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Abstract 

Attentional control theory (ACT) posits that elevated anxiety increases the probability of re-allocating 
cognitive resources needed to complete a task to processing anxiety-related stimuli. This process impairs 
processing efficiency and can lead to reduced performance effectiveness. Science, technology, 
engineering, and math (STEM) students frequently experience STEM-related anxiety, which can interfere 
with learning and performance and negatively impact student retention and graduation rates. The 
objective of this study was to extend the ACT framework to investigate the neurobiological associations 
between STEM-related anxiety and cognitive performance among 123 physics undergraduate students. 
Latent profile analysis (LPA) identified four profiles of student STEM-related anxiety, including two 
profiles that represented the majority of the sample (Low STEM Anxiety; 59.3% and High Math Anxiety; 
21.9%) and two additional profiles that were not well represented (High STEM Anxiety; 6.5% and High 
Science Anxiety; 4.1%). Students underwent a functional magnetic resonance imaging (fMRI) session in 
which they performed two tasks involving physics cognition: the Force Concept Inventory (FCI) task 
and the Physics Knowledge (PK) task. No significant differences were observed in FCI or PK task 
performance between High Math Anxiety and Low STEM Anxiety students. During the three phases of 
the FCI task, we found no significant brain connectivity differences during scenario and question 
presentation, yet we observed significant differences during answer selection within and between the 
dorsal attention network (DAN), ventral attention network (VAN), and default mode network (DMN). 
Further, we found significant group differences during the PK task were limited to the DAN, including 
DAN-VAN and within-DAN connectivity. These results highlight the different cognitive processes 
required for physics conceptual reasoning compared to physics knowledge retrieval, provide new 
insight into the underlying brain dynamics associated with anxiety and physics cognition, and confirm 
the relevance of ACT theory for STEM-related anxiety. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.09.30.508557doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.508557
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smith et al. 3 
 
 

 

 

Introduction 

Improving student retention rates among science, technology, engineering, and math (STEM) university 
majors has been an enduring issue in higher education (Almatrafi et al., 2017; Findley-Van Nostrand & 
Pollenz, 2017). Only ~40% of university undergraduate students enrolled in STEM degree programs in 
the United States complete their degree (Waldrop, 2015), yet within the next 10-20 years a projected one 
million STEM-related jobs will need to be filled by qualified individuals (Findley-Van Nostrand & 
Pollenz, 2017). These low STEM retention rates among U.S. students have prompted multiple research 
studies and programmatic initiatives dedicated to investigating and addressing the motivational, 
institutional, and cognitive factors that result in students abandoning STEM degree programs (Cromley 
et al., 2016; Leary et al., 2020). While findings suggest that STEM retention is a multifaceted problem, one 
notable psychosocial barrier that students commonly report facing when choosing whether or not to 
remain in their programs is STEM-related anxiety, which is defined as apprehension or fear towards 
STEM-related activities (Suárez-Pellicioni et al., 2016). STEM-related anxiety has been associated with 
underperformance in STEM courses (Daker et al., 2021; Sithole et al., 2017), avoidance of effortful and 
effective study strategies (Jenifer et al., 2022), and is a significant contributing factor to withdrawal from 
introductory university STEM courses (Daker et al., 2021). 

The association between STEM-related anxiety and diminished STEM performance may be explained 
by Attentional Control Theory (ACT), which posits that elevated anxiety impairs efficient functioning 
by reducing cognitive resources available for attentional focus, thereby compromising performance 
effectiveness (Corbetta & Shulman, 2002; Derakshan et al., 2009; Eysenck et al., 2007; Suárez-Pellicioni et 
al., 2016). ACT is an updated adaptation of the processing efficiency theory proposed by Eysenck & 
Calvo (1992). Processing efficiency theory distinguishes between performance effectiveness, which is 
defined as the quality of performance on a task, and processing efficiency, which moderates the relation 
between performance efficiency and the cognitive resources needed to attain a particular quality of 
performance. Processing efficiency theory also proposes that excessive rumination among highly 
anxious individuals encourages them to exert more cognitive effort to compensate for the deleterious 
effects of anxiety. Elevated use of finite cognitive resources is thought to lead to highly anxious 
individuals displaying reduced processing efficiency, which in turn worsens performance efficiency. 
Eysenck et al. (2005) provided experimental evidence supporting this theory by demonstrating that 
groups of individuals with high and low anxiety performed similarly when a primary, visuospatial 
short-term memory task was coupled with a secondary, simple motor tapping task. However, when the 
secondary task was altered to require the use of the working memory system (e.g., counting backwards), 
highly anxious individuals performed worse on both the primary and secondary tasks, thus suggesting 
that elevated anxiety levels may diminish processing efficiency, thereby degrading performance 
efficiency (Eysenck et al., 2005).  

While processing efficiency theory broadly predicts that anxiety impairs executive functioning, which 
includes multiple cognitive processes ranging from attention shifting to updating working memory 
(Derakshan & Eysenck, 2009), ACT narrows the scope to posit that anxiety specifically impairs 
attentional control (Corbetta & Shulman, 2002). Within this framework, increased anxiety is thought to 
disrupt the equilibrium between two attentional systems: a goal-directed dorsal frontoparietal system, 
often referred to as the dorsal attention network (DAN) (Corbetta et al., 2008; Corbetta & Shulman, 2002; 
Fox et al., 2006; Hacker et al., 2017), which is engaged during task-relevant processes, and a stimulus-
driven ventral parietal system, often referred to as the ventral attention network (VAN) (Corbetta et al., 
2008; Corbetta & Shulman, 2002; Fox et al., 2006; Hacker et al., 2017), which is involved in the processing 
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of rewarding and aversive stimuli (Derakshan & Eysenck, 2009; Dosenbach et al., 2007; Lydon-Staley et 
al., 2019; Vossel et al., 2014). According to ACT, the detrimental effects of increased anxiety can be 
alleviated by increased activation of stimulus-driven attentional systems. However, as a consequence of 
the elevated activity of stimulus-driven attentional systems, fewer cognitive resources are dedicated to 
goal-directed attentional systems. In anxious individuals, enhanced activation of stimulus-driven 
attentional systems and decreases in goal-directed attentional systems are thought to occur in tandem, 
reflecting an aversive, elevated tendency to flight responses which lead to reduced performance and 
processing ability (Corbetta & Shulman, 2002). This mechanism may result in a feedback loop where 
elevated anxiety and reduced performance lead to lowered self-efficacy, leading to maintenance of 
disequilibrium between goal-directed and stimulus-driven attentional systems (Suárez-Pellicioni et al., 
2016). Furthermore, while ACT emphasizes both the independent and dependent functionalities of the 
DAN and VAN, evidence suggests that both engagement and disengagement of the default mode 
network (DMN) also influences attentional control and affects task performance (Poole et al., 2016). The 
DMN is often categorized as the ‘task-negative’ network since it is often suppressed during cognitively 
demanding tasks and active during periods of self-referential processing and mind-wandering (i.e., in 
the absence of tasks) (Alves et al., 2019; Fortenbaugh et al., 2017). Prior work has demonstrated that 
interdependence within and between regions of the DMN, DAN, and VAN are associated with 
variability in task performance (Anticevic et al., 2012; Elton & Gao, 2015; Kelly et al., 2008), particularly 
during sustained attention tasks (Fortenbaugh et al., 2017; Kucyi et al., 2016). Furthermore, DMN activity 
alterations among anxious individuals (Qiao et al., 2020) suggests that both within-network activation 
of the DMN and its interactions with both the DAN and VAN are important to attentional control and 
relevant to ACT (Poole et al., 2016). 

The objective of the present study was to extend the ACT framework to study the neurobiological 
associations between STEM-related anxiety and cognitive performance. Although the ACT framework 
has primarily been applied to the study of generalized anxiety, a recent meta-analysis demonstrated that 
math anxiety negatively impacts attentional control (Finell et al., 2022), confirming the relevance of ACT 
for STEM-related anxiety. Towards this end, we investigated STEM anxiety among undergraduate 
students enrolled in an introductory physics course. Students participated in a behavioral session in 
which they completed self-reports of STEM (i.e., science and math) anxiety, followed by a functional 
magnetic resonance imaging (fMRI) session in which they performed two tasks involving physics 
cognition: the Force Concept Inventory task (FCI) and the Physics Knowledge (PK) task. Latent profile 
analysis (LPA) was used to identify groups of students with similar STEM anxiety profiles. Measures of 
between- and within-network connectivity were extracted from the DAN, VAN, and DMN networks 
during the FCI and PK tasks. Regression analyses were then conducted to determine task-based 
connectivity differences between STEM anxiety groups. We hypothesized that significant DAN- and 
VAN-related connectivity differences across STEM anxiety groups would be observed for both the FCI 
and PK tasks. However, since the FCI task involves sustained physics cognition, we further hypothesized 
that DMN-related differences would be observed only for the FCI task and not the PK task. Lastly, we 
expected to observe significant differences in task performance (i.e., accuracy) across STEM anxiety 
groups, as predicted by ACT and processing efficiency theory. Together, these findings may inform 
knowledge on the behavioral and neurobiological associations between STEM-related anxiety and 
physics cognition among undergraduate STEM students. 
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Methods 

Participants 

The study sample included 123 healthy, right-handed undergraduate students (mean age = 19.8 ± 1.5, 
range = 18-26 years; 56 females). Students were enrolled in introductory, calculus-based physics courses 
at Florida International University (FIU) in Miami, Florida. At enrollment, participants provided 
demographic information, such as their age, sex, ethnicity (i.e., Hispanic or non-Hispanic), household 
income, grade point average (GPA), and number of years enrolled as a student at FIU (i.e., freshman, 
sophomore, junior, or senior) (Table 1). Participants self-reported that they were free from cognitive 
impairments, neurological and psychiatric conditions, and did not use psychotropic medications. 

Table 1. Participant Demographic Information 
 

 N Percentage 
Gender 
  Male 67 54 
  Female 56 46 
Ethnicity 
  Hispanic 85 69 
  Non-Hispanic 38 31 
Household Income 
  < $15,000 26 21 
  $15,000 - $34,999 24 20 
  $35,000 - $49,999 16 13 
  $50,000 - $74,999 21 17 
  $75,000 - $99,999 18 15 
   >$100,000 18 15 
Years Enrolled 
  Freshman 11 10 
  Sophomore 51 47 
  Junior 33 31 
  Senior 13 12 
 Mean (Std. Dev.) Range 
Age 19.8 (1.5) 18-26 
GPA 3.3 (0.5) 0.0-4.0 

Note. The “N” column represents the sample size of the group and the “Percentage” column represents  
the percentage of participants in that group for each categorical variable (Gender, Ethnicity, Household Income, 
and Years Enrolled).   

Procedures 

At the beginning of the semester, participant recruitment began with research assistants visiting eligible 
classrooms and delivering a brief presentation, with the permission of the professor, informing students 
about the opportunity to voluntarily participate in this study. Enrolled participants completed a 
behavioral and fMRI session at the beginning of the course (i.e., pre-instruction), no later than the fourth 
week of instruction and prior to the first course exam. Behavioral sessions were conducted in an on-
campus lab and students were asked to complete a battery of Qualtrics surveys. Imaging sessions were 
conducted off-campus and participants were provided with free parking and/or FIU-organized 
transportation to and from the MRI site. Written informed consent was obtained in accordance with 
FIU’s Institutional Review Board approval. Participants were compensated monetarily after both the 
behavioral and fMRI sessions. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.09.30.508557doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.508557
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smith et al. 6 
 
 

 

 

STEM-Related Anxiety Measures 

Participants completed a series of self-report instruments during their behavioral sessions, including, 
but not limited to, assessments of their STEM-related anxiety. The Science Anxiety Questionnaire 
(Mallow, 1994) consists of 22 items and had a Cronbach’s alpha of	𝛼 = 0.86, which was calculated using 
the cronbach.alpha command from the ltm package available in R. The items asked students to 
indicate their level of discomfort with respect to a range of science-related subjects and activities (e.g., 
“Having your professor watch you perform an experiment in the lab.”) on a 5-point Likert scale, with “0” 
suggesting no apprehension and “4” indicating the highest level of discomfort. The Mathematics Anxiety 
Rating Scale (Alexander & Martray, 1989) consists of 25 items and had a Cronbach’s alpha of 	𝛼 = 0.96. 
The items asked students to indicate their level of discomfort with respect to a variety of mathematics 
related activities (e.g., “Being given a set of division problems to solve on paper.”) on a 5-point Likert scale, 
with “0” suggesting no apprehension and “4” indicating the highest level of discomfort. 

Generalized Anxiety Measure 

In addition to these two measures of STEM-related anxiety, symptoms of anxiety were assessed to 
capture students’ self-report of non-STEM-related anxiety. The Beck Anxiety Inventory (Beck et al., 1988) 
is a Likert scale consisting of 21 items and had a Cronbach’s alpha of 𝛼 = 0.94. The items asked students 
to indicate the severity of anxiety related symptoms that they experienced within the past month (e.g., 
“Fear of the worst happening”) on a 4-point Likert scale with “0” indicating that a symptom hadn’t been 
experienced in the past month and “3” indicating that the symptom had been severe in the past month. 

MRI Data Acquisition 

MRI data were acquired on a GE 3T Healthcare Discovery 750W MRI scanner at the University of Miami. 
Functional imaging data were acquired with an interleaved gradient-echo, echo planar imaging (EPI) 
sequence (TR/TE = 2000/30ms, flip angle = 75°, field of view (FOV) = 220x220mm, matrix size = 64x64, 
voxels dimensions = 3.4×3.4×3.4mm, 42 axial oblique slices). T1-weighted structural data were also 
acquired using a 3D fast spoiled gradient recall brain volume (FSPGR BRAVO) sequence with 186 
contiguous sagittal slices (TI = 650ms, bandwidth = 25.0kHz, flip angle = 12°, FOV = 256x256mm, and 
slice thickness = 1.0mm). 

fMRI Tasks 

During the fMRI session, participants performed two different tasks: the Force Concept Inventory (FCI) 
task and the Physics Knowledge (PK) task. 

FCI Task 

Participants completed an in-scanner physics conceptual reasoning task that consisted of questions 
adapted from the reliable and widely used questionnaire known as the Force Concept Inventory (FCI) 
(Hestenes et al., 1992; Lasry et al., 2011; Von Korff et al., 2016). The experimental condition presented 
textual and illustrations of scenarios of objects at rest or in motion and students were asked to choose 
between a correct Newtonian solution and several reasonable but incorrect non-Newtonian alternatives. 
Students also completed a sequence of control questions that presented text and figure depictions of 
everyday physical scenarios that shared similar visual and linguistic characteristics to FCI items (e.g., 
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containing words typically used in introductory Newtonian mechanics, as well as visual presentation 
and self-paced timing paralleling that of the FCI problems.) Control items, however, tested students on 
general reading comprehension and/or shape discrimination instead of physics content. Across both 
FCI and control conditions, questions were presented as blocks composed of three sequential view 
screens (i.e., “phases”), which consisted of:  

● Phase 1: Scenario: students viewed text and a figure describing a physical scenario (Fig. 1A), 
● Phase II: Question: students viewed a physics question about the scenario (Fig. 1B), and 
● Phase III: Answer: students responded with their answer out of four possible answer choices 

(Fig. 1C). 

Participants provided a self-paced button press to advance between phases and to provide their final 
answer. A fixation cross was shown after answer selection and before presentation of the next scenario. 
FCI and control blocks were of maximum duration 45 sec and were followed by a fixation cross of 
minimum duration 10 sec. The total duration for each FCI run was 5 min 44 sec; data were collected 
during three runs for a total duration of ~16 minutes. Control trials were not analyzed in the present 
study but a description is provided above for completeness. In a previous publication, we demonstrated 
that our within-scanner version of the FCI task elicited widespread frontoparietal activation of regions 
of the DAN, VAN, and DMN, and that these activation patterns were elicited differently during each of 
the three phases (Bartley et al., 2019). 

PK Task  

Participants also completed the Physics Knowledge (PK) task. The PK task, adapted from a general 
knowledge task of semantic retrieval (Elman et al., 2012), was presented in a block-design and probed 
for brain activation associated with physics-based content knowledge. Students viewed physics 
questions (e.g., “What is the value of the acceleration due to gravity on Earth?”) and corresponding answer 
choices, such as “9.81 m/s2, 15 kg, 10 liters, and 11 ft/s2”) (Fig. 1D). A control condition was presented in 
which students viewed general knowledge questions (e.g., “What is the tallest mountain in the world?”) 
with corresponding answer choices, such as “Mount Rushmore, Mount Rainier, Mount Everest, or Mount 
Logan”). PK and control blocks were 28 seconds long and included four questions per block (6.5 sec per 
question followed by 0.5 sec of quick fixation). Three blocks of physics or general questions (six question 
blocks total) were alternated with 10 sec of fixation. The total duration of one run was 4 min 2 sec; data 
were collected during two runs for a total duration of ~8 minutes. Similar to the FCI task, control trials 
for the PK task were not analyzed in the present study but are described for completeness. 
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Figure 1. Force Concept Inventory (FCI) and Physics Knowledge (PK) Tasks. Example items of the in-scanner 
tasks, including the three phases of the FCI task (A) Phase I: Scenario, (B) Phase II: Question, (C) Phase III: 
Answer and the (B) PK task. 

 

Analyses 

Latent Profile Analysis 

Latent profile analysis (LPA) is an analytic technique in which participants are assigned (with varying 
probabilities) into classes (i.e., subpopulations) based on their pattern of responses on a set of indicators. 
LPA was used in this study to group participants based on STEM-related anxiety profiles (i.e., based on 
similar self-report of science and math anxiety). LPA was performed in R using the tidyLPA package, 
as well as mclust, which uses the Expectation-Maximization algorithm, an approach for maximum 
likelihood estimation, for model-based clustering and classification (Rosenberg et al., 2018; Scrucca et al., 
2016). Default parameters were used in which equal variances across classes and covariances were fixed 
to 0, which assumes conditional independence of the indicators and that correlation amongst indicators 
are explained exclusively by the latent classes, and a maximum of four possible classes were specified 
(Lee et al., 2020). The compare_solutions command, available in tidyLPA, was used to determine 
the optimal number of classes by selecting the model with the lowest Bayesian Information Criterion 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.09.30.508557doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.508557
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smith et al. 9 
 
 

 

 

(BIC), entropy, and bootstrapped likelihood ratio test (LRT). BIC is a model selection tool used to select 
one model from a finite set of possible models and the one with the smallest BIC is considered the “best” 
candidate (Perrotte et al., 2021). Entropy, which can range from 0 to 1, is an indicator of classification 
precision and greater entropy suggests that the identified classes are better separated (Lee et al., 2020). 
Additionally, models with entropy values greater than 0.8 suggest good distinction of the identified 
classes (Ramaswamy et al., 1993). Bootstrapped LRT produces a p-value for each subsequent model and 
is an indicator for the degree of fit improvement resulting from adding an additional profile. If the model 
contains a significant p-value when an additional profile is added, then that suggests the model provides 
a significant improvement in fit, relative to the previous model with k-1 profiles. Next, tidyLPA’s 
plot_profile command that specifies a 95% confidence interval was used to visualize model 
classification and assist with interpreting the grouping of the final model. Finally, for the purpose of 
contextualizing the profiles, we examined the extent to which the profiles differed with respect to age, 
sex, ethnicity, household income, number of years enrolled at FIU, GPA, generalized anxiety, and 
accuracy on the FCI and PK tasks (measured as the average number of correct responses). 

fMRI Preprocessing 

Each participant’s T1-weighted images were corrected for intensity non-uniformity with ANT’s 
N4BiasFieldCorrection tool (Avants et al., 2008; Tustison et al., 2010). Both anatomical and 
functional images were preprocessed using fMRIPrep (v.1.5.0rc1) (Esteban et al., 2019, 2020). The T1-
weighted (T1w) reference, which was used throughout the pipeline, was generated after T1w images 
were corrected for intensity non-uniformity with ANT’s N4BiasFieldCorrection. Freesurfer’s 
mri_robust_template was used to generate a T1w reference, which was used throughout the entire 
pipeline (Reuter et al., 2010; Tustison et al., 2010). Nipype’s implementation of ANT’s 
antsBrainExtraction workflow was used to skullstrip the T1w reference using OASIS30ANTs as 
the target template (Gorgolewski et al., 2011). FSL’s FAST was used for brain tissue segmentation of 
the cerebrospinal fluid (CSF), white matter (WM), and gray matter (GM); brain surfaces were 
reconstructed using Freesurfer’s recon_all (Dale et al., 1999; Zhang et al., 2001). Preprocessing of 
functional images began with selecting a reference volume and generating a skullstripped version using 
a custom methodology of fMRIPrep. Freesurfer’s bbregister, which uses boundary-based 
registration, was used to coregister the T1w reference to the BOLD reference. The BOLD time series was 
then resampled onto surfaces of fsaverage5 space and resampled onto their original, native space by 
applying a single, composite transform to correct for head motion and susceptibility distortions. 
Additionally, the BOLD time series was high pass filtered, using a discrete cosine filter with a cutoff of 
128s (Greve & Fischl, 2009). Several confounding time series were estimated as follows: for each 
functional run, motion outliers were set at a threshold of 0.5 mm framewise displacement (FD) or 1.5 
standardized DVARS. Nuisance signals from the CSF, WM, and whole brain masks were extracted by 
using a set of physiological regressors, which were extracted to allow for both temporal component-
based noise correction (tCompCor) and anatomical component-based noise correction (aCompCor) 
(Behzadi et al., 2007). Additionally, the confound time series derived from head motion estimates were 
expanded to include its temporal derivatives and quadratic terms, resulting in a total of 24 head motion 
parameters (i.e., six base motion parameters, six temporal derivatives of six motion parameters, 12 
quadratic terms of six motion parameters, and their six temporal derivatives). Estimates for the global, 
cerebrospinal fluid, and white matter signals were expanded to include their temporal derivatives and 
quadratic terms, resulting in a total of 12 signal-based parameters (i.e., three base signal parameters, 
three temporal derivatives of the three base parameters, the three quadratic terms of the base parameters, 
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and the three quadratic terms of the temporal derivatives). Finally, all 24 head motion confound 
estimates, three high pass filter estimates, and a variable number of aCompCor estimates (components 
that explain the top 50% of the variance) were outputted into a tsv file to be used for later denoising steps 
(Satterthwaite et al., 2013). 

Parcellation and Task-Based Connectivity Analyses 

Additional data analysis was conducted in IDConn, a pipeline that bundles several commonly used 
neuroimaging software packages to create workflows examining functional brain connectivity 
(Bottenhorn & Salo, 2022). Each participant’s preprocessed FCI and PK task-based fMRI data were 
parcellated according to a functionally derived, whole-brain parcellation. Network-level identification 
of the DAN, VAN, and DMN was carried out using the 17-network parcellation developed by Yeo et al. 
(2011), using individual nodes within the networks as identified by Kong et al. (2021) (Fig. 2). 
Confounding time series identified by fMRIPrep, along with the six head motion estimates from FSL’s 
MCFLIRT and outlier volumes (FD > 0.5 mm or 1.5 standardized DVARS) identified during 
preprocessing, were regressed out during analysis in IDConn. Each functional task time series was 
standardized and the average per-network time series were extracted for each participant and task 
condition (averaged across runs), allowing assessment of between-network connectivity. Similarly, the 
average per-node time series was extracted for each participant and task condition (averaged across 
runs), allowing assessment of within-network connectivity. Importantly, given the relatively long 
duration of FCI trials (i.e., 45 sec), we separately extracted average network- and node-level time series 
for FCI Phase I (Scenario), Phase II (Question), and Phase III (Answer). Adjacency matrices were 
constructed per participant, per functional task using Nilearn (v. 0.3.1, 
http://nilearn.github.io/index.html), a Python (v. 2.7.13) module, built on scikit-learn, for the 
statistical analysis of neuroimaging data, by computing the pairwise Pearson’s correlations between each 
pair of regions, resulting in a 400x400 region-wise correlation matrix for each participant per condition 
per task (Bottenhorn et al., 2021; Medaglia, 2017). From these matrices, we assessed the between-network 
connectivity for DAN-VAN, DAN-DMN, and VAN-DMN, as well as the within-network connectivity 
for the DAN, VAN, and DMN. Between- and within-network connectivity were assessed for each 
participant and for both the FCI and PK tasks. 

 

Figure 2. DAN, VAN, and DMN Network Parcellation. Each participant’s preprocessed fMRI data were 
parcellated using the 17-network Yeo et al. (2011) parcellation to identify the dorsal attention network (DAN; pink); 
ventral attention (VAN; yellow), and default mode network (DMN; blue). 

Statistical Analyses 

Statistical modeling was conducted with the Lavaan package (Rosseel, 2012), which is available in R. 
Regression models were generated to evaluate between-network connectivity between DAN-VAN, 
DAN-DMN, and VAN-DMN during both the FCI and PK tasks. In addition, regression models were also 
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generated to evaluate within-network connectivity for the DAN, VAN, and DMN during the FCI and 
PK tasks. The FCI models included three observed variables for each phase, including the average 
between- or within-network connectivity values during Phase I (Scenario), Phase II (Question), and 
Phase III (Answer). The PK models included a single observed variable, which was the average between- 
or within-network connectivity values for each of the PK or control conditions. For each model, the 
residual variance and intercept for the observed variable were specified. The main explanatory variable 
of interest was LPA-based class assignment. Age, sex, ethnicity, household income, number of years 
enrolled at FIU, GPA, and generalized anxiety were included as covariates.   

 

Results 

Latent Profile Analysis 

Table 2 presents the model fit indices for the four LPA models of science and math anxiety. The 4-profile 
model had the lowest Bayesian Information Criteria (BIC = 615.33), which suggested that this model, 
relative to the other three, demonstrated the greatest improvement in fit. This interpretation was 
supported by the results of the bootstrapped LRT p-values, which showed that the differences in 
improvement of fit between the 1- and 2-profile models (p = 0.01), the 2- and 3-profile models (p = 0.01), 
and the 3- and 4-profile models (p = 0.01) were all significant. Furthermore, the 4-profile model had an 
entropy value greater than 0.8, which suggested a good separation of the identified classes (Ramaswamy 
et al., 1993). Thus, the 4-profile model was selected based on BIC, entropy, bootstrapped LRT, and 
interpretability of classes. 

Table 2. Latent Profile Analysis Model Comparisons. 
# of Profiles BIC Entropy Bootstrapped LRT p-values 

1 715.36 1.00 - 
2 663.07 0.91 0.01 
3 629.27 0.89 0.01 
4 615.33 0.88 0.01 

Note. BIC = Bayesian Information Criteria,  
LRT = Lo-Mendell-Rubin Adjusted Likelihood Ratio Test. 

Table 3 presents the mean z-scores for science and math anxiety across the four profiles. The tidyLPA 
get_estimates command was used to determine if the mean science and anxiety for each profile was 
significant based on a p-value < 0.05. The first profile represented 6.5% of the sample (n = 8) and was 
labeled as High STEM Anxiety as both science and math anxiety were significantly above zero. The 
second profile represented 59.3% of the sample (n = 73) and was labeled as Low STEM Anxiety as both 
science and math anxiety means were significantly below zero. The third profile represented 21.9% of 
the sample (n = 27) and was labeled as High Math Anxiety as only math anxiety was significantly above 
zero. The fourth profile represented 4.1% of the sample (n = 5) and was labeled as High Science Anxiety 
as only science anxiety was significantly above zero. 

To ensure clearly defined class membership, we restricted assignment to profiles to those whose 
posterior probabilities were 0.70 or higher. Of the 123 total participants, 100 of participants (81.3%) had 
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posterior probabilities greater than 0.70. This included 73 Low STEM Anxiety and 27 High Math Anxiety 
participants. Given low sample sizes for the High STEM Anxiety and High Science Anxiety groups, these 
profiles were excluded from subsequent analysis. Thus, further analysis only focused on examining 
differences between the High Math Anxiety and Low STEM Anxiety groups. Fig. 3 illustrates the z-scores 
for science and math anxiety across these two profiles.  

Table 3. Parameter Estimates for Science and Math Anxiety.  

Science Anxiety Math Anxiety 

Profile µ σ2
  p-value µ σ2

  p-value 

High STEM Anxiety (HSA) 1.490 0.212 <0.001 2.220 0.300 <0.001 
Low STEM Anxiety (LSA) -0.499 0.212 <0.001 -0.572 0.300 <0.001 

High Math Anxiety (HMA) 0.280 0.212 0.088 0.776 0.300 <0.001 
High Science Anxiety (HSA) 3.330 0.212 <0.001 0.016 0.300 0.970 

Note. Profile means and variances are represented by µ and σ2, respectively. 
 
 

 

Figure 3. Science and Math Anxiety Scores for High Math Anxiety and Low STEM Anxiety Groups. A joint 
kernel density estimate plot showing the distributions of standardized math and science anxiety scores for High 
Math Anxiety (purple) and Low STEM Anxiety (green) students. 

 

Demographic Differences Across Profiles 

Next, we explored demographic differences across the High Math Anxiety and Low STEM Anxiety 
profiles. Results from chi-square tests of association indicated that we could not reject the null hypothesis 
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of no difference on the basis of sex (𝜒! = 3.361, df = 1, p = 0.067), ethnicity (0.0870, df = 1, p = 0.768), 
household income (𝜒!= 2.368, df = NA, p = 0.809), or number of years enrolled at FIU (𝜒!= 4.501, df = 
NA, p = 0.219). Furthermore, results from t-tests indicated that we could not reject the null hypothesis of 
no difference in terms of average age (t = 1.511, df = 48.927, p = 0.137) or GPA (t = -1.132, df = 67.728, p 
= 0.262). Importantly, and contrary to our hypotheses, we could not reject the null hypothesis on fMRI 
task performance between groups, with no significant differences in terms of FCI accuracy (t = 1.221, df 
= 60.613, p = 0.227), or PK accuracy (t = -1.128, df = 49.695, p = 0.265). Lastly, High Math Anxiety students 
exhibited significantly increased generalized anxiety compared to Low STEM Anxiety students (t = 
2.481, df = 31.732, p = 0.0186). 

Profile Membership Effects: Between-Network Connectivity 

We examined whether there were significant differences between High Math Anxiety and Low STEM 
Anxiety students in terms of between-network connectivity for the DAN, VAN, and DMN. Table 4 
presents the between-network connectivity differences during the FCI task. Results indicated no 
significant differences in connectivity during FCI Phase I (Scenario) or Phase II (Question). However, 
during Phase III (Answer), High Math Anxiety students exhibited significantly reduced between-
network connectivity (i.e., DAN-VAN, VAN-DMN, and DAN-DMN) relative to Low STEM Anxiety 
students. Distributions of between-network connectivity values for Phase III of the FCI task are 
displayed in Fig. 4A. Student age, sex, ethnicity, household income, number of years enrolled at FIU, 
GPA, and generalized anxiety did not significantly explain variation in between-network connectivity 
across all FCI phases.  

Table 4. Between-Network Connectivity during the Force Concept Inventory (FCI) Task.  

 Phase I (Scenario) Phase II (Question) Phase III (Answer) 
Coefficient 𝛽  z-value p-value 𝛽  z-value p-value 𝛽  z-value p-value 

DAN-VAN Connectivity 
Groupa -0.059 -0.976 0.329 -0.098 -1.633 0.102 -0.145 -2.574 0.010 
Age 0.021 1.036 0.300 -0.016 -0.810 0.418 -0.006 -0.330 0.741 
Sexb 0.060 1.074 0.283 0.030 0.542 0.588 0.089 1.711 0.087 
Ethnicityc -0.028 -0.432 0.665 0.049 0.768 0.442 -0.028 -0.460 0.646 
Income 0.021 1.345 0.178 0.015 1.010 0.312 0.015 1.031 0.303 
Years  -0.051 -1.397 0.163 -0.005 -0.142 0.887 -0.048 -1.375 0.169 
GPA -0.044 -0.760 0.447 -0.095 -1.654 0.098 -0.069 -1.274 0.203 
Gen. 
Anxiety 

-0.011 -0.345 0.730 -0.015 -0.480 0.631 0.013 0.443 0.658 

VAN-DMN Connectivity 
Groupa -0.070 -1.082 0.279 -0.117 -1.928 0.054 -0.140 -2.326 0.020 
Age 0.024 1.100 0.271 -0.017 -0.866 0.386 -0.006 -0.326 0.745 
Sexb 0.029 0.482 0.630 0.007 0.134 0.894 0.096 1.727 0.084 
Ethnicityc -0.007 -0.097 0.923 0.024 0.371 0.711 -0.044 -0.695 0.487 
Income 0.023 1.366 0.172 0.022 1.448 0.148 0.012 0.800 0.424 
Years  -0.042 -1.056 0.291 0.006 0.152 0.879 -0.038 -1.040 0.298 
GPA -0.053 -0.843 0.400 -0.104 -1.777 0.075 -0.070 -1.221 0.222 
Gen. 
Anxiety 

-0.006 -0.178 0.859 -0.004 -0.129 0.898 0.013 0.425 0.671 

DAN-DMN Connectivity 
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Groupa -0.069 -1.059 0.290 -0.124 -1.953 0.051 -0.130 -2.159 0.031 
Age 0.021 0.988 0.323 -0.022 -1.022 0.307 -0.009 -0.455 0.649 
Sexb 0.044 0.740 0.459 0.029 0.499 0.618 0.091 1.635 0.102 
Ethnicityc -0.006 -0.083 0.933 0.010 0.145 0.885 -0.064 -0.999 0.318 
Income 0.022 1.357 0.175 0.027 1.678 0.093 0.016 1.061 0.289 
Years  -0.051 -1.295 0.195 0.006 0.155 0.877 -0.034 -0.916 0.360 
GPA -0.071 -1.145 0.252 -0.116 -1.909 0.056 -0.085 -1.469 0.142 
Gen. 
Anxiety 

-0.014 -0.406 0.685 -0.006 -0.199 0.842 0.012 0.385 0.700 

Note. Groupa, Sexb, and Ethnicityc are binary variables; thus, the reference categories for each variable are: a Low 
STEM Anxiety, b Male, c Hispanic, respectively. Significant results, defined as p > 0.05, are shown in bold. 

 

Table 5 presents the between-network connectivity differences during the PK task. Results indicated no 
significant differences in DMN-related between-network connectivity (i.e., VAN-DMN and DAN-
DMN). However, High Math Anxiety students exhibited significantly reduced DAN-VAN connectivity 
during the PK task relative to Low STEM Anxiety students. Distributions of between-network 
connectivity values for the PK task are displayed in Fig. 4B. As with the FCI task, age, sex, ethnicity, 
household income, number of years enrolled at FIU, GPA, and generalized anxiety were not significant 
predictors for between-network connectivity for the PK task. 

Table 5. Between-Network Connectivity during Physics Knowledge (PK) Task. 

Coefficient 𝛽  z-value p-value 𝛽  z-value p-value 𝛽  z-value p-value 
 DAN-VAN Connectivity VAN-DMN Connectivity DAN-DMN Connectivity 
Groupa -0.150 -2.005 0.045 -0.104 -1.347 0.178 -0.155 -1.923 0.054 
Age -0.007 -0.300 0.764 -0.007 -0.282 0.778 -0.001 -0.047 0.962 
Sexb -0.016 -0.235 0.814 0.002 0.032 0.975 0.019 0.252 0.801 
Ethnicityc 0.014 0.177 0.859 -0.002 -0.027 0.978 -0.002 -0.028 0.978 
Income -0.019 -0.993 0.321 -0.026 -1.324 0.185 -0.021 -1.007 0.314 
Years  0.023 0.505 0.613 0.023 0.483 0.629 0.014 0.276 0.783 
GPA -0.063 -0.883 0.377 -0.094 -1.256 0.209 -0.077 -0.999 0.318 
Gen. Anxiety -0.015 -0.393 0.694 -0.014 -0.362 0.718 -0.001 -0.013 0.989 

Note. Groupa, Sexb, and Ethnicityc are binary variables; thus, the reference categories for each variable are: a Low 
STEM Anxiety, b Male, c Hispanic, respectively. Significant results, defined as p > 0.05, are shown in bold. 
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Figure 4. Between-Network Connectivity Results. Distributions of between-network connectivity values during 
the A) Force Concept Inventory (FCI) Task Phase III and B) physics knowledge (PK) task among Low STEM Anxiety 
(LSA; green) and High Math Anxiety (HMA; purple) students. Pirate plots with asterisks denote significant 
differences between groups. For each task, the observed between-network differences are illustrated with DAN, 
VAN, and DMN topographical visualization. Asterisks accompanied by a solid line denote significant differences 
between groups; dotted lines represent no significant group differences. 

 

Profile Membership Effects: Within-Network Connectivity 

Lastly, we examined whether there were significant differences between High Math Anxiety and Low 
STEM Anxiety students in terms of within-network connectivity for the DAN, VAN, and DMN. Table 6 
presents the with-network connectivity differences during the FCI task. Results indicated no differences 
in connectivity between groups during FCI Phase I (Scenario) or Phase II (Question). However, during 
Phase III (Answer), High Math Anxiety students exhibited significantly reduced within-network 
connectivity (i.e., DAN, VAN, and DMN) relative to Low STEM Anxiety students. Distributions of 
within-network connectivity values for Phase III of the FCI task are displayed in Fig. 5A. Student age, 
sex, ethnicity, household income, number of years enrolled at FIU, GPA, and generalized anxiety did not 
significantly explain variation in within-network connectivity across all FCI phases. 

Table 6. Within-Network Connectivity during Force Concept Inventory (FCI) Task. 

 Phase I (Scenario) Phase II (Question) Phase III (Answer) 
Coefficient 𝛽   z-value p-value  𝛽  z-value p-value 𝛽  z-value p-value 

Within-DAN Connectivity 
Groupa -0.052 -0.893 0.372 -0.105 -1.818 0.069 -0.141 -2.525 0.012 
Age 0.018 0.947 0.344 -0.020 -1.060 0.289 -0.010 -0.536 0.592 
Sexb 0.046 0.846 0.398 0.008 0.156 0.876 0.089 1.719 0.086 
Ethnicityc -0.027 -0.426 0.670 0.059 0.958 0.338 -0.025 -0.417 0.676 
Income 0.017 1.137 0.256 0.020 1.333 0.182 0.014 0.988 0.323 
Years  -0.054 -1.510 0.131 0.004 0.112 0.911 -0.033 -0.973 0.330 
GPA -0.040 -0.704 0.482 -0.076 -1.370 0.171 -0.065 -1.210 0.226 
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Gen. Anxiety -0.004 -0.138 0.891 0.001 0.029 0.977 0.020 0.698 0.485 
Within-VAN Connectivity 

Groupa -0.049 -0.843 0.399 -0.055 -0.957 0.339 -0.142 -2.540 0.011 
Age 0.019 0.974 0.330 -0.019 -1.022 0.307 -0.005 -0.263 0.792 
Sexb 0.046 0.849 0.396 0.019 0.356 0.722 0.090 1.742 0.082 
Ethnicityc -0.024 -0.385 0.700 0.058 0.950 0.342 -0.026 -0.431 0.666 
Income 0.015 1.001 0.317 0.012 0.819 0.413 0.012 0.862 0.389 
Years  -0.040 -1.105 0.269 0.011 0.309 0.758 -0.040 -1.168 0.243 
GPA -0.036 -0.646 0.518 -0.076 -1.390 0.164 -0.049 -0.920 0.357 
Gen. Anxiety -0.006 -0.214 0.830 -0.017 -0.593 0.553 0.014 0.476 0.634 

Within-DMN Connectivity 
Groupa -0.058 -1.009 0.313 -0.084 -1.527 0.127 -0.129 -2.398 0.016 
Age 0.022 1.122 0.262 -0.020 -1.091 0.275 0.000 0.008 0.994 

Sexb 0.005 0.095 0.924 -0.015 -0.294 0.769 0.086 1.735 0.083 
Ethnicityc -0.006 -0.099 0.921 0.069 1.174 0.240 -0.049 -0.851 0.395 
Income 0.027 1.873 0.061 0.019 1.353 0.176 0.015 1.126 0.260 
Years  -0.043 -1.207 0.227 -0.010 -0.304 0.761 -0.038 -1.151 0.250 
GPA -0.048 -0.868 0.385 -0.080 -1.515 0.130 -0.073 -1.422 0.155 
Gen. Anxiety -0.001 -0.048 0.962 -0.009 -0.329 0.742 0.004 0.157 0.875 

Note. Groupa, Sexb, and Ethnicityc are binary variables; thus, the reference categories for each variable are: a Low 
STEM Anxiety, b Male, c Hispanic, respectively. Significant results, defined as p > 0.05, are shown in bold. 

 

Table 7 presents the within-network connectivity differences during the PK task. Results indicated no 
significant differences in within-network connectivity between groups for the VAN or DMN. However, 
High Math Anxiety students exhibited significantly reduced within-DAN connectivity during the PK 
task relative to Low STEM Anxiety students. Distributions of within-network connectivity values for the 
PK task are displayed in Fig. 5B. As with the FCI task, age, sex, ethnicity, household income, number of 
years enrolled at FIU, GPA, and generalized anxiety were not significant predictors for within-network 
connectivity for the PK task. 

Table 7. Within-Network Connectivity during Physics Knowledge (PK) Task. 

Coefficient 𝛽  z-value p-value 𝛽  z-value p-value 𝛽  z-value p-value 
 DAN Within-Network 

Connectivity 
VAN Within-Network 

Connectivity 
DMN Within-Network  

Connectivity 
Groupa -0.165 -2.386 0.017 -0.122 -1.645 0.100 -0.086 -1.213 0.225 
Age -0.005 -0.200 0.841 -0.010 -0.386 0.699 -0.000 -0.006 0.995 
Sexb -0.030 -0.467 0.641 0.009 0.129 0.897 -0.005 -0.072 0.943 
Ethnicityc 0.046 0.630 0.529 0.001 0.017 0.986 0.004 0.060 0.952 
Income -0.019 -1.102 0.271 -0.021 -1.121 0.262 -0.029 -1.630 0.103 
Years  0.017 0.399 0.690 0.018 0.395 0.693 0.015 0.344 0.731 
GPA -0.062 -0.934 0.350 -0.067 -0.945 0.345 -0.086 -1.267 0.205 
Gen. Anxiety 0.004 -0.111 0.912 -0.029 -0.763 0.445 -0.002 -0.051 0.960 

Note. Groupa, Sexb, and Ethnicityc are binary variables; thus, the reference categories for each variable are: a Low 
STEM Anxiety, b Male, c Hispanic, respectively. Significant results, defined as p > 0.05, are shown in bold. 
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Figure 5. Within-Network Connectivity Results. Distributions of within-network connectivity values during the 
A) Force Concept Inventory (FCI) Task Phase III and B) physics knowledge (PK) task among Low STEM Anxiety 
(LSA; green) and High Math Anxiety (HMA; purple) students. Pirate plots with asterisks denote significant 
differences between groups.  

Discussion 

The current study examined associations between STEM-related anxiety and between- and within-
network connectivity for the DAN, VAN, and DMN among university physics students.  LPA conducted 
on science and math anxiety scores identified four student profiles; however only two profiles, which 
included High Math Anxiety and Low STEM Anxiety students, were examined due to low sample size. 
No significant differences in within- and between-network connectivity were observed between these 
two profiles in terms of student age, sex, household income, ethnicity, years of education, GPA, or 
physics task performance. Significant differences in within- and between-network connectivity were 
observed between profiles in terms of their generalized anxiety, with High Math Anxiety students 
exhibiting increased generalized anxiety compared to Low STEM Anxiety students. Group differences 
in between- and within-network connectivity for the DAN, VAN, and DMN were examined during the 
FCI and PK tasks, which measure physics-based conceptual reasoning and content knowledge, 
respectively. Results demonstrated no significant group differences in task-based connectivity during 
FCI Phase I (Scenario) and Phase II (Question). However, during FCI Phase III (Answer), High Math 
Anxiety students exhibited significantly reduced between-network (i.e., DAN-VAN, VAN-DMN, and 
DAN-DMN) connectivity and within-network (i.e., DAN, VAN, and DMN) connectivity compared to 
Low STEM Anxiety students. Regarding the PK task, no significant group differences were observed in 
DMN-related between-network connectivity (i.e., VAN-DMN and DAN-DMN) or within-network 
connectivity for the VAN and DMN. However, during the PK task, High Math Anxiety students 
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exhibited significantly reduced DAN-VAN and within-DAN connectivity compared to Low STEM 
Anxiety students. These outcomes provide insight into how between- and within-network connections 
(i.e., DAN, VAN, and DMN) are altered among those elevated and reduced STEM-related anxiety. 

Physics Cognition During the FCI and PK Tasks 

The current study used two different fMRI tasks to disentangle attentional control processes to further 
understanding of the role of STEM-related anxiety on physics-based cognition. During both the FCI and 
the PK tasks, students responded to physics-based questions. A key difference between tasks is their 
relative duration; the PK task has a relatively short mean response time of (4.3 sec), while Phase III of the 
FCI has a much longer mean response time of 20.2 sec. Thus, while both tasks rely on engagement of the 
DAN for attentional maintenance and control, the FCI also engages the DMN, particularly during Phase 
III (Answer), likely due to mental exploration and sustained cognition needed to generate their answers 
(Bartley et  al., 2019). We found significant and widespread group differences in task-based connectivity 
within and between the DAN, VAN, and DMN during Phase III of the FCI, but no differences during 
Phases I or II, suggesting that attentional control processes are highly relevant and confirm the ACT 
framework during physics conceptual reasoning and answer selection, but not problem initiation or 
question presentation. These results are broadly consistent with findings from prior studies investigating 
the role of DMN-related processing associated with STEM-related anxiety. It has previously been shown 
that individuals with elevated STEM-related anxiety exhibit disrupted DMN-related functioning (Qiao 
et al., 2020), have diffuse and unstructured network connectivity (Klados et al., 2019), and experience 
increased levels of threat avoidance and rumination that may result in deficits in attentional control 
(Pizzie & Kraemer, 2017), compared to their less-anxious peers. Such results are consistent with ACT 
since they suggest that highly anxious individuals may utilize more cognitive resources to sustain DMN 
activity. Consequently, highly anxious individuals may have difficulty in suppressing interference 
caused by negative emotional information and may experience less mental flexibility in shifting their 
attention from an internal introspective state to external environmental stimuli, which may lead to 
performance deficits in tasks requiring high cognitive demands (Qiao et al., 2020). Furthermore, 
increased ruminators exhibit decreased DMN-related connectivity (i.e., both within-DMN and DAN-
DMN) associated with distractor inhibition, emotional regulation, and attentional control (Liu et al., 
2020; Roberts et al., 2021; Rosenbaum et al., 2018). In addition, DMN-related connectivity has been linked 
to distractor suppression (Poole et al., 2016). Together, these findings may offer insight into our 
significant findings during FCI Phase III and DMN engagement during this task stage may potentially 
reflect increased rumination among students with elevated STEM anxiety. 

In contrast to the FCI results, we found no DMN-related connectivity group differences during the PK 
task. Significant group differences during the PK task were limited to the DAN, including DAN-VAN 
and within-DAN connectivity. These results highlight the different cognitive processes and systems at 
play during the PK task compared to the FCI task. While both the FCI and PK tasks require engagement 
of DMN regions for successful task execution and retrieval of physics-based content knowledge, our 
results indicate that it is the dynamics of the DAN that are especially salient in the context of performing 
the PK task among students with elevated STEM anxiety. The DAN is known to be integral for attention 
and is not considered a memory system per se (Lückmann et al., 2014), but prior work has demonstrated 
that top-down attentional control in the DAN plays an important role for successful episodic retrieval 
when retrieval of specific perceptual information or details is required (Guerin et al., 2012) or during 
remembrance of external stimuli (Stawarczyk et al., 2018). During the PK task, attentional control is 
critically important as participants attend to visual cues intended to reactivate systems that encode the 
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material (Lückmann et al., 2014) and trigger recollection of physics-based knowledge, drawing on 
working memory processes to retrieve information from long-term memory (Fukuda & Woodman, 
2017). Such attentional control requires appropriate coordination between the DAN and VAN for 
attention maintenance and reorienting attention to salient stimuli, respectively (Boon et al., 2020; 
Corbetta & Shulman, 2002; M. Eysenck et al., 2005). 

Attentional Control Theory and Task Performance 

A substantial body of work has previously demonstrated that DMN- and DAN-related connectivity is 
associated with reduced task performance. During cognitively demanding tasks, greater positive 
correlation between DAN and DMN activity typically results in greater variability in task performance 
(Anticevic et al., 2012; Kelly et al., 2008). Konishi et al. (2015) observed that activation in regions 
associated with working memory was accompanied by significant transient activation in the medial 
prefrontal cortex (mPFC) and posterior cingulate cortex (PCC), both core hubs of the DMN, for correct 
responses. Esterman et al. (2013) found that fluctuations in DMN activity had both beneficial and 
detrimental effects on performance during a sustained attention task. Specifically, while moderate DMN 
activity corresponded to periods of reduced variability in response time and less error-prone 
performance, extreme peaks in DMN engagement during these periods predicted lapses in sustained 
attention and preceded errors. Additionally, positive coupling between the DMN and right inferior 
frontal gyrus increases speed and accuracy in detecting task-relevant features, which is an important 
functional component of goal-directed tasks (Elton & Gao, 2015). Furthermore, positive correlations 
between the mPFC and PCC and the right anterior insula has been associated with performance deficits 
during sustained attention tasks (Fortenbaugh et al., 2017; Kucyi et al., 2016). Within- and between-
network connectivity have also played a role in distractor suppression. Elevated within-network DMN 
connectivity is predictive of increased distractor suppression, which corresponds to better task 
performance; however, DMN hyperconnectivity to both the DAN and VAN is predictive of poorer 
distraction suppression, leading to worse task performance (Poole et al., 2016). 

Given these prior results, it was surprising that the observed differences in DMN- and DAN-related 
connectivity were not linked to FCI and PK differences in task performance between High Math Anxiety 
and Low STEM Anxiety students. While some previous studies observed reduced task performance 
among participants with elevated anxiety (Basanovic et al., 2022; Wong et al., 2013; Vytal et al., 2012), 
other studies noted no associations between anxiety and task performance (Aylward et al., 2017; 
Derakshan et al., 2009). Importantly, the current lack of group differences in task performance remains 
consistent within the ACT framework (Eysenck et al., 2007). The emphasis of ACT is on the potential 
impairment of efficient goal-directed attentional control processing due to the increased probability of 
cognitive resources being diverted from the task to process anxiety-related stimuli. ACT thus predicts 
that impaired processing efficiency may manifest as reduced task performance if sufficient auxiliary 
cognitive resources are not available to maintain performance effectiveness at the cost of impaired 
efficiency (Eysenck et al., 2007). Consequently, anxious individuals may avoid decrements in task 
performance through compensatory mechanisms, such as increased cognitive effort and use of cognitive 
resources (Barker et al., 2018; Eysenck et al., 2007; Minnick et al., 2020). It is possible that anxious 
participants in this study did not experience elevated anxiety to the degree in which it had a noticeable 
effect on task performance (Kim et al., 2021); it may be useful to consider adding cognitive load 
manipulations to future physics-related fMRI tasks.  
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Limitations 

This study is characterized by several limitations. First, this study is limited by its sample size, which 
may not have been large enough to i) assign sufficient participants to the two STEM-anxiety profiles that 
weren’t examined, which included the High STEM anxiety and High Science Anxiety profiles, and ii) 
detect additional STEM-anxiety related student profiles (Spurk et al., 2020). Our study included 123 
student participants and LPA yielded four profiles of students of imbalanced group sizes. As a result, 
two of those groups included less than 10.6% of the total sample and were excluded from the subsequent 
connectivity analyses due to power concerns. The present study thus focused only on group differences 
in task-based connectivity among High Math Anxiety and Low STEM Anxiety students. Future work 
should include a larger sample to ensure inclusion of High Anxiety and High Science Anxiety students 
in connectivity analyses. Second, some participants may have experienced elevated anxiety during the 
MRI scanning session, potentially confounding results. As this work focuses on the effects of anxiety on 
functional connectivity, future studies may include MRI-related anxiety as a predictor variable 
(Ahlander et al., 2016). Third, significantly increased generalized anxiety was observed among High 
Math Anxiety compared to Low STEM Anxiety students. While the current study found significant 
STEM anxiety-related differences in DAN, VAN, and DMN connectivity after controlling for generalized 
anxiety, it is unknown to what extent STEM and generalized anxiety may interact to disrupt functional 
brain connectivity. Finally, results from this study may not generalize to other groups of university 
students such as non-STEM students who may experience and adapt to STEM-related anxiety differently 
due to reduced exposure to STEM courses in their curriculum. Furthermore, since this study examined 
undergraduate physics students, results may not generalize to other physics cohorts or STEM content 
domains. 

Conclusions 

This study confirmed attentional control theory (ACT) in the context of STEM-related anxiety and 
demonstrated that undergraduate physics students with elevated STEM anxiety exhibited reduced task-
based connectivity among brain networks that collaborate to maintain and modulate attentional control. 
Specifically, we observed significant and widespread STEM anxiety-related differences within and 
between the dorsal attention network (DAN), ventral attention network (VAN), and default mode 
network (DMN) during physics conceptual reasoning and answer selection (i.e., FCI task Phase III), but 
no differences during problem initiation or question presentation. These results suggest the importance 
of sustained cognition and DMN-related processing associated with STEM-related anxiety during the 
FCI task. Further, we found no significant DMN-related differences during the PK task, which measures 
physics-based content knowledge. Significant group differences during the PK task were limited to the 
DAN, including DAN-VAN and within-DAN connectivity. These results highlight the different 
cognitive processes that are required to complete the PK task compared to the FCI task. Finally, we 
observed no significant differences in FCI or PK task performance between High Math Anxiety and Low 
STEM Anxiety students. However, it is unclear if greater anxiety would lead to greater variability in task 
performance or if sustained anxiety experiences can lead to long-term performance differences. Future 
work is needed to explore the potential effects of STEM-related anxiety across STEM courses or learning 
experiences to determine if STEM exposure attenuates or exacerbates the task-based connectivity 
differences observed in the present study. Enhanced insight into the complex relations between STEM-
related anxiety and STEM performance will likely yield more effective interventions to improve STEM 
retention and graduation rates.  
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