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Abstract 8 

Genotype and phenotype are both the themes of modern biology.  Despite the elegant protein 9 

coding rules recognized decades ago in genotype, little is known on how traits are coded in a 10 

phenotype space (P).  Mathematically, P can be partitioned into a subspace determined by genetic 11 

factors (PG) and a subspace affected by non-genetic factors (PNG).  Evolutionary theory predicts 12 

PG is composed of limited dimensions while PNG may have infinite dimensions, which suggests a 13 

dimension decomposition method, termed as uncorrelation-based high-dimensional dependence 14 

(UBHDD), to separate them.  We applied UBHDD to a yeast phenotype space comprising ~400 15 

traits in ~1,000 individuals.  The obtained tentative PG matches the actual genetic components of 16 

the yeast traits, explains the broad-sense heritability, and facilitates the mapping of quantitative 17 

trait loci, suggesting the tentative PG be the yeast genetic subspace.  A limited number of latent 18 

dimensions in the PG were found to be recurrently used for coding the diverse yeast traits, while 19 

dimensions in the PNG tend to be trait specific and increase constantly with trait sampling.  A 20 

similar separation success was achieved when applying UBHDD to the UK Biobank human brain 21 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510032doi: bioRxiv preprint 

mailto:hexiongl@mail.sysu.edu.cn
https://doi.org/10.1101/2022.09.29.510032
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 
 
 

phenotype space that comprises ~700 traits in ~26,000 individuals.  The obtained PG helped 22 

elucidate the genetic versus non-genetic origins of the left-right asymmetry of human brain, and 23 

reveal several hundred novel genetic correlations between brain regions and dozens of mental 24 

traits/diseases.  In sum, by developing a dimension decomposition method we show that 25 

phenotypic traits are coded by a limited number of genetically determined common dimensions 26 

and unlimited trait-specific dimensions shaped by non-genetic factors, a rule fundamental to the 27 

emerging field of phenomics.   28 

 29 

Introduction   30 

The physical world is both macroscopic and microscopic, the former of which is the manifestation 31 

of the latter.  Physicists adopt two rather parallel frameworks to describe the world: classical 32 

mechanics for the macroscopic layer and quantum mechanics for the microscopic layer1.  For 33 

biologists, the macroscopic layer is phenotype and the microscopic layer is genotype.   The 34 

mainstream of current biology adopts a bottom-up thinking: because genotype is the basis of 35 

phenotype, we rely on the former to understand the latter2.  However, efforts of applying genotype 36 

to understanding phenotype appear successful only for rather simple phenotypic traits3-5.  Hence, 37 

a possible complement to biologists is, like what the physicists used to do, to discover the rules 38 

working at the macroscopic layer (i.e, phenotype)6,7.  As a matter of fact, many interesting patterns 39 

regarding the dimension sharing, coordination, and trade-off among phenotypic traits have been 40 

discovered in various organisms8-14.  By focusing on specific traits and specific organisms these 41 

discoveries are, however, far from sufficient for constituting a satisfactory framework for 42 
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understanding phenotype.  The recent availability of large-scale phenomic data in a variety of 43 

species15-18 motivated us to seek for more general rules working at the phenotypic layer.   44 

 Phenotype is affected by both genetic and non-genetic (including environmental) factors.  45 

In quantitative genetics a phenotypic trait can be mathematically partitioned as19:  46 

 G NGT T T= + , (1) 47 

where T represents a focal trait, TG is the genetic component fully determined by genotype, and 48 

TNG is the residual component likely affected by environmental variables, developmental plasticity, 49 

measuring errors, human definitions (Supplementary Note I), and so on, collectively termed as 50 

non-genetic factors.  TG contributes to the broad-sense heritability ( G
2 2 2σ σ= TT

H ) of T, and can 51 

be estimated by mathematical methods such as linear mixed model (LMM) when biological 52 

replicates are available19.  T, TG and TNG are all vectors if a population is examined.  When all 53 

phenotypic traits of a species are considered, we have:  54 

 G NGP P P= + ,   (2) 55 

where P represents the phenotype space formed by all T, PG
 represents the genetic subspace formed 56 

by all TG, and PNG represents the residual (or non-genetic) subspace formed by all TNG.  57 

Specifically, P, PG and PNG are each a multi-dimensional linear space described by a matrix in 58 

which columns are trait vectors.  Following the matrix notation there exists a set of orthogonal 59 

base vectors in PG, which we term as G-dimensions.  Linear combinations of the G-dimensions 60 

can form all vectors in PG (i.e., all TG).  Similarly, the NG-dimensions in PNG can be defined.  61 

Importantly, the number of G- (or NG-) dimensions is larger than or equal to the rank of PG (or 62 
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PNG).  Accordingly, each trait T can be formulated as a linear function of the G-dimensions and 63 

NG-dimensions: 64 

 = j j k k
j k

T a G b NG+∑ ∑ ,  (3) 65 

where Gj represents the jth G-dimension in PG, NGk represents the kth NG-dimension in PNG, and 66 

aj and bk represent the coefficients of Gj and NGk, respectively.  Apparently,  G
j j

j
T a G=∑  and 67 

NG
k k

k
T b NG=∑ .  To be clear, throughout the paper the genetic component and non-genetic 68 

component of a trait T refer strictly to TG and TNG, respectively. 69 

 The Fisher’s geometric model of evolutionary adaptation20, together with the extension 70 

by Orr21 and others22,23, predicts that the number of G-dimensions in PG should be rather small 71 

for extant organisms.  This is because a very large number of G-dimensions would hinder the 72 

adaptation to new environments, leading to extinction of the organisms, a phenomenon termed as 73 

‘cost of complexity’21.  Although the model does not predict exactly how small the number of G-74 

dimensions should be24, we are still strongly inspired to hypothesize a limited number of G-75 

dimensions25.  In sharp contrast, the number of NG-dimensions in PNG would be infinite.  This is 76 

because of the variability of environment, the randomness of developmental plasticity and 77 

measuring error, and the arbitrariness of human definition7.  The enormous complexity resulting 78 

from the infinite dimensionality of PNG suggests the necessity of separating PG from PNG before 79 

revealing any rules in P.   80 

In this study we started with asking how marginal correlation represents high-dimensional 81 

dependence in a multi-dimensional space.  The answer enabled us to design a geometric method 82 
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for separating two subspaces with distinct dimensionality.  The method offered a phenome-based 83 

approach to separating a yeast phenotype space and a human brain phenotype space, respectively.  84 

The separated tentative genetic and non-genetic subspaces were then validated by available 85 

experimental benchmarks.  The separation results revealed a rather simple geometric rule on how 86 

traits are coded in phenotype space.  The results also provided novel phenotypic understandings 87 

not only within human brain but between brain regions and a variety of mental traits/diseases.  In 88 

addition, this study developed a novel dimension decomposition strategy for dealing with the 89 

“curse of dimensionality”.   90 

   91 

Results 92 

Theory of uncorrelation-based high-dimensional dependence (UBHDD) 93 

Let’s first consider a two-dimensional space with three non-parallel and non-orthogonal vectors α, 94 

β, and η (Fig. 1).  Based on linear algebra, η can always be expressed as a linear function of α and 95 

β no matter whether α and β have strong (Fig. 1a) or little (Fig. 1b) marginal correlation (for 96 

simplicity, correlation, measured by Pearson’s correlation coefficient throughout the paper) with 97 

η.  This is because the three vectors share the two dimensions (X-axis and Y-axis).  In the three-98 

dimensional space shown in Fig. 1c, η has a unique dimension (Z-axis).  As a result, η can no 99 

longer be expressed by α and β despite the same correlations with α and β as in Fig. 1b.  Hence, 100 

dimension sharing but not correlation underlies the high-dimensional dependence among vectors.   101 

 We derived the probability ( ( )Pr Ψ ) of two k-dimensional vectors that share the same 102 

dimensions in an N-dimensional space as a function of their correlation (Supplementary Note II).  103 
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Without loss of generality, the probability trajectories of N = 10, 100, and 1,000 are shown, 104 

respectively, for two vectors with k = 2 (Fig. 1d).  There are three corollaries: First, the probability 105 

converges to one if the two vectors have a strong correlation for any finite N, which is formulated 106 

as ( ) 1Pr Ψ →  if 2 1R → and 0N N< , where N0 is a finite number.  Second, with the decrease of 107 

the correlation between the two vectors, the probability converges to zero in a space of very large 108 

N, which is formulated as ( ) 0Pr Ψ →  if N →∞  and 2 2
u0 < <R R , where 2

u 1≤R .  Third, with the 109 

decrease of the correlation between the two vectors, the probability remains reasonably high in a 110 

space of small N (e.g., N = 10), which is formulated as 0( )Pr PrΨ >  if 0N N<  and 2 2
u0 R R< < , 111 

where 0 0Pr ≥ .  Accordingly, given an Ru with a small absolute value, uncorrelated vectors 112 

( 2 2
u<R R ) would have a rather high probability of sharing dimensions in a space of small N but 113 

little probability in a space of very large N.  This suggests a strategy for separating PG from PNG, 114 

the former of which is hypothesized to have a limited N while the latter an infinitely large N.   115 

Fig. 1e shows how to model a trait T that is a function of G-dimensions and NG-dimensions 116 

in a given P.  Because its correlated traits likely have the same G- and NG-dimensions as T, the 117 

best model of predicting T by its correlated traits would approximate the whole T.  This way, the 118 

genetic and non-genetic components of T cannot be separated.  In contrast, the uncorrelated traits 119 

of T would likely share G-dimensions but not NG-dimensions with T according to the deduction 120 

in Fig. 1d, if the dimensionality N is much smaller in PG than in PNG.  As a result, the best model 121 

of predicting T by its uncorrelated traits would represent only the genetic component of T.  The 122 

residue (T - Tpredict) would then be the non-genetic component TNG.  Because P is a collection of 123 

traits, by conducting such uncorrelation-based separation for every trait in P we would achieve the 124 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510032doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510032
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 
 
 

separation of PG from PNG.  We term the method uncorrelation-based high-dimensional 125 

dependence (UBHDD).   126 

 127 

Validation of UBHDD using simulation 128 

To test if UBHDD can separate subspaces of distinct dimensionality, we simulated a space P that 129 

comprises a subspace PG with a small number of G-dimensions (N1=10) and another subspace PNG 130 

with a much larger number of NG-dimensions (N2=10,000) (Supplementary Note III).  The G-131 

dimensions and NG-dimensions are generated by standard multivariate normal distribution.  Each 132 

trait (T) is generated by random linear combination of the G-dimensions and NG-dimensions as 133 

given by Eq. (3), with the former representing TG and the latter representing TNG.  A total of 1,000 134 

traits are simulated in a population of 1,000 individuals.  Each trait is standardized such that the 135 

variance of TG equals to the broad-sense heritability (H2).  Combining all TG or all TNG forms the 136 

sampled PG or PNG, respectively.   137 

UBHDD is conducted as follows (Methods): For all possible trait pairs two traits are 138 

defined as uncorrelated if their Pearson’s 2 2
u<R R , where 2

u 0.02R ≈ , corresponding to p = 0.01 139 

(t-test with Bonferroni correction); with conventional machine learning framework (LASSO) we 140 

modeled a trait T using its all uncorrelated traits; the predicted vector and the residual vector, 141 

designated as Tg and Tng, approximate the genetic component TG and non-genetic component TNG, 142 

respectively; the resulting matrices containing all Tg or all Tng are called Pg or Png, approximating 143 

PG and PNG, respectively. 144 
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As expected, with the increase of trait sampling the number of sampled dimensions is much 145 

more rapidly saturated for PG than PNG (Fig. 2a).  We noted that the sampled dimensions in PNG 146 

would keep increasing if the dimensionality of PNG were infinitely large.  Two correlated traits 147 

often share both G-dimensions and NG-dimensions while two uncorrelated traits could share G-148 

dimensions but rarely NG-dimensions (Fig. 2b).  This suggests G-dimensions but not NG-149 

dimensions would underlie the signal of UBHDD.  Indeed, in all cases we found the Tg obtained 150 

by UBHDD highly correlated with TG, the actual genetic component of T (Fig. 2c).  The variance 151 

of Tg also matches well the variance of TG, the broad-sense heritability of T (Fig. 2d).  We also 152 

simulated spaces with N1 = 20, 50, or 100 (N2 remains unchanged), and obtained largely the same 153 

results (Fig. S1).  These analyses validated the capacity of UBHDD in separating PG from PNG.   154 

 It is worth noting that UBHDD is a method of dimension decomposition but not dimension 155 

reduction.  We compared UBHDD with PCA, a classical dimension reduction method, in a 156 

simulated P with structure.  The structured P was simulated as above except that two large clusters 157 

with strongly correlated members exist (Fig. 2e; Supplementary Note III).  UBHDD remains 158 

successful in separating PG from PNG, insensitive to the space structure (Fig. 2f).  However, PCA 159 

overfits the traits in the two large clusters and underfits the others (Fig. 2g; Methods).  The failure 160 

of PCA in separating PG from PNG is not surprising because PCA maximizes the explained variance 161 

of the top PCs and is therefore sensitive to data structure.   162 

 163 

Using UBHDD to separate a yeast phenotype space 164 

We examined a phenotype space comprising 405 morphological traits of the budding yeast 165 

Saccharomyces cerevisiae18.  The traits are measured in a population of 815 segregants, each of 166 
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which has two clones/replicates and known genotype26 (Fig. 3a).  The traits are typically about 167 

area, distance, angle, and brightness that describe the shape of mother cell and bud, the neck 168 

separating mother cell from bud, the localization of the nuclei in mother cell and bud, and so on, 169 

across different cell stages (Fig. 3b).  The narrow-sense heritability (h2) of the traits ranges from 0 170 

to 0.56 with a median of 0.15, and the broad-sense heritability (H2) ranges from 0 to 0.86 with a 171 

median of 0.42 (Fig. S2).  172 

Since biological replicates are available for the yeast phenome, we can use linear mixed 173 

model (LMM) to separate the TG from TNG for each of the traits.  Meanwhile, the separation could 174 

be done by UBHDD, which requires only phenome information according to the above theory and 175 

simulation results (Fig. 3c).  We will then use the results of LMM to benchmark UBHDD.   176 

We applied UBHDD to the 405 yeast traits and obtain for each of them the Tg and Tng 177 

(Methods).  The obtained Tg explains trait variance at a level ranging from 0.03 to 0.98, with a 178 

median=0.53 among all traits (Fig. 3d).  Hence, strong high-dimensional dependence between the 179 

uncorrelated yeast traits is observed.  To assess the potential false positive/background signals, we 180 

conducted shuffling analyses by randomly swapping the focal trait values among individuals while 181 

maintaining the uncorrelated traits unchanged (Methods).  We found virtually no trait variance 182 

explained (maximum=0.013 among all traits) by the Tg obtained in the shuffled dataset (Fig. 3d).  183 

Hence, technical biases in the UBHDD modeling process are negligible.  Notably, the results of 184 

the shuffling analyses are actually consistent with our intuition in the empirical world that 185 

uncorrelated objects are independent, which has a hidden assumption for infinite dimensionality.  186 

The observed strong UBHDD signals suggest a special set of latent dimensions underlying the 187 

yeast traits.   188 
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To test if the UBHDD signals represent actual genetic components, we applied LMM to 189 

separate TG from TNG for each trait by taking advantage of the replicate information (Methods).  190 

For most of the traits the UBHDD signal Tg is highly correlated to the actual genetic component 191 

TG (Fig. 3e-f).  The variance of Tg is comparable to the variance of TG, the broad-sense heritability 192 

estimated by LMM (Fig. 3g).  The results are robust against the Ru thresholds used for defining 193 

uncorrelated traits (Fig. S3).  As another critical test, we expect Tg should have a larger narrow-194 

sense heritability (h2) than Tng.  Indeed, in most case the h2 of Tg is larger than that of Tng, and also 195 

more QTLs were detected for Tg than Tng (Fig. 3h-i; Methods).  Nevertheless, Tg is not identical to 196 

TG.  The Tg estimation could be improved in a larger population that enables more robust UBHDD 197 

modelling; meanwhile, the TG estimation could be more accurate if there were more than two 198 

replicates.  Taken together, these results suggest the Tg obtained by UBHDD represents well the 199 

actual genetic components of the yeast traits.   200 

 201 

The separations by UBHDD are robust between two yeast populations 202 

In addition to the segregant population (seg-population), we also examined a yeast gene-deletion 203 

population (del-population) that contains ~5,000 S. cerevisiae strains each lacking a non-essential 204 

gene (Fig. 3j).  The same 405 traits are measured for each of the strains in the del-population27.  205 

We conducted UBHDD in the del-population and obtained the Tg and Tng for each of the traits 206 

(Methods).   We then compared the Tg functions learned in del-population with the Tg functions 207 

previously learned in seg-population (Methods).  Taking the trait C11.1_A as an example, when 208 

the Tg function learned in seg-population is applied to del-population, the Tg estimations are highly 209 

similar to the estimations by the Tg function learned in del-population, with an identity score = 210 
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0.88 (Fig. 3k; Methods).  The identity score of the 405 traits ranges from 0.29 to 0.99 with a 211 

median=0.82 (Fig. 3l), suggesting the genetic subspace obtained by UBHDD be robust between 212 

the two yeast populations.   213 

 214 

Using UBHDD to separate human brain phenotype space 215 

To test if UBHDD works in a more complex phenotype space, we examined UK Biobank human 216 

phenome.  We focused on the 675 image-derived phenotypes (IDPs) of brain generated by dMRI 217 

in 25,957 white British individuals without kinship and with genotype available (Fig. 4a; 218 

Methods)28.  These brain image traits represent nine different measures including fractional 219 

anisotropy (FA), intra-cellular volume fraction (ICVF), isotropic or free water volume fraction 220 

(ISOVF), mean diffusivity (MD), diffusion tensor mode (MO), orientation dispersion index (OD) 221 

and the three eigenvalues in a diffusion tensor fit (L1, L2 and L3) in up to 75 brain regions.   222 

 We applied UBHDD to the 675 brain image traits after excluding covariates and obtained 223 

for each of them the Tg and Tng (Methods).  The obtained Tg explains trait variance at a level 224 

ranging from 0.17 to 0.87, with a median=0.48 among all traits (Fig. 4b).  We conducted the same 225 

shuffling analysis as in yeast and again found virtually no trait variance (maximum=4e-4 among 226 

all traits) explained by the Tg obtained in the shuffled dataset (Methods).  The results are robust 227 

against the Ru thresholds for defining uncorrelated traits (Fig. S4).  Because there are, unlike yeasts, 228 

no clones (i.e., monozygotic twins) for most individuals, we couldn’t use LMM to estimate TG and 229 

broad-sense heritability.  Instead, we examined narrow-sense heritability.  Consistent with the 230 

findings in yeast, Tg in general has a larger h2 than Tng; there are also more QTLs detected in Tg 231 

than Tng (Fig. 4c-d; Methods).  Notably, for those traits with a strong enrichment of the additive 232 
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variance in Tg, the number of QTLs of Tg is even larger than that of the whole trait T, suggesting 233 

novel genetic basis revealed by focusing on Tg (Fig. S5).  These data suggest the Tg obtained here 234 

be at least enriched with the genetic components of the brain image traits.  The results have two 235 

immediate applications.   236 

 First, it is helpful for addressing a long-standing puzzle, namely, the relative contribution 237 

of genetic versus non-genetic factors to the left-right asymmetry of human brain29,30.  We examined 238 

all 297 symmetrical trait pairs each representing the same measure in two symmetrical brain 239 

regions.  For each trait pair we calculated the Pearson’s R2 of Tg and Tng, respectively, among the 240 

individuals.  In all trait pairs the R2 of Tg is much larger than that of Tng (Fig. 4e).  This finding 241 

suggests non-genetic factors be the major source of the brain asymmetry, highlighting 242 

environmental effects on asymmetry associated brain physiology and dysfunction.   243 

 Second, because of the enrichment of genetic component Tg should be particularly useful 244 

for identifying genetic correlations of the brain image traits with other traits including diseases.  245 

Such genetic correlations can inform the specific brain regions associated with or responsible for 246 

diseases, which would be valuable for diagnosis and/or therapy.  We calculated genetic 247 

correlations31 between the 675 brain image traits and a curated set of traits with required summary 248 

statistics32.  These traits include 33 common mental traits (including diseases and non-diseases), 249 

13 respiratory/circulatory diseases that are associated with autonomic nervous system, and 32 250 

miscellaneous diseases that do not seem to be tightly linked with brain (Methods; Table S1).  A 251 

large number of statistically significant genetic correlations (p<0.05 after Benjamini-Hochberg 252 

correction for multiple testing; Methods) were detected with two notable features (Fig. 5a-c):  First, 253 

the mental traits and the respiratory/circulatory diseases in general have more genetic correlations 254 
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with the brain image traits than the miscellaneous diseases.  Second, Tg performed much better 255 

than T in revealing genetic correlations.  The results in turn support the enrichment of Tg for genetic 256 

component.   257 

 To show more details we plotted all statistically significant genetic correlations for the 258 

mental traits and the respiratory/circulatory diseases, respectively (Fig. 5d-e).  There are a few 259 

global patterns: First, brain regions vary substantially in the number and profile of correlated 260 

diseases/traits.  For example, the brain region “fornix” has significant genetic correlation with only 261 

one disease Schizophrenia, while the region “superior fronto-occipital fasciculus” has significant 262 

genetic correlations with 19 diseases/traits.  Second, diseases/traits vary substantially in the 263 

number and profile of correlated brain regions.  For example, 13 out of 28 mental traits have 264 

significant genetic correlations with the brain region “tract parahippocampal part of cingulum”, 265 

while the number is 2 out of 13 respiratory/circulatory diseases.  Third, the left and right brain 266 

hemispheres appear distinct for many diseases/traits.  We computed an asymmetry ratio (A-ratio), 267 

which is the number of significant genetic correlations with only one trait of a symmetrical trait 268 

pair divided by the total number of significant genetic correlations detected, for each of the 269 

diseases/traits.  There are many cases with a very large A-ratio, such as post-traumatic stress 270 

disorder and coronary atherosclerosis; meanwhile, there are salient cases with a very small A-ratio, 271 

such as sleep duration and high blood pressure.  In addition to the global patterns, numerous 272 

specific understandings about the diseases can be updated.  For example, previous studies reported 273 

statistically insignificant genetic correlations between the brain region “superior fronto-occipital 274 

fasciculus” and major depressive disorder (p~0.1)33, and between the brain region “superior 275 

cerebellar peduncle” and cannabis use disorder (p~0.2)34; in both cases we identified six image 276 

traits in the corresponding brain region showing significant genetic correlations with the 277 
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corresponding disease.  Five image traits in the brain region “tract middle cerebellar peduncle” are 278 

newly identified to have genetic correlations with the disease “shortness of breath walking on level 279 

ground”; interestingly, the same five traits are found to show genetic correlations with high blood 280 

pressure.  For the traits educational attainment, cognitive performance and intelligence, there are 281 

nine, six and four newly identified brain regions, respectively.  The rich novel information 282 

provided here would be of tremendous value for revealing the brain basis of the traits/diseases.   283 

 284 

Distinct dimensionality of Pg and Png reveals a trait coding rule 285 

Using UBHDD we estimated the genetic component Tg and non-genetic component Tng for each 286 

of the traits examined in yeasts and humans.  Combining all Tg of the yeast traits (or human brain 287 

traits) forms Pg, the estimated genetic subspace of the yeast (or human brain) phenotype space.  288 

Similarly, combining all Tng forms Png, the estimated non-genetic subspace.  We then examined 289 

the latent dimensions in Pg and Png, respectively.  Using principal component analysis (PCA) we 290 

obtained the number of top PCs that explain 85% variance of a subspace.  The cutoff (85% variance) 291 

was chosen because it approximated well the actual dimensionality of PG in the simulated 292 

phenotype space analyzed in Fig. 2a-d (Fig. S6).  We found that, with the increase of trait sampling, 293 

the number of PC dimensions is rapidly saturated for Pg but not for Png (Fig. 6a-b), highlighting 294 

the distinct dimensionality between Pg and Png.  The observed dimensionality disparity is 295 

consistent with the underlying theory of UBHDD. 296 

 To show how the dimensions of Pg and Png are used by the traits we calculated the gradient 297 

between the number of sampled traits (nT) and the number of obtained dimensions (nD), denoted 298 
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as T Dn n∆ ∆ .  With the increase of dimensionality the gradient rapidly increases to be large for Pg 299 

but remains small for Png, suggesting the Pg dimensions are recurrently used by the traits while the 300 

Png dimensions tend to be trait-specific (Fig. 6c-d).  Consistently, the pairwise correlation of Tg, 301 

which reflects dimension sharing between traits, is much larger than that of Tng (Fig. 6e-h).  302 

Therefore, in both the yeast and human brain phenotype space the traits are coded by a rather small 303 

set of common dimensions that are determined by genotype and numerous trait-specific 304 

dimensions that are shaped by non-genetic factors. 305 

 306 

Discussion 307 

Inspired by the evolutionary ‘cost of complexity’ theory in this study we designed a dimension 308 

decomposition method for separating subspaces of distinct dimensionality.  We applied the method 309 

to a yeast phenotype space and a human brain phenotype space, respectively, to separate genetic 310 

subspace from non-genetic subspace.  The separation results were then validated by available 311 

benchmarks.  Despite the success, we cautioned that the results are just consistent with the 312 

evolutionary theory; resolving the debates on the theory35,36, which is beyond the scope of this 313 

study, requires further works.   314 

 The goal of this study is to find how traits are coded in phenotype space.  Our analyses 315 

suggest phenotypic traits are coded by a limited number of genetically determined common 316 

dimensions and unlimited trait-specific dimensions that are shaped by non-genetic factors.  The 317 

trait coding rule learned here underlies a phenome-based strategy for identifying the genetic 318 

component of a phenotypic trait (Fig. 6i).  In addition to what we have presented, the strategy may 319 
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help guide trait selection in future phenome mapping by gauging the captured genetic and non-320 

genetic dimensions; it may also apply to the studies on the macroevolution of morphospace to 321 

extract the evolutionarily conserved genetic effects12,14,37.   322 

 There are a few technical issues worth discussing.  First, the UBHDD method depends on 323 

dense sampling of a phenotype space.  We may use a down-sampling strategy to assess the 324 

sufficiency of trait sampling.  We found the overall performance of UBHDD for the yeast traits is 325 

nearly saturated (Fig. S7a); however, the performance for the human brain traits is sensitive to 326 

down-sampling (Fig. S7b), suggesting the current sampling of the brain space is still insufficient.  327 

Second, the uncorrelation thresholds (Ru) used in this study may not be ideal.  In principle, a 328 

smaller Ru is always helpful for avoiding the effects of non-genetic dimensions, which, however, 329 

would leave too few traits for conducting UBHDD.  We found a good assessment of the threshold 330 

by examining the learned UBHDD functions.  In our cases, the coefficients (Co) in the learned 331 

UBHDD function of a focal trait are not explained by the marginal correlations (Mc) of the 332 

explanatory variables (traits) to the focal trait (Fig. S8).  In other words, the performance of 333 

UBHDD does not rely on those traits with stronger marginal correlation to the focal trait.  In future, 334 

we may optimize Ru threshold trait by trait by considering the number of remaining traits under a 335 

given threshold as well as the relationship between Mc and Co.  Third, only two phenotype spaces 336 

are examined.  The generality of the findings should be further tested in more complex phenotype 337 

spaces.  The last, but not the least, UBHDD offers a novel strategy for dealing with the “curse of 338 

dimensionality”38,39.  Different from the conventional dimension reduction methods such as PCA, 339 

UBHDD works by assuming two types of latent dimensions in the space/system of interest.  It is 340 

conceivable that, like phenotype space, many complex systems can be partitioned into a sub-341 

system determined by intrinsic factors and another sub-system shaped by extrinsic factors, the 342 
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former of which is of rather low dimensionality while the latter is composed of myriad dimensions.  343 

Hence, UBHDD could be a generally useful tool for studying a complex system.   344 

 345 

Methods 346 

Yeast segregant population (seg-population) 347 

We study a panel of segregants of a yeast cross (S. cerevisiae strain BY × strain RM) generated by 348 

a previous study 26.  A total of 1,008 segregants are available with genotypes, among which 815 349 

were phenotyped 18.  The obtained 405 phenotypic traits measure the areas and circumferences, 350 

the elliptical approximation, brightness, thickness, axis length, neck width, neck position, bud 351 

position, axis ratio, cell size ratio, outline ratio, proportion of budded cells, proportion of small 352 

budded cells, segment distances between mother tip, bud tip, middle point of neck, center of 353 

mother and bud, nuclear gravity centers, nuclear brightest points, angles between segments, and 354 

so on.  The phenotyping was conducted for two clones of each segregant, and the trait values are 355 

Z-score transformed.   356 

Yeast single-gene-deletion population (del-population) 357 

A previous study 27 has conducted similar phenotyping for 4718 yeast mutants each lacking a non-358 

essential gene (del-population).  The 405 traits in the seg-population are also available in the del-359 

population.  These traits in the del-population are scaled based on the mean and standard deviation 360 

in the seg-population to make models obtained from the two populations comparable. 361 

UK Biobank 362 
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We collect the 870 brain MRI phenotypes and related covariates (measuring center, age, sex, 363 

weight, home location and MRI system parameters) in UK Biobank28, of which 675 image-derived 364 

phenotypes (IDPs) measured by dMRI are chosen for UBHDD modelling, heritability estimation 365 

and QTL mapping.  A few missing values in covariates are imputed by linear regression with brain 366 

phenotypes.  A total of 25,957 White English without kinship and with genotypes are chosen.  We 367 

conduct normalization on each of the 675 traits (R package, ‘bestNormalize’) and exclude the 368 

contribution of covariates by linear regression (R, ’lm’).  These traits are subject to following 369 

analysis including UBHDD, estimation of narrow-sense heritability and QTL mapping.  We also 370 

obtain the genotypes for the subjects above.  The pipeline is as follows.  First, we use the software 371 

‘qctool’ to extract SNPs (imputation score >0.8, MAF >0.01, genotype calling probability >0.9 372 

and biallelic) for the 25,957 subjects above.  Second, we use PLINK (beta 6.24, 6 Jun 2021) to 373 

extract SNPs (MAF >0.01, missing proportion of SNPs <0.1, Hardy-Weinberg Equilibrium exact 374 

test p-value >1e-6.  After the two steps, we finally obtain the SNPs to be used to calculate narrow-375 

sense heritability and conduct QTL mapping. 376 

Typical brain regions: anterior corona radiata (ACR); anterior limb of internal capsule 377 

(ALIC); body of corpus callosum (BCC); cerebral peduncle (CP); cingulum cingulate gyrus (CGC); 378 

cingulum hippocampus (CGH); corticospinal tract (CST); external capsule (EC); fornix (FX); 379 

fornix cres+stria terminalis (Fx/ST); genu of corpus callosum (GCC); inferior cerebellar peduncle 380 

(ICP); medial lemniscus (ML); middle cerebellar peduncle (MCP); pontine crossing tract (PCT); 381 

posterior corona radiata (PCR); posterior limb of internal capsule (PLIC); posterior thalamic 382 

radiation (PTR); retrolenticular part of internal capsule (RLIC); sagittal stratum (SS); splenium of 383 

corpus callosum (SCC); superior cerebellar peduncle (SCP); superior corona radiata (SCR); 384 
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superior fronto-occipital fasciculus (SFO); superior longitudinal fasciculus (SLF); uncinate 385 

fasciculus (UNC). 386 

Estimation of broad-sense heritability (H2) and PG in yeast 387 

A focal trait is modelled by linear mixed model (LMM) 26 as 388 

 
g g gµ= + +iT Z u e ,  (4) 389 

where Ti is a focal trait, µ is the population mean, 
gZ is the design matrix indicating which 390 

segregant each replicate belongs to, 
gu is a vector of random effect, and 

ge  is a vector of residuals.  391 

The variance of the foal trait is decomposed into genetic effect ( 2
gσ ) and environmental effect 392 

( 2
eσ ).  2H is then estimated as 393 

 
2
g2

2 2
g e

σ
σ σ

=
+

H   (5) 394 

The random effect estimated for each segregant is defined as PG.  The R package ‘lme4’ is used.  395 

Standard error is estimated by Jackknife. 396 

Estimation of narrow-sense heritability (h2) in yeast 397 

A focal trait is modelled by LMM 26 as 398 

 a a aµ= + +iT Z u e ,  (6) 399 

where aZ  is the identity matrix, au  is a vector of random effect, 2
a a~ N(0, )σu A , and ae  is a 400 

vector of residuals.  The variance structure of the trait is formulated as 401 
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 2 2 2
T a eσ σ σ= +A I ,  (7) 402 

where A is estimated as the relatedness matrix, I is the identity matrix, 2
aσ  and 2

eσ are additive 403 

variance and residual variance, respectively.  Then, narrow-sense heritability (h2) is estimated as 404 

 
2

2 a
2 2
a e

σ
σ σ

=
+

h   (8) 405 

The R package ‘rrBLUP’ is used and standard error is estimated by Jackknife for yeast traits.   406 

QTL mapping in yeast 407 

In yeast we follow the pipeline used in a previous study 26.  The association between a focal trait 408 

and a focal SNP is calculated as LOD score defined by –n(ln(1-R2)/2ln(10)), where n is the number 409 

of non-missing segregants and R is the Pearson’s R.  The threshold is determined by 1000 times 410 

shuffling of segregants.  The strongest SNPs larger than the threshold in each chromosome are 411 

defined as QTLs.  Total two rounds of QTL calling are conducted.  The first round is conducted at 412 

the original traits and the second round is conducted at the residuals of the original traits.  The R 413 

package ‘qtl’ is used. 414 

QTL mapping, heritability and genetic correlation in humans 415 

In human, we use the widely used software GCTA40 to conduct QTL mapping.  The threshold p is 416 

set to 5e-8.  Clumping analysis is conducted by PLINK (beta 6.24, 6 Jun 2021) with the same p.  417 

The heritability of brain image traits is estimated by the R package ‘HDL’41.  We collect the 418 

summary statistics of 78 traits/diseases with heritability larger than 0.01 estimated by ‘HDL’ from 419 

Center for Neurogenomics and Cognitive Research, Psychiatric Genomics Consortium, Social 420 

Science Genetic Association Consortium, UK Biobank and GWAS Catalog (Table S1).  The 421 
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genetic correlations between brain image traits and 78 diseases/traits are estimated by ‘HDL’ 422 

(Benjamini-Hochberg correction for multiple testing).  Genetic correlations between mental traits 423 

are calculated by ‘HDL’. 424 

Uncorrelation-based high-dimensional dependence (UBHDD) modelling 425 

The model is formulated as 426 

 +
i

i j j i
j U

T b T ε
∈

= ∑ ,  (9) 427 

where Ti is ith trait, bj is the jth coefficient, iε is the residual vector and iU contains the indices of 428 

uncorrelated traits of Ti.  Then, we can obtain the estimated genetic component as 429 

 g =
i

i j j
j U

T b T
∈
∑   (10) 430 

and the estimated non-genetic component as  431 

 ng g
i i iT T T= −   (11) 432 

In yeast, the 815 samples are divided into a training subset with 715 samples and a testing subset 433 

with 100 samples.  Then, a focal trait is modelled in the training subset.  The prediction 434 

performance of the learned function was assessed as the R2 between predicted and observed trait 435 

values in the testing subset.  Ten-fold cross validation and LASSO regularization are used to avoid 436 

overfitting (R package ‘glmnet’).  Standard error is estimated by 20 repeats.  In brain, the 25957 437 

samples are randomly divided into 10 subsets with equal size, each time a subset is selected as a 438 

testing set and the others as a training set, and a focal trait is modelled in training set.  The 439 

prediction performance of the learned function is assessed as R2 between predicted and observed 440 
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trait values in the testing set.  Ten-fold cross validation and LASSO regularization are used to 441 

avoid overfitting (Python package ‘glmnet’).  Standard error is estimated by ten-fold cross 442 

validation.  In simulated phenotype space and seg-population, the uncorrelation thresholds are set 443 

based on t-test with multiple-testing correction (p=0.01/(n-1) where n is the number of traits.  In 444 

del-population, the threshold is set the same with that of seg-population to be comparable.  In 445 

human brain, the threshold is set to be 0.15 by referring to the threshold in seg-population. 446 

To control for potential technical bias, we also conduct shuffling analysis.  For a focal trait 447 

Ti in Eq. (9), we keep its uncorrelated traits Tj unchanged and shuffle Ti among individuals.  Then, 448 

the same modelling process is conducted. 449 

Comparison between UBHDD and PCA in simulated structured population 450 

We first simulated a structured population (Supplementary Note III).  Then, we apply UBHDD to 451 

the structured population and obtain the Pg.  Next, we apply PCA to the structured population and 452 

keep the top PCs with explained variance up to the mean of those of UBHDD (the mean of 453 

variances of g
iT ).  Finally, we recalculate the explained variance for each of simulated traits based 454 

on the kept top PCs. 455 

Identical Score 456 

To evaluate the consistency of two variables, we can display them in a scatter plot.  Then, the 457 

variance can be decomposed into two components, one along the straight line y=x and another 458 

along the straight line y=-x.  This is similar to PCA except the transformed coordinate axes are 459 

pre-defined.  The larger the variance of the component along y=x is, the more consistent the two 460 

variables are. The variance of the component along y=x is formulated as 461 
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2del, del,
2
y=x 2 2del, del,

=1-
2( )

ϕ

ϕ
σ

−

+

f
i i

f
i i

T T

T T
,  (12) 462 

where del, f
iT is the genetic component of a focal trait in del-population estimated by the function 463 

(fi) learned in seg-population; del,
iT ϕ is the genetic component of a focal trait in del-population 464 

estimated by the function (φi) learned in del-population.  We name the 2
y=xσ  identity score to 465 

evaluate the robustness of Pg obtained by UBHDD between the two distinct yeast populations.   466 

Dimensionality estimation by PCA 467 

For a subspace Pg or Png, we conduct PCA after scaling (Z-score transformation).  The number of 468 

top PCs with explained variance up to 85% is estimated as the dimensionality of the subspace. 469 

 470 
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Figure legends 571 

Fig. 1.  The underlying theory of UBHDD 572 

(a,b): In each panel there are three non-parallel and non-perpendicular vectors (α, β, η) shown in 573 
a two-dimensional plane defined by the X and Y axes.  Vector η can always be expressed as a 574 
linear combination of vectors α and β no matter whether the angle θ1 (θ2) between η and α (β) is 575 
small (i.e., correlated) as in panel a, or close to 𝜋𝜋

2
 (i.e., uncorrelated) as in panel b, where 0 <576 

𝜃𝜃1,𝜃𝜃2 < 𝜋𝜋
2
.  Note that, with two traits represented by two vectors, the correlation (Pearson’s R) 577 

between the two traits is equal to the cosine of the angle (θ) between the two vectors (i.e., R = 578 
cosθ). 579 

(c): Three non-parallel and non-perpendicular vectors in a three-dimensional space are shown, in 580 
which η is nearly perpendicular to the XY-plane and thus uncorrelated to α and β.  In contrast to 581 
panel b, here η can no longer be expressed as a linear combination of α and β because η owns a 582 
unique dimension (Z-axis).   583 

(d): Uncorrelated vectors have a moderate probability of sharing the same dimensions in a space 584 
of low dimensionality.  The probability of sharing dimensions depends the dimensionality of space 585 
(N), the dimensionality of each trait (k), and the correlation level (Pearson’s R2, 0<R2<1) of the 586 
two vectors.  Based on a general geometric deduction (Supplementary Note II), the probability 587 
would converge to one when R2 converges to one, and to zero when N converges to infinity.  Here 588 
the probability trajectories as a function of R2 are shown for N=10, 100 and 1000, respectively, 589 
with k=2 for both vectors.  For a very small R2 the probability approaches zero for N=1000 but 590 
remains a moderate level for N=10.  591 

(e): A simple example shows how UBHDD would work.  A trait T is formed by two dimensions 592 
of PG (X and Y) and one NG-dimension of PNG (ξ ), where the dimensionality N is small for PG but 593 
very large for PNG.  Following the theoretical deduction in panel d, the correlated traits of T would 594 
have the same G- and NG- dimensions as T.  Hence, the best model of predicting T using its 595 
correlated traits would still be a linear function of X, Y and ξ .  In other words, the G- and NG- 596 
dimensions are not separable using correlated traits.  In contrast, the uncorrelated traits of T would 597 
likely share G-dimensions but not NG-dimensions with T because of the dimensionality disparity 598 
between PG and PNG.   As a consequence, the best model of predicting T using its uncorrelated 599 
traits would represent only the genetic component of T. 600 

 601 

Fig. 2.  Separation of Tg from Tng by UBHDD in simulated phenotype spaces. 602 

(a): In the simulated phenotype space the number of obtained dimensions is saturated much more 603 
rapidly in PG (N1=10) than in PNG (N2=10,000) as a function of trait sampling.  Error bar represents 604 
the 95% confidence interval estimated by 100 replicates of trait sampling. 605 

(b): The probability of sharing PG dimensions remains constantly high for traits with various levels 606 
of correlation.  In contrast, the probability of sharing PNG dimensions rapidly converges to zero for 607 
traits of low correlation.  The threshold Ru ~= 0.15 (0.147) is used for defining uncorrelated traits 608 
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in the simulated phenotype space, which corresponds to p = 0.01 after correction for multiple 609 
testing.  Error bar shows the standard error. 610 

(c): The Tg obtained by UBHDD is highly correlated with the actual genetic component TG of the 611 
simulated traits.  As a control, the correlation between Tng and TG is also shown.  A total of 1,000 612 
traits are examined and standard box plots are used to display the data.  The p-value is computed 613 
by paired t-test. 614 

(d): The variance of Tg in the simulated population is similar to the variance of TG, the actual 615 
broad-sense heritability (H2) of a trait in the population.  Each dot represents a simulated trait and 616 
a total of 1,000 traits are shown. 617 

(e): The structure of a simulated structured phenotype space composed of 1,000 traits, with two 618 
large clusters comprising 300 and 200 highly correlated traits, respectively.  Each dot represents a 619 
trait. 620 

(f): UBHDD has robust performance in the structured phenotype space, evidenced by the high 621 
similarity between the variance of Tg and the variance of TG.  Each dot represents a trait and a total 622 
of 1,000 traits are shown.   623 

(g): PCA is unable to reveal the genetic component of traits in the structured phenotype space.  624 
The top 2 PCs of the 1000 traits are used to model each trait (Tpc), with the total explained variance 625 
comparable to that of TG.  However, Tpc overfits the traits of the two large clusters and underfits 626 
the other traits.   627 

 628 

Fig. 3.  Separation of Tg from Tng by UBHDD for 405 yeast traits. 629 

(a): A summary of the yeast phenome data.  The yeast segregant population is generated by a cross 630 
of two S. cerevisiae strains (BY and RM).  A total of 405 phenotypic traits are characterized for 631 
each of 815 segregants, with two clones examined for each segregant.   632 

(b): A schematic diagram of a yeast cell with landmarks for describing the shape or position of the 633 
cell wall and nuclei of the mother and daughter cells.   634 

(c): Two strategies used for separating the genetic component from the non-genetic component of 635 
a quantitative trait.  The genotype-based linear mixed model (LMM) is a classical strategy, and 636 
the resulting components are denoted as TG and TNG.  The phenome-based UBHDD, which requires 637 
no genotype information, is proposed in this study; the resulting components are denoted as Tg and 638 
Tng.   639 

(d): Substantial trait variance is captured by Tg.  The inset shows the results of shuffling analyses 640 
that serve as a negative control for the UBHDD signals.  Note that the total variance of a trait is 641 
one.   642 

(e-f): The Tg estimated by UBHDD is highly similar to the TG derived from LMM.  As a control, 643 
Tng is distinct from TG.  The panels e shows the details of a randomly selected trait (C11.1_A), and 644 
the panel f shows the summary for the 405 traits.  645 
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(g): The variance of Tg is similar to the variance of TG, the broad-sense heritability of T estimated 646 
by LMM.   647 

(h): The narrow-sense heritability (h2) of Tg is generally larger than that of Tng.  Each dot represents 648 
a trait and 405 yeast traits are examined. 649 

(i): There are more QTLs detected in Tg than Tng.  Each dot represents a trait and 405 traits are 650 
examined (with 20 traits on the line of y=x).  The dots are plotted with jitter for visual 651 
distinguishability. 652 

(j): For a given trait the Tg function learned in the segregant population can be compared with the 653 
Tg function learned in another yeast population comprising 4,718 gene deletion strains, which 654 
assesses the robustness of UBHDD.   655 

(k): For a randomly selected trait C11.1_A, the two functions produce highly similar Tg in the gene 656 
deletion strains, with an identity score = 0.88.  The identity score is defined as the variance 657 
component along y=x in the scatter plot.  Each dot represents a gene deletion strain and 4,718 658 
strains are examined.   659 

(l): Density distribution of the identity scores of the 405 yeast traits. 660 

 661 

Fig. 4.  Separation of Tg from Tng by UBHDD for 675 human brain image traits.   662 

(a): A summary of the human brain phenome data.  Here the typical brain regions in the classical 663 
brain region atlas of Johns Hopkins (used in UK biobank) are shown.  For example, ACR is short 664 
for anterior corona radiate and others are listed in Methods. 665 

(b): Substantial trait variance is captured by Tg.  The inset shows the results after randomly 666 
shuffling the individuals.  Note that the total variance of a trait is one.   667 

(c): The h2 of Tg is generally larger than that of Tng.  Each dot represents a trait.   668 

(d): There are more QTLs detected in Tg than Tng.  Each dot represents a trait. 669 

(e): The left-right similarity is invariably stronger in Tg than Tng, suggesting non-genetic factors be 670 
the major source of brain left-right asymmetry.  The similarity is measured by Pearson’s R2 671 
between a symmetrical trait pair.  A total of 297 trait pairs are examined.   672 

 673 

Fig. 5.  Novel genetic correlations revealed between brain image traits and mental 674 
traits/diseases. 675 

(a): The numbers of statistically significant genetic correlations with the 675 brain image traits (T 676 
versus Tg) identified for each of mental traits/diseases.  In general there are more genetic 677 
correlations identified with Tg than with T.  The ‘gcor’ is an abbreviation of genetic correlation.  678 
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(b): The numbers of Tg-specific, T-specific and shared genetic correlations for each of the mental 679 
traits.  Five mental traits with no genetic correlations identified are excluded, leaving 28 that will 680 
be further examined.   681 

(c): Same as the panel b, except for respiratory/circulatory diseases.  682 

(d): All genetic correlations here identified between brain regions and the mental traits are shown.  683 
Each grid is a 9-box grid with each box representing a type of measure indicated at the bottom left 684 
corner.  The colored dots show Tg-specific genetic correlations, with the left/right hemisphere 685 
information provided.  The grey square show all genetic correlations detected by T.  The ‘A-ratio’ 686 
measures the number of genetic correlations with only one trait of a symmetrical trait pair divided 687 
by the total number of genetic correlations with all brain image traits.  The ‘Count’ measures the 688 
total number of genetic correlations in a brain region relative to the sum of all brain regions. 689 

(e): Same as the panel d, except for respiratory/circulatory diseases.  690 

 691 

Fig. 6.  Distinct dimensionality of Pg and Png. 692 

(a-b): The number of latent dimensions (nD) in Pg and Png, respectively, as a function of the number 693 
of sampled traits (nT) for yeast (a) and human brain (b).  The nD is estimated as the number of top 694 
principal components that explain 85% variance of the sampled traits.  Error bar represents the 95% 695 
confidence interval estimated by 100 replicates of trait sampling. 696 

 (c-d): The number of additional traits per additional dimension (ΔnT/ΔnD) is constantly high in Pg 697 
but small in Png for both yeast (c) and human brain (d).  This suggests Pg dimensions be recurrently 698 
used to code the traits while Png dimensions tend to be trait-specific. 699 

(e-f): The genetic component (Tg) of the traits often show correlation due to the common Pg 700 
dimensions.  The Pearson’s R of Tg for all trait pairs is shown for yeast and human brain phenome, 701 
respectively.  The two vertical red lines mark -0.1<R<0.1. 702 

(g-h): The non-genetic component (Tng) of the traits shows little correlation, echoing the fact that 703 
Png dimensions are trait-specific.  The Pearson’s R of Tng for all trait pairs is shown for yeast and 704 
human brain phenome, respectively.  The two vertical red lines mark -0.1<R<0.1. 705 

(i): A phenome-based strategy (UBHDD) is proposed to decompose the genetic and non-genetic 706 
components of quantitative traits, which complements the kinship- or genotype-based 707 
conventional strategy.   708 

    709 
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Supplementary Note I 

Non-genetic variation of complex traits can result from human definitions 

Assuming a complex trait (T) is independently contributed by genetic factors (G) and 

a random noise (E), we have 

T G Eµ= + + , (1) 

where 0µ ≠  is the mean.  Then, assuming the cube of T is also defined as a complex 

trait, we have 

3 3 2 2 3 3
2

1 1( ) 3 ( ) ( ) 2
3

T G E G E G E G Eµ µ µ µ
µ µ

 
= + + = + + + + + + − 

 
,  (2) 

where new terms 2( )G E+  and 3( )G E+  are created by human definition.  The new 

terms will contribute to the non-genetic variation.   

Let us think the simplest situation, where 5µ = (make sure T is positive), G is just 

a binary QTL encoded as {-1,1} with frequency equal to 0.5 and E follows standard 

normal distribution.  A focal trait is defined by Eq. (1). 

We conduct simulation and obtain the broad-sense heritability (H2) of T and T3 by 

linear mixed model (the same with that in Methods), shown as 

Therefore, human definitions can be a source of non-genetic variation. 
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Supplementary Note II 

The probability of two traits with the same dimensions 
We achieve this estimation by transforming this problem into a geometric model of probability. 
We will first derive the general expression and then give the closed form in a specific condition. 
First, consider a general condition where two k-dimensional unit vectors α and β with angle equal 
to θ share i dimensions in an N-dimensional space (i.e., α and β each has k non-zero entries and N-

k zero entries, sharing i non-zero entries), assuming 
1

2
Ni k +

≤ ≤ and 0
2
πθ< <  without loss of 

generality.  In this condition, the first vector α has a form like (
1 2 3 1

... ... ... ... ... ... ...
i i kl l l l l la a a a a a

+
 ) 

which has k terms not equal to zero and the second β has a form like (
1 2 3 1

... ... ... .. ... ... ...
i k il l l l s sb b b b b b

−
) 

which also has k terms not equal to zero.  Both of α and β have i terms not equal to zero in 
common i dimensions.  Thus, 

1
cos cos , =

j j

i

l l
j

a bαβθ α β
α β =

= < >= ∑ (1) 

Let
1 2

( , ,..., )
ii l l la a aα =  ,

1 2
( , ,..., )

ii l l lb b bβ =  ,
1

2 2
1...

ii l la a rα = + + =   and 
1

2 2
2...

ii l lb b rβ = + + =  .   

Thus, 

1 2cos = cos = cosθ α β α β ξ ξ=i i i i r r , (2) 

where 0
2
πξ< <  is the angle of αi and βi.  Due to 0 cos 1θ< < , 10 1r< ≤ , 20 1r< ≤ , thus, 

0 cos cos 1θ ξ< ≤ ≤   (3) 

and 

10 cos 1rθ< ≤ ≤  (4) 

Set 1r r= , we obtain the geometric distribution of α as 

2
, ( )= ( ) ( 1 )k i i k iS r A r A r− − ,  (5) 

where ( )iA r   denotes the superficial area of an i-dimensional sphere with radius equal to r 1.  

Because αi is the projected vector of α in the subspace of β, combining with Eq. (2), the projected 
vector β’ of β on αi satisfies 
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cos cos' = cos = θ θβ β ξ
α

=i
i r

(6) 

and 

' coscos , '
α βα β θα β β

α β α β
< >= = = =ii

i
i i r

, (7) 

where 'α β α β=i i and 1β = .  Therefore, we obtain the geometric distribution of β as 

2
2

, 1 1 2

cos( ) ( 1 ' ) ( 1 )k i k kL r A A
r

θβ− −= − = − (8) 

Therefore, combing Eq. (5) and Eq. (8), we obtain the geometric estimation for certain α and β 
given k, i and θ as 

1

, ,cos
,

2
1

( ) ( ) ,

(1) ( 1 cos ),
θ

θ−

  <= 
 −  =

∫ k i k i
k i

k k

S r L r dr i k
V

A A i k
(9) 

Therefore, the probability of two k-dimensional traits sharing the same dimensions (ψ) in an N-
dimensional space given marginal correlation (cosθ) is estimated as 

,
, , 2 1

2
2 2 ,2

( )
k
N k k

N k k
j k j j k

N j j k k k j
j k

C V
Pr

C C C V
θ −

− −
− −

=

Ψ =

∑
(10) 

When 0θ → , there are 1r →  and , ( ) 0k iS r → .  Because 2
, 1( ) ( 1 cos )k i kL r A θ−≤ − , we get

1

,, cos

,

( )
0, ( , 0)

(1)
θ θ< →  ≠ →∫ k ik i

k k k

S r drV
k i

V A
 (11) 

Therefore, given N 

, , ( ) 1, ( 0)N kPr θ θΨ →  →  (12) 

When N → ∞ , there are 0, ( )
k
N
j

N

C j k
C

→  > , therefore, given θ

, , ( ) 0, ( )N kPr Nθ Ψ →  → ∞  (13)
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Next, consider a specific situation where two 2-dimensional vectors in an N-dimensional space. 
We can obtain 

2

,2, 2 3

(4 ) 3 3( ) =
(4 ) (8 8cos ) 3 2( 2)(1 cos ) 3 2( 2)(1 )

N
N R

N N

CPr
C C N N R

π π π
π θ π θ π

Ψ = =
+ − + − − + − −

, (14) 

where R=cosθ.  It is obvious that Eq. (14) still satisfies Eqs. (12-13).  Eq. (14) is used to generate 
the trajectories in Fig. 1d.  From Eq. (12-13) we can obtain three corollaries: 

Corollary 1: ( ) 1Pr Ψ →  if 2 1R → and 0N N< , where N0 is a finite number. 

Corollary 2: ( ) 0Pr Ψ →  if N → ∞  and 2 2
u0 < <R R , where 2

u 1≤R .  

Corollary 3: 0( )Pr PrΨ >  if 0N N<  and 2 2
u0 < <R R , where 0 0Pr ≥ .  

Remarks.  First, although , , ( )θ ΨN kPr represents the probability of sharing the same dimensions, 

it’s hard to achieve linear deduction when few dimensions are shared in a very large space among 
a limited trait sample.  Second, the corollary 1 guarantees that linear combinations of G-
dimensions can be generated by linear combinations of correlated traits.  Corollary 1 combined 
with corollary 2-3 underlies the success of UBHDD since UBHDD only constrains the correlation 
between dependent variable (response) and independent variables (predictor) but not that among 
independent variables. 

References 
1 Li, S. concise formulas for the area and volume of a hyperspherical cap.pdf. Asian Journal of Mathematics 

and Statistics 4, 5 (2011). 
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Supplementary Note III 

Phenotype space simulation 
The basic parameters to conduct phenotype space simulation include the number of trait (n), the 
number of samples or population size (m=1000), the number of G-dimensions (N1=10, 20, 50, 100) 
and the number of NG-dimensions (N2=10,000), the number of G-dimensions per trait (d1=N1/2), 
the number of NG-dimensions per trait (d2=N1/2), broad-sense heritability (H2) or the variance of 
genetic component for standardized traits (H2 ~ U (0, 1)).  A space can be expressed by a set of 
bases.  When the set of bases are orthogonal, the dimensionality of the space is equal to the 
number of the set of bases.  Assume PG is independent of PNG.  Then, the matrix composed of 
G-dimensions and NG-dimensions (m by (N1+N2)) is randomly generated by standard multivariate
normal distribution (R package ‘MASS’).  Then, the first N1 column vectors are set to be G-
dimensions, the set of orthogonal bases of PG subspace and the left N2 column vectors are set to
be NG-dimensions, the set of orthogonal bases of PNG subspace.  For a focal trait (Ti), the PG

component ( G
iT ) is formulated as 

1
G

N

i j j
j

T a G=∑ , (1) 

and the PNG component ( NG
iT ) is formulated as 

2
NG

N

i k k
k

T b NG=∑ . (2) 

Then, G
iT  and NG

iT are standardized.  Finally, the focal trait (Ti) is generated by 

G NG
0 0(1 )i i iT c T c T= + − (3) 

The coefficients aj and bk are randomly sampled from normal distribution N (0, 1) and random N1- 
d1 coefficients of aj and random N2- d2 coefficients of bk are set to be zero.  The c0 satisfies 

2
2 0

2 2
0 0(1 )i

cH
c c

=
+ −

, (4) 

where 2
iH  is the H2 of Ti assigned at the parameter setting.  For each simulated Ti defined by 

Eq. (3), we also define a set of correlated traits of Ti as 
G NG

, , ,(1 )i j i j i i j iT c T c T= + − , (5)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510032doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510032
http://creativecommons.org/licenses/by-nc-nd/4.0/


where ,i jc  is the coefficient controlling the jth correlated trait ( ,i jT ) of iT and satisfies 

2
,2

, 2 2
, ,(1 )

i j
i j

i j i j

c
H

c c
=

+ −
, (6) 

where 2
,i jH is the H2 corresponding to the jth correlated trait ( ,i jT ) of iT and satisfies 

2 2
, 0.2i j iH H− ≤ (7) 

In an unstructured population, the number of correlated traits defined for each trait is the same 
(cluster size equal to 10 in the study).   If we set different numbers of correlated traits to different 
traits, we can simulate a structured population (50 clusters of size 10, one cluster of size 200 and 
one cluster of size 300 in this study).  For N1=10, 20, 50 and 100, we set n=1000 and m=1000; 
for N1=100, we also set n=2000 and m=1000 and n=2000 and m=2000 to observe apparent 
separation between PG and PNG.  Notably, d1 and d2 are set without loss of generality assuming 
that they are sufficiently small relative to N2. 
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type Trait.name Database
PubMed.I
D

heritabil
ity

se p

Mental
Tinnitus: Yes, now some of
the time

GCTA 34737426 0.0119 0.0022 9.79E-08

Mental Alcohol dependence Psychiatric Genomics Consortium 30482948 0.0357 0.00699 3.31E-07

Mental Antisocial behavior
Center for Neurogenomics and
Cognitive Research

28979981 0.0678 0.0213 1.45E-03

Mental
Obsessive compulsive
disorder

Psychiatric Genomics Consortium 28761083 0.1477 0.02717 5.48E-08

Mental panic disorder Psychiatric Genomics Consortium 31712720 0.4543 0.03839 2.59E-32

Mental Insomnia
Center for Neurogenomics and
Cognitive Research

30804565 0.0443 0.00154 1.18E-182

Mental daytime dozing
Center for Neurogenomics and
Cognitive Research

30804565 0.0128 0.00109 1.29E-31

Mental
Hearing difficulty/problems:
Yes

GCTA 34737426 0.0394 0.0015 6.95E-147

Mental Left-handed preference GWAS Catlog 30980028 0.0188 0.00132 4.38E-46
Mental Right-handed preference GWAS Catlog 30980028 0.019 0.00128 5.73E-50

Mental Neuroticism
Center for Neurogenomics and
Cognitive Research

29942085 0.0851 0.00247 7.07E-259

Mental
Taking naps during the day
(Napping)

Center for Neurogenomics and
Cognitive Research

30804565 0.0209 0.00128 6.11E-60

Mental Bipolar disorder Psychiatric Genomics Consortium 34002096 0.0704 0.00222 1.02E-220
Mental Hearing aid user GCTA 34737426 0.0162 0.0016 1.15E-25

Mental
Wears glasses or contact
lenses

GCTA 34737426 0.0146 8.00E-04 7.97E-79

Mental Intelligence
Center for Neurogenomics and
Cognitive Research

29942086 0.1707 0.00463 4.86E-297

Mental Headaches for 3+ months GCTA 34737426 0.0532 0.004 1.06E-39

Mental Morningness
Center for Neurogenomics and
Cognitive Research

30804565 0.1008 0.00298 4.01E-250

Mental
Ease of getting up in the
morning

Center for Neurogenomics and
Cognitive Research

30804565 0.0638 0.00225 1.20E-176

Mental
Hearing difficulty/problems
with background noise

GCTA 34737426 0.0509 0.0013 7.30E-311

Mental Tourette syndrome Psychiatric Genomics Consortium 30818990 0.5005 0.04686 1.26E-26

Mental
Alcohol use disorder
identification test

Psychiatric Genomics Consortium 30336701 0.0917 0.00348 6.61E-153

Mental
Sensitivity to environmental
stress and adversity

Center for Neurogenomics and
Cognitive Research

31972866 0.0707 0.00196 1.25E-285

Mental Autism spectrum disorder Psychiatric Genomics Consortium 30804558 0.2277 0.00864 3.75E-153

Mental Cognitive performance
Social Science Genetic
Association Consortium

30038396 0.1864 0.0053 2.83E-271

Mental
Post traumatic stress
disorder

Psychiatric Genomics Consortium 31594949 0.0164 0.00233 1.92E-12

Mental Sleep duration
Center for Neurogenomics and
Cognitive Research

30804565 0.0578 0.00208 3.32E-169

Mental Snoring
Center for Neurogenomics and
Cognitive Research

30804565 0.0516 0.00189 2.26E-163

Mental Educational attainment
Social Science Genetic
Association Consortium

30038396 0.071 0.00158 0.00E+00

Mental
Tinnitus: Yes, now most or
all of the time

GCTA 34737426 0.0277 0.0022 1.12E-35

Mental Schizophrenia Psychiatric Genomics Consortium 31740837 0.4285 0.01193 1.18E-282
Mental Cannabis use disorder Psychiatric Genomics Consortium 33096046 0.0139 0.0015 1.98E-20
Mental Major depressive disorder Psychiatric Genomics Consortium 30718901 0.0369 0.00096 1.73E-321

Miscellaneous

Blood clot, DVT, bronchitis,
emphysema, asthma,
rhinitis, eczema, allergy
diagnosed by doctor: Blood
clot in the leg (DVT)

GCTA 34737426 0.0107 0.0014 3.33E-15

Miscellaneous

Blood clot, DVT, bronchitis,
emphysema, asthma,
rhinitis, eczema, allergy
diagnosed by doctor:
Emphysema/chronic
bronchitis

GCTA 34737426 0.011 9.00E-04 1.70E-34

Table S1. Curated mental traits/diseases
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Miscellaneous

Blood clot, DVT, bronchitis,
emphysema, asthma,
rhinitis, eczema, allergy
diagnosed by doctor:
Asthma

GCTA 34737426 0.0562 0.0038 3.08E-49

Miscellaneous

Blood clot, DVT, bronchitis,
emphysema, asthma,
rhinitis, eczema, allergy
diagnosed by doctor:
Hayfever, allergic rhinitis or
eczema

GCTA 34737426 0.0727 0.0035 1.78E-98

Miscellaneous
Fractured/broken bones in
last 5 years

GCTA 34737426 0.0186 0.001 1.48E-72

Miscellaneous
Fracture resulting from
simple fall

GCTA 34737426 0.0309 0.0089 5.52E-04

Miscellaneous Unspecified monoarthritis GCTA 34737426 0.0163 9.00E-04 4.19E-68
Miscellaneous Arthropathy NOS GCTA 34737426 0.0211 0.001 4.07E-109

Miscellaneous
Contracture of palmar
fascia [Dupuytren's disease]

GCTA 34737426 0.0184 0.0021 4.61E-19

Miscellaneous Hallux valgus (Bunion) GCTA 34737426 0.0128 8.00E-04 1.06E-61
Miscellaneous Osteoarthritis; localized GCTA 34737426 0.0112 9.00E-04 1.06E-39

Miscellaneous
Internal derangement of
knee

GCTA 34737426 0.0122 0.001 9.16E-33

Miscellaneous
Other non-epithelial cancer
of skin

GCTA 34737426 0.0183 0.0015 4.48E-33

Miscellaneous Benign neoplasm of colon GCTA 34737426 0.0145 0.0012 2.98E-33
Miscellaneous Inguinal hernia GCTA 34737426 0.0199 0.0018 1.70E-28
Miscellaneous Diverticulosis GCTA 34737426 0.0217 0.0011 5.50E-83

Miscellaneous
Diabetes diagnosed by
doctor

GCTA 34737426 0.0472 0.0024 3.97E-85

Miscellaneous
Medication for cholesterol,
blood pressure or diabetes:
Insulin

GCTA 34737426 0.0117 0.0015 2.90E-15

Miscellaneous
Mouth/teeth dental
problems: Mouth ulcers

GCTA 34737426 0.0302 0.0027 1.24E-28

Miscellaneous
Mouth/teeth dental
problems: Bleeding gums

GCTA 34737426 0.0218 9.00E-04 1.35E-132

Miscellaneous
Mouth/teeth dental
problems: Loose teeth

GCTA 34737426 0.0121 9.00E-04 1.01E-44

Miscellaneous
Mouth/teeth dental
problems: Dentures

GCTA 34737426 0.0535 0.0016 1.30E-260

Miscellaneous
Eye problems/disorders:
Diabetes related eye
disease

GCTA 34737426 0.0194 0.0024 1.89E-16

Miscellaneous
Eye problems/disorders:
Glaucoma

GCTA 34737426 0.0415 0.0032 1.19E-38

Miscellaneous
Eye problems/disorders:
Cataract

GCTA 34737426 0.021 0.0022 1.87E-21

Miscellaneous Chest pain or discomfort GCTA 34737426 0.0322 0.0012 7.39E-157
Miscellaneous General pain for 3+ months GCTA 34737426 0.0226 0.0286 4.30E-01

Miscellaneous
Neck/shoulder pain for 3+
months

GCTA 34737426 0.0258 0.0027 2.60E-21

Miscellaneous Hip pain for 3+ months GCTA 34737426 0.0172 0.0057 2.55E-03
Miscellaneous Back pain for 3+ months GCTA 34737426 0.0329 0.0031 6.57E-26
Miscellaneous Knee pain for 3+ months GCTA 34737426 0.0221 0.0031 1.93E-12
Miscellaneous Abdominal pain GCTA 34737426 0.0144 9.00E-04 2.87E-63
Respiratory/cir
culatory

Myocardial infarction GCTA 34737426 0.014 0.0011 3.62E-40

Respiratory/cir
culatory

Coronary atherosclerosis GCTA 34737426 0.0277 0.0018 9.33E-51

Respiratory/cir
culatory

Atrial fibrillation and flutter GCTA 34737426 0.0179 0.0027 6.68E-11

Respiratory/cir
culatory

Varicose veins of lower
extremity

GCTA 34737426 0.0228 0.0013 3.63E-66

Respiratory/cir
culatory

Hemorrhoids GCTA 34737426 0.0114 7.00E-04 3.00E-53

Respiratory/cir
culatory

Vascular/heart problems
diagnosed by doctor: Heart
attack

GCTA 34737426 0.0187 0.0012 1.70E-53
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Respiratory/cir
culatory

Vascular/heart problems
diagnosed by doctor:
Angina

GCTA 34737426 0.0234 0.0016 5.04E-49

Respiratory/cir
culatory

Vascular/heart problems
diagnosed by doctor: High
blood pressure

GCTA 34737426 0.1236 0.0043 4.41E-178

Respiratory/cir
culatory

Medication for cholesterol,
blood pressure, diabetes, or
take exogenous hormones:
Cholesterol lowering
medication

GCTA 34737426 0.0543 0.0027 1.43E-88

Respiratory/cir
culatory

Medication for cholesterol,
blood pressure, diabetes, or
take exogenous hormones:
Blood pressure medication

GCTA 34737426 0.1091 0.0045 4.12E-128

Respiratory/cir
culatory

Breathing problems
improved/stopped away
from workplace or on
holiday: Yes

GCTA 34737426 0.0138 0.0033 3.47E-05

Respiratory/cir
culatory

Wheeze or whistling in the
chest in last year

GCTA 34737426 0.0593 0.0019 8.06E-216

Respiratory/cir
culatory

Shortness of breath walking
on level ground

GCTA 34737426 0.0485 0.0028 1.27E-68
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Fig. S1. Decomposition of       and         by UBHDD in simulated phenotype spaces.
(a) The dimensionality of       subspace (    ) =20, polulation size (m) =1000 and the number of traits (n) =1000.
(b)      =50, m=1000 and n=1000.  (c)     =100, m=1000 and n =1000.  (d)      =100, m=1000 and n =2000.
(e)      =100, m=2000 and n =2000.  (c) shows a poor perfomance but can be improved with increasing number
of traits (d) and further achieves higher performance with the increasing of population size (e).
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Fig. S2. Broad-sense heritability (     ) and narrow-sense heritability (    ) of 405 yeast traits.  2H 2h
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Fig. S3. Robust estimation of      by UBHDD under different uncorrelation thresholds (     ) in yeast.  
The threshold 0.147 corresponds to p=0.01 with Bonferroni correction in yeast seg-population.  The estimated
genetic variance is robust to the threshold used to conduct UBHDD.
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Fig. S4. Robust estimation of      by UBHDD under different uncorrelation thresholds (     ) in human brain. 
The threshold 0.15 is used in human brain phenotype space.  The estimated genetic variance is robust to the 
threshold used to conduct UBHDD.
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(a) Narrow-sense heritability (    ) is estimated by GCTA for 675 brain dMRI traits (R package ‘apcluster’).  
The      of      is generally larger than that of      .  Red color shows the traits with at least two-fold enrichment.  
(b) The      generally has larger number of QTLs than T for traits with at least two-fold enrichments in (a).  
(c) The Manhattan plots of T and      are shown for an exemplar trait, weighted-mean MD in tract acoustic 
radiation (left).  For the original trait T, 7 QTLs are mapped across 4 chromosomes but 35 QTLs across 13 chromosomes 
are mapped for the genetic component      estimated by UBHDD.  The dotted line shows the threshold p=           .
(d) These extra QTLs in     often show strong but statistically insignificant signal in original trait T.

Fig. S5.  More QTLs found in      than in T for dMRI traits with strong enrichment of additive variance in     .  gT gT
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We conduct PCA in       or         and define the top PCs with 85% of variance explained as PC dimensions.
Different cutoffs (75%, 85%, 95% and 100%) are compared.  The error bars shown in lines represent 95% 
quantile of 100 sampling repeats.  Middle lines represents the mean value.  Notably, the number of PC 
dimensions in          is always underestimated because PCA tends to merge independent dimensions in a 
population of small same size, especially when the dimensionality of         subspace is larger than the rank
of         matrix.  In the contrary, the PC dimensionality of       well approximates the actual dimensionality 
of the subsapce at the 85% cutoff.  When larger cutoffs (95%, 100%) are chosen, the PC dimensions of
       subspace will be overestimated.  The overestimation happends because weak noise of modelling is 
falsely taken as dimensions.  To facilitate comparison, the actual dimensionality in       or          subspaces 
are plotted the same with Fig. 1f.  The seemingly aberrant error bar at the 100% cutoff is also contributed
by the PCA method (R function princomp return different number of PCs with 100% variance explained
when traits are reordered.).
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Fig. S6. Dimensionality estimation of    P  g  and    P  n  g  subspaces by PCA.
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Fig. S7. Evaluation for the number of traits saturated with G-dimensions in phenotype spaces.
The accurate separation of genetic and non-genetic subspaces not only depends on rational uncorrelation 
threshold but also enough trait sampling.  We conduct the same learning process for different proportions 
of trait subsets from 10% to 100%, say, a down-sampling strategy.  Then, the distribution of UBHDD 
performance (   R ,2  the variance of genetic component estimated by UBHDD) is compared among these
trait subsets.  (a) shows the distributions of yeast.  (b) shows the distributions of human brain.
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For a focal trait (   ), we can learn a linear function buit on its uncorrelated traits (   ) :                  .  To judge the 
uncorrelation threshold (    ), we provide a statistical test as follows.  First, we calculate the square of marginal 
correlation (       ) between the focal trait and each of its uncorrelated traits.  Then, we calculate the square of 
coefficients (      ) for each uncorrelated trait in the learned linear function, say,     .  An optimal threshold is 
determinded if the      between         and        is insignificant, meanwhile, taking the number of uncorrelated 
traits available into account.  (a-b) are results of UBHDD model.  (a) shows the result under the      used in 
this study for an example trait in yeast.  (b) shows the results for all of the 405 traits in yeast.  As a contrast, 
we also learned linear functions based on total traits (Total model) for each of the 405 traits in yeast.  (c-d) are 
results of Total model.  (c) shows the same example trait in yeast based on Total model.  (d) shows the 
results for all of the 405 traits in yeast based on Total model. Similarly, the results in human brain are shown 
for UBHDD model (e-f) and Total model (g-h).  The red line denotes the adjusted p=0.01 to the number of traits.
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Fig. S8. Criterion for uncorrelation threshold ( uR ).
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