

1 **Towards environmental detection, quantification, and molecular characterization of**
2 ***Anopheles stephensi* and *Aedes aegypti* from larval breeding sites**

3
4 Mojca Kristan^{1*}, Holly Acford-Palmer¹, Monica Oliveira Campos¹, Emma Collins¹, Jody
5 Phelan¹, Natalie M. Portwood¹, Bethanie Pelloquin¹, Sian Clarke¹, Jo Lines¹, Taane G. Clark¹,
6 Thomas Walker^{1,2}, Susana Campino¹, Louisa A. Messenger^{1,3*}

7 Affiliations:

8 ¹Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine,
9 London, United Kingdom, WC1E 7HT

10 ²School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United
11 Kingdom, CV4 7AL

12 ³Department of Environmental and Occupational Health, School of Public Health, University
13 of Nevada, Las Vegas, NV, United States of America

14 Corresponding Authors*: mojca.kristan@lshtm.ac.uk; louisa.messenger@lshtm.ac.uk

15 *Abstract* (200/200 words)

16 The invasion and establishment of *An. stephensi* mosquitoes in the Horn of Africa represents a
17 significant regional threat, which may jeopardise malaria control, particularly in urban areas
18 which were formally free from disease transmission. Novel vector surveillance methods are
19 urgently needed, both agnostic to mosquito larval morphology, and simple to implement at the
20 sampling stage. Using new multiplex TaqMan assays, specifically targeting *An. stephensi* and
21 *Ae. aegypti*, we validated the use of environmental DNA (eDNA) for simultaneous vector
22 detection in shared artificial breeding sites. Study findings demonstrated that *An. stephensi* and
23 *Ae. aegypti* eDNA deposited by as few as one second instar larva in 1L of water was
24 detectable. Characterization of molecular insecticide resistance mechanisms, using novel
25 amplicon-sequencing panels for both vector species, was possible from eDNA shed by as few
26 as 32 second instar larvae in 50ml of water. *An. stephensi* eDNA, derived from emergent pupae
27 for 24 hours, was remarkably stable, and still detectable ~2 weeks later. eDNA surveillance has
28 the potential to be implemented in local endemic communities and points of country entry, to
29 monitor the spread of invasive vector species. Further studies are required to validate the
30 feasibility of this technique under field conditions.

31 *Keywords:* Environmental DNA (eDNA), *Anopheles stephensi*, *Aedes aegypti*, mosquito
32 larvae, breeding sites, vector surveillance, species identification, insecticide resistance

33 *Introduction*

34 Vector-borne diseases (VBDs) account for 17% of all infectious diseases worldwide and are
35 responsible for more than 700,000 deaths annually¹. In sub-Saharan Africa, malaria,
36 transmitted by *Anopheles* mosquitoes, remains the leading cause of morbidity and mortality
37 (241 million new cases and 627,000 deaths in 2020); despite the widespread deployment of
38 effective vector control measures, especially the use of insecticide-treated nets (ITNs) and
39 indoor residual spraying (IRS), which have averted more than 1.5 billion cases and 7.6 million
40 malaria-related deaths since 2000². Concurrently, approximately 51 million individuals are
41 infected with lymphatic filariasis³, a severe cause of disability and stigma, and many
42 arthropod-borne viruses (arboviruses) including, dengue, chikungunya, Rift Valley fever,

52 yellow fever, Zika, o'nyong'nyong and West Nile, circulate unabated among humans, wildlife
53 and livestock across the continent^{4,5}. Over 27,000 cases of viruses transmitted by *Aedes*
54 mosquitoes have been reported in West Africa since 2007, but seroprevalence surveys,
55 indicative of prior disease exposure, suggest this is a gross underestimation of the actual
56 arboviral disease burden⁶. While there is growing recognition that parts of Africa are at serious
57 risk for arbovirus outbreaks, the understanding of the current distribution of these diseases is
58 inadequate, as regional VBD surveillance is focused primarily on malaria, detection is usually
59 reactive in response to outbreaks⁷, and robust evidence for efficacious control tools targeting
60 arbovirus vectors is lacking⁸.

61 Entomological monitoring is an essential part of vector control, providing information on
62 vector species present in an area and supporting data used for risk assessment, planning,
63 implementation, monitoring and the evaluation of control interventions⁹. The World Health
64 Organization (WHO) considers vector surveillance a core component of malaria control
65 programmes². Similarly, a need for arboviral disease control programmes focused on
66 surveillance, vector control and case management has been recognised, especially for dengue¹⁰.
67 The development of effective disease control strategies requires detailed knowledge of local
68 mosquito vectors. Several different methods can be used for vector surveillance, including
69 larval surveys and adult trapping, and the choice depends on the target vector species, location,
70 purpose of sampling, as well as available resources and infrastructure. However, the expansion
71 of vector species into new geographical areas may be challenging due to markedly different
72 larval habitats and adult behaviour, issues with identifying a new species and potentially
73 varying trapping efficiencies^{11,12}.

74 *Anopheles stephensi* is a highly competent malaria vector whose distribution until 2011
75 encompassed the Indian subcontinent, parts of South-East Asia and the Arabian Peninsula.
76 Recently it has become an invasive vector species in the horn of Africa, recognised by the
77 WHO as a “biological threat”¹³. *An. stephensi* was first reported in Djibouti in 2012¹⁴ and since
78 then this species has spread to neighbouring Ethiopia (2016)^{15,16}, the Republic of Sudan
79 (2019)^{17,18}, Somalia (2019)¹⁹, Yemen (2021)¹⁹ and most recently Nigeria (2020)¹⁹. The
80 invasion of *An. stephensi* in Djibouti was accompanied by an increase in malaria cases from 25
81 in 2012 to 14,810 in 2017²⁰, with outbreaks reported in Djibouti City, including historically
82 malaria-free areas that were considered unsuitable for anopheline breeding sites¹⁴. Unlike *An.*
83 *arabiensis*, the main malaria vector species in this region, *An. stephensi* often breeds in urban
84 areas in man-made water containers, buckets, discarded tyres, and water storage tanks for
85 domestic use and construction. These are sites that might not usually be under routine
86 surveillance by the National Malaria Control Programme (NMCP) and if larvae are found, they
87 may be incorrectly identified or simply assumed to be *Aedes* species. Such larval habitats are
88 often used by *Aedes* species, vectors responsible for dengue outbreaks and transmission of
89 other arboviruses, including yellow fever, in Ethiopia^{21,22}. *An. stephensi* and *Ae. aegypti* have
90 already been observed in the same larval habitats in eastern Ethiopia²³. Given the propensity of
91 the former vector species to colonize urban environments quickly, breeding mainly in man-
92 made water containers, mathematical models estimate over 126 million people in cities across
93 Africa are at risk of malaria transmitted by *An. stephensi*²⁴ and that annual *Plasmodium*
94 *falciparum* cases could increase by 50% if no vector control interventions are implemented²⁵.

95 As the spread of *An. stephensi* poses a significant problem to urban populations in Africa, the
96 WHO recommends targeted surveillance to monitor existing populations, dispersal dynamics
97 and to characterize their insecticide resistance profiles to inform prospective vector control
98 strategies²⁶. Moreover, dengue has been recognised as a significant public health threat in
99 Ethiopia, where a need for improved vector surveillance and control has been recognised²¹.
100 Novel vector surveillance methods are urgently required, which demand little prior knowledge

101 of mosquito larval morphology and are quick and easy to implement at the sampling stage,
102 with the ability to simultaneously detect the presence of multiple species of interest. Recent
103 advances in molecular techniques are providing new opportunities for surveillance and
104 prevention of VBDs, which can be used to better target vector control strategies. Detection of
105 the traces of genetic material that organisms leave behind in their environment is one possible
106 approach. Environmental DNA (eDNA) found in collected samples may allow us to indirectly
107 confirm the presence of a species of interest and its abundance even when there are no obvious
108 signs of the organism being present^{27,28}. eDNA can be extracted from environmental samples,
109 such as water from potential mosquito larval habitats, and can be detected using sensitive
110 molecular techniques such as qPCR. eDNA decay and degradation are environmentally-
111 dependent and due to its nature, detection of eDNA is an indicator of recent presence of the
112 species of interest²⁹. This approach can be especially useful for detection of invasive species,
113 including mosquitoes^{28,30,31}.

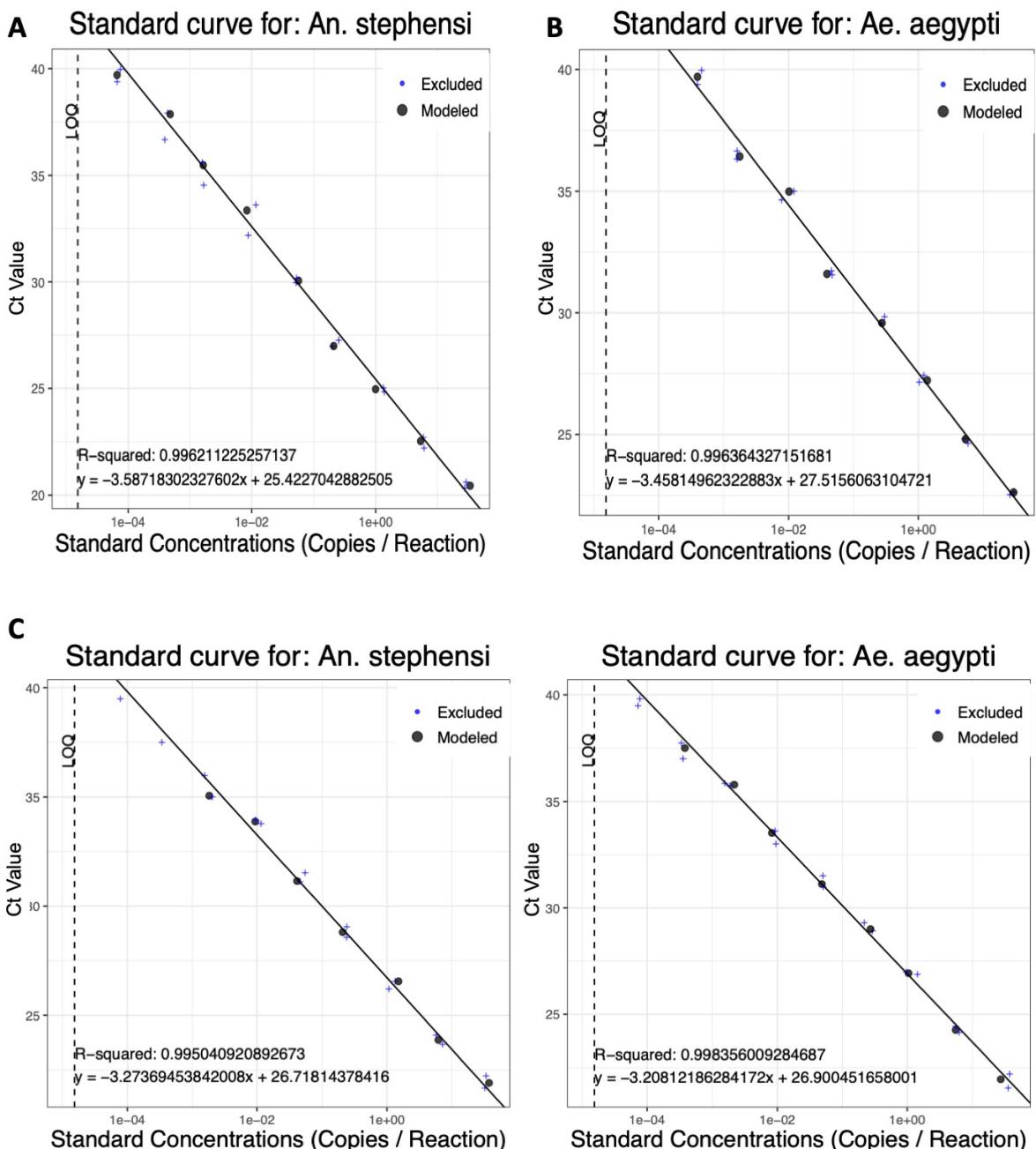
114 This study assessed the suitability of using eDNA for simultaneous detection of *An. stephensi*
115 and *Ae. aegypti* from the same larval habitats and characterization of their molecular
116 insecticide resistance mechanisms, under controlled laboratory conditions.

117

118 *Results*

119

120 ***PCR primer testing and validation***


121

122 To enable simultaneous detection of *An. stephensi* and *Ae. aegypti* eDNA sampled from shared
123 breeding sites, we designed a multiplex TaqMan assay based on single nucleotide
124 polymorphisms (SNPs) in COX1. Initially the analytical sensitivity, linearity, and dynamic
125 range of the qPCR assay for eDNA detection was estimated using serial dilutions of *An.*
126 *stephensi* and *Ae. aegypti* gDNA derived from colony strains, tested in technical triplicate.
127 Both qPCR assays produced good linearity ($R^2=0.99$ for both *An. stephensi* and *Ae. aegypti*
128 assays) and efficiencies of 90.01% and 94.62%, respectively (Figure 1A and B). The LODs
129 (limits of detection) and LOQs (limits of quantification) were determined to be 0.0000154
130 copies per reaction for individual detection of *An. stephensi* and *Ae. aegypti*. Next, the
131 analytical sensitivity, linearity and dynamic range of the multiplex qPCR assay was evaluated
132 using *An. stephensi* and *Ae. aegypti* gDNA serially diluted in equal proportions. Similarly, the
133 multiplex assay was highly efficient (102.2% and 104.9% for *An. stephensi* and *Ae. aegypti*,
134 respectively) with good linearities ($R^2=0.99$ for simultaneous detection of *An. stephensi* and
135 *Ae. aegypti* gDNA). The LoD/LoQs were determined to be 0.0000154 copies/reaction for
136 simultaneous detection of *An. stephensi* and *Ae. aegypti* (Figure 1C).

137

138 The *An. stephensi* and *Ae. aegypti* probes were highly specific to gDNA from each species; no
139 amplification was detected with gDNA from other sympatric or medically important vector
140 species: *An. arabiensis*, *An. gambiae* s.s., *An. funestus* s.s. or *Culex quinquefasciatus*. All
141 qPCR data are reported in Supplementary File S1.

142

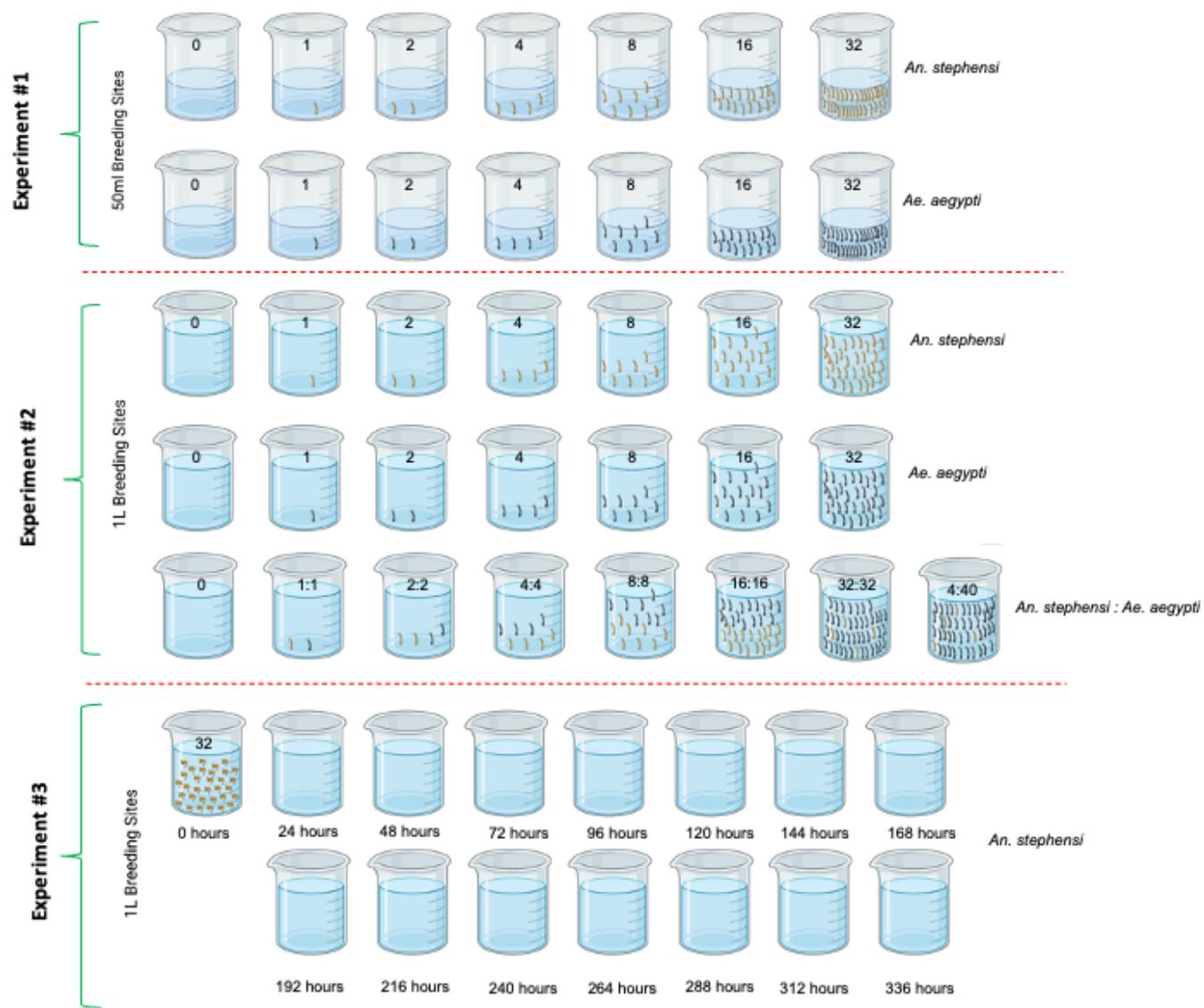
143

144

145 **Figure 1. Standard curves across a tenfold dilution series of gDNA for individual**
146 **detection of *An. stephensi* (A) or *Ae. aegypti* (B) and simultaneous detection of *An.***
147 ***stephensi* and *Ae. aegypti* (C), across a tenfold gDNA dilution series.**

148

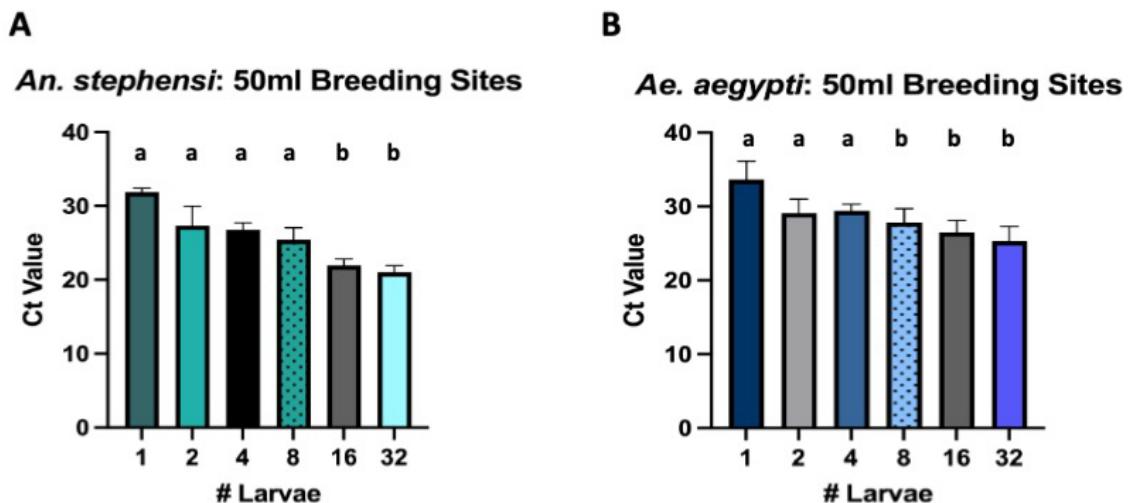
149 ***Detection of An. stephensi and Ae. aegypti eDNA in artificial breeding sites***


150

151 To investigate the sensitivity of *An. stephensi* and *Ae. aegypti* eDNA detection, artificial

152 breeding sites of 50ml or 1L of water were simulated with known numbers of second instar

153 larvae (Figure 2).


154

155
156 **Figure 2. Design of experiments to investigate the impact of different environmental**
157 **conditions on *An. stephensi* and *Ae. aegypti* eDNA detection.** Numbers of second instar
158 larvae are denoted on each artificial breeding site. Experiment 1 investigated eDNA detection
159 of different densities of *An. stephensi* and *Ae. aegypti* in 50ml artificial breeding sites.
160 Experiment 2 investigated eDNA detection of different densities of *An. stephensi* and *Ae.*
161 *aegypti* in 1L artificial breeding sites, including different ratios of *An. stephensi*:*Ae. aegypti* co-
162 habiting the same breeding site. Experiment 3 investigated the rate of eDNA degradation. *An.*
163 *stephensi* pupae were left in each breeding site for 24 hours, prior to manual removal of all
164 emerged adults, remaining pupae, and pupal skins; eDNA detection was performed for the
165 following 14 days. Figure created with BioRender.com.

166
167 In 50ml artificial breeding sites (Figure 2, Experiment 1), a dose response was evident for
168 detection levels of both vector species; with increasing densities of larvae, cycle threshold (Ct)
169 values began to decrease significantly (Figure 3). The average Ct values for *An. stephensi* for
170 each larval density were 1 larva: 31.89 [95% confidence interval (CI): 31.35-32.42]; 2 larvae:
171 27.36 [95% CI: 24.72-29.99]; 4 larvae: 26.74 [95% CI: 25.75-27.73]; 8 larvae: 25.42 [95% CI:
172 23.77-27.07]; 16 larvae: 21.96 [95% CI: 21.09-22.83]; 32 larvae: 21.01 [95% CI: 20.09-21.92]
173 (Figure 3A). The average Ct values for *Ae. aegypti* for each larval density were 1 larva: 33.66

174 [95% CI: 31.15-36.16]; 2 larvae: 29.11 [95% CI: 27.19-31.03]; 4 larvae: 29.43 [95% CI: 28.54-30.32]; 8 larvae: 27.85 [95% CI: 26.0-29.70]; 16 larvae: 26.53 [95% CI: 24.93-28.12]; 176 32 larvae: 25.31 [95% CI: 23.32-27.30] (Figure 3B).

177
178 **Figure 3. Taqman qPCR detection of *An. stephensi* (A) and *Ae. aegypti* (B) from 50ml**

179 breeding sites.

180 qPCR detection for all extractions were run in technical triplicate. Conditions

181 sharing a superscript do not differ significantly (Dunn's multiple comparisons test, $p>0.05$).

182 Error bars indicate 95% confidence intervals (CIs).

183 Similarly, a dose response was detectable for both vector species in 1L artificial breeding sites

184 (Figure 2, Experiment 2) with increasing larval densities; unsurprisingly, by comparison to the

185 50ml breeding sites, Ct values were generally higher at each larval density (Figure 4A and B).

186 The average Ct values for *An. stephensi* for each larval density were 1 larva: 37.82 [95% CI:

187 36.16-39.47]; 2 larvae: 34.90 [95% CI: 33.27-36.53]; 4 larvae: 33.06 [95% CI: 32.14-33.98]; 8

188 larvae: 25.32 [95% CI: 23.44-27.21]; 16 larvae: 21.71 [95% CI: 20.08-23.33]; 32 larvae: 21.86

189 [95% CI: 20.95-22.78] (Figure 4A). The average Ct values for *Ae. aegypti* for each larval

190 density were 1 larva: 37.70 [95% CI: 36.72-38.68]; 2 larvae: 34.91 [95% CI: 33.18-36.65]; 4

191 larvae: 32.68 [95% CI: 32.20-33.16]; 8 larvae: 30.57 [95% CI: 30.26-30.89]; 16 larvae: 28.80

192 [95% CI: 28.47-29.12]; 32 larvae: 28.54 [95% CI: 27.58-29.50] (Figure 4B).

193 In 1L artificial breeding sites with mixed vector species in equal proportions (Figure 2,

194 Experiment 2), Ct values were generally lower than those detected in 1L breeding sites

195 containing individual species at lower larval densities (Figure 4C). The average Ct values for

196 *An. stephensi* in mixed breeding sites at each larval density were: 2 larvae: 30.79 [95% CI:

197 30.22-31.35]; 4 larvae: 30.65 [95% CI: 30.44-30.86]; 8 larvae: 31.57 [95% CI: 31.17-31.96];

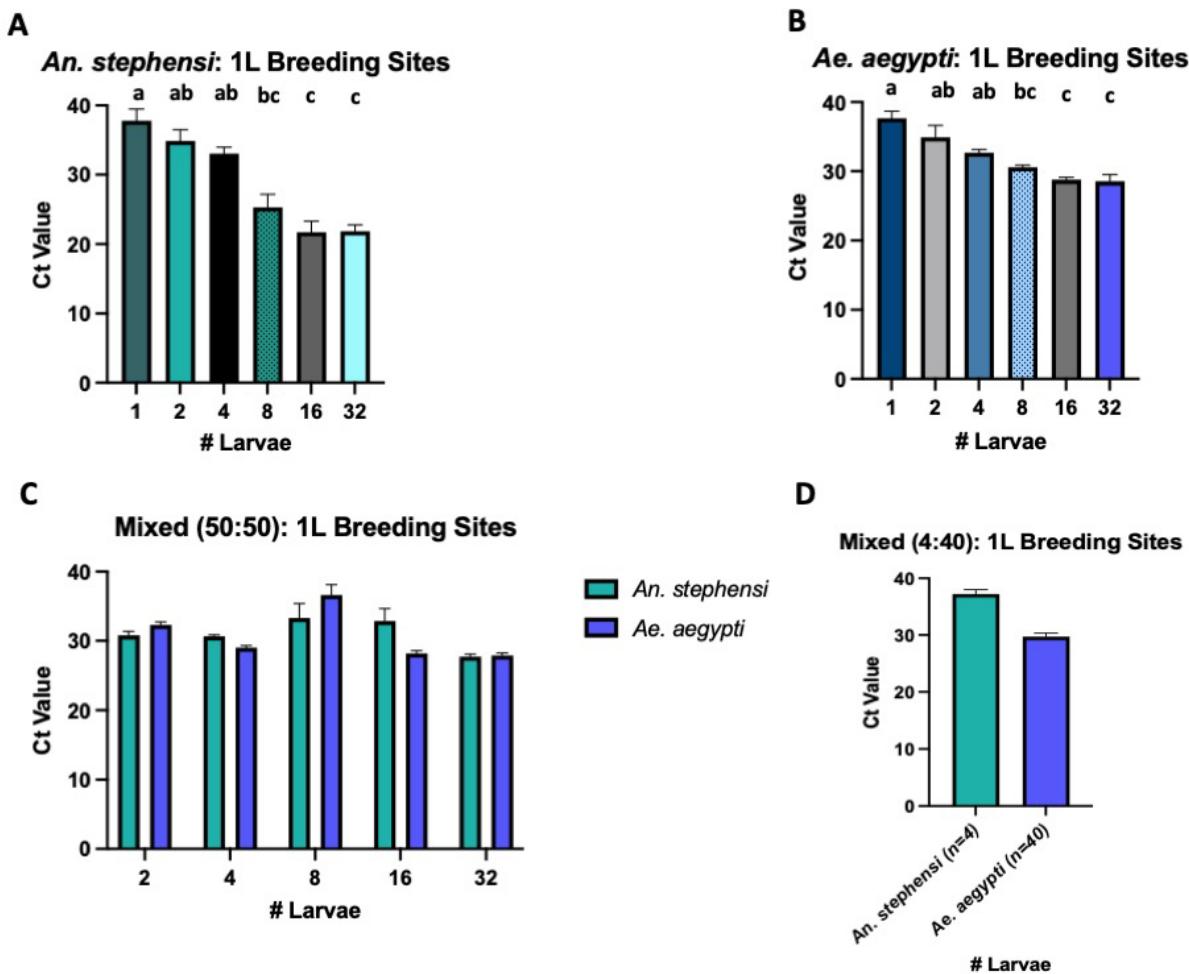
198 16 larvae: 31.84 [95% CI: 29.53-34.15]; 32 larvae: 27.71 [95% CI: 27.35-28.07] (Figure

199 4C). The average Ct values for *Ae. aegypti* in mixed breeding sites at each larval density were:

200 2 larvae: 32.29 [95% CI: 31.88-32.71]; 4 larvae: 29.01 [95% CI: 28.71-29.31]; 8 larvae: 36.63

201 [95% CI: 35.16-38.10]; 16 larvae: 28.18 [95% CI: 27.78-28.58]; 32 larvae: 27.88 [95% CI:

202 27.51-28.26] (Figure 4C).

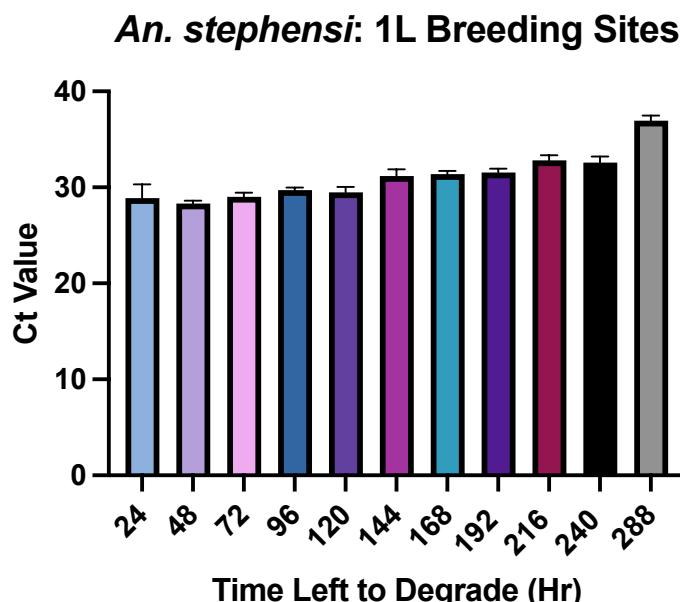

203 In 1L artificial breeding sites with mixed vector species at a 4:40 ratio (*An. stephensi*:*Ae.*

204 *aegypti*), both species were still detectable, with higher average Ct values for the minority

205 species (*An. stephensi*); the average Ct value for *An. stephensi* was 37.20 [95% CI: 36.43-

206 37.97] and for *Ae. aegypti* was 29.72 [95% CI: 29.08-30.36] (Figure 4D).

207


210
211
212 **Figure 4. Taqman qPCR detection of *An. stephensi* (A), *Ae. aegypti* (B) or both species in**
213 **equal (C) or 4:40 (D) proportions from 1L breeding sites.** qPCR detection for all extractions
214 were run in technical triplicate. Conditions sharing a superscript do not differ significantly
215 (Dunn's multiple comparisons test, $p>0.05$). Error bars indicate 95% confidence intervals
216 (CIs).

217
218

219 *Rate of *An. stephensi* eDNA degradation in artificial breeding sites*

220 A longitudinal cohort of 1L artificial breeding sites were monitored for 2 weeks, following the
221 emergence of 32 *An. stephensi* pupae, to observe the rate of eDNA degradation. A negative
222 dose response was detectable with increasing Ct values over time (Figure 5). The average Ct
223 values for *An. stephensi* eDNA at each time point were 24 hours: 28.90 [95% CI: 27.47-30.32];
224 48 hours: 28.31 [95% CI: 27.99-28.63]; 72 hours: 28.97 [95% CI: 28.53-29.41]; 96 hours:
225 29.72 [95% CI: 29.45-29.99]; 120 hours: 29.48 [95% CI: 28.92-30.04]; 144 hours: 31.19 [95%
226 CI: 30.49-31.88]; 168 hours: 31.38 [95% CI: 31.05-31.71]; 192 hours: 31.56 [95% CI: 31.17-
227 31.94]; 216 hours: 32.82 [95% CI: 32.30-33.34]; 240 hours: 32.57 [95% CI: 31.93-33.20]; 288
228 hours: 36.96 [95% CI: 36.43-37.50] (Figure 5). *An. stephensi* eDNA was undetectable by
229 qPCR after 312 hours (13 days).

230
231

232

233 **Figure 5. Rate of An. stephensi eDNA degradation over 14 days.** qPCR detection for all
234 extractions were run in technical triplicate. Error bars indicate 95% confidence intervals (CIs).

235

236 **Detection of insecticide resistance genes from eDNA in artificial breeding sites**

237 Characterisation of published insecticide resistance mechanisms in *An. stephensi* using
238 amplicon-sequencing, was undertaken with eDNA extracted from 50ml artificial breeding sites.
239 Amplicons covering the *voltage-gated sodium channel* (*vgsc*), *glutathione-s-transferase 2*
240 (*GSTe2*) and *acetylcholinesterase-1* (*ace-1*) genes, which contain genetic variants associated
241 with insecticide resistance, were tested (Acford-Palmer *et al.* in prep.).

242

243 Of the 6 eDNA samples tested (containing 1, 2, 4, 8, 16, and 32 larvae), no PCR amplicons were
244 generated for either eDNA-L1 or -L2 samples. Average read depth per amplicon for eDNA-L4,
245 -L8, -L16 and -L32 is presented in Table 1; eDNA-L32 was the only sample that produced all 7
246 amplicons when imaged on an agarose gel. The Ace-1 II amplicon for eDNA-L4 was the only
247 incidence of a sample which produced an average coverage too low for SNP calling (>50).
248 Primer pairs for VGSC II, III and IV amplicons proved the least sensitive, with only eDNA-L32
249 yielding positive results (Table 1).

250

251 A total of 40 variants were identified accounting for 33 single nucleotide polymorphisms
252 (SNPs) and 7 insertions or deletions (indels). Only one missense mutation was identified in the
253 *Ace-1* gene in amino acid 177; this SNP was present in the eDNA-L8 and eDNA-L16 samples,
254 with eDNA-L8 genotyped as heterozygous and eDNA-L16 as the homozygous alternate. This
255 SNP has been previously reported in both colony and wild-caught samples (Acford-Palmer *et*
256 *al.* in prep.). No SNPs associated with insecticide resistance were identified.

257

258 **Table 1. Coverage for An. stephensi eDNA-L4, -L8, -L16, and -L32 amplicon targets.**
259 Chromosome number (chr), start and end of the target amplicon, the target gene, amplicon
260 name and coverage are displayed.

261

Chr	Start	End	Target Gene	Amplicon	L4	L8	L16	L32
-----	-------	-----	-------------	----------	----	----	-----	-----

2	60913833	60914331	<i>ace-1</i>	ACE-1_I	4.12	43.42	67.90	836.42
2	60913236	60913796	<i>ace-1</i>	ACE-1_II	7021.93	3620.82	3163.21	2547.49
3	42830105	42830628	<i>vgsc</i>	VGSCI	58.99	253.52	12.91	1032.54
3	42817282	42817823	<i>vgsc</i>	VGSCII	2980.09	1117.36	1067.52	685.12
3	42809619	42810112	<i>vgsc</i>	VGSCIII	0.00	0.00	0.00	140.11
3	42808876	42809271	<i>vgsc</i>	VGSCIV	0.00	0.00	0.00	248.51
3	70580282	70580771	<i>GSTE2</i>	GSTE2	0.00	0.00	0.00	281.57

262

263 Similarly, eDNA from *Ae. aegypti* 50ml artificial breeding sites containing 4 and 8 larvae did
 264 not amplify using amplicon-seq primers, targeting the *vgsc* and *ace-1* genes (Collins *et al.* in
 265 prep.). PCR reactions using eDNA from *Ae. aegypti* artificial breeding sites containing 16 larvae
 266 (eDNA-L16) were able to amplify 5 targets: *ace-1* and four amplicons for the *vgsc*
 267 (DomainIVS6, DomainIV, Domain IIIExon36 and DomainIIIExon35; Table 2).

268 Analysis of the DNA sequences obtained for the eDNA-L16 sample did not show any mutations.
 269 The sample coverage for each target amplicon is displayed in Table 2 and showed very good
 270 coverage ranging from 790.4- to 32260.40-fold. Five targets, however, did not amplify or
 271 showed coverage below the cut-off of 30 (DomainIIIExon33_34, DomainII, DomainIIExon26,
 272 DomainIIS4 and DomainI). Differences in gene amplification may reflect differences in relative
 273 primer efficiency.

274
 275
 276
 277 **Table 2. Coverage for *Ae. aegypti* eDNA-L16 insecticide resistant amplicon targets.**
 278 Chromosome number (chr) start and end of the target amplicon, the target gene, amplicon names
 279 and their respective coverage are displayed.

Chr	Start	End	Target Gene	Amplicon	eDNA-L16 coverage
3	161500008.00	161500475.00	<i>ace1</i>	Ace1	24756.60
3	315931391.00	315931846.00	<i>vgsc</i>	DomainIVS6	32260.40
3	315931739.00	315932233.00	<i>vgsc</i>	DomainIV	6567.40
3	315938703.00	315939191.00	<i>vgsc</i>	DomainIIIExon36	1391.40
3	315939789.00	315939789.00	<i>vgsc</i>	DomainIIIExon33_34	0.00
3	315983627.00	315984124.00	<i>vgsc</i>	DomainII	0.00

3	315983774.00	315984267.00	vgsc	DomainIIExon26	0.00
3	315998366.00	315998809.00	vgsc	DomainIIS4	0.00
3	316080615.00	316081078.00	vgsc	DomainI	6.30
3	315938919.00	315939398.00	vgsc	DomainIIIExon35	790.40

280
281

282 *Discussion*

283 The invasion and establishment of *An. stephensi* in the Horn of Africa represents an imminent
284 and significant regional threat, which may jeopardise malaria control, particularly in urban
285 areas which were formally free from disease transmission^{24,25}. To develop novel methods of
286 vector surveillance, this study evaluated the feasibility of using eDNA for simultaneous
287 detection of *An. stephensi* and *Ae. aegypti*, which have both been observed co-habiting in
288 natural breeding sites in Ethiopia²³. Study findings demonstrated that *An. stephensi* and *Ae.*
289 *aegypti* eDNA deposited by as few as one second instar larvae in 1L of water was detectable
290 by qPCR. In general, dose responses were evident for detection levels of both vector species,
291 with increasing densities of larvae, resulting in significantly lower Ct values, with some degree
292 of stochastic variation observed. This aligns with previous laboratory studies which
293 demonstrated similar levels of detection of *An. gambiae* sensu stricto in artificial breeding
294 sites³⁰. Furthermore, the multiplex TaqMan assay developed in this study displayed
295 comparable levels of detection between both vector species, when used to amplify eDNA from
296 mixed breeding sites, in a 50:50 or 1:10 *An. stephensi*:*Ae. aegypti* ratio in 1L of water.

297 *Anopheles* breeding sites can be highly heterogenous in both their ecology and temporality,
298 which will directly affect the sensitivity of eDNA detection. In rural environments, breeding
299 sites commonly comprise rice paddies, ponds, puddles, village pumps and associated troughs,
300 cesspools, water basins, agricultural trenches, dams, edges of rivers/streams, in animal/human
301 footprints and irrigation canals and drains³²⁻³⁴. In urban landscapes any natural or man-made
302 feature that collects any form of stagnant water is a potential breeding site, particularly in and
303 around deteriorating infrastructure, such as broken water pipes, blocked drains, construction
304 sites, lorry tyre tracks and catch pits³⁵. *An. gambiae* s.l. breeding sites are frequently freshwater
305 habitats that are small, temporary, clean and sun-exposed, although some studies suggest that
306 these larvae can survive in dirty and polluted environments^{36,37}; while *An. funestus* s.l. tend to
307 breed in larger semi-permanent water bodies containing aquatic vegetation and algae³⁸. In
308 Ethiopia, *An. stephensi* has been found in both rural and urban areas, breeding in *Aedes*-type
309 sites (e.g. artificial water containers, buckets and tanks)²³. With such variation in breeding site
310 environments, it is anticipated that the rate of eDNA persistence will differ quite considerably,
311 with respect to water turbidity, velocity, UV exposure, salinity/pH, pollution, and co-
312 occupancy (e.g. with other insects, mosquito vectors, fish or tadpoles). In our study, *An.*
313 *stephensi* eDNA, derived from emergent pupae for 24 hours, was remarkably stable, and still
314 detectable almost two weeks later. Similarly, eDNA from 15 *Ae. albopictus* larvae, reared for
315 12 days in 500ml water, was demonstrable up to 25 days after live material was removed³¹.
316 Our study may have in fact underestimated the sensitivity of eDNA detection, by only allowing
317 larvae to remain in artificial breeding sites for 24 hours, as well as the rate of eDNA

318 degradation, due to highly controlled insectary conditions (i.e. constant temperature, humidity
319 and light:dark cycles).

320 In addition to vector species identification, this study investigated the potential to exploit
321 eDNA for molecular insecticide resistance surveillance. Using recently developed amplicon-
322 seq panels for *An. stephensi* (Acford-Palmer *et al.* in prep.) and *Ae. aegypti* (Collins *et al.* in
323 prep.), fragments of key insecticide resistance genes (portions of the voltage-gated sodium
324 channel and acetylcholinesterase) were able to be amplified from as few as 16-32 second instar
325 larvae in 50ml of water; as expected, no insecticide resistance mutations were identified in our
326 insecticide-susceptible insectary colonies. The detection sensitivity of insecticide resistance
327 genes in natural breeding sites may be greater than in our laboratory study, particularly as
328 larval densities can be higher and vector populations will deposit eDNA throughout their ~2
329 week lifecycle in breeding sites. Conventional insecticide resistance monitoring is based on
330 larval dipping from known, productive breeding sites, rearing of vectors to the adult stage,
331 followed by phenotypic characterization in bioassays and/or genotypic analysis using various
332 molecular techniques³⁹. eDNA detection offers a new avenue to explore molecular insecticide
333 resistance at the community-level, circumventing some of the laborious sampling requirements
334 and potentially allow wider-scale surveillance of water bodies which may be less productive
335 sites or entirely unknown to local entomologists. This strategy could be combined with
336 additional analytical techniques, such as high-performance liquid chromatography, to survey
337 the extent of breeding site contamination with agricultural pesticides, a known driver of
338 insecticide resistance selection in *Anopheles* populations^{40,41}.

339 Water sampling for mosquito eDNA detection represents a cheap, low-technology tool, which
340 requires virtually no entomological skills or training, and thus has the potential to be easily
341 integrated into citizen science initiatives. Furthermore, with regards to *An. stephensi*
342 specifically, eDNA detection could be considered for surveillance of seaports in countries at
343 greatest risk of introduction of this invasive species⁴². Following laboratory validation in this
344 study, further work is required to assess the feasibility of sampling eDNA of *An. stephensi/Ae.*
345 *aegypti* *in situ*, including an assessment of environmental risk factors which impact eDNA
346 detection levels and comparison of eDNA quantification *versus* larval density per breeding
347 site.

348
349 *Conclusions*
350

351 This study validated the use of eDNA for simultaneous detection of *An. stephensi* and *Ae.*
352 *aegypti* in shared artificial breeding sites. Study findings demonstrated that *An. stephensi* and
353 *Ae. aegypti* eDNA deposited by as few as 1 second instar larva in 1 litre of water was
354 detectable. Characterization of molecular insecticide resistance mechanisms, using novel
355 amplicon-seq panels for both vector species, was possible from eDNA derived from as few as
356 16-32 second instar larvae in 50ml of water. eDNA surveillance has the potential to be
357 implemented in local endemic communities as part of citizen science initiatives, and/or in
358 cargo ports at points of country entry, to monitor the spread of invasive malaria vector species.
359 Further studies are required to validate the feasibility of this technique under field conditions.
360

361 *Materials and Methods*
362

363 Laboratory-reared second instar *An. stephensi* (SD500 strain) and *Ae. aegypti* (AEAE strain)
364 larvae were used in all experiments. The larvae were reared in sterile, distilled water, in plastic
365 bowls (20 × 18 × 7 cm) under controlled insectary conditions (26–28°C, relative humidity 70–

366 80 % and 12:12 hour light:dark cycles) and fed once daily with NISHIKOI staple fish food
367 pellets (Nishikoi, UK).

368

369 **Experiment 1: 50ml artificial breeding sites**

370
371 In the first experiment, 18 different conditions were tested by adding 50ml of sterile, distilled,
372 water to 18 sterile 50ml falcon tubes (Fisher Scientific, UK). We performed three biological
373 replicates with 6 different larval densities: 1, 2, 4, 8, 16 and 32 of either *An. stephensi* or *Ae.*
374 *aegypti* larvae (Figure 1). Three negative control experimental habitats with no larvae were run
375 in parallel for each condition. Larvae were left in each 50ml breeding site for 24 hours, prior to
376 manual removal, using a sterile pipette.

377

378 **Experiment 2: 1L artificial breeding sites**

379
380 In the second experiment, 18 different conditions were tested by adding 1L of sterile, distilled
381 water to 18 sterile plastic rectangular containers. We performed three biological replicates with
382 6 different larvae densities: 1, 2, 4, 8, 16 and 32 larvae. Three negative control experimental
383 habitats with no larvae were run in parallel for each condition. Larvae were left in each 1L
384 breeding site for 24 hours, prior to manual removal, using a sterile pipette. *An. stephensi* and
385 *Ae. aegypti* were evaluated initially in separate 1L breeding sites and then in mixed breeding
386 sites. The mixed breeding site experiments used 18 different conditions, comprising three
387 biological replicates with 5 larvae densities: 2, 4, 8, 16 and 32 larvae of *An. stephensi* and *Ae.*
388 *aegypti* in equal proportions (50:50) and three biological replicates with larvae of the two
389 species in different proportions: 4:40 *An. stephensi*:*Ae. aegypti* larvae.

390

391 **Experiment 3: eDNA degradation in artificial breeding sites**

392
393 In the third experiment, the rate of eDNA degradation in artificial breeding sites was assessed.
394 One litre of sterile, distilled water was added to 9 sterile plastic rectangular containers. We
395 performed three biological replicates with 32 *An. stephensi* pupae added to each container.
396 Three negative control experimental habitats with no pupae were run in parallel for each
397 condition. Pupae were left in each 1L breeding site for 24 hours, prior to manual removal of all
398 emerged adults, remaining pupae and pupal skins, using a sterile pipette. Water samples were
399 then removed daily for 14 days, following the removal of adults and pupae.

400

401

402 **eDNA Extraction**

403
404 eDNA from water samples were concentrated prior to extraction. For each breeding site
405 replicate, 15ml of water was added to a sterile 50ml falcon tube (Fisher Scientific, UK) and
406 1.5ml of 3M sodium acetate solution (pH 5.2) (Sigma-Aldrich, UK) was immediately added,
407 followed by 33ml of absolute ethanol and stored overnight at -20°C. Samples were then
408 centrifuged at 8000 rpm at 6°C for 30 minutes. The supernatant was discarded, and the pellet
409 was washed in 20ml of absolute ethanol by centrifuging at 8000 rpm at 6°C for 10 minutes.
410 The supernatant was discarded, and ethanol allowed to evaporate at 65°C. The pellet was
411 dissolved in 720µl ATL buffer and 80µl proteinase K (Qiagen, UK) and incubated overnight at
412 56°C. eDNA was extracted using a Qiagen DNeasy 96 Blood and Tissue kit (Qiagen, UK),
413 according to the manufacturer's protocol, with minor modifications.

414

415

416 ***An. stephensi* and *Ae. aegypti* eDNA PCR primer design and validation**

417
418 We designed a multiplex TaqMan assay to distinguish between *An. stephensi* (ASTE016222)
419 and *Ae. aegypti* (AAEL018662) eDNA based on a fragment of cytochrome oxidase I (COX1).
420 Forward (5'-CAGGAATTACWTTAGACCGAMTACC-3') and reverse (5'-
421 TCAAAATAARTGTTGRTATAAAATRGGGTC-3') primers and two TaqMan fluorescence-
422 labelled probes (*An. stephensi* probe 5'-
423 /5HEX/ATTACTATA/ZEN/TTACTTACAGACCG/3IABkFQ/-3' and *Ae. aegypti* probe 5'-
424 /56FAM/ATTACTATG/ZEN/TTATTAACAGACCG/3IABkFQ/-3') were designed using
425 Geneious Prime® 2021.1.1 to amplify a 202 bp region of COXI (Figure 4). Primers and probes
426 were selected by reference to all available COXI sequences from NCBI GenBank (n=4402) for
427 *Ae. aegypti*, *An. arabiensis*, *An. gambiae* sensu stricto, *An. pharoensis*, *An. quadriannulatus*,
428 *An. funestus*, *An. stephensi* and *Cx. quinquefasciatus*, which were used to confirm the
429 presence/absence of species-specific SNPs and to account for additional intra-species genetic
430 diversity.

431
432 Standard curves of Ct values for each probe were generated individually and then multiplexed
433 using a ten-fold serial dilution of control *An. stephensi* or *Ae. aegypti* DNA (extracted from
434 SD500 and AEAE laboratory colonies, respectively) to assess PCR efficiencies. Genomic
435 DNA concentrations were determined using the Qubit 4 fluorometer 1X dsDNA HS assay
436 (Invitrogen, UK). Standard curve reactions were performed in a final volume of 10µl
437 containing 2X PrimeTime® Gene Expression Master Mix (IDT, USA), 250nM of forward and
438 reverse primers and 150nM of each probe and 2µl genomic DNA. Reactions were run on a
439 Stratagene Mx3005P Real-Time PCR system (Agilent Technologies) at 95°C for 3 minutes,
440 followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. All assays were run in
441 technical triplicate alongside PCR no-template controls (NTCs).

442
443 To confirm primer and probe specificity, the multiplex assay was used to assess amplification
444 of stock genomic DNA from other medically important sympatric vector species: *An.*
445 *stephensi*, *Ae. aegypti*, *An. arabiensis*, *An. gambiae* s.s., *An. funestus* and *Cx. quinquefasciatus*.

446
447 ***Detection of An. stephensi and Ae. aegypti eDNA from artificial breeding sites***

448
449 Following eDNA extraction, eDNA detection was performed in a final volume of 10µl
450 containing 2X PrimeTime® Gene Expression Master Mix (IDT, USA), 250nM of forward and
451 reverse primers, 150nM of each probe and 4.2µl eDNA. Reactions were run on a Stratagene
452 Mx3005P Real-Time PCR system (Agilent Technologies) at 95°C for 3 minutes, followed by
453 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. All assays were run in technical
454 triplicate alongside PCR no-template controls (NTCs).

455
456 ***qPCR data analysis***

457
458 Stratagene MxPro qPCR software (Agilent Technologies, UK) was used to produce qPCR
459 standard curves. qPCR assay limits of detection (LoD) were determined using the “Generic
460 qPCR LoD / LoQ calculator”⁴³, implemented in R version 4.0.2⁴⁴. All other statistical analyses
461 were conducted in GraphPad Prism v9.4.0.

462
463 ***Amplicon primer design and PCR amplification***

464
465 To characterize molecular mechanisms of insecticide resistance in *An. stephensi*, briefly, three
genes of interest were identified, and a total of 7 amplicon primer pairs were designed to target

466 SNPs, previously associated with insecticide resistance (Acford-Palmer *et al.* in prep.). To
467 enable sample multiplexing, each primer had a 6bp barcode attached to the 5' end to allow for
468 sample identification in downstream analysis. Amplicons were generated using the eDNA
469 extracted from experiment #1 (1, 2, 4, 8, 16, and 32 larvae in 50ml artificial breeding sites).
470 PCR reactions contained 5X Q5 reaction buffer (New England Biolabs, UK), Q5® High-
471 Fidelity DNA polymerase (New England Biolabs, UK), 250nM of forward and reverse primers
472 and 2μl of eDNA. PCR reaction conditions were an initial 30 second denaturation at 95°C,
473 followed by 35 cycles of 98°C for 10 seconds, 60°C for 30 seconds and 72°C for 30 seconds,
474 and a final elongation step at 72°C for 2 minutes. PCR products were visualized on SYBR Safe
475 1% agarose gels (Invitrogen, UK), prior to purification using Agencourt AMPure XP magnetic
476 beads (Beckman Coulter, UK), using a ratio of 0.7:1 (μl of beads to DNA).

477
478 To characterize molecular mechanisms of insecticide resistance in *Ae. aegypti*, briefly,
479 sequences for portions of the voltage-gated sodium channel (vgsc; AAEL023266-RL),
480 acetylcholinesterase-1 and (*Ace-1*; AAEL000511-RJ) were extracted from publicly available
481 assemblies for *Ae. aegypti* (LVP AGWG) (Collins *et al.* in prep.). Forward and reverse primers
482 were designed using PrimerBLAST software to amplify regions of 450-500 bp that contain
483 known SNP loci or regions of interest, with 6bp inline barcodes and partial Illumina tails that
484 allow the samples to be sequenced on an Illumina sequencing platform. PCR reactions
485 contained 5X Q5 reaction buffer (New England Biolabs, UK), Q5® High-Fidelity DNA
486 polymerase (New England Biolabs, UK), 250nM of forward and reverse primers and 2μl of
487 eDNA extracted from experiment #1 (1, 2, 4, 8 and 16 larvae in 50ml artificial breeding sites).
488 PCR reaction conditions were 98°C for 30 seconds, followed by 35 cycles of 98°C for 10
489 seconds, 57 °C for 60 seconds and 72°C for 90 seconds. PCR products were visualized on
490 SYBR Safe 1% agarose gels (Invitrogen, UK), prior to purification using Agencourt AMPure
491 XP magnetic beads (Beckman Coulter, UK), using a ratio of 0.7:1 (μl of beads to DNA).

492
493 **Amplicon sequencing**
494 The concentration of purified PCR products was measured using the Qubit 4 fluorometer 1X
495 dsDNA HS assay (Invitrogen, UK) and samples with unique barcode combinations were
496 pooled in equal concentrations to create an overall pool of 20ng/μl in 25μl total volume. A
497 second PCR to insert Illumina adaptors (no further library preparation required) and amplicon
498 sequencing was performed at Genewiz (Illumina-based Amplicon-EZ service).

499
500 **Amplicon sequencing analysis**
501 Samples were demultiplexed based on the in-line barcodes in each forward and reverse primer
502 using an in-house python script (Collins *et al.* in prep.). Sequences were trimmed, aligned to
503 reference (*Ae. aegypti* LVP AGWG for *Ae. aegypti* or UCI_ANSTEP_V1 assembly for *An.*
504 *stephensi*) and data was quality checked using FastQC and Samclip. Paired-end reads were
505 mapped against the reference sequences using the BWA-MEM algorithm. Variants were then
506 called using three packages: Freebayes, GATK, and an in-house naive variant caller. Identified
507 variants were then compared and normalised against each other to reduce false negatives and
508 positives, and then filtered and annotated using BCFtools; for *An. stephensi*, variants were
509 annotated using snpEFF, based on a manually built database for the UCI *An. stephensi* genome
510 assembly. SNPs were then manually filtered to ensure that they appeared in more than one
511 sample, with an allele depth of >50.

Consensus	AATTAATATACGATCTCAGGAATTACATTAGATCGAATACCATTTGTTGATCWGT	60
Fwd_Primer	W...C..M...	60
An.stephensi	G.....G...C...T...C.....T...	60
An.aegypti	GT.....T...C...C...T.....T...	60
An.arabiensisT.....TC.T.....T.....G...	60
Cx.culexquinquefasciatusT.....T.....C.....C.....A...	60
An.funestusG.....T.....T.....C.....G...	60
An.gambiaeT.....T.....C.....C.....A.....A...	60
An.pharoensisT.....T.....C.....C.....A.....A...	60
An.quadriannulatusT.....T.....C.....C.....A.....A...	60
Consensus	*****	
STH_Probe	AGTTATTACAGCAGTATTATTATTAYTWTCTTACAGTATTAGCTGGAGCTATTACTAT	120
AEG_Probe	
An.stephensi	T..A.....T..TA.T.....T.A..A.....T.....	120
Ae.aegyptiTA.C.....C.TC.T..TC.T..T..T.....	120
An.arabiensisT.A.....A.....A.....	120
Cx.culexquinquefasciatus	...A.....T.....C.TC.T..T.....T.....T.....	120
An.funestus	...A.....A.TC.T.....C.T..T.....A.....	120
An.gambiaeT.A.....A.....A.....	120
An.pharoensis	T.....G..T.....G..C.TC.T..T.....T.....A.....	120
An.quadriannulatusT.A.....A.....A.....	120
Consensus	*****	
STH_Probe	ATTA T AACAGA C CGAAATTAAATACATCTTCTTGATCCAGCAGGAGGAGATCC	180
AEG_ProbeC.T.....C.....T..C..C.....T.....C..	180
An.stephensi	G.....C.....C.....ATC.....T.....	180
Ae.aegyptiT.....T.....ATT.....T.....	180
An.arabiensisG.....T..A.....ATT.....T.....	180
Cx.culexquinquefasciatusT.....T.....T.....T.....T.....	180
An.funestusT.....C.....CC..C.....G.....C.....	180
An.gambiaeT.....T.....C.....C.....	180
An.pharoensisT.....C.....C.....	180
An.quadriannulatusT.....C.....C.....	180
Consensus	*****	
Rvs_Primer	AATTTTATATCAACATTATTYTGATTTTGGTCATCCAGAAGTTATATTTAATTT	240
An.stephensiA..AAR.GT..R.A.AAAATRGGGT.	240
Ae.aegypti	C.....T.....	240
An.arabiensis	T.....C.....C.....C.....A..C.....	240
Cx.culexquinquefasciatusC.....C.....A.....	240
An.funestusT.....C.....A.....	240
An.gambiaeC.....T.....A.....	239
An.pharoensisC.....C.....	240
An.quadriannulatusC.....T.....A.....	240

512

513 **Figure 4. Consensus alignment of reference COXI sequences used for primer and probe**
514 **design.** Positions of forward and reverse primers are highlighted by light blue asterisks.
515 Species-specific probes are highlighted in teal, with single-nucleotide polymorphisms in
516 colour.

517

518 *Data availability*

519 The qPCR datasets generated during this study are contained within the supplementary
520 material. Sequence data generated by this study will be available at Sequence Read Archive
521 (SRA) BioProject upon publication.

522

523 *Competing interests*

524

525 The authors declare that they have no competing interests.

526

527 *Authors' contributions*

528

529 MK, SC, and LAM designed the study. MK led the entomological experiments with support
530 from NMP and BP. LAM led the qPCR analysis. HAP, MOC, EC and SC performed the
531 amplicon sequencing. TW provided laboratory resources. JP and TGC performed the
532 bioinformatics analysis. SC and JL provided project oversight and funding. MK, HAP, MOC
533 and LAM drafted the manuscript, which was revised by co-authors. All authors read and
534 approved the final manuscript.

535

536 *Acknowledgements*

537

538 Study funding was provided by the UK Foreign, Commonwealth and Development Office
539 [Health Research Programme Consortia (RPCs): RAFT (Resilience Against Future Threats
540 through Vector Control), PO8615] and a Wellcome Trust/Royal Society Sir Henry Dale
541 Fellowship awarded to TW (101285/Z/13/Z): <https://wellcome.org> and <https://royalsociety.org>.

542

543 *References*

- 544 1 Global vector control response 2017-2030. *Global vector control response* **51** (2017).
- 545 2 Organization, W. H. World Malaria Report 2021. (World Health Organization, Geneva,
546 2021).
- 547 3 Collaborators, L. B. o. D. N. T. D. The global distribution of lymphatic filariasis, 2000-
548 18: a geospatial analysis. *Lancet Global Health* **8**, e1186-e1194 (2020).
- 549 4 Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate
550 change could shift disease burden from malaria to arboviruses in Africa. *Lancet
551 Planetary Health* **4**, e416-e423 (2020).
- 552 5 Simo, F. B. N. *et al.* Dengue virus infection in people residing in Africa: a systematic
553 review and meta-analysis of prevalence studies. *Scientific Reports* **9**, 13626 (2019).
- 554 6 Buchwald, A. G., Hayden, M. H., Dadzie, S. K., Paull, S. H. & Carlton, E. J. Aedes-
555 borne disease outbreaks in West Africa: a call for enhanced surveillance. *Acta Tropica*
556 **209**, 105468 (2020).
- 557 7 Ushijima, Y. *et al.* Surveillance of the major pathogenic arboviruses of public health
558 concern in Gabon, Central Africa: increased risk of West Nile virus and dengue virus
559 infections. *BMC Infectious Diseases* **21**, 265 (2021).
- 560 8 Bowman, L. & McCall, P. J. Evaluating the evidence for effectiveness of vector control
561 of dengue outbreaks by systematic review and meta-analysis. *American Journal of
562 Tropical Medicine and Hygiene* **91**, 231 (2014).
- 563 9 Organization, W. H. Malaria surveillance, monitoring and evaluation: a reference
564 manual. (World Health Organization, Geneva, 2018).
- 565 10 Runge-Ranzinger, S., McCall, P. J., Kroeger, A. & Horstick, O. Dengue disease
566 surveillance: an updated systematic literature review *Tropical Medicine &
567 International Health* **19**, 1116-1160 (2014).
- 568 11 Cansado-Utrilla, C. *et al.* An assessment of adult mosquito collection techniques for
569 studying species abundance and diversity in Maferinyah, Guinea. *Parasites & Vectors*
570 **13**, 150 (2020).
- 571 12 Abong'o, B. *et al.* Comparison of four outdoor mosquito trapping methods as potential
572 replacements for human landing catches in western Kenya. *Parasites & Vectors* **14**, 320
573 (2021).
- 574 13 Programme, W. H. O. G. M. Vector alert: *Anopheles stephensi* invasion and spread.
575 (Geneva, 2019).

576 14 Faulde, M. K., Rueda, L. M. & Khaireh, B. A. First record of the Asian malaria vector
577 Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn
578 of Africa. *Acta Tropica* **139**, 39-43 (2014).

579 15 Carter, T. E. *et al.* First detection of Anopheles stephensi Liston, 1901 (Diptera:
580 culicidae) in Ethiopia using molecular and morphological approaches. *Acta Tropica*
581 **188**, 180-186 (2018).

582 16 Tadesse, F. G. *et al.* Anopheles stephensi Mosquitoes as Vectors of Plasmodium vivax
583 and falciparum, Horn of Africa, 2019. *Emerging Infectious Diseases* **27**, 603-607
584 (2021).

585 17 Ahmed, A. *et al.* Invasive Malaria Vector Anopheles stephensi Mosquitoes in Sudan,
586 2016-2018. *Emerging Infectious Diseases* **27**, 2952-2954 (2021).

587 18 Ahmed, A., Khogali, R., Elnour, M. B., Nakao, R. & Salim, B. Emergence of the
588 invasive malaria vector Anopheles stephensi in Khartoum State, Central Sudan.
589 *Parasites & Vectors* **14**, 511 (2021).

590 19 Organization, W. H. *WHO malaria threats map*,
591 <<https://apps.who.int/malaria/maps/threats/>> (

592 20 Seyfarth, M., Khaireh, B. A., Abdi, A. A., Bouh, S. M. & Faulde, M. K. Five years
593 following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn
594 of Africa: populations established-malaria emerging. *Parasitology Research* **118**, 725-
595 732 (2019).

596 21 Gutu, M. A. *et al.* Another dengue fever outbreak in Eastern Ethiopia-An emerging
597 public health threat. *PLoS Neglected Tropical Diseases* **15**, e0008992 (2021).

598 22 Mulchandani, R. *et al.* A community-level investigation following a yellow fever virus
599 outbreak in South Omo Zone, South-West Ethiopia. *PeerJ* **7**, e6466 (2019).

600 23 Balkew, M. *et al.* Geographical distribution of Anopheles stephensi in eastern Ethiopia.
601 *Parasites & Vectors* **13**, 35 (2020).

602 24 Sinka, M. E. *et al.* A new malaria vector in Africa: predicting the expansion range of
603 Anopheles stephensi and identifying the urban populations at risk. *Proceedings of the*
604 *National Academy of Sciences of the United States of America* **117**, 24900-24908
605 (2020).

606 25 Hamlet, A. *et al.* The potential impact of Anopheles stephensi establishment on the
607 transmission of Plasmodium falciparum in Ethiopia and prospective control measures.
608 *BMC Medicine* **20**, 135 (2022).

609 26 Organization, W. H. Vector alert: Anopheles stephensi invasion and spread. (World
610 Health Organization, 2019).

611 27 Thomsen, P. F. & Willerslev, E. Environmental DNA – An emerging tool in
612 conservation for monitoring past and present biodiversity. *Biological Conservation*
613 **183**, 4-18 (2015).

614 28 Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using
615 environmental DNA from water samples. *Biology Letters* **4**, 423-425 (2008).

616 29 Harrison, J. B., Sunday, J. M. & Rogers, S. M. Predicting the fate of eDNA in the
617 environment and implications for studying biodiversity. *Proceedings of the Royal*
618 *Society B* **286**, 20191409 (2019).

619 30 Odero, J., Gomes, B., Fillinger, U. & Weetman, D. Detection and quantification of
620 Anopheles gambiae sensu lato mosquito larvae in experimental aquatic habitats using
621 environmental DNA (eDNA). *Wellcome Open Research* **3**, 26 (2018).

622 31 Schneider, J. *et al.* Detection of invasive mosquito vectors using environmental DNA
623 (eDNA) from water samples. *PLoS One* **11**, e0162493 (2016).

624 32 Zogo, B. *et al.* Identification and characterization of Anopheles spp. breeding habitats
625 in the Korhogo area in northern Côte d'Ivoire: a study prior to a Bti-based larviciding
626 intervention. *Parasites & Vectors* **12**, 146 (2019).

627 33 Hamza, A. M. & El Rayah el, A. A Qualitative Evidence of the Breeding Sites of
628 Anopheles arabiensis Patton (Diptera: Culicidae) in and Around Kassala Town, Eastern
629 Sudan. *International Journal of Insect Science* **8**, 65-70 (2016).

630 34 Ndiaye, A. *et al.* Mapping the breeding sites of Anopheles gambiae s. l. in areas of
631 residual malaria transmission in central western Senegal. *PLoS One* **15**, e0236607
632 (2020).

633 35 Mattah, P. A. *et al.* Diversity in breeding sites and distribution of Anopheles
634 mosquitoes in selected urban areas of southern Ghana. *Parasites & Vectors* **10**, 25
635 (2017).

636 36 Fillinger, U., Sonye, G., Killeen, G. F., Knols, B. G. & Becker, N. The practical
637 importance of permanent and semipermanent habitats for controlling aquatic stages of
638 Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town
639 in western Kenya. *Tropical Medicine & International Health* **12**, 1274-1289 (2004).

640 37 Walker, K. & Lynch, M. Contributions of Anopheles larval control to malaria
641 suppression in tropical Africa: review of achievements and potential. *Medical &*
642 *Veterinary Entomology* **21**, 2-21 (2007).

643 38 Nambunga, I. H. *et al.* Aquatic habitats of the malaria vector Anopheles funestus in
644 rural south-eastern Tanzania. *Malaria Journal* **19**, 219 (2020).

645 39 Organization, W. H. Manual for monitoring insecticide resistance in mosquito vectors
646 and selecting appropriate interventions. (Geneva, 2022).

647 40 Nkya, T. E. *et al.* Impact of agriculture on the selection of insecticide resistance in the
648 malaria vector Anopheles gambiae: a multigenerational study in controlled conditions.
649 *Parasites & Vectors* **7**, 480 (2014).

650 41 Hien, A. S. *et al.* Evidence that agricultural use of pesticides selects pyrethroid
651 resistance within Anopheles gambiae s.l. populations from cotton growing areas in
652 Burkina Faso, West Africa. *PLoS One* **12**, e0173098 (2017).

653 42 Ahn, J., Sinka, M., Irish, S. & Zohdy, S. Using marine cargo traffic to identify
654 countries in Africa with greatest risk of invasion by Anopheles stephensi. *bioRxiv*,
655 doi:<https://doi.org/10.1101/2021.12.07.471444> (2022).

656 43 Merkes, C. *et al.* Reporting the limits of detection (LOD) and quantification (LOQ) for
657 environmental DNA assays. *Environmental DNA* **2**, 271-282,
658 doi:<https://doi.org/10.5066/P9AKHU1R>. (2020).

659 44 RStudio: Integrated Development for R. (Boston, MA, 2020).

660