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Abstract 

The efficacy of molecularly targeted anti-cancer therapies may be limited by the presence of co-occurring 

mutations within a tumor1-3. Conversely, these alterations may confer collateral vulnerabilities that can be 

leveraged for the development of novel therapeutic approaches. KRAS-mutant lung cancers are 

distinguished by recurrent inactivating mutations in the tumor suppressor STK11/LKB14 that facilitate 

tumorigenesis by modulating energy balance5,6 , enhancing metastatic potential7,8  and enabling immune 

evasion9,10.  However, whether LKB1 plays a role in modulating cellular responses to therapeutic stress is 

largely unknown. Here we show that LKB1 suppresses JNK-dependent stress signaling in KRAS-mutant 

lung cancer cells upon acute loss of oncogenic signaling. In LKB1-deficient KRAS-mutant cells, inhibition 

of KRAS or its downstream effector MEK leads to hyperactivation of JNK due to loss of NUAK-mediated 

PP1B phosphatase activity. JNK-mediated inhibitory phosphorylation of BCL-XL rewires apoptotic 

dependencies, rendering LKB1-deficient cells vulnerable to MCL-1 inhibition. These results uncover a 

previously unknown role for LKB1 in regulating stress signaling and the mitochondrial apoptotic response 

of cancer cells independent of its tumor suppressor activity mediated by AMPK11-13 and SIK14,15 kinases. 

Additionally, our study reveals a therapy-induced vulnerability in LKB1-deficient KRAS-mutant lung 

cancer cells that could be exploited as a genotype-informed strategy to improve the efficacy of KRAS-

targeted therapies. 

 

Main Text 

Mutations in KRAS, a small GTPase that regulates MAPK/ERK signaling, define the largest genetically-1 

defined subset of non-small cell lung cancer, representing 25-30% of all lung adenocarcinomas16. The 2 

recent US FDA and European Commission approvals of sotorasib (AMG 510)17 and adagrasib 3 

(MRTX849)18, small molecule covalent KRASG12C-selective inhibitors, marked a milestone in the 4 

development of targeted therapies for KRAS-mutant cancers. While most NSCLC patients treated with 5 

sotorasib experience clinical benefit, only ~40% achieve a partial response19. To improve efficacy, drug 6 

combination strategies that target mechanisms of adaptive resistance20-23 or immune evasion 7 

(NCT04613596, NCT06119581) are being tested in the clinic. KRAS-mutant lung cancers harbor diverse 8 

co-occurring alterations such as STK11/LKB1 loss and KEAP1 mutations16 that may contribute to lack of 9 

response to different therapies including anti-PD-(L)1 immune checkpoint inhibitors9 and KRASG12C 10 

inhibitors19,18. However, whether co-occurring alterations induce vulnerabilities that can be 11 

therapeutically exploited in a genotype-directed manner remains largely undefined.  12 

 13 

To investigate the impact of common co-occurring genomic alterations on KRASG12C inhibitor 14 

combination strategies targeting distinct pathways, we screened a panel of KRASG12C-mutant NSCLC cell 15 

lines harboring diverse co-occurring mutations (Fig. S1A) with sotorasib alone or in combination with 16 

inhibitors targeting SHP2 (TNO155), CDK4/6 (abemaciclib), PI3K (GDC-0941), BCL-XL/BCL-2 17 

(navitoclax) or MCL-1 (AMG 176) (Fig. 1A). Consistent with prior studies of KRASG12C 18 

inhibitors17,22,24,25, we observed varying sensitivity to single-agent KRASG12C inhibition, which was 19 

independent of the most common co-occurring mutations such as TP53, STK11/LKB1 and KEAP1 (Fig. 20 

S1B-C; Sup. Table 1). To quantify the efficacy of KRASG12C combinations compared to KRASG12C alone, 21 

we calculated the relative change in AUC (e.g., the area between the single agent and combination dose 22 

response curves, normalized to the effect of sotorasib alone), referred to hereafter as simply AUC (Fig. 23 

S1D). As expected, combining sotorasib with other inhibitors led to greater suppression of cell viability 24 
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than single-agent sotorasib in most cell lines, although the effect was variable (Fig. S1E). Whereas the 25 

presence of co-occurring mutations had little impact on sensitivity to combinations targeting SHP2, 26 

CDK4/6 or BCL-XL/BCL-2, cell lines with co-occurring mutations or loss of STK11/LKB1 were more 27 

sensitive to combinations targeting MCL-1 or PI3K (Fig. 1B-C, Fig. S1E). PI3K inhibition can effect 28 

diverse cellular changes in oncogene-addicted cancers, including mTOR-dependent down-regulation of 29 

MCL-1 protein levels26,27, which we confirmed (Fig. S1F). To further the investigate the role of MCL-1 30 

in a larger cohort of KRAS-mutant NSCLC cell lines that included KRAS mutations other than G12C, we 31 

tested the MEK inhibitor trametinib in combination with AMG 176 (or the related compound AM-862128). 32 

Similarly, we observed greater activity of trametinib + AMG 176 in cell lines with LKB1 loss (Fig. 1D, 33 

S1G). We also confirmed these findings with additional MEK (cobimetinib) and KRASG12C (adagrasib) 34 

inhibitors (Fig. S1H). The increase in combination activity resulted from modestly greater sensitivity of a 35 

subset of LKB1-deficient cell lines to single agent MCL-1 inhibition (Fig. S1I) as well synergistic activity 36 

between trametinib and AMG 176 (Fig. S2A), resulting in a net cytotoxic effect by the combination (Fig. 37 

S2B). LKB1-deficient cell lines with high AUC values exhibited robust apoptosis upon combined 38 

inhibition of KRAS/MAPK and MCL-1, while the apoptotic response of LKB1 wild-type (WT) cell lines 39 

was minimal (Fig. 1E-F), suggesting that LKB1 may modulate apoptotic dependencies of KRAS-mutant 40 

lung cancers. 41 

 42 

To determine whether LKB1 plays a causal role in tuning the apoptotic response of KRAS-mutant NSCLC 43 

cells, we restored LKB1 expression in LKB1-deficient cell lines or deleted LKB1 in WT cell lines (Fig. 44 

S3A). Re-expression of LKB1 decreased sensitivity to combined sotorasib or trametinib + MCL-1 45 

inhibition, and conversely, CRISPR-mediated deletion of LKB1 sensitized LKB1 WT cells to sotorasib 46 

or trametinib + MCL-1 inhibition (Fig. 1G-H, S3C-D). Restoration or deletion of LKB1 did not alter the 47 

response to sotorasib alone (Fig. S3E) or alter cell proliferation rate (Fig. S3B), suggesting that the changes 48 

in sensitivity to the drug combination that occur upon gain or loss of LKB1 are mediated primarily by 49 

differences in MCL-1-dependent regulation of apoptosis. Consistent with this notion, restoration or 50 

deletion of LKB1 decreased or increased the apoptotic cell death to trametinib + AMG 176, respectively 51 

(Fig. 1I-J, S3F), with restoration of LKB1 expression converting cytoxic reponses to cytostatic responses 52 

(Fig. S3G). To confirm these results in vivo, we established isogenic H2030 EV and LKB1 xenograft 53 

tumors in mice. Similar to the in vitro results, restoration of LKB1 abolished tumor regression of H2030 54 

xenograft tumors in response to sotorasib or trametinib + AMG 176 (Fig. 1K, S3H). Collectively, these 55 

results demonstrate that that loss of LKB1 sensitizes KRAS-mutant NSCLC cells to combined MAPK + 56 

MCL-1 inhibition both in vitro and in vivo. 57 

 58 

LKB1 is a master serine/threonine kinase that regulates multiple cellular process including growth12,29, 59 

cell metabolism5,6 and cell polarity30-32. We hypothesized that loss of LKB1 rewires downstream kinase 60 

signaling networks to confer dependency on MCL-1, especially upon disruption of oncogenic signaling. 61 

Supporting this, expression of a kinase-dead LKB1K781 (kd) mutant11 did not rescue LKB1-deficient cells 62 

from combined MEK + MCL-1 inhibition (Fig. S4A-B), demonstrating that LKB1 catalytic activity is 63 

required for the observed difference in drug sensitivity. To identify differences in kinase signaling in 64 

KRAS-mutant NSCLC cells with or without LKB1, we performed mass spectrometry-based global 65 

phosphoproteome profiling33 of isogenic H2030 (EV, LKB1 and LKB1-kd) and H358 (KO GFP, KO 66 

LKB1) cells before and after treatment with trametinib (Fig. 2A). We quantified 27364 unique 67 

phosphosites (Fig. S4C-D), then performed phosphosite signature analysis34 to identify the kinases that 68 

were differentially activated in each of these contexts. Consistent with the known effect of MEK inhibition 69 

on cell cycle progression35, we observed down-regulation of cell cycle associated phospho-signatures 70 
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including cyclin-dependent kinases, ATM, ATR, Aurora Kinase B, and PLK1 in response to trametinib 71 

treatment (Fig. S4E). In the absence of drug treatment, there were few statistically significant differences 72 

(and no overlap) in kinase signatures between LKB1 wild-type and deficient cells (Fig. S4F), likely a 73 

result of the nutrient-rich cell culture environment.  To identify drug-induced differences in kinase activity 74 

regulated by LKB1, we looked for kinase phospho-signatures that were enriched in trametinib-treated 75 

LKB1-deficient cells relative to their wild-type counterparts (H2030 EV versus LKB1, H358 KO LKB1 76 

versus KO GFP) but not enriched in H2030 EV versus kinase-dead LKB1K87I cells. While several 77 

signatures were enriched in trametinib-treated LKB1-deficient cells for either isogenic pair, only one 78 

signature – c-Jun N-terminal kinase1 (JNK1) – satisfied these criteria (Fig. 2B). Specifically, the 79 

phosphorylation of well-established substrates of JNK1, such as ATF2, JUN and JUNB, increased to a 80 

greater extent in H2030 EV and H358 KO LKB1 cells after trametinib treatment compared to their LKB1 81 

wild-type pairs. Next, we performed proteomic analysis of H2030 and H358 isogenic cells after treatment 82 

with trametinib + AMG 176. JNK phospho-signatures rapidly (8 hours) increased in H358 LKB1 KO cells 83 

compared to control cells, and a subset of JNK substrates showed increase phosphorylation in LKB1-84 

deficient H2030 cells (Fig. S4G-H). These results suggest that LKB1 loss is associated with increased 85 

JNK activation upon suppression of oncogenic signaling by trametinib or the trametinib + AMG 176 86 

combination. 87 

 88 

To confirm these results, we examined JNK Thr183/Tyr185 phosphorylation in H2030 and H358 isogenic 89 

pairs. Combined sotorasib or trametinib + AMG 176 treatment led to a rapid time-dependent increase in 90 

JNK phosphorylation in H2030 EV cells (Fig. 2C, S5A) and JNK nuclear translocation (Fig. S5B). JNK 91 

activation could be suppressed by knockdown of MKK7, which phosphorylates and activates JNK (Fig. 92 

S5C). JNK activation was observed as rapidly as 2 hours after drug treatment and preceded apoptotic cell 93 

death (Fig. S5D), consistent with a proximal role for JNK activation in the apoptotic response. Re-94 

expression of LKB1 suppressed JNK phosphorylation in H2030 cells, and conversely, deletion of LKB1 95 

in H358 cells led to increased phospho-JNK after drug treatment (Fig. 2C, S5A). We extended these 96 

findings by comparing the induction of phospho-JNK across a larger cohort of KRAS-mutant NSCLC cells 97 

treated with trametinib + AMG 176. Despite an expected degree of heterogeneity between cell lines, 98 

LKB1-deficient cell lines overall exhibited greater induction of JNK phosphorylation compared to LKB1 99 

wild-type cell lines with wild-type LKB1, with a significant correlation between pJNK induction and 100 

combination sensitivity (Fig. S5E). Interestingly, the  H1792 cell line, which exhibited the greatest drug 101 

sensitivity amongst LKB1 wild-type cells (Fig. 1B), displayed robust induction of pJNK (Fig. S5F). 102 

Corroborating the results in H2030 cells, re-expression of LKB1 in H23 cells blunted the induction of 103 

phospho-JNK in response to trametinib + AMG 176 (Fig. S5G). 104 

 105 

These data suggest that LKB1 suppresses JNK-dependent stress signaling that occurs upon inhibition of 106 

oncogenic signaling. As JNKs modulate cell proliferation, differentiation and survival in response a 107 

number of different environmental and cellular stressors36, we examined whether hyperactivation of JNK 108 

signaling in LKB1-deficient cells is specific to MAPK inhibition or reflects a more general role for 109 

regulation of JNK by LKB1. Upon exposure of H2030 EV or LKB1 cells to UV light, a well-established 110 

inducer of JNK signaling37,38, we observed an increase in phospho-JNK in H2030 EV cells that peaked 111 

within 60 minutes (Fig. S5H). Re-expression of LKB1 reduced UV-induced phospho-JNK in H2030 112 

LKB1 cells, indicating that LKB1 may play a general role in suppressing JNK stress signaling in response 113 

to a variety of stimuli. To determine whether JNK activation underlies the increased sensitivity of LKB1-114 

deficient KRAS-mutant cancer cells to combined MAPK + MCL-1 inhibition, we used siRNA to 115 

simultaneously knock down both JNK1 and 2 isoforms (Fig. S5I) and assessed the response to combined 116 
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sotorasib or trametinib + AMG 176. While JNK1/2 knockdown had little effect on sensitivity to trametinib 117 

alone, JNK1/2 depleted cells exhibited decreased sensitivity and apoptotic response to both drug 118 

combinations, phenocopying the effect of LKB1 re-expression (Fig. 2D-E, S5J-K). Collectively, these 119 

results suggest that hyper-activation of JNK signaling in the absence of LKB1 increases the MCL-1 120 

dependence of LKB1-deficient KRAS-mutant NSCLC cells and sensitizes them to combined KRASG12C 121 

or MEK + MCL-1 inhibition.  122 

 123 

LKB1 exerts its effects via phosphorylation and activation of multiple members of the AMP-activated 124 

protein kinase (AMPK) family. For instance, LKB1 plays a central role in energy homeostasis by sensing 125 

increased intracellular AMP/ATP ratio and phosphorylating AMPK, which in turn suppresses energy 126 

consumption by inhibiting mTOR and stimulating autophagy39. Recently, the AMPK-related SIK kinases 127 

have been shown to play a major role in mediating the suppressive effects of LKB1 on tumorigenesis and 128 

metastatic potential in models of KRAS-mutant NSCLC14,15. However, a role for LKB1 in regulating 129 

apoptotic priming is largely undefined. To identify the LKB1 substrate kinase(s) that mediate the 130 

suppressive effect of LKB1 on drug-induced JNK activation and MCL-1 dependency, we simultaneously 131 

silenced the expression of multiple members within each AMPK-related kinase family that are expressed 132 

in NSCLC15 (Fig. 2F, S6A-D). Silencing NUAK1+2 was sufficient to restore the sensitivity of H2030 133 

LKB1 cells to combined sotorasib or trametinib + AMG 176 to a similar level as LKB1-deficient H2030 134 

cells (Fig. 2G, S6E). In contrast, silencing SIKs, AMPKs or MARKs in the context of LKB1 re-expression 135 

did not restore drug sensitivity (Fig. 2G, S6F). The difference in drug sensitivity between LKB1-deficient 136 

and LKB1-restored cells was similar when cells were cultured in high or low/absent glucose conditions 137 

(Fig. S6G), consistent with a nutrient-independent mechanism. Knockdown of NUAK1/2 restored drug-138 

induced JNK phosphorylation in H2030 cells expressing LKB1 to a similar level as H2030 control cells 139 

(Fig. 2H), and increased the apoptotic response of LKB1-expressing cells to trametinib + AMG 176 (Fig. 140 

S6H).  141 

 142 

NUAKs regulate cell polarity40, ploidy41 and adhesion42 through phosphorylation of the myosin 143 

phosphatase targeting-1 (MYPT1)-protein phosphatase-1beta (PP1B) complex. NUAK1 directly binds to 144 

and activates the PP1B phosphatase by displacing the self-inhibitory protein I-242. We hypothesized that 145 

PP1B activation downstream of LKB1-NUAK1 could lead to dephosphorylation of JNK. Knockdown of 146 

PP1B expression dramatically increased pJNK in LKB1-restored H2030 cells (Fig. 2I) and increased 147 

sensitivity to MAPK + MCL-1 inhibition (Fig 2J, Fig. S6I), suggesting that PP1B de-phosphorylates JNK 148 

and reduces MCL-1 dependence downstream of LKB1. To demonstrate whether NUAK1 directly interacts 149 

with PP1B in LKB1-expressing KRAS-mutant NSCLC cells, we expressed HA-tagged NUAK1 in H2030 150 

EV and LKB1 cells.  Co-immunoprecipitation of PP1B revealed increased binding of NUAK to PP1B in 151 

H2030 LKB1 cells (Fig 2K, compare lanes 1 and 3) that was disrupted by mutation of the NUAK GILK 152 

domain (GKKK) that has been previously demonstrated to mediate the NUAK-PP1B interaction42 (Fig. 153 

2K, compare lanes 3 and 5). Conversely, binding of the I2 protein to PP1B was diminished in H2030 154 

LKB1 cells and increased in the presence of the NUAK GKKK mutant, consistent with LKB1-dependent 155 

competition between NUAK and I2 for binding PP1B.  Collectively, these results indicate that loss of 156 

LKB1-NUAK1/2 signaling leads to increased JNK signaling as a consequence of decreased PP1B 157 

phosphatase activity, resulting in increased sensitivity to combined MAPK + MCL-1 inhibition. 158 

 159 

Inhibition of MEK/ERK signaling leads to BIM accumulation and increases apoptotic priming in 160 

oncogene-driven cancers treated with various targeted therapies, driving cells into an MCL-1 and/or BCL-161 

XL dependent state43,44. To confirm that LKB1 modulates apoptotic priming, we performed BH3 162 
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profiling45,46,47 on isogenic LKB1-deficient or WT cell lines before and after treatment with trametinib 163 

(Fig. S7A). As expected, trametinib treatment increased overall apoptotic priming (Fig. S7B). Trametinib 164 

induced a greater increase in MCL-1 specific priming (expressed as “ priming”) in LKB1-deficient 165 

compared to LKB1 wild-type cells, and which was consistently reduced upon re-expression of LKB1  (Fig. 166 

S7C-D). Conversely, deletion of LKB1 in H358 cells increased trametinib-induced MCL-1 dependency. 167 

In a subset of cell lines, we also observed changes in BCL-XL dependency, however this was not a 168 

consistent effect (Fig. S7E). To investigate the basis for increased MCL-1 dependent priming in LKB1-169 

deficient cells, we examined MCL-1 protein expression levels, as this is highly dependent on cap-170 

dependent translational regulated by mTOR48 (which is regulated by AMPK). Consistent with an AMPK-171 

independent effect of LKB1, MCL-1 and BCL-XL protein expression was similar in LKB1-deficient and 172 

wild-type KRAS-mutant NSCLC cell lines (Fig. S7F-G) or isogenic cell line pairs (for example, see Fig. 173 

S8B). Next, we examined interactions between BIM and MCL-1 or BCL-XL. Co-immunoprecipitation 174 

(Co-IP) experiments revealed increased BIM bound to MCL-1 and BCL-XL after trametinib treatment 175 

(Fig. S8A-B), consistent with prior studies28. LKB1-deficient cells treated with trametinib had a greater 176 

amount of BIM bound to MCL-1, and less BIM bound to BCL-XL, compared to LKB1 wild-type cell 177 

lines (Fig. S8A-C). Restoration of LKB1 in deficient cell lines reduced the amount of BIM bound to MCL-178 

1 after trametinib treatment, and knocking out LKB1 in wild-type cells increased the amount of BIM 179 

bound to MCL-1 (Fig. 3A, S8C-G). Notably, except for one cell line (A427), the impact of LKB1 re-180 

expression/knock-down on baseline BIM:MCL-1 binding was less prominent in the absence of drug 181 

treatment. These results indicate that loss of LKB1 promotes the formation of BIM:MCL-1 complexes, 182 

especially in the context of suppression of oncogenic MAPK signaling, functionally inducing an MCL-1 183 

dependent state and priming AMG 176 sensitivity.  184 

 185 

MCL-1 and BCL-XL can be phosphorylated at multiple residues by numerous kinases, including JNK and 186 

ERK, leading to context-specific and divergent effects on protein stability/degradation, BIM binding 187 

affinity and apoptosis49,50,51-54. MCL-1 phosphorylation at T163 decreased acutely upon trametinib 188 

treatment consistent with a loss of ERK phosphorylation55 and then rebounded at later time points 189 

coinciding with activation of JNK (Fig. S9A). Restoration of LKB1 in LKB1-deficient cells reduced the 190 

rebound in MCL-1 phosphorylation, while deleting LKB1 in wild-type cells increased MCL-1 191 

phosphorylation (Fig. S9A-B). A similar time and JNK-dependent pattern of phosphorylation of BCL-XL 192 

at S62 was observed in LKB1-deficient cells, which was suppressed by re-expression of LKB1. Upon 193 

treatment with the combination of trametinib + AMG 176, BCL-XL S62 was rapidly phosphorylated in 194 

LKB1-deficient but not LKB1-proficient isogenic cell line pairs (Fig. 3B). Silencing JNK1/2 expression 195 

reduced drug-induced phosphorylation of both MCL-1 and BCL-XL to a similar level as the 196 

corresponding LKB1-restored isogenic cell line (Fig. S9C, compare lanes 3, 4 and 7). To assess whether 197 

JNK-mediated phosphorylation of MCL-1 or BCL-XL impacts drug sensitivity, we expressed DOX-198 

inducible MCL-1 or BCL-XL phosphorylation-site mutants in H2030 cells while simultaneously knocking 199 

down expression of endogenous MCL-1 or BCL-XL (Fig. 3C, S9D-G). While mutating MCL-1 200 

phosphorylation sites to alanine had little effect on sensitivity to trametinib + AMG 176 (Fig. 3D, S9H), 201 

expression of the BCL-XL S62A mutant reduced sensitivity to both sotorasib or trametinib + AMG 176 202 

in H2030 and other cell lines (Fig. 3E-F, S9K), phenocopying LKB1 re-expression and JNK1/2 203 

knockdown. Conversely, the BCL-XL S62E phosphomimetic increased the sensitivity of H2030 LKB1 204 

cells (Fig. 3G). These results suggest that the increased MCL-1 dependency of LKB1-deficient cells is 205 

mediated by BCL-XL phosphorylation.  206 

 207 
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Prior studies have demonstrated that sensitivity of cancer cells to MCL-1 inhibition is inversely related to 208 

BCL-XL expression level and the capacity for BCL-XL to neutralize pro-apoptotic BH3 proteins such as 209 

BIM56,57. Phosphorylation of BCL-XL S62 induces a conformational change in which a dysregulated 210 

domain folds into the BCL-XL BH3 binding groove to prevent BIM binding54. Therefore, we 211 

hypothesized that phosphorylation of BCL-XL S62 by JNK compromises the ability of BCL-XL to 212 

sequester BIM that is liberated from MCL-1 upon MCL-1 inhibition. To test this, we studied the dynamics 213 

of BIM:MCL-1 and BIM:BCL-XL interactions by first treating cells with trametinib to increase BIM 214 

bound to MCL-1, then treating with a short pulse of AMG 176 and assessing the ability for BCL-XL to 215 

sequester BIM released from MCL-1 (Fig. 4A). In LKB1-deficient H2030 cells, very little BIM was 216 

sequestered by BCL-XL upon treatment with AMG 176, compared to LKB1 wild-type SW1573 cells, 217 

which exhibited substantial sequestration of BIM by BCL-XL (Fig. 4B). Restoring LKB1 expression or 218 

silencing JNK1/2 in H2030 cells increased the amount of BIM sequestered by BCL-XL after addition of 219 

AMG 176 (Fig. 4C-D). In H2030 and MGH1112-1 EV cells, the BCL-XL S62A mutant exhibited 220 

increased BIM:BCL-XL binding, whereas in H2030 LKB1 cells, the phospho-mimetic S62E mutant 221 

decreased BIM:BCL-XL binding (Fig. 4E-F, S9L). Knock-down of NUAK1/2 expression in H2030 cells, 222 

which we showed restored drug-induced JNK phosphorylation (Fig. 2H), restored the drug-induced 223 

phosphorylation of BCL-XL S62 (Fig. 4G). Collectively, these results demonstrate that in the context of 224 

LKB1 loss, activation of JNK creates an MCL-1 dependent state by phosphorylating BCL-XL and 225 

decreasing its capacity to buffer the pro-apoptotic effects of BIM (Fig. 4H). While in some cases, 226 

especially those that may be highly primed and MCL-1 dependent at baseline, LKB1 loss may confer 227 

sensitivity to MCL-1 inhibition alone, MCL-1 dependency is enhanced by the increase in apoptotic 228 

priming upon suppression of oncogenic MAPK signaling. 229 

 230 

To investigate the clinical relevance of our findings, we performed BH3 profiling on KRAS-mutant 231 

NSCLCs (solid metastatic lesions or tumor cells isolated from malignant pleural effusions of patients) 232 

after ex vivo exposure to sotorasib or trametinib (Fig. 5A). Both sotorasib and trametinib treatment led to 233 

an increase in MCL-1 dependent priming (MS1 peptide) in STK11/LKB1-mutant but not WT tumors, (Fig. 234 

5B, S10A). Consistent with this effect, co-immunoprecipitation experiments performed on tumor cells 235 

isolated from a malignant pleural effusion obtained from the same patient revealed drug-induced increases 236 

in BIM bound to MCL1 (Fig. 5C). In contrast, we did not observe a significant difference in drug-induced 237 

BCL-XL dependent priming (HRK peptide) between STK11-mutant and WT tumors. To extend these 238 

findings, we performed BH3 profiling on KRAS-mutant (G12C and other) NSCLC patient-derived 239 

xenograft (PDX) models with or without co-occurring STK11 loss after short-term treatment with 240 

trametinib. Similar to the patient tumors and in vitro cell line models, LKB1-deficient tumors exhibited 241 

increased MCL-1-dependent priming compared to WT tumors (Fig 5D, S10B). The addition of AMG 176 242 

to sotorasib led to greater tumor response than sotorasib alone in LKB1-deficient PDX tumors with MCL-243 

1-dependent priming but not LKB1-deficient PDX tumors (Fig. 5E, S11A-C). To investigate potential 244 

toxicity, we assessed a combination dosing regimen with intermittent AMG 176 administration (AMG 245 

176 is administered as intermittent infusions in currently on-going clinical trials) that induced similar 246 

tumor regression (Fig. S11D). In humanized MCL-1 knock-in mice58 the combination of sotorasib with 247 

AMG 176 was well tolerated with no overt signs of toxicity (Fig. S11E). Consistent with the expected 248 

effects of on-target MCL-1 inhibition58, we observed decreased B cells and monocytes, however no 249 

additional effects were observed in combination with sotorasib compared with AMG 176 alone (Fig S13F). 250 

Thus, loss of the LKB1 tumor suppressor is associated with increased MCL-1 dependence upon treatment 251 

with sotorasib or trametinib in KRASG12C-mutant NSCLCs, creating an apoptotic vulnerability that can be 252 

exploited by concurrent inhibition of MCL-1. 253 
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 254 

Discussion 

While the utility of targeting truncal oncogenic driver mutations in lung cancer is firmly established, most 255 

clinical targeted therapy strategies do not take into account co-occurring mutations. For KRAS-mutant 256 

lung cancers in particular, identifying vulnerabilities associated with recurring co-occurring mutations in 257 

tumor suppressor genes could enable the development of biomarker-driven combination therapies with 258 

enhanced activity in distinct subsets of patients. However, the development of the most KRAS inhibitor 259 

drug combinations currently in the clinic has been agnostic to co-occurring mutations. Our finding that 260 

LKB1 regulates the apoptotic dependency of KRAS-mutant lung cancers is unexpected, as genomic 261 

features associated with sensitivity to BH3 mimetics in oncogene-addicted solid tumors have been 262 

elusive28,43,59. Inactivating mutations or loss of STK11/LKB1, which define one of the major genomic sub-263 

groups of KRAS-mutant lung cancers4,16,60, are of particular interest because they are associated with 264 

decreased responsiveness to immune checkpoint blockade9,61 and poor overall prognosis62.  265 

 266 

LKB1 is a master kinase that regulates diverse cellular processes via phosphorylation of multiple members 267 

of AMPK family kinases39,63. In particular, the role of LKB1 in regulating energy homeostasis via AMPK 268 

has been well defined. In settings of energy stress (high AMP:ATP ratio), AMPK limits anabolic processes 269 

by inhibiting mTORC1 through TSC264. Interestingly, expression levels of MCL-1 are highly dependent 270 

upon mTOR-mediated cap-dependent translation, and inhibition of mTOR by small-molecule inhibitors 271 

has been shown to reduce MCL-1 expression and confer apoptotic sensitivity27. We also observed an 272 

association between PI3K inhibition, MCL-1 down-regulation and AMG 176 sensitivity in LKB1-273 

deficient KRAS-mutant NSCLC cell lines. However, we did not observe any change in MCL-1 expression 274 

upon manipulation of LKB1, and silencing AMPK expression did not phenocopy the effect of LKB1 loss 275 

on MCL-1 inhibitor sensitivity. Additionally, we did not observe a change in intracellular ROS upon 276 

restoration or deletion of LKB1 in our isogenic models (data not shown), nor did altering NADP/NADPH 277 

ratio change the sensitivity to MCL-1 inhibition (data not shown), arguing against AMPK-driven changes 278 

in metabolism65,5, autophagy66, mitochondrial defects67,68 or ROS7,69,70,71. Collectively, these results 279 

support an AMPK-independent mechanism by which LKB1 modulates JNK signaling and MCL-1 280 

dependency. 281 

 282 

Beyond its role regulating metabolism via AMPK, LKB1 loss promotes tumorigenesis by reprogramming 283 

epigenetic states, facilitating lineage plasticity and promoting metastasis7,70,72-74. Recent studies have 284 

revealed a central role for the AMPK-related SIK kinases in mediating the suppressive effects of LKB1 285 

on tumorigenesis14,15. The role of other AMPK-related kinases in mediating the tumor suppressor effects 286 

of LKB1 are not well defined. NUAK kinases have been shown to regulate cellular polarity, adhesion and 287 

cell cycle in normal tissues40,42,75 and to play a critical role in neurite formation76. Our results reveal that 288 

NUAKs can function as negative regulators of JNK signaling, through binding and activation of the JNK 289 

phosphatase PP1B. To our knowledge, the LKB1/NUAK1/PP1B axis represents a novel mechanism by 290 

which LKB1 can suppress JNK stress signaling and regulate apoptosis. JNK has been reported to modulate 291 

apoptotic signaling by phosphorylating multiple pro- and anti-apoptotic BCL-2 family members, 292 

including BIM77-80, BAX81-83, BCL-XL52,53 and MCL-149,51,84,85. The consequences of differential 293 

phosphorylation are complex and can impact both protein stability/turnover as well as protein-protein 294 

interactions, leading to both pro- and anti-apoptotic effects in a context-specific manner. We observed 295 

JNK-mediated phosphorylation of both MCL-1 and BCL-XL in response to KRAS and MEK inhibition, 296 

however elimination of JNK phosphorylation sites in BCL-XL but not MCL-1 phenocopied the decrease 297 

in MCL-1 dependence observed with JNK knockdown or LKB1 re-expression. Future studies will be 298 
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necessary to determine whether JNK phosphorylation of MCL-1 may confer apoptotic vulnerabilities in 299 

other therapeutic contexts. Interestingly, we observed that a subset of LKB1-deficient cell lines exhibited 300 

sensitivity to single agent MCL-1 inhibition in the absence of MAPK inhibition, indicative of a highly-301 

primed MCL-1-dependent baseline state. Re-expression of LKB1 partially decreased sensitivity to MCL-302 

1 inhibition, suggesting that the baseline suppression of JNK by LKB1/NUAK may impact apoptotic 303 

dependency in the absence of therapeutic stress in some cases, which is further amplified by the increased 304 

apoptotic priming that occurs in the setting of suppression of oncogenic MAPK signaling. 305 

 306 

While our study focused on KRAS-mutant lung cancers treated with KRAS or MEK inhibitor targeted 307 

therapies, we also provide evidence that LKB1 suppresses JNK activation in response to UV radiation, 308 

suggesting a fundamental role for LKB1 in regulating JNK stress signaling in response to a variety of 309 

stimuli. From an evolutionary perspective, we speculate that the ability for LKB1 to suppress JNK 310 

signaling may be advantageous in normal tissues facing energy or redox stress by temporarily suppressing 311 

apoptosis until compensatory mechanisms (also regulated by LKB1) can be engaged. It is less clear 312 

whether modulation of JNK signaling contributes to the tumor suppressor functions of LKB1, or whether 313 

the ability to hyperactivate JNK signaling provides an advantage to cancer cells with loss of LKB1. It is 314 

notable that the differential JNK activation and increase in MCL-1 dependency conferred by LKB1 loss 315 

was maximally observed in the setting of MAPK inhibition, suggesting that the functional effects of this 316 

pathway may be unmasked in specific contexts in response to select perturbations. 317 

 318 

In summary, we identify a novel mechanism by which LKB1-NUAK regulates JNK stress signaling and 319 

modulates apoptotic dependencies in KRAS-mutant NSCLCs. In response to KRAS or MEK inhibition, 320 

LKB1-deficient cells exhibit hyperactivation of JNK and increased reliance on MCL-1 to buffer the 321 

increase in BIM. While LKB1-deficiency does not confer increased sensitivity to KRASG12C or MEK 322 

inhibitors used as single agents, cells become primed for apoptosis when treated with MCL-1 BH3 323 

mimetics. These results suggest a potential biomarker-informed combination therapy approach based on 324 

mutations or genomic loss of STK11/LKB1. 325 

  326 
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Methods 327 

 328 

Cell culture 329 

Commercially available KRAS-mutant NSCLC cell lines were obtained from the Center for Molecular 330 

Therapeutics at the Massachusetts General Hospital (MGH) Cancer Center and STR validation was 331 

performed at the initiation of the project (Biosynthesis, Inc.). Cell lines were routinely tested for 332 

mycoplasma during experimental use. Cell lines were maintained in RPMI supplemented with 5% FBS 333 

except A427, SW1573, H2009, H1573, which were maintained in DMEM/F12 supplemented with 5% 334 

FBS. Patient-derived NSCLC cell lines were established in our laboratory from surgical resections, core-335 

needle biopsies, or pleural effusion samples as previously described, with the exception of the MGH1070 336 

cell line, which was derived from a primary mouse PDX model. All patients signed informed consent to 337 

participate in a Dana- Farber/Harvard Cancer Center Institutional Review Board–approved protocol, 338 

giving permission for research to be performed on their samples. Clinically observed KRAS mutations 339 

(determined by MGH SNaPshot NGS genotyping panel) were verified in established cell lines. 340 

Established patient-derived cell lines were maintained in RPMI + 10% FBS. 341 

 342 

Cell viability assessment 343 

Cell viability was assessed using the CellTiter-Glo assay (Promega). Cells were seeded into 96-well plates 344 

24 hours prior to drug addition, and cell proliferation was determined 72 hours after addition of drug by 345 

incubating cells with CellTiter-Glo reagent (50 µL/well) for 30 minutes on a shaking platform at room 346 

temperature. Luminescence was quantified using a SpectraMax i3x plate reader (MolecularDevices).  347 

 348 

PI/Annexin apoptosis assay 349 

Cells were seeded in triplicate at low density 24 hours prior to drug addition. Seventy-two hours after 350 

adding drugs, floating (dead) and adherent cells (alive) were collected and stained with propidium iodide 351 

(PI) and Cy5-Annexin V (BD Biosciences) and analyzed by flow cytometry. The annexin-positive 352 

apoptotic cell fraction was quantified using FlowJo software. 353 

 354 

Generation of engineered cell lines 355 

EV and LKB1 cell lines: EV (pBabe) and LKB1 retro-viral vectors were gifts from Dr. Kwok-Kin Wong 356 

(NYU). EV and LKB1 virus were prepared by transfecting HEK293 cells with EV or LKB1, VSV-G 357 

(Addgene #8454), Gag-Pol (Addgene #14887) using Lipofectamine 3000 (ThermoFisher) and collecting 358 

viral particles in the supernatant. Stable cell lines were generated by infecting KRAS-mutant NSCLC lines 359 

with EV or LKB1 virus followed by puromycin selection.  360 

LKB1 knock-out cell lines: sgRNAs targeting the STK11 locus were designed using CHOP-CHOP and 361 

cloned into pSpCas9(BB)-2A-GFP (Addgene #48138). KRAS-mutant NSCLC cell lines were transiently 362 

transfected with the plasmids and sorted for single clone formation by FACs. After clonal expansion, 20 363 

clones were selected and loss of LKB1 expression was assessed by western blot. Alternatively, LKB1 364 

sgRNAs were cloned into lentiCRISPR v2 (Addgene #52961). Lentiviral particles were prepared by 365 

transfecting HEK293 cells with EV or sgLKB1, VSV-G (Addgene #8454) and Δ8.91 using Lipofectamine 366 

3000 (ThermoFisher). Stable cell lines were generated by infecting KRAS-mutant NSCLC lines with 367 

lentiCRISPR v2 or sgLKB1 virus followed by blasticidin selection. 368 

DOX-inducible MCL-1, BCL-XL cell lines: Full length wild-type or mutant MCL-1, BCL-XL coding 369 

sequences were synthesized (GenScript) and cloned into pInducer20 (gift from Lee Zou, MGH). Lentiviral 370 

particles were prepared by transfecting HEK293 cells with pInducer20 or pInducer20-MCL-1/ 371 

pInducer20-BCL-XL, VSV-G (Addgene #8454) and Δ8.91 using Lipofectamine 3000 (ThermoFisher). 372 
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Stable cell lines were generated by infecting KRAS-mutant NSCLC lines were infected with EV or 373 

pInducer20-MCL-1 or pInducer20-BCL-XL virus followed by selection with neomycin/G418.  374 

 375 

Mouse xenograft studies 376 

All animal studies were conducted through Institutional Animal Care and Use Committee–approved 377 

animal protocols in accordance with institutional guidelines. KRAS-mutant NSCLC PDX models were 378 

generated from surgical resections, core-needle biopsies, or pleural effusion samples by subcutaneous 379 

implantation into NSG mice (Jackson Labs). Subcutaneous tumors were serially passaged twice to fully 380 

establish each model. Clinically observed KRAS mutations were verified in each established model. For 381 

drug studies, PDX tumors were directly implanted subcutaneously into NSG or athymic nude (NE/Nu) 382 

mice and allowed to grow to 250 to 400 mm3. For H2030 xenograft studies, cell line suspensions were 383 

prepared in 1:1 matrigel:PBS, and 5 × 106 cells were injected unilaterally into the subcutaneous space on 384 

the flanks of athymic nude (Nu/Nu) mice and allowed to grow to approximately 350 mm3. Tumors were 385 

measured with electronic calipers, and the tumor volume was calculated according to the formula V = 386 

0.52 × L × W2. Mice with established tumors were randomized to drug treatment groups using covariate 387 

adaptive randomization to minimize differences in baseline tumor volumes. Trametinib was dissolved in 388 

0.5% HPMC/0.2% Tween 80 (pH 8.0) and administered by oral gavage daily at 3 mg/kg, 6 days per week. 389 

Sotorasib was dissolved in 2% HPMC/0.1% Tween 80 (pH 7) and administered by oral gavage daily at 390 

100 mg/kg, 6 days per week. AMG 176 was dissolved in 25% hydroxypropylbeta- cyclodextrin (pH8.0) 391 

and administered by oral gavage daily 50 mg/kg.  392 

 393 

Quantitative RT-PCR analysis 394 

RNA was extracted using the Qiagen RNeasy kit. cDNA was prepared with the Transcriptor High Fidelity 395 

cDNA Synthesis Kit (Roche) using oligo-dT primers. Quantitative PCR was performed with gene specific 396 

primers (Supplemental table 2) using SYBR™ Select Master Mix (Applied biosystem) on a Lightcycler 397 

480 (Thermofisher). Relative gene expression was calculated by using the Δ ΔCT method by normalizing 398 

to ACTB.  399 

 400 

Western Blot analysis 401 

Cells were seeded in either 6-well or 6 cm plates and drug was added when cells reached 70% confluency. 402 

Cells were harvested by washing twice with PBS, lysing in lysis buffer 28 on ice, and spinning at 14,000 403 

RPM at 4oC for 10 minutes to remove insoluble cell debris. Lysate protein concentrations were determined 404 

by a Bicinchoninic Acid assay (Thermo Fisher). Gel electrophoresis was performed using NuPage 4-12% 405 

Bis-Tris Midi gels (Invitrogen) in NuPage MOPS SDS Running Buffer (Invitrogen) followed by transfer 406 

onto PVDF membranes (Thermo Fisher). Following transfer, membranes blocked with 5% milk (Lab 407 

Scientific bioKEMIX) in Tris Buffered Saline with Tween 20 (TBS-T) and then incubated with primary 408 

antibody (1:1000, 1%BSA in TBS-T) at 4oC overnight. After washing in TBS-T), membranes were 409 

incubated with the appropriate secondary antibody (1:12500 in 2% skim milk in TBS-T) for 1 hour at 410 

room temperature. The following HRP-linked secondary antibodies were used: anti-rabbit IgG (CST7074) 411 

and anti-mouse IgG (CST7076). Membranes were removed from secondary antibodies and washed 3 412 

times for 10 minutes each in TBS-T. Prior to imaging, membranes were incubated for 4 minutes 413 

SuperSignal West Femto Stable Peroxide & Luminol/Enhancer (Thermo Fisher) diluted 1:10 in 0.1 M 414 

tris-HCL pH 8.8 (Boston Bioproducts). Luminescence was imaged using a G:Box Chemi-XRQ system 415 

(Syngene). The following primary antibodies were used: pJNK T183/Y185 (CST4668), SAPK/JNK 416 

(CST9252), BIM (CST2933), pBCL-XL S62 (Invitrogen 44-428G), BCL-XL (CST2764), LKB1 417 

(CST3050), pMCL-1 T163 (CST14765), pMCL-1 S159/T163 (CST4579), pMCL-1 S64 (CST13297), 418 
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MCL-1 (BD Pharmingen 559027), pMKK4 S257/T261 (CST9156), MKK4 (CST9152), pMEK7 S271 419 

(Thermo Fisher PA5-114604), pMEK7 T275 (Thermo Fisher PA5-114605), MKK7 (CST4172), 420 

DUSP10/MKP5 (CST3483), HA Tag (CST3724), β-Tubulin (CST2146), GAPDH (CST5174).  421 

 422 

Protein Immunoprecipitation 423 

Cells were seeded in either 10 cm or 15 cm plates and drug was added when cells reached 70% confluency. 424 

Cells were harvested after the treatment period and lysates were prepared using Tris Lysis Buffer with 425 

Protease Inhibitor Cocktail (Meso Scale Diagnostics) on ice. After normalization of total protein 426 

concentrations, Pierce Protein A/G Magnetic Beads (Thermo Fisher) and either mouse anti-human MCL-427 

1 (BD Pharmingen 559027) or mouse anti-human BCL-XL (EMD Millipore MAB3121) antibodies were 428 

added to lysate aliquots and incubated  at 4oC overnight. A representative aliquot of the normalized whole 429 

cell lysate was saved for Western blot analysis. The immunoprecipitated fractions were separate using 430 

magnetic separation, washed three times with Tris Lysis Buffer on ice, proteins eluted by heating at 95oC 431 

for 10 min with Tris Lysis Buffer and LDS Sample Buffer 4X (Invitrogen). For western blots, the rabbit 432 

anti-human MCL-1 (CST4572) antibody was used; all other antibodies were identical to those used for 433 

western blotting. For immunoprecipitation of HA-tagged BCL-XL, the Pierce Magnetic HA-Tag IP/Co-434 

IP Kit (Thermo Fisher) was used following the manufacturer’s protocol (specifically, the procedure for 435 

(A.) Manual IP/Co-IP and (B.) Elution Protocol 2 for reducing gel analysis).  436 

 437 

Immunofluorescence and image analysis 438 

Cells were fixed with 10% neutral-buffered formalin and permeabilized by PBST (PBS + Triton X100). 439 

Cells were then incubated with pJNK T183/Y185 (CST4668) primary antibody (1:400) overnight at 4oC. 440 

Secondary antibody staining was performed at room temperature for 1 hour, followed by DAPI staining. 441 

Images were acquired using a Zeiss LSM 710 confocal microscope. Image analysis was performed using 442 

CellProfiler software (Broad Institute). Briefly, individual cells were identified by DAPI staining. pJNK 443 

staining inside the nuclei or outside the nuclei was segmented and quantified at the individual cell level. 444 

 445 

siRNA-Mediated Gene Knockdown 446 

siRNA transfection was performed using Lipofectamine RNAiMAX Transfection Reagent according to 447 

the manufacturer’s protocol (Invitrogen, Cat# 13778075). In brief, cells were seeded in 6-well, 6 cm, or 448 

10 cm plates and siRNA transfection was carried out when cells reached ~70% confluency. Prior to 449 

transfection, cells were placed in antibiotic-free media. 48 hours after transfection, cells were seeded for 450 

analysis of proliferation or immunoprecipitation or harvested for western blot. The following Invitrogen 451 

siRNA were used: NC (AM4611), MAPK8 (ID: s11152), MAPK9 (ID: s11159), NUAK1 (ID: s90), 452 

NUAK2 (ID: s37779), PRKAA1 (ID: s100), PRKAA2 (ID: s11056), PRKAB1 (ID: s11059), PRKAB2 453 

(ID: s11062), SIK1 (ID: s45377), SIK2 (ID: s23355), SIK3 (ID: s23712), MARK1 (ID: s8511), MARK2 454 

(ID: s4648), MARK3 (ID: s8514), MARK4 (ID: s33718), MAP2K4 (ID: s11182, s11183), MAP2K7 (ID: 455 

s11183, s11184), MCL-1 (ID: s8584, s8585), BCL2L1 (ID: s1920, s1921, s1922).  456 

 457 

BH3 Profiling of Cell Lines 458 

BH3 profiling was performed by quantifying cytochrome c release upon addition of exogeneous BH3 459 

peptide as previously described 45. Briefly, 2x106 cells were isolated, centrifuged at 500xg for 5 minutes, 460 

then the cell pellet was resuspended in 100µL PBS with 1µL Zombie Green viability dye (Biolegend, cat# 461 

423111). Cells were stained at room temperature out of light for 15 minutes, then 400µL FACS Stain 462 

Buffer (2% FBS in PBS) was added to the sample to quench Zombie dye. Cells were then centrifuged at 463 

500xg for 5 minutes then subjected to BH3 Profiling as previously described with indicated peptides and 464 
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concentrations. After BH3 profiling, cells were permeabilized for intra-cellular staining with a saponin-465 

based buffer (1% saponin, 10% BSA in PBS) and stained with an antibody for Cytochrome C AlexaFluor 466 

647 (Biolegend, 612310) used at 1:2000 dilution and DAPI. Cells were left to stain overnight at 4°C and 467 

analyzed by flow cytometry (Attune NxT) the following day. 468 

 469 

 470 

BH3 Profiling of Primary Patient Samples 471 

Surgical resections were minced by scalpels to ~1mm3. Minced explants were cultured in RPMI1640 + 472 

10% FBS overnight in the absence or presence of drugs. Immediately prior to BH3 profiling, tissue was 473 

further dissociated by collagenase/dispase enzymatic dissociation for 30 minutes at 37°C. Samples were 474 

then strained through 100µM filter to isolate single cells. For each sample, 2x106 cells were isolated, 475 

centrifuged at 500xg for 5 minutes, then the cell pellet was resuspended in 100µL PBS with 1µL Zombie 476 

Green viability dye (Biolegend, cat# 423111). Cells were stained at room temperature out of light for 15 477 

minutes, then 400µL FACS Stain Buffer (2% FBS in PBS) was added to the sample to quench Zombie 478 

dye. Cells were then centrifuged at 500xg for 5 minutes, then resuspended in 100µL FACS Stain Buffer. 479 

Cells were then stained with the following conjugated cell-surface marker antibodies at 1:50 dilutions: 480 

CD326 (EpCAM) PE (Biolegend, 324206) and CD45 BV786 (Biolegend, 304048). Cells were then 481 

centrifuged at 500xg for 5 minutes and subjected to BH3 Profiling as previously described45 with indicated 482 

peptides (e.g., MS1 = MCL-1, HRK = BCL-XL) and concentrations. After BH3 profiling, cells were 483 

permeabilized for intra-cellular staining with a saponin-based buffer (1% saponin, 10% BSA in PBS) and 484 

stained with an antibody for Cytochrome C AlexaFluor 647 (Biolegend, 612310) used at 1:2000 dilution 485 

and DAPI. Cells were left to stain overnight at 4°C and analyzed by flow cytometry (Attune NxT) the 486 

following day. Cells of interest were identified by positive DAPI, negative Zombie, negative CD45, and 487 

positive EpCAM staining. 488 

 489 

Phosphoproteomic Analysis 490 

Frozen cell pellets were lysed, obtained proteins reduced with DTT and alkylated with iodoacetamide, 491 

precipitated following the MeOH/CHCl3 protocol, and digested with LysC and trypsin, followed by 492 

phophopeptide enrichment as previously described33,86,87. For each sample 2.5 mg of peptides were either 493 

subjected to phosphopeptide enrichment on TiO2 beads (GL Sciences, Japan) or 1 mg of peptides were 494 

enriched via on Fe-NTA beads (Cube Biotech, Germany). Phosphopeptides were labeled with TMT10plex 495 

or TMTpro reagents (Thermo Fisher Scientific), pooled, and were fractionated into 24 fractions using 496 

basic pH reversed phase chromatography essentially as described previously88. Those were dried, re-497 

suspended in 5% ACN/5% formic acid, and analyzed in 3-hour runs via LC-M2/MS3 on an Orbitrap 498 

FusionLumos mass spectrometer using the Simultaneous Precursor Selection (SPS) supported MS3 499 

method89,90 essentially as described previously91. Two MS2 spectra were acquired for each peptide using 500 

CID and HCD fragmentation as described earlier92 and the gained MS2 spectra were assigned using a 501 

SEQUEST or COMET-based in-house built proteomics analysis platform93 allowing phosphorylation of 502 

serine, threonine, and tyrosine residues as a variable modification. The Ascore algorithm was used to 503 

evaluate the correct assignment of phosphorylation within the peptide sequence94. Based on the target-504 

decoy database search strategy95 and employing linear discriminant analysis and posterior error histogram 505 

sorting, peptide and protein assignments were filtered to false discovery rate (FDR) of ˂ 1%93. Peptides 506 

with sequences that were contained in more than one protein sequence from the UniProt database (2014) 507 

were assigned to the protein with most matching peptides93. Only MS3 with an average signal-to-noise 508 

value of larger than 40 per reporter ion as well as with an isolation specificity90 of larger than 0.75 were 509 

considered for quantification. A two-step normalization of the protein TMT-intensities was performed by 510 
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first normalizing the protein intensities over all acquired TMT channels for each protein based on the 511 

median average protein intensity calculated for all proteins. To correct for slight mixing errors of the 512 

peptide mixture from each sample a median of the normalized intensities was calculated from all protein 513 

intensities in each TMT channel and the protein intensities were normalized to the median value of these 514 

median intensities. 515 

 516 

Proteomic Analysis 517 

50 µg of the of the resulting peptides after tryptic digest as described above were subsequently labeled 518 

using TMT-10plex reagents (Thermo Scientific) according to manufacturer’s instructions. Labeled 519 

samples got combined and fractionated using a basic reversed phase hplc88. The resulting fractions were 520 

analyzed in an 3h reversed phase LC-MS2/MS3 run on an Orbitrap FusionLumos. MS3 isolation for 521 

quantification used Simultaneous Precursor Selection (SPS) as previously described89-91. Proteins were 522 

identified based on MS2 spectra using the sequest algorithm searching against a human data base (uniprot 523 

2014)96 using an in house-built platform93. Search strategy included a target-decoy database-based search 524 

in order to filter against a false-discovery rate (FDR) of protein identifications of less than 1%95. For 525 

quantification only MS3 with an average signal-to-noise value of larger than 40 per reporter ion as well 526 

as with an isolation specificity90 of larger than 0.75 were considered and a two-step normalization as 527 

described above was performed. 528 

 529 

Phospho-proteomic Signature Analysis 530 

Phospho-signature analysis was performed using PTM-Signature Enrichment Analysis (PMT-SEA), a 531 

modified version of ssGSEA2.0 (https://github.com/broadinstitute/ssGSEA2.0). Briefly, relative log-fold 532 

increases/decreases were calculated by comparing the levels of phospho-peptides in each group. Relative 533 

log-fold increases/decreases were imported into the PMT-SEA package and compared against the PTM 534 

signatures database (PTMsigDB). Significant signatures were exported, ranked and compared between 535 

groups (for example LKB1-positive versus LKB1-negative isogenic pair).  536 

 537 

Synergy analysis 538 

Synergy analysis was performed using Biochemically Intuitive Generalized Loewe (BIGL)97. In short, 539 

NSCLC cell lines were treated with a matrix of increasing dose of Trametinib/Sotorasib with AMG 176 540 

for 72 hours and cell viability was assessed by cell titer glow. Synergy analysis is divided into three parts: 541 

1. Marginal curve was determined for each compound by using non-linear least squares estimation 542 

procedure. 2. Compute expected effect for “General Loewe model” from previously computed marginal 543 

curve. 3. Compare the expected response with observed viability by maxR statistical test, which evaluates 544 

whether the null model locally fits the observed data. 545 

 546 

Statistical analysis 547 

Significant testing for all experiments were performed by student t test, One-Way or Two-Way ANOVA. 548 

Specifically, Two-Way ANOVA were used for multiple comparisons of different groups of data corrected 549 

against Tukey hypothesis with 95% confidence interval.   550 

 551 

Data availability 552 

All phophoproteomic data (normalized intensity) can be downloaded from Harvard Dataverse using 553 

identifier https://doi.org/10.7910/DVN/OLVIT7. All other data supporting the findings of this study are 554 

available from the corresponding author on reasonable request.  555 
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Figure 1. LKB1 loss confers sensitivity to combined MAPK + MCL-1 inhibition in KRAS-mutant NSCLC models. A.
Schema for testing sotorasib drug combinations. B. Relative increased efficacy of sotorasib + AMG 176 combination compared
to sotorasib alone (ΔAUC – see Fig. S1D for explanation) against KRASG12C-mutant NSCLC cell lines. Each dot represents an
independent biological replicate (N=4). C-D. Comparison of ΔAUC between KRAS-mutant NSCLC cell lines stratified according
to LKB1 status (Mann Whitney t test). E-F. KRAS-mutant NSCLC cell lines were treated with 0.1 µM of trametinib, 1 µM of AMG
176 or the combination for up to 72 hours and apoptosis was assessed by annexin positivity by flow cytometry (E, data are
mean and S.E.M. of 3 biological replicates) or live-cell imaging (F, data are mean and S.E.M. of 3 technical replicates). G-H.
Comparison of relative ∆AUC for isogenic LKB1-proficient and deficient KRAS-mutant cell line pairs (EV - empty vector, LKB1 –
LKB1 expression vector; KO GFP – GFP sgRNA, KO LKB1 – LKB1 sgRNA). Each dot represents an independent biological
replicate (N=3-4). I-J. Apoptotic response of isogenic KRAS-mutant NSCLC cell lines after treatment with 0.1 µM trametinib or 1
µM sotorasib in combination with 1 µM of AMG 176 (annexin positivity assessed by flow cytometry (I, each dot represents an
independent biological replicate, N=3) or live-cell imaging (J, data are mean and S.E.M. of 3 technical replicates). K.
Subcutaneous xenograft tumors were established from H2030 EV and H2030 LKB1 cell lines and mice were treated with
vehicle, sotorasib (30 mg/kg daily), trametinib (3 mg/kg daily), AMG 176 (50 mg/kg daily) or combination. Data shown are mean
and S.E.M of N=5-6 mice per arm, statistical difference between single agent and combination arms was determined using
mixed effects model (*p<0.05, **p<0.01).
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Figure 2. JNK activation in LKB1-deficient cells underlies dependency on MCL-1. A. Phosphoproteomic analysis of isogenic
KRAS-mutant NSCLC cell lines treated with 0.1 µM of trametinib for 48 hours or 0.1 µM of trametinib + AMG 176 for 6 hours. B.
Differential enrichment of phosphopeptide signatures in trametinib-treated isogenic cell line pairs. Phosphopeptide signatures and
normalized enrichment scores (NES) were calculated using ssGSEA2.0/PTM-SEA. Right, individual phospho-sites of JNK1
downstream substrates are annotated. C. Change in JNK phosphorylation in response to MAPK + MCL-1 inhibition in isogenic
H2030 and H358 cells (data are mean and S.E.M., each dot represents an independent biological replicate, N=3). D. Change in
cell number of H2030 EV cells with siRNA knockdown of JNK1+2 or negative control (siNC) after treatment with 0.1 µM trametinib
or 1 µM sotorasib in combination with 1 µM AMG 176 quantified by live-cell imaging. Data are mean and S.E.M. of 3 technical
replicates. E. Knockdown of JNK1+2 gene expression decreases ∆AUC, phenocopying LKB1 re-expression. H2030 EV cells or
H2030 LBK1 cells were transfected with siRNAs targeting JNK1 and 2 or negative control (siNC) and then treated with sotorasib
(S) or trametinib (T) in the absence or presence of AMG 176 (A) and viability was determined after 3 days. Each dot represents an
independent biological replicate (N=3). F. Schematic of siRNA knockdown of LKB1 effectors in H2030 LKB1 cells. G. Knockdown
of NUAK1/2 restores sensitivity (∆AUC) to combined sotorasib or trametinib + AMG 176. H2030 EV cells or H2030 LBK1 cells
transfected with corresponding siRNAs were treated with sotorasib or trametinib in the absence or presence of AMG 176 (1 µM)
and viability was determined after 3 days. Each dot represents an independent biological replicate (N=3). H-I. NUAK1/2 or PP1B
knockdown restores phospho-JNK induction after trametinib or trametinib + AMG 176 in H2030 LKB1 cells to the level of H2030
control cells. Cells were transfected with the indicated siRNAs and then treated with trametinib (0.1 µM) for 48 hours or trametinib
for 48 hours followed by AMG 176 for 4 hours. J. Knockdown of PP1B restores sensitivity (∆AUC) to combined sotorasib or
trametinib + AMG 176. Each dot represents an independent biological replicate (N=3). K. Restoration of LKB1 expression induces
binding between PPIB and WT NUAK1, but not GKKK mutant. HA-tagged WT NUAK1 (WT) or GKKK NUAK were over-expressed
in H2030 isogenic cells and the interaction of NUAK1 and PP1B was assessed by immuno-precipitation.
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Figure 3. JNK phosphorylates BCL-XL to drive an MCL-1 dependent state. A. Co-Immunoprecipitation of BIM bound to
MCL-1 in H2030 EV and H2030 LKB1 cells after treatment with vehicle, trametinib (0.1 µM) for 24 hours or trametinib for 24h
followed by AMG 176 (1 µM) for 4 hours. B. Time course of BCL-XL S62 phosphorylation in isogenic H2030 and H358 cells by
western blot after treatment with 0.1 µM trametinib + 1 µM AMG 176. C. Experimental approach for expressing MCL-1 & BCL-
XL phospho-site mutants while suppressing endogenous MCL-1 and BCL-XL. Interrogated phosphorylation sites are
designated in yellow, phosphomimetic sites in red. D. MCL-1 phospho-site mutants do not reduce sensitivity to MCL-1
inhibition (∆AUC). After induction of mutant MCL-1 (or WT control) and knockdown of endogenous MCL-1, H2030 EV cells
were treated with trametinib in the absence or presence of AMG 176 (1 µM) and viability was determined after 3 days. Each
dot is an independent biological replicate (N=3). E. BCL-XL S62A mutant decreases MCL-1 dependence. After induction of
BCL-XL S62A (or WT control) and knockdown of endogenous BCL-XL, H2030 EV cells were treated with sotorasib or
trametinib alone or in the presence of AMG 176 (1 µM) and viability was determined after 3 days. Each dot is an independent
biological replicate (N=6). F-G. H2030 EV cells expressing inducible WT or S62A mutant BCL-XL S62A (F) or H2030 LKB1
cells expressing inducible WT or BCL-XL S62E phosphomimetic (G) were treated with 0.1 µM trametinib or 0.1 µM trametinib
in combination with 1 µM AMG 176 and cell number was quantified by live-cell imaging. Data are mean and S.E.M. of 3
technical replicates. V: Veh, T: Trametinib, A: AMG 176, TA: Trametinib + AMG 176.
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Figure 4. JNK activation drives an MCL-1 dependent state by modulating BIM:BCL-XL interactions. A. Schema for
approach to investigating BIM sequestration upon displacement from MCL-1. B. Co-IP assessment of BIM bound to MCL-1
and BCL-XL in H2030 (LKB1-deficient) and SW1573 (LKB1 wild-type) cells after treatment with 0.1 µM trametinib for 24 hours
followed by 1 µM AMG 176 for 4 hours. C. Co-IP assessment of BIM bound to BCL-XL and MCL-1 in H2030 EV and LKB1
cells after treatment with 0.1 µM trametinib for 24 hours followed by 1 µM AMG 176 for 4 hours. D. Co-IP assessment of BIM
bound to BCL-XL and MCL-1 in H2030 EV with JNK knockdown after treatment with 0.1 µM trametinib for 24 hours + 1 µM
AMG 176 for 4 hours. E. Co-IP assessment of BIM bound to WT BCL-XL or BCL-XL mutants in H2030 EV (S62A) and H2030
LKB1 (S62E) cells after treatment with 0.1 µM trametinib for 24 hours followed 1 µM AMG 176 for 4 hours. HA-tag pull downs
are specific for inducible constructs. F. Quantification of Co-IP assessment of BIM bound to BCL-XL in H2030 and MGH1112
cells overexpressing BCL-XL WT or S62A mutants. Data are mean and S.E.M., each dot represents a biological replicate
(N=3-5). G. Effect of NUAK1/2 knockdown on BCL-XL S62 phosphorylation in response to treatment with 0.1 µM trametinib for
48h (T) or trametinib for 48 hours followed by 1 µM AMG 176 (TA) for 4 hours. H. Model depicting the mechanism by which
LKB1 loss leads to an MCL-1-dependent state and sensitizes KRAS-mutant NSCLCs to combined KRAS or MEK + MCL-1
inhibition.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2022.09.29.510137doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510137
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

C

D

E

MGH1196-2

BIM

MCL-1

MGH1196-3
T S

BIM

MCL-1

T S

Input:

IP: MCL-1

Tram/Sotorasib

24 hr
BIM:MCL-1 

co-IP

Pleural Effusion
MGH9348-1
MGH10194-1
MGH10307-1
MGH10188-1
MGH1145-1

Lymph node
MGH10330-3Pleural Effusion

MGH10278-1
MGH10326-1

Bone
MGH1196-2

M
GH11

96
-2

M
GH10

32
6-

1

M
GH10

27
8-

1

M
GH10

18
8-

1

MGH93
48

-1

M
GH10

33
0-

3

M
GH11

45
-1

M
GH10

19
4-

1

M
GH10

30
7-

1

-80

-60

-40

-20

0

20

40

60

D
ru

g-
in

du
ce

d 

Δ

 p
rim

in
g

M
GH11

96
-2

M
GH10

32
6-

1

M
GH10

27
8-

1

M
GH10

18
8-

1

M
GH93

48
-1

M
GH10

33
0-

3

M
GH11

45
-1

M
GH10

19
4-

1

M
GH10

30
7-

1

-40

-20

0

20

40

60

D
ru

g-
in

du
ce

d 

Δ

 p
rim

in
g

MCL-1 (MS1)

D
ru

g-
in

du
ce

d 
pr

im
in

g *
BCL-XL (HRK)

ns

Tram/Sotorasib

16 hr
BH3

profiling

STK11 WT
STK11 mut

G12C
G12D
G12V

Figure 5

Trametinib

x3 days

BH3
profiling

LKB1 loss LKB1 WT

D
ru

g-
in

du
ce

d 
M

C
L-

1 
pr

im
in

g 
(M

S
1)

MGH11
12

-1

M
GH11

96
-2

M
GH90

29
-1

M
GH11

38
-1

M
GH10

62
-1

M
GH11

45
-1

M
GH10

65
-1

-50

-25

0

25

50

75

100

LKB1 Loss

LKB1 WT

**

LKB1
WT

LKB1
Loss

MGH1112-1 MGH1138-1 MGH1196-2

0 1 2 3 4 5
0

200

400

600

800

1000

1200

Time (weeks)

Tu
m

or
 V

ol
um

e 
(m

m
3 )

**
**

0 1 2 3 4
0

200
400
600
800

1000
1200
1400

Time (weeks)

**
**

0 1 2 3
0

200

400

600

800

1 2 3 4
Time (weeks)

*

Vehicle SotorasibAMG 176 Sotorasib + AMG 176

0 1 2 3 4
0

200

400

600

800

1000

0 1 2 3
0

500

1000

1500

2000
MGH1062-1 MGH1145-1 MGH10199-3

Tu
m

or
 V

ol
um

e 
(m

m
3 )

1 2 3 4
Time (weeks)

ns

0 1 2 3
0

500

1000

1500

2000

ns
ns

Figure 5. LKB1 loss in associated with MCL-dependence of KRASG12C-mutant NSCLC PDX tumors and patient tumor
explants. A. KRASG12C-mutant NSCLC tumor cells were collected for BH3 profiling and assessment of BIM:MCL-1 interactions
after ex vivo treatment with sotorasib or trametinib. B. Change in MCL-1 (MS1 10 + 30 µM peptide) and BCL-XL (HRK 10 +
100 µM peptide) dependent priming of patient tumor cells after ex vivo treatment with 0.1 µM trametinib or 1 µM sotorasib
treatment. C. Co-IP assessment of BIM:MCL-1 interaction in tumor cells isolated from pleural fluid after ex vivo treatment with
0.1 µM trametinib (T) or 1 µM sotorasib (S) for 16 hours. D. Mice bearing KRASG12C-mutant NSCLC patient derived xenograft
(PDX) tumors were treated with sotorasib (100 mg/kg) for 3 days and harvested for BH3 profiling. Data shown is the difference
in MCL-1 dependent priming (MS1 peptide) between vehicle and sotorasib treated tumors, each dot represents an
independent tumor (N=3-7). E. Mice bearing KRASG12C-mutant NSCLC PDX tumors (LKB1-loss: MGH1112-1, MGH1138-1,
MGH1196-2; LKB1 WT: MGH1062-1, MGH1145-1, MGH10199-3) were treated with vehicle, sotorasib (100 mg/kg) or
sotorasib (100 mg/kg) + AMG 176 (50 mg/kg) daily. Data shown are mean and S.E.M. of N=7-10 animals per arm (**p<0.01,
***p<0.001 as determined by mixed-effects model).
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