

1
2 **Host-plant adaptation as a driver of incipient speciation in the**
3 **fall armyworm (*Spodoptera frugiperda*)**
4
5

6 Estelle Fiteni¹, Karine Durand¹, Sylvie Gimenez¹, Robert L. Meagher, Jr.², Fabrice Legeai^{3,4}, Gael J.
7 Kergoat⁵, Nicolas Nègre¹, Emmanuelle d'Alençon¹, Kiwoong Nam^{1*}

8 ¹DGIMI, Univ Montpellier, INRAE, Montpellier, France

9 ²United States Department of Agriculture, Agricultural Research Service, Gainesville, Florida,
10 U.S.A

11 ³INRAE, UMR-IGEPP, BioInformatics Platform for Agroecosystems Arthropods, Campus
12 Beaulieu, Rennes, 35042, France

13 ⁴INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France

14 ⁵CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ Montpellier, Montpellier, France

15 *Correspondence: ki-woong.nam@inrae.fr

16

17

18

19

20

21

22

23 ABSTRACT

24 Background

25 Divergent selection on host-plants is one of the main evolutionary forces driving ecological
26 speciation in phytophagous insects. The ecological speciation might be challenging in the presence
27 of gene flow and assortative mating because the direction of divergence is not necessarily the same
28 between ecological selection (through host-plant adaptation) and assortative mating. The fall
29 armyworm (FAW), a major lepidopteran pest species, is composed of two sympatric strains, corn
30 and rice strains, named after two of their preferred host-plants. These two strains have been
31 hypothesized to undergo incipient speciation, based on (*i*) several lines of evidence encompassing
32 both pre- and post-zygotic reproductive isolation, and (*ii*) the presence of a substantial level of
33 genetic differentiation. Even though the status of these two strains has been established a long time
34 ago, it is still yet to be found whether these two strains indeed exhibit a marked level of genetic
35 differentiation from a large number of genomic loci. Here, we analyzed whole genome sequences
36 from 56 FAW individuals either collected from pasture grasses (a part of the favored host range of
37 the rice strain) or corn to assess the role of host-plant adaptation in incipient speciation.

38 Results

39 Principal component analysis of whole genome data shows that the pattern of divergence in the fall
40 armyworm is predominantly explained by the genetic differentiation associated with host-plants.
41 The level of genetic differentiation between corn and rice strains is particularly marked in the Z
42 chromosome. We identified one autosomal locus and two Z chromosome loci targeted by selective
43 sweeps specific to rice strain and corn strain, respectively. The autosomal locus has both increased
44 D_{XY} and F_{ST} while the Z chromosome loci had decreased D_{XY} and increased F_{ST} .

45 Conclusion

46 These results show that the FAW population structure is dominated by the genetic differentiation
47 between corn and rice strains. This differentiation involves divergent selection targeting at least
48 three loci, which include a locus potentially causing reproductive isolation. Taken together, these
49 results suggest the evolutionary scenario that host-plant speciation is a driver of incipient speciation
50 in the fall armyworm.

51 **Keywords:** fall armyworm, host-plant adaptation, incipient speciation, speciation with gene flow,
52 *Spodoptera frugiperda*

53 INTRODUCTION

54 Host-plant adaptation is one of the main evolutionary forces causing ecological speciation in
55 phytophagous insects [1] since plants provide nutrients, oviposition sites, and mating places.
56 Population genomics and molecular evolutionary analyses provide powerful tools to identify
57 adaptively evolved insect genes potentially causing host-plant adaptation. These genes encode
58 chemosensory proteins to detect suitable plants, oral secretion proteins to respond to plant defense,
59 digestion genes to catabolize plant molecules, and detoxifying proteins to neutralize plant secondary
60 metabolites [2, 3]. Several studies also show that these genes exhibit accelerated adaptive
61 evolutionary rates in phytophagous insects [4–6]. Interestingly, polyphagous phytophagous insects
62 generally have higher numbers of detoxification and chemosensory genes than monophagous ones
63 [7–10] probably due to the consequence of the interactions with diverse plant molecules from
64 diverse plant species [11].

65 In the presence of gene flow, speciation by host-plant adaptation can be challenging. Typical
66 speciation processes with gene flow involve both prezygotic reproductive isolation by assortative
67 mating and postzygotic reproductive isolation by ecological divergent selection (such as divergent
68 selection on the usage of host-plants) [12]. As demonstrated by the classical paper by Felsenstein
69 [13], recombination between genetic loci determining assortative mating and ecological divergent
70 selection generates all allelic combinations for these loci, and evolutionary trajectories of
71 divergence are determined by the relative strength between ecological divergent selection and
72 assortative mating. Therefore, the presence of divergent selection on host-plants does not
73 necessarily imply that speciation will occur between two populations with different host-plants.
74 Since the 1990s, theoretical evolutionary studies have shown that speciation may occur even in the
75 presence of gene flow in particular sets of conditions overcoming the homogenizing effect of
76 recombination, and almost a hundred models of speciation with gene flow have been proposed[12].

77 For example, if host-plants provide both nutrients and mating sites, such as in the case of the
78 *Rhagoletis pomonella* sibling-species complex [14, 15], recombination does not affect divergence
79 because there is only one trait causing the divergence [16, 17]. In this case, speciation may occur
80 readily between a pair of sympatric populations.

81 The fall armyworm (FAW), *Spodoptera frugiperda* (Lepidoptera: Noctuidae: Noctuinae) is a major
82 pest species native to the Americas that recently invaded the Eastern hemisphere, with invasive
83 populations being first reported in West Africa in 2016 [18]. Since then, it quickly spread in almost
84 all of sub-Saharan Africa, and then progressively expanded its range in Egypt, Asia, and Australasia
85 (<https://www.cabi.org/isc/fallarmyworm>), and the FAW is considered one of the worst invasive pest
86 species in Africa [19]. The FAW consists of two ecologically divergent host-plant strains, referred
87 to as the corn strain (sfC) and rice strain (sfR) [20, 21]. Even though the FAW is a very
88 opportunistic and polyphagous pest species [22], sfC and sfR strains are known for displaying
89 differentiated ranges of preferred host-plants, such as sfC prefers corn, sorghum, and cotton,
90 whereas sfR prefers rice, millet, and pasture grasses. The two strains are observed in sympatry in
91 the FAW native range. Hybrid individuals have been also documented with proportions as high as
92 16% [23]. Reciprocal transplant experiments demonstrated that the two strains present differential
93 performances on their preferred host-plants [24], which implies the existence of differential host-
94 plant adaptation. Interestingly, sfC and sfR have allochronic mating patterns [25, 26] and different
95 compositions of sexual pheromone blends [27, 28], and hybrid crosses generated in a lab have
96 reduced fertility [29], implying a possibility that host-plant adaptation might not be a single
97 evolutionary force causing divergence in FAWs. The status of both strains has been often
98 questioned [30, 31], and the extant consensus is that these two strains are engaged in a process of
99 incipient speciation [32]. Mitochondrial cytochrome *c* oxidase subunit 1 (COX1) gene [33, 34] and
100 Z chromosome Triosephosphate isomerase (TPI) gene [35] have been widely used to identify both
101 strains.

102 Several studies demonstrated that genomic differentiation occurs between sfC and sfR strains. For
103 example, Tessnow et al. [36] showed from samples collected from Texas that sfC and sfR have
104 allochronic matings as well as genomic differentiation. Durand et al. [37] analyzed whole genome
105 resequencing data, originally generated by Schlum et al. [38], of 55 samples collected from
106 Argentina, Brazil, Kenya, Puerto Rico, and the mainland USA. They also observed that whole
107 genome sequences are differentiated between sfC and sfR samples, partly due to very strong
108 divergent selection on Z chromosomes, which caused autosomal differentiation by genome
109 hitchhiking [39]. It should be noted that most samples in these studies were collected at the adult
110 stages near corn or sorghum, which are known to belong to the preferred host-plants of sfC.
111 Therefore, the effect of host-plant during larval stages in the incipient speciation of FAW is still
112 unknown. We first reported genomic differentiation between strains from larval samples collected
113 from a corn field in Mississippi [8, 40]. However, larval samples from sfR-preferred host-plants
114 were not included in these studies. In short, the effect of host-plant in genomic differentiation is yet
115 to be reported.

116 In this study, we analyzed whole genome sequences of FAW samples at the larval stage that were
117 collected from corn fields (one of the sfC preferred host-plants) and a pasture grass field (part of the
118 sfR preferred host range) to test whether differential host-plant adaptation drives incipient
119 speciation between sfC and sfR. First, we test whether the population structure of FAW is mainly
120 determined by the differential ranges of host-plants. Second, we test the existence of divergent
121 selection that potentially caused differential adaptation to host-plants. Third, we test the genetic
122 differentiation of the *vrille* gene, which was shown to determine allochronic mating patterns in
123 FAW [25]. It should be noted that we do not test for the possibility that speciation occurs only
124 through differential host-plant adaptation. Instead, we aim at testing the major effect of host-plant
125 adaptation during potential incipient speciation in the FAW.

126 RESULTS

127 *Reference genome assembly, strains, and resequencing dataset*

128 The size of the assembled reference genome was 385 Mb, and N50 is 10.6 Mbp. L90 is 26, which is
129 close to the known number of chromosomes in the FAW (31), implying that we nearly have
130 chromosome-sized scaffolds in this assembly. The BUSCO analysis [41] showed that this assembly
131 had the highest correctness among all published FAW genome assemblies (Table S1). The number
132 of identified SNVs (single nucleotide variations) from 56 samples was 22,877,074.

133 When the TPI locus was used to identify strains, an almost perfect correlation between host-plants
134 and the identified strain was observed (Table 1, Table S2, and Fig. S1), with the single exception
135 that an sfR individual was found from a corn field (MS_R_R6). When the mitochondrial COX1 was
136 used, one and ten samples from the pasture grass were assigned to sfC and sfR, respectively. The
137 numbers of sfC and sfR samples from corn fields were 33 and 12, respectively.

138 *The effect of host-plants on genetic differentiation*

139 Principal component analysis of whole genome data recovered two groups at the first principal
140 component (Fig. 1A). This grouping had a perfect correlation with host-plants with a single
141 exception of a single sample from corn (MS_R_R6), which was clustered with other samples from
142 pasture grasses. Here, we categorized the groups composed of samples from corn and pasture
143 grasses as the corn group and the grass group, respectively. All the samples from the corn group and
144 the grass group can be assigned to sfC and sfR according to the TPI marker, respectively. All
145 samples from the grass group were assigned to sfR identified based on the mitochondrial COX1
146 marker except for one sample (FGJ4). In the corn group, 33 and 11 samples were assigned to sfC

147 and sfR according to the mitochondrial COX1 marker, respectively. Interestingly, all 13 samples
148 from the corn group in Florida were sfC according to the mitochondrial COX1 marker, whereas
149 only 62.5% of the corn group in Puerto Rico and Mississippi were sfR (20 out of 32). The grouping
150 according to geographic population was not observed within the corn group from the first to tenth
151 principal components (Fig. S2).

152 When the principal component analysis (PCA) was performed from the Z chromosome and
153 autosomes separately, the same trend was observed (Fig. 1B and C). Notably, the Z chromosome
154 PCA showed that FGJ4 was found within the corn group, whereas the autosomal PCA results
155 indicated that FGJ4 was closest to the grass group along with the first principal component. This
156 result implied the possibility that FGJ4 is a hybrid between sfC and sfR. Therefore, we performed
157 ancestry coefficient analysis to test this possibility from the samples from Florida. sfC and sfR
158 samples exhibited differentiated ancestry, while FGJ4 had almost the same proportions of ancestry
159 between sfC and sfR (Fig. S3).

160 We further tested genetic differentiation using F_{ST} statistics. The average F_{ST} between the corn
161 group and the grass group was 0.0813. To test whether this F_{ST} value can be generated by chance,
162 F_{ST} was calculated from random grouping with 100 replications. All 100 replications had F_{ST} lower
163 than 0.0813 (equivalent to p -value < 0.01) (Fig. 2A). F_{ST} from the Z chromosome was 0.4603,
164 which is far higher than all autosomal chromosomes, as shown from previous studies [36, 37]. In
165 total, 100% of untruncated 500kb windows have F_{ST} higher than zero and statistically significant
166 genetic differentiation was observed from 99.6% of the windows (FDR corrected p -value < 0.05).
167 These results imply genomic differentiation (GD), which was defined as a status where genetic
168 differentiation occurred in a vast majority of loci (e.g., > 90%) across the whole genome [40].

169 F_{ST} between sfC and sfR from the corn field was only 0.0105. However, none of the 100

170 replications with random grouping had F_{ST} lower than 0.0105 (Fig. 2B), which implies a statistically
171 significant genetic differentiation (p -value <0.01), as shown previously [8, 40, 42]. F_{ST} calculated
172 from the Z chromosome was 0.0292, which was slightly higher than autosomes. We observed that
173 99.60% of untruncated 500kb windows have F_{ST} higher than 0, and 92.7% of these windows
174 exhibited statistically significant genetic differentiation. These results imply GD between sfC and
175 sfR within the corn group.

176 **Divergent selection between corn and grass groups**

177 Targets of divergent selection were identified from genetic footprints of selective sweeps using the
178 composite likelihood approach[43]. We considered outliers of composite likelihood specific to the
179 corn or grass groups to be targets of selective sweeps to minimize the possibility of background
180 selection[44, 45]. The grass group had one obvious outlier reflecting the composite likelihood of
181 selective sweep on chromosome 12, while the corn group had two outliers on the Z chromosome
182 (Fig. 3, Fig. S4, and Table S3). Four genes were identified from the grass group-specific outlier, but
183 the function of these genes is unclear (Table S4). The two corn group-specific outliers had 58 genes,
184 which include 47 genes with unknown functions.

185 If a selectively targeted locus caused reproductive isolation, then this locus is expected to have an
186 increased level of absolute differentiation (i.e., D_{XY}) because the reduced rate of gene flow causes
187 an ancient divergence time, and an increased level of relative differentiation (i.e., F_{ST}) because
188 natural selection removes shared SNPs between populations[46]. Our forward simulation showed
189 that divergently targeted loci with reduced gene flow exhibited increased F_{ST} and D_{XY} (Fig. S5),
190 confirming this expectation. Then, we calculated D_{XY} and F_{ST} from the chromosomes containing the
191 identified targets of selective sweeps. The grass group-specific outlier on chromosome 12 had
192 increased D_{XY} and increased F_{ST} (Fig. 4A). The two corn group-specific outliers on the Z

193 chromosome showed increased F_{ST} , but increased D_{XY} was not observed from these outliers (Fig.
194 4B).

195 The *vrille* gene was reported to cause allochronic mating behavior in FAW through QTL mapping
196 [25]. Thus, we tested whether there is an elevated genetic differentiation at the *vrille* gene.
197 Interestingly, F_{ST} does not appear to be particularly higher at the *vrille* gene than the chromosomal
198 average (Fig. S6).

199 DISCUSSION

200 Divergent selection on host-plants is often considered to be one of the main evolutionary forces
201 driving speciation in phytophagous insects. In this study, we showed that the FAW is composed of
202 two genomically differentiated groups with different host-plants, the corn group and the grass
203 group, based on population genomics analyses (Fig. 1 and Fig. 2A). The ancestry coefficient
204 analysis supported the existence of hybrids (FGJ4), suggesting the presence of gene flow (Fig. S3).
205 We identified three loci that were targeted by corn or grass group-specific selective sweeps (Fig. 3),
206 suggesting the possibility that divergent selection contributed to the genetic differentiation between
207 the corn and the grass groups. The grass group-specific target had both increased D_{XY} and F_{ST} (Fig.
208 4A), implying that divergent selection on this locus caused reproductive isolation. Intriguingly, the
209 two corn group-specific targets did not have increased D_{XY} (Fig. 4B), making the link between
210 divergent selection and reproductive isolation unclear. Taken together, we conclude that the FAWs
211 analyzed in this study are composed of two genomically differentiated groups with differentiated
212 ranges of host-plants and that divergent selection contributed to the speciation process between
213 these two groups. Interestingly, we also observed genetic differentiation between the two
214 mitochondrial strains within the corn group (Fig. 2B).

215 We propose the following evolutionary scenario of speciation in FAW from these results (Fig. 5). *i*)
216 Divergent selection targeting chromosome 12 caused reproductive isolation between ancestral corn
217 and grass groups (Fig. 4A). The ancestral corn group experienced divergent selection on the Z
218 chromosome (Fig. 4B). As a consequence, extant corn and grass groups had differentiated ranges of
219 host-plants with differentiated genomic sequences (Fig. 1 and Fig. 2A). *ii*) Following evolutionary
220 forces caused the nuclear divergence of the corn group into two sub-groups (Fig. 2B), possibly
221 involving mild divergent selection targeting many loci [40]. These two sub-groups had different
222 mitochondrial genomic sequences including the COX1 genes (Fig. S1) for a reason yet to be
223 identified. We suggest that the corn group and the grass group should be considered as sfC and sfR,
224 respectively. Here, the two sub-groups within the corn group can be presumably named mt-A and
225 mt-B, rather than sfC or sfR.

226 Interestingly, genetic differentiation was observed across almost the entire genomic loci (i.e., GD),
227 between sfC (the corn group) and sfR (the grass group), and between mt-A and mt-B. In other
228 words, the significant genomic differentiation between sfC and sfR or between mt-A and mt-B is
229 caused by very large numbers of loci with low genetic differentiation, rather than small numbers of
230 loci with high genetic differentiation. Geographic separation is not likely to be a plausible
231 explanation because the strong migratory behavior of FAW [47] likely causes genetic admixtures
232 between the two geographic populations within ~150 km distance (i.e. the grass group and the corn
233 group in Florida), through gene flow. In the presence of such gene flow, only loci targeted by
234 divergent selection are expected to be differentiated between intraspecific races [48]. Moreover, mt-
235 A and mt-B were collected from the same field. Indeed, we did not observe population structure
236 according to the geographic populations within the analyzed sfC samples (Fig. S2). According to
237 the theoretical prediction, if divergent selection is sufficiently strong, such that the selection
238 coefficient is higher than the migration rate [49] or the recombination rate [50], GD may occur
239 through the hitchhiking effect. Alternatively, if the combined effect of mild divergent selection is

240 sufficiently strong, then GD may occur for the same reason [51, 52]. This hitchhiking effect was
241 previously coined as genome hitchhiking [39]. We postulate that the observed divergent selection
242 on chromosome 12 and Z chromosomes might be sufficiently strong to contribute to the generation
243 of GD. In a previous study, we also showed that mild divergent selection caused GD between mt-A
244 and mt-B in the FAW population in Mississippi [40]. Here, we hypothesize that the combined effect
245 of mild divergent selection caused GD between mt-A and mt-B in the other geographic populations.

246 We argue that the mitochondrial COX1 gene[33], and the Z chromosome TPI marker[35] should be
247 used for different purposes. The almost perfect correlation between the genotypes at TPI genes and
248 host-plant groups suggests that the TPI marker can be used to identify host-plant strains. We
249 consider that mitochondrial COX1 is an improper marker to identify *host-plant* strains as we
250 showed that samples with sfR markers have been frequently observed from corns, as also shown in
251 previous studies [36, 40, 42]. The genomic differentiation between mitochondrial subgroups (Fig.
252 2B) suggests that mitochondrial COX1 can be still used to identify *some* genetic identities within
253 the corn group (i.e., mt-A and mt-B). FAWs from invasive populations are predominantly found in
254 corns [53], and invasive FAWs have sfC-type TPI sequences and sfR-type COX1 sequences [54,
255 55]. In this case, invasive FAW populations should be considered as sfC, rather than hybrids.

256 Tessnow et al.[36] showed that allochronic mating patterns may have caused genomic
257 differentiation between sfC and sfR using the samples collected from corn and sorghum, which are
258 preferred host-plants by sfC. They proposed that sfC and sfR should be considered allochronic
259 strains, rather than host-plant strains. However, we believe that this argument is yet to be accepted
260 because they did not analyze samples collected from sfR-preferred host-plants. Interestingly, the
261 differentiation between sfC and sfR appears to be clear when strains were identified from three Z-
262 linked SNVs [56] while the differentiation between sfC and sfR was less clear when mitochondrial
263 COX1 was used. Importantly, because they collected samples in adult stages, the host-plant during

264 larval stages remained unidentified. It is possible that the sfC and sfR identified by Tessnow et al.
265 [36] might correspond to the corn group and the grass groups identified in this study. It is
266 worthwhile to note that Tessnow et al. used different markers to identify strains (i.e., three
267 interspersed SNVs on the Z chromosome. Gene flow from sfR to sfC will increase the relative
268 frequency of grass-fitted alleles (G) to corn-fitted alleles (g) in the corn group. Assortative mating
269 by allochronic mating in the corn group will reduce the efficacy of ecological divergence selection
270 because g-carrying individuals have an increased chance to mate with other individuals with the
271 same strain (sfC or sfR) by assortative mating. Then, the allele frequency of g could be maintained
272 in the sfC despite ecological selection against g, depending upon the relative strength of assortative
273 mating to ecological divergent selection. In other words, the direction of divergence can be different
274 between pre-zygotic and post-zygotic reproductive barriers by recombination, and this unequal
275 direction could interfere with the speciation process. If both preferred host-plants and mating time
276 are determined by the same loci, this interference does not occur and the evolutionary trajectory of
277 differentiation is expected to be the same between differential host-plant adaptation and allochronic
278 mating pattern. If this possibility is true, differential host-plant adaptation and allochronic mating
279 patterns may have additive effects on speciation. The *vrille* gene was proposed to be a gene
280 controlling allochronic mating [25], but we did not find support that this gene caused genetic
281 differentiation between sfC and sfR or mt-A and mt-B (Fig. S6).

282 We acknowledge that geographic effects on grass-eating FAWs were not taken into account in our
283 analysis because this study is based on a single geographic location for grass-eating FAWs (i.e.,
284 grass group). Future studies will need to include more geographic locations both for grass and corn-
285 eating FAW. We also acknowledge that the role of identified genes under divergent selection (Table
286 S4) in speciation is still unclear. If we can narrow down candidate genes in which different alleles
287 generate different fitness in a host-plant species, functional genomic studies could be
288 straightforward to test the role of these candidate genes in host-plant adaptation through RNAi or

289 CRISPR/CAS9 experiment. The resolution of selection scans can be greatly increased when SNVs
290 are phased [57]. Long-read sequencing can be particularly useful for this purpose.

291 In this study, we posit that host-plant adaptation is one of the main drivers of incipient speciation in
292 the FAW. This speciation process appears to involve divergent selection causing reproductive
293 isolation. The FAW displays differentiated phenotypes potentially causing both prezygotic and
294 postzygotic reproductive barriers. Interestingly, the evolutionary trajectory under these phenotypes
295 may not be uniform in a way of separating the FAW into sfC and sfR. To better understand how
296 interactions between these phenotypes ultimately generated a pattern of genomic differentiation
297 driven by host-plants, future studies should integrate analyses of whole genome sequences from
298 phenotyped individuals collected from a wide range of geographic locations.

299 MATERIALS AND METHODS

300 *Genome assembly*

301 We performed the mapping of available Illumina reads (~80X) [8] from a single sfC individual
302 from a laboratory strain, which was seeded from a population in Guadeloupe in 2000 [8], against an
303 sfC assembly, which was generated from 30X PacBio reads from the same strain in our previous
304 study [40], using SMALT (Sanger Institute). Potential errors in the assemblies were identified using
305 reapr [58]. If an error was found over a gap, the scaffold was broken into two using the same
306 software to remove potential structural errors in the assembly. The broken assemblies were
307 concatenated using SALSA2 [59] or 3D-DNA [60], followed by gap filling with the 80X Illumina
308 reads using SOAP-denovo2 Gap-Closer and with the PacBio reads using LR_GapCloser v1.1 [61].
309 We observed that 3D-DNA generated a better assembly than SALSA2, as determined by BUSCO
310 analysis (Table S5). Thus, the assembly from 3D-DNA was used in this study. Gene annotation was

311 transferred from the previously generated assemblies (OGS 6.1 on <https://bipaa.genouest.org/>) to
312 the current assembly using RATT [62].

313 ***Data generation***

314 The samples from Florida were collected from a pasture grass field in Jacksonville (Duvall Co.) and
315 a sweet corn field at Citra (Marion Co.) in Florida (USA) in September 2015 by hand collection.
316 Genomic DNA was extracted from 24 individuals using Dneasy blood and tissues kit, and libraries
317 for Illumina sequencing were generated from 1.0 μ g DNA for each sample using NEBNext DNA
318 Library Prep Kit with 300bp insertion size. Paired-end genome sequencing was performed using
319 Novaseq S6000 with 150bp reads with 20X coverage for each sample. Adapters in the reads were
320 removed using adapterremoval v2.1.7 [63], followed by mapping the reads against a reference
321 genome with chromosome-sized scaffolds [64], using bowtie2 v2.3.4.1 with –very-sensitive-local
322 preset [65]. Raw Illumina reads from 17 samples from Mississippi (NCBI SRA: PRJNA494340)[8,
323 40] and 15 samples from Puerto Rico (PRJNA577869) [42] were treated in the same way.
324 Haplotype calling was performed from resulting bam files using GATK v4.1.2.0 [66]. Then,
325 variants were called using GATK v4.1.2.0 [66], and only SNVs were retained. We discarded SNVs
326 if QD is lower than 2.0, FS is higher than 60.0, MQ is lower than 40.0, MQRankSum is lower than -
327 12.5, or ReadPosRankSum is lower than -8.0. The list of samples is available in Table S6 with
328 detailed information.

329 ***Strain identification***

330 Mitochondrial genomes were assembled and COX1 sequences were extracted using MitoZ [67].
331 Together with non-FAW COX1 sequences obtained from a previous study [68], a multiple sequence
332 alignment was generated using MUSCLE v3.8.31 [69]. A distance-based phylogenetic tree was

333 reconstructed using FastME v2.1.6 with the F84 evolutionary model [70]. The phylogenetic tree
334 was visualized using iTOL v6[71]. Then, strains were identified from clades containing samples of
335 which strains were identified from previous studies [40, 42].

336 The strain was also identified using the TPI gene. We extracted a vcf file containing TPI gene from
337 whole the nuclear genomic vcf file using tabix v1.10.2-3 [72]. Principal component analysis was
338 performed using plink v1.9 [73], and two groups according to the strains were identified. Then, the
339 strain of each sample was identified.

340 ***Population genomics analysis***

341 Weir and Cockerham's F_{ST} [74] was calculated using VCFtools v0.1.15[75]. The window size was
342 500kb. Statistical genetic differentiation was tested by calculating the proportion of random groups
343 from which the calculated F_{ST} is higher than the grouping between the corn and the grass groups or
344 between sfC and sfR in the corn group. D_{XY} in sliding windows was calculated using Dxy [76]. The
345 size of the windows was 500kb and the step size was 100kb. Ancestry coefficient analysis was
346 performed using sNMF v1.2[77]. Selective sweeps were inferred from the composite likelihood of
347 being targeted by selective sweeps from allele frequency spectrums using SweeD v3.2.1 [43]. The
348 grid number per chromosome was 1000. Potential targets of selective sweeps were identified from
349 obvious outliers of composite likelihoods, identified by eyeballing.

350 Forward simulation was performed using SLiM4[78] to test increased F_{ST} and D_{XY} at divergently
351 selected loci causing reproductive isolation. We chose human conditions to determine the
352 recombination rate (1.19×10^{-8})[79], mutation rate (1.2×10^{-8})[80], and effective population (3,100)
353 [81]. Simulated populations include two sister populations (Pop A and Pop B) spitted from a
354 common ancestral population. Unidirectional gene flow was allowed from Pop B to Pop A with the

355 migration rate equal to 0.001 to reflect a situation of restricted gene flow from PopB to Pop A by
356 divergent selection in Pop A. Pop A experienced divergent selection with the selection coefficient
357 equal to 0.05. The length of simulated DNA was 2Mb, and divergent selection targeted the middle
358 of sequences. D_{XY} and F_{ST} were calculated from 20kb windows. In total, 50 independent forward
359 simulations were performed and calculated D_{XY} and F_{ST} were averaged.

360 **LIST OF ABBREVIATIONS**

- 361 • COX1: Cytochrome *c* oxidase subunit 1
- 362 • FAW: Fall Armyworm
- 363 • GD: Genomic differentiation
- 364 • PCA: principal component analysis

- 365 • sfC: *Spodoptera frugiperda*, corn strain

- 366 • sfR: *Spodoptera frugiperda*, rice strain
- 367 • SNP: Single nucleotide polymorphism
- 368 • TPI: Triosephosphate Isomerase
- 369 • USA: United States of America

370
371 **DECLARATIONS**

372 **Ethics approval and consent to participate**

373 Not relevant.

374 **Guidelines and regulations in methods**

375 Not relevant.

376 **Consent for publication**

377 Not relevant.

378 **Availability of data and materials**

379 The raw reads of these samples are available from NCBI SRA (PRJNA639296). The reference
380 genome assembly used in this study (ver7) is available at BIPAA
381 (https://bipaa.genouest.org/sp/spodoptera_frugiperda_pub/download). Computer programming
382 scripts used in this study are available on request.

383 **Competing interests**

384 We have no conflict of interest to declare.

385 **Funding**

386 This work (ID 1702-018) was publicly funded through ANR (the French National Research
387 Agency) under the "Investissements d'avenir" programme with the reference ANR-10-LABX-001-
388 01 Labex Agro and coordinated by Agropolis Fondation under the frame of I-SITE MUSE (ANR-
389 16-IDEX-0006). In addition, the study is supported by Agence Nationale De La Recherche
390 (ORIGINS, ANR-20-CE92-0018-01) and by department of Santé des Plantes et Environnement at
391 Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (NewHost).

392 **Authors' contributions**

393 EF prepared the resequencing dataset and generated Fig. 1. KD contributed to generating Fig. 3 and
394 4. SG and EA contributed to preparing the resequencing dataset. FL generated the reference genome
395 assembly. RLM, GJK, and NN provided samples used in this study. KN generated Fig. 2, 4, and 5.
396 KN conceived and designed the analyses. All authors participated in writing the paper.

397 **Acknowledgments**

398 We are grateful to the genotoul bioinformatics platform Toulouse Occitanie (Bioinfo Genotoul,
399 <https://doi.org/10.15454/1.5572369328961167E12>), GenOuest (<https://www.genouest.org/>), and
400 BioInformatics Platform for Agroecosystem Arthropods (<https://bipaa.genouest.org/is/>) for
401 providing help and/or computing and/or storage resources.

402
403 **REFERENCE**
404

1. Nosil P, Crespi BJ, Sandoval CP. Host-plant adaptation drives the parallel evolution of reproductive isolation. *Nature*. 2002;417:440–3.
2. Gloss AD, Abbot P, Whiteman NK. How interactions with plant chemicals shape insect genomes. *Curr Opin Insect Sci*. 2019;36:149–56.
3. Simon J-C, d’Alençon E, Guy E, Jacquin-Joly E, Jaquiéry J, Nouhaud P, et al. Genomics of adaptation to host-plants in herbivorous insects. *Brief Funct Genomics*. 2015;14:413–23.
4. Fischer HM, Wheat CW, Heckel DG, Vogel H. Evolutionary origins of a novel host plant detoxification gene in butterflies. *Mol Biol Evol*. 2008;25:809–20.
5. Smadja C, Shi P, Butlin RK, Robertson HM. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the Pea Aphid, *Acyrthosiphon pisum*. *Mol Biol Evol*. 2009;26:2073–86.
6. Kulmuni J, Wurm Y, Pamilo P. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. *Heredity*. 2013;110:538–47.
7. Cheng T, Wu J, Wu Y, Chilukuri RV, Huang L, Yamamoto K, et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. *Nat Ecol Evol*. 2017;1:1747–56.
8. Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury J-M, Duvic B, et al. Two genomes of highly polyphagous lepidopteran pests (*Spodoptera frugiperda*, Noctuidae) with different host-plant ranges. *Sci Rep*. 2017;7:11816.

9. Robertson HM, Baits RL, Walden KKO, Wada-Katsumata A, Schal C. Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach *Blattella germanica*. *J Exp Zoolog B Mol Dev Evol*. 2018;330:265–78.
10. Meslin C, Mainet P, Montagné N, Robin S, Legeai F, Bretaudeau A, et al. *Spodoptera littoralis* genome mining brings insights on the dynamic of expansion of gustatory receptors in polyphagous noctuidae. *G3 Genes Genomes Genet*. 2022;:jkac131.
11. Cates RG. Feeding patterns of monophagous, oligophagous, and polyphagous insect herbivores: The effect of resource abundance and plant chemistry. *Oecologia*. 1980;46:22–31.
12. Gavrilets S. Models of Speciation: Where Are We Now? *J Hered*. 2014;105:743–55.
13. Felsenstein J. Skepticism towards Santa Rosalia, or why are there so few kinds of animals? *Evolution*. 1981;35:124–38.
14. Feder JL, Opp SB, Wlazlo B, Reynolds K, Go W, Spisak S. Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. *Proc Natl Acad Sci U S A*. 1994;91:7990–4.
15. Linn CE, Dambroski HR, Feder JL, Berlocher SH, Nojima S, Roelofs WL. Postzygotic isolating factor in sympatric speciation in *Rhagoletis* flies: reduced response of hybrids to parental host-fruit odors. *Proc Natl Acad Sci U S A*. 2004;101:17753–8.
16. Gavrilets S. *Fitness landscapes and the origin of species (MPB-41)*. Princeton University Press; 2004.
17. Servedio MR, Doorn GSV, Kopp M, Frame AM, Nosil P. Magic traits in speciation: ‘magic’ but not rare? *Trends Ecol Evol*. 2011;26:389–97.
18. Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. First report of outbreaks of the fall armyworm *Spodoptera frugiperda* (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. *PLOS ONE*. 2016;11:e0165632.
19. Diagne C, Turbelin AJ, Moodley D, Novoa A, Leroy B, Angulo E, et al. The economic costs of biological invasions in Africa: a growing but neglected threat? *NeoBiota*. 2021;67:11–51.
20. Pashley DP. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? *Ann Entomol Soc Am*. 1986;79:898–904.
21. Pashley DP, Martin JA. Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae). *Ann Entomol Soc Am*. 1987;80:731–3.
22. Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV de, et al. Host plants of *Spodoptera frugiperda* (Lepidoptera: Noctuidae) in the Americas. *Afr Entomol*. 2018;26:286–300.
23. Prowell DP, McMichael M, Silvain J-F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). *Ann Entomol Soc Am*. 2004;97:1034–44.
24. Orsucci M, Moné Y, Audiot P, Gimenez S, Nhim S, Naït-Saïdi R, et al. Transcriptional

differences between the two host strains of *Spodoptera frugiperda* (Lepidoptera: Noctuidae). Peer Community J. 2022;2.

25. Hänniger S, Dumas P, Schöfl G, Gebauer-Jung S, Vogel H, Unbehend M, et al. Genetic basis of allochronic differentiation in the fall armyworm. *BMC Evol Biol.* 2017;17:68.
26. Schöfl G, Heckel DG, Groot AT. Time-shifted reproductive behaviours among fall armyworm (Noctuidae: *Spodoptera frugiperda*) host strains: evidence for differing modes of inheritance. *J Evol Biol.* 2009;22:1447–59.
27. Unbehend M, Hänniger S, Meagher RL, Heckel DG, Groot AT. Pheromonal divergence between two strains of *Spodoptera frugiperda*. *J Chem Ecol.* 2013;39:364–76.
28. Unbehend M, Hänniger S, Vásquez GM, Juárez ML, Reisig D, McNeil JN, et al. Geographic variation in sexual attraction of *Spodoptera frugiperda* corn- and rice-strain males to pheromone lures. *PLOS ONE.* 2014;9:e89255.
29. Dumas P, Legeai F, Lemaitre C, Scaon E, Orsucci M, Labadie K, et al. *Spodoptera frugiperda* (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? *Genetica.* 2015;143:305–16.
30. Juárez M l., Schöfl G, Vera M t., Vilardi J c., Murúa M g., Willink E, et al. Population structure of *Spodoptera frugiperda* maize and rice host forms in South America: are they host strains? *Entomol Exp Appl.* 2014;152:182–99.
31. Kergoat GJ, Prowell DP, Le Ru BP, Mitchell A, Dumas P, Clamens A-L, et al. Disentangling dispersal, vicariance and adaptive radiation patterns: a case study using armyworms in the pest genus *Spodoptera* (Lepidoptera: Noctuidae). *Mol Phylogenetic Evol.* 2012;65:855–70.
32. Groot AT, Marr M, Heckel DG, Schöfl G. The roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strains. *Ecol Entomol.* 2010;35:105–18.
33. Pashley DP. Host-associated differentiation in armyworms (Lepidoptera: Noctuidae): An allozymic and mtDNA perspective. In: *Electrophoretic studies on agricultural pests.* H. D. Loxdale&J. D. Hollander. Oxford, England: Clarendon Press; 1989. p. 103–14.
34. Dumas P, Barbut J, Ru BL, Silvain J-F, Clamens A-L, d'Alençon E, et al. Phylogenetic molecular species delimitations unravel potential new species in the pest genus *Spodoptera* Guenée, 1852 (Lepidoptera, Noctuidae). *PLOS ONE.* 2015;10:e0122407.
35. Nagoshi RN. The fall armyworm Triosephosphate Isomerase (Tpi) gene as a marker of strain identity and interstrain mating. *Ann Entomol Soc Am.* 2010;103:283–92.
36. Tessnow AE, Raszick TJ, Porter P, Sword GA. Patterns of genomic and allochronic strain divergence in the fall armyworm, *Spodoptera frugiperda*(JE Smith). *Ecol Evol.* 2022;12:e8706.
37. Durand K, Yainna S, Nam K. Incipient speciation between host-plant strains in the fall armyworm. *BMC Ecol Evol.* 2022;22:52.
38. Schlum KA, Lamour K, de Bortoli CP, Banerjee R, Meagher R, Pereira E, et al. Whole genome comparisons reveal panmixia among fall armyworm (*Spodoptera frugiperda*) from diverse

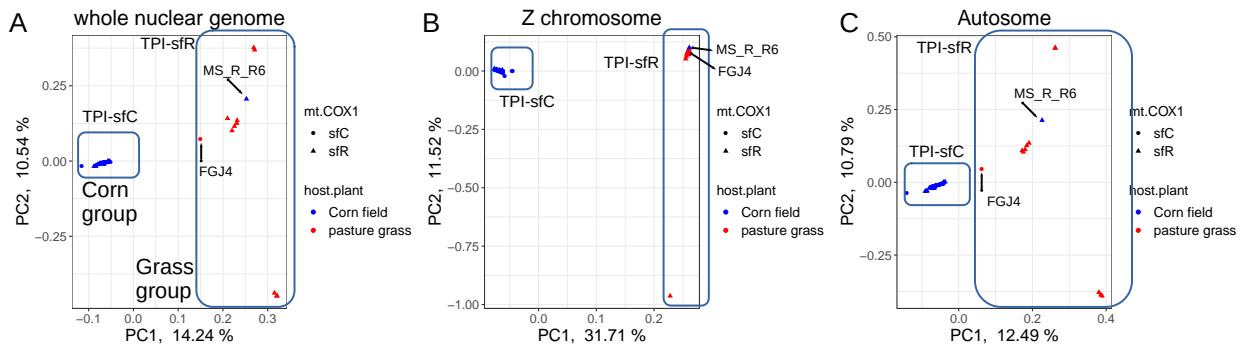
locations. *BMC Genomics*. 2021;22:179.

39. Feder JL, Gejji R, Yeaman S, Nosil P. Establishment of new mutations under divergence and genome hitchhiking. *Philos Trans R Soc B Biol Sci*. 2012;367:461–74.
40. Nam K, Nhim S, Robin S, Bretaudeau A, Nègre N, d'Alençon E. Positive selection alone is sufficient for whole genome differentiation at the early stage of speciation process in the fall armyworm. *BMC Evol Biol*. 2020;20:152.
41. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*. 2015;31:3210–2.
42. Gimenez S, Abdelgaffar H, Goff GL, Hilliou F, Blanco CA, Hänniger S, et al. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. *Commun Biol*. 2020;3:664.
43. Pavlidis P, Živković D, Stamatakis A, Alachiotis N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. *Mol Biol Evol*. 2013;30:2224–34.
44. Stephan W. Genetic hitchhiking versus background selection: the controversy and its implications. *Philos Trans R Soc B Biol Sci*. 2010;365:1245–53.
45. Charlesworth B. The effects of deleterious mutations on evolution at linked sites. *Genetics*. 2012;190:5–22.
46. Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. *Mol Ecol*. 2014;23:3133–57.
47. Nagoshi RN, Fleischer S, Meagher RL, Hay-Roe M, Khan A, Murúa MG, et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. *PLOS ONE*. 2017;12:e0171743.
48. Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, et al. Genome-wide evidence for speciation with gene flow in *Heliconius* butterflies. *Genome Res*. 2013;23:1817–28.
49. Flaxman SM, Wacholder AC, Feder JL, Nosil P. Theoretical models of the influence of genomic architecture on the dynamics of speciation. *Mol Ecol*. 2014;23:4074–88.
50. Barton NH. Gene flow past a cline. *Heredity*. 1979;43:333–9.
51. Barton NH. Multilocus clines. *Evolution*. 1983;37:454–71.
52. Feder JL, Nosil P. The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. *Evol Int J Org Evol*. 2010;64:1729–47.
53. Nagoshi RN, Koffi D, Agboka K, Adjevi AKM, Meagher RL, Goergen G. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. *PLOS ONE*. 2021;16:e0253528.
54. Nagoshi RN, Goergen G, Plessis HD, van den Berg J, Meagher R. Genetic comparisons of fall

armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. *Sci Rep.* 2019;9:8311.

55. Nagoshi RN, Goergen G, Tounou KA, Agboka K, Koffi D, Meagher RL. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. *Sci Rep.* 2018;8:3710.
56. Tessnow AE, Gilligan TM, Burkness E, Placidi De Bortoli C, Jurat-Fuentes JL, Porter P, et al. Novel real-time PCR based assays for differentiating fall armyworm strains using four single nucleotide polymorphisms. *PeerJ.* 2021;9:e12195.
57. Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A, et al. Identifying recent adaptations in large-scale genomic data. *Cell.* 2013;152:703–13.
58. Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD. REAPR: a universal tool for genome assembly evaluation. *Genome Biol.* 2013;14:R47.
59. Ghurye J, Rhie A, Walenz BP, Schmitt A, Selvaraj S, Pop M, et al. Integrating Hi-C links with assembly graphs for chromosome-scale assembly. *PLOS Comput Biol.* 2019;15:e1007273.
60. Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the *Aedes aegypti* genome using Hi-C yields chromosome-length scaffolds. *Science.* 2017;356:92–5.
61. Xu G-C, Xu T-J, Zhu R, Zhang Y, Li S-Q, Wang H-W, et al. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly. *GigaScience.* 2018;8.
62. Otto TD, Dillon GP, Degrave WS, Berriman M. RATT: Rapid Annotation Transfer Tool. *Nucleic Acids Res.* 2011;39:e57.
63. Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. *BMC Res Notes.* 2016;9:88.
64. Yainna S, Tay WT, Fiteni E, Legeai F, Clamens A-L, Gimenez S, et al. Genomic balancing selection is key to the invasive success of the fall armyworm. *bioRxiv.* 2020;:2020.06.17.154880.
65. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods.* 2012;9:357–9.
66. McKenna N, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 2010;20:1297–303.
67. Meng G, Li Y, Yang C, Liu S. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. *Nucleic Acids Res.* 2019;47:e63–e63.
68. Kergoat GJ, Goldstein PZ, Le Ru B, Meagher RL, Zilli A, Mitchell A, et al. A novel reference dated phylogeny for the genus *Spodoptera* Guenée (Lepidoptera: Noctuidae: Noctuinae): new insights into the evolution of a pest-rich genus. *Mol Phylogenetic Evol.* 2021;161:107161.
69. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 2004;32:1792–7.

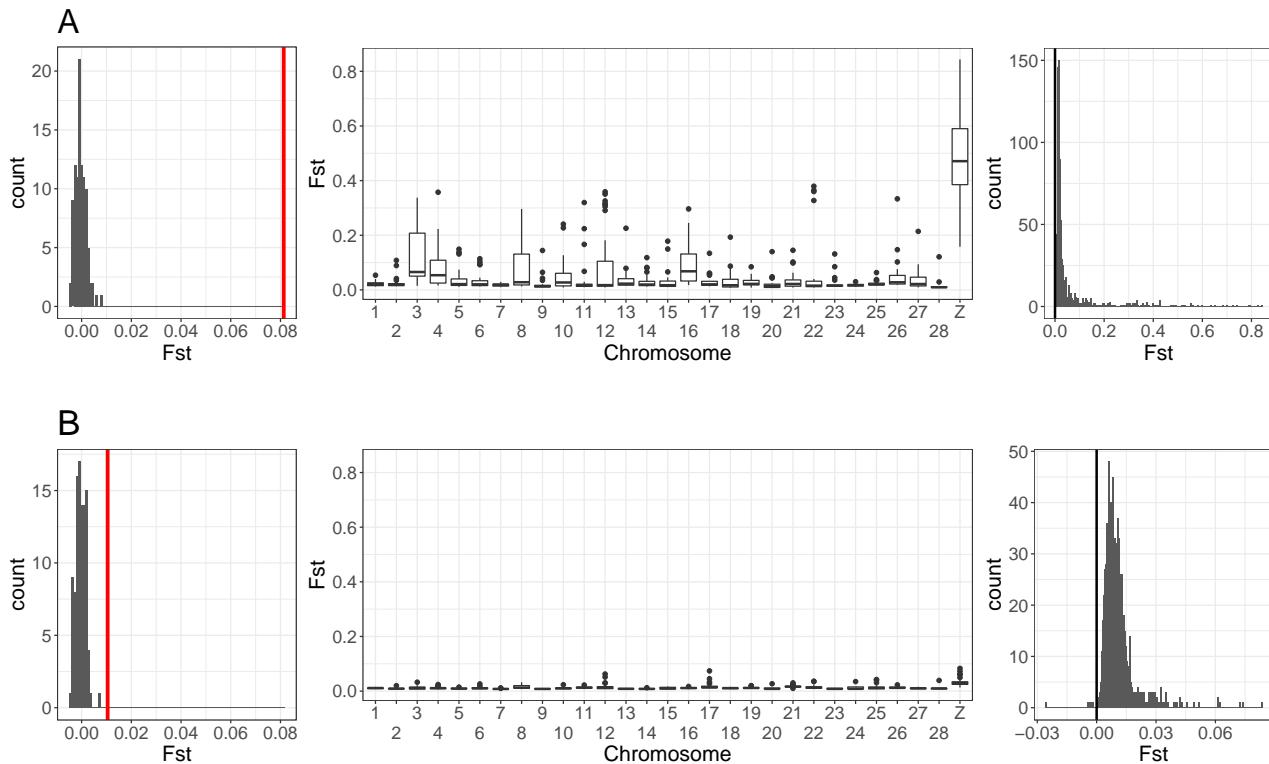
70. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. *Mol Biol Evol*. 2015;32:2798–800.
71. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res*. 2019;47:W256–9.
72. Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. *Bioinformatics*. 2011;27:718–9.
73. Rentería ME, Cortes A, Medland SE. Using PLINK for genome-wide association studies (GWAS) and data analysis. In: Gondro C, van der Werf J, Hayes B, editors. *Genome-Wide Association Studies and Genomic Prediction*. Totowa, NJ: Humana Press; 2013. p. 193–213.
74. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. *Evolution*. 1984;38:1358–70.
75. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. *Bioinformatics*. 2011;27:2156–8.
76. Dxy/Example at master · hugang123/Dxy. GitHub. <https://github.com/hugang123/Dxy>. Accessed 18 May 2022.
77. Fritchot E, Mathieu F, Trouillon T, Bouchard G, François O. Fast and efficient estimation of individual ancestry coefficients. *Genetics*. 2014;196:973–83.
78. Messer PW. SLiM: Simulating evolution with selection and linkage. *Genetics*. 2013;194:1037–9.
79. Kong A, Gudbjartsson DF, Sainz J, Jónsdóttir GM, Gudjonsson SA, Richardsson B, et al. A high-resolution recombination map of the human genome. *Nat Genet*. 2002;31:241–7.
80. Campbell CD, Chong JX, Malig M, Ko A, Dumont BL, Han L, et al. Estimating the human mutation rate using autozygosity in a founder population. *Nat Genet*. 2012;44:1277–81.
81. Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, et al. Recent human effective population size estimated from linkage disequilibrium. *Genome Res*. 2007;17:520–6.

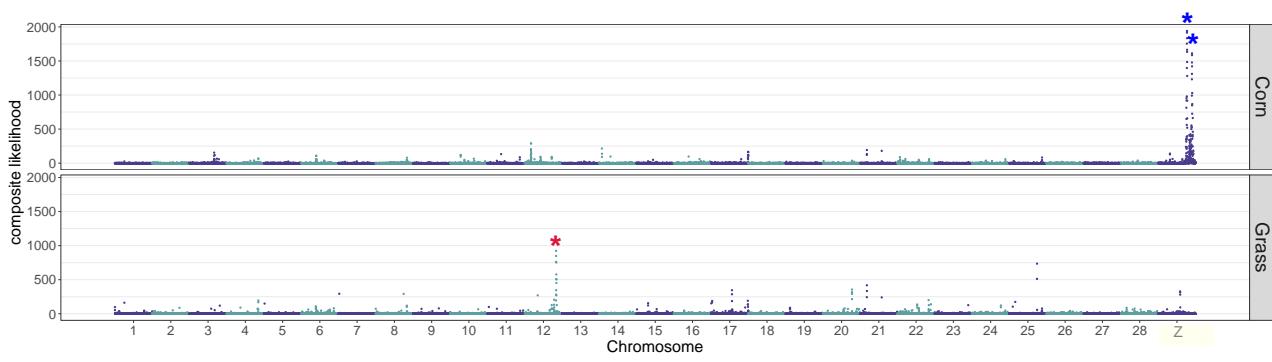

406 Table 1. The numbers of identified sfC and sfR samples using the TPI or the mitochondrial COX1
407 markers.

408

host-plants	TPI		mtCOX1	
	sfC	sfR	sfC	sfR
Corn field	44	1	33	12
pasture grass	0	11	1	10

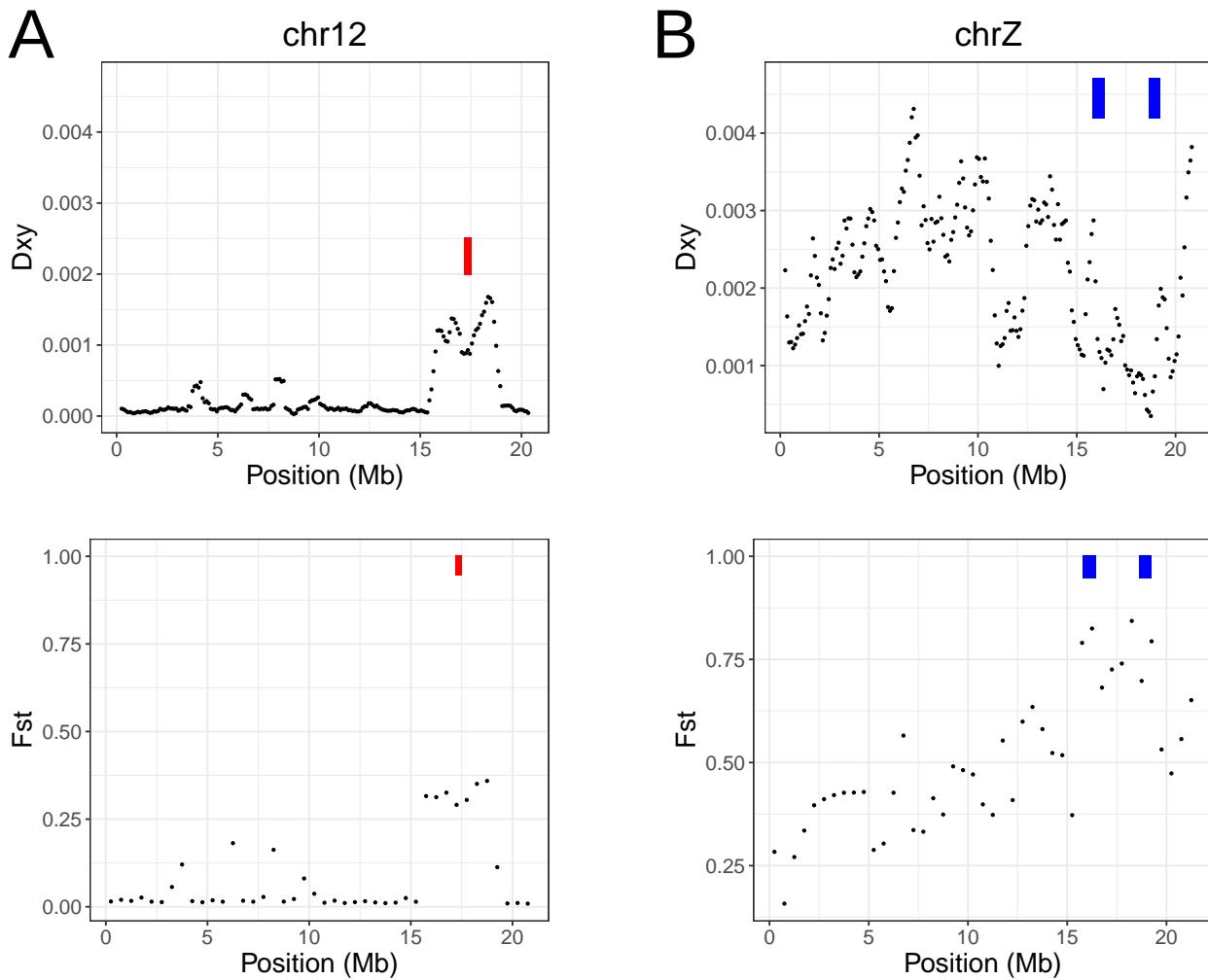
409


410

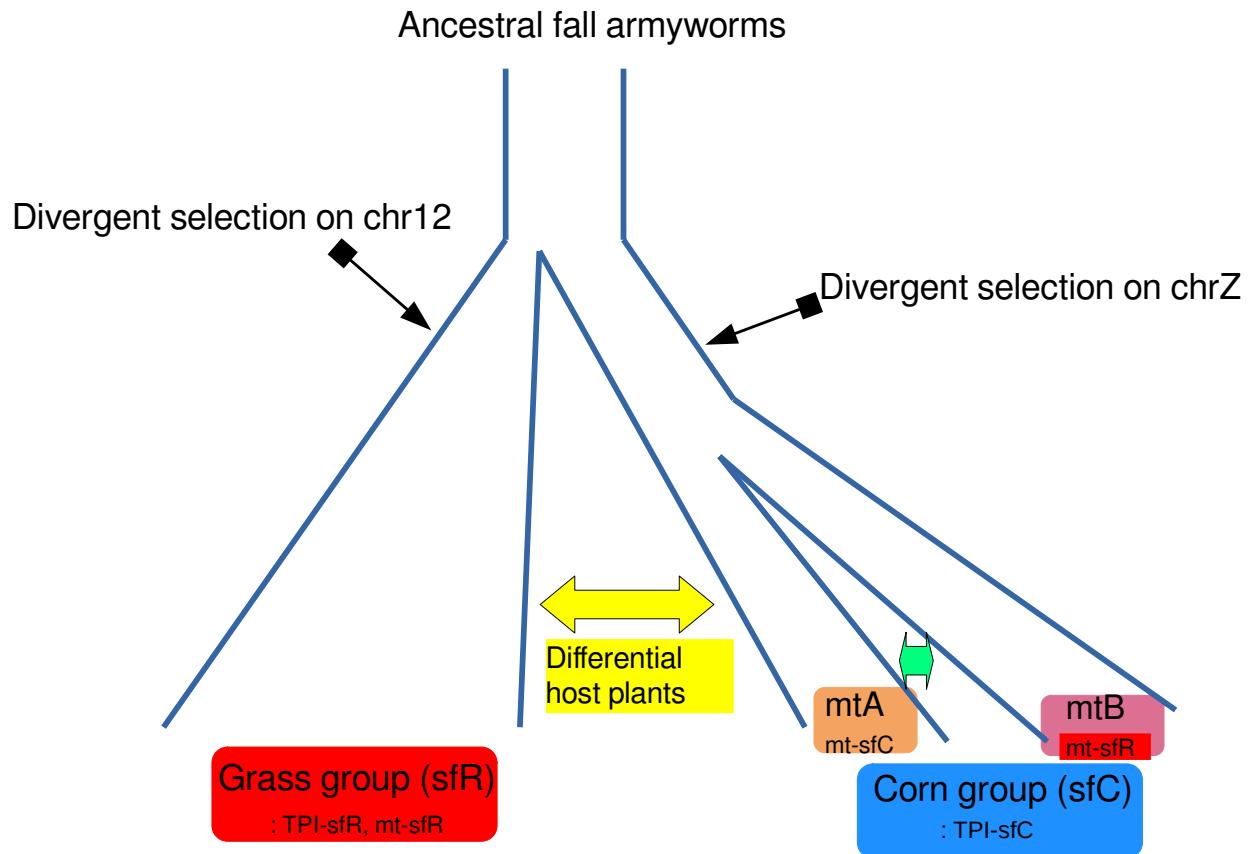

411 **Figure 1. Genetic differentiation between host-plants and strains.** Principal component analysis
412 from (A) whole nuclear genome, (B) the Z chromosome, and (C) autosomes. TPI-sfC and TPI-sfR
413 represent strains identified from the TPI marker. The red and blue points indicate samples collected
414 from corn fields and pasture grasses, respectively.

415

416



417 Figure 2. Genetic differentiation between groups in the FAW. A. F_{ST} was calculated between the
418 corn group and the grass group. (left) The histogram shows F_{ST} calculated from random groups. The
419 red vertical bar indicates F_{ST} calculated between the corn group and the grass group. (middle) F_{ST}
420 calculated in 500kb windows was shown for each chromosome. (right) The histogram of F_{ST} was
421 calculated in 500kb windows. The black vertical bar indicates $F_{ST} = 0$. B. F_{ST} was calculated
422 between two groups with different mitochondrial markers within the corn group. Please note that A
423 and B have different ranges of F_{ST} in the rightmost panels.


425 Figure 3. **Selectively targeted loci** The composite likelihood of selective sweep along the genome
426 was calculated from the corn or grass group. Obvious outliers of likelihood were indicated by
427 asterisks

428

430 Figure 4. **Loci under divergent selective sweeps.** D_{XY} (upper) and F_{ST} (lower) were calculated from
431 the targets of selective sweep specific to the grass group (the red rectangles) and the corn group (the
432 blue rectangles).

433

435 Figure 5. **An evolutionary scenario of speciation in the fall armyworm.** *i)* Divergence selection
436 on a locus on chromosome 12 caused reproductive isolation by reducing gene flow between
437 ancestral corn and grass groups. The ancestral corn group experienced divergent selection on the Z
438 chromosome as well. As a consequence, the corn group (sfC) and the grass group (sfR) had
439 differentiated ranges of host-plants. *ii)* Evolutionary forces split the corn group (sfC) into two sub-
440 groups, mt-A and mt-B, with different mitochondrial markers.