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Abstract

Genotype and phenotype are both the themes of modern biology. Despite the elegant protein
coding rules recognized decades ago in genotype, little is known on how traits are coded in a
phenotype space (P). Mathematically, P can be partitioned into a subspace determined by genetic
factors (PY) and a subspace affected by non-genetic factors (PNY). Evolutionary theory predicts
PS is composed of limited dimensions while PN® may have infinite dimensions, which suggests a
dimension decomposition method, termed as uncorrelation-based high-dimensional dependence
(UBHDD), to separate them. We applied UBHDD to a yeast phenotype space comprising ~400
traits in ~1,000 individuals. The obtained tentative P matches the actual genetic components of
the yeast traits, explains the broad-sense heritability, and facilitates the mapping of quantitative
trait loci, suggesting the tentative P° be the yeast genetic subspace. A limited number of latent
dimensions in the PS were found to be recurrently used for coding the diverse yeast traits, while
dimensions in the PN tend to be trait specific and increase constantly with trait sampling. A

similar separation success was achieved when applying UBHDD to the UK Biobank human brain
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phenotype space that comprises ~700 traits in ~26,000 individuals. The obtained P° helped
elucidate the genetic versus non-genetic origins of the left-right asymmetry of human brain, and
reveal several hundred novel genetic correlations between brain regions and dozens of mental
traits/diseases. In sum, by developing a dimension decomposition method we show that
phenotypic traits are coded by a limited number of genetically determined common dimensions
and unlimited trait-specific dimensions shaped by non-genetic factors, a rule fundamental to the

emerging field of phenomics.

Introduction

The physical world is both macroscopic and microscopic, the former of which is the manifestation
of the latter. Physicists adopt two rather parallel frameworks to describe the world: classical
mechanics for the macroscopic layer and quantum mechanics for the microscopic layer!. For
biologists, the macroscopic layer is phenotype and the microscopic layer is genotype. The
mainstream of current biology adopts a bottom-up thinking: because genotype is the basis of
phenotype, we rely on the former to understand the latter>. However, efforts of applying genotype
to understanding phenotype appear successful only for rather simple phenotypic traits®>>. Hence,
a possible complement to biologists is, like what the physicists used to do, to discover the rules
working at the macroscopic layer (i.e, phenotype)®’. As a matter of fact, many interesting patterns
regarding the dimension sharing, coordination, and trade-off among phenotypic traits have been
discovered in various organisms® !4, By focusing on specific traits and specific organisms these

discoveries are, however, far from sufficient for constituting a satisfactory framework for
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understanding phenotype. The recent availability of large-scale phenomic data in a variety of

15-18

species ”° motivated us to seek for more general rules working at the phenotypic layer.

Phenotype is affected by both genetic and non-genetic (including environmental) factors.

In quantitative genetics a phenotypic trait can be mathematically partitioned as':
T=T°+T", (1)

where T represents a focal trait, 7° is the genetic component fully determined by genotype, and
TN is the residual component likely affected by environmental variables, developmental plasticity,

measuring errors, human definitions (Supplementary Note I), and so on, collectively termed as
non-genetic factors. 7S contributes to the broad-sense heritability ( H o O';G / (7? ) of T, and can

be estimated by mathematical methods such as linear mixed model (LMM) when biological
replicates are available!®. T, 76 and TN are all vectors if a population is examined. When all

phenotypic traits of a species are considered, we have:
P=pP%+ P\, )

where P represents the phenotype space formed by all T, PSrepresents the genetic subspace formed
by all 79 and PNY represents the residual (or non-genetic) subspace formed by all TMC.
Specifically, P, PS and PNC are each a multi-dimensional linear space described by a matrix in
which columns are trait vectors. Following the matrix notation there exists a set of orthogonal
base vectors in PY, which we term as G-dimensions. Linear combinations of the G-dimensions
can form all vectors in PC (i.e., all 79). Similarly, the NG-dimensions in PNY can be defined.

Importantly, the number of G- (or NG-) dimensions is larger than or equal to the rank of P (or


https://doi.org/10.1101/2022.09.29.510032
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.29.510032; this version posted September 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

available under aCC-BY-NC-ND 4.0 International license.

PNY). Accordingly, each trait T can be formulated as a linear function of the G-dimensions and

NG-dimensions:
T=) a,G,+) bNG,, 3)
j k

where G; represents the j' G-dimension in PY, NGy represents the k™ NG-dimension in PN, and

a; and by represent the coefficients of G; and NGy, respectively. Apparently, T° = ZajGj and
j

™ :ZkaGk . To be clear, throughout the paper the genetic component and non-genetic
k

component of a trait 7 refer strictly to 7% and TS, respectively.

The Fisher’s geometric model of evolutionary adaptation®’, together with the extension
by Orr?! and others?*??*, predicts that the number of G-dimensions in PY should be rather small
for extant organisms. This is because a very large number of G-dimensions would hinder the
adaptation to new environments, leading to extinction of the organisms, a phenomenon termed as
‘cost of complexity’?!. Although the model does not predict exactly how small the number of G-
dimensions should be?*, we are still strongly inspired to hypothesize a limited number of G-
dimensions®. In sharp contrast, the number of NG-dimensions in PN° would be infinite. This is
because of the variability of environment, the randomness of developmental plasticity and
measuring error, and the arbitrariness of human definition’. The enormous complexity resulting
from the infinite dimensionality of PNY suggests the necessity of separating P° from PN¢ before

revealing any rules in P.

In this study we started with asking how marginal correlation represents high-dimensional
dependence in a multi-dimensional space. The answer enabled us to design a geometric method

4
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83  for separating two subspaces with distinct dimensionality. The method offered a phenome-based
84  approach to separating a yeast phenotype space and a human brain phenotype space, respectively.
85 The separated tentative genetic and non-genetic subspaces were then validated by available
86  experimental benchmarks. The separation results revealed a rather simple geometric rule on how
87  traits are coded in phenotype space. The results also provided novel phenotypic understandings
88  not only within human brain but between brain regions and a variety of mental traits/diseases. In
89  addition, this study developed a novel dimension decomposition strategy for dealing with the

90 “curse of dimensionality”.

91

92 Results

93  Theory of uncorrelation-based high-dimensional dependence (UBHDD)

94  Let’s first consider a two-dimensional space with three non-parallel and non-orthogonal vectors a,
95  f,and 5 (Fig. 1). Based on linear algebra, 7 can always be expressed as a linear function of o and
96 S no matter whether o and S have strong (Fig. 1a) or little (Fig. 1b) marginal correlation (for
97  simplicity, correlation, measured by Pearson’s correlation coefficient throughout the paper) with
98 5. This is because the three vectors share the two dimensions (X-axis and Y-axis). In the three-
99  dimensional space shown in Fig. lc, # has a unique dimension (Z-axis). As a result, # can no
100  longer be expressed by a and S despite the same correlations with a and f as in Fig. 1b. Hence,

101  dimension sharing but not correlation underlies the high-dimensional dependence among vectors.

102 We derived the probability ( Pr(W)) of two k-dimensional vectors that share the same

103  dimensions in an N-dimensional space as a function of their correlation (Supplementary Note II).
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104  Without loss of generality, the probability trajectories of N = 10, 100, and 1,000 are shown,
105  respectively, for two vectors with k£ = 2 (Fig. 1d). There are three corollaries: First, the probability

106  converges to one if the two vectors have a strong correlation for any finite N, which is formulated

107 as Pr(W)—1 if R? >1and N <N, where Ny is a finite number. Second, with the decrease of
) 0

108 the correlation between the two vectors, the probability converges to zero in a space of very large

109 N, which is formulated as Pr(¥)—> 0 if N> and 0< R* <R}, where R> <1. Third, with the

110  decrease of the correlation between the two vectors, the probability remains reasonably high in a

111 space of small N (e.g., N = 10), which is formulated as Pr('Y) > Pl’o if N< No and 0< R’ < an’
112 where Pr; 20 . Accordingly, given an R, with a small absolute value, uncorrelated vectors

113 (R2 < Rf ) would have a rather high probability of sharing dimensions in a space of small N but

114 little probability in a space of very large N. This suggests a strategy for separating P from PNO,

115  the former of which is hypothesized to have a limited N while the latter an infinitely large N.

116 Fig. 1e shows how to model a trait 7"that is a function of G-dimensions and NG-dimensions
117 in a given P. Because its correlated traits likely have the same G- and NG-dimensions as 7, the
118  best model of predicting T by its correlated traits would approximate the whole 7. This way, the
119  genetic and non-genetic components of 7 cannot be separated. In contrast, the uncorrelated traits
120  of 7' would likely share G-dimensions but not NG-dimensions with 7 according to the deduction
121  in Fig. 1d, if the dimensionality N is much smaller in PY than in PNY. As a result, the best model
122 of predicting T by its uncorrelated traits would represent only the genetic component of 7. The
123 residue (T - Tpredict) Would then be the non-genetic component 7NC. Because P is a collection of

124  traits, by conducting such uncorrelation-based separation for every trait in P we would achieve the


https://doi.org/10.1101/2022.09.29.510032
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.29.510032; this version posted September 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

125 separation of P¢ from PY®. We term the method uncorrelation-based high-dimensional

126  dependence (UBHDD).
127
128  Validation of UBHDD using simulation

129  To test if UBHDD can separate subspaces of distinct dimensionality, we simulated a space P that
130  comprises a subspace PY with a small number of G-dimensions (N1=10) and another subspace PN¢
131 with a much larger number of NG-dimensions (N>=10,000) (Supplementary Note III). The G-
132 dimensions and NG-dimensions are generated by standard multivariate normal distribution. Each
133 trait (7) is generated by random linear combination of the G-dimensions and NG-dimensions as
134  given by Eq. (3), with the former representing 7° and the latter representing 7°. A total of 1,000
135  traits are simulated in a population of 1,000 individuals. Each trait is standardized such that the
136  variance of T equals to the broad-sense heritability (/#2). Combining all 7¢ or all 7N¢ forms the

137 sampled PC or PNY, respectively.

138 UBHDD is conducted as follows (Methods): For all possible trait pairs two traits are

139 defined as uncorrelated if their Pearson’s R* < R’ where R. 0.02, corresponding to p = 0.01

140  (t-test with Bonferroni correction); with conventional machine learning framework (LASSO) we
141  modeled a trait 7 using its all uncorrelated traits; the predicted vector and the residual vector,
142  designated as 7% and T"¢, approximate the genetic component 7¢ and non-genetic component 7\,
143 respectively; the resulting matrices containing all 7% or all 7" are called P? or P"¢, approximating

144  PYand PN, respectively.
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145 As expected, with the increase of trait sampling the number of sampled dimensions is much
146 more rapidly saturated for PY than PNC (Fig. 2a). We noted that the sampled dimensions in PN¢
147  would keep increasing if the dimensionality of PNC were infinitely large. Two correlated traits
148  often share both G-dimensions and NG-dimensions while two uncorrelated traits could share G-
149  dimensions but rarely NG-dimensions (Fig. 2b). This suggests G-dimensions but not NG-
150  dimensions would underlie the signal of UBHDD. Indeed, in all cases we found the 7® obtained
151 by UBHDD highly correlated with 75, the actual genetic component of 7' (Fig. 2c). The variance
152  of T® also matches well the variance of 7S, the broad-sense heritability of T (Fig. 2d). We also
153  simulated spaces with N; = 20, 50, or 100 (N> remains unchanged), and obtained largely the same

154  results (Fig. S1). These analyses validated the capacity of UBHDD in separating P° from PN

155 It is worth noting that UBHDD is a method of dimension decomposition but not dimension
156  reduction. We compared UBHDD with PCA, a classical dimension reduction method, in a
157  simulated P with structure. The structured P was simulated as above except that two large clusters
158  with strongly correlated members exist (Fig. 2e; Supplementary Note III). UBHDD remains
159  successful in separating PS from PNS, insensitive to the space structure (Fig. 2f). However, PCA
160  overfits the traits in the two large clusters and underfits the others (Fig. 2g; Methods). The failure
161  of PCA in separating PC from PN is not surprising because PCA maximizes the explained variance

162  of the top PCs and is therefore sensitive to data structure.
163
164  Using UBHDD to separate a yeast phenotype space

165 We examined a phenotype space comprising 405 morphological traits of the budding yeast

18 The traits are measured in a population of 815 segregants, each of

8

166  Saccharomyces cerevisiae
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167  which has two clones/replicates and known genotype®® (Fig. 3a). The traits are typically about
168  area, distance, angle, and brightness that describe the shape of mother cell and bud, the neck
169  separating mother cell from bud, the localization of the nuclei in mother cell and bud, and so on,
170  across different cell stages (Fig. 3b). The narrow-sense heritability (4%) of the traits ranges from 0
171 to 0.56 with a median of 0.15, and the broad-sense heritability (&) ranges from 0 to 0.86 with a

172 median of 0.42 (Fig. S2).

173 Since biological replicates are available for the yeast phenome, we can use linear mixed
174  model (LMM) to separate the 7° from TMC for each of the traits. Meanwhile, the separation could
175  be done by UBHDD, which requires only phenome information according to the above theory and

176  simulation results (Fig. 3c). We will then use the results of LMM to benchmark UBHDD.

177 We applied UBHDD to the 405 yeast traits and obtain for each of them the 7% and 7"
178  (Methods). The obtained 7® explains trait variance at a level ranging from 0.03 to 0.98, with a
179  median=0.53 among all traits (Fig. 3d). Hence, strong high-dimensional dependence between the
180 uncorrelated yeast traits is observed. To assess the potential false positive/background signals, we
181  conducted shuftling analyses by randomly swapping the focal trait values among individuals while
182  maintaining the uncorrelated traits unchanged (Methods). We found virtually no trait variance
183  explained (maximum=0.013 among all traits) by the 7® obtained in the shuffled dataset (Fig. 3d).
184  Hence, technical biases in the UBHDD modeling process are negligible. Notably, the results of
185  the shuffling analyses are actually consistent with our intuition in the empirical world that
186  uncorrelated objects are independent, which has a hidden assumption for infinite dimensionality.
187  The observed strong UBHDD signals suggest a special set of latent dimensions underlying the

188  yeast traits.
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189 To test if the UBHDD signals represent actual genetic components, we applied LMM to
190  separate 7° from TN for each trait by taking advantage of the replicate information (Methods).
191  For most of the traits the UBHDD signal 7® is highly correlated to the actual genetic component
192 7Y (Fig. 3e-f). The variance of 7% is comparable to the variance of 79, the broad-sense heritability
193  estimated by LMM (Fig. 3g). The results are robust against the R, thresholds used for defining
194  uncorrelated traits (Fig. S3). As another critical test, we expect 7% should have a larger narrow-
195  sense heritability (4%) than T"¢. Indeed, in most case the A2 of T is larger than that of 7"¢, and also
196  more QTLs were detected for 7® than 7" (Fig. 3h-i; Methods). Nevertheless, 7% is not identical to
197  TS. The T® estimation could be improved in a larger population that enables more robust UBHDD
198  modelling; meanwhile, the 7€ estimation could be more accurate if there were more than two
199  replicates. Taken together, these results suggest the 7% obtained by UBHDD represents well the

200 actual genetic components of the yeast traits.
201
202  The separations by UBHDD are robust between two yeast populations

203  In addition to the segregant population (seg-population), we also examined a yeast gene-deletion
204  population (del-population) that contains ~5,000 S. cerevisiae strains each lacking a non-essential
205  gene (Fig. 3j). The same 405 traits are measured for each of the strains in the del-population?’.
206 We conducted UBHDD in the del-population and obtained the 7% and 7™ for each of the traits
207  (Methods). We then compared the 7% functions learned in del-population with the 7% functions
208  previously learned in seg-population (Methods). Taking the trait C11.1 A as an example, when
209  the 7® function learned in seg-population is applied to del-population, the 7® estimations are highly

210  similar to the estimations by the 7% function learned in del-population, with an identity score =

10
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211 0.88 (Fig. 3k; Methods). The identity score of the 405 traits ranges from 0.29 to 0.99 with a
212 median=0.82 (Fig. 31), suggesting the genetic subspace obtained by UBHDD be robust between

213 the two yeast populations.
214
215  Using UBHDD to separate human brain phenotype space

216  To test if UBHDD works in a more complex phenotype space, we examined UK Biobank human
217 phenome. We focused on the 675 image-derived phenotypes (IDPs) of brain generated by dMRI
218 in 25,957 white British individuals without kinship and with genotype available (Fig. 4a;
219  Methods)®®. These brain image traits represent nine different measures including fractional
220  anisotropy (FA), intra-cellular volume fraction (ICVF), isotropic or free water volume fraction
221 (ISOVF), mean diffusivity (MD), diffusion tensor mode (MO), orientation dispersion index (OD)

222 and the three eigenvalues in a diffusion tensor fit (L1, L2 and L3) in up to 75 brain regions.

223 We applied UBHDD to the 675 brain image traits after excluding covariates and obtained
224  for each of them the 7% and 7" (Methods). The obtained 7® explains trait variance at a level
225  ranging from 0.17 to 0.87, with a median=0.48 among all traits (Fig. 4b). We conducted the same
226  shuffling analysis as in yeast and again found virtually no trait variance (maximum=4e-4 among
227  all traits) explained by the 7% obtained in the shuffled dataset (Methods). The results are robust
228  against the Ry thresholds for defining uncorrelated traits (Fig. S4). Because there are, unlike yeasts,
229  no clones (i.e., monozygotic twins) for most individuals, we couldn’t use LMM to estimate 7° and
230  broad-sense heritability. Instead, we examined narrow-sense heritability. Consistent with the
231  findings in yeast, 7% in general has a larger 4? than 7"¢; there are also more QTLs detected in 7%

232 than 7" (Fig. 4c-d; Methods). Notably, for those traits with a strong enrichment of the additive
11
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233 variance in 7%, the number of QTLs of 7% is even larger than that of the whole trait 7, suggesting
234 novel genetic basis revealed by focusing on 7% (Fig. S5). These data suggest the 7% obtained here
235  be at least enriched with the genetic components of the brain image traits. The results have two

236  immediate applications.

237 First, it is helpful for addressing a long-standing puzzle, namely, the relative contribution
238  of genetic versus non-genetic factors to the left-right asymmetry of human brain®-**. We examined
239  all 297 symmetrical trait pairs each representing the same measure in two symmetrical brain
240  regions. For each trait pair we calculated the Pearson’s R* of T® and T, respectively, among the
241  individuals. In all trait pairs the R? of 7% is much larger than that of 7°¢ (Fig. 4e). This finding
242 suggests non-genetic factors be the major source of the brain asymmetry, highlighting

243 environmental effects on asymmetry associated brain physiology and dysfunction.

244 Second, because of the enrichment of genetic component 7® should be particularly useful
245  for identifying genetic correlations of the brain image traits with other traits including diseases.
246 Such genetic correlations can inform the specific brain regions associated with or responsible for
247  diseases, which would be valuable for diagnosis and/or therapy. We calculated genetic
248  correlations®! between the 675 brain image traits and a curated set of traits with required summary
249  statistics’>. These traits include 33 common mental traits (including diseases and non-diseases),
250 13 respiratory/circulatory diseases that are associated with autonomic nervous system, and 32
251  miscellaneous diseases that do not seem to be tightly linked with brain (Methods; Table S1). A
252  large number of statistically significant genetic correlations (p<0.05 after Benjamini-Hochberg
253 correction for multiple testing; Methods) were detected with two notable features (Fig. Sa-c): First,

254  the mental traits and the respiratory/circulatory diseases in general have more genetic correlations

12
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255  with the brain image traits than the miscellaneous diseases. Second, 7% performed much better
256  than T'inrevealing genetic correlations. The results in turn support the enrichment of 7® for genetic

257  component.

258 To show more details we plotted all statistically significant genetic correlations for the
259  mental traits and the respiratory/circulatory diseases, respectively (Fig. 5d-e). There are a few
260  global patterns: First, brain regions vary substantially in the number and profile of correlated
261  diseases/traits. For example, the brain region “fornix” has significant genetic correlation with only
262  one disease Schizophrenia, while the region “superior fronto-occipital fasciculus™ has significant
263  genetic correlations with 19 diseases/traits. Second, diseases/traits vary substantially in the
264  number and profile of correlated brain regions. For example, 13 out of 28 mental traits have
265  significant genetic correlations with the brain region “tract parahippocampal part of cingulum”,
266  while the number is 2 out of 13 respiratory/circulatory diseases. Third, the left and right brain
267  hemispheres appear distinct for many diseases/traits. We computed an asymmetry ratio (A-ratio),
268  which is the number of significant genetic correlations with only one trait of a symmetrical trait
269  pair divided by the total number of significant genetic correlations detected, for each of the
270  diseases/traits. There are many cases with a very large A-ratio, such as post-traumatic stress
271  disorder and coronary atherosclerosis; meanwhile, there are salient cases with a very small A-ratio,
272 such as sleep duration and high blood pressure. In addition to the global patterns, numerous
273 specific understandings about the diseases can be updated. For example, previous studies reported
274  statistically insignificant genetic correlations between the brain region “superior fronto-occipital
275  fasciculus” and major depressive disorder (p~0.1)*3, and between the brain region “superior
34.

276  cerebellar peduncle” and cannabis use disorder (p~0.2)""; in both cases we identified six image

277  traits in the corresponding brain region showing significant genetic correlations with the
13
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278  corresponding disease. Five image traits in the brain region “tract middle cerebellar peduncle” are
279  newly identified to have genetic correlations with the disease “shortness of breath walking on level
280  ground”; interestingly, the same five traits are found to show genetic correlations with high blood
281  pressure. For the traits educational attainment, cognitive performance and intelligence, there are
282  nine, six and four newly identified brain regions, respectively. The rich novel information

283  provided here would be of tremendous value for revealing the brain basis of the traits/diseases.
284
285  Distinct dimensionality of P2 and P"8 reveals a trait coding rule

286  Using UBHDD we estimated the genetic component 7% and non-genetic component 7"¢ for each
287  of the traits examined in yeasts and humans. Combining all 7® of the yeast traits (or human brain
288 traits) forms P®, the estimated genetic subspace of the yeast (or human brain) phenotype space.
289  Similarly, combining all 7" forms P"¢, the estimated non-genetic subspace. We then examined
290 the latent dimensions in P® and P"¢, respectively. Using principal component analysis (PCA) we
291  obtained the number of top PCs that explain 85% variance of a subspace. The cutoff (85% variance)
292  was chosen because it approximated well the actual dimensionality of PS in the simulated
293  phenotype space analyzed in Fig. 2a-d (Fig. S6). We found that, with the increase of trait sampling,
294  the number of PC dimensions is rapidly saturated for P® but not for P"¢ (Fig. 6a-b), highlighting
295  the distinct dimensionality between P® and P". The observed dimensionality disparity is

296  consistent with the underlying theory of UBHDD.

297 To show how the dimensions of P# and P"¢ are used by the traits we calculated the gradient

298  between the number of sampled traits (r1) and the number of obtained dimensions (np), denoted

14
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299  as Ang / Any, . With the increase of dimensionality the gradient rapidly increases to be large for P¢

300  but remains small for P"¢, suggesting the P® dimensions are recurrently used by the traits while the
301  P"t dimensions tend to be trait-specific (Fig. 6¢-d). Consistently, the pairwise correlation of 7%,
302  which reflects dimension sharing between traits, is much larger than that of 7"¢ (Fig. 6e-h).
303  Therefore, in both the yeast and human brain phenotype space the traits are coded by a rather small
304 set of common dimensions that are determined by genotype and numerous trait-specific

305  dimensions that are shaped by non-genetic factors.
306
307  Discussion

308 Inspired by the evolutionary ‘cost of complexity’ theory in this study we designed a dimension
309  decomposition method for separating subspaces of distinct dimensionality. We applied the method
310 to a yeast phenotype space and a human brain phenotype space, respectively, to separate genetic
311  subspace from non-genetic subspace. The separation results were then validated by available
312 benchmarks. Despite the success, we cautioned that the results are just consistent with the

35,36

313  evolutionary theory; resolving the debates on the theory’”>®, which is beyond the scope of this

314  study, requires further works.

315 The goal of this study is to find how traits are coded in phenotype space. Our analyses
316  suggest phenotypic traits are coded by a limited number of genetically determined common
317 dimensions and unlimited trait-specific dimensions that are shaped by non-genetic factors. The
318 trait coding rule learned here underlies a phenome-based strategy for identifying the genetic

319  component of a phenotypic trait (Fig. 61). In addition to what we have presented, the strategy may

15
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320  help guide trait selection in future phenome mapping by gauging the captured genetic and non-
321  genetic dimensions; it may also apply to the studies on the macroevolution of morphospace to

322 extract the evolutionarily conserved genetic effects!'>!437,

323 There are a few technical issues worth discussing. First, the UBHDD method depends on
324  dense sampling of a phenotype space. We may use a down-sampling strategy to assess the
325 sufficiency of trait sampling. We found the overall performance of UBHDD for the yeast traits is
326  nearly saturated (Fig. S7a); however, the performance for the human brain traits is sensitive to
327  down-sampling (Fig. S7b), suggesting the current sampling of the brain space is still insufficient.
328  Second, the uncorrelation thresholds (Ry) used in this study may not be ideal. In principle, a
329  smaller Ry is always helpful for avoiding the effects of non-genetic dimensions, which, however,
330  would leave too few traits for conducting UBHDD. We found a good assessment of the threshold
331 by examining the learned UBHDD functions. In our cases, the coefficients (Co) in the learned
332 UBHDD function of a focal trait are not explained by the marginal correlations (Mc) of the
333 explanatory variables (traits) to the focal trait (Fig. S8). In other words, the performance of
334  UBHDD does not rely on those traits with stronger marginal correlation to the focal trait. In future,
335  we may optimize Ry threshold trait by trait by considering the number of remaining traits under a
336  given threshold as well as the relationship between Mc and Co. Third, only two phenotype spaces
337  are examined. The generality of the findings should be further tested in more complex phenotype
338  spaces. The last, but not the least, UBHDD offers a novel strategy for dealing with the “curse of
339  dimensionality’*®3°. Different from the conventional dimension reduction methods such as PCA,
340 UBHDD works by assuming two types of latent dimensions in the space/system of interest. It is
341  conceivable that, like phenotype space, many complex systems can be partitioned into a sub-

342  system determined by intrinsic factors and another sub-system shaped by extrinsic factors, the
16
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343  former of which is of rather low dimensionality while the latter is composed of myriad dimensions.

344  Hence, UBHDD could be a generally useful tool for studying a complex system.
345

346  Methods

347  Yeast segregant population (seg-population)

348  We study a panel of segregants of a yeast cross (S. cerevisiae strain BY x strain RM) generated by
349  aprevious study 2. A total of 1,008 segregants are available with genotypes, among which 815
350  were phenotyped '®. The obtained 405 phenotypic traits measure the areas and circumferences,
351 the elliptical approximation, brightness, thickness, axis length, neck width, neck position, bud
352  position, axis ratio, cell size ratio, outline ratio, proportion of budded cells, proportion of small
353  budded cells, segment distances between mother tip, bud tip, middle point of neck, center of
354  mother and bud, nuclear gravity centers, nuclear brightest points, angles between segments, and
355  soon. The phenotyping was conducted for two clones of each segregant, and the trait values are

356  Z-score transformed.
357  Yeast single-gene-deletion population (del-population)

358 A previous study ?7 has conducted similar phenotyping for 4718 yeast mutants each lacking a non-
359  essential gene (del-population). The 405 traits in the seg-population are also available in the del-
360  population. These traits in the del-population are scaled based on the mean and standard deviation

361 in the seg-population to make models obtained from the two populations comparable.

362 UK Biobank

17
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363  We collect the 870 brain MRI phenotypes and related covariates (measuring center, age, sex,
364  weight, home location and MRI system parameters) in UK Biobank®®, of which 675 image-derived
365  phenotypes (IDPs) measured by dMRI are chosen for UBHDD modelling, heritability estimation
366 and QTL mapping. A few missing values in covariates are imputed by linear regression with brain
367  phenotypes. A total of 25,957 White English without kinship and with genotypes are chosen. We
368  conduct normalization on each of the 675 traits (R package, ‘bestNormalize’) and exclude the
369  contribution of covariates by linear regression (R, ’Im’). These traits are subject to following
370  analysis including UBHDD, estimation of narrow-sense heritability and QTL mapping. We also
371  obtain the genotypes for the subjects above. The pipeline is as follows. First, we use the software
372 ‘qctool’ to extract SNPs (imputation score >0.8, MAF >0.01, genotype calling probability >0.9
373  and biallelic) for the 25,957 subjects above. Second, we use PLINK (beta 6.24, 6 Jun 2021) to
374  extract SNPs (MAF >0.01, missing proportion of SNPs <0.1, Hardy-Weinberg Equilibrium exact
375  test p-value >1e-6. After the two steps, we finally obtain the SNPs to be used to calculate narrow-

376  sense heritability and conduct QTL mapping.

377 Typical brain regions: anterior corona radiata (ACR); anterior limb of internal capsule
378  (ALIC); body of corpus callosum (BCC); cerebral peduncle (CP); cingulum cingulate gyrus (CGC);
379  cingulum hippocampus (CGH); corticospinal tract (CST); external capsule (EC); fornix (FX);
380 fornix cres+stria terminalis (Fx/ST); genu of corpus callosum (GCC); inferior cerebellar peduncle
381  (ICP); medial lemniscus (ML); middle cerebellar peduncle (MCP); pontine crossing tract (PCT);

382  posterior corona radiata (PCR); posterior limb of internal capsule (PLIC); posterior thalamic
383  radiation (PTR); retrolenticular part of internal capsule (RLIC); sagittal stratum (SS); splenium of

384  corpus callosum (SCC); superior cerebellar peduncle (SCP); superior corona radiata (SCR);

18
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superior fronto-occipital fasciculus (SFO); superior longitudinal fasciculus (SLF); uncinate

fasciculus (UNC).
Estimation of broad-sense heritability (H?) and PC in yeast
A focal trait is modelled by linear mixed model (LMM) 2 as
T, =+ Zu, +e, “4)

where 7; is a focal trait, £ is the population mean, 7 is the design matrix indicating which

segregant each replicate belongs to, o, is a vector of random effect, and ¢ is a vector of residuals.

The variance of the foal trait is decomposed into genetic effect (O ; ) and environmental effect

(o2). H?is then estimated as

H=—*— )

The random effect estimated for each segregant is defined as P°. The R package ‘Ime4’ is used.

Standard error is estimated by Jackknife.
Estimation of narrow-sense heritability (/4?) in yeast

A focal trait is modelled by LMM 26 as

T=u+Zu +e,, (6)

where Za is the identity matrix, U, is a vector of random effect, ,, ~ N(0,.452), and €, is a

vector of residuals. The variance structure of the trait is formulated as
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402 ol =Acl + 1o (7)

403  where 4 is estimated as the relatedness matrix, / is the identity matrix, o> and 2 are additive

404  variance and residual variance, respectively. Then, narrow-sense heritability (/%) is estimated as

405 W= (8)

406  The R package ‘rrBLUP’ is used and standard error is estimated by Jackknife for yeast traits.
407 QTL mapping in yeast

408 In yeast we follow the pipeline used in a previous study 2°. The association between a focal trait
409  and a focal SNP is calculated as LOD score defined by —n(In(1-R?)/2In(10)), where n is the number
410  of non-missing segregants and R is the Pearson’s R. The threshold is determined by 1000 times
411  shuffling of segregants. The strongest SNPs larger than the threshold in each chromosome are
412  defined as QTLs. Total two rounds of QTL calling are conducted. The first round is conducted at
413  the original traits and the second round is conducted at the residuals of the original traits. The R

414  package ‘qtl’ is used.
415  QTL mapping, heritability and genetic correlation in humans

416  In human, we use the widely used software GCTA*’ to conduct QTL mapping. The threshold p is
417  set to 5e-8. Clumping analysis is conducted by PLINK (beta 6.24, 6 Jun 2021) with the same p.
418  The heritability of brain image traits is estimated by the R package ‘HDL’*. We collect the
419  summary statistics of 78 traits/diseases with heritability larger than 0.01 estimated by ‘HDL’ from
420  Center for Neurogenomics and Cognitive Research, Psychiatric Genomics Consortium, Social

421  Science Genetic Association Consortium, UK Biobank and GWAS Catalog (Table S1). The
20
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422  genetic correlations between brain image traits and 78 diseases/traits are estimated by ‘HDL’
423  (Benjamini-Hochberg correction for multiple testing). Genetic correlations between mental traits

424  are calculated by ‘HDL’.
425  Uncorrelation-based high-dimensional dependence (UBHDD) modelling

426  The model is formulated as

427 T,=> bT+e,, 9)

J EU[

428  where T} is i trait, b; is the j coefficient, &, is the residual vector and U, contains the indices of

429  uncorrelated traits of 7;. Then, we can obtain the estimated genetic component as

430 TE=>"bT, (10)

Jeu;
431  and the estimated non-genetic component as

432 I =T-T¢ (11)

1

433 In yeast, the 815 samples are divided into a training subset with 715 samples and a testing subset
434  with 100 samples. Then, a focal trait is modelled in the training subset. The prediction
435  performance of the learned function was assessed as the R? between predicted and observed trait
436  values in the testing subset. Ten-fold cross validation and LASSO regularization are used to avoid
437  overfitting (R package ‘glmnet’). Standard error is estimated by 20 repeats. In brain, the 25957
438  samples are randomly divided into 10 subsets with equal size, each time a subset is selected as a
439  testing set and the others as a training set, and a focal trait is modelled in training set. The

440  prediction performance of the learned function is assessed as R? between predicted and observed
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441  trait values in the testing set. Ten-fold cross validation and LASSO regularization are used to
442  avoid overfitting (Python package ‘glmnet’). Standard error is estimated by ten-fold cross
443  validation. In simulated phenotype space and seg-population, the uncorrelation thresholds are set
444  based on t-test with multiple-testing correction (p=0.01/(n-1) where n is the number of traits. In
445  del-population, the threshold is set the same with that of seg-population to be comparable. In

446  human brain, the threshold is set to be 0.15 by referring to the threshold in seg-population.

447 To control for potential technical bias, we also conduct shuffling analysis. For a focal trait
448  T;in Eq. (9), we keep its uncorrelated traits 7; unchanged and shuffle 7; among individuals. Then,

449  the same modelling process is conducted.
450 Comparison between UBHDD and PCA in simulated structured population

451  We first simulated a structured population (Supplementary Note III). Then, we apply UBHDD to
452  the structured population and obtain the P2. Next, we apply PCA to the structured population and

453  keep the top PCs with explained variance up to the mean of those of UBHDD (the mean of

454 variances of T*). Finally, we recalculate the explained variance for each of simulated traits based

455  on the kept top PCs.
456  Identical Score

457  To evaluate the consistency of two variables, we can display them in a scatter plot. Then, the
458  variance can be decomposed into two components, one along the straight line y=x and another
459  along the straight line y=-x. This is similar to PCA except the transformed coordinate axes are
460  pre-defined. The larger the variance of the component along y=x is, the more consistent the two

461  variables are. The variance of the component along y=x is formulated as
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||Tdel,f _ Ly ”2
2 i i
462 Uy:x =1- 2(||T;del,f ||2 N ||7;del,¢)||2) s (12)

463  where Y;del’f is the genetic component of a focal trait in del-population estimated by the function

464  (f;) learned in seg-population; T is the genetic component of a focal trait in del-population

1

2

465  estimated by the function (¢;) learned in del-population. We name the o

identity score to

466  evaluate the robustness of P# obtained by UBHDD between the two distinct yeast populations.
467  Dimensionality estimation by PCA

468  For a subspace P* or P"¢, we conduct PCA after scaling (Z-score transformation). The number of

469  top PCs with explained variance up to 85% is estimated as the dimensionality of the subspace.
470
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571  Figure legends
572 Fig. 1. The underlying theory of UBHDD

573  (a,b): In each panel there are three non-parallel and non-perpendicular vectors (a, f, #) shown in
574  a two-dimensional plane defined by the X and Y axes. Vector # can always be expressed as a
575 linear combination of vectors a and £ no matter whether the angle 6, (62) between # and a () is

576  small (i.e., correlated) as in panel a, or close to g (i.e., uncorrelated) as in panel b, where 0 <

577 64,0, < g Note that, with two traits represented by two vectors, the correlation (Pearson’s R)

578  between the two traits is equal to the cosine of the angle (f) between the two vectors (i.e., R =
579  cosf).

580 (c¢): Three non-parallel and non-perpendicular vectors in a three-dimensional space are shown, in
581  which 7 is nearly perpendicular to the XY-plane and thus uncorrelated to « and f. In contrast to
582  panel b, here 7 can no longer be expressed as a linear combination of a and /S because # owns a
583  unique dimension (Z-axis).

584  (d): Uncorrelated vectors have a moderate probability of sharing the same dimensions in a space
585  oflow dimensionality. The probability of sharing dimensions depends the dimensionality of space
586  (N), the dimensionality of each trait (k), and the correlation level (Pearson’s R?, 0<R?<1) of the
587 two vectors. Based on a general geometric deduction (Supplementary Note II), the probability
588  would converge to one when R* converges to one, and to zero when N converges to infinity. Here
589 the probability trajectories as a function of R? are shown for N=10, 100 and 1000, respectively,
590  with k=2 for both vectors. For a very small R? the probability approaches zero for N=1000 but
591 remains a moderate level for N=10.

592  (e): A simple example shows how UBHDD would work. A trait 7"is formed by two dimensions
593  of PY (X and Y) and one NG-dimension of PN¢ (¢), where the dimensionality N is small for PS but
594  very large for PNC. Following the theoretical deduction in panel d, the correlated traits of 7 would
595 have the same G- and NG- dimensions as 7. Hence, the best model of predicting 7 using its
596  correlated traits would still be a linear function of X, Y and ¢. In other words, the G- and NG-
597 dimensions are not separable using correlated traits. In contrast, the uncorrelated traits of 7 would
598 likely share G-dimensions but not NG-dimensions with 7 because of the dimensionality disparity
599  between PY and PNC. As a consequence, the best model of predicting T using its uncorrelated
600 traits would represent only the genetic component of 7.

601
602  Fig. 2. Separation of 7 from 7" by UBHDD in simulated phenotype spaces.

603  (a): In the simulated phenotype space the number of obtained dimensions is saturated much more
604  rapidly in PO (NV,=10) than in PNS (>=10,000) as a function of trait sampling. Error bar represents
605  the 95% confidence interval estimated by 100 replicates of trait sampling.

606  (b): The probability of sharing P° dimensions remains constantly high for traits with various levels
607  of correlation. In contrast, the probability of sharing PN dimensions rapidly converges to zero for
608 traits of low correlation. The threshold Ry ~= 0.15 (0.147) is used for defining uncorrelated traits
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609 in the simulated phenotype space, which corresponds to p = 0.01 after correction for multiple
610  testing. Error bar shows the standard error.

611  (c): The T® obtained by UBHDD is highly correlated with the actual genetic component 7 of the
612  simulated traits. As a control, the correlation between 7°¢ and 79 is also shown. A total of 1,000
613 traits are examined and standard box plots are used to display the data. The p-value is computed
614 by paired t-test.

615  (d): The variance of T® in the simulated population is similar to the variance of 75, the actual
616  broad-sense heritability (H?) of a trait in the population. Each dot represents a simulated trait and
617  atotal of 1,000 traits are shown.

618  (e): The structure of a simulated structured phenotype space composed of 1,000 traits, with two
619  large clusters comprising 300 and 200 highly correlated traits, respectively. Each dot represents a
620 trait.

621  (f): UBHDD has robust performance in the structured phenotype space, evidenced by the high
622  similarity between the variance of 7% and the variance of 76. Each dot represents a trait and a total
623  of 1,000 traits are shown.

624  (g): PCA is unable to reveal the genetic component of traits in the structured phenotype space.
625  The top 2 PCs of the 1000 traits are used to model each trait (77°), with the total explained variance
626  comparable to that of 7°. However, T overfits the traits of the two large clusters and underfits
627  the other traits.

628
629  Fig. 3. Separation of 73 from 7"¢ by UBHDD for 405 yeast traits.

630  (a): A summary of the yeast phenome data. The yeast segregant population is generated by a cross
631 of two S. cerevisiae strains (BY and RM). A total of 405 phenotypic traits are characterized for
632  each of 815 segregants, with two clones examined for each segregant.

633  (b): A schematic diagram of a yeast cell with landmarks for describing the shape or position of the
634  cell wall and nuclei of the mother and daughter cells.

635  (c¢): Two strategies used for separating the genetic component from the non-genetic component of
636  a quantitative trait. The genotype-based linear mixed model (LMM) is a classical strategy, and
637  the resulting components are denoted as 79 and TV°. The phenome-based UBHDD, which requires
638  no genotype information, is proposed in this study; the resulting components are denoted as 7% and
639 T8,

640  (d): Substantial trait variance is captured by 7®. The inset shows the results of shuffling analyses
641 that serve as a negative control for the UBHDD signals. Note that the total variance of a trait is
642  one.

643  (e-f): The T® estimated by UBHDD is highly similar to the 79 derived from LMM. As a control,
644  T"¢is distinct from 7°. The panels e shows the details of a randomly selected trait (C11.1_A), and
645  the panel f shows the summary for the 405 traits.

27


https://doi.org/10.1101/2022.09.29.510032
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.29.510032; this version posted September 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

646  (g): The variance of T% is similar to the variance of 7S, the broad-sense heritability of T estimated
647 by LMM.

648  (h): The narrow-sense heritability (h%) of T# is generally larger than that of 7. Each dot represents
649  atrait and 405 yeast traits are examined.

650  (i): There are more QTLs detected in 7% than 7"¢. Each dot represents a trait and 405 traits are
651  examined (with 20 traits on the line of y=x). The dots are plotted with jitter for visual
652  distinguishability.

653  (j): For a given trait the 7® function learned in the segregant population can be compared with the
654  T® function learned in another yeast population comprising 4,718 gene deletion strains, which
655  assesses the robustness of UBHDD.

656  (Kk): For arandomly selected trait C11.1_A, the two functions produce highly similar 7% in the gene
657  deletion strains, with an identity score = 0.88. The identity score is defined as the variance
658  component along y=x in the scatter plot. Each dot represents a gene deletion strain and 4,718
659  strains are examined.

660  (I): Density distribution of the identity scores of the 405 yeast traits.
661

662  Fig. 4. Separation of 73 from 7"¢ by UBHDD for 675 human brain image traits.

663  (a): A summary of the human brain phenome data. Here the typical brain regions in the classical
664  brain region atlas of Johns Hopkins (used in UK biobank) are shown. For example, ACR is short
665  for anterior corona radiate and others are listed in Methods.

666  (b): Substantial trait variance is captured by 7®. The inset shows the results after randomly
667  shuffling the individuals. Note that the total variance of a trait is one.

668  (c): The /2 of T® is generally larger than that of 7. Each dot represents a trait.
669  (d): There are more QTLs detected in 7% than 7"¢. Each dot represents a trait.

670  (e): The left-right similarity is invariably stronger in 7% than 7"¢, suggesting non-genetic factors be
671  the major source of brain left-right asymmetry. The similarity is measured by Pearson’s R*
672  between a symmetrical trait pair. A total of 297 trait pairs are examined.

673

674 Fig. 5. Novel genetic correlations revealed between brain image traits and mental
675  traits/diseases.

676  (a): The numbers of statistically significant genetic correlations with the 675 brain image traits (7
677 versus 7®) identified for each of mental traits/diseases. In general there are more genetic
678  correlations identified with 7% than with 7. The ‘gcor’ is an abbreviation of genetic correlation.
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679  (b): The numbers of 7®-specific, 7-specific and shared genetic correlations for each of the mental
680 traits. Five mental traits with no genetic correlations identified are excluded, leaving 28 that will
681  be further examined.

682  (c): Same as the panel b, except for respiratory/circulatory diseases.

683  (d): All genetic correlations here identified between brain regions and the mental traits are shown.
684  Each grid is a 9-box grid with each box representing a type of measure indicated at the bottom left
685 corner. The colored dots show 7®-specific genetic correlations, with the left/right hemisphere
686  information provided. The grey square show all genetic correlations detected by 7. The ‘A-ratio’
687  measures the number of genetic correlations with only one trait of a symmetrical trait pair divided
688 by the total number of genetic correlations with all brain image traits. The ‘Count’ measures the
689  total number of genetic correlations in a brain region relative to the sum of all brain regions.

690  (e): Same as the panel d, except for respiratory/circulatory diseases.
691
692  Fig. 6. Distinct dimensionality of P& and P"S.

693  (a-b): The number of latent dimensions (np) in P# and P"¢, respectively, as a function of the number
694  of sampled traits (nt) for yeast (a) and human brain (b). The np is estimated as the number of top
695  principal components that explain 85% variance of the sampled traits. Error bar represents the 95%
696  confidence interval estimated by 100 replicates of trait sampling.

697  (c-d): The number of additional traits per additional dimension (Ant/Anp) is constantly high in P#
698  but small in P"¢ for both yeast (c) and human brain (d). This suggests P¢ dimensions be recurrently
699  used to code the traits while P"¢ dimensions tend to be trait-specific.

700  (e-f): The genetic component (7%) of the traits often show correlation due to the common P*
701  dimensions. The Pearson’s R of 7® for all trait pairs is shown for yeast and human brain phenome,
702 respectively. The two vertical red lines mark -0.1<R<0.1.

703  (g-h): The non-genetic component (77¢) of the traits shows little correlation, echoing the fact that
704  P"¢ dimensions are trait-specific. The Pearson’s R of 7"¢ for all trait pairs is shown for yeast and
705  human brain phenome, respectively. The two vertical red lines mark -0.1<R<0.1.

706  (i): A phenome-based strategy (UBHDD) is proposed to decompose the genetic and non-genetic
707  components of quantitative traits, which complements the kinship- or genotype-based
708  conventional strategy.

709
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Supplementary Note I
Non-genetic variation of complex traits can result from human definitions

Assuming a complex trait (7) is independently contributed by genetic factors (G) and

a random noise (£), we have

T=u+G+E, (1)
where 4 #0 isthemean. Then, assuming the cube of 7'is also defined as a complex
trait, we have

T’ =(u+G+E) :3>,L12{;{+G+E+l(G+E)2+312 (G+E)3}—2,u3, (2)
u 7

where new terms (G +E)* and (G+E)’ are created by human definition. The new

terms will contribute to the non-genetic variation.

Let us think the simplest situation, where g =5 (make sure 7'is positive), G is just

a binary QTL encoded as {-1,1} with frequency equal to 0.5 and E follows standard

normal distribution. A focal trait is defined by Eq. (1).

We conduct simulation and obtain the broad-sense heritability (H?) of T and T° by

linear mixed model (the same with that in Methods), shown as

075
|

——
L
~ w
I o
Lo [
W —
o ——
[ [
T T

Therefore, human definitions can be a source of non-genetic variation.
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Supplementary Note II

The probability of two traits with the same dimensions

We achieve this estimation by transforming this problem into a geometric model of probability.
We will first derive the general expression and then give the closed form in a specific condition.
First, consider a general condition where two k-dimensional unit vectors o and S with angle equal
to 6 share i dimensions in an N-dimensional space (i.e., a and f each has k non-zero entries and N-

k zero entries, sharing i non-zero entries), assuming [ <k < and0 <@ <Z without loss of
2

generality. In this condition, the first vector o has a form like (...q,..q, ..q,..q,..q, ..a, ..)
which has & terms not equal to zero and the second f has a form like (.5, ...b, .., .b,..b, ..b, ...)

which also has k terms not equal to zero. Both of a and f have i terms not equal to zero in
common i dimensions. Thus,

ﬁ i

c059:c0s<a,,b’>:a—= a, b (1)
el %"

Lete, =(q,,a,,....a,), B, =(b,,b,,....h,) ai||=4/af+...+af =7, and ||ﬂl.||=,/b,lz+...+bf =7.

Thus,
cosO=a,f, = ||al. || || B, || cos&=nr, cosé, (2)

where o<§<% is the angle of o; and ;. Dueto 0<cos@<1,0<r <1, 0<r, <1, thus,
0<cos@<cos&<l1 3)

and

0<cosf<r <l (4)
Set 7, =r, we obtain the geometric distribution of a as
Sk,i(r)zAi(r)Ak—i( V=72 ), (5)

where A4(7) denotes the superficial area of an i-dimensional sphere with radius equal to » .

Because ¢; is the projected vector of a in the subspace of £, combining with Eq. (2), the projected
vector f’ of S on ¢; satisfies
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81|28 cose=S20 _ 058 ©)
e
and
cos < a,’?ﬁ >= aiﬂ = ”al””ﬂ'” = COSH = ||ﬁ' ) (7)

el Teallal
where a,f = ”0‘1”” Jij '|| and || ,B” =1. Therefore, we obtain the geometric distribution of j as

L= A =81 = 4,125 9 ®)

Therefore, combing Eq. (5) and Eq. (8), we obtain the geometric estimation for certain a and
given k, i and 6 as

[ 8,0, (dr.i<k

CAMA_ (1-cos’0),i=k

Vi 9)

Therefore, the probability of two k-dimensional traits sharing the same dimensions (y) in an N-
dimensional space given marginal correlation (cos6) is estimated as
CyV,
PrN,k,B(lP) = 2k—1 Nk (10)
j 1 2k—j v j—k
2 G

=k

When 6 — 0, thereare r —>1 andS,_ (r)—>0. Becausel, (1)< 4, (V- cos’ §), we get

1
Vk,i < Icos@Sk’i(r)dr

—0,(k#i,0—0) (11)
Vik 4,()

Therefore, given N
Pry . o(¥)—>1,(60 —>0) (12)
k

When N — oo, there are % — 0, (j > k), therefore, given 6
N

Pry  o(¥) —>0,(N — ) (13)
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Next, consider a specific situation where two 2-dimensional vectors in an N-dimensional space.
We can obtain

C.(4r) RY/4 3z

PrN,Z,R(\P): > 3 = = 5
C2(47)+C(8—8cosh) 3z+2(N—-2)(1—cosf) 37+2(N—2)1-R)

(14)

where R=cosf. Itis obvious that Eq. (14) still satisfies Eqgs. (12-13). Eq. (14) is used to generate
the trajectories in Fig. 1d. From Eq. (12-13) we can obtain three corollaries:

Corollary 1: Pr(¥)—1 if R> >1land N <N,, where Ny is a finite number.
Corollary 2: Pr(¥)—0 if N—>w and 0<R’<R’, where R’<I.
Corollary 3: Pr(¥)> Pr, if N<N, and 0<R’ <R}, where Pr,>0.

Remarks. First, although Pr, , ,(\¥) represents the probability of sharing the same dimensions,

it’s hard to achieve linear deduction when few dimensions are shared in a very large space among
a limited trait sample. Second, the corollary 1 guarantees that linear combinations of G-
dimensions can be generated by linear combinations of correlated traits. Corollary 1 combined
with corollary 2-3 underlies the success of UBHDD since UBHDD only constrains the correlation
between dependent variable (response) and independent variables (predictor) but not that among
independent variables.

References
1 Li, S. concise formulas for the area and volume of a hyperspherical cap.pdf. Asian Journal of Mathematics
and Statistics 4, 5 (2011).
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Supplementary Note 111

Phenotype space simulation

The basic parameters to conduct phenotype space simulation include the number of trait (n), the
number of samples or population size (m=1000), the number of G-dimensions (N1=10, 20, 50, 100)
and the number of NG-dimensions (N>=10,000), the number of G-dimensions per trait (d1=N1/2),
the number of NG-dimensions per trait (d>=N1/2), broad-sense heritability (&) or the variance of
genetic component for standardized traits (>~ U (0, 1)). A space can be expressed by a set of
bases. When the set of bases are orthogonal, the dimensionality of the space is equal to the
number of the set of bases. Assume PC is independent of PN®,  Then, the matrix composed of
G-dimensions and NG-dimensions (m by (N1+N2)) is randomly generated by standard multivariate
normal distribution (R package ‘MASS’). Then, the first N1 column vectors are set to be G-
dimensions, the set of orthogonal bases of P° subspace and the left N> column vectors are set to
be NG-dimensions, the set of orthogonal bases of PNC subspace. For a focal trait (77), the PC

component (T;G ) is formulated as

I°=%a,G,, (1)
j
and the PNS component (Y;NG) is formulated as
N,
Y;NG :ZkaGk . (2)
k

Then, T° and ﬂNG are standardized. Finally, the focal trait (7;) is generated by

1

T =T +(1=¢)I™ (3)

1

The coefficients a; and by are randomly sampled from normal distribution N (0, 1) and random N;-
d1 coefficients of a; and random N»- d> coefficients of by are set to be zero. The cp satisfies

2
() *)

where H is the H? of T; assigned at the parameter setting. For each simulated 7; defined by

1

Eq. (3), we also define a set of correlated traits of 7; as

Tz",j = ci,jT;G +(1- Ci; )ZNG ) (5)
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where ¢, ; is the coefficient controlling the j" correlated trait (T, ;) of T and satisfies

2

(©)

) 27
¢, +(-¢))

) c

i,j

where H 1.2’ ;is the H? corresponding to the j'™ correlated trait (1 ;) of T and satisfies
|H?, ~ H?| <02 @

In an unstructured population, the number of correlated traits defined for each trait is the same
(cluster size equal to 10 in the study).  If we set different numbers of correlated traits to different
traits, we can simulate a structured population (50 clusters of size 10, one cluster of size 200 and
one cluster of size 300 in this study). For N1=10, 20, 50 and 100, we set n=1000 and m=1000;
for Ni=100, we also set n=2000 and m=1000 and »=2000 and m=2000 to observe apparent
separation between PY and PNC. Notably, di and d» are set without loss of generality assuming
that they are sufficiently small relative to Na.
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identification test
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Cognitive Research
Mental Educational attainment Social Science Genetic 30038396  0.071 0.00158 0.00E+00
Association Consortium
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Mental all of the tim’e GCTA 34737426 0.0277  0.0022 1.12E-35
Mental Schizophrenia Psychiatric Genomics Consortium 31740837 0.4285 0.01193 1.18E-282
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Miscellaneous Arthropathy NOS GCTA 34737426 0.0211 0.001 4.07E-109
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Miscellaneous ooftgfirnnon‘ep'the“a' cancer oo 34737426 00183 00015 448E-33
Miscellaneous Benign neoplasm of colon  GCTA 34737426 0.0145 0.0012 2.98E-33
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culatory blood pressure

Medication for cholesterol,
blood pressure, diabetes, or
take exogenous hormones: GCTA 34737426 0.0543 0.0027 1.43E-88
Cholesterol lowering
medication

Medication for cholesterol,
Respiratory/cir blood pressure, diabetes, or

Respiratory/cir
culatory
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culatory take exogenous hormones:

Blood pressure medication

Breathing problems
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holiday: Yes
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Fig. S1. Decomposition of P° and P"® by UBHDD in simulated phenotype spaces.

(a) The dimensionality of P® subspace (N,) =20, polulation size (m) =1000 and the number of traits (n) =1000.
(b) N, =50, m=1000 and n=1000. (c) N,=100, m=1000 and n =1000. (d) N, =100, m=1000 and n =2000.

(e) N, =100, m=2000 and n =2000. (c) shows a poor perfomance but can be improved with increasing number
of traits (d) and further achieves higher performance with the increasing of population size (e).
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Fig. S2. Broad-sense heritability (H*) and narrow-sense heritability (h*) of 405 yeast traits.
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Fig. S3. Robust estimation of T° by UBHDD under different uncorrelation thresholds (R, ) in yeast.
The threshold 0.147 corresponds to p=0.01 with Bonferroni correction in yeast seg-population. The estimated

genetic variance is robust to the threshold used to conduct UBHDD.
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Fig. S4. Robust estimation of 79 by UBHDD under different uncorrelation thresholds (R, ) in human brain.
The threshold 0.15 is used in human brain phenotype space. The estimated genetic variance is robust to the
threshold used to conduct UBHDD.
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Fig. S5. More QTLs found in 7* than in T for dMRI traits with strong enrichment of additive variance in T*.

(a) Narrow-sense heritability ( #%) is estimated by GCTA for 675 brain dMRI traits (R package ‘apcluster’).

The #* of T®is generally larger than that of 7". Red color shows the traits with at least two-fold enrichment.

(b) The T* generally has larger number of QTLs than T for traits with at least two-fold enrichments in (a).

(c) The Manhattan plots of T and T* are shown for an exemplar trait, weighted-mean MD in tract acoustic

radiation (left). For the original trait T, 7 QTLs are mapped across 4 chromosomes but 35 QTLs across 13 chromosomes
are mapped for the genetic component T* estimated by UBHDD. The dotted line shows the threshold p=5x10"°.

(d) These extra QTLs in T¢ often show strong but statistically insignificant signal in original trait T.
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Fig. S6. Dimensionality estimation of P° and P" subspaces by PCA.
We conduct PCAin P° or P™ and define the top PCs with 85% of variance explained as PC dimensions.

Different cutoffs (75%, 85%, 95% and 100%) are compared. The error bars shown in lines represent 95%
quantile of 100 sampling repeats. Middle lines represents the mean value. Notably, the number of PC
dimensions in P" is always underestimated because PCA tends to merge independent dimensions in a
population of small same size, especially when the dimensionality of PN® subspace is larger than the rank
of P" matrix. In the contrary, the PC dimensionality of P9 well approximates the actual dimensionality
of the subsapce at the 85% cutoff. When larger cutoffs (95%, 100%) are chosen, the PC dimensions of
P? subspace will be overestimated. The overestimation happends because weak noise of modelling is
falsely taken as dimensions. To facilitate comparison, the actual dimensionality in P¢ or PN® subspaces
are plotted the same with Fig. 1f. The seemingly aberrant error bar at the 100% cutoff is also contributed
by the PCA method (R function princomp return different number of PCs with 100% variance explained

when traits are reordered.).
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Fig. S7. Evaluation for the number of traits saturated with G-dimensions in phenotype spaces.

The accurate separation of genetic and non-genetic subspaces not only depends on rational uncorrelation
threshold but also enough trait sampling. We conduct the same learning process for different proportions
of trait subsets from 10% to 100%, say, a down-sampling strategy. Then, the distribution of UBHDD
performance (R? the variance of genetic component estimated by UBHDD) is compared among these
trait subsets. (a) shows the distributions of yeast. (b) shows the distributions of human brain.
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Fig. S8. Criterion for uncorrelation threshold (R)).

For a focal trait (T;), we can learn a linear function buit on its uncorrelated traits (T)) : T, = ijTj. To judge the
uncorrelation threshold (R,), we provide a statistical test as follows. First, we calculate the square of marginal
correlation (MC?) between the focal trait and each of its uncorrelated traits. Then, we calculate the square of
coefficients (Co?) for each uncorrelated trait in the learned linear function, say, bf. An optimal threshold is
determinded if the R? between MC? and Co? is insignificant, meanwhile, taking the number of uncorrelated
traits available into account. (a-b) are results of UBHDD model. (a) shows the result under the R, used in
this study for an example trait in yeast. (b) shows the results for all of the 405 traits in yeast. As a contrast,
we also learned linear functions based on total traits (Total model) for each of the 405 traits in yeast. (c-d) are
results of Total model. (c) shows the same example trait in yeast based on Total model. (d) shows the
results for all of the 405 traits in yeast based on Total model. Similarly, the results in human brain are shown
for UBHDD model (e-f) and Total model (g-h). The red line denotes the adjusted p=0.01 to the number of traits.
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