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Abstract

The efficacy of molecularly targeted anti-cancer therapies may be limited by the presence of co-occurring
mutations within a tumor-3, Conversely, these alterations may confer collateral vulnerabilities that can be
leveraged for the development of novel therapeutic approaches. KRAS-mutant lung cancers are
distinguished by recurrent inactivating mutations in the tumor suppressor STK11/LKB1* that facilitate
tumorigenesis by modulating energy balance®® , enhancing metastatic potential’® and enabling immune
evasion®0, However, whether LKB1 plays a role in modulating cellular responses to therapeutic stress is
largely unknown. Here we show that LKB1 suppresses JNK-dependent stress signaling in KRAS-mutant
lung cancer cells upon acute loss of oncogenic signaling. In LKB1-deficient KRAS-mutant cells, inhibition
of KRAS or its downstream effector MEK leads to hyperactivation of JNK due to loss of NUAK-mediated
PP1B phosphatase activity. JNK-mediated inhibitory phosphorylation of BCL-XL rewires apoptotic
dependencies, rendering LKB1-deficient cells vulnerable to MCL-1 inhibition. These results uncover a
previously unknown role for LKBL1 in regulating stress signaling and the mitochondrial apoptotic response
of cancer cells independent of its tumor suppressor activity mediated by AMPK!!-13 and SIK!4% kinases.
Additionally, our study reveals a therapy-induced vulnerability in LKB1-deficient KRAS-mutant lung
cancer cells that could be exploited as a genotype-informed strategy to improve the efficacy of KRAS-
targeted therapies.

Main Text

Mutations in KRAS, a small GTPase that regulates MAPK/ERK signaling, define the largest genetically-
defined subset of non-small cell lung cancer, representing 25-30% of all lung adenocarcinomas'®. The
recent US FDA and European Commission approvals of sotorasib (AMG 510)! and adagrasib
(MRTX849)%, small molecule covalent KRAS®'?C-selective inhibitors, marked a milestone in the
development of targeted therapies for KRAS-mutant cancers. While most NSCLC patients treated with
sotorasib experience clinical benefit, only ~40% achieve a partial response®®. To improve efficacy, drug
combination strategies that target mechanisms of adaptive resistance?®?® or immune evasion
(NCT04613596, NCT06119581) are being tested in the clinic. KRAS-mutant lung cancers harbor diverse
co-occurring alterations such as STK11/LKBL1 loss and KEAP1 mutations®® that may contribute to lack of
response to different therapies including anti-PD-(L)1 immune checkpoint inhibitors® and KRASGC
inhibitors'>!8, However, whether co-occurring alterations induce vulnerabilities that can be
therapeutically exploited in a genotype-directed manner remains largely undefined.

To investigate the impact of common co-occurring genomic alterations on KRASC¥?C inhibitor
combination strategies targeting distinct pathways, we screened a panel of KRAS®*2C-mutant NSCLC cell
lines harboring diverse co-occurring mutations (Fig. S1A) with sotorasib alone or in combination with
inhibitors targeting SHP2 (TNO155), CDK4/6 (abemaciclib), PI3K (GDC-0941), BCL-XL/BCL-2
(navitoclax) or MCL-1 (AMG 176) (Fig. 1A). Consistent with prior studies of KRAS®C
inhibitors'”222425 we observed varying sensitivity to single-agent KRAS®'?C inhibition, which was
independent of the most common co-occurring mutations such as TP53, STK11/LKB1 and KEAP1 (Fig.
S1B-C; Sup. Table 1). To quantify the efficacy of KRASCC combinations compared to KRASC®€ alone,
we calculated the relative change in AUC (e.g., the area between the single agent and combination dose
response curves, normalized to the effect of sotorasib alone), referred to hereafter as simply AAUC (Fig.
S1D). As expected, combining sotorasib with other inhibitors led to greater suppression of cell viability
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than single-agent sotorasib in most cell lines, although the effect was variable (Fig. S1E). Whereas the
presence of co-occurring mutations had little impact on sensitivity to combinations targeting SHP2,
CDK4/6 or BCL-XL/BCL-2, cell lines with co-occurring mutations or loss of STK11/LKB1 were more
sensitive to combinations targeting MCL-1 or PI3K (Fig. 1B-C, Fig. S1E). PI3K inhibition can effect
diverse cellular changes in oncogene-addicted cancers, including mTOR-dependent down-regulation of
MCL-1 protein levels?®?7, which we confirmed (Fig. S1F). To further the investigate the role of MCL-1
in a larger cohort of KRAS-mutant NSCLC cell lines that included KRAS mutations other than G12C, we
tested the MEK inhibitor trametinib in combination with AMG 176 (or the related compound AM-862128).
Similarly, we observed greater activity of trametinib + AMG 176 in cell lines with LKB1 loss (Fig. 1D,
S1G). We also confirmed these findings with additional MEK (cobimetinib) and KRAS®?C (adagrasib)
inhibitors (Fig. S1H). The increase in combination activity resulted from modestly greater sensitivity of a
subset of LKB1-deficient cell lines to single agent MCL-1 inhibition (Fig. S11) as well synergistic activity
between trametinib and AMG 176 (Fig. S2A), resulting in a net cytotoxic effect by the combination (Fig.
S2B). LKB1-deficient cell lines with high AAUC values exhibited robust apoptosis upon combined
inhibition of KRAS/MAPK and MCL-1, while the apoptotic response of LKB1 wild-type (WT) cell lines
was minimal (Fig. 1E-F), suggesting that LKB1 may modulate apoptotic dependencies of KRAS-mutant
lung cancers.

To determine whether LKB1 plays a causal role in tuning the apoptotic response of KRAS-mutant NSCLC
cells, we restored LKB1 expression in LKB1-deficient cell lines or deleted LKB1 in WT cell lines (Fig.
S3A). Re-expression of LKB1 decreased sensitivity to combined sotorasib or trametinib + MCL-1
inhibition, and conversely, CRISPR-mediated deletion of LKB1 sensitized LKB1 WT cells to sotorasib
or trametinib + MCL-1 inhibition (Fig. 1G-H, S3C-D). Restoration or deletion of LKB1 did not alter the
response to sotorasib alone (Fig. S3E) or alter cell proliferation rate (Fig. S3B), suggesting that the changes
in sensitivity to the drug combination that occur upon gain or loss of LKB1 are mediated primarily by
differences in MCL-1-dependent regulation of apoptosis. Consistent with this notion, restoration or
deletion of LKB1 decreased or increased the apoptotic cell death to trametinib + AMG 176, respectively
(Fig. 11-J, S3F), with restoration of LKB1 expression converting cytoxic reponses to cytostatic responses
(Fig. S3G). To confirm these results in vivo, we established isogenic H2030 EV and LKB1 xenograft
tumors in mice. Similar to the in vitro results, restoration of LKB1 abolished tumor regression of H2030
xenograft tumors in response to sotorasib or trametinib + AMG 176 (Fig. 1K, S3H). Collectively, these
results demonstrate that that loss of LKB1 sensitizes KRAS-mutant NSCLC cells to combined MAPK +
MCL-1 inhibition both in vitro and in vivo.

LKB1 is a master serine/threonine kinase that regulates multiple cellular process including growth!2°,
cell metabolism®>® and cell polarity®>-32, We hypothesized that loss of LKB1 rewires downstream kinase
signaling networks to confer dependency on MCL-1, especially upon disruption of oncogenic signaling.
Supporting this, expression of a kinase-dead LKB1X78 (kd) mutant!? did not rescue LKB1-deficient cells
from combined MEK + MCL-1 inhibition (Fig. S4A-B), demonstrating that LKB1 catalytic activity is
required for the observed difference in drug sensitivity. To identify differences in kinase signaling in
KRAS-mutant NSCLC cells with or without LKB1, we performed mass spectrometry-based global
phosphoproteome profiling®® of isogenic H2030 (EV, LKB1 and LKB1-kd) and H358 (KO GFP, KO
LKB1) cells before and after treatment with trametinib (Fig. 2A). We quantified 27364 unique
phosphosites (Fig. S4C-D), then performed phosphosite signature analysis®* to identify the kinases that
were differentially activated in each of these contexts. Consistent with the known effect of MEK inhibition
on cell cycle progression®, we observed down-regulation of cell cycle associated phospho-signatures
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including cyclin-dependent kinases, ATM, ATR, Aurora Kinase B, and PLK1 in response to trametinib
treatment (Fig. S4E). In the absence of drug treatment, there were few statistically significant differences
(and no overlap) in kinase signatures between LKB1 wild-type and deficient cells (Fig. S4F), likely a
result of the nutrient-rich cell culture environment. To identify drug-induced differences in kinase activity
regulated by LKB1, we looked for kinase phospho-signatures that were enriched in trametinib-treated
LKB1-deficient cells relative to their wild-type counterparts (H2030 EV versus LKB1, H358 KO LKB1
versus KO GFP) but not enriched in H2030 EV versus kinase-dead LKB1K8! cells. While several
signatures were enriched in trametinib-treated LKB1-deficient cells for either isogenic pair, only one
signature — c-Jun N-terminal kinasel (JNK1) — satisfied these criteria (Fig. 2B). Specifically, the
phosphorylation of well-established substrates of JINK1, such as ATF2, JUN and JUNB, increased to a
greater extent in H2030 EV and H358 KO LKBL1 cells after trametinib treatment compared to their LKB1
wild-type pairs. Next, we performed proteomic analysis of H2030 and H358 isogenic cells after treatment
with trametinib + AMG 176. JNK phospho-signatures rapidly (8 hours) increased in H358 LKB1 KO cells
compared to control cells, and a subset of JNK substrates showed increase phosphorylation in LKB1-
deficient H2030 cells (Fig. S4G-H). These results suggest that LKB1 loss is associated with increased
JNK activation upon suppression of oncogenic signaling by trametinib or the trametinib + AMG 176
combination.

To confirm these results, we examined JNK Thr183/Tyr185 phosphorylation in H2030 and H358 isogenic
pairs. Combined sotorasib or trametinib + AMG 176 treatment led to a rapid time-dependent increase in
JNK phosphorylation in H2030 EV cells (Fig. 2C, S5A) and JNK nuclear translocation (Fig. S5B). JINK
activation could be suppressed by knockdown of MKK7, which phosphorylates and activates JNK (Fig.
S5C). JNK activation was observed as rapidly as 2 hours after drug treatment and preceded apoptotic cell
death (Fig. S5D), consistent with a proximal role for JNK activation in the apoptotic response. Re-
expression of LKB1 suppressed JNK phosphorylation in H2030 cells, and conversely, deletion of LKB1
in H358 cells led to increased phospho-JNK after drug treatment (Fig. 2C, S5A). We extended these
findings by comparing the induction of phospho-JNK across a larger cohort of KRAS-mutant NSCLC cells
treated with trametinib + AMG 176. Despite an expected degree of heterogeneity between cell lines,
LKB1-deficient cell lines overall exhibited greater induction of INK phosphorylation compared to LKB1
wild-type cell lines with wild-type LKB1, with a significant correlation between pJNK induction and
combination sensitivity (Fig. S5E). Interestingly, the H1792 cell line, which exhibited the greatest drug
sensitivity amongst LKB1 wild-type cells (Fig. 1B), displayed robust induction of pJNK (Fig. S5F).
Corroborating the results in H2030 cells, re-expression of LKB1 in H23 cells blunted the induction of
phospho-JNK in response to trametinib + AMG 176 (Fig. S5G).

These data suggest that LKB1 suppresses JNK-dependent stress signaling that occurs upon inhibition of
oncogenic signaling. As JNKs modulate cell proliferation, differentiation and survival in response a
number of different environmental and cellular stressors®®, we examined whether hyperactivation of INK
signaling in LKB1-deficient cells is specific to MAPK inhibition or reflects a more general role for
regulation of JINK by LKB1. Upon exposure of H2030 EV or LKB1 cells to UV light, a well-established
inducer of JNK signaling®’-3, we observed an increase in phospho-JNK in H2030 EV cells that peaked
within 60 minutes (Fig. S5H). Re-expression of LKB1 reduced UV-induced phospho-JNK in H2030
LKBL1 cells, indicating that LKB1 may play a general role in suppressing JNK stress signaling in response
to a variety of stimuli. To determine whether JNK activation underlies the increased sensitivity of LKB1-
deficient KRAS-mutant cancer cells to combined MAPK + MCL-1 inhibition, we used siRNA to
simultaneously knock down both JNK1 and 2 isoforms (Fig. S51) and assessed the response to combined
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sotorasib or trametinib + AMG 176. While INK1/2 knockdown had little effect on sensitivity to trametinib
alone, JNK1/2 depleted cells exhibited decreased sensitivity and apoptotic response to both drug
combinations, phenocopying the effect of LKB1 re-expression (Fig. 2D-E, S5J-K). Collectively, these
results suggest that hyper-activation of JNK signaling in the absence of LKB1 increases the MCL-1
dependence of LKB1-deficient KRAS-mutant NSCLC cells and sensitizes them to combined KRASG2C
or MEK + MCL-1 inhibition.

LKB1 exerts its effects via phosphorylation and activation of multiple members of the AMP-activated
protein kinase (AMPK) family. For instance, LKB1 plays a central role in energy homeostasis by sensing
increased intracellular AMP/ATP ratio and phosphorylating AMPK, which in turn suppresses energy
consumption by inhibiting mTOR and stimulating autophagy®°. Recently, the AMPK-related SIK kinases
have been shown to play a major role in mediating the suppressive effects of LKB1 on tumorigenesis and
metastatic potential in models of KRAS-mutant NSCLC*!®, However, a role for LKB1 in regulating
apoptotic priming is largely undefined. To identify the LKB1 substrate kinase(s) that mediate the
suppressive effect of LKB1 on drug-induced JNK activation and MCL-1 dependency, we simultaneously
silenced the expression of multiple members within each AMPK-related kinase family that are expressed
in NSCLC*® (Fig. 2F, S6A-D). Silencing NUAK1+2 was sufficient to restore the sensitivity of H2030
LKBL1 cells to combined sotorasib or trametinib + AMG 176 to a similar level as LKB1-deficient H2030
cells (Fig. 2G, S6E). In contrast, silencing SIKs, AMPKs or MARKS in the context of LKB1 re-expression
did not restore drug sensitivity (Fig. 2G, S6F). The difference in drug sensitivity between LKB1-deficient
and LKB1-restored cells was similar when cells were cultured in high or low/absent glucose conditions
(Fig. S6G), consistent with a nutrient-independent mechanism. Knockdown of NUAK1/2 restored drug-
induced JNK phosphorylation in H2030 cells expressing LKBL1 to a similar level as H2030 control cells
(Fig. 2H), and increased the apoptotic response of LKB1-expressing cells to trametinib + AMG 176 (Fig.
S6H).

NUAKSs regulate cell polarity*°, ploidy*' and adhesion*? through phosphorylation of the myosin
phosphatase targeting-1 (MYPT1)-protein phosphatase-1beta (PP1B) complex. NUAKZ1 directly binds to
and activates the PP1B phosphatase by displacing the self-inhibitory protein 1-242. We hypothesized that
PP1B activation downstream of LKB1-NUAK1 could lead to dephosphorylation of JINK. Knockdown of
PP1B expression dramatically increased pJNK in LKB1-restored H2030 cells (Fig. 2I) and increased
sensitivity to MAPK + MCL-1 inhibition (Fig 2J, Fig. S61), suggesting that PP1B de-phosphorylates INK
and reduces MCL-1 dependence downstream of LKB1. To demonstrate whether NUAK1 directly interacts
with PP1B in LKB1-expressing KRAS-mutant NSCLC cells, we expressed HA-tagged NUAK1 in H2030
EV and LKBL1 cells. Co-immunoprecipitation of PP1B revealed increased binding of NUAK to PP1B in
H2030 LKBL1 cells (Fig 2K, compare lanes 1 and 3) that was disrupted by mutation of the NUAK GILK
domain (GKKK) that has been previously demonstrated to mediate the NUAK-PP1B interaction*? (Fig.
2K, compare lanes 3 and 5). Conversely, binding of the 12 protein to PP1B was diminished in H2030
LKB1 cells and increased in the presence of the NUAK GKKK mutant, consistent with LKB1-dependent
competition between NUAK and 12 for binding PP1B. Collectively, these results indicate that loss of
LKB1-NUAKZ1/2 signaling leads to increased JNK signaling as a consequence of decreased PP1B
phosphatase activity, resulting in increased sensitivity to combined MAPK + MCL-1 inhibition.

Inhibition of MEK/ERK signaling leads to BIM accumulation and increases apoptotic priming in
oncogene-driven cancers treated with various targeted therapies, driving cells into an MCL-1 and/or BCL-
XL dependent state**#. To confirm that LKB1 modulates apoptotic priming, we performed BH3
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profiling*>4647 on isogenic LKB1-deficient or WT cell lines before and after treatment with trametinib
(Fig. STA). As expected, trametinib treatment increased overall apoptotic priming (Fig. S7B). Trametinib
induced a greater increase in MCL-1 specific priming (expressed as “A priming”) in LKBI1-deficient
compared to LKB1 wild-type cells, and which was consistently reduced upon re-expression of LKB1 (Fig.
S7C-D). Conversely, deletion of LKB1 in H358 cells increased trametinib-induced MCL-1 dependency.
In a subset of cell lines, we also observed changes in BCL-XL dependency, however this was not a
consistent effect (Fig. S7E). To investigate the basis for increased MCL-1 dependent priming in LKB1-
deficient cells, we examined MCL-1 protein expression levels, as this is highly dependent on cap-
dependent translational regulated by mTOR*® (which is regulated by AMPK). Consistent with an AMPK -
independent effect of LKB1, MCL-1 and BCL-XL protein expression was similar in LKB1-deficient and
wild-type KRAS-mutant NSCLC cell lines (Fig. S7TF-G) or isogenic cell line pairs (for example, see Fig.
S8B). Next, we examined interactions between BIM and MCL-1 or BCL-XL. Co-immunoprecipitation
(Co-IP) experiments revealed increased BIM bound to MCL-1 and BCL-XL after trametinib treatment
(Fig. S8A-B), consistent with prior studies®. LKB1-deficient cells treated with trametinib had a greater
amount of BIM bound to MCL-1, and less BIM bound to BCL-XL, compared to LKB1 wild-type cell
lines (Fig. S8A-C). Restoration of LKBL1 in deficient cell lines reduced the amount of BIM bound to MCL-
1 after trametinib treatment, and knocking out LKB1 in wild-type cells increased the amount of BIM
bound to MCL-1 (Fig. 3A, S8C-G). Notably, except for one cell line (A427), the impact of LKBL1 re-
expression/knock-down on baseline BIM:MCL-1 binding was less prominent in the absence of drug
treatment. These results indicate that loss of LKB1 promotes the formation of BIM:MCL-1 complexes,
especially in the context of suppression of oncogenic MAPK signaling, functionally inducing an MCL-1
dependent state and priming AMG 176 sensitivity.

MCL-1 and BCL-XL can be phosphorylated at multiple residues by numerous kinases, including JNK and
ERK, leading to context-specific and divergent effects on protein stability/degradation, BIM binding
affinity and apoptosis?®°%51-54, MCL-1 phosphorylation at T163 decreased acutely upon trametinib
treatment consistent with a loss of ERK phosphorylation® and then rebounded at later time points
coinciding with activation of INK (Fig. S9A). Restoration of LKB1 in LKB1-deficient cells reduced the
rebound in MCL-1 phosphorylation, while deleting LKB1 in wild-type cells increased MCL-1
phosphorylation (Fig. S9A-B). A similar time and JINK-dependent pattern of phosphorylation of BCL-XL
at S62 was observed in LKB1-deficient cells, which was suppressed by re-expression of LKB1. Upon
treatment with the combination of trametinib + AMG 176, BCL-XL S62 was rapidly phosphorylated in
LKB1-deficient but not LKB1-proficient isogenic cell line pairs (Fig. 3B). Silencing JNK1/2 expression
reduced drug-induced phosphorylation of both MCL-1 and BCL-XL to a similar level as the
corresponding LKB1-restored isogenic cell line (Fig. S9C, compare lanes 3, 4 and 7). To assess whether
JNK-mediated phosphorylation of MCL-1 or BCL-XL impacts drug sensitivity, we expressed DOX-
inducible MCL-1 or BCL-XL phosphorylation-site mutants in H2030 cells while simultaneously knocking
down expression of endogenous MCL-1 or BCL-XL (Fig. 3C, S9D-G). While mutating MCL-1
phosphorylation sites to alanine had little effect on sensitivity to trametinib + AMG 176 (Fig. 3D, S9H),
expression of the BCL-XL S62A mutant reduced sensitivity to both sotorasib or trametinib + AMG 176
in H2030 and other cell lines (Fig. 3E-F, S9K), phenocopying LKB1 re-expression and JNK1/2
knockdown. Conversely, the BCL-XL S62E phosphomimetic increased the sensitivity of H2030 LKB1
cells (Fig. 3G). These results suggest that the increased MCL-1 dependency of LKB1-deficient cells is
mediated by BCL-XL phosphorylation.
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Prior studies have demonstrated that sensitivity of cancer cells to MCL-1 inhibition is inversely related to
BCL-XL expression level and the capacity for BCL-XL to neutralize pro-apoptotic BH3 proteins such as
BIM?®857, Phosphorylation of BCL-XL S62 induces a conformational change in which a dysregulated
domain folds into the BCL-XL BH3 binding groove to prevent BIM binding®*. Therefore, we
hypothesized that phosphorylation of BCL-XL S62 by JNK compromises the ability of BCL-XL to
sequester BIM that is liberated from MCL-1 upon MCL-1 inhibition. To test this, we studied the dynamics
of BIM:MCL-1 and BIM:BCL-XL interactions by first treating cells with trametinib to increase BIM
bound to MCL-1, then treating with a short pulse of AMG 176 and assessing the ability for BCL-XL to
sequester BIM released from MCL-1 (Fig. 4A). In LKB1-deficient H2030 cells, very little BIM was
sequestered by BCL-XL upon treatment with AMG 176, compared to LKB1 wild-type SW1573 cells,
which exhibited substantial sequestration of BIM by BCL-XL (Fig. 4B). Restoring LKB1 expression or
silencing JNK1/2 in H2030 cells increased the amount of BIM sequestered by BCL-XL after addition of
AMG 176 (Fig. 4C-D). In H2030 and MGH1112-1 EV cells, the BCL-XL S62A mutant exhibited
increased BIM:BCL-XL binding, whereas in H2030 LKBL1 cells, the phospho-mimetic S62E mutant
decreased BIM:BCL-XL binding (Fig. 4E-F, S9L). Knock-down of NUAK1/2 expression in H2030 cells,
which we showed restored drug-induced JNK phosphorylation (Fig. 2H), restored the drug-induced
phosphorylation of BCL-XL S62 (Fig. 4G). Collectively, these results demonstrate that in the context of
LKB1 loss, activation of JNK creates an MCL-1 dependent state by phosphorylating BCL-XL and
decreasing its capacity to buffer the pro-apoptotic effects of BIM (Fig. 4H). While in some cases,
especially those that may be highly primed and MCL-1 dependent at baseline, LKB1 loss may confer
sensitivity to MCL-1 inhibition alone, MCL-1 dependency is enhanced by the increase in apoptotic
priming upon suppression of oncogenic MAPK signaling.

To investigate the clinical relevance of our findings, we performed BH3 profiling on KRAS-mutant
NSCLCs (solid metastatic lesions or tumor cells isolated from malignant pleural effusions of patients)
after ex vivo exposure to sotorasib or trametinib (Fig. 5A). Both sotorasib and trametinib treatment led to
an increase in MCL-1 dependent priming (MS1 peptide) in STK11/LKB1-mutant but not WT tumors, (Fig.
5B, S10A). Consistent with this effect, co-immunoprecipitation experiments performed on tumor cells
isolated from a malignant pleural effusion obtained from the same patient revealed drug-induced increases
in BIM bound to MCL1 (Fig. 5C). In contrast, we did not observe a significant difference in drug-induced
BCL-XL dependent priming (HRK peptide) between STK11-mutant and WT tumors. To extend these
findings, we performed BH3 profiling on KRAS-mutant (G12C and other) NSCLC patient-derived
xenograft (PDX) models with or without co-occurring STK11 loss after short-term treatment with
trametinib. Similar to the patient tumors and in vitro cell line models, LKB1-deficient tumors exhibited
increased MCL-1-dependent priming compared to WT tumors (Fig 5D, S10B). The addition of AMG 176
to sotorasib led to greater tumor response than sotorasib alone in LKB1-deficient PDX tumors with MCL-
1-dependent priming but not LKB1-deficient PDX tumors (Fig. 5E, S11A-C). To investigate potential
toxicity, we assessed a combination dosing regimen with intermittent AMG 176 administration (AMG
176 is administered as intermittent infusions in currently on-going clinical trials) that induced similar
tumor regression (Fig. S11D). In humanized MCL-1 knock-in mice>® the combination of sotorasib with
AMG 176 was well tolerated with no overt signs of toxicity (Fig. S11E). Consistent with the expected
effects of on-target MCL-1 inhibition®, we observed decreased B cells and monocytes, however no
additional effects were observed in combination with sotorasib compared with AMG 176 alone (Fig S13F).
Thus, loss of the LKB1 tumor suppressor is associated with increased MCL-1 dependence upon treatment
with sotorasib or trametinib in KRASC*C-mutant NSCLCs, creating an apoptotic vulnerability that can be
exploited by concurrent inhibition of MCL-1.
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Discussion

While the utility of targeting truncal oncogenic driver mutations in lung cancer is firmly established, most
clinical targeted therapy strategies do not take into account co-occurring mutations. For KRAS-mutant
lung cancers in particular, identifying vulnerabilities associated with recurring co-occurring mutations in
tumor suppressor genes could enable the development of biomarker-driven combination therapies with
enhanced activity in distinct subsets of patients. However, the development of the most KRAS inhibitor
drug combinations currently in the clinic has been agnostic to co-occurring mutations. Our finding that
LKBL1 regulates the apoptotic dependency of KRAS-mutant lung cancers is unexpected, as genomic
features associated with sensitivity to BH3 mimetics in oncogene-addicted solid tumors have been
elusive?®4359, Inactivating mutations or loss of STK11/LKB1, which define one of the major genomic sub-
groups of KRAS-mutant lung cancers*160 are of particular interest because they are associated with
decreased responsiveness to immune checkpoint blockade®5 and poor overall prognosis®?.

LKB1 is a master kinase that regulates diverse cellular processes via phosphorylation of multiple members
of AMPK family kinases3®%3, In particular, the role of LKB1 in regulating energy homeostasis via AMPK
has been well defined. In settings of energy stress (high AMP:ATP ratio), AMPK limits anabolic processes
by inhibiting mTORC1 through TSC25%. Interestingly, expression levels of MCL-1 are highly dependent
upon mTOR-mediated cap-dependent translation, and inhibition of mMTOR by small-molecule inhibitors
has been shown to reduce MCL-1 expression and confer apoptotic sensitivity?’. We also observed an
association between PI3K inhibition, MCL-1 down-regulation and AMG 176 sensitivity in LKB1-
deficient KRAS-mutant NSCLC cell lines. However, we did not observe any change in MCL-1 expression
upon manipulation of LKB1, and silencing AMPK expression did not phenocopy the effect of LKB1 loss
on MCL-1 inhibitor sensitivity. Additionally, we did not observe a change in intracellular ROS upon
restoration or deletion of LKB1 in our isogenic models (data not shown), nor did altering NADP/NADPH
ratio change the sensitivity to MCL-1 inhibition (data not shown), arguing against AMPK-driven changes
in metabolism®5, autophagy®®, mitochondrial defects®’68 or ROS76%7071 Collectively, these results
support an AMPK-independent mechanism by which LKB1 modulates JNK signaling and MCL-1
dependency.

Beyond its role regulating metabolism via AMPK, LKB1 loss promotes tumorigenesis by reprogramming
epigenetic states, facilitating lineage plasticity and promoting metastasis’’®7%74, Recent studies have
revealed a central role for the AMPK-related SIK kinases in mediating the suppressive effects of LKB1
on tumorigenesis!**®. The role of other AMPK-related kinases in mediating the tumor suppressor effects
of LKB1 are not well defined. NUAK kinases have been shown to regulate cellular polarity, adhesion and
cell cycle in normal tissues*®#27 and to play a critical role in neurite formation®. Our results reveal that
NUAKS can function as negative regulators of JINK signaling, through binding and activation of the JINK
phosphatase PP1B. To our knowledge, the LKB1/NUAKZ1/PP1B axis represents a novel mechanism by
which LKB1 can suppress JNK stress signaling and regulate apoptosis. JNK has been reported to modulate
apoptotic signaling by phosphorylating multiple pro- and anti-apoptotic BCL-2 family members,
including BIM77-80 BAX81-8 BCL-XL%%% and MCL-14518485 The consequences of differential
phosphorylation are complex and can impact both protein stability/turnover as well as protein-protein
interactions, leading to both pro- and anti-apoptotic effects in a context-specific manner. We observed
JNK-mediated phosphorylation of both MCL-1 and BCL-XL in response to KRAS and MEK inhibition,
however elimination of JNK phosphorylation sites in BCL-XL but not MCL-1 phenocopied the decrease
in MCL-1 dependence observed with JNK knockdown or LKB1 re-expression. Future studies will be
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necessary to determine whether JNK phosphorylation of MCL-1 may confer apoptotic vulnerabilities in
other therapeutic contexts. Interestingly, we observed that a subset of LKB1-deficient cell lines exhibited
sensitivity to single agent MCL-1 inhibition in the absence of MAPK inhibition, indicative of a highly-
primed MCL-1-dependent baseline state. Re-expression of LKB1 partially decreased sensitivity to MCL-
1 inhibition, suggesting that the baseline suppression of JNK by LKB1/NUAK may impact apoptotic
dependency in the absence of therapeutic stress in some cases, which is further amplified by the increased
apoptotic priming that occurs in the setting of suppression of oncogenic MAPK signaling.

While our study focused on KRAS-mutant lung cancers treated with KRAS or MEK inhibitor targeted
therapies, we also provide evidence that LKB1 suppresses JNK activation in response to UV radiation,
suggesting a fundamental role for LKB1 in regulating JNK stress signaling in response to a variety of
stimuli. From an evolutionary perspective, we speculate that the ability for LKB1 to suppress JNK
signaling may be advantageous in normal tissues facing energy or redox stress by temporarily suppressing
apoptosis until compensatory mechanisms (also regulated by LKB1) can be engaged. It is less clear
whether modulation of JNK signaling contributes to the tumor suppressor functions of LKB1, or whether
the ability to hyperactivate JNK signaling provides an advantage to cancer cells with loss of LKB1. It is
notable that the differential JNK activation and increase in MCL-1 dependency conferred by LKB1 loss
was maximally observed in the setting of MAPK inhibition, suggesting that the functional effects of this
pathway may be unmasked in specific contexts in response to select perturbations.

In summary, we identify a novel mechanism by which LKB1-NUAK regulates JNK stress signaling and
modulates apoptotic dependencies in KRAS-mutant NSCLCs. In response to KRAS or MEK inhibition,
LKB1-deficient cells exhibit hyperactivation of JNK and increased reliance on MCL-1 to buffer the
increase in BIM. While LKB1-deficiency does not confer increased sensitivity to KRAS®?C or MEK
inhibitors used as single agents, cells become primed for apoptosis when treated with MCL-1 BH3
mimetics. These results suggest a potential biomarker-informed combination therapy approach based on
mutations or genomic loss of STK11/LKB1.
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Methods

Cell culture

Commercially available KRAS-mutant NSCLC cell lines were obtained from the Center for Molecular
Therapeutics at the Massachusetts General Hospital (MGH) Cancer Center and STR validation was
performed at the initiation of the project (Biosynthesis, Inc.). Cell lines were routinely tested for
mycoplasma during experimental use. Cell lines were maintained in RPMI supplemented with 5% FBS
except A427, SW1573, H2009, H1573, which were maintained in DMEM/F12 supplemented with 5%
FBS. Patient-derived NSCLC cell lines were established in our laboratory from surgical resections, core-
needle biopsies, or pleural effusion samples as previously described, with the exception of the MGH1070
cell line, which was derived from a primary mouse PDX model. All patients signed informed consent to
participate in a Dana- Farber/Harvard Cancer Center Institutional Review Board—approved protocol,
giving permission for research to be performed on their samples. Clinically observed KRAS mutations
(determined by MGH SNaPshot NGS genotyping panel) were verified in established cell lines.
Established patient-derived cell lines were maintained in RPMI + 10% FBS.

Cell viability assessment

Cell viability was assessed using the CellTiter-Glo assay (Promega). Cells were seeded into 96-well plates
24 hours prior to drug addition, and cell proliferation was determined 72 hours after addition of drug by
incubating cells with CellTiter-Glo reagent (50 pL/well) for 30 minutes on a shaking platform at room
temperature. Luminescence was quantified using a SpectraMax i3x plate reader (MolecularDevices).

PI/Annexin apoptosis assay

Cells were seeded in triplicate at low density 24 hours prior to drug addition. Seventy-two hours after
adding drugs, floating (dead) and adherent cells (alive) were collected and stained with propidium iodide
(P1) and Cy5-Annexin V (BD Biosciences) and analyzed by flow cytometry. The annexin-positive
apoptotic cell fraction was quantified using FlowJo software.

Generation of engineered cell lines

EV and LKBL1 cell lines: EV (pBabe) and LKB1 retro-viral vectors were gifts from Dr. Kwok-Kin Wong
(NYU). EV and LKB1 virus were prepared by transfecting HEK293 cells with EV or LKB1, VSV-G
(Addgene #8454), Gag-Pol (Addgene #14887) using Lipofectamine 3000 (ThermoFisher) and collecting
viral particles in the supernatant. Stable cell lines were generated by infecting KRAS-mutant NSCLC lines
with EV or LKB1 virus followed by puromycin selection.

LKB1 knock-out cell lines: sgRNAs targeting the STK11 locus were designed using CHOP-CHOP and
cloned into pSpCas9(BB)-2A-GFP (Addgene #48138). KRAS-mutant NSCLC cell lines were transiently
transfected with the plasmids and sorted for single clone formation by FACs. After clonal expansion, 20
clones were selected and loss of LKB1 expression was assessed by western blot. Alternatively, LKB1
SgRNAs were cloned into lentiCRISPR v2 (Addgene #52961). Lentiviral particles were prepared by
transfecting HEK293 cells with EV or sgLKB1, VSV-G (Addgene #8454) and A8.91 using Lipofectamine
3000 (ThermoFisher). Stable cell lines were generated by infecting KRAS-mutant NSCLC lines with
lentiCRISPR v2 or sgLKBL1 virus followed by blasticidin selection.

DOX-inducible MCL-1, BCL-XL cell lines: Full length wild-type or mutant MCL-1, BCL-XL coding
sequences were synthesized (GenScript) and cloned into pInducer20 (gift from Lee Zou, MGH). Lentiviral
particles were prepared by transfecting HEK293 cells with pInducer20 or plnducer20-MCL-1/
pInducer20-BCL-XL, VSV-G (Addgene #8454) and A8.91 using Lipofectamine 3000 (ThermoFisher).
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Stable cell lines were generated by infecting KRAS-mutant NSCLC lines were infected with EV or
pInducer20-MCL-1 or pInducer20-BCL-XL virus followed by selection with neomycin/G418.

Mouse xenograft studies

All animal studies were conducted through Institutional Animal Care and Use Committee—approved
animal protocols in accordance with institutional guidelines. KRAS-mutant NSCLC PDX models were
generated from surgical resections, core-needle biopsies, or pleural effusion samples by subcutaneous
implantation into NSG mice (Jackson Labs). Subcutaneous tumors were serially passaged twice to fully
establish each model. Clinically observed KRAS mutations were verified in each established model. For
drug studies, PDX tumors were directly implanted subcutaneously into NSG or athymic nude (NE/Nu)
mice and allowed to grow to 250 to 400 mm?. For H2030 xenograft studies, cell line suspensions were
prepared in 1:1 matrigel:PBS, and 5 x 10° cells were injected unilaterally into the subcutaneous space on
the flanks of athymic nude (Nu/Nu) mice and allowed to grow to approximately 350 mm3. Tumors were
measured with electronic calipers, and the tumor volume was calculated according to the formula V =
0.52 x L x W2, Mice with established tumors were randomized to drug treatment groups using covariate
adaptive randomization to minimize differences in baseline tumor volumes. Trametinib was dissolved in
0.5% HPMC/0.2% Tween 80 (pH 8.0) and administered by oral gavage daily at 3 mg/kg, 6 days per week.
Sotorasib was dissolved in 2% HPMC/0.1% Tween 80 (pH 7) and administered by oral gavage daily at
100 mg/kg, 6 days per week. AMG 176 was dissolved in 25% hydroxypropylbeta- cyclodextrin (pH8.0)
and administered by oral gavage daily 50 mg/kg.

Quantitative RT-PCR analysis

RNA was extracted using the Qiagen RNeasy kit. cDNA was prepared with the Transcriptor High Fidelity
cDNA Synthesis Kit (Roche) using oligo-dT primers. Quantitative PCR was performed with gene specific
primers (Supplemental table 2) using SYBR™ Select Master Mix (Applied biosystem) on a Lightcycler
480 (Thermofisher). Relative gene expression was calculated by using the A ACT method by normalizing
to ACTB.

Western Blot analysis

Cells were seeded in either 6-well or 6 cm plates and drug was added when cells reached 70% confluency.
Cells were harvested by washing twice with PBS, lysing in lysis buffer 2 on ice, and spinning at 14,000
RPM at 4°C for 10 minutes to remove insoluble cell debris. Lysate protein concentrations were determined
by a Bicinchoninic Acid assay (Thermo Fisher). Gel electrophoresis was performed using NuPage 4-12%
Bis-Tris Midi gels (Invitrogen) in NuPage MOPS SDS Running Buffer (Invitrogen) followed by transfer
onto PVDF membranes (Thermo Fisher). Following transfer, membranes blocked with 5% milk (Lab
Scientific bioKEMIX) in Tris Buffered Saline with Tween 20 (TBS-T) and then incubated with primary
antibody (1:1000, 1%BSA in TBS-T) at 4°C overnight. After washing in TBS-T), membranes were
incubated with the appropriate secondary antibody (1:12500 in 2% skim milk in TBS-T) for 1 hour at
room temperature. The following HRP-linked secondary antibodies were used: anti-rabbit IgG (CST7074)
and anti-mouse 1gG (CST7076). Membranes were removed from secondary antibodies and washed 3
times for 10 minutes each in TBS-T. Prior to imaging, membranes were incubated for 4 minutes
SuperSignal West Femto Stable Peroxide & Luminol/Enhancer (Thermo Fisher) diluted 1:10 in 0.1 M
tris-HCL pH 8.8 (Boston Bioproducts). Luminescence was imaged using a G:Box Chemi-XRQ system
(Syngene). The following primary antibodies were used: pJNK T183/Y185 (CST4668), SAPK/INK
(CST9252), BIM (CST2933), pBCL-XL S62 (Invitrogen 44-428G), BCL-XL (CST2764), LKB1
(CST3050), pMCL-1 T163 (CST14765), pMCL-1 S159/T163 (CST4579), pMCL-1 S64 (CST13297),
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MCL-1 (BD Pharmingen 559027), pMKK4 S257/T261 (CST9156), MKK4 (CST9152), pMEK7 S271
(Thermo Fisher PA5-114604), pMEK7 T275 (Thermo Fisher PA5-114605), MKK7 (CST4172),
DUSP10/MKPS5 (CST3483), HA Tag (CST3724), B-Tubulin (CST2146), GAPDH (CST5174).

Protein Immunoprecipitation

Cells were seeded in either 10 cm or 15 cm plates and drug was added when cells reached 70% confluency.
Cells were harvested after the treatment period and lysates were prepared using Tris Lysis Buffer with
Protease Inhibitor Cocktail (Meso Scale Diagnostics) on ice. After normalization of total protein
concentrations, Pierce Protein A/G Magnetic Beads (Thermo Fisher) and either mouse anti-human MCL-
1 (BD Pharmingen 559027) or mouse anti-human BCL-XL (EMD Millipore MAB3121) antibodies were
added to lysate aliquots and incubated at 4°C overnight. A representative aliquot of the normalized whole
cell lysate was saved for Western blot analysis. The immunoprecipitated fractions were separate using
magnetic separation, washed three times with Tris Lysis Buffer on ice, proteins eluted by heating at 95°C
for 10 min with Tris Lysis Buffer and LDS Sample Buffer 4X (Invitrogen). For western blots, the rabbit
anti-human MCL-1 (CST4572) antibody was used; all other antibodies were identical to those used for
western blotting. For immunoprecipitation of HA-tagged BCL-XL, the Pierce Magnetic HA-Tag IP/Co-
IP Kit (Thermo Fisher) was used following the manufacturer’s protocol (specifically, the procedure for
(A.) Manual IP/Co-IP and (B.) Elution Protocol 2 for reducing gel analysis).

Immunofluorescence and image analysis

Cells were fixed with 10% neutral-buffered formalin and permeabilized by PBST (PBS + Triton X100).
Cells were then incubated with pJNK T183/Y 185 (CST4668) primary antibody (1:400) overnight at 4°C.
Secondary antibody staining was performed at room temperature for 1 hour, followed by DAPI staining.
Images were acquired using a Zeiss LSM 710 confocal microscope. Image analysis was performed using
CellProfiler software (Broad Institute). Briefly, individual cells were identified by DAPI staining. pJNK
staining inside the nuclei or outside the nuclei was segmented and quantified at the individual cell level.

siRNA-Mediated Gene Knockdown

SiIRNA transfection was performed using Lipofectamine RNAIMAX Transfection Reagent according to
the manufacturer’s protocol (Invitrogen, Cat# 13778075). In brief, cells were seeded in 6-well, 6 cm, or
10 cm plates and siRNA transfection was carried out when cells reached ~70% confluency. Prior to
transfection, cells were placed in antibiotic-free media. 48 hours after transfection, cells were seeded for
analysis of proliferation or immunoprecipitation or harvested for western blot. The following Invitrogen
SiRNA were used: NC (AM4611), MAPKS8 (ID: s11152), MAPKO9 (ID: s11159), NUAK1 (ID: s90),
NUAK?2 (ID: s37779), PRKAAL (ID: s100), PRKAAZ2 (ID: s11056), PRKABL (ID: s11059), PRKAB2
(ID: s11062), SIK1 (ID: s45377), SIK2 (ID: s23355), SIK3 (ID: s23712), MARK1 (ID: s8511), MARK?2
(ID: s4648), MARK3 (ID: s8514), MARKA4 (ID: s33718), MAP2K4 (ID: 11182, s11183), MAP2K7 (ID:
511183, s11184), MCL-1 (ID: s8584, s8585), BCL2L1 (ID: s1920, s1921, s1922).

BH3 Profiling of Cell Lines

BH3 profiling was performed by quantifying cytochrome c release upon addition of exogeneous BH3
peptide as previously described 4. Briefly, 2x10° cells were isolated, centrifuged at 500xg for 5 minutes,
then the cell pellet was resuspended in 100uL PBS with 1uL Zombie Green viability dye (Biolegend, cat#
423111). Cells were stained at room temperature out of light for 15 minutes, then 400uL FACS Stain
Buffer (2% FBS in PBS) was added to the sample to quench Zombie dye. Cells were then centrifuged at
500xg for 5 minutes then subjected to BH3 Profiling as previously described with indicated peptides and
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concentrations. After BH3 profiling, cells were permeabilized for intra-cellular staining with a saponin-
based buffer (1% saponin, 10% BSA in PBS) and stained with an antibody for Cytochrome C AlexaFluor
647 (Biolegend, 612310) used at 1:2000 dilution and DAPI. Cells were left to stain overnight at 4°C and
analyzed by flow cytometry (Attune NxT) the following day.

BH3 Profiling of Primary Patient Samples

Surgical resections were minced by scalpels to ~1mm3. Minced explants were cultured in RPMI1640 +
10% FBS overnight in the absence or presence of drugs. Immediately prior to BH3 profiling, tissue was
further dissociated by collagenase/dispase enzymatic dissociation for 30 minutes at 37°C. Samples were
then strained through 100uM filter to isolate single cells. For each sample, 2x106 cells were isolated,
centrifuged at 500xg for 5 minutes, then the cell pellet was resuspended in 100uL PBS with 1puL Zombie
Green viability dye (Biolegend, cat# 423111). Cells were stained at room temperature out of light for 15
minutes, then 400puL FACS Stain Buffer (2% FBS in PBS) was added to the sample to quench Zombie
dye. Cells were then centrifuged at 500xg for 5 minutes, then resuspended in 100pL FACS Stain Buffer.
Cells were then stained with the following conjugated cell-surface marker antibodies at 1:50 dilutions:
CD326 (EpCAM) PE (Biolegend, 324206) and CD45 BV786 (Biolegend, 304048). Cells were then
centrifuged at 500xg for 5 minutes and subjected to BH3 Profiling as previously described* with indicated
peptides (e.g., MS1 = MCL-1, HRK = BCL-XL) and concentrations. After BH3 profiling, cells were
permeabilized for intra-cellular staining with a saponin-based buffer (1% saponin, 10% BSA in PBS) and
stained with an antibody for Cytochrome C AlexaFluor 647 (Biolegend, 612310) used at 1:2000 dilution
and DAPI. Cells were left to stain overnight at 4°C and analyzed by flow cytometry (Attune NxT) the
following day. Cells of interest were identified by positive DAPI, negative Zombie, negative CD45, and
positive EpCAM staining.

Phosphoproteomic Analysis

Frozen cell pellets were lysed, obtained proteins reduced with DTT and alkylated with iodoacetamide,
precipitated following the MeOH/CHCI3 protocol, and digested with LysC and trypsin, followed by
phophopeptide enrichment as previously described®38687, For each sample 2.5 mg of peptides were either
subjected to phosphopeptide enrichment on TiO2 beads (GL Sciences, Japan) or 1 mg of peptides were
enriched via on Fe-NTA beads (Cube Biotech, Germany). Phosphopeptides were labeled with TMT10plex
or TMTpro reagents (Thermo Fisher Scientific), pooled, and were fractionated into 24 fractions using
basic pH reversed phase chromatography essentially as described previously®. Those were dried, re-
suspended in 5% ACN/5% formic acid, and analyzed in 3-hour runs via LC-M2/MS3 on an Orbitrap
FusionLumos mass spectrometer using the Simultaneous Precursor Selection (SPS) supported MS3
method®-°0 essentially as described previously®'. Two MS2 spectra were acquired for each peptide using
CID and HCD fragmentation as described earlier®? and the gained MS2 spectra were assigned using a
SEQUEST or COMET-based in-house built proteomics analysis platform®? allowing phosphorylation of
serine, threonine, and tyrosine residues as a variable modification. The Ascore algorithm was used to
evaluate the correct assignment of phosphorylation within the peptide sequence®. Based on the target-
decoy database search strategy®® and employing linear discriminant analysis and posterior error histogram
sorting, peptide and protein assignments were filtered to false discovery rate (FDR) of < 1%%. Peptides
with sequences that were contained in more than one protein sequence from the UniProt database (2014)
were assigned to the protein with most matching peptides®. Only MS3 with an average signal-to-noise
value of larger than 40 per reporter ion as well as with an isolation specificity®® of larger than 0.75 were
considered for quantification. A two-step normalization of the protein TMT-intensities was performed by


https://doi.org/10.1101/2022.09.29.510137
http://creativecommons.org/licenses/by-nc-nd/4.0/

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.29.510137; this version posted June 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

first normalizing the protein intensities over all acquired TMT channels for each protein based on the
median average protein intensity calculated for all proteins. To correct for slight mixing errors of the
peptide mixture from each sample a median of the normalized intensities was calculated from all protein
intensities in each TMT channel and the protein intensities were normalized to the median value of these
median intensities.

Proteomic Analysis

50 ug of the of the resulting peptides after tryptic digest as described above were subsequently labeled
using TMT-10plex reagents (Thermo Scientific) according to manufacturer’s instructions. Labeled
samples got combined and fractionated using a basic reversed phase hplc®. The resulting fractions were
analyzed in an 3h reversed phase LC-MS2/MS3 run on an Orbitrap FusionLumos. MS3 isolation for
quantification used Simultaneous Precursor Selection (SPS) as previously described®-°L, Proteins were
identified based on MS2 spectra using the sequest algorithm searching against a human data base (uniprot
2014)% using an in house-built platform®3. Search strategy included a target-decoy database-based search
in order to filter against a false-discovery rate (FDR) of protein identifications of less than 1%%. For
quantification only MS3 with an average signal-to-noise value of larger than 40 per reporter ion as well
as with an isolation specificity®® of larger than 0.75 were considered and a two-step normalization as
described above was performed.

Phospho-proteomic Signature Analysis

Phospho-signature analysis was performed using PTM-Signature Enrichment Analysis (PMT-SEA), a
modified version of ssGSEA2.0 (https://github.com/broadinstitute/ssGSEA2.0). Briefly, relative log-fold
increases/decreases were calculated by comparing the levels of phospho-peptides in each group. Relative
log-fold increases/decreases were imported into the PMT-SEA package and compared against the PTM
signatures database (PTMsigDB). Significant signatures were exported, ranked and compared between
groups (for example LKB1-positive versus LKB1-negative isogenic pair).

Synergy analysis

Synergy analysis was performed using Biochemically Intuitive Generalized Loewe (BIGL)Y. In short,
NSCLC cell lines were treated with a matrix of increasing dose of Trametinib/Sotorasib with AMG 176
for 72 hours and cell viability was assessed by cell titer glow. Synergy analysis is divided into three parts:
1. Marginal curve was determined for each compound by using non-linear least squares estimation
procedure. 2. Compute expected effect for “General Loewe model” from previously computed marginal
curve. 3. Compare the expected response with observed viability by maxR statistical test, which evaluates
whether the null model locally fits the observed data.

Statistical analysis

Significant testing for all experiments were performed by student t test, One-Way or Two-Way ANOVA.
Specifically, Two-Way ANOVA were used for multiple comparisons of different groups of data corrected
against Tukey hypothesis with 95% confidence interval.

Data availability

All phophoproteomic data (normalized intensity) can be downloaded from Harvard Dataverse using
identifier https://doi.org/10.7910/DVN/OLVIT7. All other data supporting the findings of this study are
available from the corresponding author on reasonable request.
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Figure 1. LKB1 loss confers sensitivity to combined MAPK + MCL-1 inhibition in KRAS-mutant NSCLC models. A.
Schema for testing sotorasib drug combinations. B. Relative increased efficacy of sotorasib + AMG 176 combination compared
to sotorasib alone (AAUC — see Fig. S1D for explanation) against KRAS®12C-mutant NSCLC cell lines. Each dot represents an
independent biological replicate (N=4). C-D. Comparison of AAUC between KRAS-mutant NSCLC cell lines stratified according
to LKB1 status (Mann Whitney t test). E-F. KRAS-mutant NSCLC cell lines were treated with 0.1 uM of trametinib, 1 uM of AMG
176 or the combination for up to 72 hours and apoptosis was assessed by annexin positivity by flow cytometry (E, data are
mean and S.E.M. of 3 biological replicates) or live-cell imaging (F, data are mean and S.E.M. of 3 technical replicates). G-H.
Comparison of relative AAUC for isogenic LKB1-proficient and deficient KRAS-mutant cell line pairs (EV - empty vector, LKB1 —
LKB1 expression vector; KO GFP — GFP sgRNA, KO LKB1 — LKB1 sgRNA). Each dot represents an independent biological
replicate (N=3-4). I-J. Apoptotic response of isogenic KRAS-mutant NSCLC cell lines after treatment with 0.1 uM trametinib or 1
UM sotorasib in combination with 1 uM of AMG 176 (annexin positivity assessed by flow cytometry (I, each dot represents an
independent biological replicate, N=3) or live-cell imaging (J, data are mean and S.E.M. of 3 technical replicates). K.
Subcutaneous xenograft tumors were established from H2030 EV and H2030 LKB1 cell lines and mice were treated with
vehicle, sotorasib (30 mg/kg daily), trametinib (3 mg/kg daily), AMG 176 (50 mg/kg daily) or combination. Data shown are mean
and S.E.M of N=5-6 mice per arm, statistical difference between single agent and combination arms was determined using
mixed effects model (*p<0.05, **p<0.01).
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Figure 2. JNK activation in LKB1-deficient cells underlies dependency on MCL-1. A. Phosphoproteomic analysis of isogenic
KRAS-mutant NSCLC cell lines treated with 0.1 pM of trametinib for 48 hours or 0.1 pM of trametinib + AMG 176 for 6 hours. B.
Differential enrichment of phosphopeptide signatures in trametinib-treated isogenic cell line pairs. Phosphopeptide signatures and
normalized enrichment scores (NES) were calculated using ssGSEA2.0/PTM-SEA. Right, individual phospho-sites of JNK1
downstream substrates are annotated. C. Change in JNK phosphorylation in response to MAPK + MCL-1 inhibition in isogenic
H2030 and H358 cells (data are mean and S.E.M., each dot represents an independent biological replicate, N=3). D. Change in
cell number of H2030 EV cells with siRNA knockdown of JNK1+2 or negative control (SiNC) after treatment with 0.1 pM trametinib
or 1 uM sotorasib in combination with 1 uM AMG 176 quantified by live-cell imaging. Data are mean and S.E.M. of 3 technical
replicates. E. Knockdown of JNK1+2 gene expression decreases AAUC, phenocopying LKB1 re-expression. H2030 EV cells or
H2030 LBK1 cells were transfected with siRNAs targeting JNK1 and 2 or negative control (siNC) and then treated with sotorasib
(S) or trametinib (T) in the absence or presence of AMG 176 (A) and viability was determined after 3 days. Each dot represents an
independent biological replicate (N=3). F. Schematic of siRNA knockdown of LKB1 effectors in H2030 LKB1 cells. G. Knockdown
of NUAK1/2 restores sensitivity (AAUC) to combined sotorasib or trametinib + AMG 176. H2030 EV cells or H2030 LBK1 cells
transfected with corresponding siRNAs were treated with sotorasib or trametinib in the absence or presence of AMG 176 (1 uM)
and viability was determined after 3 days. Each dot represents an independent biological replicate (N=3). H-l. NUAK1/2 or PP1B
knockdown restores phospho-JNK induction after trametinib or trametinib + AMG 176 in H2030 LKB1 cells to the level of H2030
control cells. Cells were transfected with the indicated siRNAs and then treated with trametinib (0.1 pM) for 48 hours or trametinib
for 48 hours followed by AMG 176 for 4 hours. J. Knockdown of PP1B restores sensitivity (AAUC) to combined sotorasib or
trametinib + AMG 176. Each dot represents an independent biological replicate (N=3). K. Restoration of LKB1 expression induces
binding between PPIB and WT NUAK1, but not GKKK mutant. HA-tagged WT NUAK1 (WT) or GKKK NUAK were over-expressed
in H2030 isogenic cells and the interaction of NUAK1 and PP1B was assessed by immuno-precipitation.
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Figure 3. JNK phosphorylates BCL-XL to drive an MCL-1 dependent state. A. Co-Immunoprecipitation of BIM bound to
MCL-1 in H2030 EV and H2030 LKB1 cells after treatment with vehicle, trametinib (0.1 uM) for 24 hours or trametinib for 24h
followed by AMG 176 (1 uM) for 4 hours. B. Time course of BCL-XL S62 phosphorylation in isogenic H2030 and H358 cells by
western blot after treatment with 0.1 uM trametinib + 1 uM AMG 176. C. Experimental approach for expressing MCL-1 & BCL-
XL phospho-site mutants while suppressing endogenous MCL-1 and BCL-XL. Interrogated phosphorylation sites are
designated in yellow, phosphomimetic sites in red. D. MCL-1 phospho-site mutants do not reduce sensitivity to MCL-1
inhibition (AAUC). After induction of mutant MCL-1 (or WT control) and knockdown of endogenous MCL-1, H2030 EV cells
were treated with trametinib in the absence or presence of AMG 176 (1 uM) and viability was determined after 3 days. Each
dot is an independent biological replicate (N=3). E. BCL-XL S62A mutant decreases MCL-1 dependence. After induction of
BCL-XL S62A (or WT control) and knockdown of endogenous BCL-XL, H2030 EV cells were treated with sotorasib or
trametinib alone or in the presence of AMG 176 (1 uM) and viability was determined after 3 days. Each dot is an independent
biological replicate (N=6). F-G. H2030 EV cells expressing inducible WT or S62A mutant BCL-XL S62A (F) or H2030 LKB1
cells expressing inducible WT or BCL-XL S62E phosphomimetic (G) were treated with 0.1 pM trametinib or 0.1 uM trametinib
in combination with 1 pM AMG 176 and cell number was quantified by live-cell imaging. Data are mean and S.E.M. of 3
technical replicates. V: Veh, T: Trametinib, A: AMG 176, TA: Trametinib + AMG 176.
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Figure 4. JNK activation drives an MCL-1 dependent state by modulating BIM:BCL-XL interactions. A. Schema for
approach to investigating BIM sequestration upon displacement from MCL-1. B. Co-IP assessment of BIM bound to MCL-1
and BCL-XL in H2030 (LKB1-deficient) and SW1573 (LKB1 wild-type) cells after treatment with 0.1 uM trametinib for 24 hours
followed by 1 pM AMG 176 for 4 hours. C. Co-IP assessment of BIM bound to BCL-XL and MCL-1 in H2030 EV and LKB1
cells after treatment with 0.1 pM trametinib for 24 hours followed by 1 uM AMG 176 for 4 hours. D. Co-IP assessment of BIM
bound to BCL-XL and MCL-1 in H2030 EV with JNK knockdown after treatment with 0.1 uM trametinib for 24 hours + 1 uM
AMG 176 for 4 hours. E. Co-IP assessment of BIM bound to WT BCL-XL or BCL-XL mutants in H2030 EV (S62A) and H2030
LKB1 (S62E) cells after treatment with 0.1 uM trametinib for 24 hours followed 1 uM AMG 176 for 4 hours. HA-tag pull downs
are specific for inducible constructs. F. Quantification of Co-IP assessment of BIM bound to BCL-XL in H2030 and MGH1112
cells overexpressing BCL-XL WT or S62A mutants. Data are mean and S.E.M., each dot represents a biological replicate
(N=3-5). G. Effect of NUAK1/2 knockdown on BCL-XL S62 phosphorylation in response to treatment with 0.1 uM trametinib for
48h (T) or trametinib for 48 hours followed by 1 uM AMG 176 (TA) for 4 hours. H. Model depicting the mechanism by which
LKB1 loss leads to an MCL-1-dependent state and sensitizes KRAS-mutant NSCLCs to combined KRAS or MEK + MCL-1
inhibition.
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Figure 5. LKB1 loss in associated with MCL-dependence of KRAS®2C-mutant NSCLC PDX tumors and patient tumor
explants. A. KRASC12C-mutant NSCLC tumor cells were collected for BH3 profiling and assessment of BIM:MCL-1 interactions
after ex vivo treatment with sotorasib or trametinib. B. Change in MCL-1 (MS1 10 + 30 uM peptide) and BCL-XL (HRK 10 +
100 uM peptide) dependent priming of patient tumor cells after ex vivo treatment with 0.1 pM trametinib or 1 uM sotorasib
treatment. C. Co-IP assessment of BIM:MCL-1 interaction in tumor cells isolated from pleural fluid after ex vivo treatment with
0.1 puM trametinib (T) or 1 uM sotorasib (S) for 16 hours. D. Mice bearing KRAS®12C-mutant NSCLC patient derived xenograft
(PDX) tumors were treated with sotorasib (100 mg/kg) for 3 days and harvested for BH3 profiling. Data shown is the difference
in MCL-1 dependent priming (MS1 peptide) between vehicle and sotorasib treated tumors, each dot represents an
independent tumor (N=3-7). E. Mice bearing KRAS®2¢-mutant NSCLC PDX tumors (LKB1-loss: MGH1112-1, MGH1138-1,
MGH1196-2; LKB1 WT: MGH1062-1, MGH1145-1, MGH10199-3) were treated with vehicle, sotorasib (100 mg/kg) or
sotorasib (100 mg/kg) + AMG 176 (50 mg/kg) daily. Data shown are mean and S.E.M. of N=7-10 animals per arm (**p<0.01,
***n<0.001 as determined by mixed-effects model).
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