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Abstract
Cataloging the diverse cellular architecture of the primate brain is crucial for understanding cognition, behavior
and disease in humans. Here, we generated a brain-wide single-cell multimodal molecular atlas of the rhesus
macaque brain. Altogether, we profiled 2.58M transcriptomes and 1.59M epigenomes from single nuclei sampled
from 30 regions across the adult brain. Cell composition differed extensively across the brain, revealing cellular
signatures of region-specific functions. We also identified 1.19M candidate regulatory elements, many novel,
allowing us to explore the landscape of cis-regulatory grammar and neurological disease risk in a cell-type-
specific manner. Together, this multi-omic atlas provides an open resource for investigating the evolution of the
human brain and identifying novel targets for disease interventions.
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The cellular and molecular origins of complex human
thought and behavior remain largely a mystery. His-
torically, proposed explanations have centered on the
large relative size [1, 2, 3], high cell numbers [4], or
the large cortical surface area and thickness [5] of the
human brain. These explanations in isolation, however,
fail to explain the many uniquely human faculties, nor
do they explain the extreme variety and complexity of
impairments that accompany human neurodevelopmen-
tal, neuropsychiatric, and neurodegenerative disorders
[6]. The human brain is composed of myriad cell types
and this cellular heterogeneity contributes to our cog-
nitive and behavioral complexity [7, 8]. Supporting this

hypothesis is the observation that the number of dis-
tinct cell types in the brain is positively correlated with
behavioral complexity across vertebrates [9]. In recent
decades, it has been proposed that certain aspects of
higher human cognition are supported by specific cell
types such as von Economo neurons [10] and “mirror
neurons” [11], which have been hypothesized to support
intuition and empathy, respectively. These propositions,
however, remain largely untested due to gaps in our
understanding of the cellular landscape of the human
brain and, crucially, differences in cell-type composition
and regional heterogeneity among the brains of humans,
nonhuman primates, and other animals.
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In recent years, the application of rapidly develop-
ing single-cell technologies to the brain has begun to
address these gaps. Single-cell molecular surveys of
targeted regions of the mouse and human brain, for ex-
ample, have revealed specialized species-specific cell
types—e.g., rosehip neurons in humans [12]—and re-
gional biases in cell-type distribution and function [13].
Such atlases are yielding unprecedented cross-species
insights into the cellular architecture supporting the
structure and function of the brain [14, 15], but the gen-
eral paucity of comparative nonhuman primate brain at-
lases has left a conspicuous gap [16]. Moreover, much
effort has focused on single molecular modalities (e.g.,
transcriptomics), typically in only one or a few regions,
leaving a lacuna in our understanding of the molecular
mechanisms underlying cell function across much of the
primate brain.

Here, we generated a 4.2 million cell (combined)
transcriptomic and epigenomic atlas across the brain of
the rhesus macaque (Macaca mulatta), the most widely
used nonhuman primate model organism for studies
of human perception, cognition, aging, and neurologi-
cal disease [17]. These single-cell profiles derive from
30 distinct brain regions that collectively represent ma-
jor cortical, subcortical, and cerebellar areas involved
in sensory, cognitive, emotional, and motor functions.
Many of these regions are also implicated in one or
more clinically relevant neurological disorders. By in-
tegrating measures of gene expression and chromatin
accessibility, we discover molecular signatures that de-
fine cell types across the macaque brain, characterize
their distribution and molecular function across disparate
anatomical regions, and nominate sets of cis-regulatory
regions that likely contribute to mature cell fate and func-
tion across the brain.

Results
A molecular taxonomy of cell types across the pri-
mate brain
We generated single-nucleus RNA sequencing (snRNA-
seq) data from 30 distinct regions across the cor-
tex, subcortex, cerebellum, and brainstem (N=5 ani-
mals, 3 female) using sci-RNA-seq3 combinatorial in-
dexing [18, 19] (Fig. 1A, table S1). With the original
sci-RNA-seq3 protocol [20], we generated 1,008,204
single-nucleus transcriptomes from 110 age-, sex-, and
hemisphere-matched samples representing 28 brain re-
gions of 10 year-old (mid-adult aged) macaques (N=3
animals; 2 female). Over the course of the study, we im-
plemented improvements in nuclei isolation and preser-
vation [21] which increased nuclear transcriptome recov-
ery by 60% (median unique molecular indices [UMIs],
before=202, after=320) and, consequently, the number
of nuclei passing our UMI threshold. With the improved

protocol, we generated an additional 1,702,081 single-
nucleus transcriptomes from the right hemisphere of
two animals, the vast majority (N=1,579,908) of which
were sampled from 27 brain regions of a single 10 year-
old female macaque. Altogether, after applying quality
control filters (Methods, fig. S1-S2), we recovered tran-
scriptome profiles for 2,583,967 nuclei (median UMI per
cell=265, median genes expressed per cell=221, table
S2).

Controlling for batch effects across sequencing runs
(Methods, fig. S3), we jointly clustered single cell
profiles across all sampled brain regions to identify
17 molecularly distinct cell types, which we refer to
as ‘cell classes’ (Fig. 1B-C). Based on established
cell markers (fig. S4, table S3), we annotated these
17 cell classes as either: (i) neuronal cells, includ-
ing cortical glutamatergic neurons (CAMK2A), corti-
cal GABAergic neurons (GAD1, GAD2), basket cells
(GRID2, SORCS3), other cerebellar neurons (primarily
granule cells; GRM4), medium spiny neurons (DACH1,
PPP1R1B, BCL11B), serotonergic neurons (TPH2),
dopaminergic neurons (TH, DBH); or (ii) non-neuronal
cells, including microglia (DOCK2), oligodendrocyte
precursor cells (OPCs; VCAN), astrocytes (ALDH1A1,
GFAP), oligodendrocytes (MOG, MBP), vascular cells
(CFH), and ependymal cells (FOXJ1). Our broad sur-
vey also captured four rare, possibly novel cell popula-
tions that to our knowledge, have not yet been identified
in other studies: three RBFOX3+ (NeuN+) neuron-like
populations (marker genes: APOA2, N=7,055 cells; F5,
N=880; KIR2DL1/2, N=84) and one RBFOX3– microglia-
like population (marker gene: KIR3DL1/2+, N=44 cells,
also P2RY12+/PTPRC+/ENTPD1+). Given their rar-
ity, we removed these four cell populations from down-
stream analyses. Hierarchical clustering of cell classes
by the top 50 principal components of gene expres-
sion largely recapitulated broad ontogenetic relation-
ships, with most neuronal classes clustering together
(dopaminergic neurons being the exception) and the
two mesoderm-derived classes (microglia and vascular
cells) clustering together (fig. S5A).

By sampling across a broad range of anatomical
regions within the same individuals, we were able to
characterize cellular composition across 30 distinct brain
regions—to our knowledge, the most regionally expan-
sive primate single-cell brain atlas to date (Fig. 1D-E).
The distribution of major cell classes were balanced be-
tween sexes and hemispheres (fig. S6), but differed ex-
tensively across regions, reflecting the cellular makeup
underlying region-specific functions (Fig. 1E). Unsuper-
vised hierarchical clustering of brain regions according
to cell-class composition for the most part conformed
to broader anatomical categorizations, with regions of
the cortex, subcortex, brainstem, and cerebellum usu-
ally grouping together (fig. S5B), which was also the
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Fig. 1. Experimental setup and summary of the Macaque Brain Atlas snRNA-seq dataset. A, Schematic of biopsied brain
regions for sci-RNA-seq3 experiment. A full list of sampled regions is provided in table S1. B, UMAP visualization of all
snRNA-seq profiled cells colored by cell type (with color code shown in panel C). C, Barplots showing the log2 transformed cell
counts (left), regional specificity score (middle) and regional composition (right, with color code shown in panel E) of each cell
type. D, UMAP visualization of all snRNA-seq cells colored by cell type (with color code shown in panel E). E, Barplots showing
the cell type composition (left, with color code shown in panel C), log2 transformed ratio of glutamatergic neurons and
GABAergic neurons (middle) and log2 transformed ratio of neurons and glial cells (right) of each region. Regions are organized
by the regional subclass to which they belong.
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case when clustering regions based on the top 50 prin-
cipal components of gene expression (fig. S5B). Two
of these four broad regional classes were comprised
primarily of a single cell class: in the cortex (N=16 re-
gions, table S4), glutamatergic neurons were the most
abundant cell type (mean=63.7% of all cells per sample)
and outnumbered GABAergic neurons by almost four-
fold (Fig. 1E; mean=17.4%), while the cerebellum (N=2
regions) was composed almost entirely of cerebellar neu-
rons (mean=85.1%). In contrast, the subcortex (N=8 re-
gions) and brainstem (N=4 regions), were more hetero-
geneous with respect to their cellular composition, with
samples from these regions containing roughly equal
proportions of glutamatergic neurons (meansubcortex =
25.1%; meanbrainstem = 25.5%), GABAergic neurons
(meansubcortex = 20.2%; meanbrainstem = 23.0%), and
oligodendrocytes (meansubcortex = 18.5%; meanbrainstem
= 25.5%). We further subdivided the cortical and sub-
cortical samples into ‘region subclasses’ based on neu-
roanatomical groups (table S1), in which there was more
limited variation in cellular composition (Fig. 1E). For in-
stance, in the subcortex, medium spiny neurons (MSN)
comprised around half of the cells in the basal ganglia
(nucleus accumbens [NAc] mean=44.7%; caudate nu-
cleus [CN] mean=60.0% MSNs), while the thalamus
was enriched for GABAergic neurons (lateral genicu-
late nucleus [LGN] mean=55.7%; mediodorsal thalamic
nucleus [mdTN] mean=43.8%; ventrolateral thalamic
nucleus [vlTN] mean=28.6%).

Our broad survey also captured two rarer, but im-
portant, cell classes: dopaminergic and serotonergic
neurons. These two neurons collectively represented
less than 0.3% of all profiled cells (dopaminergic=0.14%;
serotonergic=0.12% of all cells) and 0.5% of all neurons
(dopaminergic=0.19%; serotonergic=0.17% of all neu-
rons), suggesting that targeted approaches that enrich
for these cells (e.g., [22, 23]) are necessary to identify
transcriptional variation among subtypes. Dopaminer-
gic neurons, which are found primarily in the substantia
nigra pars compacta at low frequency (1.1% of cells
sampled in the midbrain vs. mean 0.1% in other sam-
pled regions), are involved in a range of important pro-
cesses, including voluntary movement, reinforcement
learning, and addiction, and their loss is a neuropatho-
logical hallmark of Parkinson’s disease [24]. We found
that serotonergic neurons were most abundant in the
brainstem (mean 0.35% in the 4 brainstem regions vs.
mean 0.09% in other sampled regions), where they play
a major role in sleep, mood, and appetite, and are key
targets of pharmacological therapies for major depres-
sive disorder in humans [25].

Regional variation in cell subtype composition
To characterize heterogeneity within cell classes, we
partitioned the dataset and repeated preprocessing and

clustering separately for each of the 17 cell classes.
Collectively, we identified 112 distinct clusters (fig. S7,
table S5) that captured neuronal and non-neuronal di-
versity across the primate brain (Fig. 2A). We refer to
clusters at this level as ‘cell subtypes’. We identified
extensive heterogeneity in glutamatergic (39 subtypes)
and GABAergic (20 subtypes) neurons primarily found
in the cortex and some regions of the subcortex (e.g.,
hippocampus, thalamus), while neurons derived from
other non-cortical brain regions (e.g., cerebellum, stria-
tum) were transcriptionally distinct and relatively homo-
geneous within those regions (Fig. 2A). This is due in
part to the large number of specialized neurons present
in some of these regions, including granule and Purkinje
cells in the cerebellum, and medium spiny neurons in
the basal ganglia (table S5).

Our systematic approach also allowed us to charac-
terize and compare the regional cellular distribution of
non-neuronal subtypes, including those of glia, which
have not often been the focus on most single cell at-
lases to date (Fig. 2A, table S6). Overall, we identified
6 astrocyte, 2 microglial, 7 oligodendrocyte, and 6 vas-
cular cell subtypes, the latter including endothelial cells,
smooth muscle cells, pericytes, and both perivascular
and meningeal fibroblasts (fig. S7, table S5) [26]. We
compared cell subtypes to published datasets using a
NNLS approach [19], and found broad correspondence
with subtypes observed in human cortical [14], human
brain vascular [26], and macaque hippocampal atlases
[27] (fig. S8A-E).

To identify cell subtypes that were specific or bi-
ased towards a single region or set of regions, we cal-
culated a measure of “regional specificity” using the
Jensen-Shannon divergence statistic (Methods, [28,
29]). Overall, glial subtypes were more evenly distributed
across all regions compared to neuronal subtypes
(Fig. 2A). This is reflected in lower Jensen-Shannon
specificity scores for glial subtypes (mean=0.20; me-
dian=0.15; range=[0.04,0.81]) compared to cortical neu-
rons (mean=0.31; median=0.18; range=[0.08,0.89]).
A number of cell subtypes, both neuronal and non-
neuronal, were highly region-specific. For instance,
oligodendrocyte subtype 8, the rarest oligodendrocyte
subtype (N=3,439 cells; 1.5% of oligodendrocytes) over-
whelmingly derived from the highly myelinated corpus
callosum (93.0% of these cells; Fig. 2A, table S6).
Among cortical neurons, GABAergic interneuron sub-
types generally exhibited a lower median regional speci-
ficities than to glutamatergic neuron subtypes, although
there were a number of interneuron subtypes specific
to the thalamus (cluster 6) or brainstem (clusters 3 and
16), discussed below.

Given that the regional specificity of excitatory neu-
ronal subtypes has been explored in depth in other
studies [30, 31], we focus here instead on populations
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Fig. 2. Cell subtype distribution and variation across the brain. A, Barplots showing the region specificity score (i.e.,
Jensen-Shannon divergence statistic) and composition for cell subtypes (with color code shown in Fig. 1E). B, Heatmap
showing scalled log2 ratios of GABAergic neuron and astrocyte subtype compositions within cortical region, compared to the
average across all regions. Cell subtypes with at least 100 cells profiled are shown in the order of abundance (x-axis, left to right)
in the cortical regions organized by region subclasses (y-axis). The color and direction of each pie corresponds to relative
enrichment (blue, clockwise) and depletion (red, anti-clockwise) of a cell subtype in a region. Log2 ratios were capped at positive
and negative 2 prior to scaling. C, UMAP visualizations of GABAergic neurons colored by cell subtype (left) and regional
subclass (right). D, UMAP visualizations of GABAergic neurons colored by cell subtype marker gene expression. E, UMAP
visualization of astrocytes colored by the region with the highest lochNESS, indicating enrichment of a region subclass in the
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and frontal lobe) are highlighted in separate panels as examples. F, UMAP visualizations of astrocytes colored by
lochNESS-derived region-related marker genes.
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that are vital for neuronal signal transduction but for
which cellular diversity has not previously been explored
across the macaque brain. Specifically, we concentrated
on the regional diversity of interneurons, because they
are important components of long-range circuitry and
have been characterized in a few regions across mice,
monkeys, and humans [12, 15, 14, 32], allowing us to
both benchmark our atlas but also extend current knowl-
edge to understudied regions. We also examine regional
distribution among astrocytes, which are crucial for main-
taining neuronal homeostasis [33] and are implicated
in neurological disorders [34], but have been relatively
understudied at the single-cell level.

We pursued three main approaches to dissect the
regional heterogeneity within interneuron and astrocyte
subtypes, discussed in further detail below: 1) quantifica-
tion of cell subtype composition to identify nuanced differ-
ences in detailed regions within the cortex; 2) identifica-
tion of regionally specific gene expression programs by
analyzing region specific subtypes of interneurons; and
3) in the case of minimal region specific subtypes, lever-
aging a recently developed statistic to identify region-
specific gene expression patterns in astrocyte subtypes
in a cell subtype-agnostic fashion.

Within specific regions of the cortex, cell subtype
composition differences become more subtle and re-
quire focused quantification. As a first approach, for
every sufficiently abundant interneuron and astrocyte
subtype in the cortex (>100 cells), we calculated the log2
transformed ratio of cell subtype composition in a region,
compared to the average composition of that subtype
across all cortical regions (Fig. 2B). Within the five
most abundant interneuron subtypes, we note general
balance across all cortical regions, but also observe a
relative enrichment of cluster 2 (PVALB+) in the occipital
lobe (primary visual cortex [V1]) with depletion in re-
gions within the temporal lobe, and depletion of cluster 5
(ADARB/PAX6+) in V1. In the superior temporal sulcus
(STS) and middle temporal visual area (MT), there is a
strong depletion of astrocyte subtype 3 (LUZP2/GPC5+)
but an enrichment of subtype 6 (KCNIP4/RBFOX1+).

Interneurons are the primary drivers of inhibitory
control through the release of GABA (γ-aminobutyric
acid) and thus strongly impact neural circuitry. Inap-
propriate development of GABAergic interneurons and
subsequent loss of inhibitory regulation contributes to
disorders of neurodevelopment, including epilepsy and
autism [35, 36]. Despite their importance, the molec-
ular identities and distribution of interneuron subtypes
across the adult primate brain remain relatively unknown
outside of a few regions [15, 32, 37]. Our snRNA-seq
sample captured 371,548 GABAergic interneurons cor-
responding to 20 subtypes. As a second approach, we
focused on gene markers of the region specific interneu-
ron subtypes. Eleven interneuronal subtypes were pri-

marily found in the cortex and could be assigned to four
primary interneuron groups that are conserved between
mouse and human brains [32], marked by SST, PVALB,
VIP, and LAMP5 expression (fig. S9). Compared to
the cortex, the brainstem and thalamus had a unique
distribution of interneuron subtypes (Fig. 2C). Thalamic
interneurons, which use feed-forward inhibition to relay
and tune visual responses to thalamocortical neurons,
expressed high levels of NTNG1 and RNF220 (Fig. 2D),
which is indicative of long-range interneurons in the first-
order relay nuclei of the thalamus [38]. Sampling across
the striatum, which is a critical part of the reward path-
way and the largest part of the basal ganglia, a recent
single-cell study identified a molecularly unique primate
interneuron [32], which was most similar to our GABAer-
gic cluster 18 and represented 15% of interneurons in
the CN (Fig. 2A).

Astrocytes, the second most abundant non-neuronal
cell type in our dataset, are multifaceted support cells of
the brain that perform a variety of tasks related to neu-
ronal homeostasis. These tasks can vary across brain
regions [33] and astrocyte dysfunction has been linked
to neurological diseases, including Alzheimer’s disease
[39]. Given these regional differences, we examined
whether astrocyte subtypes exhibited regional biases
in macaque, similar to what has been observed in the
mouse brain [40]. However, while astrocyte subtypes
were widely distributed across multiple regions, the cell
clusters did not correspond neatly to regions of origin,
making claims about inter-region differences in cell com-
position difficult to systematically analyze across the
many regions profiled. To address this complexity, as
a third approach, we adapted our recently developed
statistic, lochNESS [41], to quantitatively measure re-
gional enrichment in each cell’s “neighborhood” of tran-
scriptionally similar cells. Briefly, for each cell, we tally
the number of cells from each brain region in its neigh-
borhood and calculate a focal regional enrichment score
(fig. S10A, Methods). We illustrate the utility of this ap-
proach by calculating the lochNESS score on astrocytes
at the level of brain region subclasses. Each cell had 11
lochNESS scores calculated, one for each region sub-
class, with each such score quantifying the enrichment
of the given region subclass in a cell’s transcriptional
vicinity. We then identified the most enriched region sub-
class in a cell’s neighborhood and examined the regional
heterogeneity agnostic to the cluster-assigned subtype
labels (Fig. 2E). We also extended the lochNESS to
identify genes whose expression can be predicted by
lochNESS scores for given regions. To do so, we mod-
eled the lochNESS score of each region in each cell as
a function of gene expression with generalized linear
regression (Methods, table S7). The resulting set of
genes with significant positive associations with a re-
gion’s lochNESS score have higher expression in, and
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are putatively markers for, cell subtypes in that region.
Using this approach, we identified markers for astro-

cytes in specific regions (e.g., TCAF2 and FRK in the
occipital lobe) and in combinations of regions (e.g., PGD
in the brainstem, basal ganglia, and thalamus), that we
would not have identified if we focused solely on discrete,
computationally-defined clusters (Fig. 2F). This strategy
thus facilitates the identification of more complex region-
specific gene expression patterns. For example, EMID1,
which is a marker for a subpopulation of astrocyte-like
NG2 cells [42], is more highly expressed in astrocytes in
the cortex but not in the thalamus, brainstem, or cerebel-
lum. In contrast, ADAP2, which is involved in protection
from RNA virus infections [43], is highly specific to a
subset of astrocytes found in the thalamus (Fig. 2F).
LochNESS can thus provide a more nuanced approach
to identifying regionally-biased cell subtypes and gene
expression than conventional clustering. While we fo-
cused on astrocytes in this example, lochNESS could be
iteratively applied to regions within a subclass in each
cell class, e.g. for all glutamatergic neurons across all
cortical regions or oligodendrocytes across all subcorti-
cal regions (fig. S10B-D).

Joint analysis of single-nucleus transcriptomic and
epigenomic data
To complement our transcriptomic dataset and identify
key regulatory genomic regions in brain cells, we applied
sci-ATAC-seq3 [44, 45] to profile single-nucleus ATAC
sequencing (snATAC-seq) epigenomes from nearly all
of the brain regions represented in our snRNA-seq
dataset. To maximize comparability among datasets,
we used 110 of the same age-, sex-, and hemisphere-
matched tissue samples (representing the same three
animals) profiled in our snRNA-seq dataset. To ensure
that the snRNA-seq and snATAC-seq datasets captured
the same heterogeneous populations of cells, we ho-
mogenized tissue samples on dry ice prior to separately
preparing separate nuclei isolations for each library type
(Methods). Together, the snATAC-seq samples repre-
sented 28 of the 30 regions (N=3 animals; midbrain [MB]
and MT snATAC-seq data were not generated). After
quality control (Methods, fig. S11), the total number
of nuclei profiled was 1,587,880 and ranged from 5,100
(in the closed medulla [MdC]) to 114,410 (in the inferior
temporal cortex [IT]) nuclei per region (median=63,739
nuclei per region). We called peaks on a per-sample ba-
sis and combined them across all samples based on ge-
nomic overlap, resulting in (after filtering) a combined set
of 1,192,873 candidate cis-regulatory elements (cCREs)
spanning 24.4% (725 Mb) of the genome.

We first applied UMAP dimensionality reduction and
Leiden clustering to the batch-corrected epigenomic
data (Fig. 3A) and identified 42 clusters which, based on
promoter accessibility, could be assigned to most major

cell classes found across the brain (Fig. 3B). However,
given that unsupervised approaches to cell-type iden-
tification are consistently more sensitive using single
cell/nucleus RNA-seq data [46], we drew from our tran-
scriptionally defined cell annotations in order to assign
cell labels to our snATAC-seq nuclei. To integrate the
datasets, we used the graph-linked unified embedding
(GLUE) approach [47] and generated a unified transcrip-
tomic and epigenomic embedding of 4,171,847 nuclei
(Fig. 3C-D). Subsequent cell-type predictions based
on our multimodal integration assigned the majority of
snATAC-seq nuclei to a cell class (73.7% with confi-
dence ≥ 0.95; fig. S12), and captured all of the major
cell classes (Fig. 3D) with the exception of serotonergic
and dopaminergic neurons, which are relatively rare and
fairly specific to the MB (which as noted above was not
sampled in our snATAC-seq data). The regional distri-
bution of cell classes captured from snATAC-seq and
snRNA-seq data were highly concordant, both within
regions (Fig. 3E) and overall (Fig. 3F), which demon-
strates that our homogenization and nuclei isolation pro-
tocols captured the same heterogeneous populations of
cells in the same regions across both modalities.

The gene regulatory landscape of the rhesus
macaque brain
We leveraged the scRNA-based cell class annotations
(Fig. 3G) to explore heterogeneity in cell type-specific
gene regulation across the brain. To do so, we parti-
tioned all unique snATAC-seq reads by predicted cell
class (Fig. 3G), then called peaks separately for each
partition using a similar peak-calling approach to that
used for the overall dataset, thereby generating an in-
ventory of putative cCREs derived from each cell class
in isolation (Methods). Across 11 cell classes with
snATAC-seq-assigned nuclei, we identified an average
of 210,572 peaks per cell class, ranging from 99,323 in
microglia to 425,738 in cortical GABAergic neurons (Fig.
4A). On average for any given cell class, these peaks
covered 7.7% of the genome and 28.8% were found >2
Kb from the nearest gene or promoter (Fig. 4A).

Transcription factor regulatory networks
Multi-modal integration of cell specific snATAC-seq and
snRNA-seq data allowed us to examine the cis- and
trans-regulatory links between chromatin accessibilty
and gene expression within individual cell types. We
first examined putative trans-regulatory factors within
cell classes and subtypes. Transcription factors (TFs)
are key trans-regulatory proteins that control cell differ-
entiation and function during neurodevelopment [48, 49,
50, 51] and have been implicated in myriad neurode-
generative diseases [52, 53, 54]. The extremely high
cell-type specificity of some nuclear TFs have also made
them useful targets for identifying and enriching rarer
cell types prior to single-cell sequencing [55, 56, 57].
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Fig. 3. Generation of the Macaque Brain Atlas sci-ATAC-seq dataset and identification of cell classes. A, UMAP
visualization of all snATAC-seq cells colored by brain region (with color code shown in C). B, UMAP visualizations of promoter
accessibility scores of cell markers (GAD2: GABAergic neurons, ENTPD1: microglia, SLC1A2: astrocytes, ATP10A: vascular
cells) reveal high specificity. C, Barplots showing nuclei counts by brain region of the snRNA-seq, snATAC-seq, and integrated
datasets. D, UMAP visualizations of integrated multimodal data, with cell classes colored separately for (left) snRNA-seq and
(right) snATAC-seq nuclei (with color code shown in panel F). E, Spearman’s rank correlation coefficients showing the correlation
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from the same homogenized sample). F, Scatterplot showing the correlation between cell-class proportions in the overall
snRNA-seq and snATAC-seq datasets (combined across brain regions). G, Integration-derived cell-class annotations visualized
over the same snATAC-seq UMAP visualization shown in panel A (with color code shown in panel F).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.09.30.510346doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.510346
http://creativecommons.org/licenses/by/4.0/


A single-cell multi-omic atlas spanning the adult rhesus macaque brain — 9/33

microglia

SPI1 (6.64)

ependymal cells

NFIA (1.99)

GABAergic neurons

TFAP4 (1.36)

glutamatergic neurons

OLIG3 (1.29)

astrocytes

RORC (1.53)

vascular cells

ERG (2.19)

oligodendrocytes
GABAergic neurons
glutamatergic neurons
OPCs
astrocytes
cerebellar neurons
vascular cells
basket cells
ependymal cells
medium spiny neurons
microglia

SP
I1

ET
V6

EL
F5

SP
IB

SP
IC

FO
SL

2:
:J

U
N

FO
S:

:J
U

N
FO

SL
2:

:J
U

N
B

FO
SL

1:
:J

U
N

FO
SL

2:
:J

U
N

D
N

FI
A

N
FI

X
N

FI
C

R
fx

1
TE

AD
2

N
EU

RO
D

1
AS

C
L1

N
H

LH
1

RO
R

C
FO

SB
::J

U
N

B
ER

G
ET

S1
FO

XP
3

FO
XK

2
FO

XO
6

At
oh

1
N

EU
RO

D
2

TA
L1

::T
C

F3
Bh

lh
a1

5
N

eu
ro

g1
RO

R
B

N
O

TO
LH

X2
EN

1
R

AX
2

Tc
f1

2
As

cl
2

M
yo

d1
M

yo
g

M
SC

O
LI

G
3

O
LI

G
2

O
LI

G
1

BH
LH

E2
2

BH
LH

E2
3

TF
AP

4
M

AF
G

Tc
f2

1
M

AF
K

TF
E3

So
x2

SO
X1

5
SO

X9
SO

X1
3

So
x6

−1.0

0.5

0.0

−0.5

1.0

log2 OR

B

C

A

D

percent genome in peaks
0 50 100

percent peaks in promoters/genes
0 50 100

vascular cells
microglia

ependymal cells
OPCs

oligodendrocytes
astrocytes

medium spiny neurons
basket cells

GABAergic neurons
cerebellar neurons

glutamatergic neurons

number of peaks
0 200,000 400,000

number of unique peaks
0 30,000 60,000

vascular cells
microglia
ependymal cells
OPCs
oligodendrocytes
astrocytes
medium spiny neurons
basket cells
GABAergic neurons
cerebellar neurons
glutamatergic neurons

region class
brainstem
cerebellum
cortical
subcortical

m
ea

n 
m

ot
if 

en
ric

hm
en

t s
co

re
cell types

mean expression

0.0006

0.0009

0.0012

0.0015

0.000 0.025 0.050 0.075 0.100

ELF1 (Pearson’s r = 0.58)

0.004

0.005

0.006

0.007

0.00 0.01 0.02 0.03

SPI1 (Pearson’s r = 0.87)

0.008

0.009

0.010

0.011

0.00 0.01 0.02 0.03 0.04 0.05

NEUROD2 (Pearson’s r = 0.61)

0.35

0.36

0.37

0.000 0.025 0.050 0.075

NFATC2 (Pearson’s r = -0.47)
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summary statistics for peak sets called separately on reads derived from cells assigned to each of 11 cell classes. B, Heatmap
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To identify candidate trans-acting regulatory net-
works in each cell class, we carried out TF binding motif
enrichment analysis on each set of cell-class-specific
peaks, defined as the subset of a cell class’s cCREs that
did not overlap with any peaks called in other cell classes
(Methods, Fig. 4A). Cell-class-specific cCREs were
highly enriched for many TF binding motifs that are likely
involved in cell-specific gene regulation (Fig. 4B, table
S8), including many motifs previously implicated (Fig.
4C). For instance, microglial cCREs contained 6.6-fold
more binding sites of the nuclear TF SPI1 (also known
as PU.1) than expected by chance (Padj=1.22×10-284;
Fig. 4B-C). In addition to such canonical examples,
we identified numerous motifs that distinguish relatively
similar cell classes. For instance, the TF binding motif
for NFE2, from the NRF TF family, was most enriched
(odds ratio [OR] > 2) in cCREs in both medium spiny
neurons (OR=3.07, Padj=1.77×10-87) and basket cells

(OR=2.34, Padj=8.76×10-7), while the binding motif for
NEUROD1 was most enriched (OR>2) in cCREs of bas-
ket cells (OR=2.04, Padj=3.53×10-29), where this TF is
necessary for basket cell terminal differentiation and,
consequently, axon growth and inhibitory circuit forma-
tion [58].

We also characterized TF binding motif enrichment
at the cell subtype level. To do this, we extended our
multimodal integration and label-transferring approach
to each cell class independently by tabulating the reads
per-cell falling within cell-class-specific cCREs described
above for all cells of a given cell class (Fig. 3D). We
then integrated the data with corresponding snRNA-seq
data of the same cell class using GLUE (Methods). The
resulting integrated embeddings for each cell class were
then used as the basis for predicting cell subtypes, which
we carried out on all snATAC-seq cells within each class
(fig. S13).
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Since cell subtypes are preselected to already share
broadly similar chromatin accessibility profiles, identify-
ing peaks that are specific to a single subtype—similar
to our approach at the cell-class level—was not fea-
sible and left most cell subtypes with no or very few
unique peaks to analyze. As an alternative strategy,
we carried out differential accessibility analyses among
cell subtypes to identify peaks that were predictive of
each individual cell subtype within a given cell class
(Methods). We then identified TF binding motifs en-
riched in highly differentially accessible regions within
cell subtypes (table S9). For example, we observed
numerous TF binding motifs (N=433, Padj < 0.05) that
were enriched within highly accessible peaks in Purkinje
cells, a GABAergic neuron type of the cerebellum that is
implicated in autism spectrum disorders (ASD). In our
snRNA-seq dataset, of all tested diseases [59], genes
associated with autism (DOID:12849) were overrepre-
sented (Fisher’s exact test, OR=10.2, Padj=8.52×10-16)
among the top 100 Purkinje-cell marker genes, includ-
ing RORA (fold-change [FC]=331.9), AUTS2 (FC=43.1),
and SHANK2 (FC=13.8) (table S10). Correspondingly,
we found that TF motifs enriched in differentially acces-
sible peaks included RORA, four members of the EGR
family (EGR1–EGR4), and CTCF (EGR1, EGR3, and
CTCF were among the top 5 TF motifs ranked by OR;
RORA ranked 182nd). RORA is a regulator of circadian
rhythm that exhibits decreased expression in ASD brains
and may play a role in ASD pathogenesis [60, 61]. EGR-
family TFs have been implicated in the disruption of
human-specific developmental programs in autism [62].
CTCF is an insulator protein that regulates chromatin
structure and may play a critical role in maintaining den-
drite structure in Purkinje cells [63] and is also a risk
gene for ASD [64].

Given that families of TFs have similar binding motifs,
it is often difficult to identify the specific TF in a given
family that is responsible for enrichment in cell type-
specific cCREs. To identify the most likely TF, we there-
fore employed our recently-developed approach [45, 65]
that uses the computationally paired snRNA-seq and
snATAC-seq data. In brief, this approach relies on the as-
sumption that TFs will be highly expressed in cell types
where they play a key role, while their associated motif
should be enriched (or depleted) in that cell’s cCREs,
indicating TF activation (or repression). Overall, we com-
pared the accessibility of 369 TF binding motifs and their
corresponding gene’s expression across the cell classes
in four region subclasses, with 189 TFs showing posi-
tive Pearson’s correlation between gene expression and
accessibility of the cognate motif, and 180 showing neg-
ative correlation (fig. S14A, table S11). Among the TFs
with largest positive or negative Pearson’s correlation
values were strong cell-class-specific activators and re-
pressors (Fig. 4D, fig. S14B). For instance, SPI1, which

has been identified as a candidate gene for Alzheimer’s
disease via various functional genetics approaches [66],
shows a strong activating effect with high expression of
the SPI1 gene and high accessibility for the SPI1 binding
motif in microglia. In contrast, NFATC2 has a repressing
effect in microglia and vascular cells, as shown by high
expression of the NFATC2 gene associated with lower
NFATC2 motif binding in those cell types. We also found
evidence for a clear distinction between neurons and
non-neuronal cells at two TFs, with ELF1 functioning as
a non-neuronal specific activator and NEUROD2 as a
neuron-specific activator. Additionally, we note that FLI1,
an activator in vascular and microglia cell types, and
ELF1 have motif sequences similar to SPI1 (fig. S14C),
but their activating effects impact a broader set of cell
types.

The cis-regulatory landscape of brain cell variation
We next sought to characterize cis-regulatory interac-
tions between cCREs and proximate genes in the rhesus
macaque brain. We used two complementary analy-
ses to scan for interactions using our integrated multi-
modal dataset. First, we used the regulatory inference
framework of GLUE [47], which leverages the unified
feature embedding (i.e., joint integration of snRNA-seq
genes and snATAC-seq peaks in a common data space)
generated during GLUE integration to assess similar-
ity between peaks and genes. Putative regulatory in-
teractions are defined as a high cosine similarity be-
tween peak and gene feature embeddings in the uni-
fied data space, with statistical significance assessed
by permutation [47]. Second, we used a metacell-
based approach to aggregate snRNA-seq transcrip-
tomes and snATAC-seq epigenomes into multimodal
metacells based on k-means clustering of the unified cell
embeddings, then used logistic regression to model the
relationship between gene expression and chromatin
accessibility within a given metacell [67]. In contrast
to the GLUE regulatory score, the logistic regression
analysis enabled us to differentiate between positive
and negative regulatory interactions between peaks and
genes. We considered peak-gene pairs to be putatively
regulatory if Padj < 0.05 for both analyses (Fig. 5A, fig.
S15). For each cell class, we also scanned for differen-
tially accessible peaks using both a regularized logistic
regression and a t-test, testing accessibility in a given
cell class against accessibility in all other cell classes.
We consider cCREs with differentially high accessibility
(regularized LR coefficient > 0, log2 fold-change > 0, and
t-test Padj < 0.05, fig. S16) to be candidate regulators
of cell-type-specific genes (Fig. 5A).

We focused our analysis on the 6,000 most variable
genes in our snRNA-seq dataset and tested all snATAC-
seq peaks that fell within 150 Kb of the gene promoter
(defined as TSS extended 2 Kb upstream). In total, we
tested 223,752 peak-gene pairs (151,083 unique peaks,
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5,765 unique genes), of which 142,324 peak-gene pairs
(63.6%) met our criteria for being considered candidate
cis-regulatory interactions (table S12). 128,741 peaks
(85.2%) that we evaluated were cCREs for at least one
gene and 4,811 genes (83.5%) that we evaluated had
at least one cCRE.

Of all peak-gene pairs, 132,805 (93.3%) involved a
peak that was highly differentially accessible in at least
one cell class, thereby fulfilling our criteria for being con-
sidered candidate cis molecular interactions regulating
cell-type-specific markers. cCREs were highly differen-
tially accessible in a maximum of 7 cell classes, with
37% exclusive to a single cell class and 88% highly
differentially accessible in 1–3 cell classes.

The vast majority (133,496, or 93.8%) of can-
didate regulatory interactions were positively asso-
ciated (i.e., had a positive effect size in the meta-
cell logistic regression)—this held true whether peaks
were upstream (13,650/14,575, or 93.7%), down-
stream (116,939/124,592, or 93.9%), or overlapping
(2,907/3,157, or 92.1%) the gene’s transcription start
site (TSS). For peak-gene pairs where the peak was
upstream of the TSS, the GLUE regulatory scores were
highest (indicating high similarity between peak and
gene feature embeddings) when peaks were in closer
proximity to the TSS (Fig. 5B). For peaks downstream of
the TSS, GLUE regulatory scores remained high across
all distances, with only a modest decrease farther from
the TSS (Fig. 5B). This result was particularly striking
for peaks that had significant, mainly positive, associa-
tions between accessibility and gene expression, likely
reflecting (i) higher global accessibility across the gene
body resulting from higher expression of the gene (as
opposed to distal regulation) and/or, (ii) methodological
limitations of using a single gene-wide TSS (i.e., the
most upstream TSS of all isoforms), thereby ignoring
variation in TSS positioning among isoforms, which likely
vary in their usage across tissues and contexts [68].

Using the cell-class-specific gene expression and
cCRE peak sets, we repeated our integration, regula-
tory inference, and differential accessibility workflows
on each cell class individually. We tested a mean of
72,914 peak-gene pairs (range: 45,539–114,200) per
cell class and identified a mean of 11,442 peak-gene
pairs (range: 881–41,966) showing evidence of regula-
tory interactions (fig. S17 and table S13).

To illustrate how these maps of putative interactions
might be useful to investigate the regulatory landscape
at the level of an individual locus, we focused on the
myelin basic protein (MBP) gene (Fig. 5C), which en-
codes one of the most abundant proteins in central ner-
vous system myelin [69, 70], has a range of splice iso-
forms [71], and is a canonical marker of oligodendro-
cytes. MBP is located on chromosome 18 (positions
2,932,531–3,086,873) on the rhesus macaque (Mmul_

10) genome and has 8 annotated mRNA isoforms (En-
sembl). In humans, classic MBP isoform 3 (18.5 kDa)
predominates in adult myelin [71].

In our global peak set (all cells), 94 peaks fell within
150 Kb of the MBP promoter and were included in our
analysis. Of these peaks, 83 (88.3%) were identified as
candidate regulators of MBP (crMBP), with 38 crMBPs
(45.8%) positively associated with MBP expression. Of
all crMBPs, only one was not located within the MBP
gene boundaries—it was, however, located less than 2
Kb upstream within the likely promoter region.

In accordance with the well-known status of MBP as
an oligodendrocyte marker, we found that MBP was dif-
ferentially expressed in oligodendrocytes, with detected
expression in 80.9% of cells and 1,434-fold higher ex-
pression than all other cells averaged together. Fine-
grained inspection of normalized read distributions from
oligodendrocyte nuclei revealed the highest densities of
snRNA-seq reads corresponding to the polyadenylation
site (position 3,086,373) and snATAC-seq reads corre-
sponding to the TSS (position 3,046,976) of a single
transcript, ENSMMUT00000015870, indicating that it
is likely the dominant MBP isoform expressed in adult
macaque oligodendrocytes.

By examining the genomic-distance relationships be-
tween crMBPs and the dominant MBP transcript in adult
oligodendrocytes, we found that all 16 crMBPs that ei-
ther overlapped or were downstream of the isoform’s
TSS were positively associated with MBP expression.
Among the 67 crMBPs that were located upstream of the
TSS, 22 (32.8%) were positively associated with MBP
expression while 45 (67.2%) were negatively associated.
Several of these negatively associated crMBPs corre-
sponded with sci-ATAC-seq3 peaks in other cell types,
particularly oligodendrocyte precursor cells (OPCs) and
microglia (Fig. 5C). However, the accessibility land-
scape of OPCs is overall more similar to that of oligo-
dendrocytes across the region upstream of the TSS
of the dominant isoform, with greater accessibility at
most peaks except for that of the promoter of the domi-
nant isoform (Fig. 5C). As OPCs play a critical role in
myelinogenesis by giving rise to oligodendrocytes [72],
these crMBPs likely serve as critical markers of the OPC-
oligodendrocyte transition, during which the expression
of this gene, and this isoform in particular, is massively
upregulated.

Enrichment of disease heritability among candidate regu-
latory elements
Lastly, we used our cCREs to identify cell-type-
associated regulatory networks that may drive polygenic
disease risk. We tested for enrichment of disease trait
heritability using the linkage disequilibrium score regres-
sion (LDSC) tool [73, 74], after lifting over macaque
cCREs to human genome coordinates [28]. We tested
a total of 53 phenotypes relevant to neurological dis-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.09.30.510346doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.510346
http://creativecommons.org/licenses/by/4.0/


A single-cell multi-omic atlas spanning the adult rhesus macaque brain — 13/33

vascular cells
microglia
ependymal cells
OPCs
oligodendrocytes
astrocytes
medium spiny neurons
basket cells
GABAergic neurons
cerebellar neurons
glutamatergic neurons

Al
zh

ei
m

er
's 

di
se

as
e

Pa
rk

in
so

n'
s 

di
se

as
e

AD
H

D

au
tis

m

ep
ile

ps
y

 m
ul

tip
le

 s
cl

er
os

is

sc
hi

zo
ph

re
ni

a

sc
hi

zo
ph

re
ni

a 
(v

s.
 b

ip
ol

ar
)

sc
hi

zo
ph

re
ni

a 
or

 b
ip

ol
ar

bi
po

la
r d

is
or

de
r

m
aj

or
 d

ep
re

ss
ive

 d
is

or
de

r

de
pr

es
si

on
de

pr
es

si
ve

 s
ym

pt
om

s

an
or

ex
ia

ev
er

 s
m

ok
ed

sm
ok

in
g

sm
ok

in
g 

in
iti

at
io

n
sm

ok
in

g 
ce

ss
at

io
n

ci
ga

re
tte

s 
pe

r d
ay

dr
in

ks
 p

er
 w

ee
k

m
ed

ic
at

io
n 

us
e

in
so

m
ni

a
sl

ee
p 

du
ra

tio
n

sh
or

t s
le

ep
 d

ur
at

io
n

lo
ng

 s
le

ep
 d

ur
at

io
n

de
pr

es
si

ve
 a

ffe
ct

wo
rry

ne
ur

ot
ic

is
m

ris
k 

to
le

ra
nc

e
su

bj
ec

t w
el

l b
ei

ng

ye
ar

s 
of

 e
du

ca
tio

n

in
te

llig
en

ce
re

ac
tio

n 
tim

e
ve

rb
al

 n
um

er
ic

al
 re

as
on

in
g

ca
rd

io
em

bo
lic

 s
tro

ke
is

ch
em

ic
 s

tro
ke

m
ea

n 
pu

ta
m

en
 v

ol
um

e0

1

2

log2 OR Ja
ns

en
 et

 al
. 2

01
9

La
mbe

rt e
t a

l. 2
01

3

Mari
on

i e
t a

l. 2
01

8

Corc
es

 et
 al

. 2
02

0

Dem
on

tis 
et 

al.
 20

19

Grov
e e

t a
l. 2

01
9

PGC/CDG 20
13

Ann
ey

 et
 al

. 2
01

4

IM
SGC & W

TCCC2 2
01

1

Pard
ina

s e
t a

l. 2
01

8

PGC/SWG 20
14

Rud
erf

er 
et 

al.
 20

18

PGC/BDWG 20
11

Stah
l e

t a
l. 2

01
9

How
ard

 et
 al

. 2
01

9

Wray
 et

 al
. 2

01
8

Nag
el 

et 
al.

 20
18

Okb
ay

 et
 al

. 2
01

6

Bora
ska

 et
 al

. 2
01

4

Dun
ca

n e
t a

l. 2
01

7

TA
G 20

10

UK Biob
an

k

Liu
 et

 al
. 2

01
9

Wu e
t a

l. 2
01

9

Ja
ns

en
 et

 al
. 2

01
9

Das
hti

 et
 al

. 2
01

9

Nag
el 

et 
al.

 20
18

Okb
ay

 et
 al

. 2
01

6

Karl
sso

n L
inn

er 
et 

al.
 20

19

Okb
ay

 et
 al

. 2
01

6

Riet
ve

ld 
et 

al.
 20

13

Sava
ge

 et
 al

. 2
01

8

Dav
ies

 et
 al

. 2
01

8

Malik
 et

 al
. 2

01
8

Hiba
r e

t a
l. 2

01
5

Fig. 6. Enrichment of heritable disease-relevant sites among candidate regulatory elements. The heatmap displays
heritability enrichment (log2 odds ratio [OR]) of diseases among cell-class snATAC-seq peaks for tested diseases, syndromes,
and phenotypes. Only results passing a threshold of Padj < 0.05 are shown. The log2 OR color range is capped at 3.0.

eases, disorders, syndromes, behaviors, or other traits
(table S14), and examined enrichment among cell-class
cCREs called separately in each of 11 cell classes.

Our results broadly recapitulated several known roles
of cell classes in neurological disease (Fig. 6 and table
S15). For example, sites associated with cardioembolic
stroke (OR=32.2) or ischemic stroke (OR=9.2) were en-
riched (Padj < 0.05) only in vascular cells, which play a
crucial role in forming and maintaining the blood-brain
barrier [75]. We also found that Alzheimer’s disease-
associated sites were enriched only in microglia—a
result replicated using loci from three independent
genome-wide association studies (GWAS) (OR range:
13.9–15.0)—consistent with the prominent role of mi-
croglia proliferation and activation in Alzheimer’s disease
[76].

Across all cell classes, basket cells were enriched
for the greatest number (N=37) of GWAS phenotypes,
including disorders such as schizophrenia (OR range:
5.9–6.2), bipolar disorder (OR range: 5.6–6.2), and ma-
jor depressive disorder (OR range: 5.1–5.3), and, most
strongly, epilepsy (OR=9.0)–a disease that basket cells
have been connected to in animal models and some
genetically-linked human forms of the disease [77].

Other notable results included the enrichment of
multiple-sclerosis-associated sites among open regions
in microglia (OR=46.6), highlighting the outsized role of
these immune cells in the etiology of multiple sclerosis
and as a putative therapeutic target [78, 79]. In multi-
ple sclerosis, disease-associated microglia alter their
transcriptional profiles and may contribute to neuroin-
flammatory processes underpinning this autoimmune
disorder [79]. We also found enrichment of Parkinson’s
disease-associated sites among open regions in the
glial OPC, oligodendrocyte, and astrocyte cell classes
(OR range: 7.0–8.4). In Parkinson’s disease, glial cells
may play a major role in the progressive degeneration of

dopaminergic neurons [80], a classic hallmark of Parkin-
son’s disease, or in alterations to glutamatergic neuro-
transmission [81].

Finally, we found that heritable sites associated with
attention deficit/hyperactivity disorder (ADHD) in our
analysis were enriched only among open regions of
medium spiny neurons. While the magnitude of the
enrichment was relatively mild (OR=2.6, Padj=0.031),
genetic variants associated with ADHD have been his-
torically difficult to identify, with the first risk loci only re-
cently reported [82]. Medium spiny neurons have been
linked to behavioral hyperactivity and disrupted attention
via activation of astrocyte-mediated synaptogenesis [83].
Our results therefore suggest that medium spiny neu-
rons may be a promising target for future ADHD-related
study.

Discussion
Understanding the cellular architecture of the adult pri-
mate brain is crucial both for understanding the evo-
lution of human cognition and behavior as well as for
identifying mechanisms underlying neurological disor-
ders. In service of these goals, we used snRNA-seq
and snATAC-seq to derive a molecular atlas spanning
the adult rhesus macaque brain, comprising data from
over 4 million cells profiled from 30 brain regions. Based
on our multimodal molecular data, we identified 112
distinct molecular cell types or subtypes and character-
ized their distribution across the macaque brain, adding
to the growing number of primate single-cell molecu-
lar brain atlases [15, 32]. The data are freely available
(NeMO archive, nemo:dat-rtmm5q2) and will serve as a
rich resource for the neuroscience and neurogenomics
communities.

In generating a multi-region transcriptomic and epige-
nomic atlas of the most widely used nonhuman primate
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in neuroscience, we: (i) identified all of the major brain
cell classes and many cell types that have been previ-
ously reported (Fig. 1, Fig. 2); (ii) quantified regional
distribution of cell types and subtypes within individuals,
which allowed us to identify compositional differences in
samples collected at the same time and from the same
animals (Fig. 2); (iii) identified rare and regionally spe-
cific cell types (e.g., Purkinje cells), which may facilitate
the development of molecular tools such as cell type-
specific viral vectors that, in combination with new tech-
nologies such as CellREADR (Cell access through RNA
sensing by Endogenous ADAR) [84] may enable precise
targeting of cell types based on their unique patterns of
chromatin accessibility and gene expression; (iv ) char-
acterized multiple trans- and cis-regulatory mechanisms
that differentiate cell classes and subtypes (Fig. 4A-D,
Fig. 5); and (v ) identified numerous associations be-
tween genetic risk for neurological disorders and the
epigenomic states of specific cell types (Fig. 6).

This single-cell atlas of the adult primate is notably
generated from samples collected from healthy adults.
The paired nature of the dataset, with regions sampled
from the same individual brains, avoids many of the
inter-individual variables (e.g., genotype, environment)
that can impact neurological development and function.
The atlas may thus be a valuable resource for charac-
terizing molecular features that play a role in myriad
neurological disorders. The relatively few unique individ-
uals sampled also represents a limitation of the current
study—we currently know very little about how brains of
healthy individuals differ in cell composition and function
and what that confers for disease susceptibility and/or
progression. Given continuing improvements in cost
and throughput of single-cell sequencing, characteriz-
ing multi-region cellular variation across many healthy
individuals is becoming not only a possibility, but also an
emerging priority for the field.

To our knowledge, these data represent the largest
and most comprehensive multimodal molecular atlas in
a primate to date and provide a resource for exploring
how the heterogeneous molecular and cellular composi-
tion of the brain gives rise to the behavioral complexity
of primates including humans. We anticipate that these
data will also provide a critical and much-needed molec-
ular and neurobiological map of complex human-relevant
social behavior and disease, as well as an extensive sub-
strate for comparative analyses across animal brains.
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der identifier nemo:dat-rtmm5q2 accessible at
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for this project is available through the following
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brain-atlas (remainder of the analyses).

Methods summary
The detailed materials and methods are available in the
supplementary materials. Briefly, we collected fresh-
frozen brains from 5 adult rhesus macaques that were
part of the free-ranging Caribbean Primate Research
Center research colony on Cayo Santiago. We focused
our atlas on 30 anatomically defined regions that are as-
sociated with key cognitive, behavioral, and disease
traits. To allow for the profiling of multiple genomic
modalities from the same representative cell popula-
tions, we pulverized all samples on dry ice to homoge-
nize and divide tissue for single nucleus sequencing. We
generated single-nucleus RNA-seq data from 2,583,967
nuclei spanning a total of 30 unique regions from both
hemispheres of the brain, and paired those data with
single-nucleus ATAC-seq data from 1,587,880 28 re-
gions across 28 unique regions. These data were gen-
erated using sci-RNAseq3 [19] and sci-ATACseq3 [45]
combinatorial indexing. Single-nucleus libraries were
deeply sequenced and processed using a uniform pro-
tocol that included extensive QC filters (fig. S1-S2).

Using Leiden-clustering on snRNA-seq nuclei [19],
we identified 17 primary cell classes and then iteratively
clustered each cell class for deeper annotation of cell
subtypes. Whenever external data were available, we
validated our cell classifications using a non-negative
least squares (NNLS) approach [19] to identify corre-
lations between cell subtypes and annotated labels in

reference datasets. We then identified marker genes
for each cell class and subtype, characterized the re-
gional distribution and expression of each cell class and
subtype across the brain, and identified cell-specific en-
richment of disease-associated genes.

To connect snATAC-seq profiles to snRNA-seq nu-
clei, we used the GLUE integration approach [47], which
allowed us to annotate all snATAC nuclei based on the
cell classes and subtypes identified in our snRNA-seq
data. These connections allowed us to carry out a range
of analyses, including TF binding site enrichment, linking
TF enrichment to and TF expression within cell types,
and identifying cell-specific regulatory links between
candidate cis-regulatory elements (cCREs) and nearby
genes. Lastly, following coordinate liftover between the
primate and human genomes, we used LDSC [73, 74] to
quantify enrichment of neurological disease-associated
variants in cell class biased cCREs.

Raw sequencing data and the annotated count
matrices are available through NeMO (RRID:SCR_
002001), protocols for data generation are on
protocols.io (DOI:10.17504/protocols.io.9yih7ue and
DOI:10.17504/protocols.io.be8mjhu6); and scripts to
process samples and recreate all analyses are avail-
able on GitHub (Data and Materials Availability).

Online methods

Study population and sample collection

All animals sampled in this study are rhesus macaques
(Macaca mulatta) from the semi-free-ranging colony on
the island of Cayo Santiago, Puerto Rico. Maintained
by the Caribbean Primate Research Center (CPRC)
within the University of Puerto Rico, the Cayo Santiago
macaque colony has been largely continuously stud-
ied since its founding in 1938 [85]. All present-day
macaques are descended from an initial founder pop-
ulation of 409 animals and have since maintained an
outbred population structure despite generations of isola-
tion [86]. Apart from being provisioned with commercial
feed and occasionally subject to capture-and-release
sampling, the macaques otherwise live in naturalistic
conditions, subject to minimal intervention and manipu-
lation, as approved by IACUC. The study used animals
that needed to be removed from Cayo Santiago [87]
and were immediately euthanized. Standardized tissue
collection and sample archiving was coordinated by the
Cayo Biobank Research Unit (CBRU), which provided
the brain samples used in this study [88, 89].

Procedures for necropsy, brain removal, and dissec-
tion followed those previously described for this popu-
lation [89] and are briefly outlined here. Following vet-
erinary euthanasia, brains were perfused with sterile
saline, removed from the cranium, and hemisected into
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left and right hemispheres using a long single-edge ra-
zor blade. After sectioning off the cerebellum/brainstem
from each hemisphere, the cerebral hemispheres were
placed on custom molds (designed either for left or right
hemispheres) and coronally sectioned into 11 roughly
5-mm-thick blocks, numbered in order rostral to caudal.
All 12 blocks (with the cerebellum/brainstem considered
block 12) were then sealed in Whirl-pak bags, flash-
frozen in liquid nitrogen vapor, and archived in ultralow
–80°C freezers. The interval between euthanasia and
permanent storage of frozen tissue averaged 51 minutes,
with a standard deviation of 5.8.

All procedures were performed in accordance with
the NIH Guide for the Care and Use of Laboratory Ani-
mals and were approved by the Institutional Animal Care
and Use Committee at the University of Puerto Rico (pro-
tocol #338300). Five macaques were included in this
study (table S2). The vast majority of the data derived
from four 10-year-old macaques, which are considered
middle-aged adults in this population [90, 89].

Region selection and biopsy

Frozen brain blocks were placed on a dissection tray
over dry ice in order to keep tissue frozen during biopsy
collection. Individual blocks were then moved from the
dry ice to a tray sitting on wet ice, allowing for tissues
to be acutely warmed to the point that biopsies could
be taken from targeted structures. Biopsies were made
using a cutting spoon (Fine Science Tools, Inc., cat.
#10360-13). Dissected brain regions are listed in table
S1 and approximate locations for biopsy are illustrated
in Fig. 1A. For a given structure, attempts were made to
minimize inclusion of off-target surrounding tissues (e.g.,
white matter underlying a targeted gray matter structure).
Below, we document the most common block numbers
where structures were located. Due to interindividual
differences and/or variation in sectioning, regions of
interest were sometimes identified and dissected from
adjacent blocks based on neuroanatomical landmarks.
Alternate block numbers are therefore also documented
below.

The most anterior block sampled for this study (block
2) contained gray matter for the dorsomedial (dmPFC),
ventromedial (vmPFC), dorsolateral (dlPFC), and ventro-
lateral prefrontal cortices (vlPFC). dmPFC and vmPFC
were defined as being on the medial side of block 2.
The dmPFC biopsy was pulled from the gray matter in
the top half of the medial edge of the block. A space
along the medial edge was left to separate dmPFC from
vmPFC. The vmPFC biopsy was pulled from the me-
dial ventral half of the tissue block. Biopsies of dlPFC
came from the cortical tissues surrounding the dorsal
lateral portion of the block that included the superior and
inferior portions of the principal sulcus. Samples from

vlPFC came from the ventral and lateral portion of the
block. As was the case on the medial side, a portion of
the cortex was left between each lateral biopsy to avoid
overlap (Fig. 1A).

Block 3 (sometimes 4) contained biopsies for the
anterior cingulate cortex (ACC), corpus callosum (CC),
and head of the caudate nucleus (CN). The biopsy for
ACC was the gray matter sitting between the CC, which
is ventral to ACC and the cingulate sulcus, which sits
dorsal to the cingulate gyrus. CC was defined as the
white matter track sitting ventral to the ACC and medial
to the lateral ventricle. The CN was the gray matter sit-
ting ventrolateral to the lateral ventricle and surrounded
on all other sides by white matter. The CN was the
only biopsy in the second block that was scooped out of
the block face to minimize inclusion of any white matter
sitting anteriorly past the CN within the block (Fig. 1A).

Block 5 (sometimes 4 or 6) contained the amygdala
(AMY), entorhinal cortex (EC), perirhinal cortex (PC),
and nucleus accumbens (NAc). The NAc is located ven-
tral to the caudate, internal capsule, and putamen (Pu).
Furthermore, in fresh-frozen tissue, there was a slightly
darker color to the NAc. The tissue making up the NAc
was scooped out of the block face. Similarly, the AMY
was identified as ventral to the Pu, medial to the ventral
portion of the claustrum, and dorsal to the EC. The AMY
was also scooped out to minimize the inadvertent col-
lection of neurons within the hippocampus (HIP). Finally,
the EC and PC were collected, the delineation between
the two was the rhinal fissure (Fig. 1A).

Blocks 5–6 (sometimes 4 or 7) contained tissue that
were biopsied to represent cortical regions primary mo-
tor cortex (M1), primary somatosensory cortex (S1),
primary auditory cortex (A1), superior temporal cor-
tex (STS), and inferior temporal cortex (IT). Subcortical
structures that were biopsied included mediodorsal tha-
lamic nucleus (mdTN), ventrolateral thalamic nucleus
(vlTN), lateral geniculate nucleus (LGN), and hippocam-
pus (HIP). The delineation between M1 and S1 was
the central sulcus and were taken from the approximate
central third of the lateral portion of each respective
gyrus. Within a case, attempts were made to biopsy
from approximately the same putative mototopic and
somatotopic regions. A1 biopsies were taken from the
dorsal portion of the superior temporal gyrus which is
within the ls (i.e., inferior operculum). The gray matter
forming the STS sits ventral to the superior temporal
gyrus and dorsal to the inferior temporal gyrus. IT was
defined as the gray matter forming the lateral portion
of the inferior temporal cortex. mdTN sits bilaterally on
midline, within the thalamus. It is bound by ventricles
dorsally, laterally by the centrolateral thalamic nucleus
and ventrally by the centromedial thalamic nucleus. vlTN
is bound by the centrolateral thalamic nucleus medially,
body of the caudate nucleus (CN) dorsally, and the retic-
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ular thalamic nucleus laterally. Biopsies for mdTN were
taken from the central and central medial portions of the
nucleus, while vlTN biopsies were taken from the central
portion of the nucleus. In both cases, this was in an ef-
fort to avoid inclusion of other thalamic nuclei. The LGN
is a 6 layered structure that is easily observed on the
coronal face of fresh-frozen slabs. When observed, the
biopsy was scooped out. Like the LGN, the HIP was de-
fined by its classic cytoarchitectonic features within the
medial temporal lobe. For biopsies, efforts were made
to not include EC, which sits ventral and ventromedial to
HIP (Fig. 1A).

Block 7 (sometimes 6 or 8) contained tissues rep-
resenting the superior posterior parietal (SPP), inferior
posterior parietal (IPP), and area MT (MT). SPP biopsies
were from the gray matter of the superior lobule. The
intraparietal sulcus sits between SPP and IPP. There-
fore, IPP biopsies were taken from the gray matter of
the second, more lateral lobule. Finally, area MT was
defined by the gray matter of the insular cortex, bound
on its medial edge by white matter of the extreme ex-
ternal capsule and laterally by the superior and inferior
operculum divided by the superior temporal sulcus (Fig.
1A) [91, 92].

The final cerebral block, block 11, contained the vi-
sual cortex. Biopsies from primary visual cortex (V1)
were taken from the dorsolateral surface gray matter
above the external calcarine sulcus (Fig. 1A).

The hemisected cerebellum/brainstem block was dis-
sected as follows. First, the cerebellum was dissected
off and the cerebellar vermis (CV) was separated from
the lateral cerebellar cortex (lCb). Next, the remaining
brainstem was dissected such that the midbrain (MB)
block was separated by making a cut from just behind
the inferior colliculus to the top of the basilar pons. Next,
the pons was separated from the medulla by making a
cut from the stria medullaris (approximate center of the
fourth ventricle) to the base of the pons. A final cut at the
base of the fourth ventricle to separate the open medulla
(MdO) from the closed medulla (MdC) (Fig. 1A).

To allow for the profiling of multiple genomic modali-
ties from the same representative cell populations, we
pulverized all biopsies on dry ice to homogenize and
divide tissue for downstream experiments. We followed
the tissue pulverization procedures described by Dom-
cke et al. [93] to achieve a powder consistency on a ster-
ile aluminum foil work surface. Once sufficiently pulver-
ized, we stirred the sample thoroughly, then divided the
sample using the folded edge of foil as a funnel into new
1.5 ml pre-chilled and pre-labeled microcentrifuge tubes.
Foil and tubes were set on aluminum trays or tube racks
set on dry ice to keep powdered tissue frozen throughout
this process. We divided samples into roughly a 2:1 ratio
given the expected efficiencies/yields for single-nucleus
RNA-seq and single-nucleus ATAC-seq protocols, re-

spectively. Pulverized tissue was stored at –80°C up
until processing for downstream library preparation pro-
cedures.

snRNA-seq data generation

To profile single-nucleus gene expression, we performed
single-nucleus RNA-seq (snRNA-seq) using the three-
level single-cell combinatorial indexing RNA-seq (sci-
RNA-seq3) approach [19], which is the improved version
of the original sci-RNA-seq protocol [18].

For two out of the three experimental batches in our
dataset, we used a protocol closely adhering to the sci-
RNA-seq3 protocol described by Cao et al. [19]. For
the third batch, we used the improved protocol (“tiny
sci”) described by Martin et al. [21]. Sample order was
randomized between the first two batches, and within the
third batch, to minimize batch effects and other technical
artifacts.

For the first two batches, we slightly modified the
protocol described by Cao et al. [19, 20] for a different
tissue type and smaller input amounts. Briefly, we added
50 µl of cell lysis buffer to pulverized tissue in a 1.5 ml
microcentrifuge tube, then homogenized the tissue us-
ing 5–10 strokes with a disposable RNase-free plastic
pestle (Fisherbrand, cat. #12-141-364). We then added
another 950 µl of cell lysis buffer, mixed by pipette, then
transferred the suspension through a 70 µm cell strainer
(pluriSelect cat. #43-10070-70) into a 15 ml conical
tube containing 5 ml ice-cold 4% paraformaldehyde. Nu-
clei were fixed in 4% paraformaldehyde for 15 min with
occasional mixing, washed once in 1 ml ice-cold nuclei
wash buffer, then suspended in 200 µl nuclei wash buffer.
Nuclei were counted by mixing with 1 µM of YOYO-1 io-
dide (TheroFisher cat. #Y3601) using a Countess II
FL automated cell counter (Life Technologies), divided
into tubes in 100 µl aliquots, then flash-frozen in liquid
nitrogen.

For nuclei fixed with paraformaldehyde, library con-
struction was similar to the sci-RNA-seq3 method from
Cao et al. [19] with minor modifications including the sub-
stitution of Quick Ligase (NEB) for 10 minutes at 25°C
for the second index step, instead of T4 DNA ligase
(NEB) for 180 minutes at 16°C. For tagmentation, we
used N7 adaptor-loaded Tn5 from QB3 MacroLab at the
University of California Berkeley in tagmentation buffer
(2X TD) as previously described in Corces et al. [94]:
20 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 20% (vol/vol)
dimethylformamide (DMF). Libraries were sequenced
on a NextSeq or NovaSeq platform (Illumina) (read 1:
34 cycles, read 2: 100 cycles, index 1: 10 cycles, index
2: 10 cycles).

For the DSP/MeOH nuclei isolations and library con-
struction based on Martin et al. [21], we used hypo-
tonic lysis buffer solution B (with BSA) for small vol-
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ume tiny sci-RNA-seq3 nuclei isolation methods. For
sci-RNA-seq3 library construction, we loaded 20,000
nuclei per index 1 reverse transcriptase (RT) well in a
384 RT-well experiment with mouse and human brain
added as separate quality control nuclei and nuclei from
cell lines HEK293T (RRID:CVCL_0063) and NIH/3T3
(RRID:CVCL_0594) combined as barnyard controls per
RT plate. Nuclei from all RT plates were pooled and
redistributed to ligation plates for the second index as
previously published; after the addition of the second
index, nuclei were again re-pooled for their final distri-
bution of 4,000 nuclei per well prior to second strand
synthesis, protease digestion, tagmentation and PCR
all on this final third index plate.

snRNA-seq pre-processing

snRNA-seq sequencing reads were processed into a
gene-by-nucleus expression matrix of unique molecular
index (UMI) counts following the methods described by
Cao et al. [19]. We used largely an identical pipeline
which, briefly, (1) converts base calls to fastq files with
bcl2fastq/v.2.20 (RRID:SCR_015058) (Illumina), (2) re-
moves adapter sequences using Trim Galore/v.0.6.7
(RRID:SCR_011847) [95], (3) aligns trimmed reads to
a reference genome with STAR/v.2.7.6 (RRID:SCR_
004463) [96], (4) extracts mapped reads, (5) removes
duplicates, and (6) generates UMI counts for exonic and
intronic regions of each gene, tabulated according to the
unique three-level barcode design in sci-RNA-seq3. We
used the rhesus macaque reference genome (Mmul_
10) [97] and annotation, obtained from Ensembl (version
101) (RRID:SCR_002344). We extended the 3’ UTR
annotations of genes and transcripts by 500 bp to avoid
misclassifying genic reads as intergenic. The remainder
of our pipeline followed the procedures described by
Cao et al. [19]. After generating the count matrix, we
removed all nuclei with UMI counts < 100.

For each sample, we imported gene-by-nucleus
count matrices into the AnnData/v.0.8.0 (RRID:SCR_
018209) [98] framework, then ran Scrublet/v.0.2.3
(RRID:SCR_018098) [99] (expected_doublet_rate=0.05)
to calculate doublet scores. We marked nuclei as dou-
blets if they had Scrublet doublet scores > 0.20. For
each sample, we additionally marked nuclei as doublets
using per-sample thresholds determined by Scrublet
and adjusted by eye as necessary in order to separate
bimodal peaks visualized on the Scrublet doublet score
histogram (fig. S1).

To further identify potential doublet nuclei, we em-
ployed an iterative clustering strategy [100] imple-
mented with Scanpy/v.1.9.1 (RRID:SCR_018139) [101].
First, we combined all nuclei into a single AnnData
object and filtered nuclei to those with UMI ≥ 100,
number of expressed genes < 2,500, and a percent-

age of reads mapping to the mitochondrial genome
< 5%. We then removed all non-autosomal genes,
genes located on unplaced scaffolds, and unexpressed
genes. Next, we normalized the data to the total
UMI per nucleus, logarithmized the data, and sub-
setted the data to the 10,000 most variable genes.
For each cell, we regressed out total UMI counts per
nucleus, then mean-centered and scaled the data.
The dimensionality of the data was then reduced by
PCA (50 components). To further reduce the dimen-
sionality, we ran a UMAP (using umap-learn/v.0.5.2)
(RRID:SCR_018217) analysis [102] with BBKNN/v.1.5.1
(RRID:SCR_022807) [103] to simultaneously correct for
batch differences. For the BBKNN integration, we set
neighbors_within_batch=10 (given three batches, tan-
tamount to UMAP n_neighbors=30), used the cosine
distance metric, and used the PyNNDescent/v.0.5.6
algorithm (RRID:SCR_022806) [104]. We then ran
UMAP using the settings min_dist=0, spread=1.0, and
n_components=10 to facilitate clustering (https://umap-
learn.readthedocs.io/en/latest/clustering.html). For data
visualization only (not clustering), we ran a sim-
ilar BBKNN/UMAP pipeline with neighbors_within_
batch=5 (for three batches, tantamount to UMAP n_
neighbors=15), min_dist=0.25, spread=1.0, and n_
components=2. To cluster the data, we exported
and imported the 10-dimensional UMAP matrix into
Monocle3/v.1.2.9 (RRID:SCR_018685) [19] in R/v.4.0.2
(RRID:SCR_001905) [105], then implemented the
Leiden-clustering workflow in Monocle3 with a relatively
high-resolution setting (resolution=1×10-4). For each
cluster, we then calculated the mean Scrublet doublet
score and marked all clusters with a mean Scrublet dou-
blet score > 0.15 as doublet clusters (fig. S1).

After identifying doublets as described above, we re-
moved all marked doublets and repeated the normaliza-
tion, dimensionality, and clustering procedures almost
exactly as described above, with the only difference
being a coarser cluster resolution setting in Monocle3
(resolution=1×10-5). We confirmed adequate removal
of doublet cells by observing the clean separation of dis-
tinct cell types and the absence of clusters expressing
obviously ambiguous marker gene profiles (fig. S1).

Removal of sci-RNA-seq cell contamination
During the course of cell-type identification (see follow-
ing section), we observed the presence of two distinct
clusters of cells (fig. S2A) with expression profiles re-
sembling embryonic progenitors (markers genes, un-
known cluster 1: ASPM, CENPE, CENPF, MKI67 ; un-
known cluster 2: COL1A1, COL1A2, FN1, VIM), an
unusual finding in adult primate brain samples. Be-
cause these were present in relatively large propor-
tions in some samples ( 25%)—but at low levels overall
(2.2%)—and because our sci-RNA-seq experiments in-
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cluded control samples of exogenous (i.e., non-macaque
brain) origin (specifically, a fetal mouse brain positive
control and a “barnyard” sample consisting of mixed hu-
man HEK293T and mouse NIH/3T3 cells), we tested
for the presence of contaminating nuclei of exogenous
origin. We identified and removed contaminating cells
as follows.

Because the only non-macaque samples included
in all experiments were the control samples of ei-
ther human or mouse origin, we used BBSplit/v.38.38
(RRID:SCR_016965) [106] to assign reads to the
macaque, human, or mouse genomes. BBSplit is a
competitive aligner that maps to several references si-
multaneously, assigning reads to the genome with the
best unambiguous match. We used the following ref-
erence assemblies from Ensembl version 101: Mmul_
10 (macaque), GRCh38.p13 (human), and GRCm38.p6
(mouse). After indexing the three references simulta-
neously using BBSplit, we aligned 10 million randomly
sampled unique (de-duplicated) reads for each sam-
ple using default settings in BBSplit, which partitioned
reads assigned to each genome into separate fastq files.
Unmapped and ambiguous reads were directed to ad-
ditional fastq files that were not used. Using a similar
demultiplexing workflow to the sci-RNA-seq3 prepro-
cessing pipeline, we tabulated reads-per-cell for each of
the three genomes and calculated summary statistics.

After filtering to only cells with ≥10 unambiguously
assigned reads by BBSplit, we observed that discernible
fractions of exogenous reads (reads unambiguously as-
signed to human or mouse) were specific to certain
barcodes from the first round of sci-RNA-seq barcod-
ing (reverse transcription), indicating that a low level of
cross-well contamination of cells or barcoded primers
likely occurred at this stage (fig. S2C). We also ob-
served that, after filtering to cells passing all previous
quality control filters, our clustering and annotation work-
flow had partitioned exogenous cells into two clusters
corresponding to human and mouse cells respectively,
with no discernible exogenous contamination in other
annotated cell types (fig. S2B). After removing the en-
tirety of the two exogenous clusters from the dataset
(N=58,443 cells), we re-examined the distribution of
exogenous read fractions across reverse-transcription
barcodes and confirmed that human and mouse cells
were effectively removed (fig. S2C).

snRNA-seq cell-type and cell-subtype
identification

To identify cell types, we visualized the expression of
canonical marker genes (table S3) on normalized, log-
transformed gene expression data using Scanpy. Most
clusters were readily assigned to well-characterized cell
types in this manner. To aid in the classification of more

nuanced cell types, we determined top marker genes
using logistic-regression and t-test marker-gene meth-
ods implemented via the ‘rank_genes_groups‘ function
in Scanpy. For each discrete cell type, we ran marker
gene tests by testing gene expression in a given cell
type against gene expression in all other cells in our
dataset.

Based on canonical markers and data-derived
marker genes, we identified 17 parent cell types (not
including the two cells of exogenous origin, see section
above), which we refer to as cell classes. In all but two
cases, our parent cell types corresponded with parti-
tions identified through our clustering using Monocle3
(q-value threshold=0.05). In two cases, we considered
clusters assigned to the same partition to be discrete
parent cell types because they exhibited clear separation
in our global analysis while clearly expressing canonical
markers of known cell types (dopaminergic and sero-
tonergic neurons; table S3), yet did not effectively seg-
regate when their assigned partition (the partition also
including GABAergic neurons) was analyzed separately.

To identify cell subtypes, we partitioned the data
by cell class and reanalyzed each data partition indi-
vidually. For each cell-class-specific analysis, we re-
peated a preprocessing, dimensionality reduction, and
clustering analysis that largely followed the pipeline de-
scribed above for our global analysis, with the follow-
ing exceptions. After normalizing and log-transforming
the data, we identified the 2,000 most variable genes
for each given cell type and subset the data to those
highly variable genes. Because we observed that dif-
ferences in total UMI among batches resulted in arti-
factual clusters being identified downstream (even after
batch-correction with BBKNN, a problem we did not
observe in our global analysis), we regressed out to-
tal UMI counts per nucleus separately for each batch.
We then combined residual values from all batches be-
fore mean-centering and scaling for PCA and UMAP
analysis. For Leiden clustering, we used the same reso-
lution parameter (resolution=1×10-5) for most cell types,
but in four cases defaulted to partitions identified us-
ing Monocle3 (q-value threshold=0.05) after observing
small clusters with unusually high UMI. We considered
clusters/partitions identified in this manner to be cell
subtypes.

As with our global (all cell classes combined) analy-
sis, for each cell subtype we identified top marker genes
using logistic-regression and t-test marker gene meth-
ods implemented in Scanpy. Additionally we used a non-
negative least squares (NNLS) approach [19] to identify
correlations between cell subtypes and annotated labels
in reference datasets (table S5, fig. S8).

Additionally, we scanned for gene-disease associ-
ations that were enriched among the top 100 marker
genes for each cell subtype. We used gene-disease as-
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sociations from the DISEASES database (RRID:SCR_
015664) [59] and used Fisher’s exact test to identify over-
represented disease associations among the top 100
marker genes for a given cell subtype, using all macaque
genes in our analysis as the background (table S10).

Cell composition and regional
heterogeneity analysis

To assess the specificity of cell classes and/or subtypes,
we calculated the Jensen-Shannon divergence statis-
tic using the ‘JSD‘ function from the philentropy pack-

age (RRID:SCR_022805) [107] in R. We calculated the
Jensen-Shannon divergence by comparing, for a given
cell class or cell subtype, the cell type’s count distribution
across brain regions to the count distribution (combining
all cell types per region) of the entire dataset combined
[29].

To measure regional heterogeneity within cell types,
we extended our recently developed statistic, lochNESS
[41], to quantitatively measure enrichment of each re-
gion subclass or region within each cell’s neighborhood.
For each cell type, we define lochNESS of celln for
regionm as:

lochNESScelln,regionm =
# o f cells f rom regionm in kNNs o f cell

k
/

# o f cells f rom regionm in cell type
N

(1)

where N is the total number of cells in the the cell type and k is the number of nearest neighbors for celln.
For each cell type the calculation results in a cell × region matrix, where each row can be separately visualized.
For a summarizing visualization, each cell can be colored by the region with the largest lochNESS. Additionally,
when we focus on a subset of regions (e.g. just the cortical regions), we calculate a normalized lochNESS that is
comparable across the regions of interest:

lochNESS∗celln,regionm = lochNESScelln,regionm/
M

∑
m=1

lochNESScelln,regionm (2)

where M is the number of regions or region subclasses of interest.

To identify genes that are expressed with regional bias, we fit a regression model for each gene to identify regions
with significant non-zero correlation with gene expression as implemented in Monocle3 [19]. The model for each
cell type is:

logexpression = β0 +β1 ∗ lochNESSregion1 +β2 ∗ lochNESSregion2 + . . .+βm ∗ lochNESSregionm (3)

where β0 is the intercept and lochNESSregion1 is a vector of lochNESS across all cells in the cell type.

Hierarchical clustering of cells and
regions

We used Scanpy to cluster cell classes and brain re-
gions based on the top 50 principal components (PCs)
of gene expression. Because of our use of BBKNN for
batch correction in our main workflow, our PCA was not
actually corrected for batch. To rectify this, we first used
the harmonpy/v.0.0.5 (RRID:SCR_022798) implementa-
tion of Harmony (RRID:SCR_022206) [108] to generate
a batch-corrected PCA matrix (convergence after 2 gen-
erations). We then used the Scanpy ‘dendrogram‘ func-
tion to perform hierarchical clustering using the batch-
corrected PCA embedding. To visualize uncertainty, we
performed 1,000 bootstrap iterations in which we resam-
pled cells randomly with replacement and computed new
dendrograms. We then used the ‘DensiTree‘ function
[109] implemented in the phangorn/v.2.6.3 (RRID:SCR_
017302) [110] R package to visualize trees. We per-
formed this procedure using both cell class and brain

region as labels (fig. S5A-B).
For brain regions, we also performed hierarchical

clustering using the cell proportion (cell class×brain re-
gion) matrix. We used the ‘hclust‘ function in R to cluster
using the ‘complete’ method based on Euclidean dis-
tances. To again visualize uncertainty, we resampled
all cells in our dataset 1,000× with replacement, then
repeated calculation of cell class proportions and hi-
erarchical clustering. We visualized the final tree with
‘DensiTree‘ (fig. S5B).

snATAC-seq data generation

To profile single-nucleus chromatin accessibility, we per-
formed single-nucleus ATAC-seq (snATAC-seq) using
the three-level single-cell combinatorial indexing ATAC-
seq (sci-ATAC-seq3) approach [45], which is the im-
proved version of the original sci-ATAC-seq protocol [44].
We followed the protocol of Domcke et al. [93], with slight
modifications. Briefly, we added 50 µl of Omni-ATAC
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lysis buffer to pulverized tissue and homogenized the
tissue with 5–10 strokes with a disposable RNase-free
plastic pestle (Fisherbrand, cat. #12-141-364). We then
added another 950 µl of Omni-ATAC lysis buffer, mixed
by pipette, incubated on ice for 3 min, then transferred
the suspension to a new 15 ml conical tube containing
5 ml ATAC-RSB with 0.1% Tween-20. We then pelleted
the nuclei, removed the supernatant, and resuspended
the pellet in 1 ml of 1x DPBS. We then transferred the
suspension through a 70 µm cell strainer (pluriSelect
cat. #43-10070-70) into a 15 ml conical tube contain-
ing 4 ml of 1x DPBS and 140 µl of 37% formaldehyde
(final concentration 1% formaldehyde). We then incu-
bated the nuclei for 10 min with occasional mixing. The
fixation was then quenched with 250 µl 2.5 M glycine,
incubated for 5 min at room temperature, then incubated
for another 15 min on ice. We then pelleted the nu-
clei, removed the supernatant, and resuspended the
pellet in 2 ml freezing buffer. Nuclei were counted by
mixing with 1 µM of YOYO-1 iodide (TheroFisher cat.
#Y3601) using a Countess II FL automated cell counter
(Life Technologies), divided into tubes in 50 µl aliquots,
then flash-frozen in liquid nitrogen

Frozen fixed nuclei were prepared for the sci-ATAC-
seq3 library similar to Domcke et al. [45]. Omni-ATAC
lysis buffer (10 mM NaCl, 3 mM MgCl2, 10 mM Tris-
HCl pH 7.4, 0.1% IGEPAL CA-630, 0.1% Tween 20
and 0.01% Digitonin) was used to permeabilize fixed
nuclei before diluting samples with ATAC-RSB (10 mM
NaCl, 3 mM MgCl2, 10 mM Tris-HCl pH 7.4) supple-
mented with 0.1% Tween-20. Approximately 200,000
nuclei per sample was spread across 4 wells for tagmen-
tation as previously described. Barnyard control for each
set of experiments included mouse cell line (CH12-LX;
RRID:CVCL_0211) and human pancreas as a quality
control tissue.

Our combined snATAC-seq dataset encompasses
data prepared using five sci-ATAC-seq3 experimental
runs (i.e., library preparation/sequencing batches). Sam-
ple order was randomized between batches to ensure
balance of brain regions, sex, and hemispheres between
runs and to minimize batch effects.

snATAC-seq pre-processing

snATAC-seq sequencing reads were processed into
a peak-by-nucleus count matrix following the meth-
ods described by Domcke et al. [45]. We followed
largely an identical pipeline which, briefly, (1) con-
verts base calls to fastq files with bcl2fastq/v.2.20
(Illumina), (2) removes adapter sequences using
Trimmomatic/v.0.39 (RRID:SCR_011848) [111], (3)
aligns trimmed reads to a reference genome with
bowtie2/v.2.4.1 (RRID:SCR_016368) [112], (4) calcu-
lates nonduplicate fragment endpoints for each cell, (5)

calls peaks using MACS2/v.2.2.7.1 (RRID:SCR_013291)
[113, 114] and merges peaks across samples to create
a merged BED file, (6) tabulates reads from merged
peaks and annotated TSSs (±1 Kb around each TSS)
for quality control (QC), (7) separate cell barcodes from
background barcodes by fitting a mixture of two negative
binomials (noise vs. signal), and (8) assembles sparse
matrix tabulating reads per cell barcode falling within the
master set of peaks and within gene bodies extended by
2 Kb upstream. We used the rhesus macaque reference
genome (Mmul_10) [97] and annotation, obtained from
Ensembl (version 101), and merged peaks across all
samples (encompassing five library preparation and se-
quencing batches) to create a global set of peaks. After
binarizing UMI counts, we filtered the peak-by-nucleus
matrix to include only nuclei with ≥ 1000 binarized UMI,
less than 100,000 binarized UMI, and ≥ 30% fraction of
reads in peaks (FRIP) (fig. S11).

We identified and removed doublets using a simi-
lar iterative clustering approach to that described for
our single-nucleus RNA dataset (fig. S11). Briefly, we
ran Scrublet/v.0.2.3 [99] on each sample individually
and marked doublets using both a universal threshold
(Scrublet doublet score > 0.20) and a per-sample thresh-
old determined by Scrublet and checked and adjusted
(if necessary) by eye. We then performed a similar
preprocessing, dimensionality reduction, and clustering
pipeline to identify clusters with relatively high Scrublet
doublet scores (mean Scrublet doublet score > 0.15).
We finally removed all nuclei marked as doublets based
on the described criteria before concatenating all singlet
nuclei across all samples together.

Our snATAC-seq preprocessing, dimensionality re-
duction, and clustering pipeline likewise tracked closely
to our single-nucleus RNA-seq analysis, with minor mod-
ifications to accommodate best practices for ATAC-seq
data. Briefly, we filtered the data to remove peaks that
were not accessible in a minimum of 5 cells as well
as peaks that were located on non-autosomal or un-
placed scaffolds in the macaque genome. We then
filtered the data to the top 100,000 variable features.
We performed latent semantic analysis (LSI) on the re-
sulting peak-by-cell matrix to reduce the dimensional-
ity of the data. We performed term frequency/inverse
document frequency (TF-IDF) normalization followed
by singular value decomposition (SVD) following previ-
ously described procedures [45] to reduce the data to 50
PCA dimensions. L2 normalization was then performed
on the last 49 principal components, thereby excluding
the first principal component, which tends to capture
read depth [45]. TF-IDF, SVD, and L2-normalization
procedures were implemented using scikit-learn/v.1.0.2
(RRID:SCR_002577) [115]. The L2-normalized PCA
matrix was then reduced further and clustered using
an identical BBKNN/UMAP/Monocle3 approach to that
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used for our single-nucleus RNA-seq data. Doublet-
derived clusters were also marked for removal using
an identical threshold (mean Scrublet doublet score >
0.15).

After marking and removing doublets from our data,
we repeated our preprocessing, dimensionality reduc-
tion, and clustering pipeline. After observing clear sep-
aration of distinct cell classes, we used MUON/v.0.1.2
(RRID:SCR_022804) [116] to calculate promoter acces-
sibility scores by tabulating binarized UMI counts within
the region 2,000 bp upstream of a transcriptional start
site (TSS). Because at the time of this analysis MUON
did not factor in DNA strand information, we ran the func-
tion ‘count_fragments_features‘ separately for + and –
strand genes, using the “upstream_bp” or “downstream_
bp” arguments as necessary to tabulate counts in the
correct upstream region (extending from the TSS to
[TSS – 2,000 bp] or [TSS + 2,000 bp], respectively)
(https://github.com/scverse/muon/issues/59). We used
Scanpy to normalize and visualize resulting promoter ac-
cessibility scores (Fig. 3B). We provisionally classified
nuclei based on promoter accessibility scores of known
marker genes.

Integration of snRNA-seq and
snATAC-seq data

We used Graph Linked Unified Embedding (GLUE) im-
plemented in scglue/v.0.2.3 (RRID:SCR_022803) [47]
to integrate our snRNA-seq and snATAC-seq datasets.
To run scglue, we followed preprocessing procedures
in Scanpy recommended by the scglue authors for both
our snRNA-seq and snATAC-seq data, after filtering out
doublets as described above. For snRNA-seq data,
we identified the top 2,000 most variable genes, then
normalized, log-transformed, and scaled the data us-
ing default parameters in Scanpy. We then reduced
the dimensionality of the data to the top 100 principal
components using PCA, based on the top 2,000 variable
genes and the automatic SVD solver selected by Scanpy.
For snATAC-seq data, we used the LSI implementation
in scglue to reduce the data to the top 100 principal
components, with the number of power iterations set to
15.

We then used scglue to compute a prior guidance
graph and propagated highly variable snRNA-seq fea-
tures (genes) to identify highly variable snATAC-seq
features (peaks) based on the guidance graph. We
then built and trained the GLUE integration model using
the PCA and LSI embeddings, respectively, as the first
encoding transformation, modeling raw counts of both
snRNA-seq and snATAC-seq data using the negative
binomial model, using the batch-correction option to cor-
rect for sequencing batches, and using the previously
computed prior guidance graph as input. As all nuclei

from this study were included (totaling over 4 million
nuclei), this analysis was particularly computationally
demanding. We performed this analysis on a machine
with 1.5 TB RAM, accelerated by 4 Tesla V100 (NVIDIA)
GPUs.

After training a GLUE model, we validated effective
integration by calculating integration consistency scores
using scglue (fig. S12A). We then calculated integrated
cell and feature embeddings for both snRNA-seq and
snATAC-seq data using scglue. After projecting all cells
to a unified embedding, we performed UMAP dimension-
ality reduction using the same procedures as described
previously, with one exception. Because the unified
GLUE embedding was already batch-corrected, we com-
puted the neighborhood graph using the Scanpy ‘neigh-
bors‘ function rather than BBKNN, with n_neighbors=15.

To transfer cell-class labels from our snRNA-seq data
to our snATAC-seq data, we used the ‘transfer_labels‘
function in scglue, which computes shared nearest
neighbors between reference (snRNA-seq) and query
(snATAC-seq) nuclei, weighted by the Jaccard index.
Jaccard indices are then normalized per query nucleus
to form a mapping matrix, which is then multiplied by
one-hot-encoded reference labels. The reference label
with the highest score is then assigned as the predicted
cell type, with the highest score retained as the confi-
dence score. For label transfer, because a subset of our
snRNA-seq data was derived from samples that were
unprofiled in our snATAC-seq data, we limited our ref-
erence RNA-seq dataset to only those nuclei deriving
from samples profiled in both snRNA-seq and snATAC-
seq experiments. We then retained 100,000 nuclei from
withheld (unmatched) snRNA-seq samples as a query
dataset to evaluate label transfer accuracy. For snATAC-
seq label transfer, we used all snATAC-seq nuclei as a
query dataset. We used previously assigned parent cell
types for our snRNA-seq dataset as reference labels.
For our snATAC-seq query nuclei, we retained all pre-
dicted cell-class labels with a label transfer confidence
score ≥ 0.95. At this threshold, the error rate in our
evaluation dataset was 0.43% (fig. S12B).

Identification of candidate cis-regulatory
elements

To scan for candidate cis-regulatory elements underlying
differential expression among brain cells, we used two
complementary approaches. First, we used the integra-
tive GLUE regulatory inference approach implemented
in scglue/v.2.0.3 [47], which calculates regulatory scores
based on the cosine similarities between multi-omics
data features in an integrated space. Second, we used
a metacell approach to construct multi-omic samples
(determined via k-means clustering in integrated space)
with aggregated (pseudobulk) gene expression and chro-
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matin accessibility counts, which we then modeled using
logistic regression. Finally, we calculated differentially
accessible peaks using a similar workflow to our snRNA-
seq marker gene analysis.

To calculate GLUE regulatory scores, we performed
a second integration of our snRNA-seq and snATAC-
seq datasets, following an identical pipeline except in-
cluding the top 6,000 most variable genes (rather than
2,000). This allowed us to identify putative gene:peak
regulatory connections and to generate an integrated
feature embedding for a greater number of genes and
genomic regions. We constructed a window graph be-
tween inferred promoters—which we calculated as the
region from the strand-specific transcription start site
extended upstream 2,000 bp—and peaks using the ‘win-
dow_graph‘ function, with the window size set to 150 Kb
and a distance-decaying weight, as recommended by
the scglue authors. We then used the previously com-
puted window graph and feature embeddings to perform
the regulatory inference analysis using the ‘regulatory_
inference‘ function, with the alternative hypothesis set to
“greater” in order to perform a one-sided test.

In order to determine the directionality of putative reg-
ulatory relationships, we used a second approach based
on metacell identification and logistic regression (Fig.
5A). We use the ‘get_metacells‘ function to generate
multi-omic (snRNA-seq/snATAC-seq) metacells based
on k-means clustering of their integrated cell embed-
dings. As our snRNA-seq dataset included 2,583,967
single-cell transcriptomes, we set k (n_meta) to 10,335
in order to target a mean of roughly 250 RNA transcrip-
tomes per metacell. After identifying metacells in this
manner, we summed (pseudobulked) gene expression
per metacell. For each gene:peak pair tested in our
GLUE regulatory inference, we then performed a logis-
tic regression modeling accessibility of each individual
snATAC-seq cell in a given metacell (1: open, 0: closed)
as a function of log2CPM-normalized gene expression
for that snATAC-seq cell’s respective metacell. Logistic
regressions were performed in R/v.4.0.2.

We considered candidate cis-regulatory relation-
ships to be gene:peak pairs for which FDR-adjusted
P < 0.05 for both the GLUE regulatory inference and
metacell-based logistic regression tests. We classified
candidate cis-regulatory relationships as positive or neg-
ative relationships based on the sign of their logistic
regression coefficients (β values) (fig. S15).

For all peaks, we also tested for marker peaks (peaks
with differentially accessibility) using logistic-regression
and t-test marker-gene methods implemented via the
‘rank_genes_groups‘ function in Scanpy. Similar to our
snRNA-seq marker genes analysis, we ran marker peak
tests by testing chromatin accessibility in a given cell
type against accessibility in all other cells in our dataset.
Additionally, to validate marker peaks, we used a second

logistic-regression approach implemented via the ‘Find-
Markers‘ function in Seurat/v.4.1.1 (RRID:SCR_016341)
[117]. In contrast to the logistic regression in Scanpy,
the Seurat implementation is not a regularized proce-
dure and is thus able to control for latent variables and
to calculate P values. To reduce computational burden,
we ran ‘FindMarkers‘ on a dataset with 1,000 cells per
cell class. As we found that output statistics (regularized
logistic regression coefficient in Scanpy and log fold-
change in Seurat) were highly concordant (fig. S16), we
report Scanpy results here as they included all possible
cells. We considered peaks to be differentially accessi-
ble if the regularized logistic regression coefficient > 0,
the log fold change > 0, and the t-test Padj < 0.05.

snATAC-seq cell subtype analysis

To mitigate peak-calling biases while allowing us to
probe more nuanced regulatory variation within cell pop-
ulations, we called a new set of cell-class-specific peaks
for each cell type with assigned cells, skipping rarer cell
types for which no snATAC-seq nuclei passed our pre-
diction threshold above.

Following scglue integration and assignment of
snATAC-seq cells to cell classes, we created cell-class-
specific pseudobulk epigenomes by aggregating all
nonduplicate fragment endpoints for each cell class.
These cell-class-level ATAC-seq data were then used
for peak-calling using MACS3/v.3.0.0a6 [113, 114], with
the same peak calling parameters that we used for each
sample and batch described in the “snATAC-seq pre-
processing” section above (‘-g 2.7e9 –call-summits –
nomodel‘). For each cell class, we repeated steps from
our snATAC-seq data generation pipeline to tabulate
reads from newly called peaks and to assemble sparse
count matrices matrix tabulating reads per cell barcode
falling within the master set of peaks and within gene
bodies extended by 2 Kb upstream. We then imported
peak-by-nucleus count matrices into the AnnData/v.0.8.0
[98] framework.

To assign cell subtypes for our snATAC-seq data (fig.
S13), we repeated preprocessing, data integration, label
transfer, and regulatory inference procedures described
above on each cell class individually. In contrast to our
global joint analysis, we only included snRNA-seq nuclei
deriving from samples that were profiled in both snRNA-
seq and snATAC-seq experiments, and used the top
6,000 most variable genes in our snRNA-seq analysis,
and used the snATAC-seq peak sets specific to each cell
type. The remainder of our preprocessing and data inte-
gration procedures followed the same pipeline described
previously for our global integration analysis. For label
transfer, we also followed largely the same procedures
as for our global label transfer pipeline. We did not, how-
ever, use a label transfer confidence score threshold
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under the assumption that snATAC-seq nuclei would, on
average, be assigned to the correct cell subtype and,
if incorrect, would be assigned to a closely related cell
subtype (i.e., a neighboring subtype in the integrated
multidimensional cell space).

For metacell-based regulatory inference, we varied
the settings for k based on dataset size in order to target
a mean of 50 transcriptomes per metacell.

Transcription factor binding site
enrichment

For enrichment analyses at the cell-class level, we fo-
cused on peaks that were deemed accessible in one
and only one cell class, which we called “cell-class-
unique peaks”. We identified these peaks using Bed-
Tools/v.2.30.0 (‘intersect -v‘) (RRID:SCR_006646) [118]
to find all peaks in a cell class that did not overlap with
any peak called in another cell class. The number of
peaks identified in this manner ranged from 655 (in
ependymal cells) to 71,049 (in glutamatergic neurons).
We tested for enrichment of TF binding motifs in cell-
class-unique peaks compared to the background of the
rhesus macaque genome while controlling for GC con-
tent, implemented in the monaLisa/v.1.3.1 (RRID:SCR_
022802) [119] in R/v.4.1.0 (table S8). We used the
JASPAR 2018 (RRID:SCR_003030) non-redundant ver-
tebrate core position weight matrices [120].

At the cell-subtype level, we tested for enrichment
using the top differentially accessible peaks among sub-
types of the same cell class, excluding peaks with reg-
ularized logistic regression coefficients < 0 (table S9).
We retained the top first percentile of marker peaks,
ranked according to their regularized logistic regression
coefficients.

Disease heritability enrichment

We calculated enrichment of disease-associated vari-
ants in cell-class-specific accessible chromatin regions
using linkage disequilibrium score regression, LDSC
(RRID:SCR_022801) [73, 74] (Fig. 6 and table S15).
Because the trait-associated loci are annotated in the hu-
man genome, we converted all peaks (at the combined
level as well as each individual cell-class level) from
the rhesus macaque genome coordinates to GRCh37
using UCSC’s liftOver/v.302 (RRID:SCR_018160) tool
[121]. We followed the standard pipeline using the 1000
Genomes baseline model and precomputed .sumstats
files. A list of phenotypes tested can be found in table
S14.
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