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Abstract

Attentional control theory (ACT) posits that elevated anxiety increases the probability of re-allocating
cognitive resources needed to complete a task to processing anxiety-related stimuli. This process impairs
processing efficiency and can lead to reduced performance effectiveness. Science, technology,
engineering, and math (STEM) students frequently experience STEM-related anxiety, which can interfere
with learning and performance and negatively impact student retention and graduation rates. The
objective of this study was to extend the ACT framework to investigate the neurobiological associations
between STEM-related anxiety and cognitive performance among 123 physics undergraduate students.
Latent profile analysis (LPA) identified four profiles of student STEM-related anxiety, including two
profiles that represented the majority of the sample (Low STEM Anxiety; 59.3% and High Math Anxiety;
21.9%) and two additional profiles that were not well represented (High STEM Anxiety; 6.5% and High
Science Anxiety; 4.1%). Students underwent a functional magnetic resonance imaging (fMRI) session in
which they performed two tasks involving physics cognition: the Force Concept Inventory (FCI) task
and the Physics Knowledge (PK) task. No significant differences were observed in FCI or PK task
performance between High Math Anxiety and Low STEM Anxiety students. During the three phases of
the FCI task, we found no significant brain connectivity differences during scenario and question
presentation, yet we observed significant differences during answer selection within and between the
dorsal attention network (DAN), ventral attention network (VAN), and default mode network (DMN).
Further, we found significant group differences during the PK task were limited to the DAN, including
DAN-VAN and within-DAN connectivity. These results highlight the different cognitive processes
required for physics conceptual reasoning compared to physics knowledge retrieval, provide new
insight into the underlying brain dynamics associated with anxiety and physics cognition, and confirm
the relevance of ACT theory for STEM-related anxiety.
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Introduction

Improving student retention rates among science, technology, engineering, and math (STEM) university
majors has been an enduring issue in higher education (Almatrafi et al., 2017; Findley-Van Nostrand &
Pollenz, 2017). Only ~40% of university undergraduate students enrolled in STEM degree programs in
the United States complete their degree (Waldrop, 2015), yet within the next 10-20 years a projected one
million STEM-related jobs will need to be filled by qualified individuals (Findley-Van Nostrand &
Pollenz, 2017). These low STEM retention rates among U.S. students have prompted multiple research
studies and programmatic initiatives dedicated to investigating and addressing the motivational,
institutional, and cognitive factors that result in students abandoning STEM degree programs (Cromley
etal., 2016; Leary et al., 2020). While findings suggest that STEM retention is a multifaceted problem, one
notable psychosocial barrier that students commonly report facing when choosing whether or not to
remain in their programs is STEM-related anxiety, which is defined as apprehension or fear towards
STEM-related activities (Sudrez-Pellicioni et al., 2016). STEM-related anxiety has been associated with
underperformance in STEM courses (Daker et al., 2021; Sithole et al., 2017), avoidance of effortful and
effective study strategies (Jenifer et al., 2022), and is a significant contributing factor to withdrawal from
introductory university STEM courses (Daker et al., 2021).

The association between STEM-related anxiety and diminished STEM performance may be explained
by Attentional Control Theory (ACT), which posits that elevated anxiety impairs efficient functioning
by reducing cognitive resources available for attentional focus, thereby compromising performance
effectiveness (Corbetta & Shulman, 2002; Derakshan et al., 2009; Eysenck et al., 2007; Sudrez-Pellicioni et
al., 2016). ACT is an updated adaptation of the processing efficiency theory proposed by Eysenck &
Calvo (1992). Processing efficiency theory distinguishes between performance effectiveness, which is
defined as the quality of performance on a task, and processing efficiency, which moderates the relation
between performance efficiency and the cognitive resources needed to attain a particular quality of
performance. Processing efficiency theory also proposes that excessive rumination among highly
anxious individuals encourages them to exert more cognitive effort to compensate for the deleterious
effects of anxiety. Elevated use of finite cognitive resources is thought to lead to highly anxious
individuals displaying reduced processing efficiency, which in turn worsens performance efficiency.
Eysenck et al. (2005) provided experimental evidence supporting this theory by demonstrating that
groups of individuals with high and low anxiety performed similarly when a primary, visuospatial
short-term memory task was coupled with a secondary, simple motor tapping task. However, when the
secondary task was altered to require the use of the working memory system (e.g., counting backwards),
highly anxious individuals performed worse on both the primary and secondary tasks, thus suggesting
that elevated anxiety levels may diminish processing efficiency, thereby degrading performance
efficiency (Eysenck et al., 2005).

While processing efficiency theory broadly predicts that anxiety impairs executive functioning, which
includes multiple cognitive processes ranging from attention shifting to updating working memory
(Derakshan & Eysenck, 2009), ACT narrows the scope to posit that anxiety specifically impairs
attentional control (Corbetta & Shulman, 2002). Within this framework, increased anxiety is thought to
disrupt the equilibrium between two attentional systems: a goal-directed dorsal frontoparietal system,
often referred to as the dorsal attention network (DAN) (Corbetta et al., 2008; Corbetta & Shulman, 2002;
Fox et al., 2006; Hacker et al., 2017), which is engaged during task-relevant processes, and a stimulus-
driven ventral parietal system, often referred to as the ventral attention network (VAN) (Corbetta et al.,
2008; Corbetta & Shulman, 2002; Fox et al., 2006; Hacker et al., 2017), which is involved in the processing
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of rewarding and aversive stimuli (Derakshan & Eysenck, 2009; Dosenbach et al., 2007; Lydon-Staley et
al., 2019; Vossel et al., 2014). According to ACT, the detrimental effects of increased anxiety can be
alleviated by increased activation of stimulus-driven attentional systems. However, as a consequence of
the elevated activity of stimulus-driven attentional systems, fewer cognitive resources are dedicated to
goal-directed attentional systems. In anxious individuals, enhanced activation of stimulus-driven
attentional systems and decreases in goal-directed attentional systems are thought to occur in tandem,
reflecting an aversive, elevated tendency to flight responses which lead to reduced performance and
processing ability (Corbetta & Shulman, 2002). This mechanism may result in a feedback loop where
elevated anxiety and reduced performance lead to lowered self-efficacy, leading to maintenance of
disequilibrium between goal-directed and stimulus-driven attentional systems (Sudrez-Pellicioni et al.,
2016). Furthermore, while ACT emphasizes both the independent and dependent functionalities of the
DAN and VAN, evidence suggests that both engagement and disengagement of the default mode
network (DMN) also influences attentional control and affects task performance (Poole et al., 2016). The
DMN is often categorized as the ‘task-negative’ network since it is often suppressed during cognitively
demanding tasks and active during periods of self-referential processing and mind-wandering (i.e., in
the absence of tasks) (Alves et al., 2019; Fortenbaugh et al., 2017). Prior work has demonstrated that
interdependence within and between regions of the DMN, DAN, and VAN are associated with
variability in task performance (Anticevic et al., 2012; Elton & Gao, 2015; Kelly et al., 2008), particularly
during sustained attention tasks (Fortenbaugh et al., 2017; Kucyi et al., 2016). Furthermore, DMN activity
alterations among anxious individuals (Qiao et al., 2020) suggests that both within-network activation
of the DMN and its interactions with both the DAN and VAN are important to attentional control and
relevant to ACT (Poole et al., 2016).

The objective of the present study was to extend the ACT framework to study the neurobiological
associations between STEM-related anxiety and cognitive performance. Although the ACT framework
has primarily been applied to the study of generalized anxiety, a recent meta-analysis demonstrated that
math anxiety negatively impacts attentional control (Finell et al., 2022), confirming the relevance of ACT
for STEM-related anxiety. Towards this end, we investigated STEM anxiety among undergraduate
students enrolled in an introductory physics course. Students participated in a behavioral session in
which they completed self-reports of STEM (i.e., science and math) anxiety, followed by a functional
magnetic resonance imaging (fMRI) session in which they performed two tasks involving physics
cognition: the Force Concept Inventory task (FCI) and the Physics Knowledge (PK) task. Latent profile
analysis (LPA) was used to identify groups of students with similar STEM anxiety profiles. Measures of
between- and within-network connectivity were extracted from the DAN, VAN, and DMN networks
during the FCI and PK tasks. Regression analyses were then conducted to determine task-based
connectivity differences between STEM anxiety groups. We hypothesized that significant DAN- and
VAN-related connectivity differences across STEM anxiety groups would be observed for both the FCI
and PK tasks. However, since the FCI task involves sustained physics cognition, we further hypothesized
that DMN-related differences would be observed only for the FCI task and not the PK task. Lastly, we
expected to observe significant differences in task performance (i.e., accuracy) across STEM anxiety
groups, as predicted by ACT and processing efficiency theory. Together, these findings may inform
knowledge on the behavioral and neurobiological associations between STEM-related anxiety and
physics cognition among undergraduate STEM students.



https://doi.org/10.1101/2022.09.30.508557
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.30.508557; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. Smith et al. 5

Methods

Participants

The study sample included 123 healthy, right-handed undergraduate students (mean age = 19.8 + 1.5,
range = 18-26 years; 56 females). Students were enrolled in introductory, calculus-based physics courses
at Florida International University (FIU) in Miami, Florida. At enrollment, participants provided
demographic information, such as their age, sex, ethnicity (i.e., Hispanic or non-Hispanic), household
income, grade point average (GPA), and number of years enrolled as a student at FIU (i.e., freshman,
sophomore, junior, or senior) (Table 1). Participants self-reported that they were free from cognitive
impairments, neurological and psychiatric conditions, and did not use psychotropic medications.

Table 1. Participant Demographic Information

N Percentage

Gender

Male 67 54

Female 56 46
Ethnicity

Hispanic 85 69

Non-Hispanic 38 31
Household Income

< $15,000 26 21

$15,000 - $34,999 24 20

$35,000 - $49,999 16 13

$50,000 - $74,999 21 17

$75,000 - $99,999 18 15

>$100,000 18 15
Years Enrolled

Freshman 11 10

Sophomore 51 47

Junior 33 31

Senior 13 12

Mean (Std. Dev.) Range

Age 19.8 (1.5) 18-26
GPA 3.3(0.5) 0.0-4.0

Note. The “N” column represents the sample size of the group and the “Percentage” column represents
the percentage of participants in that group for each categorical variable (Gender, Ethnicity, Household Income,
and Years Enrolled).

Procedures

At the beginning of the semester, participant recruitment began with research assistants visiting eligible
classrooms and delivering a brief presentation, with the permission of the professor, informing students
about the opportunity to voluntarily participate in this study. Enrolled participants completed a
behavioral and fMRI session at the beginning of the course (i.e., pre-instruction), no later than the fourth
week of instruction and prior to the first course exam. Behavioral sessions were conducted in an on-
campus lab and students were asked to complete a battery of Qualtrics surveys. Imaging sessions were
conducted off-campus and participants were provided with free parking and/or FIU-organized
transportation to and from the MRI site. Written informed consent was obtained in accordance with
FIU’s Institutional Review Board approval. Participants were compensated monetarily after both the
behavioral and fMRI sessions.
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STEM-Related Anxiety Measures

Participants completed a series of self-report instruments during their behavioral sessions, including,
but not limited to, assessments of their STEM-related anxiety. The Science Anxiety Questionnaire
(Mallow, 1994) consists of 22 items and had a Cronbach’s alpha of a = 0.86, which was calculated using
the cronbach.alpha command from the 1tm package available in R. The items asked students to
indicate their level of discomfort with respect to a range of science-related subjects and activities (e.g.,
“Having your professor watch you perform an experiment in the lab.”) on a 5-point Likert scale, with “0”
suggesting no apprehension and “4” indicating the highest level of discomfort. The Mathematics Anxiety
Rating Scale (Alexander & Martray, 1989) consists of 25 items and had a Cronbach’s alpha of a =0.96.
The items asked students to indicate their level of discomfort with respect to a variety of mathematics
related activities (e.g., “Being given a set of division problems to solve on paper.”) on a 5-point Likert scale,
with “0” suggesting no apprehension and “4” indicating the highest level of discomfort.

Generalized Anxiety Measure

In addition to these two measures of STEM-related anxiety, symptoms of anxiety were assessed to
capture students’ self-report of non-STEM-related anxiety. The Beck Anxiety Inventory (Beck et al., 1988)
is a Likert scale consisting of 21 items and had a Cronbach’s alpha of « = 0.94. The items asked students
to indicate the severity of anxiety related symptoms that they experienced within the past month (e.g.,
“Fear of the worst happening”) on a 4-point Likert scale with “0” indicating that a symptom hadn’t been
experienced in the past month and “3” indicating that the symptom had been severe in the past month.

MRI Data Acquisition

MRI data were acquired on a GE 3T Healthcare Discovery 750W MRI scanner at the University of Miami.
Functional imaging data were acquired with an interleaved gradient-echo, echo planar imaging (EPI)
sequence (TR/TE = 2000/30ms, flip angle = 75°, field of view (FOV) = 220x220mm, matrix size = 64x64,
voxels dimensions = 3.4x3.4x3.4mm, 42 axial oblique slices). T1-weighted structural data were also
acquired using a 3D fast spoiled gradient recall brain volume (FSPGR BRAVO) sequence with 186
contiguous sagittal slices (TI = 650ms, bandwidth = 25.0kHz, flip angle = 12°, FOV = 256x256mm, and
slice thickness = 1.0mm).

fMRI Tasks

During the fMRI session, participants performed two different tasks: the Force Concept Inventory (FCI)
task and the Physics Knowledge (PK) task.

FCl Task

Participants completed an in-scanner physics conceptual reasoning task that consisted of questions
adapted from the reliable and widely used questionnaire known as the Force Concept Inventory (FCI)
(Hestenes et al., 1992; Lasry et al., 2011; Von Korff et al., 2016). The experimental condition presented
textual and illustrations of scenarios of objects at rest or in motion and students were asked to choose
between a correct Newtonian solution and several reasonable but incorrect non-Newtonian alternatives.
Students also completed a sequence of control questions that presented text and figure depictions of
everyday physical scenarios that shared similar visual and linguistic characteristics to FCI items (e.g.,
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containing words typically used in introductory Newtonian mechanics, as well as visual presentation
and self-paced timing paralleling that of the FCI problems.) Control items, however, tested students on
general reading comprehension and/or shape discrimination instead of physics content. Across both
FCI and control conditions, questions were presented as blocks composed of three sequential view
screens (i.e., “phases”), which consisted of:

e Phase 1: Scenario: students viewed text and a figure describing a physical scenario (Fig. 1A),

e Phase II: Question: students viewed a physics question about the scenario (Fig. 1B), and

e Phase III: Answer: students responded with their answer out of four possible answer choices
(Fig. 1C).

Participants provided a self-paced button press to advance between phases and to provide their final
answer. A fixation cross was shown after answer selection and before presentation of the next scenario.
FCI and control blocks were of maximum duration 45 sec and were followed by a fixation cross of
minimum duration 10 sec. The total duration for each FCI run was 5 min 44 sec; data were collected
during three runs for a total duration of ~16 minutes. Control trials were not analyzed in the present
study but a description is provided above for completeness. In a previous publication, we demonstrated
that our within-scanner version of the FCI task elicited widespread frontoparietal activation of regions
of the DAN, VAN, and DMN, and that these activation patterns were elicited differently during each of
the three phases (Bartley et al., 2019).

PK Task

Participants also completed the Physics Knowledge (PK) task. The PK task, adapted from a general
knowledge task of semantic retrieval (Elman et al., 2012), was presented in a block-design and probed
for brain activation associated with physics-based content knowledge. Students viewed physics
questions (e.g., “What is the value of the acceleration due to gravity on Earth?”) and corresponding answer
choices, such as “9.81 m/s?, 15 kg, 10 liters, and 11 ft/s*”) (Fig. 1D). A control condition was presented in
which students viewed general knowledge questions (e.g., “What is the tallest mountain in the world?”)
with corresponding answer choices, such as “Mount Rushmore, Mount Rainier, Mount Everest, or Mount
Logan”). PK and control blocks were 28 seconds long and included four questions per block (6.5 sec per
question followed by 0.5 sec of quick fixation). Three blocks of physics or general questions (six question
blocks total) were alternated with 10 sec of fixation. The total duration of one run was 4 min 2 sec; data
were collected during two runs for a total duration of ~8 minutes. Similar to the FCI task, control trials
for the PK task were not analyzed in the present study but are described for completeness.
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A ball is attached to a string and swung TOP-DOWN VIEW: (A) Aball is attached to a string and swung TOP-DOWN VIEW: (A)
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Figure 1. Force Concept Inventory (FCI) and Physics Knowledge (PK) Tasks. Example items of the in-scanner
tasks, including the three phases of the FCI task (A) Phase I: Scenario, (B) Phase II: Question, (C) Phase III:
Answer and the (B) PK task.

Analyses

Latent Profile Analysis

Latent profile analysis (LPA) is an analytic technique in which participants are assigned (with varying
probabilities) into classes (i.e., subpopulations) based on their pattern of responses on a set of indicators.
LPA was used in this study to group participants based on STEM-related anxiety profiles (i.e., based on
similar self-report of science and math anxiety). LPA was performed in R using the tidyLPA package,
as well as melust, which uses the Expectation-Maximization algorithm, an approach for maximum
likelihood estimation, for model-based clustering and classification (Rosenberg et al., 2018; Scrucca et al.,
2016). Default parameters were used in which equal variances across classes and covariances were fixed
to 0, which assumes conditional independence of the indicators and that correlation amongst indicators
are explained exclusively by the latent classes, and a maximum of four possible classes were specified
(Lee et al., 2020). The compare solutions command, available in tidyLPA, was used to determine
the optimal number of classes by selecting the model with the lowest Bayesian Information Criterion
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(BIC), entropy, and bootstrapped likelihood ratio test (LRT). BIC is a model selection tool used to select
one model from a finite set of possible models and the one with the smallest BIC is considered the “best”
candidate (Perrotte et al., 2021). Entropy, which can range from 0 to 1, is an indicator of classification
precision and greater entropy suggests that the identified classes are better separated (Lee et al., 2020).
Additionally, models with entropy values greater than 0.8 suggest good distinction of the identified
classes (Ramaswamy et al., 1993). Bootstrapped LRT produces a p-value for each subsequent model and
is an indicator for the degree of fit improvement resulting from adding an additional profile. If the model
contains a significant p-value when an additional profile is added, then that suggests the model provides
a significant improvement in fit, relative to the previous model with k-1 profiles. Next, tidyLPA’ s
plot profile command that specifies a 95% confidence interval was used to visualize model
classification and assist with interpreting the grouping of the final model. Finally, for the purpose of
contextualizing the profiles, we examined the extent to which the profiles differed with respect to age,
sex, ethnicity, household income, number of years enrolled at FIU, GPA, generalized anxiety, and
accuracy on the FCI and PK tasks (measured as the average number of correct responses).

fMRI Preprocessing

Each participant’'s T1-weighted images were corrected for intensity non-uniformity with ANT’ s
N4BiasFieldCorrection tool (Avants et al., 2008; Tustison et al., 2010). Both anatomical and
functional images were preprocessed using fMRIPrep (v.1.5.0rcl) (Esteban et al., 2019, 2020). The T1-
weighted (T1w) reference, which was used throughout the pipeline, was generated after T1w images
were corrected for intensity non-uniformity with ANT’s N4dBiasFieldCorrection. Freesurfer’s
mri_ robust template was used to generate a T1w reference, which was used throughout the entire
pipeline (Reuter et al., 2010; Tustison et al, 2010). Nipype’s implementation of ANT’s
antsBrainExtraction workflow was used to skullstrip the T1w reference using OASIS30ANTs as
the target template (Gorgolewski et al., 2011). FSL’ s FAST was used for brain tissue segmentation of
the cerebrospinal fluid (CSF), white matter (WM), and gray matter (GM); brain surfaces were
reconstructed using Freesurfer’s recon_all (Daleetal.,, 1999; Zhang et al., 2001). Preprocessing of
functional images began with selecting a reference volume and generating a skullstripped version using
a custom methodology of fMRIPrep. Freesurfer’s bbregister, which uses boundary-based
registration, was used to coregister the T1w reference to the BOLD reference. The BOLD time series was
then resampled onto surfaces of fsaverage5 space and resampled onto their original, native space by
applying a single, composite transform to correct for head motion and susceptibility distortions.
Additionally, the BOLD time series was high pass filtered, using a discrete cosine filter with a cutoff of
128s (Greve & Fischl, 2009). Several confounding time series were estimated as follows: for each
functional run, motion outliers were set at a threshold of 0.5 mm framewise displacement (FD) or 1.5
standardized DVARS. Nuisance signals from the CSF, WM, and whole brain masks were extracted by
using a set of physiological regressors, which were extracted to allow for both temporal component-
based noise correction (tCompCor) and anatomical component-based noise correction (aCompCor)
(Behzadi et al., 2007). Additionally, the confound time series derived from head motion estimates were
expanded to include its temporal derivatives and quadratic terms, resulting in a total of 24 head motion
parameters (i.e., six base motion parameters, six temporal derivatives of six motion parameters, 12
quadratic terms of six motion parameters, and their six temporal derivatives). Estimates for the global,
cerebrospinal fluid, and white matter signals were expanded to include their temporal derivatives and
quadratic terms, resulting in a total of 12 signal-based parameters (i.e., three base signal parameters,
three temporal derivatives of the three base parameters, the three quadratic terms of the base parameters,
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and the three quadratic terms of the temporal derivatives). Finally, all 24 head motion confound
estimates, three high pass filter estimates, and a variable number of aCompCor estimates (components
that explain the top 50% of the variance) were outputted into a tsv file to be used for later denoising steps
(Satterthwaite et al., 2013).

Parcellation and Task-Based Connectivity Analyses

Additional data analysis was conducted in IDConn, a pipeline that bundles several commonly used
neuroimaging software packages to create workflows examining functional brain connectivity
(Bottenhorn & Salo, 2022). Each participant’s preprocessed FCI and PK task-based fMRI data were
parcellated according to a functionally derived, whole-brain parcellation. Network-level identification
of the DAN, VAN, and DMN was carried out using the 17-network parcellation developed by Yeo et al.
(2011), using individual nodes within the networks as identified by Kong et al. (2021) (Fig. 2).
Confounding time series identified by £MRIPrep, along with the six head motion estimates from FSL’ s
MCFLIRT and outlier volumes (FD > 0.5 mm or 1.5 standardized DVARS) identified during
preprocessing, were regressed out during analysis in IDConn. Each functional task time series was
standardized and the average per-network time series were extracted for each participant and task
condition (averaged across runs), allowing assessment of between-network connectivity. Similarly, the
average per-node time series was extracted for each participant and task condition (averaged across
runs), allowing assessment of within-network connectivity. Importantly, given the relatively long
duration of FCI trials (i.e., 45 sec), we separately extracted average network- and node-level time series
for FCI Phase I (Scenario), Phase II (Question), and Phase III (Answer). Adjacency matrices were
constructed  per  participant, per  functional task  using Nilearn (v. 0.3.,
http:/ /nilearn.github.io/index.html), a Python (v. 2.7.13) module, built on scikit-learn, for the
statistical analysis of neuroimaging data, by computing the pairwise Pearson’s correlations between each
pair of regions, resulting in a 400x400 region-wise correlation matrix for each participant per condition
per task (Bottenhorn et al., 2021; Medaglia, 2017). From these matrices, we assessed the between-network
connectivity for DAN-VAN, DAN-DMN, and VAN-DMN, as well as the within-network connectivity
for the DAN, VAN, and DMN. Between- and within-network connectivity were assessed for each
participant and for both the FCI and PK tasks.

3

y=8 z=44

o

Figure 2. DAN, VAN, and DMN Network Parcellation. Each participant’s preprocessed fMRI data were
parcellated using the 17-network Yeo et al. (2011) parcellation to identify the dorsal attention network (DAN; pink);
ventral attention (VAN; yellow), and default mode network (DMN; blue).

Statistical Analyses

Statistical modeling was conducted with the Lavaan package (Rosseel, 2012), which is available in R.
Regression models were generated to evaluate between-network connectivity between DAN-VAN,
DAN-DMN, and VAN-DMN during both the FCI and PK tasks. In addition, regression models were also
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generated to evaluate within-network connectivity for the DAN, VAN, and DMN during the FCI and
PK tasks. The FCI models included three observed variables for each phase, including the average
between- or within-network connectivity values during Phase I (Scenario), Phase II (Question), and
Phase III (Answer). The PK models included a single observed variable, which was the average between-
or within-network connectivity values for each of the PK or control conditions. For each model, the
residual variance and intercept for the observed variable were specified. The main explanatory variable
of interest was LPA-based class assignment. Age, sex, ethnicity, household income, number of years
enrolled at FIU, GPA, and generalized anxiety were included as covariates.

Results

Latent Profile Analysis

Table 2 presents the model fit indices for the four LPA models of science and math anxiety. The 4-profile
model had the lowest Bayesian Information Criteria (BIC = 615.33), which suggested that this model,
relative to the other three, demonstrated the greatest improvement in fit. This interpretation was
supported by the results of the bootstrapped LRT p-values, which showed that the differences in
improvement of fit between the 1- and 2-profile models (p = 0.01), the 2- and 3-profile models (p = 0.01),
and the 3- and 4-profile models (p = 0.01) were all significant. Furthermore, the 4-profile model had an
entropy value greater than 0.8, which suggested a good separation of the identified classes (Ramaswamy
et al., 1993). Thus, the 4-profile model was selected based on BIC, entropy, bootstrapped LRT, and
interpretability of classes.

Table 2. Latent Profile Analysis Model Comparisons.

# of Profiles BIC Entropy Bootstrapped LRT p-values
1 715.36 1.00 -
2 663.07 091 0.01
3 629.27 0.89 0.01
4 615.33 0.88 0.01

|
Note. BIC = Bayesian Information Criteria,
LRT = Lo-Mendell-Rubin Adjusted Likelihood Ratio Test.

Table 3 presents the mean z-scores for science and math anxiety across the four profiles. The tidyLPA
get estimates command was used to determine if the mean science and anxiety for each profile was
significant based on a p-value < 0.05. The first profile represented 6.5% of the sample (n = 8) and was
labeled as High STEM Anxiety as both science and math anxiety were significantly above zero. The
second profile represented 59.3% of the sample (n = 73) and was labeled as Low STEM Anxiety as both
science and math anxiety means were significantly below zero. The third profile represented 21.9% of
the sample (n = 27) and was labeled as High Math Anxiety as only math anxiety was significantly above
zero. The fourth profile represented 4.1% of the sample (n = 5) and was labeled as High Science Anxiety
as only science anxiety was significantly above zero.

To ensure clearly defined class membership, we restricted assignment to profiles to those whose
posterior probabilities were 0.70 or higher. Of the 123 total participants, 100 of participants (81.3%) had
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posterior probabilities greater than 0.70. This included 73 Low STEM Anxiety and 27 High Math Anxiety
participants. Given low sample sizes for the High STEM Anxiety and High Science Anxiety groups, these
profiles were excluded from subsequent analysis. Thus, further analysis only focused on examining
differences between the High Math Anxiety and Low STEM Anxiety groups. Fig. 3 illustrates the z-scores
for science and math anxiety across these two profiles.

Table 3. Parameter Estimates for Science and Math Anxiety.

Science Anxiety Math Anxiety
Profile u o2 p-value u fo p-value
High STEM Anxiety (HSA) 1.490 0.212 <0.001 2.220 0.300 <0.001
Low STEM Anxiety (LSA) -0.499 0.212 <0.001 -0.572 0.300 <0.001
High Math Anxiety (HMA) 0.280 0.212 0.088 0.776 0.300 <0.001
High Science Anxiety (HSA) 3.330 0.212 <0.001 0.016 0.300 0.970

Note. Profile means and variances are represented by y and o? respectively.

2
1
2
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©
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Anxiety Profiles
—— High Math Anxiety
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-2
-2 -1 0 1 2

Science Anxiety

Figure 3. Science and Math Anxiety Scores for High Math Anxiety and Low STEM Anxiety Groups. A joint
kernel density estimate plot showing the distributions of standardized math and science anxiety scores for High
Math Anxiety (purple) and Low STEM Anxiety (green) students.

Demographic Differences Across Profiles

Next, we explored demographic differences across the High Math Anxiety and Low STEM Anxiety
profiles. Results from chi-square tests of association indicated that we could not reject the null hypothesis
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of no difference on the basis of sex (y* = 3.361, df = 1, p = 0.067), ethnicity (0.0870, df = 1, p = 0.768),
household income (x%= 2.368, df = NA, p = 0.809), or number of years enrolled at FIU (y?= 4.501, df =
NA, p =0.219). Furthermore, results from t-tests indicated that we could not reject the null hypothesis of
no difference in terms of average age (t = 1.511, df = 48.927, p = 0.137) or GPA (t=-1.132, df = 67.728, p
= 0.262). Importantly, and contrary to our hypotheses, we could not reject the null hypothesis on fMRI
task performance between groups, with no significant differences in terms of FCI accuracy (t = 1.221, df
=60.613, p =0.227), or PK accuracy (t =-1.128, df = 49.695, p = 0.265). Lastly, High Math Anxiety students
exhibited significantly increased generalized anxiety compared to Low STEM Anxiety students (t =
2.481, df = 31.732, p = 0.0186).

Profile Membership Effects: Between-Network Connectivity

We examined whether there were significant differences between High Math Anxiety and Low STEM
Anxiety students in terms of between-network connectivity for the DAN, VAN, and DMN. Table 4
presents the between-network connectivity differences during the FCI task. Results indicated no
significant differences in connectivity during FCI Phase I (Scenario) or Phase II (Question). However,
during Phase III (Answer), High Math Anxiety students exhibited significantly reduced between-
network connectivity (i.e., DAN-VAN, VAN-DMN, and DAN-DMN) relative to Low STEM Anxiety
students. Distributions of between-network connectivity values for Phase III of the FCI task are
displayed in Fig. 4A. Student age, sex, ethnicity, household income, number of years enrolled at FIU,
GPA, and generalized anxiety did not significantly explain variation in between-network connectivity
across all FCI phases.

Table 4. Between-Network Connectivity during the Force Concept Inventory (FCI) Task.

Phase I (Scenario) Phase II (Question) Phase III (Answer)
Coefficient B z-value p-value B z-value p-value B z-value p-value
DAN-VAN Connectivity
Group® -0.059 -0.976 0.329 -0.098 -1.633 0.102 -0.145 -2.574 0.010
Age 0.021 1.036 0.300 -0.016 -0.810 0.418 -0.006 -0.330 0.741
Sex® 0.060 1.074 0.283 0.030 0.542 0.588 0.089 1.711 0.087
Ethnicity* -0.028 -0.432 0.665 0.049 0.768 0.442 -0.028 -0.460 0.646
Income 0.021 1.345 0.178 0.015 1.010 0.312 0.015 1.031 0.303
Years -0.051 -1.397 0.163 -0.005 -0.142 0.887 -0.048 -1.375 0.169
GPA -0.044 -0.760 0.447 -0.095 -1.654 0.098 -0.069 -1.274 0.203
Gen. -0.011 -0.345 0.730 -0.015 -0.480 0.631 0.013 0.443 0.658
Anxiety
VAN-DMN Connectivity

Group® -0.070 -1.082 0.279 -0.117 -1.928 0.054 -0.140 -2.326 0.020
Age 0.024 1.100 0.271 -0.017 -0.866 0.386 -0.006 -0.326 0.745
Sex® 0.029 0.482 0.630 0.007 0.134 0.894 0.096 1.727 0.084
Ethnicity* -0.007 -0.097 0.923 0.024 0.371 0.711 -0.044 -0.695 0.487
Income 0.023 1.366 0.172 0.022 1.448 0.148 0.012 0.800 0.424
Years -0.042 -1.056 0.291 0.006 0.152 0.879 -0.038 -1.040 0.298
GPA -0.053 -0.843 0.400 -0.104 -1.777 0.075 -0.070 -1.221 0.222
Gen. -0.006 -0.178 0.859 -0.004 -0.129 0.898 0.013 0.425 0.671
Anxiety

DAN-DMN Connectivity



https://doi.org/10.1101/2022.09.30.508557
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.30.508557; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in Eerpetwty It is made
available under aCC-BY-NC-ND 4.0 International license. hetal. 14

Group® -0.069 -1.059 0.290 -0.124 -1.953 0.051 -0.130 -2.159 0.031
Age 0.021 0.988 0.323 -0.022 -1.022 0.307 -0.009 -0.455 0.649
Sex® 0.044 0.740 0.459 0.029 0.499 0.618 0.091 1.635 0.102
Ethnicity* -0.006 -0.083 0.933 0.010 0.145 0.885 -0.064 -0.999 0.318
Income 0.022 1.357 0.175 0.027 1.678 0.093 0.016 1.061 0.289
Years -0.051 -1.295 0.195 0.006 0.155 0.877 -0.034 -0.916 0.360
GPA -0.071 -1.145 0.252 -0.116 -1.909 0.056 -0.085 -1.469 0.142
Gen. -0.014 -0.406 0.685 -0.006 -0.199 0.842 0.012 0.385 0.700
Anxiety

Note. Group?, Sex®, and Ethnicity*® are binary variables; thus, the reference categories for each variable are: * Low
STEM Anxiety, ® Male, Hispanic, respectively. Significant results, defined as p > 0.05, are shown in bold.

Table 5 presents the between-network connectivity differences during the PK task. Results indicated no
significant differences in DMN-related between-network connectivity (i.e., VAN-DMN and DAN-
DMN). However, High Math Anxiety students exhibited significantly reduced DAN-VAN connectivity
during the PK task relative to Low STEM Anxiety students. Distributions of between-network
connectivity values for the PK task are displayed in Fig. 4B. As with the FCI task, age, sex, ethnicity,
household income, number of years enrolled at FIU, GPA, and generalized anxiety were not significant
predictors for between-network connectivity for the PK task.

Table 5. Between-Network Connectivity during Physics Knowledge (PK) Task.

Coefficient It z-value  p-value I z-value p-value B z-value  p-value
DAN-VAN Connectivity VAN-DMN Connectivity DAN-DMN Connectivity |
Group® -0.150 -2.005 0.045 -0.104 -1.347 0.178 -0.155 -1.923 0.054
Age -0.007 -0.300 0.764 -0.007 -0.282 0.778 -0.001 -0.047 0.962
Sex® -0.016 -0.235 0.814 0.002 0.032 0.975 0.019 0.252 0.801
Ethnicity* 0.014 0.177 0.859 -0.002 -0.027 0.978 -0.002 -0.028 0.978
Income -0.019 -0.993 0.321 -0.026 -1.324 0.185 -0.021 -1.007 0.314
Years 0.023 0.505 0.613 0.023 0.483 0.629 0.014 0.276 0.783
GPA -0.063 -0.883 0.377 -0.094 -1.256 0.209 -0.077 -0.999 0.318
Gen. Anxiety -0.015 -0.393 0.694 -0.014 -0.362 0.718 -0.001 -0.013 0.989

Note. Group?, Sex®, and Ethnicity* are binary variables; thus, the reference categories for each variable are: * Low
STEM Anxiety, ®Male, ¢ Hispanic, respectively. Significant results, defined as p > 0.05, are shown in bold.
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Figure 4. Between-Network Connectivity Results. Distributions of between-network connectivity values during
the A) Force Concept Inventory (FCI) Task Phase Il and B) physics knowledge (PK) task among Low STEM Anxiety
(LSA; green) and High Math Anxiety (HMA; purple) students. Pirate plots with asterisks denote significant
differences between groups. For each task, the observed between-network differences are illustrated with DAN,
VAN, and DMN topographical visualization. Asterisks accompanied by a solid line denote significant differences
between groups; dotted lines represent no significant group differences.

Profile Membership Effects: Within-Network Connectivity

Lastly, we examined whether there were significant differences between High Math Anxiety and Low
STEM Anxiety students in terms of within-network connectivity for the DAN, VAN, and DMN. Table 6
presents the with-network connectivity differences during the FCI task. Results indicated no differences
in connectivity between groups during FCI Phase I (Scenario) or Phase II (Question). However, during
Phase III (Answer), High Math Anxiety students exhibited significantly reduced within-network
connectivity (i.e., DAN, VAN, and DMN) relative to Low STEM Anxiety students. Distributions of
within-network connectivity values for Phase III of the FCI task are displayed in Fig. 5A. Student age,
sex, ethnicity, household income, number of years enrolled at FIU, GPA, and generalized anxiety did not
significantly explain variation in within-network connectivity across all FCI phases.

Table 6. Within-Network Connectivity during Force Concept Inventory (FCI) Task.

Phase I (Scenario) Phase II (Question) Phase III (Answer)
Coefficient B z-value p-value I z-value p-value I z-value p-value
Within-DAN Connectivity
Group® -0.052 -0.893 0.372 -0.105 -1.818 0.069 -0.141 -2.525 0.012
Age 0.018 0.947 0.344 -0.020 -1.060 0.289 -0.010 -0.536 0.592
Sex® 0.046 0.846 0.398 0.008 0.156 0.876 0.089 1.719 0.086
Ethnicity* -0.027 -0.426 0.670 0.059 0.958 0.338 -0.025 -0.417 0.676
Income 0.017 1.137 0.256 0.020 1.333 0.182 0.014 0.988 0.323
Years -0.054 -1.510 0.131 0.004 0.112 0.911 -0.033 -0.973 0.330
GPA -0.040 -0.704 0.482 -0.076 -1.370 0.171 -0.065 -1.210 0.226
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Gen. Anxiety -0.004 -0.138 0.891 | 0.001 0.029 0.977 | 0.020 0.698 0.485
Within-VAN Connectivity
Group® -0.049 -0.843 0.399 -0.055 -0.957 0.339 -0.142 -2.540 0.011
Age 0.019 0.974 0.330 -0.019 -1.022 0.307 -0.005 -0.263 0.792
Sex® 0.046 0.849 0.396 0.019 0.356 0.722 0.090 1.742 0.082
Ethnicity* -0.024 -0.385 0.700 0.058 0.950 0.342 -0.026 -0.431 0.666
Income 0.015 1.001 0.317 0.012 0.819 0.413 0.012 0.862 0.389
Years -0.040 -1.105 0.269 0.011 0.309 0.758 -0.040 -1.168 0.243
GPA -0.036 -0.646 0.518 -0.076 -1.390 0.164 -0.049 -0.920 0.357
Gen. Anxiety -0.006 -0.214 0.830 -0.017 -0.593 0.553 0.014 0.476 0.634
Within-DMN Connectivity
Group® -0.058 -1.009 0.313 -0.084 -1.527 0.127 -0.129 -2.398 0.016
Age 0.022 1.122 0.262 -0.020 -1.091 0.275 0.000 0.008 0.994
Sex® 0.005 0.095 0.924 -0.015 -0.294 0.769 0.086 1.735 0.083
Ethnicity* -0.006 -0.099 0.921 0.069 1.174 0.240 -0.049 -0.851 0.395
Income 0.027 1.873 0.061 0.019 1.353 0.176 0.015 1.126 0.260
Years -0.043 -1.207 0.227 -0.010 -0.304 0.761 -0.038 -1.151 0.250
GPA -0.048 -0.868 0.385 -0.080 -1.515 0.130 -0.073 -1.422 0.155
Gen. Anxiety -0.001 -0.048 0.962 -0.009 -0.329 0.742 0.004 0.157 0.875

Note. Group?, Sex®, and Ethnicity*® are binary variables; thus, the reference categories for each variable are: * Low
STEM Anxiety, ®Male, ¢ Hispanic, respectively. Significant results, defined as p > 0.05, are shown in bold.

Table 7 presents the within-network connectivity differences during the PK task. Results indicated no
significant differences in within-network connectivity between groups for the VAN or DMN. However,
High Math Anxiety students exhibited significantly reduced within-DAN connectivity during the PK
task relative to Low STEM Anxiety students. Distributions of within-network connectivity values for the
PK task are displayed in Fig. 5B. As with the FCI task, age, sex, ethnicity, household income, number of
years enrolled at FIU, GPA, and generalized anxiety were not significant predictors for within-network
connectivity for the PK task.

Table 7. Within-Network Connectivity during Physics Knowledge (PK) Task.

Coefficient I z-value  p-value I z-value  p-value I z-value  p-value
DAN Within-Network VAN Within-Network DMN Within-Network
Connectivity Connectivity Connectivity
Group® -0.165 -2.386 0.017 -0.122 -1.645 0.100 -0.086 -1.213 0.225
Age -0.005 -0.200 0.841 -0.010 -0.386 0.699 -0.000 -0.006 0.995
Sex® -0.030 -0.467 0.641 0.009 0.129 0.897 -0.005 -0.072 0.943
Ethnicity* 0.046 0.630 0.529 0.001 0.017 0.986 0.004 0.060 0.952
Income -0.019 -1.102 0.271 -0.021 -1.121 0.262 -0.029 -1.630 0.103
Years 0.017 0.399 0.690 0.018 0.395 0.693 0.015 0.344 0.731
GPA -0.062 -0.934 0.350 -0.067 -0.945 0.345 -0.086 -1.267 0.205
Gen. Anxiety 0.004 -0.111 0.912 -0.029 -0.763 0.445 -0.002 -0.051 0.960

Note. Group?, Sex®, and Ethnicity*® are binary variables; thus, the reference categories for each variable are: * Low
STEM Anxiety, ® Male, ¢ Hispanic, respectively. Significant results, defined as p > 0.05, are shown in bold.
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Figure 5. Within-Network Connectivity Results. Distributions of within-network connectivity values during the
A) Force Concept Inventory (FCI) Task Phase III and B) physics knowledge (PK) task among Low STEM Anxiety
(LSA; green) and High Math Anxiety (HMA; purple) students. Pirate plots with asterisks denote significant
differences between groups.

Discussion

The current study examined associations between STEM-related anxiety and between- and within-
network connectivity for the DAN, VAN, and DMN among university physics students. LPA conducted
on science and math anxiety scores identified four student profiles; however only two profiles, which
included High Math Anxiety and Low STEM Anxiety students, were examined due to low sample size.
No significant differences in within- and between-network connectivity were observed between these
two profiles in terms of student age, sex, household income, ethnicity, years of education, GPA, or
physics task performance. Significant differences in within- and between-network connectivity were
observed between profiles in terms of their generalized anxiety, with High Math Anxiety students
exhibiting increased generalized anxiety compared to Low STEM Anxiety students. Group differences
in between- and within-network connectivity for the DAN, VAN, and DMN were examined during the
FCI and PK tasks, which measure physics-based conceptual reasoning and content knowledge,
respectively. Results demonstrated no significant group differences in task-based connectivity during
FCI Phase I (Scenario) and Phase II (Question). However, during FCI Phase III (Answer), High Math
Anxiety students exhibited significantly reduced between-network (i.e., DAN-VAN, VAN-DMN, and
DAN-DMN) connectivity and within-network (i.e., DAN, VAN, and DMN) connectivity compared to
Low STEM Anxiety students. Regarding the PK task, no significant group differences were observed in
DMN-related between-network connectivity (i.e, VAN-DMN and DAN-DMN) or within-network
connectivity for the VAN and DMN. However, during the PK task, High Math Anxiety students
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exhibited significantly reduced DAN-VAN and within-DAN connectivity compared to Low STEM
Anxiety students. These outcomes provide insight into how between- and within-network connections
(i.e.,, DAN, VAN, and DMN) are altered among those elevated and reduced STEM-related anxiety.

Physics Cognition During the FCl and PK Tasks

The current study used two different fMRI tasks to disentangle attentional control processes to further
understanding of the role of STEM-related anxiety on physics-based cognition. During both the FCI and
the PK tasks, students responded to physics-based questions. A key difference between tasks is their
relative duration; the PK task has a relatively short mean response time of (4.3 sec), while Phase III of the
FCI has a much longer mean response time of 20.2 sec. Thus, while both tasks rely on engagement of the
DAN for attentional maintenance and control, the FCI also engages the DMN, particularly during Phase
IIT (Answer), likely due to mental exploration and sustained cognition needed to generate their answers
(Bartley et al., 2019). We found significant and widespread group differences in task-based connectivity
within and between the DAN, VAN, and DMN during Phase III of the FCI, but no differences during
Phases I or II, suggesting that attentional control processes are highly relevant and confirm the ACT
framework during physics conceptual reasoning and answer selection, but not problem initiation or
question presentation. These results are broadly consistent with findings from prior studies investigating
the role of DMN-related processing associated with STEM-related anxiety. It has previously been shown
that individuals with elevated STEM-related anxiety exhibit disrupted DMN-related functioning (Qiao
et al., 2020), have diffuse and unstructured network connectivity (Klados et al., 2019), and experience
increased levels of threat avoidance and rumination that may result in deficits in attentional control
(Pizzie & Kraemer, 2017), compared to their less-anxious peers. Such results are consistent with ACT
since they suggest that highly anxious individuals may utilize more cognitive resources to sustain DMN
activity. Consequently, highly anxious individuals may have difficulty in suppressing interference
caused by negative emotional information and may experience less mental flexibility in shifting their
attention from an internal introspective state to external environmental stimuli, which may lead to
performance deficits in tasks requiring high cognitive demands (Qiao et al., 2020). Furthermore,
increased ruminators exhibit decreased DMN-related connectivity (i.e., both within-DMN and DAN-
DMN) associated with distractor inhibition, emotional regulation, and attentional control (Liu et al.,
2020; Roberts et al., 2021; Rosenbaum et al., 2018). In addition, DMN-related connectivity has been linked
to distractor suppression (Poole et al., 2016). Together, these findings may offer insight into our
significant findings during FCI Phase III and DMN engagement during this task stage may potentially
reflect increased rumination among students with elevated STEM anxiety.

In contrast to the FCI results, we found no DMN-related connectivity group differences during the PK
task. Significant group differences during the PK task were limited to the DAN, including DAN-VAN
and within-DAN connectivity. These results highlight the different cognitive processes and systems at
play during the PK task compared to the FCI task. While both the FCI and PK tasks require engagement
of DMN regions for successful task execution and retrieval of physics-based content knowledge, our
results indicate that it is the dynamics of the DAN that are especially salient in the context of performing
the PK task among students with elevated STEM anxiety. The DAN is known to be integral for attention
and is not considered a memory system per se (Liickmann et al., 2014), but prior work has demonstrated
that top-down attentional control in the DAN plays an important role for successful episodic retrieval
when retrieval of specific perceptual information or details is required (Guerin et al., 2012) or during
remembrance of external stimuli (Stawarczyk et al., 2018). During the PK task, attentional control is
critically important as participants attend to visual cues intended to reactivate systems that encode the
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material (Liickmann et al., 2014) and trigger recollection of physics-based knowledge, drawing on
working memory processes to retrieve information from long-term memory (Fukuda & Woodman,
2017). Such attentional control requires appropriate coordination between the DAN and VAN for
attention maintenance and reorienting attention to salient stimuli, respectively (Boon et al., 2020;
Corbetta & Shulman, 2002; M. Eysenck et al., 2005).

Attentional Control Theory and Task Performance

A substantial body of work has previously demonstrated that DMN- and DAN-related connectivity is
associated with reduced task performance. During cognitively demanding tasks, greater positive
correlation between DAN and DMN activity typically results in greater variability in task performance
(Anticevic et al., 2012; Kelly et al., 2008). Konishi et al. (2015) observed that activation in regions
associated with working memory was accompanied by significant transient activation in the medial
prefrontal cortex (mPFC) and posterior cingulate cortex (PCC), both core hubs of the DMN, for correct
responses. Esterman et al. (2013) found that fluctuations in DMN activity had both beneficial and
detrimental effects on performance during a sustained attention task. Specifically, while moderate DMN
activity corresponded to periods of reduced variability in response time and less error-prone
performance, extreme peaks in DMN engagement during these periods predicted lapses in sustained
attention and preceded errors. Additionally, positive coupling between the DMN and right inferior
frontal gyrus increases speed and accuracy in detecting task-relevant features, which is an important
functional component of goal-directed tasks (Elton & Gao, 2015). Furthermore, positive correlations
between the mPFC and PCC and the right anterior insula has been associated with performance deficits
during sustained attention tasks (Fortenbaugh et al.,, 2017; Kucyi et al., 2016). Within- and between-
network connectivity have also played a role in distractor suppression. Elevated within-network DMN
connectivity is predictive of increased distractor suppression, which corresponds to better task
performance; however, DMN hyperconnectivity to both the DAN and VAN is predictive of poorer
distraction suppression, leading to worse task performance (Poole et al., 2016).

Given these prior results, it was surprising that the observed differences in DMN- and DAN-related
connectivity were not linked to FCI and PK differences in task performance between High Math Anxiety
and Low STEM Anxiety students. While some previous studies observed reduced task performance
among participants with elevated anxiety (Basanovic et al., 2022; Wong et al., 2013; Vytal et al., 2012),
other studies noted no associations between anxiety and task performance (Aylward et al., 2017;
Derakshan et al., 2009). Importantly, the current lack of group differences in task performance remains
consistent within the ACT framework (Eysenck et al., 2007). The emphasis of ACT is on the potential
impairment of efficient goal-directed attentional control processing due to the increased probability of
cognitive resources being diverted from the task to process anxiety-related stimuli. ACT thus predicts
that impaired processing efficiency may manifest as reduced task performance if sufficient auxiliary
cognitive resources are not available to maintain performance effectiveness at the cost of impaired
efficiency (Eysenck et al., 2007). Consequently, anxious individuals may avoid decrements in task
performance through compensatory mechanisms, such as increased cognitive effort and use of cognitive
resources (Barker et al., 2018; Eysenck et al., 2007; Minnick et al., 2020). It is possible that anxious
participants in this study did not experience elevated anxiety to the degree in which it had a noticeable
effect on task performance (Kim et al., 2021); it may be useful to consider adding cognitive load
manipulations to future physics-related fMRI tasks.



https://doi.org/10.1101/2022.09.30.508557
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.30.508557; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in Eerpetwty It is made
available under aCC-BY-NC-ND 4.0 International license. hetal. 20

Limitations

This study is characterized by several limitations. First, this study is limited by its sample size, which
may not have been large enough to i) assign sufficient participants to the two STEM-anxiety profiles that
weren’t examined, which included the High STEM anxiety and High Science Anxiety profiles, and ii)
detect additional STEM-anxiety related student profiles (Spurk et al., 2020). Our study included 123
student participants and LPA yielded four profiles of students of imbalanced group sizes. As a result,
two of those groups included less than 10.6% of the total sample and were excluded from the subsequent
connectivity analyses due to power concerns. The present study thus focused only on group differences
in task-based connectivity among High Math Anxiety and Low STEM Anxiety students. Future work
should include a larger sample to ensure inclusion of High Anxiety and High Science Anxiety students
in connectivity analyses. Second, some participants may have experienced elevated anxiety during the
MRI scanning session, potentially confounding results. As this work focuses on the effects of anxiety on
functional connectivity, future studies may include MRI-related anxiety as a predictor variable
(Ahlander et al., 2016). Third, significantly increased generalized anxiety was observed among High
Math Anxiety compared to Low STEM Anxiety students. While the current study found significant
STEM anxiety-related differences in DAN, VAN, and DMN connectivity after controlling for generalized
anxiety, it is unknown to what extent STEM and generalized anxiety may interact to disrupt functional
brain connectivity. Finally, results from this study may not generalize to other groups of university
students such as non-STEM students who may experience and adapt to STEM-related anxiety differently
due to reduced exposure to STEM courses in their curriculum. Furthermore, since this study examined
undergraduate physics students, results may not generalize to other physics cohorts or STEM content
domains.

Conclusions

This study confirmed attentional control theory (ACT) in the context of STEM-related anxiety and
demonstrated that undergraduate physics students with elevated STEM anxiety exhibited reduced task-
based connectivity among brain networks that collaborate to maintain and modulate attentional control.
Specifically, we observed significant and widespread STEM anxiety-related differences within and
between the dorsal attention network (DAN), ventral attention network (VAN), and default mode
network (DMN) during physics conceptual reasoning and answer selection (i.e., FCI task Phase III), but
no differences during problem initiation or question presentation. These results suggest the importance
of sustained cognition and DMN-related processing associated with STEM-related anxiety during the
FCI task. Further, we found no significant DMN-related differences during the PK task, which measures
physics-based content knowledge. Significant group differences during the PK task were limited to the
DAN, including DAN-VAN and within-DAN connectivity. These results highlight the different
cognitive processes that are required to complete the PK task compared to the FCI task. Finally, we
observed no significant differences in FCI or PK task performance between High Math Anxiety and Low
STEM Anxiety students. However, it is unclear if greater anxiety would lead to greater variability in task
performance or if sustained anxiety experiences can lead to long-term performance differences. Future
work is needed to explore the potential effects of STEM-related anxiety across STEM courses or learning
experiences to determine if STEM exposure attenuates or exacerbates the task-based connectivity
differences observed in the present study. Enhanced insight into the complex relations between STEM-
related anxiety and STEM performance will likely yield more effective interventions to improve STEM
retention and graduation rates.
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