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Abstract

To reconstruct the ancestral genome of a set of phylogenetically related
descendant species, we use the RACCROCHE pipeline for organizing a
large number of generalized gene adjacencies into contigs and then into
chromosomes. Separate reconstructions are carried out for each ancestral
node of the phylogenetic tree for focal taxa. The ancestral reconstructions
are monoploids; they each contain at most one member of each gene
family constructed from descendants, ordered along the chromosomes.
We design and implement a new computational technique for solving the
problem of estimating the ancestral monoploid number of chromosomes
z. This involves a “g-mer” analysis to resolve a bias due long contigs,
and gap statistics to estimate . We find that the monoploid number of
all the rosid and asterid orders is = 9. We show that this is not an
artifact of our method by deriving & =~ 20 for the metazoan ancestor.

Keywords: genome reconstruction, ancestral plant chromosomes, gap
statistics, clustering bias, dynamic tree cutting, maximum weight matching
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Evolutionary inference on a set of species in a biological family, order or
higher grouping, implies the reconstruction of ancestral phenotypes or geno-
types. Phenotypic reconstruction, essentially genome-free, can be derived from
comparative macroscopic or microscopic evidence from extant forms or fos-
sils, while inference of genotypes is based on the genome sequences. In this
work, we focus on analyses of annotated genes and the chromosomal ordering
of these genes in the genomes of extant organisms.

The genome-free inference of the basic (or monoploid) ancestral chro-
mosome number z, based on the values of z for a very large number of
extant species, has a long history in plant evolutionary biology, exempli-
fied in Grant’s ground-breaking 1963 work [1, pp. 483-487]. More recently,
sophisticated combinatorial optimization techniques and Bayesian inference
approaches have been developed to infer ancestral chromosome numbers [2—-
4], but these approaches do not aim to elucidate the genetic composition nor
the chromosomal structure of the ancestral species. In contrast, the present
genome-based study, based on all the common gene adjacencies (including
“gapped” adjacencies) among species within a phylogenetic context - seeks to
recover the largest possible consistent subset of these adjacencies, organized
into hypothetical ancestral chromosomes of a monoploid ancestor. One such
set of chromosomes is constructed for each ancestral node of the phylogenetic
tree describing the relationship among the analyzed species.

Inference about ancestral genome structure is difficult in the plant king-
dom (as reviewed in [5]). Adjacencies are disrupted in plant genomes by whole
genome duplication followed by random deletion of duplicate genes (“frac-
tionation”), in addition to niche-specific expansion and contraction of gene
families, chromosomal rearrangements, fissions and fusions and by rampant
invasions and culling of transposons, which typically comprise the majority
of the genome, and other processes. Much of the work on reconstruction, e.g.
[5, 6], relies on a bottom-up, greedy stepwise inference of “contiguous ances-
tral regions”, incorporating external information such as on whole genome
duplication events, without particular attention to the number and nature of
individual chromosomes.

The focus on monoploidy in our method, however, permits a single-step
reconstruction of ancestral chromosomal fragments, contigs, without any
recourse to information external to the given set of phylogenetically-related
genomes. The maximum weight matching (MwM) algorithm embedded in the
RACCROCHE pipeline [7, 8] assures a robust monoploid reconstruction; each
ancestor contains at most one representative of each gene family, organized into
a number x of ancestral chromosomes, the “basic number”, and ordered along
the chromosomes in a way most consistent with the gene order in their extant
descendants. Somewhat unexpectedly, as illustrated in Figure 1, the method
produces more clear-cut inferences on clades of more remotely related species,
such as six genomes each from a different monocot order [8], or six eudicot
species from different orders [9], than sampling of lineages within orders or
families, where the results are degraded by high levels of noise [10].
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Fig. 1 Clear-cut results of RaccrocHE across monocot (left) and eudicot (center) orders,
compared to noisy results for intra-ordinal analysis of Fagales (right). Heat maps com-
pare an optimal clustering of ancestral chromosomal fragments with itself, with dark cells
representing two fragments which co-occur on the same chromosome in several extant
genomes.

In this paper, we trace the origin of this noise to a severe bias that
arises when analyzing a clade of closely related genomes. We devise a new
method to eliminate this bias and thus mitigate the resulting noise. In addi-
tion we introduce new methods to determine the statistically optimal number
of chromosomes and reconstruct these chromosomes automatically.

We use our pipeline to determine the monoploid number of the common
ancestor of all sampled species for each order analyzed as well as ancestors
represented by internal nodes for each phylogeny. For each of six rosid orders
- Fagales, Cucurbitales, Malpighiales, Myrtales, Malvales and Sapindales, and
five asterid orders - Asterales, Gentianales, Lamiales, Solanales and Ericales,
species were chosen based largely on the availability of annotated chromosome-
level genome sequences representing many or most of the families in each
order.

A result of our genome-based method is that the monoploid number of the
rosid and asterid orders is determined to be x = 9, compared to the z = 7 or
x = 8 estimated from a recent genome-free study [4].

Methods

Generating sets of long contigs

To infer gene content and gene order for each chromosome in each ancestral
genome in a phylogeny, we identify a large number of generalized [11] (or
“gapped” [12]) gene adjacencies, allowing for example, up to 7 spacer genes
between the two considered adjacent, from all chromosomes in the set of input
genomes and then infer adjacencies for each ancestral node in the species
phylogeny. To do this, for each ancestor, graphs generated with all phyloge-
netically informative generalized adjacencies as vertices and edges joining any
two adjacencies that each contain one of the 5° and 3’ ends of the same gene,
are analyzed using the MWM algorithm. This outputs inferred linear ancestral
“contigs”, each containing up to several hundred genes.

The data used for this work are annotated, chromosome-level or other
high-quality genome sequences, accessible on the COGE [13, 14] platform, or
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Fig. 2 Contigs per chromosome, Fagales Ancestor 2 (which we use as an example
throughout; see Figure 8). N.B. Frequency scale differs among chromosomes.

uploaded to a dedicated repertoire on this platform from public sources, as
well as phylogenies for each of the orders studied, as extracted from recent lit-
erature and databases [15, 16]. The only pre-processing software required was
the SYNMAP [13, 14] comparative genomics package, also on the COGE plat-
form, which produces syntenically validated homology identification between
genomes (orthologs) and within single genomes (paralogs). The term “gene”
here is used broadly to refer to gene families, or sets of homologous genes in
the extant genomes as well as the hypothetical ancestral genes inferred by our
procedures.

An important observation is that the lengths of the contigs constructed
from the MWM output are highly variable, ranging from a single adjacency to
several hundred in some cases. The lengths of the longest few contigs provide
a measure of the conservation of gene order among the extant genomes, up to
several hundred when reconstructing the ancestor of a plant family or order,
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Fig. 3 Statistics on the chromosomes in Figure 2, showing bias in the assignment of long
contigs.

compared to less than a hundred for analyses of more distantly related species
in a more inclusive taxon such as the monocot or eudicot clades (Figure 1a,b).
On the other hand, the extreme variability of contig lengths encountered at the
family or order level can lead to ambiguous or distorted clustering of contigs
into inferred ancestral chromosomes.

Clustering the chromosomal co-occurrence matrix and the
long-contig bias

To group contigs into clusters reflecting ancient chromosomes, we match each
contig against the chromosomes of the extent genomes, and count the num-
ber of times any two contigs match the same chromosome, taking account of
their ordering, possibly twice or more within a single genome. The resulting
co-occurrence matrix, smoothed by a correlation analysis of pairs of contigs
[8], is then submitted to a complete-link clustering analysis to distinguish the
contigs, and hence the gene content, appropriate to each hypothetical ancestral
chromosome. Once contig content of each chromosome is posited, the data on
relative order of each pair of contigs on a chromosome is submitted to a Linear

Fig. 4 Heat map of Fagales Ancestor 2 based on full contigs (left) and on 20-mers (center)
and 40-mers (right). The hierarchical cluster for each heat map depicted at the left-hand
side. Shades of grey in cells, representing frequency of chromosomal contig co-occurrence in
extant genomes, controlled to have equal darkness proportions across all heat maps.
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Ordering Problem routine to locate them along the chromosome. It is at this
point that the variability of contig length leads to serious biases, due to the
longest contigs tending to group together to produce unrealistically large clus-
ters, as illustrated in Figures 2 and 3 for a 7-chromosome analysis of a Fagales
ancestor. The reason for this lies in the gene families with more than one (but
< 10) representatives in some extant genomes. Our focus on small gene families
(larger families are excluded from the analysis) rather than inferred orthologs
for our ancestral contig reconstructions avoids error in orthology assignment,
such as those due to widespread whole genome duplication events in plant lin-
eages, while at the same time increasing overlap in “gene” adjacencies among
analyzed genomes. This inclusion, however, allows the MWM to join distantly
homologous or non-homologous generalized adjacencies when assembling the
ancestral contigs. This may result in splicing of two, three or more part-contigs
from different chromosomes. Thus the various long contigs of that result tend
to involve many genes in common, deriving from several chromosomes in the
extant genomes. For shorter contigs, this can also happen, but is rare.

The effect of this artifact is apparent not only in imbalances among the
inferred chromosomes, as in Figures 2 and 3, but also very noisy heat maps as
in Figure 1lc.

Introducing g-mers to remove bias and notise

As illustrated with the case of Fagales in Figures 2 and 3, the presence of
extreme-length contigs produces biases in counting contig co-occurrences, lead-
ing to an unbalanced set of chromosomes. This would seem a severe problem
with the RACCROCHE method, especially when applied to sets of closely related
genomes. It is possible, however, to completely remove the length bias by sim-
ply cutting each contig of length L into approximately L/g contigs of length
g, called g-mers, exempting of course for contigs where L < g already. We can
then carry out the cluster analysis based on the g-mers derived from all the
contigs.

A clustering may be visualized by constructing a “heat map” comparing the
cluster to itself, as in Figure 4, which shows the improvement in distinctness
and size balance of an ancestral genome reconstruction through the use of g-
mers. The figure suggests that at least in this example, any choice of g results
in a clear improvement.

Sampling of Maximum Weight Matching Solutions

The MwM algorithm that we invoked to find an optimal matching of the adja-
cencies does not return a unique solution. Indeed, given the massive amount
of generalized adjacencies in our analyses, there may be many thousands of
equally optimal solutions, usually quite similar - 95% =+ 3% - but exhibiting
considerable amount of variation in gene content and gene order among the
ancestral contigs.

The MwM algorithm constructs all these optimal sets of matchings with-
out taking into account the properties of the contigs they determine or the
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Fig. 5 Left: Typical gap statistic for a single MWM sample. Right: Gap statistics for 100
samples with Fagales Ancestor 2. Black: means. Blue: means of 10 “best (as described in
text).

clustering used to build chromosomes. In particular, whether they give rise to
neat clusters in the complete-link analysis or not, does not influence the MwM
constructions.

For this reason, we sample a number (100 or 50 in this study) of optimal
MWM solutions. For each g, then, our problem becomes one of searching among
these solutions for one that gives the clearest clustering pattern, towards which
end we implement the following definition and analysis.

Gap statistics to determine the basic chromosome number x

To determine the number of chromosomes in an ancestral genome, we cut
the hierarchical clustering at a series of levels, starting near the root and
proceeding towards the leaves, at each step increasing the number of clusters
k by 1.

The gap statistic method [17] tests the significance of the k-cluster analysis
for k =2,3,--- against a null hypothesis that there is no clustering, i.e., k = 1.

A plot of this gap statistic, as on the left in Figure 5, for a k-chromosome
analysis shows a rapid, though concave, rise for k = 2,3, - - -, representing real
improvements in the explanatory power of larger k, until a point where the
rate of the increase drops visibly, becoming a slow linear trend measuring non-
explanatory overfitting by excessive chromosome numbers. The point where
one trend gives way to the other may be taken as an estimate of the basic
chromosome number z. Since this typically varies among the MWM samples,
we plot all the values, plus their mean (indicated by back dots in the display),
on a single graph as a first step in the search for the best value of x. There
are various methods for detecting the inflection point of a curve transitioning
from one trend to another. The intersection of linear fits to the gap statistic
for first few values of k, and for the last few k [10], proves to be unstable and
misleading estimate, largely due to the variable concavity of the first trend.
The method known as “kneedles” [18], based on finding the point of maximum
curvature in the plot, is biased towards low values of k, also because of the
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concavity of the initial trend. And there are many other methods, but the
most appropriate approach for our data is to fit least squares line to the noisy
trend, based on k = 12,...,20 and to simply take = to be largest k£ for which
the gap statistic exceeds the prediction of this line.

As stressed above, since the MWM samples vary as to how clear a clustering
they produce, we are not directly interested in the mean gap statistics, but
seek instead the samples with the highest values of this statistic. Thus for
each value of k, we note the 10 best values out of the hundred samples, and
retain those samples that appear in the 10 best at least twice for 4 < k < 10
In the applications to be described below, this generally resulted in a choice
of 9-15 samples. (For the metazoan example introduced later, we surveyed k
for 4 < k <20 to find the best MWM runs.) The mean gap statistics for these
samples appear as blue dots in Figure 5.

We consider the inflection point of the gap statistics in terms of the blue
dots as the most pertinent to the estimate of x. And we consider the clustering
with the highest score as the best choice to represent the ancestral mono-
ploid. This clustering can be slightly adjusted, without changing k, using the
Dynamic Cutting routine [19], which corrects for deeply nested subclustering
as well as outlier contigs. Heat maps for the reconstructions in this paper are
available in Supplementary material A.

Choice of g for g-mers

For each ancestor, we first break down the contigs into g-mers as described
above, calculate a new co-occurrence matrix, construct a hierarchical cluster
and carry out the gap statistic analysis for each of several values of g. This
involves choosing the best MwMsample and cluster number k. To see the effect
of choice of g on the properties of the reconstructed ancestor, we can use the
following statistics.

Coherence: The coherence of the construction is reflected in the resemblance
between each chromosome, in either an extant or ancestral descendant genome,
and some chromosome of its immediate ancestor. Then for each chromosome
we calculate the maximum proportion of its genes originating in any chromo-
some of its immediate ancestor. We average this over all chromosomes of the
descendant genome. And take an overall average over all descendants in the
phylogeny, separately for extants and ancestors.

Coverage: This is simply the number of genes in the reconstructed genome.
Choppiness: When painting an extant genome by the colors of the chro-
mosomes of the nearest ancestor, as illustrated in Figure 12, we define the
choppiness by counting the number of single colour regions (> 300 Kb) on all
the extant chromosomes. This an indicator of how much genome rearrangement
has intervened between the ancestor and its descendent.

Figure 6 suggests that for g > 10, there is little change in the quality of
the reconstruction for g up to 40, at least. While the levels of the evaluation
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Fig. 6 Reconstruction quality as a function of g. Averaged over all extant Fagales genomes.

statistics vary from order to order, as seen in the Supplementary materials B,
there is no systematic dependence on g.

Alternative clustering

Our final partition of the contigs into discrete clusters does not retain any inter-
chromosomal relationships. However, the stepwise decomposition of the higher
order links in the hierarchical clustering, as a “greedy” procedure, may lead to
suboptimal results. This is mitigated by our use of dynamic tree cutting, which
can redress inappropriate hierarchical constraints, and even more important,
by the extensive sampling of MWM solutions, from which the most cleanly
separated reconstructions are selected.

Approaches such as k-means are also possible, but this incurs stability
issues with the co-occurrence matrix and does not possess the contig ordering
properties of the hierarchical clustering.

Perhaps more important is that the matrix of contig co-occurrences, as
well as the derived correlations between contigs, are situated in a very high
dimensional space. With such data, much of the variance resides in relatively
few dimensions. Principal Component Analysis (PCA) allows us to home in
on these important dimensions, relegating the rest to noise. The clustering can
then be done based on the coordinates of the contigs in these few dimensions
only. Using the HCPC package for R, we produce the two-dimensional display
for a Fagales Ancestor 1 in Figure 7. Similar plots for the other ten orders are
presented in Supplementary materials E.
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Fagales Ancestor 1

Dim1 (40.1%)

Fig. 7 Nine clusters in first two principal components for Fagales Ancestor 1 20-mer data

Results

The Angiosperm Phylogeny Group circumscription of flowering plant orders
and families, version IV [15], includes eight fabid and eight malvid orders (plus
Vitales) as making up the rosids as well as seven campanulid and eight lamiid
orders (plus Ericales) as constituting the asterids. We wished to include as
many orders as possible in our study, ideally with access to at least six genomes
with high quality, preferably chromosome-level, assemblies, distributed among
at least three different families. At the time of data collection, we could obtain
suitable data from three fabid orders, Fagales [20-27], Cucurbitales [28-33],
Malpighiales [34-39]; three malvid orders, Myrtales [40-44], Malvales [45-50]
and Sapindales [51-61]; one campanulid order, Asterales [62-68]; and three
lamiid orders, Gentianales [69-75], Lamiales [76-82] and Solanales [83-88],
plus Ericales [89-94]. Other orders with sufficient genomes available were not
selected, such as Fabales, because representative genomes from only one or
two families were available, or Brassicales, which is the subject of a concurrent
publication.

In the case of our data, there is some uncertainty about locating the inflec-
tion point within 4+2 for any particular ancestor and any particular g-mer
analysis. But the inflection point does not display any sensitivity to g in the
range, say, from 15-50, although the overall gap score plot may be shifted
upwards or downwards for different g. Further there does not seem to be
any tendency for the estimate of x to vary from ancestor to ancestor within
an order; which is understandable as the basic chromosome number would
tend to be the same across a single order. More complete data appears in
Supplementary materials C.

Though the gap statistics curves all display similar shapes, the increment
in the significance level from k — 1 to k is subject to considerable statistical
fluctuation, which is the reason for the uncertainty in determining z, even for
the best MwM samples. To attack this problem, under the hypotheses that the
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Fig. 8 Phylogenies of rosid orders with haploid numbers of chromosomes.

choice of g in the range from 10-15 to 40-50 is of little consequence, and that
all the ancestors in an order have the same monoploid number, we take the
average of the gap statistic across all these ancestors and all the g as most
likely to reveal the trends in the order.

In addition, to amplify the visual impression of the tendencies in gap statis-
tic, we can plot the increment of this quantity from k& — 1 to k instead of the
statistic itself. We display this increment in Figure 11.

Once the ancestral reconstructions are completed, we can visualize the
evolution of an extant genome from its most recent ancestor. We assign a
colour to each chromosome in this ancestor, and then assign that colour to any
region of an extant chromosome that matches with a contig in the ancestral
chromosome. Examples are shown in Figure 12. Further examples are in the
Supplementary materials D.
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Fig. 9 Phylogenies of asterid orders with haploid numbers of chromosomes.

The reconstruction analysis within each of the 11 core eudicot orders was
carried out independently of the other orders, including the identification of the
gene families. To what extent do the ancestors of the various orders resemble
each other? To answer this for a particular pair of orders, we first have to
determine which gene families in one order correspond to a gene family in
the other. This can be done by finding pairs of genes in extant genomes that
are orthologous. Once these are identified we can determine the co-occurrence
of gene families across the chromosomes of the ancestral genomes in the two
orders. Figure 13 gives the results of this for the Fagales and Mapighiales
orders. It can be seen that for the most part, we can identify corresponding
chromosomes for the two orders.

Another aspect of the consistency of our reconstruction is a comparison
with the PCA-based reconstruction. Figure 14 shows that although there are
many genes that do not fit the general pattern, we can still identify, in most
cases a 1-1 correspondence between the two sets of chromosomes. In the figure,
7 out of 9 chromosomes correspond in this way.

No upper limit on x

Our reconstruction of monoploid ancestors of rosid ancestors, not only at
the highest nodes, but for somewhat more recent ancestors, all seem to have
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Fig. 10 Gap statistics for Fagales for 100 samples; means and means of 10 best (in blue).

monoploid number k£ < 9. These results are eminently plausible, but still may
provoke the question of whether RACCROCHE would even be able to detect a
higher k for an ancestor if this were warranted.

Lacking any knowledge of ground truth about ancient plant karyotypes, we
could have recourse to simulations, and simulation protocols have been used
successfully in studying plant evolution [8]. But simulations of plant evolution
starting with an x = 20, say, ancestor, and known parameters for chromo-
some fusion, whole genome duplication, and other processes, could only be
very speculative, generating unrealistic versions of extant genomes to test the
RACCROCHE reconstruction.
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Instead, we venture outside the plant world to an evolutionary domain
where the monoploid ancestor is agreed to have x around 20, namely the ani-
mals, or metazoans [95]. We used two out of the five genomes from those
studied in [95], namely the lancelet Branchiostoma floridea, representing the
deuterostomes, and the sponge Ephydatia muelleri [96]. The annotated genome
files from the other three species in [95] being publicly unavailable, we sub-
stituted Octopus sinensis [97] from the phylum Mollusca as a representative
of the protostomes, the cnidarian Acropora millepora [98] and the placozoan
Trichoplax adhaerans [99]. These five species represent major branches of the
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animal kingdom, including the subkingdoms Porifera (sponges) and Eumeta-
zoa, the latter branching into the placozoan and cnidarian phyla and the
bilaterians - protostomes and deuterostomes, as in Figure 15. We note that the
time scale is 6 to 10 times as long as that of the plant orders we have focused
on. Not surprisingly, given the well-known lack of conserved gene order among
early metazoan lineages [100], RACCROCHE produces relatively short contigs
with these data.

The results of our analysis is summarized in the significance increment
graph Figure 16. Here the monoploid number appears to be between 15 and
21.

Discussion

Grant’s visionary work on basic chromosome number of ancestral plants [1] pre-
dated genomics by several decades, but made use of data on many thousands
of species to produce excellent estimates. Modern genome-free approaches [2—
4] use sophisticated statistical methodology on greatly expanded data sets to
improve and automate this line of research.
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Fig. 12 Painting the chromosomes of the extant genomes using colors corresponding to the
ancestral chromosomes. Example of ancestral Fagales colors on the oak and the bayberry
genomes.
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Fagales chromosome

1 2 3 4 5 6 7 8 9 total
1 195 138 117 185 60 36 30 44 45 850
2 162 139 257 426 58 53 65 277 26 1463
3 14 a4 53 29 382 35 41 25 226 849
. . 4 124 119 24 28 42 268 15 12 13| 645
Ma I plg h 1a l €s 5 47 189 29 27 36 30 84 15 36 493
chromosome s 25 43 32 24 a2 81 220 13 10 490
7| 11 21 198 65 16 17 6 151 8 493
8 60 254 27 32 12 46 49 11 12| 503
9 18 30 135 36 43 14 33 21 25 355
total 656 977 872 852 691 580 543 569 401 6141

Fig. 13 Gene families shared between Fagales and Malpighiales ancestors. For each
Malpighiales ancestral chromosome, the yellow or green cell indicates the Fagales chro-
mosome that shares a maximum number of gene families. For each Fagales ancestral
chromosome, the blue or green cell indicates the Malpighiales chromosome that shares a
maximum number of gene families. There are six green cells indicating closely related chro-
mosomes in the two independently calculated ancestors. A total of 8419 gene families were
reconstructed in the Malpighiales ancestor, of which 2278 were not recovered in Fagales. A
total of 9424 gene families were reconstructed in the Fagales ancestor, of which 3283 were
not recovered in Malpighiales.

RACCROCHE: 1 2 3 4 5 6 7 8 9

PCA:
1 0 0 1226 0 0 0 0 0 0
2 0 20 0 0 0 781 0 92 0
3 0 0 0 0 187 0 628 0 0
4 140 333 0 0 0 0 0 441 151
5 0 0 0 0 607 0 220 17 287
6 0 60 0 360 0 180 0 0 0
7 745 204 0 0 200 0 0 60 269
8 685 590 0 0 0 0 0 70 0
9 140 73 0 699 0 0 0 60 0

Fig. 14 Gene families shared between hierarchical clustering-based chromosomes and PCA-
based chromosomes. A green cell indicates that a chromosome from one method shares a
maximum number of gene families with a single chromosome from the other. method.

With the rise of molecular approaches to evolution and genomics, however,
it behooves us to investigate whether the gene order on the chromosomes of
a set or related extant genomes carry a signal about the basic chromosome
number.

Despite their demonstrated ability to estimate gene content and to some
extent gene order in reconstructed ancient genomes, the problem of delimit-
ing chromosomes in an automated way has proved difficult [5]. Our approach
differs from previous methods in that it focuses solely on monoploid recon-
structions, whether or not this corresponds to the ploidy of the hypothesized
ancestors. This is done in a purely automated way, given the gene orders
on the chromosomes or scaffolds of extant genomes, as well as their phylo-
genetic relationships, without taking into account supplementary information
or hypotheses in the process. The use of MWM, chromosomal co-occurrence
matrices and gap statistics to achieve the monoploid reconstruction is entirely
novel.
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Fig. 15 Metazoan phylogeny with haploid numbers of chromosomes
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Fig. 16 Significance increment graph for cluster-based metazoan karyotypes

The result of applying our method to eleven rosid and asterid orders, with-
out directly referencing chromosome number of the extant genomes, is that
the basic chromosome number of these core eudicots is nine. This is somewhat
higher than the value of eight recently obtained by genome-free methods [4]
using chromosome numbers of many thousands of extant species, but not at
all inconsistent with Grant’s original assessment [1, p.486].

Our reconstructions must be considered estimates; we only recover around
10,000 gene families, less than half of what we expect from plant genomes,
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even those which have not undergone whole genome duplication. Second the
assignment of these “genes” to chromosomes, and their ordering along the chro-
mosomes varies somewhat from one MWM to another, even among those which
results in the clearest clustering. Nevertheless, every stage of our pipeline,
which is not influenced by any information or data outside the input genomes,
produces global or locally optimal results. Moreover, we have several indica-
tions of consistency, including chromosome-by-chromosome correspondences
among the ancestors from different core eudicot orders, which are constructed
independently from entirely different genomes. This is also clear from the par-
allel plots of gap statistics increments and the switch between meaningful
increase and noisy increase. We also have correspondences between the results
from different clustering methods. Furthermore we know that these results are
not an artifact of some limitation in the detection power of our method; it
successfully estimated an x value twice as large as the core eudicots for the
ancestral metazoan genomes. This work opens up new directions for research
into the evolution of the chromosomal structures of plants and other organisms.
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