

1 RACK1 may participate in placental development via regulating  
2 proliferation and migration of trophoblast cell in pigs following  
3 intrauterine growth restriction

4 Zhimin Wu<sup>1,2</sup>, Guangling Hu<sup>1,2</sup>, Ting Gong<sup>1,2</sup>, Qun Hu<sup>3</sup>, Linjun Hong<sup>3</sup>, Yiyu Zhang<sup>1,2</sup>, Zheng  
5 Ao<sup>1,2,\*</sup>

<sup>6</sup> <sup>1</sup> Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous  
<sup>7</sup> Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang,  
<sup>8</sup> China.

<sup>9</sup> <sup>2</sup>Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College  
<sup>10</sup> of Animal Science, Guizhou University, Guiyang, China.

11 <sup>3</sup>National Engineering Research Center for Breeding Swine Industry, College of Animal  
12 Science, South China Agricultural University, Guangzhou, Guangdong, China.

13

14

15 \* Corresponding author: E-mail addresses: zao@gzu.edu.cn (ZA);

16

17

18

10

20

23 **Abstract:** Intrauterine growth restriction (IUGR) is a severe complication in swine  
24 production. Placental insufficiency is responsible for inadequate fetal growth, but the specific  
25 etiology of placental dysfunction-induced IUGR in pigs remains poorly understood. In this  
26 work, placenta samples supplying the lightest-weight (LW) and mean-weight (MW) pig fetuses  
27 in the litter at day 65 (D65) of gestation were collected, and the relationship between fetal  
28 growth and placental morphologies and functions was investigated using histomorphological  
29 analysis, RNA sequencing, quantitative polymerase chain reaction, and in-vitro experiment in  
30 LW and MW placentas. Results showed that the folded structure of the epithelial bilayer of  
31 LW placentas followed a poor and incomplete development compared with that of MW  
32 placentas. A total of 632 differentially expressed genes (DEGs) were screened out between the  
33 LW and MW placentas, and RACK1 was found to be downregulated in LW placentas. The  
34 DEGs were mainly enriched in translation, ribosome, protein synthesis, and mTOR signaling  
35 pathway according to GO and KEGG enrichment analyses. In-vitro experiments indicated that  
36 the decreased RACK1 in LW placentas may be involved in abnormal development of placental  
37 folds (PFs) by inhibiting the proliferation and migration of porcine trophoblast cells. Taken  
38 together, these results revealed that RACK1 may be a vital regulator in the development of PFs  
39 via regulating trophoblast ribosome function, proliferation, and migration in pigs.

40 **Keywords:** RACK1; Placenta; Pig; ribosome; trophoblast cell

## 41 1 Introduction

42 Intrauterine growth restriction (IUGR) is a common obstetrical complication resulting in  
43 many adverse effects on fetal growth and development and postnatal health [1, 2]. Pigs are one  
44 of multiparous species most likely to suffer from IUGR among domestic animals (accounting

45 for 15%–25% of births), though a good deal of measures has been made to reduce the  
46 occurrence of IUGR, which negatively influences the production performance and economic  
47 benefits of pig production [3] . Piglets with IUGR have been shown to be followed by high  
48 morbidity and mortality, and they are predisposed to stunted growth, digestive diseases, and  
49 poor carcass quality [4-6]. Although the etiology of IUGR derives from maternal, fetal,  
50 placental, or genetic causes, accumulating evidence in humans and experimental animals  
51 demonstrated that the majority of IUGR cases principally point to a failure of the placenta  
52 associated with a decrease in maternal-fetal nutrients and oxygen exchange [1, 7, 8]. However,  
53 the pathophysiological mechanisms underlying placental dysfunction-induced IUGR in pigs  
54 remain poorly understood.

55 The placenta is a transient organ that only persists for the duration of pregnancy but is  
56 absolutely crucial for all intrauterine events [9], fulfilling key tasks to transporting nourishment,  
57 producing hormones and cytokines, acting as a waste filtration system, and as a protective  
58 barrier to guarantee physiological adaptations of mother and fetus during pregnancy [10, 11].  
59 Porcine placenta belongs to epitheliochorial type, where columnar trophoblasts lack significant  
60 invasion but spread loosely over the uterine luminal epithelial layer to form the folded bilayer  
61 [12]. Previous studies have indicated that the reduction in utero-placental blood flows and/or  
62 angiogenesis contribute to insufficient transport of nutrients and fetal hypoxia that is likely to  
63 be related to formation of IUGR fetuses [8, 13]. Interactions between placental trophoblast cells  
64 and maternal immune cells are also known to have an influence on the growth trajectories of a  
65 fetus [9]. Proteomics analysis revealed that the placenta and endometrium of IUGR pig fetuses  
66 are vulnerable to nutrient transport reduction, oxidative damage, and impairment of cell

67 metabolism [14]. Placental structure is also an important factor in determining placental  
68 efficiency. Previous studies showed that the placental folds (PFs), especially the shape of  
69 trophoblast cells, and the expression of regulatory genes of Meishan pigs underwent more  
70 complex changes than those of Yorkshire pigs, and such changes may be a potential factor for  
71 their differences in reproductive performance.

72 The placenta possess a unique transcriptional landscape throughout pregnancy, so its  
73 growth and development are regulated by sophisticated pathways composed of the expression  
74 of substantial genes [11, 15]. Incorrect alterations in gene expression in placenta give rise to  
75 abnormal morphologies and dysfunction have been found to be associated with various  
76 pregnancy complications [11, 16]. The development of pig placenta reaches completion in  
77 terms of weight, surface area, and numbers of placental areolae by days 60–70 of gestation  
78 [17], which is crucial for fetal growth and development in late gestation. However,  
79 transcriptome analysis of placenta related with pig IUGR fetuses in this period is rarely  
80 reported. The present study aimed to identify the differentially expressed genes (DEGs) in the  
81 placentas of fetuses with lightest weight (LW) compared with those in the placentas of mean-  
82 weight (MW) litter during day 65 (D65) of gestation through mRNA sequencing, and illustrate  
83 the function of RACK1 on porcine trophoblast cells. The findings could provide basic reference  
84 for future etiological mechanisms of IUGR in pigs.

## 85 **2 Materials and Methods**

### 86 **2.1 Ethics statement**

87 All experimental design and protocols in this study were reviewed and approved by the  
88 Institutional Animal Care and Use Committee of Guizhou University, Guiyang, China (EAE-

89 GZU-2020-T010). All efforts were made to minimize animal suffering.

## 90 **2.2 Tissue collection**

91 Five Duroc sows showing signs of spontaneous estrus and with similar litter size record,  
92 parity, and weight were artificially inseminated twice daily with the semen from the same  
93 Duroc boar. All sows were raised under similar conditions. After the pregnant sows were  
94 hysterectomized after the induction of anesthesia (xylazine, 2.0 mg/kg bw) during D65 of  
95 pregnancy, the uteri were opened from the corners. At the time of dissection, all fetuses were  
96 identified as “live” or “dead,” and their sex was determined on the basis of their morphology.  
97 Each fetus was weighed, and the corresponding placenta sample was collected and immediately  
98 snap-frozen in liquid nitrogen and stored at -80 °C. The LW fetuses and those closest to the  
99 MW of the litter were identified and chosen on the basis of fetal body weights. Meanwhile, the  
100 placenta samples were fixed in 4% paraformaldehyde used for histomorphological examination.

## 101 **2.3 Histomorphological analysis**

102 The placental tissues were fixed in 4% paraformaldehyde for a minimum of 48 h and then  
103 embedded in paraffin, sectioned with 5 µm thickness, and stained with hematoxylin–eosin  
104 (H&E) on the basis of standard histological criteria. Subsequently, placental histomorphometry  
105 of the stained sections was executed as described previously [18, 19]. Placental data were  
106 obtained using a Nikon Ni-U light microscope (100× magnification) fitted with a Nikon (DS-  
107 Fi1) digital camera (Nikon, Japan). Morphometric measurements of the average width of the  
108 PFs and fold length (µm) per micrometer of placenta were calculated using ImageJ 1.45  
109 software (National Institutes of Health, Bethesda, MD).

## 110 **2.4 Total RNA isolation and RNA sequencing**

111        Eight placenta samples of the fetus with LW (male, n = 4) and closest to the MW (male,  
112        n = 4) of the litter were selected for RNA sequencing. The total RNA was extracted from the  
113        placental tissues with the Total RNA Kit (Omega, USA) in accordance with the manufacturer's  
114        instructions. The RNA quality and amounts were evaluated using a 2100 Bioanalyzer (Agilent  
115        Technologies, Santa Clara, CA) and agarose gel electrophoresis. All extractions exhibiting an  
116        RNA integrity number > 7.0 and a 28S:18S ratio > 1.0 were used in the next experiments.  
117        mRNA sequencing was carried out on the Illumina Hiseq 2500 system (Illumina, San Diego,  
118        CA, USA) and 150 bp paired-end FASTQ read files were generated. Raw data were deposited  
119        in the NCBI Sequence Read Archive database under accession number PRJNA838349. They  
120        were filtrated to obtain clean reads by removing adaptor and low-quality reads. The clean reads  
121        were aligned with the Ensembl *Sus scrofa* reference genome (version:scrofa10.2.87) by using  
122        Hisat2 version 2.0.5 [20], followed by transcript assembly and differential transcript expression  
123        analysis with Cufflinks version 2.2.1. Gene expression was measured with fragments per  
124        kilobase million mapped reads (FPKM) by using Cufflinks version 2.2.1. DESeq2 was used to  
125        normalize the read counts and apply FPKM values to calculate the relative gene expression  
126        differences by adjusting P values via Benjamini and Hochberg's method to control the false  
127        discovery rate (FDR) and fold change (FC). Differentially expressed genes (DEGs) were  
128        screened out when the adjusted p-value < 0.05 and  $|\log_2\text{FC}| \geq 1$ . Gene ontology (GO)  
129        annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were  
130        performed on all DEGs by using KOBAS 3.0 (<http://kobas.cbi.pku.edu.cn>), and the DEGs were  
131        considered significant at FDR < 0.05.

132        **2.5 Construction of protein–protein interaction (PPI) network**

133 The Search Tool for the Retrieval of Interacting Genes (STRING) database ([https://string-  
134 db.org/](https://string-db.org/)) is utilized to identify the pairwise relationships of all DEGs by computational  
135 prediction methods. In this study, STRING was used to predict the interactions among proteins  
136 encoded by candidate genes, with cutoff for confidence scores of interactions > 0.4. Cytoscape  
137 software (<https://cytoscape.org/>) was applied to visualize the results of the PPI network.  
138 Molecular Complex Detection (MCODE), a Cytoscape plugin, was used to locate the hub genes  
139 of the PPI network with the number of nodes > 10.

140 **2.6 Quantitative real-time PCR (qRT-PCR)**

141 cDNA was generated from 1 µg of total RNA by using the PrimeScript RT Reagent Kit  
142 (Takara, Japan) in accordance with the manufacturer's protocol as previously described [21].  
143 Quantitative PCR was performed on QuantStudio 3 (Applied Biosystems, MA, USA)  
144 following the parameters recommended by the manufacturer. Each reaction mixture (10 µL)  
145 contained 1 µL of cDNA solution, 0.3 µL of 10 mM of each specific primer, 5 µL of SYBR  
146 Select Master Mix, and 3.4 µL of ddH<sub>2</sub>O. The PCR reactions were run as follows: initial  
147 denaturation at 95 °C for 2 min; 40 cycles of denaturation at 95 °C for 15 s; annealing at 60 °C  
148 for 15 s, with an extension at 72 °C for 1 min; and finally, a melting curve was drawn at 95 °C  
149 for 15 s, 60 °C for 1 min, and 95 °C for 15 s. **Table 1** shows the primer information of target  
150 genes. Each gene expression test was performed in triplicates. The specificity of the PCR  
151 reaction was confirmed through a single peak in the melting curve. Gene expression levels were  
152 normalized with β-actin to calculate the relative expression levels by using the 2<sup>-ΔΔCt</sup> method.  
153

154

155 **Table 1. Primers used for qPCR.**

| Genes          | Primer Sequences (5'-3')                               | Product Size (bp) | GenBank Accession No. |
|----------------|--------------------------------------------------------|-------------------|-----------------------|
| <i>RACK1</i>   | F: GCTGACCAGAGATGAGACCAAT<br>R: TCGGGAGCCAGAGACAATTG   | 244               | NM_214332             |
| <i>RPL13</i>   | F: CAGCAGGAATGGCATGAT<br>R: ATCCACCGAGATCCCAAT         | 289               | NM_001243345          |
| <i>RPL3</i>    | F: GGCAGGATGAGATGATTGATGT<br>R: TCTCTGTGCGGTGATGGTAG   | 204               | NM_001244063          |
| <i>RPL35</i>   | F: ACTGGAGGACCTGAAGGTGGAG<br>R: CTTCCGCTGCTGCTTCTTGGT  | 271               | NM_214326             |
| <i>RPS3</i>    | F: CGAGGTCGTGGTGTCTGGAAA<br>R: GTGGTCAGGCAGCGGCTTCTTA  | 220               | NM_001044601          |
| <i>RPSA</i>    | F: GCCGCTTCACTCCTGGAACCTT<br>R: GGCGAGCATCCACCACATCAGA | 236               | NM_001037146          |
| <i>β-Actin</i> | F:CCACGAGACCACCTCAACTC<br>R:TGATCTCCTTCTGCATCCTGT      | 131               | DQ845171              |

156 **2.7 Construction of RACK1 overexpression plasmid**

157 The coding sequences (CDS) of the porcine RACK1 gene were amplified from the NCBI  
158 database ([https://www.ncbi.nlm.nih.gov/nuccore/NM\\_214332.1](https://www.ncbi.nlm.nih.gov/nuccore/NM_214332.1)). The RACK1 CDS was  
159 analyzed to identify appropriate restriction enzymes for vector construction using Primer 5.0  
160 software (PRIMER-E Ltd., Plymouth, UK). The recombinant plasmid containing the RACK1  
161 CDS and the pEGFP-C1 plasmid were subjected to digestion with *Sal*I and *Xba*I, and the linked  
162 product was subsequently used to transform competent DH5α. Endotoxin-free plasmids  
163 containing the correct fragment were identified by restriction enzyme digestion and sequencing.

164 **2.8 Cell culture and transfection**

165 Porcine trophoblast cell line PTr2 were kindly provided from South China Agricultural  
166 University as previously described [22]. The PTr2 cells were cultured in DMEM-F12 (Gibco,

167 Waltham, MA, USA) supplemented with 10% fetal bovine serum (Gibco, Carlsbad, CA, USA)  
168 and recombinant human insulin (Yeasen, Shanghai, China) and maintained at 37 °C with 5%  
169 CO<sub>2</sub> humidified atmosphere. They were then transferred into a six-well plate with 0.25–1 × 10<sup>6</sup>  
170 cells per well and transfected with pEGFP-C1- RACK1 and pEGFP-C1 plasmid by Lipo8000  
171 (Beyotime, Shanghai, China) in accordance with the manufacturer's protocol.

172 **2.9 Cell proliferation and migration assay**

173 The cell proliferation in this study was assessed by cell counting kit-8 (CCK8) assay  
174 (Solarbio, Beijing, China). The PTr2 cells were seeded on 96-well plates with 100 µL of  
175 complete culture medium; treated with pEGFP-C1- RACK1, and pEGFP-C1 plasmid; and  
176 incubated for increasing durations (0, 12, 24, and 48 h). Then, 10 µL of the CCK8 solution was  
177 added per well and incubated for 2 h at 37 °C. Absorbance was measured at 450 nm with a  
178 microplate reader (CYTATION5, BioTek, USA).

179 Wound healing assay was performed to analyze the influence of overexpressed RACK1  
180 on PTr cell migration as described elsewhere. In brief, 2 × 10<sup>5</sup> cells were inoculated in F12  
181 medium containing 10% FBS and 0.1% insulin. After the cells reached 80–90 % confluence, a  
182 perpendicular wound was established by creating a linear cell-free region with the use of a 10  
183 µL pipette tip. The cells were washed with PBS twice, fresh complete medium was added, and  
184 the overexpressed vector and empty vector were transfected into the cells at the same time. The  
185 progress of cell migration into the scratch was photographed at 0 and 24 h after wounding with  
186 the use of computer-assisted microscopy. The images were quantitatively analyzed using  
187 ImageJ software (National Institutes of Health, Bethesda, MD). Cell migration was calculated  
188 as percentages of cell coverage to the initial cell-free zone.

189 **2.10 Statistical analysis**

190 The placental histomorphological data and mRNA expression levels were analyzed via one-  
191 way analysis of variance using SPSS 19.0 software (IBM Corp., Armonk, NY, USA). The data  
192 for the CCK8 and wound healing assays were evaluated using Student's t-Test. All data are  
193 presented as mean  $\pm$  standard error of mean (SEM).  $P < 0.05$  was considered statistically  
194 significant.

195 **3 Results**

196 **3.1 Fetal and placental characteristics in pigs at D65 of pregnancy**

197 In this study, all five sows from artificial insemination were pregnant, and they produced  
198 42 live and three dead fetuses at D65 of pregnancy. The average body weight of pig fetuses  
199 was 204.4 g, with a range of 134–259 g (Fig 1A). Corresponding maternal–fetal interface  
200 samples of fetuses with LW and MW of the litter were collected to investigate the associations  
201 of fetal weight and placental morphologies and functions. Next, the histomorphologies of the  
202 maternal–fetal interface of the LW and MW fetuses were compared by the sections stained  
203 with H&E. The results of observations revealed that the folded structure of the epithelial bilayer  
204 of the LW placentas followed a poor and incomplete development compared with that of the  
205 MW placentas (Fig 1B). The morphometry analysis showed that the fold width and fold length  
206 ( $\mu\text{m}$ ) per micrometer of the LW placentas were extremely significantly lower than those of the  
207 MW placentas (Fig 1C and 1D,  $P < 0.001$ ).

208 **Fig 1. Characteristics of fetal weight and placental morphology in pigs during day 65 of**  
209 **gestation. (A)** Distribution of fetal body weight. **(B)** Photomicrographs of representative  
210 sections of maternal–fetal interface derived from fetuses with lightest weight (LW) and litter

211 with mean weight (MW) and stained with hematoxylin and eosin. Placental trophoblast (Tr)  
212 that came into touch with endometrial luminal epithelium (LE) to form placental folds (PF).  
213 (C) Width of PFs and (D) fold length ( $\mu\text{m}$ ) per micrometer of placenta used to compare  
214 placental morphometry. PS, placental stroma; \*\* $p < 0.01$ ; \*\*\* $p < 0.001$

215 **3.2 Differences in transcriptomic profiles between LW and MW  
216 placentas**

217 After trimming for adapters and removing the low-quality reads, RNA-seq libraries that  
218 generated 40.6–41.7 million sequence reads among samples were used for downstream analysis.  
219 A total of 41,150,783 and 41,396,695 clean reads and 32,991,736 and 33,325,260 mapped reads  
220 were obtained from the LW and MW placentas, respectively (**S1 Table**). Through gene  
221 expression analysis ( $q$ -value  $< 0.05$ ; FC  $> 2$ ), 632 genes were identified to be significant DEGs  
222 between the LW and MW placentas (**S1 Fig**), and 535 and 119 genes were upregulated and  
223 downregulated in the LW placentas, respectively. Hierarchical clustering was performed with  
224 the datasets of DEGs. The mRNA expression patterns of the LW and MW placenta samples  
225 were clustered separately after clustering (**Fig 2**).

226 **Fig 2. Heatmap of differentially expressed genes (DEGs) in LW and MW placentas.**  
227 Orange and green represent genes with high and low expression levels, respectively.

228 **3.3 GO function and KEGG pathway analysis of DEGs**

229 GO enrichment analysis revealed that the DEGs mainly functionally enriched in biological  
230 processes were protein ubiquitination; signal transduction by protein phosphorylation;  
231 cytoplasmic translation; translational elongation; positive regulation of GTPase activity;  
232 positive regulation of transcription by RNA polymerase II; and negative regulation of  
233 transcription, DNA-templated (**Fig 3A**). The cellular components were mainly composed of

234 polysomal ribosome, nucleus, cytosol, cytoplasm, and cytosolic large ribosomal subunit (**Fig**  
235 **3B**). For GO molecular function, ATP binding, DNA binding, protein kinase binding,  
236 ribonucleoprotein complex binding, and RNA binding were the most significantly enriched  
237 terms. KEGG pathway enrichment analysis showed that the DEGs of the two groups of  
238 placentas participated in ribosome pathway, endocytosis, mTOR signaling pathway,  
239 phagosome, lysosome, and regulation of actin cytoskeleton.

240 **Fig 3. GO enrichment and KEGG pathway analysis of differentially expressed genes**  
241 **(DEGs) between LW and MW placentas.** **(A)** Biological process term of GO enrichment  
242 analysis. **(B)** Cellular component term of GO enrichment analysis. **(C)** Molecular function term  
243 of GO enrichment analysis. **(D)** KEGG pathway analysis of DEGs. GO: Gene Ontology;  
244 KEGG: Kyoto Encyclopedia of Genes and Genomes.

### 245 **3.4 PPI network and MCODE analysis**

246 A PPI network of the DEGs with 544 nodes and 1263 edges was constructed through  
247 STRING analysis to identify the functions of the DEGs (**Fig 4A**). The MCODE application in  
248 Cytoscape software was used to perform gene network clustering analysis to identify the key  
249 PPI network modules. The MCODE results with the parameter K-Core = 2 showed that one  
250 significant module was screened out from the PPI network (**Fig 4B**). A total of 15 nodes and  
251 206 edges were found, and *RACK1*, *RPL13*, *EEF2*, *RPS3*, *ABCE1*, *EEF1D*, *RPL3*, *RPL10A*,  
252 *RPL35*, *RPLP1*, *RPL12*, *RPL18*, *RPL27A*, *EEF1G*, and *RPSA* were hub nodes in the module  
253 with score = 14.714 (**Fig 4B**). KEGG pathway analysis demonstrated that most hub genes were  
254 involved in the ribosome pathway based on KOBAS database (**Table 2**). Besides, RNA-  
255 sequencing results were confirmed by qRT-PCR. The results showed that in the LW placentas,

256 the mRNA expression levels of *RACK1*, *RPL13*, *RPS3*, *RPL3*, and *RPL35* were significantly  
257 lower ( $p < 0.05$ ) and *RPSA* did not differ ( $p > 0.05$ ) compared with those in MW placentas (**Fig**  
258 **5**). Increasing evidence have shown that RACK1 had roles on and off the ribosome (23, 24),  
259 suggesting that RACK1 may affect the growth and development of trophoblast cells via  
260 regulating ribosome function.

261 **Fig 4. Protein–protein interaction (PPI) network and MCODE analysis.** (A) PPI network  
262 constructed by STRING. The size of each node is positively correlated to the number of degrees.  
263 Interactions are shown by edges, with thicker edges corresponding to stronger associations. (B)  
264 MCODE analysis of differentially expressed genes. The red round nodes represent upregulated  
265 genes; the green square nodes represent downregulated genes.

266 **Table 2. List of differentially expressed genes in a significant MCODE module from PPI  
267 network.**

| Accession          | Gene Name | FC (LW/MW) | <i>q</i> -value | Pathway  |
|--------------------|-----------|------------|-----------------|----------|
| ENSSSCG00000024974 | RPL13     | 0.464      | 0.00417         | Ribosome |
| ENSSSCG00000014855 | RPS3      | 0.401      | 0.00821         | Ribosome |
| ENSSSCG00000000089 | RPL3      | 0.487      | 0.02902         | Ribosome |
| ENSSSCG00000001543 | RPL10A    | 0.490      | 0.03409         | Ribosome |
| ENSSSCG00000005595 | RPL35     | 0.429      | 0.04763         | Ribosome |
| ENSSSCG00000004970 | RPLP1     | 0.393      | 0.01018         | Ribosome |
| ENSSSCG00000005612 | RPL12     | 0.447      | 0.03043         | Ribosome |
| ENSSSCG00000022059 | RPL27A    | 0.404      | 0.00234         | Ribosome |
| ENSSSCG00000011266 | RPSA      | 0.324      | 0.00604         | Ribosome |
| ENSSSCG00000025928 | RPL18     | 0.445      | 0.01216         | /        |
| ENSSSCG00000029724 | RACK1     | 0.491      | 0.03610         | Measles  |

|                    |       |       |         | AMPK signaling                     |
|--------------------|-------|-------|---------|------------------------------------|
| ENSSSCG00000025675 | EEF2  | 0.442 | 0.03473 | pathway/Oxytocin signaling pathway |
| ENSSSCG00000006954 | EEF1D | 0.437 | 0.04000 | /                                  |
| ENSSSCG00000013064 | EEF1G | 0.394 | 0.00018 | Legionellosis                      |
| ENSSSCG00000009043 | ABCE1 | 2.415 | 0.01964 | /                                  |

268 / denotes that the gene was not enriched into any KEGG pathway; FC: fold change.

269 **Fig 5. Validation of differentially expressed genes between LW and MW placentas by q-**  
270 **PCR.** Values are presented as mean  $\pm$  SEM. Values labeled with asterisk (\*) indicate they are  
271 significantly different ( $p < 0.05$ ).

272 **3.5 Promotion of the proliferation and migration of PTr2 cells by**  
273 **RACK1 overexpression**

274 RACK1 was overexpressed in PTr2 cells by transfection with pEGFP-C1-RACK1  
275 plasmid to further explore whether it was involved in the biological behavior of trophoblast  
276 cells in this experiment (**S2 Fig**). The CCK8 assay revealed that overexpression of RACK1  
277 significantly increased the proliferation of PTr2 cells compared to the corresponding negative  
278 control (**Fig 6**). Wound healing assays were also conducted To further confirm the role of  
279 RACK1 in trophoblast migration. The results demonstrated that overexpression of RACK1  
280 increased the migratory ability of PTr2 cells compared with the corresponding negative control  
281 (**Fig 7**). These results suggested that RACK1 is required in the migration and proliferation of  
282 porcine trophoblasts.

283 **Fig 6. Effects of RACK1 overexpression on proliferation of PTr2 cells.** (A) Microscopic  
284 results of PTr2 cells transfected with pEGFP-C1-RACK1 plasmid vector (vector-RACK1) and  
285 corresponding negative control vector (vector-NC) after 24 and 48 h. (B) Time-dependent cell

286 viability of PTr2 cells with stable RACK1 overexpression measured by CCK-8 assay, which  
287 was evaluated using Student's *t*-test. CCK8, Cell Counting Kit-8. Data are shown as mean ±  
288 SEM. \*\*\**P* < 0.001.

289 **Fig 7. Effects of RACK1 overexpression on migration of PTr2 cells.** (A) Representative  
290 wound healing photomicrographs and (B) quantitative analysis of wound healing rates of PTr2  
291 cells with stable RACK1 overexpression transfection after 0 and 24 h. These tests were  
292 repeated three times independently. The wound healing assay was evaluated using Student's *t*-  
293 test. Data are presented as mean ± SEM. \*\*\**P* < 0.001.

294 **4 Discussion**

295 Numerous studies during the past decades have confirmed that placental insufficiency is  
296 responsible for the abnormal growth trajectory of a fetus [25, 26]. Improved understanding of  
297 the mechanisms governing fetal growth is conducive to reduce the prevalence of low  
298 birthweight in pig production industry. Placental structure is compactly associated with its  
299 function and fetal growth and development. The results of the present study showed that low-  
300 weight pig fetuses had poor and incomplete PFs. In the epitheliochorial placenta, PFs could  
301 increase the contact area between trophoderm and endometrial epithelium to ensure that the  
302 fetus receives adequate nutrition from the maternal circulation. This finding was consistent  
303 with several previous findings that significant differences in placental microscopic folds  
304 between large and small pig fetuses due to the development of PFs have a substantial effect on  
305 placental efficiency [19, 27].

306 The development of PFs is associated with facilitating placental efficiency, so the  
307 efficiency of nutrient transport from the pregnant sow to the developing fetus depends on the

308 size and function of the placenta [19]. Therefore, poor placental development may contribute  
309 to compromised nutrient transport that gives rise to low fetal body weight. The epitheliochorial  
310 placenta initially appears around days 26–30 of gestation, and regular PFs are formed on day  
311 50 of gestation in pigs [22,28,29]. Recent findings in pigs revealed that large fetuses had higher  
312 trophoblastic epithelium of the chorioallantois fold than small fetuses at days 45 and 60 of  
313 gestation [30]. However, the width of the folded bilayer in the placentas of small fetuses was  
314 greater than that in the placentas of large fetuses on day 105 of gestation because PFs underwent  
315 rapid increase from mid- to late pregnancy that serves as a compensation in morphometric  
316 changes to increasing the surface area of interaction and then improving placental efficiency in  
317 response to low fetal weight and reduced placental size [13, 19].

318 RNA sequencing showed the differences in gene expression pattern between the LW and  
319 MW placentas and the multiple genes involved in the ribosomal pathway and mTOR signaling  
320 pathway in the LW placentas. Any disturbance in the ribosome environment could have  
321 devastating effects on placental development [31, 32]. Ribosomal proteins (RPs) are essential  
322 in regulating translation for facilitating placental growth and development [33]. Previous  
323 studies have found that many genes encoding ribosomal proteins were in the IUGR placenta  
324 [34]. mTOR signaling pathway have been reported to participate in the regulation of cellular  
325 activities of trophoblast in multiple pregnancy complications, including IUGR [35]. In human  
326 IUGR placenta, the downregulation of the expression of ribosomal proteins (RPL26 and RPS10)  
327 was regulated by the mTORC1 signaling pathway, affecting protein synthesis and leads to  
328 placental dysfunction [36]. Several reports have indicated that decreased protein synthesis  
329 and/or increased protein degradation is a constant feature during fetal growth restriction [37-

330 39]. Hence, dysregulated expression of RP genes may alter the morphologies of LW placenta  
331 via affecting the translation and protein synthesis of trophoblast cells.

332 Through transcriptomic analysis and in-vitro experiment, this study further found that  
333 RACK1 potentially plays a critical role in placental development by regulating the proliferation  
334 and migration of porcine trophoblast cells. The migration of trophoblasts at the maternal-fetal  
335 interface after implantation is a critical process in placentation to facilitate the establishment  
336 of feto-placental circulation and thus essential for successful pregnancy outcomes in mammals  
337 [40]. Accumulating evidence has shown that RACK1 is involved in diverse biological  
338 processes, including protein translation, cell growth, cell cycle progression, cell migration, and  
339 stress responses, by localizing to different subcellular structures, including the nucleus,  
340 ribosome, and midbody [41-44]. This finding is consistent with the results of enrichment  
341 analysis of DEGs between the MW and LW placentas in the present study. Furthermore, studies  
342 on model animals have confirmed that knockdown of RACK1 suppresses cell growth in  
343 cultured cells and homozygous knockout of RACK1 is lethal for the embryo [45-47]. A recent  
344 study on pigs has shown that the proliferation and invasion of trophoblast cells affect the  
345 formation and development of PFs [27]. Therefore, the downregulation of RACK1 in the LW  
346 placentas may lead to abnormal development of PFs through inhibiting the proliferation and  
347 migration of porcine trophoblast cells, which possibly is a potential cause of fetal growth  
348 restriction.

349 In conclusion, this study demonstrated that the folded structure of the epithelial bilayer of  
350 placentas supplying LW fetuses followed a poor and incomplete development compared with  
351 that of the placentas supplying MW fetuses at D65 of gestation. A total of 632 DEGs were

352 screened out between the LW and MW placentas, and they were mainly enriched in translation,  
353 ribosome, protein synthesis, and mTOR signaling pathway. The data also revealed that RACK1  
354 was downregulated in the LW placenta. The decreased RACK1 in the LW placentas may be  
355 involved in the abnormal development of PFs by inhibiting the proliferation and migration of  
356 porcine trophoblast cells. Further works are required to elucidate the detailed molecular  
357 mechanisms underlying RACK1 in the regulation of porcine trophoblast cells.

## 358 **Conflicts of Interest**

359 The authors declare that there is no conflict of interest that could be perceived as  
360 prejudicing the impartiality of the research reported.

## 361 **Declaration of Funding**

362 This study was supported by two grants received from the Department of Science and  
363 Technology of Guizhou Province, China (No. QKHJC-ZK[2021]YB166 and No.  
364 QKHZC[2021]YB147), the China Scholarship Council (No. LJM [2021]109) the Youth  
365 Science and Technology talent Development Project of Education Department of Guizhou  
366 Province, China (No. QJHKYZ[2021]081), the Guizhou Outstanding Young Scientific and  
367 technological Talents Training Program (No. QKHPTRC[2021]5630), the Scientific Research  
368 Project of Guizhou University Talents Fund (No. GDRJHZ-2019-21) and the Guizhou Pig  
369 Industry Development Project (2021).

## 370 **Author contributions**

371 Zheng Ao and Zhimin Wu conceived and designed the study; Guangling Hu and Zhimin Wu  
372 and Ting Gong acquired the data; Zheng Ao, Zhimin Wu and Yiyu Zhang analyzed and  
373 interpreted the data; Qun Hu and Linjun Hong contributed to contributed materials; Zheng Ao  
374 and Zhimin Wu wrote and revised the paper.

## 375 References

- 376 1. Thorn SR, Rozance PJ, Brown LD, Hay WW, editors. The intrauterine growth restriction phenotype: fetal  
377 adaptations and potential implications for later life insulin resistance and diabetes. *Seminars in Reproductive  
378 Medicine*; 2011;29:225-236
- 379 2. Armengaud J, Yzydorczyk C, Siddeek B, Peyer A, Simeoni U. Intrauterine growth restriction: Clinical  
380 consequences on health and disease at adulthood. *Reproductive Toxicology*. 2021;99:168-176.
- 381 3. Wu G, Bazer F, Burghardt R, Johnson G, Kim S, Li X, et al. Impacts of amino acid nutrition on pregnancy  
382 outcome in pigs: mechanisms and implications for swine production. *Journal of Animal Science*.  
383 2010;88(suppl\_13):E195-E204.
- 384 4. D'Inca R, Kloareg M, Gras-Le Guen C, Le Huërou-Luron I. Intrauterine growth restriction modifies the  
385 developmental pattern of intestinal structure, transcriptomic profile, and bacterial colonization in neonatal pigs.  
386 *The Journal of Nutrition*. 2010;140(5):925-931.
- 387 5. Wu G, Bazer F, Wallace J, Spencer T. Board-invited review: intrauterine growth retardation: implications for  
388 the animal sciences. *Journal of Animal Science*. 2006;84(9):2316-37.
- 389 6. Gao H, Zhang L, Wang L, Liu X, Hou X, Zhao F, et al. Liver transcriptome profiling and functional analysis  
390 of intrauterine growth restriction (IUGR) piglets reveals a genetic correction and sexual-dimorphic gene  
391 expression during postnatal development. *BMC Genomics*. 2020;21(1):1-16.
- 392 7. Balayla J, Desilets J, Shrem G. Placenta previa and the risk of intrauterine growth restriction (IUGR): a  
393 systematic review and meta-analysis. *Journal of Perinatal Medicine*. 2019;47(6):577-584.
- 394 8. Chassen S, Jansson T. Complex, coordinated and highly regulated changes in placental signaling and nutrient  
395 transport capacity in IUGR. *Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease*.  
396 2020;1866(2):165373.
- 397 9. Woods L, Perez-Garcia V, Hemberger MJFie. Regulation of placental development and its impact on fetal  
398 growth—new insights from mouse models. *Frontiers in Endocrinology*. 2018;9:570.
- 399 10. Medina-Bastidas D, Guzman-Huerta M, Borboa-Olivares H, Ruiz-Cruz C, Parra-Hernandez S, Flores-Pliego  
400 A, et al. Placental Microarray Profiling Reveals Common mRNA and lncRNA Expression Patterns in  
401 Preeclampsia and Intrauterine Growth Restriction. *International Journal of Molecular Sciences*.  
402 2020;21(10):3597.
- 403 11. Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Szeszko K, Gowkielewicz M, et al. Placenta transcriptome  
404 profiling in intrauterine growth restriction (IUGR). *International Journal of Molecular Sciences*.  
405 2019;20(6):1510.
- 406 12. Furukawa S, Kuroda Y, Sugiyama AJJotp. A comparison of the histological structure of the placenta in  
407 experimental animals. *Journal of Toxicologic Pathology*. 2014;27(1):11-18.
- 408 13. Wang J, Feng C, Liu T, Shi M, Wu G, Bazer FWJMR, et al. Physiological alterations associated with  
409 intrauterine growth restriction in fetal pigs: causes and insights for nutritional optimization. *Molecular  
410 Reproduction and Development*. 2017;84(9):897-904.
- 411 14. Chen F, Wang T, Feng C, Lin G, Zhu Y, Wu G, et al. Proteome differences in placenta and endometrium  
412 between normal and intrauterine growth restricted pig fetuses. *PLoS One*. 2015;10(11):e0142396.
- 413 15. Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Gowkielewicz M, Jozwik M, et al. Preliminary RNA-seq  
414 analysis of long non-coding RNAs expressed in human term placenta. *International Journal of Molecular  
415 Sciences*. 2018;19(7):1894.
- 416 16. Li N, Hou R, Liu C, Yang T, Qiao C, Wei JJCP. Integration of transcriptome and proteome profiles in placenta  
417 accreta reveals trophoblast over-migration as the underlying pathogenesis. *Clinical Proteomics*. 2021;18(1):1-

418 12.

419 17. Bazer FW, Johnson GA. Pig blastocyst–uterine interactions. *Differentiation*. 2014;87(1-2):52-65.

420 18. Ao Z, Li Z, Wang X, Zhao C, Gan Y, Wu X, et al. Identification of amniotic fluid metabolomic and placental  
421 transcriptomic changes associated with abnormal development of cloned pig fetuses. *Molecular Reproduction  
422 and Development*. 2019;86(3):278-291.

423 19. Vallet J, Freking B. Differences in placental structure during gestation associated with large and small pig  
424 fetuses. *Journal of Animal Science*. 2007;85(12):3267-75.

425 20. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq  
426 experiments with HISAT, StringTie and Ballgown. *Nature Protocols*. 2016;11(9):1650-1667.

427 21. Ao Z, Liu DW, Zhao CF, Yue ZM, Shi JS, Zhou R, et al. Birth weight, umbilical and placental traits in relation  
428 to neonatal loss in cloned pigs. *Placenta*. 2017;57:94-101.

429 22. Hong L, He Y, Tan C, Wu Z, Yu M. HAI-1 regulates placental folds development by influencing trophoblast  
430 cell proliferation and invasion in pigs. *Gene*. 2020;749:144721.

431 23. Johnson AG, Lapointe CP, Wang J, Corsepius NC, Choi J, Fuchs G, et al. RACK1 on and off the ribosome.  
432 *Rna*. 2019;25(7):881-895.

433 24. Nilsson J, Sengupta J, Frank J, Nissen P. Regulation of eukaryotic translation by the RACK1 protein: a  
434 platform for signalling molecules on the ribosome. *EMBO Reports*. 2004;5(12):1137-41.

435 25. Krishna U, Bhalerao S. Placental insufficiency and fetal growth restriction. *The Journal of Obstetrics and  
436 Gynecology of India*. 2011;61(5):505-511.

437 26. Davenport BN, Wilson RL, Jones HN. Interventions for placental insufficiency and fetal growth restriction.  
438 *Placenta*. 2022;125:4-9.

439 27. Stenhouse C, Hogg CO, Ashworth CJ. Associations between fetal size, sex and placental angiogenesis in the  
440 pig. *Biology of Reproduction*. 2019;100(1):239-252.

441 28. Hong L, Hou C, Li X, Li C, Zhao S, Yu M. Expression of heparanase is associated with breed-specific  
442 morphological characters of placental folded bilayer between Yorkshire and Meishan pigs. *Biology of  
443 Reproduction*. 2014;90(3):56, 1-9.

444 29. Geisert R, Schmitt R. Early embryonic survival in the pig: can it be improved? *Journal of Animal Science*.  
445 2002;80(E-suppl\_1):E54-E65.

446 30. Almeida F, Dias AA. Pregnancy in pigs: the journey of an early life. *Domestic Animal Endocrinology*.  
447 2022;78:106656.

448 31. Janssen BG, Byun H-M, Gyselaers W, Lefebvre W, Baccarelli AA, Nawrot TS. Placental mitochondrial  
449 methylation and exposure to airborne particulate matter in the early life environment: an ENVIR ON AGE  
450 birth cohort study. *Epigenetics*. 2015;10(6):536-544.

451 32. Reid DS, Burnett DD, Contreras-Correa ZE, Lemley CO. Differences in bovine placentome blood vessel  
452 density and transcriptomics in a mid to late-gestating maternal nutrient restriction model. *Placenta*.  
453 2022;117:122-130.

454 33. Kondrashov N, Pusic A, Stumpf CR, Shimizu K, Hsieh AC, Xue S, et al. Ribosome-mediated specificity in  
455 Hox mRNA translation and vertebrate tissue patterning. *Cell*. 2011;145(3):383-397.

456 34. Sitras V, Paulssen R, Leirvik J, Vårtun Å, Acharya G. Placental gene expression profile in intrauterine growth  
457 restriction due to placental insufficiency. *Reproductive Sciences*. 2009;16(7):701-711.

458 35. Tsai K, Tullis B, Jensen T, Graff T, Reynolds P, Arroyo J. Differential expression of mTOR related molecules  
459 in the placenta from gestational diabetes mellitus (GDM), intrauterine growth restriction (IUGR) and  
460 preeclampsia patients. *Reproductive Biology*. 2021;21(2):100503.

461 36. Rosario FJ, Powell TL, Gupta MB, Cox L, Jansson T. mTORC1 transcriptional regulation of ribosome

462 subunits, protein synthesis, and molecular transport in primary human trophoblast cells. *Frontiers in Cell and*  
463 *Developmental Biology*. 2020;8:583801.

464 37. Regnault T, Friedman J, Wilkening R, Anthony R, Hay Jr W. Fetoplacental transport and utilization of amino  
465 acids in IUGR—a review. *Placenta*. 2005;26:S52-S62.

466 38. Hay Jr WW. Recent observations on the regulation of fetal metabolism by glucose. *The Journal of physiology*.  
467 2006;572(1):17-24.

468 39. Burton GJ, Jauniaux E, Charnock-Jones DS. The influence of the intrauterine environment on human placental  
469 development. *International Journal of Developmental Biology*. 2009;54(2-3):303-311.

470 40. Silva JF, Serakides R. Intrauterine trophoblast migration: A comparative view of humans and rodents. *Cell*  
471 *Adhesion & Migration*. 2016;10(1-2):88-110.

472 41. Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. *Cell*  
473 *Communication and Signaling*. 2011;9(1):1-24.

474 42. Cheng Z-F, Pai RK, Cartwright CA. Rack1 function in intestinal epithelia: regulating crypt cell proliferation  
475 and regeneration and promoting differentiation and apoptosis. *American Journal of Physiology-*  
476 *Gastrointestinal and Liver Physiology*. 2018;314(1):G1-G13.

477 43. Wang C-C, Lo H-F, Lin S-Y, Chen H. RACK1 (receptor for activated C-kinase 1) interacts with FBW2 (F-  
478 box and WD-repeat domain-containing 2) to up-regulate GCM1 (glial cell missing 1) stability and placental  
479 cell migration and invasion. *Biochemical Journal*. 2013;453(2):201-208.

480 44. Gandin V, Senft D, Topisirovic I, Ronai ZeA. RACK1 function in cell motility and protein synthesis. *Genes*  
481 *& Cancer*. 2013;4(9-10):369-77.

482 45. Hu F, Tao Z, Wang M, Li G, Zhang Y, Zhong H, et al. RACK1 promoted the growth and migration of the  
483 cancer cells in the progression of esophageal squamous cell carcinoma. *Tumor Biology*. 2013;34(6):3893-  
484 3899.

485 46. Wang A, Yang W, Li Y, Zhang Y, Zhou J, Zhang R, et al. CPNE1 promotes non-small cell lung cancer  
486 progression by interacting with RACK1 via the MET signaling pathway. *Cell Communication and Signaling*.  
487 2022;20(1):1-16.

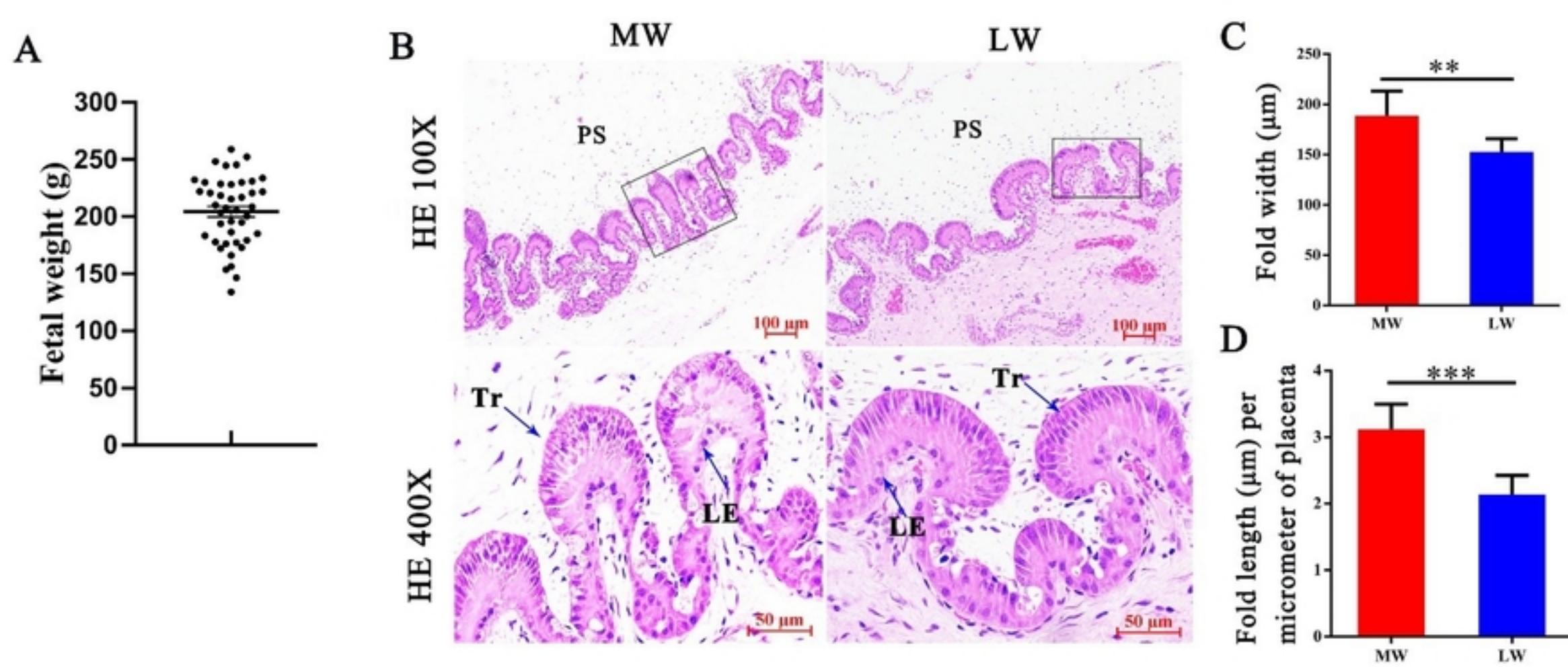
488 47. Yoshino Y, Chiba N. Roles of RACK1 in centrosome regulation and carcinogenesis. *Cellular Signalling*.  
489 2022;90:110207.

## 490 **Supporting information**

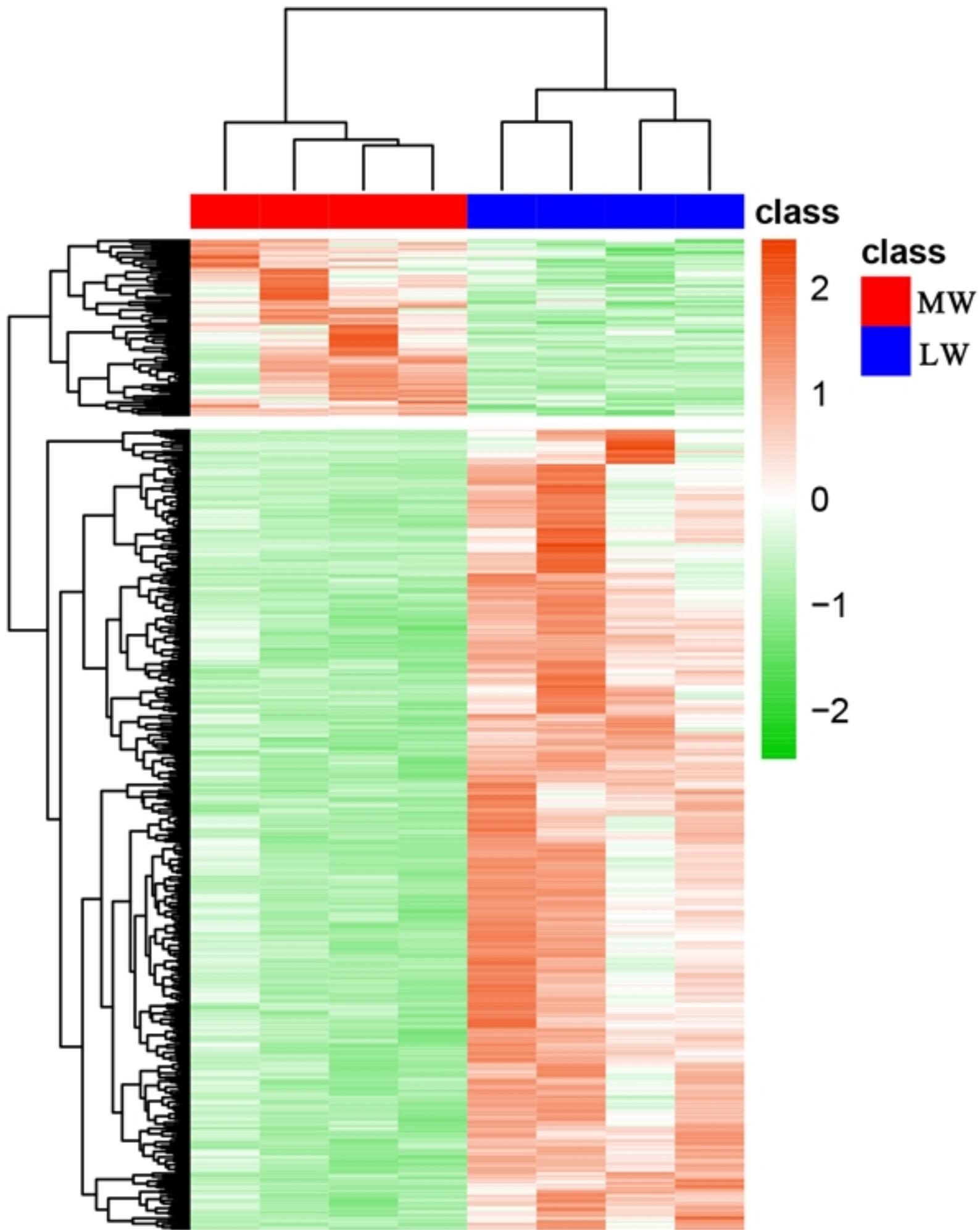
491 **S1 Table. Summary of mapping statistics in LW and MW placenta**

492 **S1 Fig. Volcano map of differential expressed genes between LW and MW placentas.**

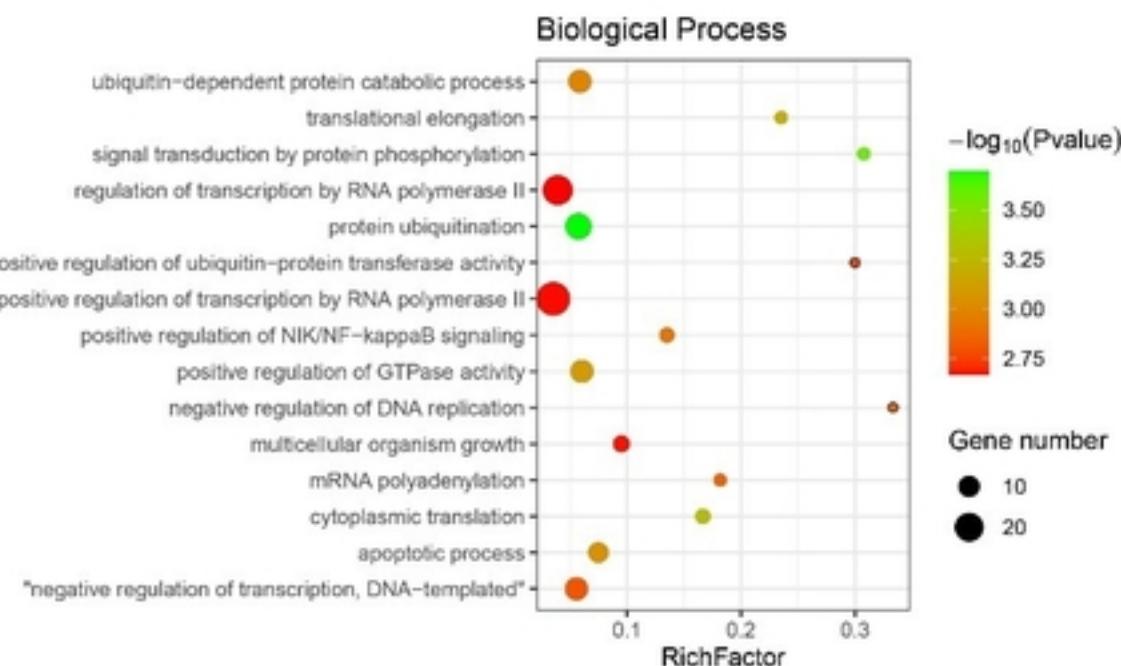
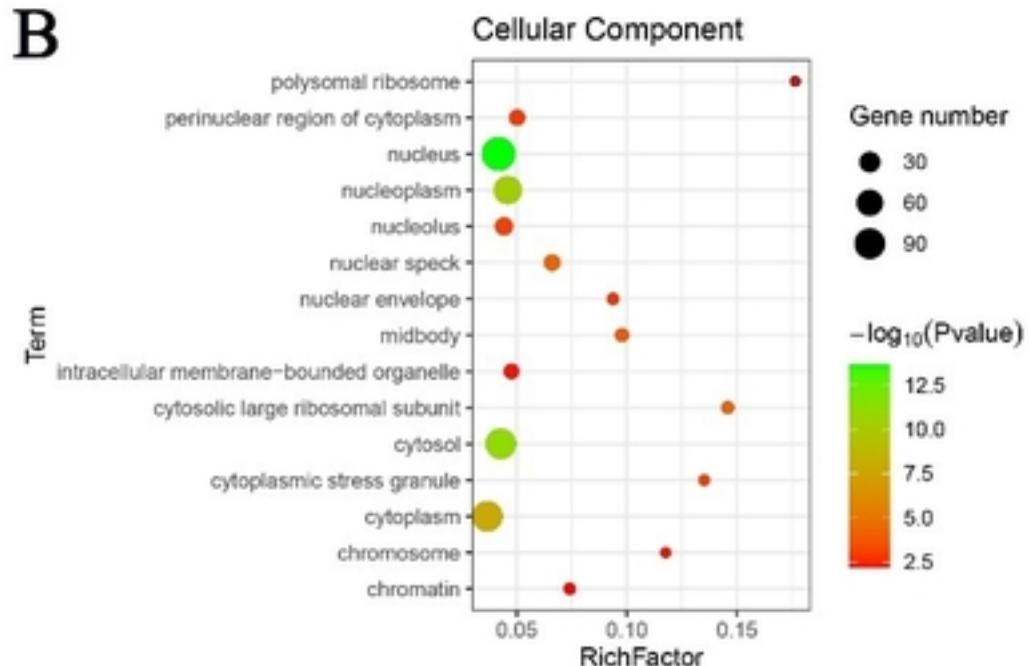
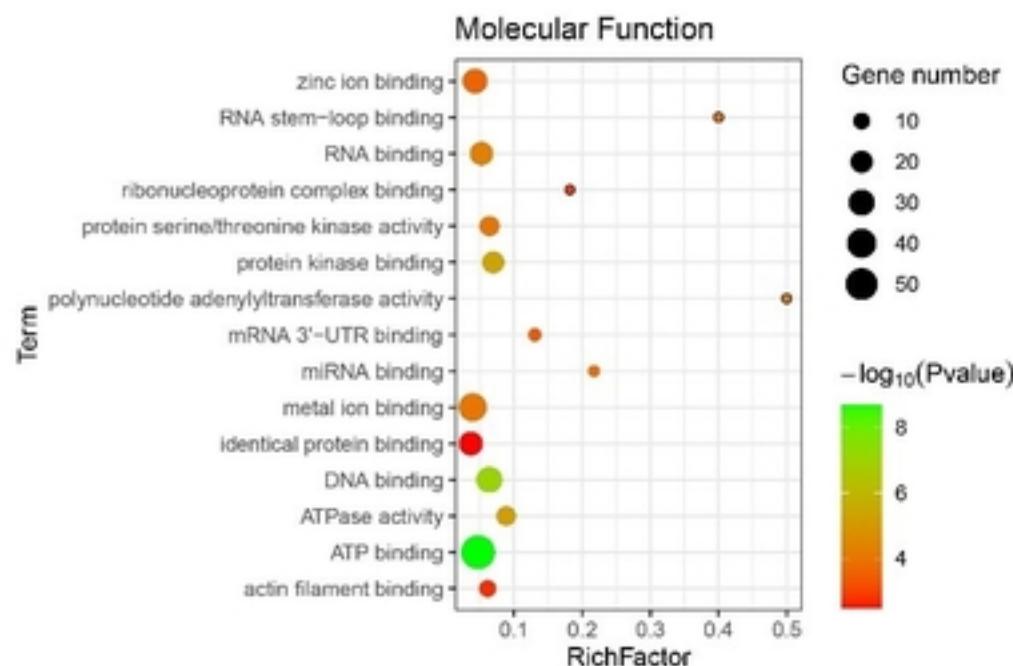
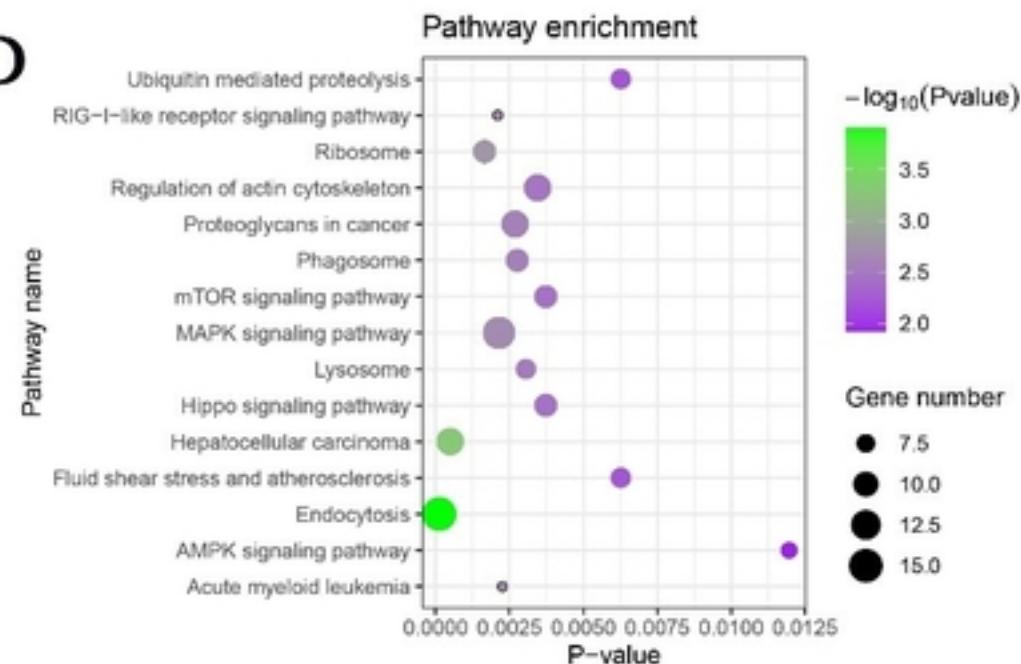
493 **S2 Fig. Transfection efficiency of RACK1 overexpression vector determined by qPCR.**

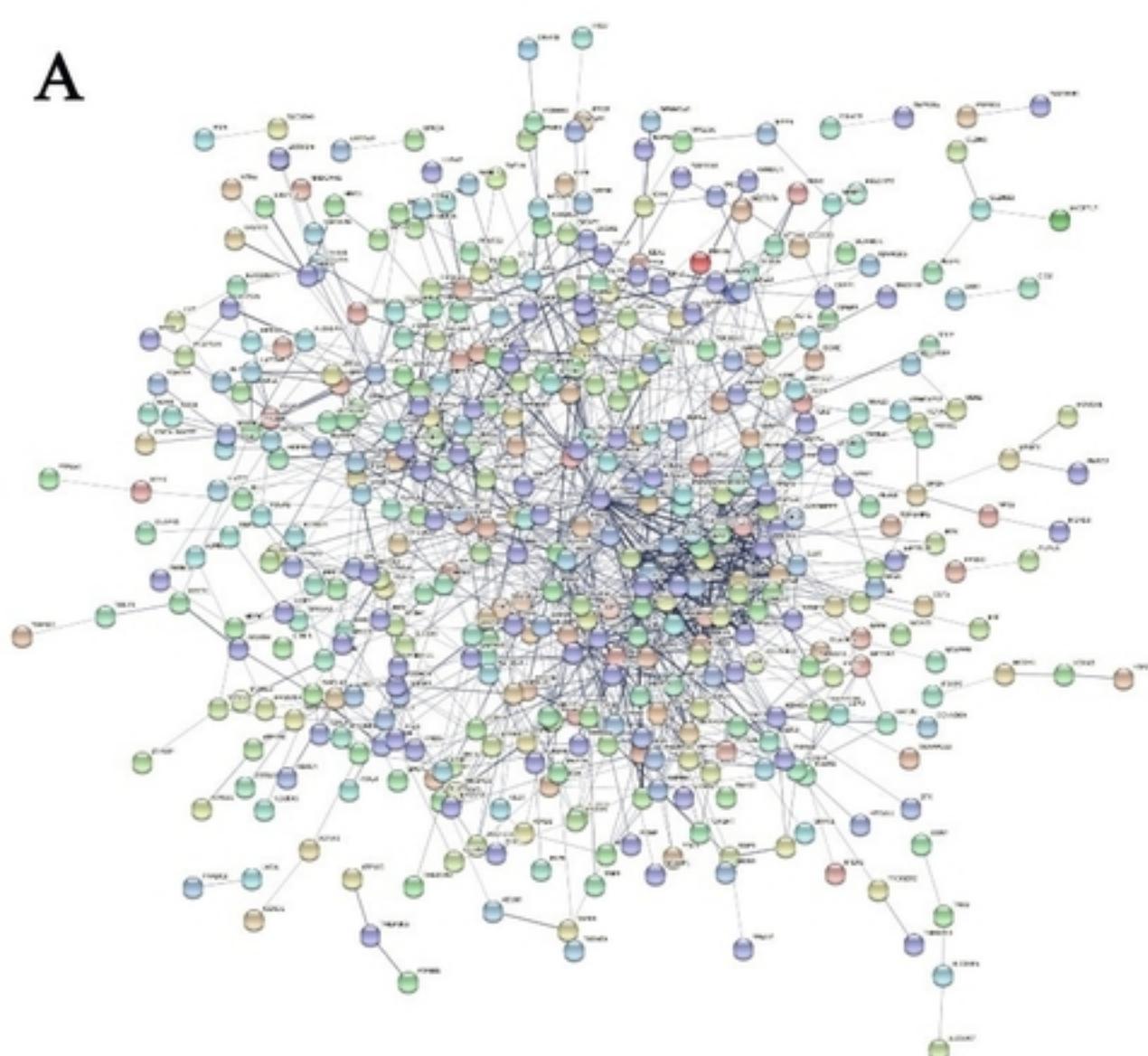
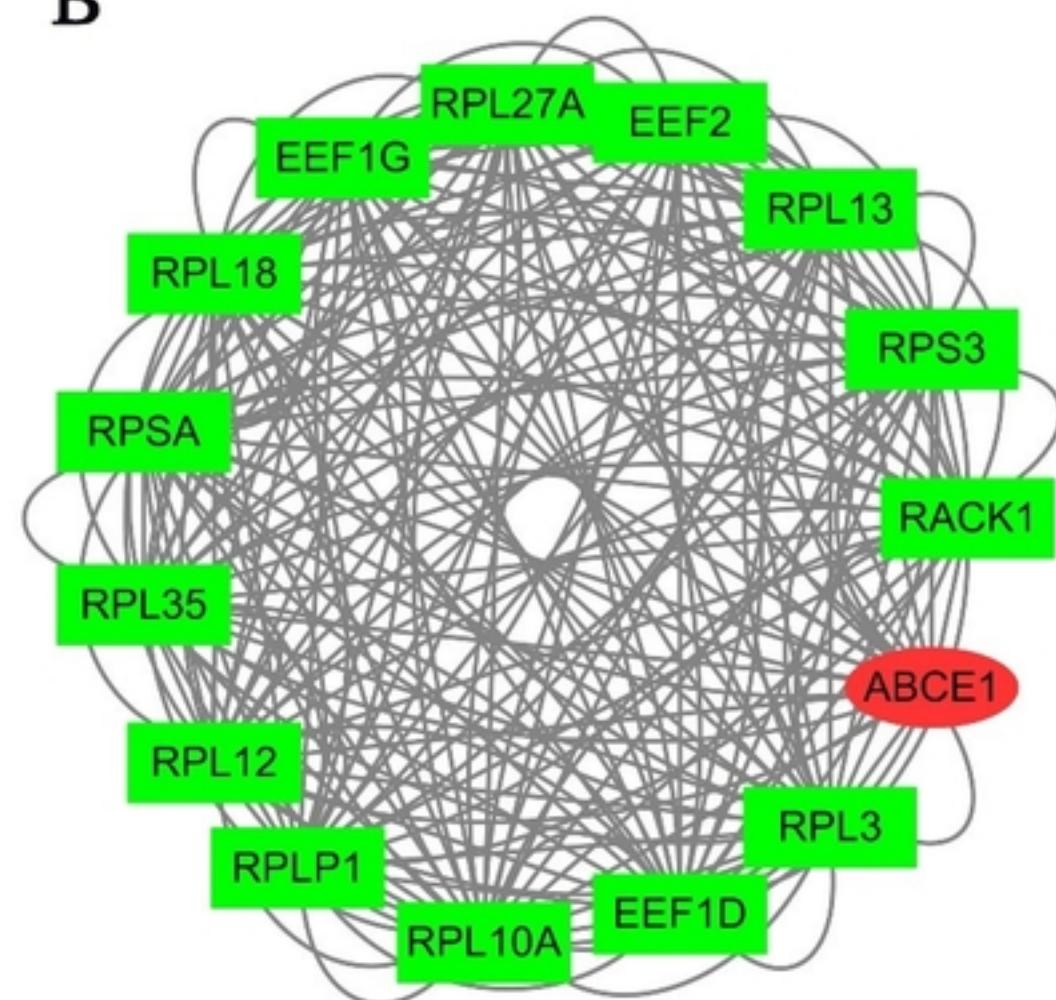

494 \*\*P < 0.001.

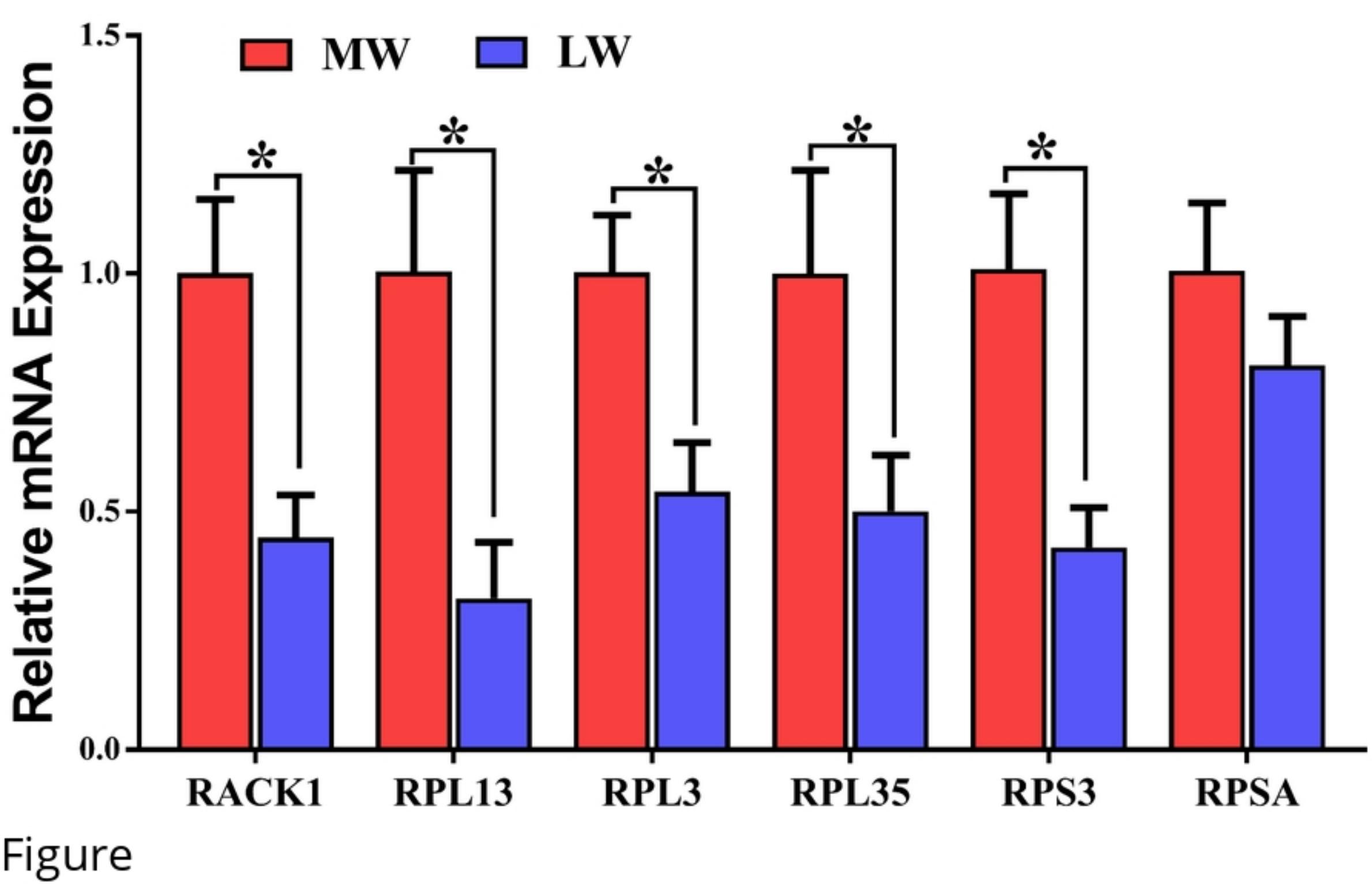
495

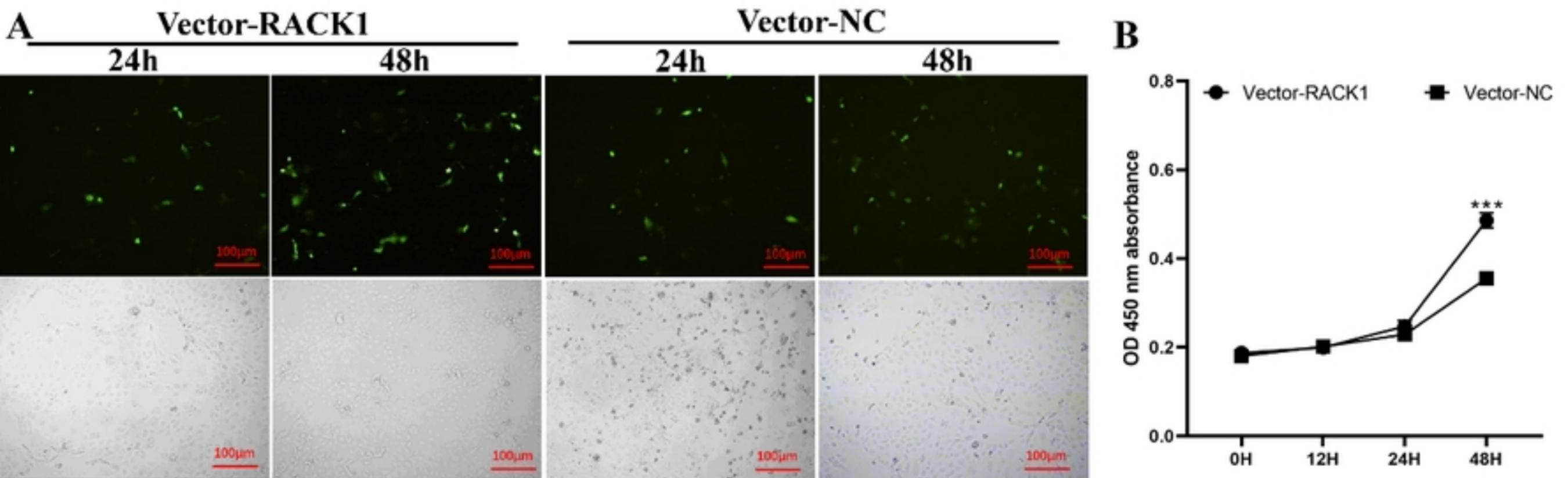

496

497

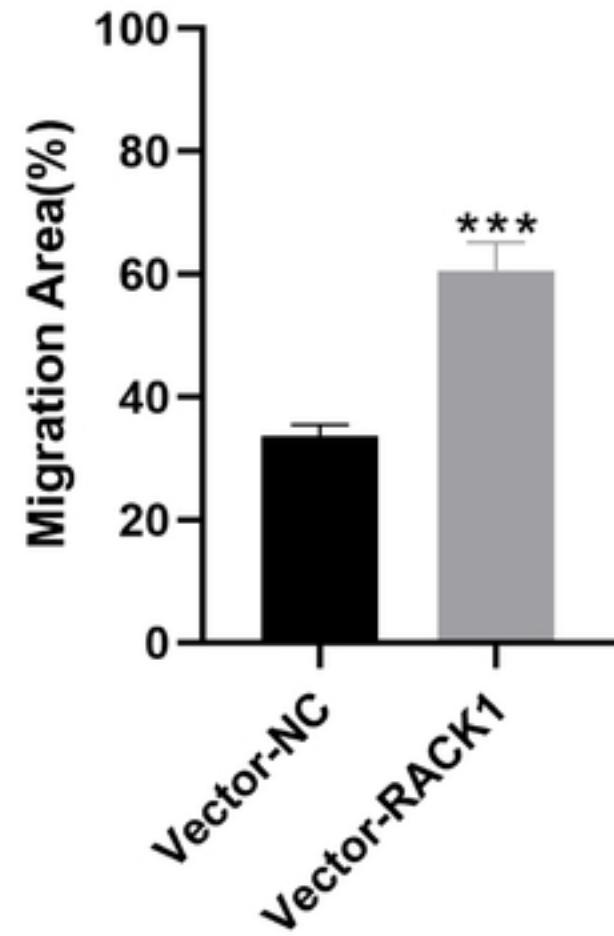
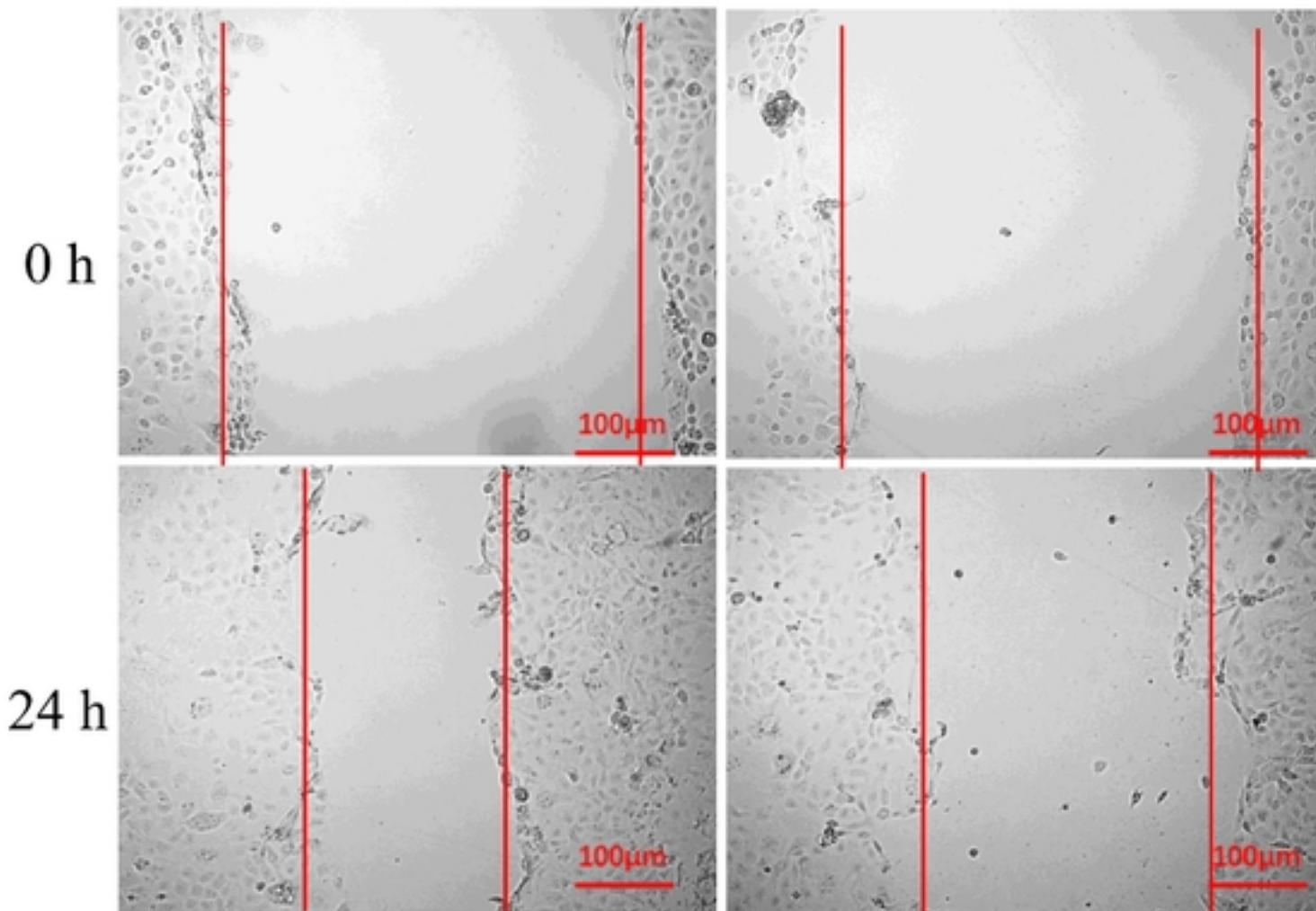




498



Figure




Figure



**A****B****C****D****Figure**

**A****B****Figure**





Figure

**A****Vector-RACK1****Vector-NC****B****Figure**