and motif accessibility, such as285
Pou6f1, Hmbox1, Klf8, and Smarcc1 enriched in immature neurons and Zfx enriched in microglia,286
representing potentially regulators of progenitor cells in the adult brain (Figure 3G; Figure S11).287

288
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Figure 3. Identifying epigenetic elements and transcription factors associated with289
heterogeneous cellular states of newborn cells in the mouse brain.290
(A) Heatmap showing the relative expression (top) and chromatin accessibility (bottom) of cell-type-291
specific genes across cell types. The UMI count matrix (gene expression) and read count matrix (ATAC-292
seq) were normalized by the library size and then log-transformed, column centered, and scaled. The293
resulting values clamped to [-2, 2].294
(B) Density plot showing the distribution of Pearson correlation coefficients between gene expression295
and the accessibility of promoter (colored in red) or nearby accessible elements (within ±500 kb of the296
promoter, colored in blue) across pseudo-cells. In addition, we plotted the background distribution of the297
Pearson correlation coefficient after permuting the accessibility of peaks across pseudo-cells.298
(C) Density plot showing the distribution of Pearson correlation coefficients between TF expression and299
their motif accessibility across pseudo-cells. The background distribution was calculated after permuting300
the motif accessibility of TFs across pseudo-cells.301
(D) Genome browser plot showing links between distal regulatory sites and genes for a neurogenesis302
marker (Dlx2, top) and an oligodendrogenesis marker (Olig2, bottom).303
(E) UMAP plots showing the cell-type-specific expression (left), the accessibility of promoter (middle),304
and linked distal site (right) for genes Dlx2 (top) and Olig2 (bottom). The single-cell expression data (UMI305
count) and ATAC-seq data (read count) were normalized first by library size and then log-transformed,306
column centered, and scaled.307
(F) Scatter plots showing the correlation between the scaled gene expression and motif accessibility308
across cell types for Dlx2 (top) and Olig2 (bottom), together with a linear regression line. ASC: astrocytes,309
CBGN: cerebellum granule neurons, COP: committed oligodendrocyte precursors, DGNB: dentate gyrus310
neuroblasts, ERY: erythroblasts, MFO: myelin-forming oligodendrocytes, MG: microglia, NPC: neuronal311
progenitor cells, OBNB: olfactory bulb neuroblasts, OBIN: olfactory bulb inhibitory neurons, OPC:312
oligodendrocyte progenitor cells, VC: vascular cells.313
(G) Scatter plots showing the correlation between the scaled gene expression and motif accessibility of314
less-characterized TF regulators, together with a linear regression line.315
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A global view of cell-type-specific proliferation rates across the adult lifespan316
317

We next compared the fraction of EdU+ cells across young, adult, and aged mice brains, and observed a318
marked reduction of cellular proliferation associated with age (Figure 4A). To investigate the cell-type-319
specific changes in proliferation rates, we then quantified the relative fractions of each newborn cell type320
by their fractions in the EdU+ cell population, multiplied by the ratio of EdU+ cells in the global cell321
population. Interestingly, we detected highly heterogeneous responses to aging across various322
progenitor cell types, validated by both single-cell transcriptome and chromatin accessibility profiles323
(Figure 5B). For example, dentate gyrus neuroblasts showed an 18-fold reduction in the aged brain (vs.324
the adult brain), while the proliferation of vascular cells were only mildly affected. In contrast, microglia325
and other immune cells showed a remarkable boost in the production of newborn cells (Figure 4B-D),326
possibly due to the elevated inflammatory signaling in the aged brain (Corlier et al., 2018). Compared327
with the aged brain, we detected overall mild changes in cellular proliferation (except the microglia) in the328
AD-associated mouse model (5xFAD), probably because the mutant mice were profiled at a relatively329
early stage (before three months).330

331
To further validate the cell-type-specific dynamics in brain aging, we integrated the newborn cells332
recovered from TrackerSci and a global mice brain cell atlas (Sziraki et al., 2022) for sub-clustering333
analysis. Indeed, the integration analysis at the sub-cluster level facilitated the identification of rare334
progenitor cells in the global brain cell atlas, such as neuronal progenitor cells (marked by Mki67, Top2a,335
and Egfr) and committed oligodendrocyte precursors (marked by high expression of Bmp4 and Enpp6)336
(Figure 4E). both of these cell types are remarkably reduced upon aging, validated in both datasets337
(Figure 4F). In addition, the integration analysis revealed a reactive microglia subtype, marked by high338
expression of Apoe and Csf1 in both datasets. This microglia subtype has been previously reported to be339
enriched in aged and AD mammalian brains (Keren-Shaul et al., 2017). Consistent with prior studies, we340
found the proliferation rate of the Apoe+, Csf1+ microglia increased significantly in both aged (p-value =341
0.0045, Wilcoxon rank-sum test) and 5xFAD brains (p-value = 0.028, Wilcoxon rank-sum test), which342
readily explained its rapid expansion in both aged and disease conditions (Figure 4F).343

344
We next sought to investigate the impact of aging on the self-renewal and differential potential of345
progenitor cells in vivo. We first defined the self-renewal potential by the number of newly generated346
progenitor cells divided by the number of total progenitor cells in the brain (i.e., the number of new cells347
generated per progenitor cell in a fixed time, Figure 4G). For instance, the neuronal progenitor cells348
exhibited down-regulated self-renewal potential over ages (Figure 4H), which readily explained the349
depleted neural stem cell pool in the aged brain. Meanwhile, the differentiation potential of a cell type can350
be defined by the fraction of newly generated differentiated cells divided by all newborn cells in the same351
lineage (Figure 4G). For example, we observed a substantially reduced differentiation potential in352
oligodendrocyte progenitor cells across the adult lifespan, especially during the early growth stage353
(Figure 4H). This analysis represents a unique application of TrackerSci for quantitative measurement of354
cell-type-specific self-renewal and differentiation capacities in vivo.355
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Figure 4. Deciphering the impact of aging on the proliferation status and differentiation dynamics357
of different cell types in the mammalian brain.358
(A) Boxplot showing the fraction of EdU+ cells in the mouse brain after five days of EdU labeling. The359
plot includes data from both single-cell transcriptome and chromatin accessibility experiments in360
TrackerSci. For all box plots in this figure: middle lines, medians; upper and lower box edges, first and361
third quartiles, respectively; whiskers, 1.5 times the interquartile range; and all individual data points are362
shown.363
(B) With the single-cell RNA-seq or ATAC-seq data of TrackerSci, we first calculated the cell-type-364
specific fractions in each condition (i.e., young, adult, aged, and 5xFAD), multiplied by the fraction of365
EdU+ cells in the entire brain. We then quantified the fold changes of normalized cell-type-specific366
fractions between the aged and adult brains. The scatter plot shows the log-transformed fold changes367
(aged vs. adult) correlation between single-cell transcriptome and chromatin accessibility analysis in368
TrackerSci.369
(C) Similar to the analysis in (B), the dot plot shows the log-transformed cell-type-specific fold changes370
between each condition and the adult brain. For the comparison between 5xFAD and wild-type, we used371
mice of the same age (11-week-old) from both groups.372
(D) Area plot showing the cell-type-specific proportions in EdU+ cells over time.373
(E) We integrated cells corresponding to OB neurogenesis (top), oligodendrogenesis (middle), and374
microglia (bottom) in TrackerSci and brain cell atlas (Sziraki et al., 2022); the left UMAP plot shows the375
integrated cells, colored by cell type annotations in TrackerSci or grey (brain cell atlas). The two UMAP376
plots on the right show cells from the brain cell atlas or the EdU+ cells recovered by TrackerSci, colored377
by the expression of the neuronal progenitor marker Mki67 (top), the committed oligodendrocyte378
precursor cells marker Bmp4 (middle) and the aging/AD-associated microglia marker Csf1 (bottom).379
(F) Box plots showing the cell-type-specific fractions of neuronal progenitor cells (top), committed380
oligodendrocyte precursors (middle) and aging/AD-associated microglia (bottom) across different381
conditions in the brain cell atlas (left) or newborn cells from TrackerSci (right).382
(G) Schematic showing the calculation of the self-renewal and differentiation potential of progenitor cells.383
(H) Left: Line plot showing the estimated self-renewal potential of neuronal progenitor cells over time.384
Right: Line plot showing the estimated differentiation potential of the newly generated oligodendrocyte385
progenitor cells across three age groups.386
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402
The impact of aging on adult neurogenesis403

404
Adult neurogenesis and oligodendrogenesis have been reported to decline upon aging (Galvan and Jin,405
2007; Pollina and Brunet, 2011); however, the detailed gene regulatory mechanism is still unclear due to406
technical limitations. We next sought to interrogate the impact of aging on adult neurogenesis and407
oligodendrogenesis, and delineate underlying transcriptional and epigenetic controls.408

409
For adult neurogenesis, we identified three main trajectories that differentiated into DG neuroblasts, OB410
neuroblasts, and astrocytes, consistent with the cell state transition directions inferred by the RNA411
velocity analysis (Bergen et al., 2020) and prior report (Ratz et al., 2022) (Figure 5A). The trajectory was412
further validated through a pulse-chase experiment, where we harvested cells for TrackerSci profiling at413
different time points (i.e., one day, three days, and nine days post-labeling). Indeed, we observed a414
gradual accumulation of more differentiated cell states with longer chasing time (Figure 5B). Through DE415
gene analysis, we identified 2,072 and 6,473 DE genes along the DG neurogenesis and OB416
neurogenesis trajectories, respectively (Table S7 and S8). Of all DE genes, 1,799 genes were shared417
between the two trajectories, including up-regulated genes (e.g., Dcx) enriched in neuron development418
(q-value = 2.7e-8) (Chen et al., 2013) and down-regulated genes (e.g., Notum) enriched in negative Wnt419
signaling regulation (q-value = 0.0004) (Chen et al., 2013) (Figure S12A). In addition, putative trajectory-420
and region-specific neurogenesis programs were identified, such as Neurod1, Neurod2, and Emx1421
enriched in the DG trajectory (Figure S12B). This is consistent with previous reports about their422
important roles in hippocampal neurogenesis (Brulet et al., 2017; Hong et al., 2007; Micheli et al., 2017).423

424
With the chromatin accessibility profiling, we identified 3,095 and 13,790 sites showing dynamics425
patterns along the DG neurogenesis and OB neurogenesis trajectories, respectively (Table S9 and S10),426
from which we further identified 20 TFs exhibiting significantly changed motif accessibility in the DG427
neurogenesis trajectory (FDR of 0.05, Table S11) and 318 TFs in OB neurogenesis (FDR of 0.05, Table428
S12). Key TFs were further validated by strong correlations between their expression and motif429
accessibility dynamics (Figure 5C). For example, the expression of the above-mentioned neurogenesis430
regulators, Neurod1 and Neurod2, are positively correlated with their motif accessibility. In contrast,431
Myt1l, a known repressor of neural differentiation (Mall et al., 2017), shows a negatively correlated gene432
expression and motif accessibility. Leveraging this approach, we identified TFs shared between two433
neurogenesis trajectories (e.g., Myt1l, Ascl1, and E2f7); as well as TFs that regulate the specification of434
different neuron types (e.g., Dlx6, Sp8, Sp9 uniquely enriched in OB neurogenesis (Díaz-Guerra et al.,435
2013; Li et al., 2018a)). Meanwhile, we identified several TFs (e.g., Irf2, Stat2, and Etv6) showing strong436
enrichment of gene expression and motif accessibility in neuronal progenitor cells. While their functions437
in neurogenesis were less-characterized, some of them have been reported as essential regulators of438
other stem cell types, such as colonic stem cells (Irf2) (Minamide et al., 2020), mesenchymal stem cells439
(Stat2) (Yi et al., 2012), and hematopoietic stem cells (Etv6) (Hock et al., 2004; Yi et al., 2012).440

441
To investigate the impact of aging on adult neurogenesis, we next compared the cellular density442
recovered from TrackerSci transcriptome profiling across different conditions along the neurogenesis443
trajectory. Consistent with the cell type level analysis (Figure 4C), we observed a dramatic age-444
dependent reduction in the cellular density of neural progenitor cells (NPC) and DG neuroblasts (DGNB),445
but not in OB neuroblasts (Figure 5D). The finding was consistent with the chromatin accessibility446
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profiles, where we applied a recently published differential abundance testing algorithm, Milo (Dann et al.,447
2021), to identify the cellular neighborhoods that are significantly altered upon aging. Thirty-one448
differentially decreased cellular neighborhoods were identified (Figure 5E, 5% FDR), mostly from the449
neural progenitor cells (NPC) and DG neuroblasts (DGNB). This analysis further validated that aging450
affects neurogenesis by down-regulating the proliferation rate of its progenitor cells.451

452
To further decipher the molecular mechanisms underlying the age-dependent changes in neuronal453
progenitor cells, we then performed differential gene expression analysis across young, adult, and aged454
conditions, yielding thirty genes showing concordant changes over time, supported by both gene455
expression and the accessibility of promoters or linked distal sites (Figure 5F; Table S13; Methods). For456
example, two neurotrophic factors involved in the Erbb pathway, Nrg1 and Nrg3, exhibited strongly457
reduced expression and promoter accessibility upon aging. Indeed, they have been reported to maintain458
neurogenesis upon in vivo administration (Mahar et al., 2016). In addition, we identified several other459
known regulators of neurogenesis, such as Nr2f1 and Nap1l1 (Bertacchi et al., 2020; Qiao et al., 2018),460
that were significantly down-regulated upon aging, which serve as potential targets for restoring adult461
neurogenesis in aged brains.462

463
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464
465

466
Figure 5. Characterizing the impact of aging on neurogenesis.467
(A) UMAP plots showing the differentiation trajectory of neurogenesis, colored by main cell types (top) or468
pseudotime (bottom). The differentiation trajectories are inferred by RNA velocity analysis (top) and469
annotated on the bottom plot.470
(B) Mice brains were harvested one day, three days and nine days after EdU labeling (EdU was471
administered daily through i.p. injection during the first five days), followed by TrackerSci profiling. The472
contour plots show the distribution of EdU+ cells in the neurogenesis trajectory across different harvest473
time points and the distribution of all brain cells without enrichment of EdU+ cells.474
(C) Heatmap showing the dynamics of gene expression and motif accessibility of cell-type-specific TFs475
across the pseudotime of neurogenesis trajectories.476
(D) Contour plots showing the distribution of EdU+ cells from TrackerSci-RNA in the neurogenesis477
trajectory across conditions. The arrows point to the significantly reduced cell states in each trajectory.478
(E) A neighborhood graph from Milo differential abundance analysis on the neurogenesis trajectory. The479
layout of the graph is determined by the position of the neighborhood index cell in (A). Nodes represent480
cellular neighborhoods from the KNN graph. Differential abundance neighborhoods are colored by the481
log-transformed fold change across ages. Graph edges depict the number of cells shared between482
neighborhoods.483
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(F) The dot plots and heatmaps show the scaled gene expression and promoter accessibility of top484
differentially expressed genes in the neuronal progenitor cells.485

486
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The impact of aging on adult oligodendrogenesis487
488

We next in silico isolated cell types that span multiple stages of oligodendrogenesis for pseudotime489
analysis, yielding a simple trajectory defined by integrated transcriptome and chromatin accessibility490
profiles (Figure 6A). The oligodendrogenesis trajectory was further validated by the RNA velocity491
analysis and the time-dependent labeling experiment mentioned above (Figure 6B). Through differential492
expression (DE) and differential accessibility (DA) analysis, we identified 8,443 DE genes and 15,164 DA493
sites that were significantly changed along the trajectory (5% FDR, Table S14). This analysis identified494
known oligodendrogenesis regulators (e.g., Zfp276 (Aberle et al., 2022) and Myrf (Aberle et al., 2022;495
Fletcher et al., 2021)) and associated pathways (e.g., cholesterol biosynthesis (Mathews and Appel,496
2016)), as well as novel gene markers (e.g., Snx10, Rfbox2, and Tenm2, (Figure S12C) with highly497
correlated changes of both molecular layers (i.e., RNA and promoter accessibility) along the trajectory of498
oligodendrogenesis.499

500
Moreover, we identified 97 TFs that exhibited highly correlated gene expression and motif accessibility in501
oligodendrogenesis (FDR of 5%, Table S15 and S16), including known regulators of oligodendrocyte502
differentiation, such as Sox5, Sox10, Pknox1, and Nkx6-2 (Emery and Lu, 2015; Kato et al., 2015). In503
addition, several less-characterized TF markers were recovered, including Ikzf4, a known regulator of504
Müller glia differentiation in the retina (Javed et al., 2021), and several potential transcriptional505
'repressors’ (e.g., Esrra, Esrrg, Elk3, Zeb1) characterized by the negative correlation between their506
expression and motif accessibility along the trajectory of oligodendrogenesis (Figure 6C).507

508
We further investigated the impact of aging on adult oligodendrogenesis by examining cellular density509
along the cellular differentiation trajectory across different conditions. Unlike adult neurogenesis, we510
observed a remarkable reduction in committed oligodendrocyte precursors (COPs) rather than the early511
progenitor cells in single-cell transcriptome analysis (Figure 6D). The result is further validated through512
the Milo (Dann et al., 2021) analysis of chromatin accessibility profiles, where significantly decreased513
cellular neighborhoods exclusively overlapped with the committed oligodendrocyte precursors (COPs)514
(Figure 6E, 5% FDR). This observation is in accordance with the aging-associated depletion of newly515
formed oligodendrocytes in our companion study (Sziraki et al., 2022) and previous reports (Givre, 2003).516

517
Finally, to delineate the molecular programs contributing to down-regulated oligodendrogenesis upon518
aging, we examined the significantly dysregulated genes in OPCs and identified 242 DE genes (FDR of519
10%, Table S17). Many of the top DE genes are cross-validated by two independent molecular layers520
(i.e., both gene expression and promoter accessibility) (Figure 6F). A lot of these genes are involved in521
molecular processes critical for oligodendrocyte differentiations, such as cell cycle (e.g., Cables1 (He et522
al., 2019)) or cell migration pathway (e.g., Ephb1, Epha4, Plxna4) (Linneberg et al., 2015; Smith et al.,523
1997) (Figure 6F). For example, we detected age-dependent down-regulation of Ryr2, a ryanodine524
receptor that mediates endoplasmic reticulum Ca2+ release, a process essential for initiating OPC525
differentiation (Li et al., 2018b). Intriguingly, two sphingomyelin metabolism-related genes exhibited526
opposite dynamics between young and aged OPCs (Figure 6F): Sgms1, a gene encoding a527
sphingomyelin synthase critical for converting phosphatidylcholine and ceramide to ceramide528
phosphocholine (sphingomyelin) and diacylglycerol at the Golgi apparatus (Huitema et al., 2004; Tafesse529
et al., 2007), was substantially down-regulated in the aged OPCs. By contrast, Smpd4, encoding a530
sphingomyelin phosphodiesterase that catalyzes the reverse reaction (Krut et al., 2006)(Figure S13),531
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was significantly up-regulated in OPCs upon aging (Figure 6F). As a result, the age-dependent changes532
of both Sgms1 and Smpd4 could lead to the accumulation of ceramide and depletion of sphingomyelin in533
OPCs, which has been reported to increase cellular susceptibility to senescence and cell death (Hannun534
and Obeid, 2008; Jana et al., 2009). In fact, a recent report showed inhibiting another sphingomyelin535
hydrolase nSMase2 enhances the myelination and differentiation of OPCs (Yoo et al., 2020), suggesting536
a critical role of the dysregulated sphingomyelin metabolism in blocking oligodendrocyte differentiation in537
the aged brain. Furthermore, the down-regulated differentiation of oligodendrocytes is associated with538
dysregulated immune responses during aging, such as the accelerated proliferation of the reaction539
microglia subtype (Figure 4F) and an increased C4b expression in OPCs from both the EdU+ population540
and the global pool (Figure S14). Further investigation could be critical for deciphering the regulatory541
links between the elevated inflammation signaling and the dysregulation of oligodendrocyte542
differentiation in the aged brain.543

544
545
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546
547

548
Figure 6. Characterizing the impact of aging on oligodendrogenesis.549
(A) UMAP plots showing the differentiation trajectory of oligodendrogenesis, colored by main cell types550
(top) or pseudotime (bottom). The differentiation trajectories are inferred by RNA velocity analysis (top)551
and annotated on the bottom plot.552
(B) Mice brains were harvested one day, three days and nine days after EdU labeling (EdU was553
administered daily through i.p. injection during the first five days), followed by TrackerSci profiling. The554
contour plots show the distribution of EdU+ cells in the oligodendrogenesis trajectory across different555
harvest time points and the distribution of all brain cells without enrichment of EdU+ cells.556
(C) Heatmap showing the dynamics of gene expression and motif accessibility of cell-type-specific TFs557
across the pseudotime of the oligodendrogenesis trajectory.558
(D) Contour plots showing the distribution of EdU+ cells from TrackerSci-RNA in the oligodendrogenesis559
trajectory across conditions. The arrows point to the significantly reduced cell states in each trajectory.560
(E) A neighborhood graph from Milo differential abundance analysis on the oligodendrogenesis trajectory.561
The layout of the graph is determined by the position of the neighborhood index cell in (A). Nodes562
represent cellular neighborhoods from the KNN graph. Differential abundance neighborhoods are563
colored by the log-transformed fold change across ages. Graph edges depict the number of cells shared564
between neighborhoods.565
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(F) The dot plots and heatmaps show the scaled gene expression and promoter accessibility of top566
differentially expressed genes in the oligodendrocyte progenitor cells.567
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TrackerSci facilitates the identification of rare progenitor cells in the aged human brain.568
569

We next sought to investigate whether the TrackerSci dataset can be applied to facilitate the570
identification of rare progenitor cell types in the aged human brain. We first applied an extensively571
optimized single-cell RNA-seq by combinatorial indexing to profiling twenty-nine human brain samples572
derived from six individuals ranging from 70 to 94 in age at death (Table S18). Up to five regions573
(cerebellum, hippocampus, inferior parietal, motor cortex, and superior and middle temporal lobe (SMTG))574
for each individual were included to characterize the region-specific effect of cellular dynamics. After575
removing low-signal cells and potential doublets, we recovered gene expression profiles in 798,434576
single nuclei for downstream analysis (a median of 23,504 nuclei per brain sample, with a median of577
1,013 UMIs per nucleus, Figure S15A and S15B)578

579
Although this is one of the largest single-cell datasets of the aged human brain up to date, it was580
challenging to recover cycling or differentiating cells in the initial unsupervised clustering analysis (Figure581
S15C), potentially due to the extreme rarity of those cells in the aged human brain. We next integrated582
the TrackerSci dataset (including 5,715 EdU+ mouse brain cells and 8,380 mouse brain cells without583
EdU enrichment) with the human brain dataset followed by UMAP visualization (Figure 7A). Despite the584
species differences, the integration analysis facilitates the identification of extremely rare proliferating585
and differentiating cell populations in the aged human brain. For example, we identified a rare human586
cycling cell population that overlapped with cycling progenitor cells from mice (Figure 7A). Further sub-587
clustering analysis separated the population into three distinct subtypes (Figure 7B), corresponding to588
cycling microglia (569 cells, 0.07% of the total cell population, marked by P2RY12 and LY86), cycling589
oligodendrocyte progenitor cells (56 cells, 0.007% of the total cell population, marked by VCAN and590
PDGFRA) and cycling erythroblasts (51 cells, 0.006% of the total cell population, marked by CD36 and591
KEL). All of these clusters were marked by conventional proliferating markers such as MKI67 and592
TOP2A (Figure 7C) and novel noncoding RNA markers such as RP11-736I24.5, RP5-1086D14.6 and593
LINC01572 (Figure S16A), demonstrating the application of TrackerSci as an anchor to capture594
extremely rare proliferating cells missed in the conventional single cell analysis. Interestingly, while the595
cycling microglia population expressed a common set of cell cycle-related genes (e.g., MKI67, TOP2A,596
BUB1, SMC4) and exhibited a similar ratio to the non-cycling microglia across brain regions (Figure597
S16B), we identified gene expression signatures unique to each region, suggesting a local control of598
microglia proliferation (Figure S16C). Of note, we detected very few neurogenesis cells in the aged599
human brains.600

601
Furthermore, integration analysis with the TrackerSci dataset facilitates the recovery of a stereotypical602
cell differentiation trajectory. For example, 188 committed oligodendrocyte precursors were identified in603
the aged human brain (0.02% of the total cell population), corresponding to the intermediate cells604
connecting the oligodendrocyte progenitor cells to mature oligodendrocytes (Figure 7A). To decipher the605
conserved gene dynamics underlying oligodendrogenesis between human and mouse, we extracted606
oligodendrogenesis-related cells from both species for integration analysis, yielding a smooth cell607
transition trajectory from progenitors to differentiated cell state (Figure 7D). We identified 5,680 genes608
that significantly changed along the human oligodendrogenesis trajectory (FDR of 5%), out of which609
1,162 genes (48 TFs) were shared between human and mouse (Figure 7E, Table S19). While most of610
the conserved TFs have been previously reported as key regulators of oligodendrocyte differentiation611
(e.g., TCF7L1 and TCF7L2 (Weng et al., 2017)), several TFs have not been well characterized in the612
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relevant context, such as ZEB1, ESRRG, BCL6, RARB. Notably, some less-characterized TFs were also613
nominated in our previous motif analysis (Figure 6C). In addition, we identified gene signatures that614
contribute to interspecies differences in oligodendrogenesis (Figure 7F). For example, the human-615
specific genes are enriched in ribosome biogenesis (e.g., NOM1, NOP56, NOP14, and LAS1L), while616
genes specifically linked to mouse oligodendrogenesis are involved in multiple pathways such as primary617
miRNA processing (e.g., DGCR8 and SRRT), mRNA 3'-end processing (e.g., PABPN1, SSU72, and618
PABPC1) and isoprenoid biosynthetic processes (e.g., PDSS1 and HMGCR).619

620
Leveraging the dataset, we next investigated the differences in oligodendrogenesis across brain regions.621
Interestingly, we observed a depletion of the committed oligodendrocyte precursors in all cerebellum622
samples compared with other brain regions (Figure 7G and Figure S17B; p-value = 0.001, Fisher’s623
exact test), suggesting a reduced rate of oligodendrogenesis in the cerebellum. To gain more insight into624
the detailed molecular programs underlying the region-specific change of oligodendrogenesis, we625
performed DE analysis across regions and identified 45, 32, and 25 region-specific DE genes in OPC,626
COP, and OLG, respectively (Table S20). For example, region-specific gene signatures of COP were627
identified, such as PTCH1 and PTPRM (hippocampus), CACNA1C and ADRA1A (inferior parietal), RNF3628
and HNRNPC (motor cortex), and HFM1 and ARHGAP32 (SMTG) (Figure 7H). Strikingly, 40 out of the629
45 region-associated genes of OPC (e.g., EBF1, PAX3, CALN1, and UNC30) were highly enriched in the630
cerebellum (Figure 7H), indicating a unique molecular state of OPC in the cerebellum compared with631
other regions. Furthermore, one of the cerebellum-specific markers, PAX3, encodes a paired box632
transcription factor and has been reported to maintain the non-differentiating state of Schwann cells in633
the peripheral nervous system (Kioussi et al., 1995). This is consistent with our observation that the COP634
is depleted in the cerebellum. As a further illustration of this point, the cerebellum exhibited a higher635
fraction of OPCs accompanied by a decreased ratio of mature oligodendrocytes compared to other636
regions (Figure S17A). These analyses indicate a region-specific down-regulation of oligodendrogenesis637
in the cerebellum of the aged human brain.638

639
640
641
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Figure 7. TrackerSci facilitates the identification of proliferating and differentiating cells in the643
human brain.644
(A) We integrated the TrackerSci dataset, including both EdU+ cells and DAPI singlets, with a large-645
scale human brain dataset comprising 798,434 cells. The UMAP plots show the integrated cells, colored646
by assay types (left, cell types from TrackerSci are annotated) or cell annotations from the human brain647
dataset (right, cells from TrackerSci are colored in grey).648
(B) UMAP plots showing the sub-clustering analysis of cycling cells from the human dataset, colored by649
cell annotation (B) and the expression level of markers for proliferation (MKI67 and TOP2A; C), microglia650
(P2RY12 and LY86; C), oligodendrocyte progenitor cells (VCAN and PDGFRA; C) and erythroblasts651
(CD36 and KEL; C).652
(D) We integrated the oligodendrogenesis-related cells from TrackerSci and the human dataset. For the653
human brain dataset, we included all cells from committed oligodendrocyte precursors and randomly654
sampled 1,000 cells from oligodendrocyte progenitor cells and mature oligodendrocytes for the655
integration analysis. The UMAP plots show the resulting differentiation trajectory, colored by species656
(top), cell type annotations (middle) and pseudotime (bottom).657
(E) Heatmaps showing conserved gene expression dynamics along the oligodendrogenesis trajectory for658
human (left) and mouse (right), with key TF regulators annotated on the left.659
(F) Heatmaps showing divergent gene expression dynamics along the oligodendrogenesis trajectory660
enriched only in human (top) and mouse (bottom), with key genes annotated on the left.661
(G) Boxplot showing the fraction of committed oligodendrocyte precursors (COP) among662
oligodendrogenesis-related cells across different brain regions in each sample. For all box plots: middle663
lines, medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the664
interquartile range; and all data points are shown.665
(H) Dotplot showing examples of commonly-changed and region-specific gene expression signatures666
across three differentiation stages along oligodendrogenesis trajectories.667

668
669

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.01.509820doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.01.509820
http://creativecommons.org/licenses/by-nc-nd/4.0/


27

Discussion670
671

The field of single-cell biology is progressing at a rapid rate to catalog and characterize each specific cell672
type across diverse biological systems. Although the adult or aged brains have been intensively profiled673
with single-cell methods (Li et al., 2021; Saunders et al., 2018; Zeisel et al., 2018), it has been674
challenging to capture rare progenitor cells and characterize their proliferation and differentiation675
potentials. Compared with prior studies (e.g., Div-seq (Habib et al., 2016)), TrackerSci represents a676
unique approach to track both epigenetic and transcriptional dynamics of proliferating cells based on the677
strategy of combinatorial indexing. Like other sci-seq techniques (Cao et al., 2020; Domcke et al., 2020),678
TrackerSci is compatible with fresh or fixed nuclei, and can process multiple samples concurrently per679
experiment to reduce the batch effect. In this study, we applied TrackerSci to profile the single-cell680
transcriptome or chromatin accessibility dynamics for a total of 14,689 newborn cells from entire mouse681
brains spanning three age stages and two genotypes. Considering the rarity of the progenitor cells,682
especially in aged brains, it required deep sequencing of up to 15 million brain cells to recover the same683
amount of progenitor cells by conventional single-cell techniques.684

685
Our analyses demonstrated unique advantages of TrackerSci over solely profiling global cell populations.686
For example, TrackerSci enabled us to reconstruct continuous cellular differentiation trajectories in adult687
or even aged organs by detecting intermediate progenitor cell states that are often missed in traditional688
single-cell analysis. Moreover, we were able to calculate the proliferation and differentiation potential of689
rare progenitor cells, facilitating the quantitative investigation of the impact of aging on adult690
neurogenesis and oligodendrogenesis. In addition, we further investigated age-dependent changes in691
cell-type-specific proliferation and differentiation dynamics and provided novel insights into the underlying692
transcriptional and epigenetic mechanisms.693

694
There is a consensus that the self-renewal and regeneration capacity of progenitor cells reduces as we695
age. Through a comprehensive and quantitative view of the cell-type-specific proliferation and696
differentiation dynamics, however, we observed heterogeneous cellular responses to aging across697
progenitor cell types. While aging was associated with a depleted pool of neuronal progenitors as we698
expected, we found newborn oligodendrocyte progenitors were only mildly affected. Instead, the699
intermediate differentiation precursors were remarkably reduced especially at a relatively early stage700
(before six months), suggesting that aging affects oligodendrocytes mainly by blocking their701
differentiation process, consistent with the age-dependent downregulation of myelination in previous702
studies(Wang et al., 2020; Zhang et al., 2021). Intriguingly, we detected an age-dependent increase of703
Smpd4 (sphingomyelin phosphodiesterase) and a decrease of Sgms1 (sphingomyelin synthase)704
expression in the oligodendrocyte progenitor cells, suggesting that a high cellular ceramide level was705
associated with the aging-induced inhibition of oligodendrocyte differentiation.706

707
To further investigate rare progenitor cell types in human brains, we generated a single-cell708
transcriptome atlas of human brains comprising almost 800,000 cells. While conventional clustering709
analysis failed to identify the rare progenitor cells in the dataset, integrative analysis with the TrackerSci710
dataset facilitated the identification of extremely rare cycling cells of microglia (0.07% of the total cell711
population) and OPCs (0.007% of the total cell population) in the aged human brain. The integration712
analysis enabled us to identify committed oligodendrocyte precursors (0.02% of the total cell population)713
across different brain regions, which confirmed the existence of oligodendrogenesis in the aged human714
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brain. Further analysis of the data also nominated oligodendrogenesis-associated gene signatures that715
are shared or divergent between species. For example, we observed an increased expression of716
ribosome biogenesis factors in human oligodendrogenesis, while several genes involved in microRNA717
processing and mRNA polyadenylation are uniquely upregulated in mouse brains, suggesting a species-718
specific preference of regulation in global translation or transcription during oligodendrocyte719
differentiation. In addition, we recovered the differences of human oligodendrogenesis across anatomical720
locations, and identified molecular programs contributing to the down-regulated oligodendrogenesis in721
the aged human cerebellum.722

723
In summary, the study represents a key step toward understanding the impact of aging on the724
proliferation and differentiation potential of progenitor cells in the mammalian brain. We anticipate that725
TrackerSci will be broadly used to identify and quantify cell-genesis processes across diverse systems,726
including other mammalian organs and humanized organoids. In addition, we envision similar strategies727
(i.e., coupling the sci-seq platform with in vivo cellular labeling) can be expanded to study other critical728
molecular aspects, such as the cell-type specific survival, apoptosis, and senescent states. This will729
facilitate a comprehensive view of the global molecular programs regulating cell-type-specific dynamics730
during aging, thereby informing potential pathways to restore tissue homeostasis for patients with aging-731
related diseases.732
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Supplementary Figures760
761

762
Figure S1. TrackerSci relies on two rounds of sorting to enrich and purify rare EdU+ proliferating763
cells in mammalian brains.764
(A) Representative Fluorescent-activated cell sorting (FACS) scatter plots showing the percentage of765
EdU+ cells in mouse brains across different conditions during the first round of sorting.766
(B) FACS scatter plot (left) and contour plot (right) showing the percentage of EdU+ cells during the767
second round of sorting in TrackerSci.768

769
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771
Figure S2. Quality control of TrackerSci for single-cell transcriptome profiling.772
(A) Boxplot showing the number of unique transcripts detected per cell (HEK293T nuclei) after different773
treatment conditions of click-chemistry (CC). The result indicated copper and reaction addictive in the774
conventional click-chemistry reaction decreased the scRNA-seq efficiency. For all box plots: middle lines,775
medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the776
interquartile range; and diamonds are outliers.777
(B) Boxplot showing the number of unique transcripts detected per cell (mouse brain nuclei) across three778
conditions: no click-chemistry (No CC), conventional click-chemistry (CC), and click-chemistry plus779
condition (with picolyl azide dye and copper protectant, CC Plus).780
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(C) Scatter plots showing the number of unique human and mouse transcripts detected per cell across781
different conditions (with/without EdU labeling, with/without click chemistry plus reaction).782
(D) Boxplot showing the number of unique transcripts (top) and genes (bottom) detected per cell in783
HEK293T and NIH/3T3 nuclei across the four conditions described in (C).784
(E) Scatter plot showing the correlation between log-transformed aggregated gene expression profiled by785
TrackerSci and sci-RNA-seq in HEK293T cells (left) and mouse brain cells (right), together with the linear786
regression line (blue).787

788
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789
Figure S3. Quality control of TrackerSci for single-cell chromatin accessibility profiling.790
(A) Scatter plots showing the number of unique human and mouse ATAC-seq fragments detected per791
cell across different conditions (with/without EdU labeling, with/without click chemistry plus reaction).792
(B) The aggregated fragment length distribution in ATAC-seq from TrackerSci of all cells across the four793
conditions described in (A). No CC: no click-chemistry. CC plus: click-chemistry plus condition (with794
picolyl azide dye and copper protectant).795
(C-D) Boxplots showing the number of unique ATAC-seq reads (top) and the fraction of reads in796
promoters (bottom) in HEK293T and NIH/3T3 nuclei (C) and mouse brain nuclei (D). For all box plots:797
middle lines, medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5798
times the interquartile range; and diamonds are outliers.799
(E) Scatter plot showing the correlation between log-transformed aggregated ATAC-seq peak800
accessibility (reads per million) profiled by TrackerSci and sci-ATAC-seq in HEK293T cells (top) and801
mouse brain cells (bottom), together with the linear regression line (blue).802

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.01.509820doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.01.509820
http://creativecommons.org/licenses/by-nc-nd/4.0/


33

803

804
Figure S4. TrackerSci recovered single-cell transcriptomes of rare newborn cells in the805
mammalian brain.806
(A) Scatter plots showing the number of single-cell transcriptomes profiled in each mouse individual807
across four conditions, colored by sexes. Only mice from the main experiment group (EdU labeling for 5808
days) are shown.809
(B) Boxplot showing the log-transformed number of unique transcripts (left) and genes (right) detected810
per cell profiled by TrackerSci and the DAPI singlet (without enrichment of EdU+ cells, adult mouse811
brain). For all box plots: middle lines, medians; upper and lower box edges, first and third quartiles,812
respectively; whiskers, 1.5 times the interquartile range; and circles are outliers.813
(C-D) UMAP visualization of single-cell transcriptomes, including EdU+ cells (profiled by TrackerSci) and814
all brain cells (without enrichment of EdU+ cells), colored by experiments (C) and conditions (D).815

816
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817
Figure S5. TrackerSci recovered single-cell chromatin accessibility of rare newborn cells in the818
mammalian brain.819
(A) Scatter plot showing the number of single-cell chromatin accessibility profiles in mouse individuals820
across four conditions, colored by sexes. Only mice from the main experiment group (EdU labeling for 5821
days) are shown.822
(B) Boxplot showing the fraction of reads in promoters and peaks (left) and the log-transformed number823
of unique ATAC-seq reads (right) detected per cell across different conditions in TrackerSci and the824
DAPI singlet (adult mouse brain, without enrichment of EdU+ cells). For all box plots: middle lines,825
medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the826
interquartile range; and circles are outliers.827
(C-D) UMAP visualization of single-cell chromatin accessibility profiles, including EdU+ cells (profiled by828
TrackerSci) and all brain cells (without enrichment of EdU+ cells), colored by experiments (C) and829
conditions (D)830
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833
Figure S6. The cell population distributions are correlated between single-cell transcriptome and834
chromatin accessibility profiling of newborn cells in the mouse brain. Scatter plot showing the835
fraction of each cell type in the enriched EdU+ cell population by single-cell transcriptome (x-axis) or836
chromatin accessibility analysis (y-axis) in TrackerSci across different conditions.837

838
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839
Figure S7. TrackerSci facilitates identifying continuous cell transition trajectory missed in global840
profiling.841
(A) UMAP visualization integrating TrackerSci dataset and EasySci brain cell atlas, same as Figure 3C.842
EdU+ cells profiled by TrackerSci are colored by markers for committed oligodendrocyte precursors (top)843
and neuronal progenitor cells (bottom); and the rest of cells are colored in grey.844
(B) UMAP visualization of the full brain atlas dataset (~1.5 million cells) with the same parameter settings845
as in Figure 3C. Neurogenesis and oligodendrogenesis-related cell types are separated into distinct846
clusters, while the “bridge” cells in the intermediate stages are missing.847

848
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849
850

Figure S8. Identifying canonical and novel gene markers of neuronal progenitors and851
oligodendrocyte precursors. Each scatter plot shows the correlation between expression and promoter852
accessibility of known (left two columns) or novel (right two columns) cell-type-specific gene markers,853
together with a linear regression line.854

855
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856
Figure S9. Low cell-type-specificity of certain canonical neurogenesis markers. UMAP plots857
showing the expression of canonical neurogenesis markers (Sox2 and Dcx) across different cell types.858
The single-cell expression data (UMI count) were normalized first by the total number of reads for each859
cell and then log-transformed, column centered, and scaled.860
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872
Figure S10. Linking cis-regulatory elements and their regulated genes.873
(A) UMAP visualization of EdU+ cells as in Figure 1D and 1E, colored by k-means clustering ID.874
(B) The left histogram shows the number of accessible sites per gene. The right histogram shows the875
distance distribution of accessible sites within 500 kb of genes. Both plots include all nearby accessible876
sites (colored in black) and the linked accessible sites (colored in red).877
(C) Heatmap showing the cell-type-specific peak accessibility of four Dlx2 linked sites. Cell types are878
ordered by hierarchical clustering.879
(D) Heatmap showing the cell-type-specific peak accessibility of ten Olig2 linked sites. Cell types are880
ordered by hierarchical clustering.881
(E) Barplots showing the average expression, the accessibility of promoter and linked distal sites for882
neurogenesis marker Dlx2 across different cell types. Gene expression values for each cell type were883
quantified by transcripts per million (TPM). Site accessibilities for each cell were quantified by the884
number of reads per million. Error bars represent standard errors of the means.885
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887
Figure S11. Identifying key transcription factor regulators of the newborn cells. Each scatter plot888
shows the correlation between cell-type-specific gene expression and motif accessibility for known TF889
regulators, together with a linear regression line.890
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Figure S12. Characterizing gene expression and chromatin accessibility dynamics along adult895
neurogenesis and oligodendrogenesis.896
(A) Heatmap showing the dynamics of gene expression of 1,799 shared DE genes along DG897
neurogenesis (left) and OB neurogenesis (right). Genes are ordered and clustered by hierarchical898
clustering. Representative gene names (left) and enriched pathways (right) for each gene group are899
labeled.900
(B) Heatmap showing examples TFs exhibiting trajectory-specific gene expression dynamics: Neurod1,901
Neurod2, Emx1, Stat3 and Rarb are uniquely upregulated in DG neurogenesis, while Dlx6, Ets1, Pbx1,902
Zfp711, Foxp2, Meis1 and Mef2c are uniquely upregulated in OB neurogenesis.903
(C) Heatmap showing the dynamics of 8,443 DE genes (top) and 15,164 DA sites (bottom) along the904
oligodendrogenesis trajectory. Genes are ordered and clustered based on hierarchical clustering.905
Representative gene names (left) and enriched pathways (right) for each gene group are labeled. Peaks906
are ordered based on hierarchical clustering, and peaks corresponding to promoters of known and novel907
oligodendrogenesis markers are labeled.908

909
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910

911
Figure S13. Overview of ceramide/sphingomyelin metabolism. Sphingomyelin production from912
ceramide is catalyzed by sphingomyelin synthase and is hydrolyzed to ceramide by sphingomyelinase.913
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916
917

918
Figure S14. Increased expression of C4b in oligodendrocyte progenitor cells. Barplots showing the919
gene expression (left) and promoter accessibility (middle) of C4b from the TrackerSci dataset, and the920
gene expression of C4b from the EasySci dataset (right) in oligodendrocyte progenitor cells(OPC) and921
committed oligodendrocyte precursors(COP), quantified by transcripts per million(TPM) for gene922
expression and reads per million for promoter accessibility. Error bars represent standard errors of the923
means.924
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927
Figure S15. Performance, quality control and characterization of proliferating and differentiating928
cells in the human brain dataset.929
(A) Scatter plot showing the number of single-cell transcriptomes profiled in each human sample across930
five regions, colored by sexes.931
(B) Boxplots showing the number of unique transcripts (left) and genes (right) detected per nucleus932
profiled by EasySci in the human dataset. For all box plots: middle lines, medians; upper and lower box933
edges, first and third quartiles, respectively; whiskers, 1.5 times the interquartile range; and circles are934
outliers.935
(C) UMAP visualization of the full human brain dataset (~800,000 cells) with the same parameter settings936
as in Figure 7A, colored by main cell types (left) and cycling and differentiating cells (right). Note that rare937
cycling and differentiating cells are masked in the main clustering analysis.938

939
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946
Figure S16. Identifications of cycling cells and region-specific gene expression signatures of947
cycling microglia in the human brain.948
(A) Dotplot showing the markers for cycling cells, including novel noncoding RNA (RP11-736I24.5, RP5-949
1086D14.6 and LINC01572) and canonical cycling markers (MKI67 and TOP2A).950
(B) Boxplot showing the fraction of cycling microglia to the rest of microglia cells across different brain951
regions in each sample. For all box plots: middle lines, medians; upper and lower box edges, first and952
third quartiles, respectively; whiskers, 1.5 times the interquartile range; and all data points are shown.953
(C) Dotplot showing examples of region-specific and shared gene expression signatures for cycling954
microglia across brain regions.955

956
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957
Figure S17. Reduction of oligodendrogenesis in the human cerebellum.958
(A) Boxplot showing the fraction of oligodendrocyte progenitor cells (OPC, left) and mature959
oligodendrocytes (OLG) among oligodendrogenesis-related cells across different brain regions in each960
sample. For all box plots: middle lines, medians; upper and lower box edges, first and third quartiles,961
respectively; whiskers, 1.5 times the interquartile range; and all data points are shown.962
(B) UMAP plot same as in Figure 7A splitted by five brain regions colored by main cell types, indicating963
the loss of intermediate oligodendrogenesis cells in the cerebrum.964

965
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Materials and Methods:966
967

Animals968
969

The C57BL/6 mice were obtained from The Jackson Laboratory. All animal procedures were in970
accordance with institutional, state, and government regulations and approved under the IACUC protocol971
21049.972

973
EdU Labeling of Mammalian Cell Culture974

975
HEK293T and NIH/3T3 cells (gift from B. Martin, University of Washington) were cultured in 10 cm976
dishes at 37°C with 5% CO2 in high glucose DMEM (Gibco, 11965-118) supplemented with 10% Fetal977
Bovine Serum (Sigma-Aldrich, F4135) and 1X penicillin-streptomycin (Gibco, 15140-122).978

979
EdU (5-ethynyl-2’-deoxyuridine) (Thermo Fisher Scientific, A10044) was added to culture media at 10980
µM981
final concentration for 1 hour. After labeling, cells were harvested with 0.25% trypsin-EDTA. HEK293T982
and NIH/3T3 cells were combined at a 1:1 ratio, washed with ice-cold PBS, and lysed in 1 mL ice-cold983
EZ lysis buffer (Millipore Sigma, NUC101). The nuclei were then fixed on ice with 1% formaldehyde984
(Thermo Fisher Scientific, 28906) for 10 minutes and washed with EZ lysis buffer, filtered with 40 µm cell985
strainers (Ward’s Science, 470236-276), and resuspended in Nuclei Suspension Buffer (NSB) (10 mM986
Tris-HCl pH 7.5 (VWR, 97062-936), 10 mM NaCl (VWR, 97062-858), 3 mM MgCl2 (VWR, 97062-848)987
supplemented with 0.1% SUPERase•In™ RNase Inhibitor (Thermo Fisher Scientific, AM2696) and 1%988
BSA for TrackerSci-RNA or supplemented with 0.1% Tween-20 (Sigma, P9416-100ML), 1x cOmplete™,989
EDTA-free Protease Inhibitor Cocktail (Sigma, 11873580001) and 0.1% IGEPAL® CA-630 (VWR,990
IC0219859650) for TrackerSci-ATAC experiments).991

992
EdU Labeling of Mouse Tissues993

994
C57BL/6J mice of different age groups and 5xFAD transgenic mice (MMRRC Strain #034840-JAX) were995
obtained from The Jackson Laboratory. Mice were injected intraperitoneally with 50 mg/kg of EdU in PBS996
at 24-hour intervals for five days, and mouse brains were harvested 24 hours after the final injection.997

998
C57BL/6J mice obtained from The Jackson Laboratory were labeled and harvested for pulse-chase999
labeling at various time points. Specifically, four mice (two male and two female) were injected1000
intraperitoneally with 50 mg/kg of EdU in PBS for 3 days at 24-hour intervals, and brains were harvested1001
24 hours after the final injection. 12 mice were injected intraperitoneally with 50 mg/kg of EdU in PBS for1002
five days at 24-hour intervals. In addition, for five-day injections, four mice (two male and two female)1003
were harvested 1 day, 3 days, and 5 days after the final injection.1004

1005
Tissue collection and nuclei isolation1006

1007
Whole brains were extracted from mice, immediately snap-frozen in liquid nitrogen, and stored at -80°C1008
upon further usage. For nuclei isolations, ​ thawed brains were cut into small pieces with fine scissors1009
(Fine Science Tools, 14060-09) in 1 mL ice-cold PBS with 1% SUPERase•In™ RNase Inhibitor and 1%1010
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BSA, pelleted, resuspended in 1.5 mL Nuclei Isolation Buffer (EZ Lysis Buffer supplemented with 1%1011
SUPERase•In™ RNase Inhibitor, 1% BSA and 1X cOmplete™ EDTA-free Protease Inhibitor Cocktail) for1012
5 minutes on ice, and homogenized through 40 µm cell strainers (VWR, 470236-276) with the rubber tips1013
of syringes. Then, extracted nuclei were pelleted, fixed in 1% formaldehyde on ice for 10 minutes,1014
washed twice with NSB, and divided into two aliquots for both sci-RNA-seq and sci-ATAC-seq profiling.1015
Nuclei subjected to sci-RNA-seq were briefly sonicated (Diagenode, low power mode for 12 seconds) to1016
reduce clumping. Finally, nuclei were filtered through pluriStrainer Mini 20 µm filters (Pluriselect, 43-1017
10020-70), resuspended in 100 µL NSB, snap frozen in liquid nitrogen, and stored at -80°C until further1018
usage.1019

1020
Human brain sample1021

1022
Twenty-nine post-mortem human brain samples across five regions and six individuals (who were1023
cognitively normal proximal to death) ranging from 70-94 years of age at death, were collected from the1024
University of Kentucky AD Center Tissue Bank (Nelson et al., 2018; Schmitt et al., 2012). Each surveyed1025
sample underwent rigorous quality control including short PMI (<4 hrs). Established strategies were used1026
to extract high-quality nuclei from frozen postmortem brain samples. Extracted nuclei were then fixed1027
with formaldehyde, diluted, and flash-frozen for storage. For EasySci transcriptome profiling, nuclei from1028
all samples were thawed and deposited into different wells for barcoded reverse transcription (RT), such1029
that the first index identifies the source of each cell. The library was sequenced across two Illumina1030
NovaSeq™ 6000 sequencer runs, altogether yielding 12 billion reads for ~900,000 cells (~13,0001031
sequencing reads per cell).1032

1033
TrackerSci-RNA1034

1035
Detailed step-by-step TrackerSci-RNA protocol is included as a supplementary file (Supplementary file1036
1). Briefly, EdU staining was performed on thawed nuclei using Click-iT Plus EdU Alexa Fluor™ 6471037
Flow Cytometry assay Kit (Thermo Fisher Scientific, 10634). A 500 µL reaction buffer (prepared1038
following the manufacturer’s protocol) supplemented with 1% SUPERase•In™ RNase Inhibitor was1039
added directly to the nuclei suspension, mixed well and left in RT for 30 minutes. Then, nuclei were spun1040
down for 5 minutes at 500g (4°C), washed once with 500 µL of 1X Click-iT saponin-based1041
permeabilization and wash reagent, resuspended in 1 mL NSB with 1:20 dilution of 0.25 mg/ml 4',6-1042
diamidino-2-phenylindole (DAPI, Invitrogen D1306) and FACS sorted. Alexa647 and DAPI positive nuclei1043
were sorted into 96-well plates with each well (250~500 nuclei/well) containing 4 µL of NSB. Sorted1044
plates were briefly centrifuged, mixed with 1 µL of 50 µM oligo-dT primer (5ʹ-1045
ACGACGCTCTTCCGATCTNNNNNNNN[10bp-index]TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN-3ʹ,1046
where “N” is any base and “V” is either “A”, “C” or “G”, IDT) and 0.5 µL 10 mM dNTP mix (Thermo Fisher1047
Scientific, R0194) and denatured at 55°C for 5 minutes and immediately placed on ice. 3.5 µL of first-1048
strand reaction mix, containing 2 µL 5X SuperScript™ IV Reverse Transcriptase Buffer (Invitrogen,1049
18090200), 0.5 µL 100 mM DTT (Invitrogen, P2325), 0.5 µL SuperScript™ IV Reverse Transcriptase1050
(Invitrogen, 18090200), 0.5 μL RNaseOUT™ Recombinant Ribonuclease Inhibitor (Invitrogen, 10777019)1051
was then added to each well. Reverse transcription was carried out by incubating plates at the following1052
temperature gradient: 4°C 2 minutes, 10°C 2 minutes, 20°C 2 minutes, 30°C 2 minutes, 40°C 2 minutes,1053
50°C 2 minutes and 55°C 10 minutes, and was stopped by adding 1 μL of 18 mM EDTA (VWR, 97062-1054
656) to each well. All nuclei were then pooled, stained with DAPI at a final concentration of 3 μM, and1055
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sorted at 25 nuclei per well into 5 μL EB buffer. Cells were gated based on DAPI and Alexa647 such that1056
singlets were discriminated from doublets and EdU+ cells were purified. 0.66 μL mRNA Second Strand1057
Synthesis buffer and 0.34 µL mRNA Second Strand Synthesis enzyme (NEB, E6111L) were then added1058
to each well. Second strand synthesis was carried out at 16°C for 1 hour. 6 μL tagmentation reaction mix1059
(made by mixing 0.5 μL self-loaded Tn5 with 200 μL Tagmentation buffer containing 20 mM Tris-HCl pH1060
7.5, 20 mM MgCl2, 20% Dimethylformamide (Fisher, AC327175000)) was added to each well and1061
tagmentation was performed at 55°C for 5 minutes. After tagmentation, each well was mixed with 0.4 μL1062
1% SDS, 0.4 μL BSA (NEB, B90000S), and 2 μL of 10 μM P5 primer (5’-1063
AATGATACGGCGACCACCGAGATCTACA[i5]CCCTACACGACGCTCTTCCGATCT-3’, IDT), and1064
incubated at 55°C for 15 minutes. Then, 2 μL 10% Tween-20, 1.2 μL nuclease-free water and 2 μL of 101065
μM indexed P7 primer (5’-CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG-3’, IDT), and1066
20 μL NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541L) were added to each well. Amplification1067
was carried out using the following program: 72°C for 5 minutes, 98°C for 30 seconds, 18-22 cycles of1068
(98°C for 10 seconds, 66°C for 30 seconds, 72°C for 1 minute), and a final 72°C for 5 minutes. After1069
PCR, samples were pooled and purified using 0.8 volumes of AMPure XP beads (Beckman Coulter,1070
A63882) twice. Library concentrations were determined by Qubit (Invitrogen, Q33231), and the libraries1071
were visualized by electrophoresis on a 2% E-Gel™ EX Agarose Gels (Invitrogen, G402022). All RNA-1072
seq libraries were sequenced on the NextSeq 1000 platform (Illumina) using a 100 cycle kit (Read 1: 581073
cycles, Read 2: 60 cycles, Index 1: 10 cycles, Index 2: 10 cycles). The TrackerSci-RNA libraries were1074
sequenced to ~70,000 reads per cell.1075

1076
TrackerSci-ATAC1077

1078
Detailed step-by-step TrackerSci-ATAC protocol is included as a supplementary file (Supplementary file1079
1). EdU staining was performed on thawed nuclei using Click-iT Plus EdU Alexa Fluor™ 647 Flow1080
Cytometry assay Kit (Thermo Fisher Scientific, 10634). A 500 μL reaction buffer (prepared following the1081
manufacturer’s protocol) supplemented with 1X cOmplete™ EDTA-free Protease Inhibitor Cocktail was1082
added directly to the nuclei suspension, mixed well, and left in RT for 30 minutes. Then, nuclei were spun1083
down for 5 minutes at 500g (4°C), washed once with 500 µL of 1X Click-iT saponin-based1084
permeabilization and wash reagent, resuspended in 1 mL NSB with 1:20 dilution of 0.25 mg/ml 4',6-1085
diamidino-2-phenylindole (DAPI) and FACS sorted. Alexa647 and DAPI positive nuclei were sorted into1086
96-well plates with each well (250~500 nuclei/well) containing 4 μL of NSB. Sorted plates were briefly1087
centrifuged, mixed with 5 μL 2x TD buffer (20 mM Tris-HCl pH 7.5, 20 mM MgCl2, 20%1088
Dimethylformamide) and 1 μL barcoded Tn5. Tagmentation reaction was performed at 55°C for 301089
minutes and stopped by adding 11 μL 2X Stop buffer (40 mM EDTA, 1 mM Spermidine (Sigma, S0266))1090
to each well. All nuclei were then pooled, stained with DAPI at a final concentration of 3 μM, and sorted1091
at 25 nuclei per well into 5 μL EB buffer. Cells were gated based on DAPI and Alexa647 such that1092
singlets were discriminated from doublets and EdU+ cells were purified. After sorting, each well was1093
mixed with 0.25 μL 18.9 mg / mL proteinase K (Sigma, 3115828001), 0.25 µL 1% SDS and 0.5 µL1094
nuclease-free water, and reverse crosslinking was performed at 65°C for 16 hours. Then, 2 μL 10%1095
Tween-20 was added to each well to quench the SDS. Following on, 1 μL of 10 μM indexed P5 primer1096
(5′-AATGATACGGCGACCACCGAGATCTACA[i5]CCCTACACGACGCTCTTCCGATCT-3′, IDT), 1 μL of1097
10 μM indexed P7 primer (5’-1098
CAAGCAGAAGACGGCATACGAGAT[i7]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’, IDT)1099
and 10 μL NEBNext High-Fidelity 2X PCR Master Mix were added into each well. Amplification was1100

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.01.509820doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.01.509820
http://creativecommons.org/licenses/by-nc-nd/4.0/


51

carried out using the following program: 72°C for 5 minutes, 98°C for 30 seconds, 15-16 cycles of (98°C1101
for 10 seconds, 66°C for 30 seconds, 72°C for 1 minute), and a final 72°C for 5 minutes. Final PCR1102
products were pooled and purified by a Zymoclean DNA clean and concentration kit (Zymoresearch,1103
D4014). Library concentrations were determined by Qubit, and the libraries were visualized by1104
electrophoresis on a 2% E-Gel™ EX Agarose Gels. All ATAC-seq libraries were sequenced on the1105
NextSeq 1000 platform (Illumina) using a 100 cycle kit (Read 1: 58 cycles, Read 2: 60 cycles, Index 1: 101106
cycles, Index 2: 10 cycles). The TrackerSci-ATAC libraries were sequenced to ~120,000 reads per cell.1107

1108
TrackerSci-RNA data processing1109

1110
Read alignment and gene count matrix generation for the scRNA-seq were performed using the pipeline1111
we developed before (Cao et al., 2017). Briefly, base calls were converted to fastq format and1112
demultiplexed using Illumina’s bcl2fastq/v2.19.0.316 tolerating one mismatched base in barcodes (edit1113
distance (ED) < 2). The RT barcode for each read was corrected to its nearest barcode (edit distance1114
(ED) < 2), and reads with uncorrected barcodes (ED >= 2) were removed. Demultiplexed reads were1115
then adaptor clipped using trim_galore/v0.4.1 (https://github.com/FelixKrueger/TrimGalore) with default1116
settings. Trimmed reads were mapped to a chimeric reference genome of human and mouse1117
(hg19/mm10) for the species-mixing experiment and to the mouse only (mm39) for mouse brain1118
experiments, using STAR/v2.5.2b (Dobin et al., 2013) with default settings. Uniquely mapping reads1119
were extracted, and duplicates were removed using the unique molecular identifier (UMI) sequence,1120
reverse transcription (RT) index, and read 2 end-coordinate (i.e. reads with identical UMI, RT index, and1121
tagmentation site were considered duplicates). Finally, mapped reads were split into constituent cellular1122
indices by further demultiplexing reads using the RT index.1123

1124
To generate digital expression matrices, we calculated the number of strand-specific UMIs for each cell1125
mapping to the exonic and intronic regions of each gene with python/v2.7.18 HTseq package (Anders et1126
al., 2015). For multi-mapped reads, reads were assigned to the closest gene, except in cases where1127
another intersected gene fell within 100 bp to the end of the closest gene, in which case the read was1128
discarded. For most analyses, we included both expected-strand intronic and exonic UMIs in per-gene1129
single-cell expression matrices. Exonic and intronic gene count matrices were used in RNA velocity1130
analysis.1131

1132
For the species-mixing experiment, RNA barcodes with more than 200 UMIs and 100 unique genes were1133
identified as real cells, and those with fewer than that were discarded. The percentage of uniquely1134
mapping reads for genomes of each species was calculated. Cells with over 90% of UMIs assigned to1135
one species were regarded as species-specific cells, with the remaining cells classified as mixed cells or1136
“collisions”. The collision rate was calculated as the ratio of mixed cells.1137

1138
TrackerSci-ATAC data processing1139

1140
Single-cell ATAC-seq data was performed using a published pipeline (Cao et al., 2018; Cusanovich et al.,1141
2015) with mild modifications. Base calls were converted to fastq format and demultiplexed using1142
Illumina’s bcl2fastq/v2.19.0.316 tolerating one mismatched base in barcodes (edit distance (ED) < 2).1143
The indexed Tn5 barcode for each read was corrected to its nearest barcode (edit distance (ED) < 2),1144
and reads with uncorrected barcodes (ED >= 2) were removed. Demultiplexed reads were then adaptor-1145
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clipped using trim_galore/0.4.1 with default settings. Trimmed reads were mapped to a chimeric1146
reference genome of human and mouse (hg19/mm10) for the species-mixing experiment and to the1147
mouse only (mm39) for mouse brain experiments, using STAR/v2.5.2b (Dobin et al., 2013) with default1148
settings. Duplicates were removed by picard MarkDuplicates/v2.25.2 (Broad Institute, 2019) per PCR1149
sample. Deduplicated reads were split into constituent cellular indices by further demultiplexing reads1150
using the Tn5 index.1151

1152
A snap-format (Single-Nucleus Accessibility Profiles) file was generated from deduplicated bam files1153
using SnapTools/v1.4.8 with default settings (https://github.com/r3fang/SnapTools) (Fang et al., 2021). A1154
cell-by-bin count matrix with 5kb bin size was created from the resulting snapfile. The promoter ratio for1155
each cell was calculated as the number of fragments mapping to genomic bins overlapping with promoter1156
regions(defined as 2kb upstream of the gene body).1157

1158
For the species-mixing experiment, ATAC barcodes with more than 1000 fragments and more than 0.21159
promoter ratio were identified as real cells, and those with fewer than that were discarded. The1160
percentage of uniquely mapping reads for genomes of each species was calculated. Cells with over 90%1161
of reads assigned to one species were considered species-specific cells, with the remaining cells1162
classified as mixed cells or “collisions”. The collision rate was calculated as the ratio of mixed cells.1163

1164
Cell filtering, clustering, and annotation for TrackerSci-RNA1165

1166
A digital gene expression matrix was constructed from the raw sequencing data as described above.1167
EdU+ cells and global cells were combined and analyzed together. Cells with less than 200 UMIs and1168
100 unique genes were discarded. Potential doublet cells and doublet-derived subclusters were detected1169
using an iterative clustering strategy similar to before (Cao et al., 2020). Cells labeled as doublets(by1170
scanpy/v1.6.0 and scrublet/v0.2.3) (Wolf et al., 2018; Wolock et al., 2019) or from doublet-derived sub-1171
clusters were filtered. The downstream dimension reduction and clustering analysis were done by1172
Seurat/v4.0.2 (Hao et al., 2021). Briefly, the dimensionality of the data was reduced by PCA (301173
components) first and then with UMAP, followed by Louvain clustering. Clusters were assigned to known1174
cell types based on cell type-specific markers (Table S2).1175

1176
Differentially expressed genes across different cell types were identified using monocle/v2.22.0 (Qiu et1177
al., 2017) with the differentialGeneTest() function. Genes detected in less than 10 cells were filtered out1178
before the analysis. To identify cell type-specific gene markers, we selected genes that were differentially1179
expressed across different cell types (5% FDR, likelihood ratio test), with FC > 2 between the target cell1180
type and the second highest expressed cell type, and with maximum transcripts per million (TPM) > 10 in1181
the target cell types.1182

1183
Cell filtering, clustering, and annotation for TrackerSci-ATAC1184

1185
Single-cell ATAC-seq profiles were generated as described above. EdU+ cells and global cells are1186
combined and analyzed together. Cells with less than 1000 fragments and less than 0.2 promoter ratio1187
were discarded. Dimensionality reduction for ATAC-seq data was performed using the snapATAC/v1.0.01188
(Fang et al., 2021). A cell-by-bin matrix at 5-kb resolution was used. We focused on bins on1189
chromosomes 1–19, X and Y. High-coverage bins (top 5% bins that overlap with invariant features) or1190
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low-coverage bins (bottom 5% bins that represent general inaccessible regions) were filtered out before1191
the analysis. Diffusion maps dimensionality reduction was performed on the filtered cell-by-bin matrix1192
after binarization. UMAP analyses were performed on the top 20 eigenvectors, followed by unsupervised1193
clustering via the densityPeak algorithm implemented in R package ​ ​ densityClust/v0.3 (Rodriguez1194
and Laio, 2014)1195

1196
We performed integration analysis between the TrackerSci-RNA dataset and TrackerSci-ATAC dataset1197
to annotate the ATAC dataset. The gene activity score for ATAC cells was computed using the1198
snapATAC function createGmatFromMat() by summing up the counts of bins overlapping with the gene1199
body. A Seurat object was generated using the gene activity matrix and previously calculated diffusion1200
map embeddings for single cell ATAC-seq. Then, variable genes were identified from TrackerSci-RNA1201
data and used for identifying anchors between these two modalities. Next, we co-embedded the RNA-1202
seq and ATAC-seq profiles in the same low-dimensional space to visualize all the cells together. We then1203
used overlapped RNA clusters to annotate ATAC cells in the integrated UMAP space. ATAC cells1204
without overlapped RNA cells were removed with careful inspection since they usually represent1205
potential doublets or low-quality cells. Finally, single-cell ATAC dimension reduction, clustering, and1206
integration analysis were rerun on the remaining dataset following the same procedure.1207

1208
Peak calling and identifications of cell-type-specific peaks1209

1210
To define peaks of accessibility across all sites, we used MACS2/v2.1.1 (Zhang et al., 2008).1211
Nonduplicate ATAC-seq reads of cells from each main cell type were aggregated, and peaks were called1212
on each group separately with these parameters: --nomodel --extsize 200 --shift -100 -q 0.1. Peak1213
summits were extended by 250bp on either side and then merged with bedtools/v2.30.0 (Quinlan and1214
Hall, 2010; Zhang et al., 2008) , together with gene promoter regions (annotated transcription start site1215
(TSS) in GENCODE VM27 minus/plus 1000 base pairs in a strand-specific manner). Each read1216
alignment was extended by 100 bp upstream and downstream from the insertion site of tagmentation.1217
Cells were determined to be accessible at a given peak if a read from a cell overlapped with the peak.1218
The peak count matrix was generated by a custom python script with the HTseq package (Anders et al.,1219
2015; Quinlan and Hall, 2010; Zhang et al., 2008). Differentially accessible peaks across cell types were1220
identified using monocle/v2.22.0 (Qiu et al., 2017) with the differentialGeneTest() function. Peaks1221
detected in less than 10 cells were filtered out before the analysis. To determine cell-type-specific peak1222
markers, we selected peaks that were differentially accessible across different cell types (5% FDR,1223
likelihood ratio test), with FC > 2 between the target cell type and the second highest expressed cell type,1224
and with TPM > 10 in the target cell types.1225

1226
Analysis for linking cis-regulatory elements (CRE) to regulated genes1227

1228
We aim to identify links between chromatin accessible sites and regulated genes based on their1229
covariance. Only EdU+ cells were kept in this analysis. We first constructed pseudo-cells by aggregating1230
the RNA-seq and ATAC-seq profiles of highly similar cells through k-means clustering the integrative1231
UMAP coordinates using the kmeans function from R package stats/v4.1.2. The k was selected so that1232
the average cell number per subcluster is 150. Subclusters overrepresented by one molecular layer(the1233
percentage of cells from either RNA-seq or ATAC-seq profile greater than ninety percent) were merged1234
with a nearby subcluster. After aggregating cells within each sub-cluster, we obtained a total of 881235
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pseudo-cells, with a median of 54 cells from RNA-seq profile and 93 cells from ATAC-seq profile.1236
Aggregated count matrices for RNA-seq and ATAC-seq were normalized to transcripts per million(TPM)1237
and log1p transformed. We only retained genes and peaks with TPM value greater than 10 in the1238
maximum expressed pseudo-cells. Then, for each gene, we calculated the Pearson Correlation1239
Coefficient (PCC) between its gene expression and the chromatin accessibility of its nearby accessible1240
sites(minus/plus 500 kb from the TSS) across pseudo-cells. Sites overlapping with minus/plus 1kb from1241
the TSS were considered promoters, while the rest were considered distal regions. To define a threshold1242
at PCC score, we also generated a set of background pairs by permuting the pseudo cell id of the ATAC-1243
seq matrix and with an empirically defined significance threshold of FDR < 0.05, to select significant1244
positively correlated cCRE-gene pairs. We further filtered the linkage by requiring that either the1245
maximum expressed cell types in the RNA profile and the ATAC profile were the same or the top two or1246
top three highest expressed cell types were in the same cell trajectory (Oligodendrogenesis trajectory:1247
OPC, COP, OLG; Astrocytes trajectory: ASC, NPC; DG neurogenesis trajectory: NPC, DGNB; OB1248
neurogenesis trajectory: NPC, OBNB, OBIN). Finally, we only keep the one top linked gene with the1249
highest PCC for each peak.1250

1251
Transcription factor analysis1252

1253
To identify key TF regulators of each main cell type, we searched for TF that can be validated in two1254
molecular layers by correlating gene expression and motif accessibility. First, using the TrackerSci-ATAC1255
dataset, we selected the top 300 sites per main cell type (from the differential peak analysis described1256
above, filtered by q-value < 0.05, maximum expressed TPM > 10 and ranked by FC between the highest1257
and the second expressed cell type) to a combined peak set. We then resized the peaks to a fixed length1258
of 500 bp (± 250 bp around the center) and generated a binarized peak-by-motif matrix using the R1259
package motifmatchr/v1.16.0 (Schep, 2017) with the matchMotifs() function to identify the occurrences of1260
motifs in each peak from a filtered collection of the cisBP motif database curated by1261
chromVARmotifs/v0.2.0 (Weirauch et al., 2014; Schep et al., 2017). A matrix of motif-by-cell counts was1262
obtained by multiplying the peak-by-cell matrix with the peak-by-motif matrix, and was aggregated into1263
pseudo-cells based on the k-means clustering described before. We then computed the PCC between1264
the scaled TF motif accessibility and the scaled TF gene expression across pseudo-cells. To select1265
significantly positive and negative correlations of TF gene expression and motif accessibility pairs, we1266
permuted the pseudo cell id of the motif-by-cell matrix to compute a background PCC distribution and1267
selected the TF pairs with an empirically defined significance threshold of FDR < 0.05. In addition, we1268
only keep TF with TPM > 10 in the maximum expressed cell type.1269

1270
Trajectory analysis1271

1272
Cells corresponding to the neurogenesis trajectory (ASC, NPC, DGNB, OBNB and OBIN) or the1273
oligodendrogenesis trajectory (OPC, COP and OLG) from both RNA-seq data and ATAC-seq data were1274
selected for detailed investigation. We next performed UMAP dimension reduction at the trajectory level1275
with the integration function from Seurat (Hao et al., 2021), using the top 3,000 highly variable genes and1276
top 50 PCs. Each cell was assigned a pseudotime value based on its position along the trajectory using1277
monocle3/v1.0.0 function order_cells() (Trapnell et al., 2014). RNA velocity analyses were performed1278
using scVelo/v0.2.3 (Bergen et al., 2020) using the exonic and intronic gene count matrix generated from1279
sci-RNA-seq pipeline to validate the cell differentiation direction and estimate the position of the1280
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progenitor cell state. For the two neurogenesis trajectories (DG neurogenesis and OB neurogenesis),1281
pseudotime assignment was calculated separately and scaled so that the cells shared between two1282
trajectories received the same pseudotime value. Specifically, we first used the pseudotime value1283
calculated from the OB trajectory for common progenitor cells in both DG and OB trajectories. We then1284
fitted a linear regression line using R function lm() to predict the OB-pseudotime based on the DG-1285
pseudotime. Then, for cells unique to the DG neurogenesis, we adjusted their pseudotime using the1286
predict() function using DG-pseudotime as input. Gene expression and peak accessibility dynamics1287
along pseudotime were identified using monocle/v2.22.0 (Qiu et al., 2017) with the differentialGeneTest()1288
function with pseudotime values and their main cluster identity as variables. Genes or peaks that passed1289
a significant test (FDR of 5%) were considered as dynamically regulated genes or sites. Furthermore,1290
differential accessible sites along pseudotime were used to infer TF motif accessibility dynamics. We1291
computed a motif deviation score for each single cell using chromVar/v1.4.1 (Schep et al., 2017) with1292
the dynamic peak set (resized to 500 bp) as input. Then, the motif deviation scores of each single cell1293
were rescaled to (0, 10) using R function rescale() and differential accessible motifs were identified using1294
monocle/v2.22.0 with the differentialGeneTest() function. TF motifs that passed a significant test (FDR of1295
5%) were considered as dynamically regulated motifs. For gene enrichment analysis we used the1296
enrichR (Chen et al., 2013) and the following pathways collections were considered: Panther_2016,1297
Reactome_2016, KEGG_2019_Mouse, GO_Biological_Process_2018, GO_Molecular_Function_2018.1298
For visualizing the dynamics of gene expression, peak accessibility and motif accessibility, we used R1299
package ComplexHeatmap/v2.10.0 (Gu et al., 2016).1300

1301
Cell proportion analysis1302

1303
To quantify the cell-type-specific changes in the proliferation dynamics across conditions, we calculated1304
the fraction of each cell type within EdU+ population from each condition for RNA-seq data and ATAC-1305
seq data separately, which was further multiplied by the median of EdU+ ratio for each group obtained1306
from FACS sorting. For adult WT mice, we only included those that were harvested 24h after five-day1307
labeling to avoid artifacts introduced by the labeling time.1308

1309
To quantify the effects of aging on cell differentiation dynamics along neurogenesis and1310
oligodendrogenesis trajectories, we applied miloR/v1.3.1 (Dann et al., 2021), a single-cell differential1311
abundance testing framework using k-nearest neighbor (KNN) graphs. We first constructed the KNN1312
graph on the UMAP space for each trajectory using the buildGraph() function with k = 120 for the1313
neurogenesis trajectory and k = 250 for the oligodendrogenesis trajectory. Cell neighborhoods were then1314
defined using the makeNhoods() function and the number of cells from each experiment sample were1315
counted for each neighborhood using the countCells() function. Testing for differential abundance in1316
neighborhoods was performed using the testNhoods() function and1317
significance levels for Spatial FDR of 0.05 were used. Visualization of differential abundance1318
neighborhoods was done using the plotNhoodGraphDA() function.1319

1320
Differential analysis of NPC and OPC across aged groups1321

1322
Differential gene expression analysis across young, adult, and aged groups of NPC and OPC was1323
performed using monocle/v2.22.0 (Qiu et al., 2017) function differentialGeneTest() with the number of1324
genes detected per cell included as a covariant. For adult WT mice, only cells from the animals1325
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harvested at 24h after 5-day labeling were included to avoid artifacts introduced by the labeling time. In1326
addition, only differentially expressed genes (> expressed in more than 10 cells) along the neurogenesis1327
or the oligodendrogenesis trajectory were included in the differential gene test. Differentially expressed1328
genes were selected by a q-value cutoff of 0.1, a TPM cutoff of 50 in the maximum expressed group, and1329
with at least 1.5 FC between the maximum expressed group and the minimum expressed group. Next,1330
differentially expressed genes were grouped to aged-depleted genes and aged-enriched genes by the1331
following criteria: for aging-depleted genes, we first selected the genes with minimum expression in aged1332
mice, and only kept those with either maximum expression in young mice or within less than 2 FC1333
between the young group and the adult group. For aging-enriched genes, we first selected the genes1334
with maximum expression in aged mice, and only kept those with either minimum expression in young1335
mice or with less than 2 FC between the young group and the adult group. We then further filtered the1336
DE genes based on the consistency on their promoters or linked sites. For aging-depleted genes, we1337
required that the mean of promoter accessibility or linked site accessibility was at the minimum level in1338
the aged group compared to young and adults. For aging-enriched genes, we required that the mean of1339
promoter accessibility or the linked site accessibility was at the maximum level in the aged group1340
compared to young and adults. Genes that were lowly detected in both promoter accessibility and linked1341
sites (represented by the mean of TPM < 10 in all conditions) were also discarded.1342

1343
Integration analysis between TrackerSci-RNA and EasySci-RNA1344

1345
Integration analysis of scRNA-seq dataset profiled using TrackerSci and EasySci was performed using1346
Seurat/v4.0.2 (Hao et al., 2021). We first integrated 14,095 TrackerSci-RNA cells (including 5,715 EdU+1347
cells and 8,380 all brain cells without EdU enrichment) with 126,285 EasySci-RNA cells (up to 5,000 cells1348
randomly sampled from each of 31 cell types) in our companion study (Sziraki et al., 2022). Shared1349
variable genes, selected by SelectIntegrationFeatures() function, were used for identifying anchors using1350
FindIntegrationAnchors(). The two datasets were then integrated together with the IntegrateData()1351
function. To visualize all the cells together, we co-embedded all the cells in the same low-dimensional1352
space. We further applied the same integrative analysis strategy to cells matching the same cellular state1353
from both datasets. Specifically, for the neurogenesis trajectory, we integrated 1,214 EdU+ cells from1354
TrackerSci-RNA (NPC, OBNB, and OBIN) with 37,258 OB neurons 1 cells from EasySci-RNA. For the1355
oligodendrogenesis trajectory, we integrated 3,044 EdU+ cells from TrackerSci-RNA (OPC and COP) to1356
22,718 oligodendrocyte progenitor cells from EasySci-RNA. For the microglia, we integrated 600 EdU+1357
microglia from TrackerSci-RNA to 15,754 microglia from EasySci-RNA. Microglia subclusters1358
corresponding to peripheral immune cells were excluded before the analysis.1359

1360
Quantifications of the self-renewal potential and the differentiation potential1361

1362
The self-renewal potential was defined as the ratio of newly generated progenitor cells within 5 days of1363
EdU labeling divided by the ratio of total progenitor cells detected from the global population. To account1364
for potential variations due to slight differences of animal ages between TrackerSci and the brain cell1365
atlas, we first fitted a linear model between the ages and the ratio of progenitor cells using the EasySci1366
data for the following cell type: neuronal progenitor cells, oligodendrocyte progenitor cells, and microglia.1367
We used that to predict the ratio of progenitor cells for each individual mice profiled by TrackerSci. We1368
then divided the ratio of newly generated progenitor cells from each 5-day labeled mice by the predicted1369
cellular fraction of the global progenitor pool for the same cell type. A line plot was generated using the1370
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median values of proliferation potential for each aged group normalized to the young mice. RNA and1371
ATAC cells were both included, and samples with less than 50 cells were excluded from the calculation.1372
The differentiation potential was quantified by the ratio of differentiated cells divided by all EdU+ cells in1373
the same trajectory. We calculated such a ratio only for oligodendrogenesis trajectory since it’s a1374
unidirectional route. For this analysis, we divided the ratio of committed oligodendrocytes and myelin-1375
forming oligodendrocytes to the ratio of oligodendrocyte progenitor cells for each sample and median1376
values of each age group were used to generate the line plot. RNA and ATAC cells were included, and1377
samples with less than 50 cells were excluded from the calculation.1378

1379
Cell filtering, clustering, and annotation for the human dataset1380

1381
A digital gene expression matrix was constructed from the raw sequencing data as described in our1382
companion study (Sziraki et al., 2022). Potential doublet cells and doublet-derived subclusters were1383
detected using an iterative clustering strategy similar to before (Cao et al., 2020). Cells labeled as1384
doublets(by scanpy/v1.6.0 and scrublet/v0.2.3) (Wolf et al., 2018; Wolock et al., 2019) or from doublet-1385
derived sub-clusters were filtered. To identify distinct clusters of cells corresponding to different cell types1386
in the human data, we performed the downstream dimension reduction and clustering analysis using1387
Seurat/v4.0.2 (Hao et al., 2021). Briefly, the dimensionality of the data was reduced by PCA (501388
components) first and then with UMAP, followed by Louvain clustering. We then co-embedded the1389
human data with the mouse brain atlas from profiled in our companion study (Sziraki et al., 2022) through1390
Seurat (Stuart et al., 2019), and clusters were annotated based on overlapped cell types. The1391
annotations were manually verified and refined based on marker genes.1392

1393
Integration analysis between human and mouse1394

1395
Integration analysis of scRNA-seq dataset of human and mouse was performed using Seurat/v4.0.21396
(Hao et al., 2021). Similar to the integration of mouse dataset profiled between TrackerSci-RNA and1397
EasySci-RNA, we first integrated 14,095 mouse cells (including 5,715 EdU+ cells and 8,380 all brain1398
cells without EdU enrichment) with 71,743 human cells (up to 5,000 cells randomly sampled from each of1399
18 cell types) to construct a coembedding UMAP space. We then project the rest of human cells into this1400
UMAP structure using MapQuery() and TransferData() function. Cycling cells and committed1401
oligodendrocytes from the human dataset were extracted based on the UMAP coordinates overlapping1402
with mouse cells. Cycling cells were subjected to sub-clustering analysis for identifying their cell types.1403
Markers for cycling cells were identified by comparing them to the rest of all cells using the Seurat1404
function FindMarkers().1405

1406
Identifications of shared and unique features between human and mouse oligodendrogenesis1407

1408
To construct a continuous oligodendrogenesis trajectory shared between human and mouse, we1409
subjected all 4,194 oligodendrogenesis-related cells (OPC, COP and OLG) from mouse data and took1410
2,188 oligodendrogenesis-related cells from human data (including all of 188 cells from COP and1411
randomly sampled 1,000 cells from OPC and OLG) to integration analysis using Seurat/v4.0.2. Each cell1412
was assigned a pseudotime value based on its position along the trajectory using monocle3 function1413
order_cells(). For human cells, gene expression dynamics along pseudotime were identified using1414
monocle/v2.22.0 (Qiu et al., 2017) with the differentialGeneTest() function with pseudotime values and1415
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their main cluster identity (i.e, OPC, COP and OLG) as variables. For mouse cells, we used the results1416
from DE gene analysis along pseudotime calculated before. Conserved gene expression dynamics were1417
selected by a q-value cutoff of 0.05, a TPM (transcript per million) cutoff of 50 in the same maximum1418
expressed stage in both species. This reveals 1,162 DE genes along oligodendrogenesis shared1419
between human and mouse. To select genes with species-unique expression dynamics, we filtered the1420
DE genes with the following criteria: significantly changed along pseudotime (q-value <0.05) and TPM of1421
the maximum expressed stage larger than 50 in one species, while no significantly changed (q-1422
value >0.05) and TPM of the maximum expressed stage less than 50 in the other species. This reveals1423
458 and 361 DE genes along oligodendrogenesis unique to human and mouse respectively. For1424
visualizations of gene expression dynamics, we use R package ComplexHeatmap/v2.10.0 and the genes1425
were ordered by the hierarchical clustering implemented in the function Heatmap().1426

1427
Analysis of region-specific oligodendrogenesis1428

1429
To study region-specific effects of oligodendrogenesis, we quantified the ratio of each stage (OPC, COP1430
and OLG) within all the cells along the oligodendrogenesis trajectory for each region. Cycling1431
Oligodendrocyte progenitor cells were not included into the calculation. Statistical analysis was1432
performed by comparing the ratio of COP to OPC in cerebellum vs. non-cerebellum cells using Fisher1433
exact test. To study the region-specific transcriptional controls of each stage along oligodendrogenesis,1434
we performed differential expression analysis across regions using monocle/v2.22.0 with the1435
differentialGeneTest() function. Region-specific gene expression signatures were selected by the1436
following cutoffs: q-value < 0.05, with FC > 2 between the maximum expressed region and the second1437
highest expressed region, and with maximum transcripts per million (TPM) > 50 in the highest expressed1438
region.1439

1440
Code Availability1441

1442
The detailed experimental protocols and computation scripts of TrackerSci were included as1443
supplementary files.1444

1445
1446
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1447
Supplementary Tables (provided as Microsoft Excel files)1448

Supplementary Table 1: Metadata for animal individuals included in the TrackerSci profiling, including1449
38 animals injected with EdU and 2 animals injected with PBS. For each mouse, the metadata includes1450
the mouse genotype (WT, 5xFAD), age group (young, adult, aged), gender, the exact day of age, DOB1451
(date of birth), DOD (date of death), the time of EdU labeling, and number of cells recovered from1452
TrackerSci-RNA and TrackerSci-ATAC.1453

1454
Supplementary Table 2: Annotated cell types together with reference gene markers for annotation,1455
number of cells per cell type identified in TrackerSci-RNA and TrackerSci-ATAC dataset, as well as the1456
medium and mean values for the number of UMIs/genes/unique reads for each cell type.1457

1458
Supplementary Table 3: Differentially expressed genes across newborn cell types. For each gene, the1459
“max.cluster” is the cell type with the highest expression (“max.expr”). The “second.cluster” is the cell1460
type with the second highest expression (“second.expr”). The “fold.change” is the fold change between1461
the max expression and second max expression. The “qval” is the false detection rate (one-sided1462
likelihood ratio test with adjustment for multiple comparisons) for the differential expression test across1463
different cell clusters.1464

1465
Supplementary Table 4: Differentially accessible sites for all newborn cell types. For each gene, the1466
“max.cluster” is the cell type with the highest accessibility (“max.expr”). The “second.cluster” is the cell1467
type with the second highest accessibility (“second.expr”). The “fold.change” is the fold change between1468
the max accessibility and second max accessibility. The “qval” is the false detection rate (one-sided1469
likelihood ratio test with adjustment for multiple comparisons) for the differential accessibility test across1470
different cell clusters. The “is_promoter” indicates whether a site is a promoter or not, and if True,1471
information of corresponding genes is included in “promoter_gene_id”, “promoter_gene_short_name”1472
and “promoter_gene_type”.1473

1474
Supplementary Table 5: Identified linkages between cis-regulatory elements and regulated genes. For1475
each linkage, the “pearson_correlation_coefficient” is Pearson correlation between peak accessibility and1476
gene expression across pseudo-cells. The “region” is either “promoter” or “distal”, indicating whether a1477
site overlaps with the promoter of the linked gene. The “max.cluster.RNA” is the cell type with the highest1478
expression, and the “max.cluster.ATAC” is the cell type with the highest accessibility.1479

1480
Supplementary Table 6: Transcription factors significantly correlated in gene expression and motif1481
accessibility. For each TF, the “PCC” is the Pearson correlation between motif accessibility and gene1482
expression across pseudo-cells. The “max.RNA” is the cell type with the highest gene expression1483
(“max.expr.RNA”). The “second.RNA” is the cell type with the second highest expression1484
(“second.expr.RNA”).1485

1486
Supplementary Table 7: Differentially expressed genes along DG neurogenesis. The “qval” is the false1487
detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential1488
test.1489

1490
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Supplementary Table 8: Differentially expressed genes along OB neurogenesis. The “qval” is the false1491
detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential1492
test.1493

1494
Supplementary Table 9: Differentially accessible sites along DG neurogenesis. The “qval” is the false1495
detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential1496
test.1497

1498
Supplementary Table 10: Differentially accessible sites along OB neurogenesis. The “qval” is the false1499
detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential1500
test.1501

1502
Supplementary Table 11: Differentially accessible transcription factors along DG neurogenesis. The1503
“qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)1504
for the differential test.1505

1506
Supplementary Table 12: Differentially accessible transcription factors along OB neurogenesis. The1507
“qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)1508
for the differential test.1509

1510
Supplementary Table 13: Differentially expressed genes across different age groups for neuronal1511
progenitor cells. For each gene, the “max.group” is the age group with the highest expression1512
(“max.expr”). The “second.group” is the age group with the second highest expression (“second.expr”).1513
The “third.group” is the age group with the minimum expression (“third.expr”). The “qval” is the false1514
detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential1515
test. The “promoter_consistent” and “distal_consistent” indicate whether a differentially expressed gene1516
can be supported by its promoter accessibility or its linked distal sites accessibility. The “comments”1517
refers to either “aging_depleted_genes” or “aging_enriched_genes” based on the change of direction.1518

1519
Supplementary Table 14: Differentially expressed genes along oligodendrogenesis. The “qval” is the1520
false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the1521
differential test.1522

1523
Supplementary Table 15: Differentially accessible sites along oligodendrogenesis. The “qval” is the1524
false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the1525
differential test.1526

1527
Supplementary Table 16: Differentially accessible transcription factors along oligodendrogenesis. The1528
“qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)1529
for the differential test.1530

1531
Supplementary Table 17: Differentially expressed genes across different age groups for1532
oligodendrocyte progenitor cells. For each gene, the “max.group” is the age group with the highest1533
expression (“max.expr”). The “second.group” is the age group with the second highest expression1534
(“second.expr”). The “third.group” is the age group with the minimum expression (“third.expr”). The “qval”1535
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is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the1536
differential test. The “promoter_consistent” and “distal_consistent” indicate whether a differentially1537
expressed gene can be supported by its promoter accessibility or its linked distal sites accessibility. The1538
“comments” refers to either “aging_depleted_genes” or “aging_enriched_genes” based on the change of1539
direction.1540

1541
Supplementary Table 18: Metadata for human individuals included in this study.1542

1543
Supplementary Table 19: Differentially expressed genes along oligodendrogenesis for human cells.1544
The “qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple1545
comparisons) for the differential test.1546

1547
Supplementary Table 20: Differentially expressed genes across regions for each stage along1548
oligodendrogenesis. For each gene, the “max.region” is the region with the highest expression1549
(“max.expr”). The “second.region” is the region with the second highest expression (“second.expr”). The1550
“qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons)1551
for the differential test. The “fold.change” is the fold change between the max expression and second1552
max expression. The “stage” indicates which differentiation stage (i.e, OPC, COP or OLG) the test was1553
performed on.1554

1555
Supplementary files1556

Supplementary file 1: Detailed experiment protocols for TrackerSci-RNA and TrackerSci-ATAC,1557
including all materials and equipment needed, step-by-step descriptions, and representative gel images.1558

Supplementary file 2: Computational pipeline scripts for processing TrackerSci data, from sequencer-1559
generated files to single-cell gene count matrix for TrackerSci-RNA and single-cell read files for1560
TrackerSci-ATAC.1561

1562
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