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Abstract 43 

Inflammation perturbs evolutionary dynamics of hematopoietic stem cell (HSC) clones in clonal 44 

hematopoiesis and myeloid neoplasms. We studied HSCs, progenitors and immune cells from 45 

patients with myeloproliferative neoplasm (MPN) at baseline and following interferon-⍺ (IFN⍺) 46 

treatment, the only MPN therapy to deplete clonal stem cells. We focused on essential 47 

thrombocythemia, an informative model of early-phase neoplastic hematopoiesis. We integrated 48 

somatic genotyping, transcriptomes, immunophenotyping, and chromatin accessibility across 49 

single cells. IFN⍺ simultaneously activated HSCs into two polarized states, a lymphoid progenitor 50 

expansion associated with an anti-inflammatory state and an IFN⍺-specific inflammatory 51 

granulocytic progenitor (IGP) state derived directly from HSCs. The augmented lymphoid 52 

differentiation balanced the typical MPN-induced myeloid bias, associated with normalized blood 53 

counts. Clonal fitness upon IFN⍺ exposure was due to resistance of clonal stem cells to 54 

differentiate into IGPs. These results support a paradigm wherein inflammation perturbs clonal 55 

dynamics by HSC induction into the precipitous IGP differentiation program. 56 

  57 
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One-Sentence Summary 58 

Inflammation accelerates clonal evolution by driving stem cell differentiation into an alternate 59 

interferon-⍺-induced progenitor state. 60 

61 
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Introduction 62 

Systemic inflammation increases with aging and is implicated in accelerating the development of 63 

clonal hematopoiesis (CH) and myeloid neoplasms (1-8). Clonal stem cells may be resistant to 64 

inflammatory signaling that leads to functional defects in hematopoietic stem cells (HSC) (4, 6-8). 65 

On the other hand, inflammatory cytokines, such as interferon-⍺ (IFN⍺), directly activate HSCs 66 

into cell cycle entry in mice (9-11), an observation that has been proposed to undergird both 67 

enhanced clonal expansion upon inflammation (5) and clonal depletion in the setting of IFN⍺ 68 

therapy for myeloproliferative neoplasms (MPN) (9, 12, 13). Indeed, the ability of IFN⍺ to 69 

modulate clonal dynamics in patients with MPN presents a unique opportunity to assess the effects 70 

of chronic IFN⍺ signaling on clonal HSC fitness in human.  71 

MPNs are driven by somatic mutations in CALR, JAK2 or MPL that override the highly regulated 72 

process of hematopoiesis resulting in an overproduction of one or more myeloid lineages, such as 73 

increased platelet production in essential thrombocythemia (ET) (14). IFN⍺ is the only clonally 74 

selective MPN treatment, often effecting molecular response (12, 13, 15). Even in the absence of 75 

molecular response, IFN⍺ treatment frequently induces normalization of the patients’ blood counts 76 

(12, 13, 15). To define the downstream effects of IFN⍺ therapy that undergird the phenotypic 77 

response and clonal dynamics in human, we require methods that can isolate the differential IFN⍺ 78 

effects on mutated stem cells from the wildtype. However, as clonal cells cannot be distinguished 79 

from the admixed wildtype cells via cell surface markers, we leveraged single-cell multi-omics 80 

platforms that detect the mutational status and whole transcriptomes (16) with 81 

immunophenotyping or chromatin accessibility data, within thousands of individual cells. These 82 

methods allowed us to overlay two hematopoietic differentiation landscapes—one mutated and the 83 

other wildtype—from the same individual, thus facilitating a direct comparison between mutated 84 

and wildtype cells both at baseline and following treatment. We focused on CALR-mutated ET due 85 

to the heterogeneous molecular response despite clinical response in most patients (13, 17) and 86 

applied these multi-modality single-cell methods to CD34+ hematopoietic stem and progenitor 87 

cells (HSPC) and immune cells from serial bone marrow sampling from patients treated with IFN⍺ 88 

for at least one year. This approach enabled us to assess the phenotypic and epigenetic alterations, 89 

jointly together with clonal dynamics, induced by IFN⍺ in human neoplasm.  90 

Results 91 

IFN⍺ paves an alternate route of granulocytic differentiation  92 

To define the effects of IFN⍺ on wildtype and neoplastic hematopoiesis in human, we leveraged 93 

the Genotyping of Transcriptomes (GoT) technology that simultaneously captures the mutation 94 

status and whole transcriptomes in thousands of single cells (16). To overcome inter-patient 95 

variability in baseline hematopoiesis, we applied GoT to FACS-isolated CD34+ cells from serial 96 

(i.e., baseline and treated) bone marrow from individuals who were diagnosed with CALR-mutated 97 

ET (18) (Fig. 1A). As serial bone marrow biopsies are not typically performed in the absence of 98 

suspected disease progression, we utilized cryopreserved specimens from the MPN-RC-111 and -99 

112 clinical trials wherein patients were treated weekly with a pegylated form of IFN⍺ (19, 20) 100 

(Fig. 1A, n = 10 individuals, 8 baseline samples, 13 treated samples; additional 3 baseline samples 101 

included from our previous work (16); see table S1 for patient and sample information). Patients 102 

with samples available for this study exhibited partial or complete clinical response (i.e., 103 
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improvement in platelet counts) and were representative of the other patients with CALR mutations 104 

in these clinical trials (fig. S1A, table S1). We incorporated time-point specifying barcoded 105 

antibodies (21) that enabled multiplexing baseline and IFN⍺-treated samples into the same GoT 106 

experiments, in order to obviate technical batch effects (e.g., sequencing depth) between serial 107 

samples (Fig. 1B). We also advanced the GoT method by incorporating immunophenotyping (22) 108 

(GoT-IM) to link transcriptional and immunophenotypic cell identities (Fig. 1B). GoT-IM 109 

provided genotyping data for the canonical CALR frameshift mutations for 72% of CD34+ HSPCs 110 

(n = 46,883 cells of total 65,452 cells), consistent with our previously reported genotyping rates 111 

(16). In this way, we obtained somatic genotyping, whole transcriptomes, immunophenotyping 112 

and treatment status for thousands of cells from the same GoT-IM experiment.  113 

We hypothesized that IFN⍺ may alter cell states but not induce novel cellular identities. We 114 

integrated across the individual 24 samples to define the cell identities of the CD34+ HSPCs 115 

consistently across individual sampling (after analytically segregating the cells by time-point from 116 

the same experiments, Fig. 1C, fig. S1B-F, methods) (23). As single-cell gene expression provides 117 

high-resolution mapping of the HSPC identities, we clustered the cells based on gene expression 118 

data and annotated the clusters based on canonical cell markers (fig. S2A-C, see table S2 for cell 119 

numbers)(16, 24-26). To identify HSCs, we leveraged the jointly captured immunophenotyping to 120 

identify the CD38-, CD45RA-, CD90+ HSCs (with high RNA expression of the HSC marker AVP 121 

(27), Fig. 1D, fig. S2D). We observed the expected cell types, such as megakaryocytic progenitors 122 

(MkP) and immature myeloid progenitors (IMP, consisting predominantly of phenotypically 123 

defined common myeloid progenitors (CMP) and granulo-monocytic progenitors (GMP) (24), Fig. 124 

1C, fig. S2A-C).  125 

Contrary to our hypothesis that IFN⍺ may not induce novel cellular identities, we identified an 126 

unknown cluster (Cluster X), previously not described in studies of normal or MPN bone marrow 127 

CD34+ cells (16, 24-26, 28-30) (Fig. 1C). Cluster X was immunophenotypically similar to the 128 

IMPs based on CD38mid, CD45RAmid, and CD90- expression (Fig. 1D). To elucidate the identity 129 

of Cluster X, we performed differential expression analysis between Cluster X and IMPs (Fig. 1E, 130 

left, table S3, linear mixed model that explicitly models the effects of patient batch and treatment 131 

status, see methods). We observed a striking upregulation of the immediate early response 132 

transcription factors (TF) of the AP-1 (JUN, FOS, JUNB, FOSB, ATF3, FOSL1, MAFF), KLF 133 

(KLF2, KLF4, KLF6), and NR4A (NR4A1, NR4A2) families (Fig. 1E, left, table S3). Other TFs 134 

included interferon regulatory factor 1 (IRF1), indicating an inflammatory response. In addition, 135 

we observed a robust upregulation of RFX2 and RFX3 TFs. While the RFX2/3 factors are not well 136 

characterized in HSPCs, RFX2 activity was identified as one of the key pro-survival transcription 137 

factors activated in neutrophils during an inflammatory challenge in mice, particularly in the 138 

transition from bone marrow to blood (31). Upregulation of CEBPB and CEBPD, implicated in 139 

emergency granulopoiesis (32) and granulopoiesis under cellular stress (33), respectively, further 140 

suggested a neutrophilic differentiation trajectory. Gene set enrichment analysis identified the 141 

upregulation of TNF⍺ signaling via NF-κB pathway (Adj. P-val = 1.6 x 10-4), and downregulation 142 

of the MYC targets (Adj. P-val = 1.6 x 10-4, Fig. 1E, right, table S4). Incorporation of other HSPC 143 

immunophenotypic markers revealed that these cells were also positive for CD44, CD117, dim 144 

CD66b, and negative for HLA-DR, similar to IMPs and neutrophil progenitors (fig. S2B). Based 145 

on the transcription factors, immunophenotypes and pathways activated in Cluster X, we termed 146 

these cells inflammatory granulocytic progenitors (IGP). Consistent with the identification of the 147 

IGPs in this cohort of patients, the IGPs derived predominately from the IFN⍺-treated samples 148 
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with elevated frequencies in the IFN⍺-treated versus baseline CD34+ cells (Fig. 1F, fig. S2E). As 149 

the frequencies of IGPs were low, we confirmed that the elevated IGP frequencies in the IFN⍺ 150 

treatment samples were not simply due to a greater number of total CD34+ cells captured in the 151 

treated samples (fig. S2E-F). Separately integrating the samples based on treatment status also 152 

confirmed the specificity of the IGPs to IFN⍺-treated bone marrow (fig. S2G). The presence of a 153 

distinct IGP cluster in dimensional reduction of cells from individual experiments without any 154 

batch correction reassured that IGPs were not a technical artifact of integration (fig. S2H). 155 

Altogether, these data revealed that IFN⍺ induces an alternate IGP state. 156 

The differentially upregulated TFs in the IGPs were also highly enriched in a subset of quiescent 157 

HSCs with elevated AVP (27) and CD90 expression, we labeled HSC-IG (Fig. 1G, fig. S2D, S3A).  158 

The transcriptional similarities of the IGPs and HSC-IG (as revealed by their proximity on the 159 

UMAP space) suggested that the IGPs may derive from HSC-IG. RNA velocity measurements 160 

(34, 35) combined with partition-based graph abstraction (36) predicted cell state transitions from 161 

HSC-IG to IGPs (Fig. 1G, left, table S5). To define the transcriptional state transitions from HSC-162 

IG to IGPs, we compared IGPs to HSC-IG and identified a reinforcement of the RFX3, AP-1, 163 

CEBPB/D, and KLF family TF expressions and downregulation of NR4A2 (Fig. 1G, right, fig. 164 

S3B, table S3; only IFN⍺-treated cells included in the differential expression analysis). As 165 

NR4A1/2 have been reported to maintain HSC quiescence (37, 38), their downregulation in IGPs 166 

relative to HSC-IG was consistent with the upregulation of differentiation and cell cycle-related 167 

genes in the IGPs (Fig. 1G, right, fig. S3B-D, table S4). Upregulation of MPO (encoding 168 

myeloperoxidase in primary granules) and CSF3R (encoding the G-CSF receptor), and 169 

downregulation of the MHC class II genes (CD74, HLA-DPA1, HLA-DRB1, HLA-DPB1) further 170 

provided evidence for its differentiation into the neutrophil lineage (fig. S3B, table S4).  171 

To test the ability of HSCs to directly give rise to neutrophils, bypassing the conventional CMP 172 

and GMP oligo-potent progenitor states, we utilized a similar strategy by which the direct 173 

derivation of MkPs from HSCs (without traversing through the megakaryocytic-erythroid 174 

progenitor state) was demonstrated in human cells (39). We performed single cell colony forming 175 

unit assays by which we could track the differentiation of individual CD34+, CD90high bone 176 

marrow HSCs from MPN patients at baseline and on IFN⍺ therapy (Fig. 1H, fig. S3E, methods). 177 

We identified that HSCs gave rise to mixed multilineage and monocyte-neutrophil colonies, 178 

consistent with a passage through the oligo-potent progenitor states, but HSCs from IFN⍺-treated 179 

patients also frequently gave rise to neutrophil-only colonies (CD66b+, CD16+, CD14-), supporting 180 

a direct passage to neutrophil development (Fig. 1H, fig. S3E). These data suggested that IFN⍺ 181 

induces an alternate and precipitous neutrophil developmental pathway that bypasses the typical 182 

granulo-monocytic bi-potent progenitor states.  183 

Inflammatory neutrophils are enriched in IFN⍺-treated bone marrow 184 

To determine the identity of the immune cells that are downstream of the IGPs in an unbiased 185 

manner, we performed GoT-IM on the CD34- compartments of the serial IFN⍺-treated samples 186 

(Fig. 2A, fig. S4A-B, see table S6 for cell numbers, methods). Similar to the CD34+ cells, we 187 

clustered the cells based on gene expression and annotated the cell types based on canonical gene 188 

and protein markers (Fig. 2B, fig. S4C). We identified that the IGP gene signature was the highest 189 

in a distinct group of neutrophils (Neu1, Fig. 2C). Consistently, unsupervised co-embedding of 190 

the myeloid progenitors with the mature myeloid compartment revealed that the IGPs clustered 191 
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with the Neu1 subset of ‘inflammatory’ neutrophils (fig. S4D). Comparison of the gene expression 192 

of the Neu1 subset to the other neutrophil group, Neu2 (at an equivalent stage of maturation based 193 

on the expression level of CD66b, CD11b, CD16, Fig. 2B) revealed that Neu1 expressed 194 

inflammatory cytokines such as CXCL8 and CXCL2 and the transcription factors observed in the 195 

IGPs including RFX2/3, AP-1, KLF2/4/6, and CEBPB/D (Fig. 2D, left, table S7). Gene set 196 

enrichment of the differentially expressed genes also highlighted TNF⍺ signaling via NF-κB and 197 

inflammatory pathways in the Neu1 subset (Fig. 2D, right, table S7), suggesting the propagation 198 

of the inflammatory state of the IGPs to the mature progeny. These inflammatory neutrophils 199 

derived predominantly from the IFN⍺-treated samples (Fig. 2E). Overall, these data demonstrated 200 

that IFN⍺ induced the development of inflammatory neutrophils. 201 

IFN⍺ concurrently coordinates anti- and pro-inflammatory programs  202 

To assess the global transcriptional impact of IFN⍺, we examined the transcriptional distance of 203 

HSCs between treatment time-points for individual patients. In an example case of patient IFN04 204 

who showed partial clinical response (without evidence of disease progression, table S1), samples 205 

from three timepoints were available – (1) baseline, (2) at one year on active treatment, and (3) at 206 

four years but off therapy for 3 weeks at the time of collection. HSCs at year 1 displayed a 207 

strikingly distinct transcriptional profile compared to baseline cells, whereas cells that had been 208 

collected following discontinuation of therapy at year 4 were more similar to baseline HSCs (Fig. 209 

3A), consistent with clearance of pegylated-IFN⍺ at ~2-3 weeks (40). This contrasted with HSCs 210 

from samples with two timepoints under active IFN⍺ therapy (at years 1 and 2), which were 211 

similarly distinct from the baseline HSCs (fig. S5A). Projection of the progenitor identity 212 

assignments revealed that the HSPCs clustered based on cell identity as well as treatment status 213 

(Fig. 3A, fig. S2H). The magnitude of the transcriptional impact of IFN⍺ was in contrast to the 214 

subtler effects of somatic mutations, such as those in CALR (16), JAK2 (29, 41), and DNMT3A 215 

(42), resulting in co-mingling of mutated and wildtype cells, which could not be distinguished by 216 

scRNA-seq data alone, as revealed by methods that incorporate genotyping and scRNA-seq (16, 217 

29, 42, 43). Thus, we first examined the impact of IFN⍺ on the overall hematopoiesis agnostic to 218 

genotype status.  219 

To define the transcriptional perturbations by IFN⍺, differential expression analyses were 220 

performed between baseline and treated CD34+ cells, as a function of cell identity. We identified 221 

genes commonly regulated across multiple progenitor subsets upon IFN⍺ administration, 222 

including the canonical IFN⍺ genes, such as ISG15, IFITM3, IFI6 and EPSTI1 (Fig. 3B, fig. S5B, 223 

table S8). To test whether IFN⍺ induces human HSCs into cell cycle entry, as reported in mice 224 

(9), we examined the gene signatures for cell cycle phases shown to be an accurate assessment of 225 

cell cycle status (44). Indeed, HSC rates of cell cycle entry were enhanced upon IFN⍺ treatment 226 

(Fig. 3C, fig. S5C-D). A positive regulator of HSC quiescence (45), CXCR4, was downregulated 227 

upon IFN⍺ therapy, suggesting that CXCR4 downregulation may help coordinate HSC activation 228 

(Fig. 3B). We incorporated protein detection for CXCR4 (CD184) via GoT-IM and identified that 229 

IFN⍺ reduced surface CD184 expression (fig. S5E). Consistently, CD184 downregulation was 230 

observed in HSCs in cell cycle and enriched in IFN⍺-treated populations and, conversely, HSCs 231 

with elevated CD184 expression were less likely to be in cell cycle and enriched in baseline 232 

samples (P = 1.5 x 10-9, Fisher’s exact test, Fig. 3D). In light of enhanced rates cell cycle entry of 233 

HSCs with abrogation of Cxcr4 in mice (45), these data suggested that CXCR4 downregulation 234 

may play a role in permitting HSC cell cycle entry upon IFN⍺ exposure.  235 
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In the treated MkPs, CD9 and VWF, closely associated with MkP differentiation (46-49), were 236 

downregulated (fig. S5B, table S8). We also observed a downregulation of TGFB1 (fig. S5B), 237 

which encodes the pro-fibrotic cytokine TGFβ established as one of the main inducers of marrow 238 

fibrosis in patients with myelofibrosis (50, 51). We and others have shown that MPN 239 

megakaryocytes exhibit increased TGFB1 expression (16, 50, 52), and thus downregulation of 240 

TGFB1 by IFN⍺ indicates a potential mechanism of disease amelioration by IFN⍺. To ensure that 241 

the transcriptional changes we observed were specific to IFN⍺ therapy, we performed scRNA-seq 242 

on CD34+ HSPCs from individuals with CALR-mutated ET who were treated with hydroxyurea, 243 

at baseline and at one year of treatment, and observed no significant overlap between the genes 244 

differentially regulated by IFN⍺ and hydroxyurea (P = 0.599, Fisher’s exact test, fig. S5F-G).  245 

To determine which canonical pathways may be modulated by IFN⍺, we performed gene set 246 

enrichment analysis using the Hallmark gene sets in the IFN⍺-treated versus baseline cells and 247 

identified an upregulation of the IFN⍺ signaling pathway across the cell subsets as expected (Fig. 248 

3E, table S9). The analysis also confirmed the upregulation of cell cycle-related pathways (G2M 249 

check point and E2F targets) as well as MYC targets (Fig. 3E, table S9), corroborating a previous 250 

study that reported enhanced MYC protein expression during IFN⍺-induced cell cycle entry of 251 

mouse HSCs (53). Consistent with the downregulation of TGFB1 gene itself, gene set enrichment 252 

analysis between baseline and IFN⍺-treated cells revealed a decrease in TGFβ signaling across 253 

several HSPCs, including downregulation of THBS1 and SERPINE1 (Fig. 3E, fig. S5B, table 254 

S8,9). TGFβ signaling was particularly downregulated in the HSCs (Fig. 3E), as was observed in 255 

mice and associated with HSC exit from quiescence (10). 256 

Furthermore, in contrast to the pro-inflammatory state of the IFN⍺-associated IGPs, we observed 257 

a downregulation of pro-inflammatory pathways, including the TNF⍺ signaling via NF-κB and 258 

inflammatory response pathways, across the stem and progenitor cells and especially pronounced 259 

in the cDCPs (Fig. 3E-F, table S9). Downregulated genes in the TNF⍺ signaling via NF-κB 260 

pathway included AP-1 subunits, an NF-κB subunit NFKB1, and IL1B, which encodes the pro-261 

inflammatory cytokine IL-1b (Fig. 3F, table S8,9). Expression of IL1R1 and CXCL8 genes from 262 

the inflammatory response pathway were also downregulated (table S8). Previously, IFN⍺ 263 

treatment in mice has yielded mixed results demonstrating either an upregulation (10) or 264 

downregulation (54) of TNF⍺ by IFN⍺. Our findings indicated that in human, isolated IFN⍺ exerts 265 

an overall anti-inflammatory response, consistent with a previous report demonstrating decreased 266 

TNF mRNA levels following IFN⍺ therapy in patient samples (55).  267 

To determine whether the IFN⍺-regulated pathways may be partially retained in the HSCs after 268 

discontinuation of therapy, we compared HSCs from baseline to post-treated samples (IFN04, 269 

IFN05, IFN06) not on active IFN⍺ therapy (off therapy for ~3-4 weeks). We observed a residual 270 

IFN⍺ response signature and a slight downregulation of the TNF⍺ signaling via NF-κB pathway 271 

in the post-therapy samples compared to the baseline, but intriguingly, the TGFβ signaling was 272 

upregulated in the post-treated HSCs compared to both baseline and actively treated HSCs (Fig. 273 

3G, fig. S5H). These data suggested that following IFN⍺ exposure, HSCs actively upregulate the 274 

quiescence program, consistent with the report in mice that HSCs re-enter quiescence following 275 

activation by type 1 IFN (10). Furthermore, post-therapy HSC-IG upregulated the gene expression 276 

program that defined HSC-IG (versus HSC1, Fig. 3G, fig. S5H), suggesting the reinforcement of 277 

the inflammatory signature with prior inflammatory exposure. Consistently, the HSC-IG and IGP 278 

frequencies at baseline showed a trending increase with age (fig. S5I), and HSC-IGs exhibited a 279 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.09.28.509751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

higher aging gene signature compared to the other HSCs (fig. S5J) (56). Altogether, these data 280 

implicated inflammatory neutrophil development as a feature of HSC memory – i.e., trained 281 

immunity, a field that has largely focused on monocyte development thus far (57). 282 

We next determined whether the anti-inflammatory state propagated to the mature immune cells 283 

upon IFN⍺ therapy. The mature immune cells displayed a greater degree of heterogeneity in their 284 

response to IFN⍺ compared to stem and progenitors, indicating a cell type-specific response to 285 

IFN⍺ (fig. S5K, table S10,11). Notably, IFN⍺ did not induce cell cycle entry of mature immune 286 

cells (fig. S5K-L). Nonetheless, IFN⍺ therapy downregulated TNF⍺ signaling in innate immune 287 

cells, specifically classic dendritic cells and natural killer cells (Fig. 3H, fig. S5K). Immune cell 288 

composition also reflected this shift to an anti-inflammatory condition, with the expansion of 289 

regulatory T (Treg) cells (relative to other T-cell subsets), as well as a diminution of the pro-290 

inflammatory CD16+ monocytes (within the monocytic compartment, fig. S5M-N) (58, 59). These 291 

data indicated that the anti-inflammatory effects of IFN⍺ on the stem and progenitor cells are likely 292 

compounded by the anti-inflammatory state of the bone marrow immune microenvironment.  293 

Given the induction of IGP differentiation and inflammatory neutrophils with upregulation of AP-294 

1 and NF-κB targets, these findings suggest that isolated IFN⍺ initiates both anti-inflammatory 295 

and pro-inflammatory states – both occurring in parallel within the same individual’s 296 

hematopoiesis. Consistently, we observed a significant overlap between the IFN⍺-downregulated 297 

(IFN⍺DN) genes and genes upregulated in the IGPs (IGPUP, Fig. 1E, 3B, table S3,8, P = 1.6 x 10-298 
5, hypergeometric test). The inverse, i.e., a significant intersection of IFN⍺UP genes and IGPDN 299 

genes, was also observed (P = 1.73 x 10-69, hypergeometric test, table S3,8). Coherently, the HSC-300 

specific IFN⍺UP gene signature (displayed in Fig. 3B) was significantly downregulated in the IGPs 301 

compared to the HSCs while the IFN⍺DN genes were upregulated in the IGPs (with both cell groups 302 

under IFN⍺ treatment; Fig. 3I). Altogether these data indicated that IFN⍺ can precipitate opposing 303 

cell states within the same HSC population. While previously the heterogeneity of HSC cell states 304 

was linked with lineage outputs (60, 61), these data revealed that HSC heterogeneity may also 305 

mediate polarized anti- and pro-inflammatory responses to regulate specialized immune function. 306 

IFN⍺ potentiates lymphoid differentiation shift  307 

To determine how the transcriptional remodeling by IFN⍺ may impact the hematopoietic 308 

differentiation trajectories, we computed the proportion of stem and progenitor subsets within the 309 

CD34+ compartment before and following IFN⍺ therapy. In addition to the expansion of the 310 

alternate IGP state, IFN⍺ also paradoxically induced a significant expansion of the lymphoid 311 

progenitors (Fig. 4A-B, fig. S6A). While the expansion of lymphoid progenitors was an 312 

unexpected finding as inflammatory cytokines have been demonstrated to induce myeloid priming 313 

(62-64), it was consistent with the downregulation of pro-inflammatory pathways, including those 314 

of the AP-1 subunits, associated with myeloid differentiation (65). In congruence with 315 

downregulation of VWF and CD9 expressions, we observed diminutions of the megakaryocytic-316 

erythroid lineage progenitors, including MkPs and erythroid progenitors (EP, Fig. 4A-B; paired 317 

analyses from serial samples in fig. S6A).  318 

To validate the generalizability of the lymphoid expansion, we analyzed clinical multi-parametric 319 

flow cytometry data of bone marrow aspirates from patients with early-phase MPN with JAK2 or 320 

CALR mutations (n = 33 samples without IFN⍺ exposure; n = 9 samples with IFN⍺ therapy). 321 
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Indeed, we identified that the proportion of TdT+, CD19+ B-lymphoid progenitors within CD34+ 322 

HSPCs increased in IFN⍺-treated bone marrow compared to control (Fig. 4C, S6B, table S12). 323 

We also observed an increased proportion of CD34+, TdT+, CD19+ cells of all viable cells 324 

analyzed, as well as an increase in the CD34-, TdT -, CD19+ B-lymphocytes (Fig. 4C), providing 325 

evidence for an active lymphoid priming of HSCs leading to an expansion of the lymphoid 326 

progenitors. These findings were specific to IFN⍺, and not observed upon hydroxyurea therapies 327 

(fig. S6B, table S12). In support of lymphoid priming, HSCs exhibited an increased protein 328 

expression of CD45RA (used to identify multipotent lymphoid progenitors, MLP) after IFN⍺ 329 

treatment (Fig. 4D). CD90 was downregulated, consistent with the IFN⍺ effect of driving cell 330 

cycle entry and differentiation (Fig. 4D). Importantly, CD90, CD38 and CD45RA expressions 331 

were coherent with the transcriptional signature of HSCs following IFN⍺ treatment (fig. S6C), in 332 

contrast to mice progenitors that upregulate an HSC marker Sca-1 upon type 1 IFN treatment (10). 333 

Consistent with active differentiation bias toward B-lymphoid progenitors, the mature B cell 334 

compartment from IFN⍺-treated samples revealed a more immature B cell state compared to the 335 

baseline B cells (Fig. 4E), in the absence of proliferation of the CD34- B cell compartment (fig. 336 

S5K, S6D). The major shifts in progenitor output by the HSCs suggested that the clinical 337 

improvement in the patients’ platelet count (despite variable molecular responses) may be due to 338 

the differentiation skewing away from the megakaryocytic to the lymphoid lineage. Consistent 339 

with this model, the proportions of MEPs and MkPs in CD34+ cells could help predict the patient’s 340 

platelet counts (P = 0.0063, generalized linear model, Fig. 4F). These data thus supported a model 341 

wherein the imbalance of hematopoietic differentiation landscape caused by somatic mutations in 342 

HSCs may be corrected by IFN⍺, as a mode of therapeutic efficacy in hematopoietic neoplasms.  343 

GoT-ATAC identifies transcription factor regulatory networks that govern IGP 344 

differentiation  345 

Chromatin accessibility enables approximation of TF activity based on accessibility of the TF 346 

binding sites (66-70). Thus, to determine the regulatory networks that govern IFN⍺-induced 347 

modulation of inflammatory and differentiation states, we expanded upon GoT to capture somatic 348 

mutational status, chromatin accessibility and whole transcriptomes. We adapted the 10x 349 

Multiome platform that captures single-nuclei RNA-seq (snRNA-seq) and chromatin accessibility 350 

(snATAC-seq) to include somatic genotyping, i.e., GoT-ATAC (Fig. 5A). We applied GoT-ATAC 351 

to serial bone marrow CD34+ cells (n = 23,137 cells) from the clinical trial cohorts (n = 4 baseline, 352 

3 IFN⍺-treated samples). As in GoT-IM, we incorporated time-point specifying barcoded 353 

antibodies (71) to combine serial samples from the same individuals into a single experiment to 354 

remove technical batch effects (Fig. 5A, fig. S7A-E). After we analytically segregated the baseline 355 

and IFN⍺-treated samples (fig. S7E), we clustered the cells across samples based on the 356 

transcriptomic and chromatin accessibility data and identified the same cell states identified by 357 

GoT-IM, including the IGPs (fig. S8A-E, table S13).  358 

As the IGPs were defined by a robust upregulation in gene expression of immediate early factors 359 

and RFX2/3, we determined whether these TFs showed increased activity based on chromatin 360 

accessibility of their binding sites. A differential TF motif enrichment analysis between IGPs and 361 

HSCs revealed that the same TFs showed enhanced accessibility, including the motifs of the AP-362 

1 family (FOS, JUN, JUND, JUNB, FOSL1, FOSL2), CEBPB/D, and RFX2/3 (Fig. 5B, fig. S8F, 363 

table S14). Consistent with the overexpression of IRF1 in IGPs, differential motif enrichment 364 

analysis also isolated IRF1 as the main interferon regulatory factor active in the IGPs. The 365 
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differential motif analysis further revealed an upregulation of STAT2 and the proinflammatory 366 

REL of the NF-κB complex (Fig. 5B, fig. S8F, table S14), consistent with the observed gene 367 

expression upregulation of the NF-κB pathway (Fig. 1E, fig. S3B). While TF expression data are 368 

often sparse in scRNA-seq, these data demonstrated a high concordance of TF gene expression 369 

and their binding motif accessibility, suggesting a rapid induction of the IFN⍺ transcriptional 370 

regulatory program. 371 

To determine which TFs upregulated the gene expressions of RFX2/3, we determined TF motifs 372 

present in the regulatory peaks that correlated with their gene expression (i.e., linked peaks 373 

analysis) (72). In the cis-regulatory region of RFX3, we identified the binding motifs of STAT2 374 

and IRF1, as well as FOSB and PU.1, which were upregulated at the gene expression level in IGPs 375 

(fig. S9A-B, table S15). Likewise, the most significant regulatory regions for RFX2 included 376 

motifs for PU.1, KLF factors, NR4A1/2 and AP-1 subunit factors (fig. S9A,C, table S15). To 377 

determine the regulatory networks that govern the robust upregulation of the AP-1 subunits in the 378 

IGPs, we assessed for motif enrichment in the positive regulatory peaks for the AP-1 TFs in 379 

aggregate and identified RFX2-4 (which have the same binding motifs) as among the most 380 

significant TFs (Fig. 5C, table S16). Thus, RFX2/3 and AP-1 TF groups positively regulated the 381 

expression of the other, synergizing IGP development. These data provided evidence for a model 382 

wherein HSC-IG with elevated expression of RFX2/3 and AP-1 subunits and other immediate 383 

early response factors were primed toward a robust transcriptional program for IGP differentiation 384 

upon IFN⍺ signaling.  385 

Furthermore, as other RFX members (i.e., RFX1 and RFX8) play key regulatory roles in MHC 386 

class II expression (73-75), we hypothesized that RFX2/3 may downregulate MHC class II in the 387 

IGPs. To test this, we determined the significantly linked peaks that negatively regulated HLA-388 

DRA expression (fig. S10A, bottom) (72). We identified a distal regulatory region with four 389 

negative regulatory loci (fig. S10A, inset). These peaks included motifs for IRF1 and STAT2 as 390 

well as immediate response factors including AP-1 and KLF families, but not RFX2/3 (fig. S10A, 391 

inset, table S17). However, within the same negative regulatory region, we identified an IGP-392 

specific peak that included the binding motif for RFX1-4, KLF factors and IRF1 (fig. S10A, top, 393 

table S17). These findings identified the immediate response factors, IRF1 and STAT2 as negative 394 

regulators of MHC class II genes across cell types, while RFX2/3 binding was specific for MHC 395 

class II downregulation during IGP differentiation. Consistently, surface HLA-DR was suppressed 396 

in the IGPs in the GoT-IM data (fig. S10B). Genes positively regulated by RFX2/3 included MPO 397 

and genes involved in cell cycle entry (table S18), suggesting that these factors play an essential 398 

role in activating the IGPs.  399 

As RFX3 was upregulated in the HSC-IG to IGP transition, we overexpressed RFX3 in primary 400 

cord blood CD34+ cells via lentiviral transduction to determine whether RFX3 may regulate 401 

granulocytic differentiation. Methylcellulose-based colony forming unit assays of RFX3 402 

overexpressing (RFX3-OE) CD34+ cells revealed that RFX3 overexpression expanded the 403 

granulocytic colonies (CFU-G) and diminished the erythroid colonies (CFU-E) compared to 404 

control-vector transduced CD34+ cells (Fig. 5D, fig. S10C-D).  To determine whether RFX3 may 405 

regulate neutrophil differentiation at the CD34+ HSPC stage, we performed single-cell RNA-seq 406 

of RFX3-OE CD34+ cells with control-vector cells and non-transduced cells. We identified an 407 

IGP-like progenitor state that was highly enriched for the RFX3-OE HSPCs (Fig. 5E, fig. S10E-408 

I). Compared to the IMPs, this IGP-like progenitor state recapitulated the IGP signature including 409 
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upregulation of AP-1 subunit TFs and CEBPD among other TNF⍺ signaling via NF-κB pathway 410 

genes, and downregulation of the MYC pathway (Fig. 5F, table S19). These data highlighted 411 

RFX3 as a key transcription factor regulator of IGP development. 412 

PU.1 underlies hematopoietic differentiation remodeling by IFN⍺ 413 

Furthermore, the GoT-ATAC data also confirmed the expansion of the lymphoid progenitors upon 414 

IFN⍺ treatment (fig. S11A). To determine the regulatory networks that governed the 415 

differentiation skewing by IFN⍺, we performed differential motif enrichment analysis between 416 

IFN⍺-treated and baseline HSCs. IFN⍺ enhanced the activities of STAT2 and several interferon 417 

regulatory factors in HSCs, in contrast to the specific activity of IRF1 in IGPs (Fig. 5G, table 418 

S20). IFN⍺ downregulated the motif accessibility of AP-1 TFs (Fig. 5G), consistent with the 419 

downregulation of AP-1 TF gene expression associated with TNF⍺ signaling via NF-κB (Fig. 3B). 420 

Moreover, the accessibility of the TWIST1 motif was enhanced after treatment (Fig. 5G), 421 

consistent with a previous report that identified TWIST1 as mediating the downregulation of 422 

TNF⍺ upon type 1 IFN treatment (54). Furthermore, the activity of TGFβ induced factor 423 

homeobox 2 (TGIF2), which inhibits TGFβ response genes, was also enhanced (Fig. 5G, table 424 

S20), highlighting TGIF2 as another key factor involved in the downregulation of the observed 425 

TGFβ signaling after IFN⍺ treatment.  426 

Importantly, critical TFs involved in hematopoietic differentiation (76) were differentially 427 

regulated. Notably, motif accessibilities of PU.1 and RUNX1, essential for early lymphoid and 428 

granulo-monocytic differentiation (76), were enhanced by IFN⍺ (Fig. 5G, table S20). The 429 

activities of GATA1/2, reported to be negatively regulated by PU.1 (76), were downregulated as 430 

well as those of another critical megakaryocytic-erythroid lineage factor, TAL1 (77). These 431 

findings were consistent with the differentiation away from the megakaryocytic-erythroid lineages 432 

upon IFN⍺ treatment. Furthermore, the accessibilities of the motifs of the critical early B-lymphoid 433 

differentiation factors TCF3/4 were enhanced (71, 78, 79), highlighting TCF3/4 as TFs that govern 434 

the differentiation toward lymphoid progenitors by IFN⍺. CEBPA/B/D, essential for granulo-435 

monocytic development (80, 81), were also upregulated in its motif accessibility (Fig. 5G, table 436 

S20). Importantly, the IRFs (82, 83), RUNX1 (84), CEBPA (85) and TCF3 (86) have been 437 

demonstrated to co-regulate target gene expression with PU.1, suggesting that enhanced PU.1 438 

activities may have enhanced the activities of its co-regulating TFs, such as CEBPA and TCF3. 439 

To confirm these co-regulations in IFN⍺-remodeled hematopoiesis, we examined the synergistic 440 

activities of the different combinatorial TFs by measuring the excess variability of accessibility 441 

for peaks with both TF motifs (compared to peaks with one motif) (69). Indeed, PU.1 exhibited 442 

synergistic activities with IRF1, RUNX1, CEBPA and TCF3, while displaying antagonism with 443 

GATA1 and TAL1 (Fig. 5H). To determine the activities of these TFs upon lymphoid 444 

differentiation, we assessed the motif accessibilities of the TFs across the early and late 445 

progenitors. The activities of PU.1, RUNX1 and CEBPA were enhanced upon IFN⍺ signaling 446 

during the early stages of hematopoiesis and diminished with lymphoid development, whereas the 447 

activities of TCF3 were more pronounced in the later stages of development (Fig. 5I). These data 448 

highlighted PU.1 as a master regulator of IFN⍺-induced differentiation.  449 

To determine whether IFN⍺ may directly upregulate the expression of PU.1, we assessed the 450 

regulatory peaks of PU.1 gene itself and identified the binding motifs of interferon regulatory 451 

factors (fig. S11B, table S16). Consistently, PU.1 gene expression increased upon IFN⍺ treatment 452 
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in stem and early progenitor cells (fig. S11C). IFN⍺ treatment of a hematopoietic cell line (K562) 453 

in vitro upregulated PU.1 gene and protein expression (fig. S11D-E), consistent with a previous 454 

report (87), demonstrating that IFN⍺ directly upregulates the expression of PU.1. As PU.1 455 

regulatory peaks also included CEBPA binding motifs, we overexpressed CEBPA in K562 cells 456 

and observed enhanced expression of PU.1 (fig. S11F). We further tested whether enhanced PU.1 457 

may, in turn, co-regulate the expressions of canonical type 1 IFN targets. Overexpression of PU.1 458 

in K562 cells with or without IFN⍺ treatment revealed that PU.1 overexpression led to 459 

upregulation of IRF1 and B2M and downregulation of ISG20 and IFIH1, as examples (fig. S11G-460 

H). Altogether, these studies revealed that IFN⍺ signaling caused a global rewiring of TF 461 

regulatory activities, particularly through PU.1 for both lymphoid and IGP expansion, that 462 

underpinned the concerted transcriptional and differentiation remodeling.  463 

Somatic mutations modify the downstream effects of IFN⍺ 464 

Having established the overall effects of IFN⍺ on hematopoiesis, we next determined the 465 

differential effects of IFN⍺ on CALR-mutated versus wildtype stem and progenitor cells, 466 

specifically in relation to the effects of IFN⍺ on the clonal fitness of HSCs (Fig. 6A, fig. S12A). 467 

The high genotyping efficiency of GoT-IM enabled us to track the clone size precisely within the 468 

HSCs, revealing that IFN⍺ caused variable changes to the CALR-mutated clone size (Fig. 6B, fig. 469 

S12B), consistent with previous reports of bulk sequencing on peripheral blood samples (12, 13, 470 

15, 17). Current models of inflammation-induced perturbation to clonal evolution build on the 471 

induction of cell cycle entry of clonal HSCs for enhanced fitness (5) or differentiation and 472 

depletion (9, 12, 13). We therefore determined whether differential upregulation of HSC cell cycle 473 

entry might predict clonal dynamics. Across the patients regardless of clonal dynamics, IFN⍺ 474 

induced greater rates of cell cycle entry of CALR-mutated HSCs compared to the wildtype 475 

counterparts (Fig. 6C, fig. S12C). These results indicated that the mutated HSCs were likely 476 

primed for a more robust proliferative response, compared to the wildtype counterparts, potentially 477 

due to the baseline cell cycle activity enhanced by the CALR mutations. In support of this model, 478 

IFN⍺ boosted the proliferation to a greater degree in the mutated cells compared to wildtype within 479 

the myeloid lineages, especially those of the megakaryocytic-erythroid, but not the lymphoid 480 

progenitor compartment—that is, restricted to the progenitor subsets in which the CALR-mutation 481 

caused enhanced proliferation at baseline (16) (fig. S12C). We orthogonally validated that IFN⍺ 482 

effected greater proliferative rates in the myeloid HSPCs by performing multiplexed in situ 483 

fluorescent imaging of bone marrow paraffin-embedded sections from patients with CALR-484 

mutated MPN with or without IFN⍺ treatment (n = 5 without IFN⍺, n = 4 with IFN⍺, Fig. 6D, fig. 485 

S12D). We determined the protein expression of CD34, CD117, CD38, Ki67 and mutated CALR 486 

(88) to assess the frequencies of CD34+, CD38+, CD117+ myeloid progenitors that express Ki67, 487 

a gold standard of cell cycle entry (89). The availability of a mutated CALR-specific antibody 488 

enabled us to identify that the frequency of cycling mutated myeloid progenitors was higher 489 

compared to that of wildtype with or without IFN⍺ exposure (Fig. 6D). Overall, these findings 490 

provided evidence that IFN⍺ enhanced the cell cycle entry of the HSPCs to the degree 491 

predetermined by baseline priming. Thus, while enhancing absolute rates of cell cycle entry across 492 

the stem cells, the relative difference in cell cycle rates between mutated and wildtype HSCs at 493 

baseline were preserved upon IFN⍺ exposure. These data indicated that inflammation-induced cell 494 

cycle entry rates may be decoupled from clonal dynamics.  495 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.09.28.509751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

To determine whether IFN⍺ exposure may preserve other key features of CALR-mutation effects, 496 

we compared the gene expression profiles between wildtype and mutated cells, at baseline and 497 

following IFN⍺ therapy. Intriguingly, we observed the same differentially expressed pathways 498 

between the IFN⍺-treated mutated and wildtype HSCs, including the unfolded protein response 499 

(UPR) (16, 90, 91), likely due to a heterozygous loss of the wildtype CALR that encodes a critical 500 

chaperone protein (fig. S12E-F, table S21-24). IFN⍺ globally remodeled the differentiation 501 

toward lymphoid development, reducing the overall megakaryocytic bias in the mutated cells (Fig. 502 

6E). Indeed, the frequencies of mutated MkPs and MEPs better predicted the patients’ platelet 503 

counts compared to overall frequencies of MkPs and MEPs (fig. S12G). However, the lymphoid 504 

expansion was constrained in the mutated compartment due to the relative expansion of the 505 

granulo-monocytic and megakaryocytic-erythroid progenitors compared to wildtype HSPCs 506 

(consistent with the differential upregulation of cell cycle entry in the mutated myeloid 507 

progenitors, Fig. 6E-F, fig. S12C). Furthermore, computation of the mutant cell frequency across 508 

the progenitor subsets before and after treatment revealed that the enrichment of the mutated cells 509 

in the myeloid compartments did not change following IFN⍺ treatment (fig. S12H). Altogether, 510 

these data revealed that phenotypic responses to IFN⍺ are constrained (e.g. lymphoid 511 

differentiation) or amplified (e.g. cell cycle entry) by somatic mutations, such that cell state 512 

distinctions between the mutated and wildtype cells are preserved upon IFN⍺ signaling. 513 

We therefore hypothesized that CALR-mutations may alter the chromatin state of the binding sites 514 

of IFN⍺-regulated TFs and thereby modulate their activities following therapy. We tested 515 

differential TF motif enrichment via GoT-ATAC between the mutated versus wildtype stem and 516 

early progenitors at baseline (Fig. 5A). The binding sites of NFKB1/2 were enhanced in the 517 

mutated cells, consistent with our previous report of the gene set enrichment of the NF-κB pathway 518 

in the CALR-mutated early HSPCs (16). We also identified that the chromatin accessibility of PU.1 519 

and CEBPA were increased in the mutated cells (Fig. 6G, table S25). These data suggested that 520 

CALR mutations alter the chromatin state of key lineage specifying TF binding sites, skewing the 521 

lineage-modulating activities of IFN⍺. Specifically, these data indicated that IFN⍺-induced PU.1 522 

activities may be skewed toward granulo-monocytic (versus lymphoid) development via enhanced 523 

PU.1 and CEBPA co-activity in the mutated HSPCs.  524 

To directly assess the impact of differential PU.1 activity due to the mutation status on modulating 525 

the effects of IFN⍺, we performed a chromatin binding assay (CUT&RUN) (92) for PU.1 in UT7 526 

cell lines expressing MPL (thrombopoietin receptor) and either the mutant CALR (type 1, 527 

L367Tfs*46) or wildtype CALR transgene (93) treated with IFN⍺ (fig. S13A, table S26). We 528 

observed that PU.1 binding sites were enriched in the mutated cells compared to wildtype, 529 

consistent with the GoT-ATAC data and the myeloid bias induced by the CALR mutation (Fig. 530 

6H, left). Following IFN⍺ treatment in vitro, we observed co-enrichment of PU.1-bound peaks 531 

with IFN⍺-specific transcription factor motifs, including IRF4/8, which are known to cooperate 532 

with PU.1 in the Ets-IRF composite elements (EICE) to mediate lymphoid and myeloid 533 

differentiation (fig. S13B, table S27) (83, 94, 95).  We observed that IFN⍺ enhanced PU.1 binding 534 

at distal regulatory regions (fig. S13C), the regions that regulate the differential commitment to 535 

the lymphoid versus monocytic lineages by PU.1 (96). In these distal peaks, PU.1 binding sites 536 

were enriched for CEBPA/B co-binding sites in the CALR mutated cells compared to the wildtype 537 

(Fig. 6H, right, fig. S13D, table S28). These data demonstrated that CALR mutations enhance 538 

PU.1 binding activities and alter the preferential cooperating TF partners of PU.1. Overall, these 539 
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results suggested that somatic mutations may alter the chromatin state of TF regulatory regions, 540 

which in turn modulate the downstream effects of inflammatory activation. 541 

IFN⍺ regulates clonal fitness of HSCs via IGP development 542 

While IFN⍺ induced cycling of CALR-mutated HSCs at a higher frequency than wildtype HSCs 543 

consistently across patient samples, clonal dynamics following therapy was heterogeneous (Fig. 544 

6B). To investigate other factors that may contribute to the effects of IFN⍺ on clonal dynamics, 545 

we examined an unusual case in which the mutated clone expanded substantially with IFN⍺ 546 

therapy in patient IFN02 (Fig. 6B). Interestingly, the HSPCs from patient IFN02 harbored a 547 

subclone with another mutation in CALR, a single nucleotide variant in the CALR allele (M131I, 548 

predicted to impact protein structure (97)) which is trans to the MPN-causing frameshift mutation 549 

(fig. S14A). At baseline, the double mutant clone remained subclonal to the dominant clone with 550 

the single canonical CALR mutation (Fig. 6I, fig. S14B). Upon IFN⍺ therapy, the double mutant 551 

clone overtook the neoplasm and the overall stem cell population, even though the double mutant 552 

clone did not exhibit significant difference in cell-cycle entry rates compared to single mutant 553 

HSCs at baseline (Fig. 6I, fig. S14C). The additional insult to CALR activities in the double mutant 554 

clone effected a greater UPR activation compared to single mutant HSCs, as expected (fig. S14D-555 

E, table S29-30). Surprisingly, however, the predominant signatures of the double mutant HSCs 556 

compared to other HSCs at baseline were an upregulation of IFN response genes and decreased 557 

TNF⍺ and TGFβ signaling (fig. S14D-E, table S29-30), thus recapitulating the HSC response to 558 

extrinsic IFN⍺ and supporting a potential causal link between UPR and IFN activation (98). 559 

Consistently, the double mutant HSCs exhibited increased expression of the HSC-specific IFN⍺UP 560 

gene signature (Fig. 3B) at baseline and even higher expression upon IFN⍺ therapy (Fig. 6J, left). 561 

Similarly, the IFN⍺DN gene signature was downregulated in the double mutant clone at baseline 562 

and to a greater degree following treatment (fig. 6J, right). Further, unbiased clustering and 563 

dimensional reduction revealed that the double mutant clone at baseline clustered with the treated 564 

HSCs rather than with the other baseline HSCs (fig. S14F-G). As the double mutant HSCs share 565 

the same microenvironment as the wildtype and single mutant HSCs, the striking similarity of the 566 

intrinsically activated IFN⍺ signaling in the double mutant cells at baseline to the extrinsic IFN⍺ 567 

effects indicated that the predominant IFN⍺ signaling signatures observed in the IFN⍺-treated 568 

HSCs may be largely direct rather than secondarily mediated by the effects of IFN⍺ on other cell 569 

types. These findings also highlighted a genotype-specific modulation of HSC fitness by IFN⍺.  570 

As the IGPUP signature has a significant overlap with the IFN⍺DN gene signature (including the 571 

immediate early response TFs), the significant downregulation of the IFN⍺DN gene signature of 572 

the double mutant cells suggested that the double mutant HSCs may be resistant to IGP 573 

development. Consistent with this hypothesis, the double mutant HSCs expressed lower IGPUP 574 

and higher IGPDN signatures (fig. S14H). Altogether, these data raised the hypothesis that the 575 

resistance of clonal stem cells to differentiate into the IGPs may dictate its clonal fitness upon 576 

IFN⍺ signaling. We therefore computed the fold change in clone size as a function of the difference 577 

in the frequencies of mutant cell frequency within the HSC-IG and IGPs relative to that of the total 578 

CD34+ compartment (Fig. 6K). Indeed, the propensity of clonal HSCs to differentiate into IGPs 579 

could model clonal dynamics (Fig. 6K). These findings identified the alternate IFN⍺-specific route 580 

of differentiation into IGPs as an avenue to perturb clonal dynamics, while perturbations to the 581 

existing programs did not lead to a net difference in fitness between mutated and wildtype HSCs. 582 

To test the generalizability of this model, we examined the IGPDN gene signatures in DNMT3A-583 
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mutated HSCs from individuals with clonal hematopoiesis (42), as DNMT3A-mutated clones are 584 

resistant to IFN⍺, frequently expanding upon treatment (15). Consistently, the DNMT3A-mutated 585 

HSCs demonstrated increased expression of the IGPDN gene signature compared to the admixed 586 

wildtype HSCs (Fig. 6L), suggesting that the DNMT3A-mutated HSCs may be resistant to IGP 587 

development. These results therefore support a unified model of clonal dynamics wherein the 588 

differential propensity of HSC clones to differentiate into the IGPs determines the clonal 589 

composition of the stem cell niche under inflammation.  590 

Discussion 591 

Here, our studies deconvoluted the pleotropic effects of IFN⍺ in reshaping the differentiation 592 

trajectories of human HSCs for normalization of blood counts and modulation of clonal dynamics 593 

in myeloproliferative neoplasms. The single-cell multi-omics methods applied to serial sampling 594 

enabled us to track clonal evolution over a treatment period together with differential phenotypic 595 

remodeling of mutated versus wildtype stem and progenitor cells. We identified that the underlying 596 

somatic mutations both amplified the IFN⍺ effects (e.g., cell cycle entry) and constrained others 597 

(e.g., lineage skewing). In this way, the relative distinctions between the mutated and wildtype 598 

HSPCs were preserved, despite the global remodeling of hematopoiesis. These findings suggested 599 

that the relative fitness of clonal HSCs via programs already activated at baseline also remained 600 

constant. Thus, differential HSC activation into cell cycle entry alone could not fully explicate the 601 

inflammation-induced changes in clonal dynamics. 602 

Instead, we identified an IFN⍺-specific alternate route of differentiation directly from HSCs that 603 

predicted clonal dynamics based on priming of clonal stem cells to differentiate into the IGP state, 604 

enabling resisting HSC clones to dominate the stem cell niche. Furthermore, identification of the 605 

IGP population highlighted an intriguing phenomenon in human HSCs: induction of the IGP 606 

differentiation through upregulation of the pro-inflammatory AP-1 and NF-κB activities indicated 607 

that IFN⍺ potentiates a pro-inflammatory as well as an overall anti-inflammatory cell states with 608 

downregulation of the same AP-1 and NF-κB activities within the same hematopoietic 609 

differentiation program. Differential expression levels of RFX2/3 and immediate early response 610 

programs within the HSC populations were highlighted in our data as mediating the polarized 611 

response to IFN⍺, revealing a key functional relevance of HSC heterogeneity. These data 612 

suggested that HSC-IG with elevated RFX2/3 and immediate early response gene expressions were 613 

poised to a precipitous pro-inflammatory response to stimuli, implicating these HSCs in innate 614 

immune memory or trained immunity, i.e. an adapted innate immune response due to a prior 615 

inflammatory activation of HSCs (99, 100). Trained immunity may thus serve as a non-genetic 616 

modifier of IGP priming, reflecting the interpatient variabilities in the rates of IGP development 617 

by the CALR-mutated stem cells. Notably, these results were highly concordant with a recent report 618 

of inflammatory memory HSCs that have significant overlaps with HSC-IG in gene expression 619 

and a similar retention of the inflammatory phenotype following resolution of active inflammatory 620 

stimulation (56). In this study, downregulation of the inflammatory signature by clonal stem cells 621 

in the context of CH was also associated with clonal fitness (56). These findings therefore 622 

highlighted a novel connection between trained immunity and clonal dynamics, further shedding 623 

insights into the impact of age-related inflammation to clonal expansion and malignant 624 

transformation.  625 
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Furthermore, Type 1 IFN, the first FDA-approved immunotherapy (101), remains an effective 626 

treatment and is being tested across various autoimmune (102, 103), cancer (104) and infectious 627 

disease contexts (105, 106), including COVID-19 (107, 108). In the context of MPN, IFN⍺ is the 628 

only agent to consistently to deplete clonal stem cells. While previous studies have not detected 629 
improvement in disease progression in patients treated with IFN⍺ (20, 109), large clinical trial cohorts 630 
would be required to detect significant differences between the IFN⍺ and control arms, as the rates of 631 

disease progression are low in patients with ET. Moreover, our identification of the HSC-specific IFN⍺ 632 

response, which includes IFN⍺/γ response upregulation and downregulation of the targets of TNF⍺ 633 

and TGFβ signaling pathways, may help clarify its therapeutic efficacy in other disease contexts 634 

beyond MPN. In mouse studies, IFN⍺ has been demonstrated to modulate TNF⍺ expression (110) 635 

with data suggesting either an upregulation (10) or downregulation (54) of TNF⍺ by IFN⍺. Thus, 636 

our studies clarify that the predominant effect of IFN⍺ in human HSPCs is the downregulation of 637 

downstream pathways involved in TNF⍺ signaling via AP-1 and NF-κB, consistent with 638 

amelioration of the inflammatory state in MPN and multiple sclerosis upon type 1 IFN 639 

administration (17, 107). It also suggested that individuals with deficiencies in type 1 IFN may 640 

have exhibited exaggerated response to COVID-19 infections (111, 112) due to the inability to 641 

counterbalance the pro-inflammatory effects of the other cytokines. Coherently, TNF expression 642 

was demonstrated to be decreased in patients with MPN who received IFN⍺ treatment (55). The 643 

pro-fibrotic TGFβ signaling was also broadly downregulated across progenitor subsets, through a 644 

coordinated downregulation of the TGFB1 gene itself and upregulation of the TGFβ signal 645 

inhibiting TGIF2 activity. In this way, IFN⍺ downregulated two key cellular programs involved 646 

in the MPN-associated pathology, potentially underlying improved disease states. Moreover, as 647 

NF-κB and TGFβ signaling are both implicated in HSC quiescence (113-116), the anti-648 

inflammatory effects of IFN⍺ were also linked with HSC exit from quiescence. The robust 649 

upregulation of TGFβ signaling in the HSCs following resolution of an acute IFN⍺ exposure 650 

supported data in mice of re-entry into quiescence to protect from HSC depletion following 651 

inflammation-induced cell cycle entry (10).  652 

Another major finding in our work was the remodeling of hematopoietic differentiation toward the 653 

lymphoid lineage by IFN⍺. While various differentiation skewing by IFN⍺ has been reported in 654 

mice (117-119), the interpretation of the results is complicated by the alteration of the HSC-marker 655 

Sca-1 upon IFN⍺ exposure in mice (i.e. induction of Sca-1 in the CMPs, GMPs and MEPs, 656 

resulting in their inclusion within the Sca-1+, Kit+ HSC/multipotent progenitor compartment) (10). 657 

As other inflammatory cytokines, such as TNF⍺, IL-1, and IFNγ, have been demonstrated to 658 

induce granulo-monocytic differentiation (62-64, 120, 121), IFN⍺ presents as a unique cytokine 659 

among the inflammatory milieu to balance the granulo-monocytic differentiation with its positive 660 

regulation of B-lymphoid differentiation as another mode of dampening the pro-inflammatory 661 

response.  662 

The reshaping of the differentiation landscape by IFN⍺ provided a novel model of therapeutic 663 

efficacy in patients with myeloid neoplasms. As MPNs are primarily the result of a defect in 664 

homeostatic hematopoietic development, due to an abnormal differentiation skewing and 665 

proliferation of the myeloid lineages, IFN⍺-induced lymphoid differentiation may serve to balance 666 

the differentiation landscape. IFN⍺ reshaped the major bifurcation divide in MPN, that is, from 667 

the JAK2/STAT5-mediated bifurcation at the myeloid (i.e., granulo-monocytic and 668 

megakaryocytic-erythroid) versus lymphoid commitment, to the PU.1-mediated bifurcation at 669 

granulo-monocytic and lymphoid versus megakaryocytic-erythroid commitments. These two 670 
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models have been described based on the identification of stem progenitor cells that produce 671 

myeloid (122) or lymphoid lineages (123) versus granulo-monocytic-lymphoid lineages (124). 672 

Our data provide evidence for a plastic differentiation hierarchy in which PU.1-mediated 673 

production of granulo-monocytic and lymphoid lineages at the expense of megakaryocytic-674 

erythroid lineages are prioritized in perturbed settings, such as infection. The ability of IFN⍺ to 675 

directly upregulate PU.1 expression suggested that the differentiation modulating effects of IFN⍺ 676 

may be largely direct. These findings are consistent with the landmark study from Essers et al. that 677 

elegantly demonstrated the ability of IFN⍺ to directly activate HSCs into cell cycle entry, via an 678 

in vivo cell mixing study in which only a small minority of the bone marrow cells harbored intact 679 

IFN⍺ receptors (9). The cell cycle entry rate was further enhanced with increasing frequency of 680 

bone marrow cells with intact IFN⍺ signaling, suggesting that IFN⍺ effects are both directly and 681 

indirectly mediated.  682 

Overall, these studies revealed the pleiotropic modes of therapeutic efficacy of IFN⍺ and principles 683 

of clonal dynamics upon inflammatory activation. Importantly, our work motivates the 684 

development of novel therapeutic strategies to deplete clonal stem cells by enhancing their 685 

differentiation rates into the IGP state upon IFN⍺ therapy, a strategy that may be generalizable 686 

across myeloid neoplasms and clonal hematopoiesis.   687 
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Figures 1093 

1094 
Figure 1. Integration of Genotyping of Transcriptomes with immunophenotyping and IFN⍺-1095 

treatment status identifies an alternate IFN⍺-specific cell state in MPN stem and progenitor 1096 

cells. A. Primary bone marrow samples at baseline and after IFN⍺ treatment included for 1097 

Genotyping of Transcriptomes with Immunophenotyping (GoT-IM) on CD34+ cells. B. Schematic 1098 

of GoT-IM via CITE-seq and Cell Hashing. MPN, myeloproliferative neoplasms; WT, wildtype; 1099 

MUT, mutated. C. Uniform manifold approximation and projection (UMAP) of CD34+ cells (n = 1100 

65,452 cells) from MPN samples (n = 24 samples from 13 individuals), overlaid with cell type 1101 

assignment. HSC, hematopoietic stem cells; IMP, immature myeloid progenitors; NP, neutrophilic 1102 

progenitors; MP, monocytic progenitors; cDCP, classic dendritic progenitors; pDCP, plasmacytoid 1103 

dendritic progenitors; MDP, monocytic dendritic progenitors; MLP, multipotent lymphoid 1104 

progenitors; E/B/M, eosinophil/basophil/mast cell progenitors; MkP, megakaryocytic progenitors; 1105 

EP, erythroid progenitors; MEP, megakaryocytic-erythroid progenitors. D. Box plots showing 1106 

normalized expression of HSC-defining protein and RNA markers. E. Volcano plot showing genes 1107 
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differentially expressed (DE) between Cluster X (i.e., IGPs) and IMPs identified via linear mixed 1108 

modeling (LMM) with/without cluster identity (left, methods). Highlighted are genes enriched in 1109 

the MYC pathway (purple) and TNF⍺ signaling via NF-κB (blue); Boxes represent transcription 1110 

factors (TF) of the AP-1 (blue), KLF (light green), NR4A (purple), CEBP (dark green) families. 1111 

Pre-ranked gene set enrichment analysis using the MSigDB Hallmark collection (right). F. Box 1112 

plot showing normalized IGP frequency at baseline and IFN⍺ treatment (n = 11 baseline samples, 1113 

n = 9 treated samples). P-values from likelihood ratio test of LMM with/without IFN⍺ treatment 1114 

(methods). G. Integrated UMAP highlighting IGP, IMP and the HSC subclusters with RNA 1115 

velocity-based cell state trajectory for IFN⍺-treated cells (left, trajectory presented corresponds 1116 

only to IMP, IGP and the HSC subclusters, see table S5, methods). Dot plot showing gene 1117 

expression levels of upregulated TFs in IGPs (right). H. Representative flow cytometric analysis 1118 

of colonies from the single-cell differentiation of individually sorted CD34+, CD90+ HSCs (left). 1119 

Normalized colony frequency from HSCs sorted from bone marrow samples from patients at 1120 

baseline and following IFN⍺ (right, n = 2 baseline; n = 3 IFN⍺-treated). The number of colonies 1121 

were down-sampled to the same minimum count for each replicate for equal representation. 1122 

GEMM, granulocyte, erythrocyte, monocyte and megakaryocyte; GM, granulocyte-monocyte 1123 

colonies .   1124 
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1125 
Figure 2. Inflammatory neutrophils are enriched in IFN⍺-treated bone marrow. A. Primary 1126 

bone marrow samples at baseline and after IFN⍺ treatment included in GoT-IM on CD34- cells 1127 

(left). UMAP of CD34- cells (n = 59,912 cells; 15 samples from 7 individuals), overlaid with cell 1128 

type assignment (right). Neu1, Neutrophil subset 1; Neu2, Neutrophil subset 2; cDC, classic 1129 

dendritic cells; pDC, plasmacytoid dendritic cells, Treg cell; Regulatory T cells, NKT cells; 1130 

Natural Killer T cells.  B. Heatmap showing median scaled expression of canonical immune cell 1131 

protein markers from a representative patient IFN12. C. Box plots showing IGP-specific 1132 

upregulated signature score (Fig. 1E, table S3) in CD34- cell type clusters. P-value from likelihood 1133 

ratio test of linear-mixed modeling (LMM) with/without cluster identity (methods). D. Volcano 1134 

plot showing genes differentially expressed (DE) between Neu1 and Neu2 identified via LMM 1135 

with/without cluster identity (left, methods). Highlighted are genes enriched in the TNF⍺ 1136 

signaling via NF-κB (blue, box representation is same as Fig. 1E). Pre-ranked gene set enrichment 1137 

analysis using the MSigDB Hallmark collection (right). E. Normalized frequency of baseline and 1138 

IFN⍺-treated cells in Neu1 and Neu2 subsets. P-value from Fisher’s exact test, two-sided.  1139 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.09.28.509751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

1140 
Figure 3. IFN⍺ concurrently regulates anti- and pro-inflammatory programs. A. UMAP 1141 

showing a representative experiment that includes three time-points from patient IFN04 (n = 7,282 1142 

cells, left). Box plot showing transcriptional distance measurements between HSCs from each 1143 

time-point and HSCs from baseline (right). Transcriptional distance corresponds to Euclidean 1144 

distance of the first thirty principal components. P-values from Wilcoxon rank sum test, two-sided. 1145 

B. Volcano plot showing genes differentially expressed (DE) between baseline and IFN⍺-treated 1146 

HSCs via linear mixed modeling (LMM) with/without treatment status (methods). Genes 1147 

highlighted in blue are those in the TNF⍺ signaling via NF-κB and those in orange enriched in the 1148 

IFN⍺/γ response, identified by pre-ranked gene set enrichment analysis using the MSigDB 1149 

Hallmark collection; box representation is same as Fig. 1E. C. Cell cycle gene expression 1150 

(representative patient IFN01, n = 97 baseline and 97 IFN⍺-treated HSCs, top). Frequencies of 1151 

cells in S/G2/M phase as assessed in top subpanel at baseline (n = 11 samples) and at year 1 of 1152 

IFN⍺ treatment (n = 9 samples). For IFN05 which has two IFN⍺ year 1 samples, the active IFN⍺ 1153 

time-point was selected. P-values from likelihood ratio test of LMM with/without treatment status 1154 

(methods). D. CXCR4 vs. cell cycle gene expression in HSCs before and after IFN⍺ treatment. 1155 

Pie charts show frequencies of baseline versus treated cells in cell cycle-low, CXCR4-high and 1156 

those in cell cycle-high, CXCR4-low populations. P-value from two-sided Fisher’s exact test. E. 1157 
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Heatmap showing results of the pre-ranked gene set enrichment analysis comparing baseline and 1158 

during IFN⍺ treatment across HSC and progenitor subsets. Values show the sign of the normalized 1159 

enrichment score (NES) multiplied by -log10(Adjusted P-value). F. Pre-ranked gene set 1160 

enrichment analysis comparing before and after treatment with IFN⍺ in cDCPs, showing 1161 

downregulation of TNF⍺ signaling via NF-κB and the leading-edge genes. Genes highlighted in 1162 

blue represent those upregulated in the IGP versus IMP (table S3, Fig. 1E). G. Heatmap showing 1163 

results of the pre-ranked gene set enrichment analysis comparing baseline and upon IFN⍺ 1164 

treatment discontinuation in HSCs (combined HSC1 and HSC2 subsets from Fig. 1G) and HSC-1165 

IGs. Values show the sign of the normalized enrichment score (NES) multiplied by -1166 

log10(Adjusted P-value). HSC-IG (vs HSC1) module was calculated using net score of genes 1167 

upregulated and downregulated in HSC-IG (table S3). H. Boxplot showing module expression for 1168 

genes involved in TNF⍺ signaling via NF-κB at baseline and during IFN⍺ treatment in cDCs (left) 1169 

and NK cells (right). P-value from likelihood ratio test of LMM with/without treatment status. I. 1170 

Box plots showing HSC-specific IFN⍺-induced signature score in IFN⍺-treated HSCs and IGPs 1171 

(methods). Score calculated using upregulated (left) or downregulated (right) genes (table S8). P-1172 

values from likelihood ratio tests of LMM with/without cell type. 1173 

  1174 
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  1175 

Figure 4. IFN⍺ induces IGP and lymphoid differentiation. A. Normalized cell type frequencies 1176 

at baseline and IFN⍺ treatment. Cells from each sample were down-sampled to the same number 1177 

(n = 500 cells from each sample, n = 11 baseline samples, n = 9 treated samples). For IFN02, 1178 

IFN04, IFN05 and IFN08, which have two treated time-points, the time-point powered with greater 1179 

number of cells was selected (also for panels B, D). B. Box plot showing normalized cell type 1180 

frequencies at baseline and IFN⍺ treatment (n = 11 baseline samples, n = 9 treated samples). P-1181 

values from likelihood ratio test of linear-mixed modeling (LMM) with/without treatment status. 1182 

C. Box plots showing cell frequencies of B-lymphoid progenitors and B cells from bone marrow 1183 

of patients with early stage MPN with no treatment or aspirin only (ASA) or with IFN⍺  therapy 1184 

(n = 33 and 9 samples, respectively), as determined by multiparametric flow cytometry (table 1185 

S12). P-values from Wilcoxon rank sum test, two-sided. D. Box plots showing normalized protein 1186 

expression in HSCs before and after treatment with IFN⍺. P-values from likelihood ratio tests of 1187 

LMM with/without treatment status (methods). E. Gene expression of canonical B cell 1188 

differentiation markers across immature and mature B cells in lymphoid development between 1189 

baseline and IFN⍺-treated cells. F. Platelet counts versus frequencies of MEPs and MkPs. P-value 1190 

from generalized linear model; Pearson correlation, shading denotes 95% confidence interval. 1191 

 1192 
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  1193 

 1194 

Figure 5. Regulatory networks of IGPs highlight PU.1 as the master regulator of IFN⍺-1195 

mediated remodeling of hematopoiesis. A. Representation of primary bone marrow samples at 1196 

baseline and after IFN⍺ treatment (left). Schematic of GoT-ATAC (right). B. Motif enrichment 1197 
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and expression of transcription factors (TF) in the IGPs relative to HSCs from IFN⍺-treated 1198 

samples. Normalized gene expression derived from GoT-IM data within HSCs and IGPs. P-values 1199 

from Wilcoxon rank sum test, two-sided, with Benjamini-Hochberg FDR-correction (methods). 1200 

C. Ranked TF motif enrichment of all positive regulatory peaks of the AP-1 members, relative to 1201 

background peaks using the hypergeometric test (see methods). D. Schematic of lentiviral RFX3-1202 

overexpression (RFX3-OE) transduction experiment in CD34+ umbilical cord blood cells (UCB) 1203 

(top). Normalized frequency of granulocytic (CFU-G) and erythroid (BFU-E) colonies grown via 1204 

methylcellulose-based colony-forming unit (CFU) assay compared between control and RFX3-1205 

OE CD34+ UCBs (n = 3 independent experiments, bottom). E. Normalized frequency of RFX3-1206 

OE and control cells obtained from scRNA-seq data. F. Volcano plot showing genes differentially 1207 

expressed (DE) between IMP and IGP-like cells from control and RFX3-OE subsets identified via 1208 

linear mixed model (LMM) with/without cluster identity (left, methods). Highlighted are genes 1209 

enriched in the TNF⍺ signaling via NF-κB (blue) and MYC targets (purple, box representation is 1210 

same as Fig. 1E). Pre-ranked gene set enrichment analysis of TNF⍺ signaling via NF-κB pathway 1211 

and MYC targets comparing control and RFX3-OE UCBs (right). G. Volcano plot showing TF 1212 

motifs differentially enriched in IFN⍺-treated versus baseline HSCs (chromVAR). P-values from 1213 

Wilcoxon rank sum test, two sided, with Benjamini-Hochberg FDR-correction (n = 6 serial 1214 

samples from 3 individuals, see table S13 for cell numbers, methods). H. Heatmap showing 1215 

synergy scores between TFs as assessed by measuring the excess variability of accessibility for 1216 

peaks with both TF motifs (125). I. TF motif accessibility across stem and progenitor subsets in 1217 

lymphoid development between baseline and IFN⍺-treated cells.  1218 
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 1219 

Figure 6. IFN⍺ modulates clonal dynamics via clonal HSC differentiation into IGP 1220 

differentiation. A. UMAP of CD34+ cells (n = 65,452 cells) with mutation status highlighted for 1221 

wildtype (WT; n = 21,354), CALR-mutant (MUT; n = 25,529) or unassigned (NA; n =18,569) 1222 

cells. B. Bar plot showing HSC clone size changes at baseline and after IFN⍺ treatment. C. Bar 1223 

plots showing frequencies of cells in G2/M/S phase as assessed in Fig. 3C (n = 11 baseline and 9 1224 

IFN⍺-treated, year 1 samples). P-values from likelihood ratio tests of linear mixed model (LMM) 1225 

with/without treatment status (for comparisons between treatment) or mutation status (for 1226 
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comparisons between genotypes). D. Multiplex in situ fluorescence imaging of bone marrow 1227 

biopsy sections from MPN patients with (n = 4) or without (n = 5) treatment with IFN⍺ (methods). 1228 

Representative images of protein markers (top). Bar plots showing frequencies of proliferating 1229 

myeloid cells as assessed by Ki67 expression (bottom). P-values from likelihood ratio test of LMM 1230 

with/without treatment status or mutation status. E. Normalized cell type frequencies of WT versus 1231 

MUT cells at baseline (n = 11 samples, left) and following IFN⍺-treatment (n = 9 samples, right). 1232 

Cells down-sampled to 500 for each sample. F. Fold change of normalized cell frequency of MUT 1233 

versus WT cells in the progenitor groups at baseline and following IFN⍺ treatment. G. 1234 

Transcription factor (TF) motif enrichment in MUT versus WT stem and early progenitor cells 1235 

(HSCs, IMPs, MDPs/MLPs and MEPs) at baseline. TFs differentially regulated by IFN⍺ were 1236 

tested (table S20).  Red = P < 0.05. P-values combined using Fisher’s combined test (methods). 1237 

H. Density plot showing PU.1 peak count in WT and MUT cells from the control group of 1238 

megakaryoblastic cell line expressing TPO receptor (UT7-MPL) with wildtype or mutant CALR 1239 

transgenes (n = 2 independent experiments, left). Differential TF motif enrichment between PU.1 1240 

binding sites in WT IFN⍺-treated and MUT IFN⍺-treated UT7-MPL cells (right, methods). 1241 

Analysis conducted with HOMER. TFs enriched in differentially accessible PU.1 peaks for MUT 1242 

and WT cells are highlighted in blue and green respectively. I. Schematic of clonal structure of 1243 

HSCs from patient IFN02 (top). Bar plot of normalized mutant cell frequencies across treatment 1244 

time-points (bottom). P-value from pairwise Fisher's exact test. J. Box plot showing HSC-specific 1245 

IFN⍺-induced signature score in HSC clones at baseline and after one year of treatment. Scores 1246 

calculated using upregulated or downregulated genes (left and right panels, respectively, 1247 

methods). P-values from Wilcoxon rank sum test, two-sided. K. Clone size change with IFN⍺ 1248 

treatment versus difference in normalized frequency of MUT HSC-IGs and IGPs out of all MUT 1249 

cells. P-value from F-test, Pearson correlation. Shading denotes 95% confidence interval. L. Box 1250 

plots showing IGP-specific downregulated signature score in wildtype and DMNT3A-mutant 1251 

HSCs from individuals with clonal hematopoiesis (CH) (n = 4 samples, no. cells = 1316 wildtype, 1252 

529 mutated cells) (42). P-values from likelihood ratio test of linear mixed model with/without 1253 

mutation status.  1254 

 1255 

1256 
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Materials and Methods 1257 

Patient samples 1258 

The study was approved by the local ethics committee and by the Institutional Review Board (IRB) 1259 

of Weill Cornell Medicine. The study was conducted in accordance with the Declaration of 1260 

Helsinki protocol, and all patients provided informed consent. Cryopreserved bone marrow 1261 

mononuclear cells were obtained from patients with CALR-mutated essential thrombocythemia 1262 

(ET) treated with weekly pegylated IFN-alfa2a during clinical trials MPN-RC-111 1263 

(NCT01259817) (19) and MPN-RC-112 (NCT01258856) (20). Samples used for CD34+ cell 1264 

analysis include 8 baseline and 13 treated samples (3 of which were collected post-IFN⍺ 1265 

discontinuation) collected from 10 individuals for GoT-IM. Three baseline ET samples (ET01-1266 

ET03) from our previous work (16) were included as additional baseline controls with a similar 1267 

distribution of age, gender, and disease status for treated samples that did not have a paired baseline 1268 

control. For GoT-ATAC, n = 4 baseline and n = 3 treated samples were included from the clinical 1269 

trials. For GoT-IM of CD34- mature cell analysis, 5 baseline and 10 treated samples (2 of which 1270 

were collected following IFN⍺ discontinuation) were collected from 7 individuals. Two 1271 

hydroxyurea-treated peripheral blood samples from CALR-mutated ET patients from MPN-RC-1272 

112 were included for scRNA-seq of CD34+ cells. Table S1 includes detailed clinical and sample 1273 

information collected according to clinical trial protocols.  1274 

 1275 

Cell preparation 1276 

Cryopreserved bone marrow mononuclear cells were thawed and stained using standard 1277 

procedures with the surface antibody CD34-PE (clone AC136, dilution 1:50, Miltenyi Biotec) and 1278 

DAPI (Sigma-Aldrich), according to manufacturer’s protocol. To eliminate experimental batch 1279 

effects, cells were labelled simultaneously with hashing antibodies with time-point-identifying 1280 

barcodes as described (21) using Hashtag Antibodies 1-6 (TotalSeq-A, clone LNH-94, BioLegend) 1281 

for GoT-IM and Anti-Nuclear Pore Hashing Antibodies 9 and 10 (Clone LNH-94, BioLegend) for 1282 

GoT-ATAC. To link cell identities to expression of cell surface proteins, cells were also incubated 1283 

with CITE-seq antibodies (22) according to manufacturer protocol (TotalSeq-A, BioLegend, see 1284 

table S31 for information on antibodies). For IFN01-IFN10 and IFN13, cells were subsequently 1285 

sorted for DAPI− and CD34+ cells to isolate CD34+ populations. For IFN01, IFN02, and IFN09, 1286 

we sorted for DAPI− and CD34− cells to isolate mature bone marrow cells. For IFN05, IFN08, 1287 

IFN11, and IFN12, CD34 expression by side scatter was used to enriched for granulocytes. CD34−, 1288 

high side-scatter (SSC) was used to sort for granulocytes, medium SSC to enrich for 1289 

monocytes/DCs, and low SSC to enrich for lymphocytes. Mature cell populations were then pooled 1290 

at approximately equal ratios for granulocytes, monocytes/DCs, and lymphocytes for each sample. 1291 

All FACS sorting was completed using BD Influx at the Weill Cornell Medicine flow cytometry 1292 

core. 1293 

 1294 

GoT-IM 1295 

To simultaneously capture genotyping data and whole transcriptomic data, Genotyping of 1296 

Transcriptomes (GoT) was performed by adapting the 10x Genomics platform as previously 1297 

described (16). FACS-sorted CD34+ cells for each time-point from the same individual were 1298 

pooled. The standard 10x Genomics Chromium 3′ (v.3.1 chemistry) was implemented according 1299 
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to the manufacturer’s recommendations up to the cDNA amplification step (10x Genomics, 1300 

Pleasanton, CA). After cDNA amplification and SPRI bead (Beckman Coulter) cleanup, 10x 1301 

scRNA-seq and ADT/HTO libraries were generated as recommended. A portion of the cDNA was 1302 

used for somatic genotyping as previously described (16). Briefly, to capture the somatic 1303 

genotypes of cells, cDNA was amplified with a locus-specific amplification (10-16 PCR cycles), 1304 

using the generic forward SI-PCR primer and a locus-specific reverse primer for the CALR 1305 

mutations (see table S31 for primer sequences). The amplified locus-specific cDNAs are then 1306 

cleaned using SPRI purification to remove unincorporated primers. Finally, the targeted amplicon 1307 

libraries are generated through a PCR performed with a P5 generic forward PCR primer together 1308 

with an RPI-x primer (table S31). The targeted amplicon libraries were spiked into the remainder 1309 

of the gene expression and immunophenotyping libraries to be sequenced together on a NovaSeq 1310 

(Illumina, San Diego, CA). The cycle settings were as follows: 28 cycles for Read 1, 90 cycles for 1311 

Read 2, 10 cycles for i7 sample index and 10 cycles for i5 sample index. 1312 

 1313 

GoT-IM scRNA-seq data processing, alignment, cell-type classification and clustering 1314 

For single-cell GoT-IM data from IFN01-IFN10 patient CD34+ samples and from IFN01, IFN02, 1315 

IFN05, IFN08, IFN09, IFN11 and IFN12 patient CD34- samples, the pooled scRNA-seq, CITE-1316 

seq and hashing libraries were processed with Cell Ranger (v6.1.1 and v6.1.2) using cellranger-1317 

multi pipeline (v1). The reads were aligned to the human genome GRCh38 with default 1318 

parameters. The Seurat package (126) (v4.1.0) was used to perform unbiased clustering of the 1319 

CD34+ sorted cells from each patient. In brief, for individual datasets, cells with UMI > or < 3 1320 

standard deviations from the mean UMI and mitochondrial gene percentage >10% were filtered 1321 

(fig. S1A, S4A). The HTO data was normalized with centered log-ratio (CLR) transformation and 1322 

used to assign the time-points for each experiment (21). The cells from each time-point were 1323 

analytically separated into individual datasets based on the HTO counts (fig. S1B). These 1324 

individual datasets (in case of CD34+ samples, together with the baseline ET samples from our 1325 

previous work (16)), were integrated and underwent batch-correction within Seurat, which 1326 

implements reciprocal principal component analysis (RPCA) and the principles of mutual nearest 1327 

neighbor (127). Recommended settings were used for the integration (30 principal components for 1328 

the anchor determining procedure in IntegrateLayers function). Principal component analysis was 1329 

performed using variable genes using recommended settings (i.e., top 2000 variable genes using 1330 

variance stabilizing transformation) (127). The first 30 statistically significant principal 1331 

components were used as inputs to the UMAP algorithm for dimensional reduction and 1332 

visualization (128). Clusters were manually assigned based on differentially expressed genes using 1333 

the FindAllMarkers function using default settings (using top 2000 variable genes, in a minimum 1334 

of 10% of cells in either of the two comparison sets as input, and log-transformed fold change of 1335 

0.25 as the threshold, using Wilcoxon rank sum test). The clusters were annotated according to 1336 

canonical lineage markers identified previously in single-cell RNA-seq data of normal 1337 

hematopoietic progenitor cells (24) into 16 main progenitor subsets based on expression of levels 1338 

of these canonical markers (Fig. 1C, fig. S2A-C, S4C). For dimensional reduction and 1339 

visualization of individual experiments (e.g., fig. S1H), top 3000 variable genes were included for 1340 

principal component analysis, and the first 30 statistically significant principal components were 1341 

used as inputs to the UMAP algorithm. The CITE-seq data after normalization using the CLR 1342 

transformation was used to distinguish cell types (Fig. 2B, fig. S2B) and identify HSCs (fig. S2D). 1343 
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Same integration and downstream clustering methods were used to analyze the two hydroxyurea 1344 

(HU) samples. 1345 

 1346 

IronThrone-GoT for processing targeted amplicon sequences and mutation calling 1347 

Analysis of the GoT library was carried out as described previously (16) using IronThrone pipeline 1348 

V2.1 (42). Amplicon reads (Read 2) were screened for the presence of the primer sequence and 1349 

the shared sequence (i.e., the expected sequence between the primer sequence and the mutation 1350 

locus). Reads (Read 1) from GoT-IM experiments were also assessed for matching to the cell 1351 

barcode list of the 10x dataset. A mismatch of 20% was allowed for all sequence matching steps. 1352 

Only UMIs with at least 2 or more supporting reads were retained for final genotyping 1353 

assignments, after the UMI collapse algorithm, as previously described (42, 129). Filtered cells 1354 

were then genotyped as follows, as previously described: cells with at least one mutant UMI were 1355 

categorized as mutant cells whereas cells with no mutant UMI and at least one wildtype UMI were 1356 

identified as wildtype.  1357 

 1358 

Gene module scoring, differential expression and gene set enrichment analysis 1359 

For statistical analysis, when the variable in question was cell type identity (e.g., IGP vs IMP), cell 1360 

type identity was entered as the fixed effect and samples as random effects in a linear mixed model. 1361 

For IGP and IMP comparison, treatment status was also included as a fixed effect. When the 1362 

variable in question was genotype status (e.g., CALR mutant versus wildtype), genotype status was 1363 

entered as the fixed effect and samples as random effects in a linear mixed model. P-values were 1364 

obtained from likelihood ratio tests of the full model with the effect in question against the model 1365 

without the effect in question. Linear mixed effects analysis was performed using the lme4 package 1366 

(v.1.2-1) (130). 1367 

Differential gene expression testing between two groups within an individual experiment (e.g., 1368 

Fig. 6J) was performed using the logistic regression framework (131) with the FindMarkers 1369 

function. The tested genes included the top 2,000 variable genes from the CCA integration, which 1370 

were filtered for those expressed in at least 10% of either group. In aggregated differential gene 1371 

expression analysis (e.g., treated versus baseline as in Fig. 3B), the two groups were compared via 1372 

the linear mixed model framework, as previously described (42). Among CD34+ cells with GoT-1373 

IM data, IFN01-IFN10 samples at baseline and active treatment were included for the differential 1374 

expression analysis. For each gene, the variable in question (i.e., treatment or mutation status) was 1375 

entered as the fixed effect and samples as random effects. P-values were obtained from likelihood 1376 

ratio tests of the full model with the effect in question against the model without the effect in 1377 

question. Individual genes with abs(avg_log2FC)> 0.1 and adjusted p-value <0.05 were significant 1378 

for further analysis such as module scoring for HSC-specific IFN⍺-induced upregulated or 1379 

downregulated genes.  1380 

Pathway enrichment analysis was performed via a pre-ranked gene set enrichment approach 1381 

(ranking based on the sign of the fold change * -log10(adjusted P-value)) using the msigdbr 1382 

(v7.2.1) (132) and fgsea (v1.12.0) (133) R packages, using the canonical Hallmark pathway genes 1383 

from MsigDB (134).  1384 

For examining gene module expression (e.g., HSC-specific IFN⍺-upregulated or downregulated 1385 

gene signature), the function AddModuleScore within the Seurat package (126) was used to 1386 
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calculate the relative expression of the genes (that are significantly upregulated or downregulated, 1387 

as described above) for each cell. To calculate the module expression of cell-cycle related genes, 1388 

G2M phase and S phase marker genes were used as available in Seurat with CellCycleScoring 1389 

function. Briefly, expression of a control gene module was calculated and subtracted from the 1390 

average gene module expression of interest, as previously described (44). All analyzed genes were 1391 

classified based on average expression into 24 bins, and for each gene in the module, 100 control 1392 

genes are randomly selected from the same expression bin as the gene of interest (44). For the 1393 

overall IGP module score (Fig. 2C), the cells were first scored for the upregulated and 1394 

downregulated genes (Fig. 1E); the downregulated gene score was subtracted from the upregulated 1395 

gene score to obtain the overall IGP score.  1396 

 1397 

RNA velocity analysis using scVelo and partition-based graph abstraction 1398 

RNA velocity was assessed from the spliced and unspliced transcript variants using scVelo 1399 

(v0.2.5) (34). Counts from loom files generated with Velocyto (v0.17.17) (35) for each GoT-IM 1400 

sample (IFN01-IFN09) were normalized and filtered (UMI counts > 100 and UMI count < 20000). 1401 

The annotated data matrices were combined by using anndata.concat() command and cell-specific 1402 

annotations such as cell-type, time-point, UMAP and PCA embeddings were imported from the 1403 

GoT-IM integrated object. Connectivities between the cell clusters were quantified 1404 

using scvelo.tl.paga() within the partition-based graph abstraction (PAGA) framework (36).  1405 

 1406 

GoT-ATAC 1407 

Cryopreserved bone marrow mononuclear cells were thawed and stained using standard 1408 

procedures with the surface antibody CD34-PE (clone AC136, dilution 1:50, MACS) and DAPI 1409 

(Sigma-Aldrich), according to manufacturer’s protocol. Cells were subsequently sorted for DAPI−, 1410 

CD34+ cells using BD Influx at the Weill Cornell Medicine flow cytometry core. Nuclei were 1411 

isolated from DAPI-, CD34+ cells according to 10x Genomics Demonstrated Low Cell Input 1412 

Nuclei Isolation protocol. Lysis buffer was prepared following manufacturer’s recommendations 1413 

and then split into aliquots for each serial sample. Either TotalSeq-A Anti-Nuclei Pore Complex 1414 

Proteins Hashtag 9 or 10 Antibody (1μL at 1:5 dilution; BioLegend) was added to each aliquot of 1415 

lysis buffer. Low-input nuclei isolation was otherwise performed following manufacturer’s 1416 

recommendations. Subsequently, nuclei from each time-point were counted and pooled together 1417 

at approximately equal proportions. For IFN07, additional nuclei from the IFN⍺-treated sample 1418 

were available to be run on a separate lane. Single-nucleus gene expression (GEX) and chromatin 1419 

accessibility libraries were constructed from the pooled nuclei according to the Chromium Next 1420 

GEM Single Cell Multiome User Guide (10x Genomics). 1421 

Genotyping libraries targeting the CALR mutant transcripts were constructed from the remaining 1422 

amplified cDNA, similar to the original GoT method. For each PCR, 12.5μL Kapa HiFI HotStart 1423 

Ready Mix was mixed with 0.75μL of 10uM forward primer, 0.75μL of 10uM reverse primer, 3μL 1424 

cDNA and nuclease-free water for a total reaction volume of 25μL. In the first PCR, 3μL cDNA 1425 

was re-amplified with Partial TSO and Partial Read 1 primers (table S31), using the following 1426 

PCR condition: 98°C for 3min; 3 cycles of 98°C for 15sec, 67°C for 20sec and 72°C for 1min; 1427 

72°C for 1min. The re-amplified sample was purified and concentrated via 0.7X SPRI cleanup, 1428 

eluting it into 10μL Buffer EB. To pre-enrich the CALR mutation locus, a gene-specific PCR was 1429 
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performed with 3μL of cleaned re-amplified cDNA and Partial Read 1 and gene-specific primers 1430 

(table S31). The following PCR condition was used: 98°C for 3min; 11 cycles of 98°C for 20sec, 1431 

60°C for 20sec, and 72°C for 2min; 72°C for 2min. After 0.7X SPRI cleanup, cDNA was eluted 1432 

into 10μL Buffer EB. CALR locus-specific amplification was then performed with 3μL of cleaned 1433 

gene-specific amplified cDNA and SI-PCR and loci-specific Primers, using the PCR condition: 1434 

98°C for 3min; 11 cycles of 98°C for 20sec, 60°C for 20sec, and 72°C for 2min; 72°C for 2min. 1435 

A 0.7X SPRI cleanup was performed, and cDNA was eluted into 11μL Buffer EB. Finally, to 1436 

construct the targeted amplicon library, loci-amplified cDNA was mixed with P5 Generic and 1437 

RPIx indexing primers (table S31) and amplified with the PCR condition: 98°C for 3min; 5 cycles 1438 

of 98°C for 15sec, 60°C for 20sec, and 72°C for 1min; 72°C for 1min. The constructed library was 1439 

cleaned via 0.8X SPRI cleanup and eluted into 12μL Buffer EB.  1440 

At the cDNA amplification stage of the Chromium Next GEM Single Cell Multiome protocol, 1441 

supernatant from the 0.6X size selection was retained and was used to generate the hashing 1442 

libraries as per HTO protocol (21) with the following modification. For the hashing library 1443 

construction step, the PCR reaction was prepared with 0.65μL of 10uM SI-PCR primer, 0.65μL of 1444 

10uM TruSeq DNA D7xx_s primer (table S31), 11.25μL cleaned supernatant and 12.5 μL KAPA 1445 

HiFi HotStart Ready Mix (Roche, Basel, Switzerland). Hashing, gene expression and genotyping 1446 

libraries were pooled and sequenced together on a NovaSeq (Illumina) with cycle settings: 28 1447 

cycles for Read 1, 90 cycles for Read 2, 10 cycles for i7 sample index and 10 cycles for i5 sample 1448 

index. The ATAC library was sequenced separately on a NovaSeq, with cycle settings: 50 cycles 1449 

for Read 1 and Read 2, 8 cycles for i7 sample index and 24 cycles for i5 sample index. 1450 

 1451 

Data preprocessing, alignment and cell type identification for GoT-ATAC 1452 

For single-nuclei GoT-ATAC data from IFN01, IFN03, IFN07 and IFN13 patient CD34+ 1453 

samples, 10x data were processed using Cell Ranger (v6.1.1 and v6.1.2). Multi-omic nuclear data 1454 

for snATAC-seq and snRNA-seq were processed together with Cell Ranger Arc (v2.0.0). snRNA-1455 

seq data was also combined with cell hashing data (HTO) and run using the Cell Ranger Multi 1456 

pipeline (v1). The reads were aligned to the human reference genome GRCh38. The downstream 1457 

analysis of the processed data was performed using Seurat (v4.1.0) (126) and Signac (v1.5.0) (135) 1458 

packages. For the ATAC analysis, we called peaks on individual samples using MACS2 peak 1459 

caller (136). Gene annotations from EnsDb.Hsapiens.v86 and motifs annotations from Cis-BP 1460 

(137) for TF binding motifs were utilized. Cells with blacklist ratio >0.02, TSS enrichment <2 and 1461 

nucleosome signal >4 were filtered out. For the RNA data, cells with UMI > or < 3 standard 1462 

deviations from the mean UMI or mitochondrial gene percentage > 25%, were filtered (fig. S7A-1463 

D). The nuclei hashing data processing was performed as for the GoT-IM data (fig. S7E). As 1464 

nuclear hashing is known to be noisier than cell hashing (135), the nuclear hashing data was used 1465 

in combination with cell clustering data, as the cells cluster based on treatment status. After the 1466 

cells were segregated analytically based on time-point, the datasets were integrated as described 1467 

for the GoT-IM data. snRNA-seq data were integrated where they underwent batch correction with 1468 

canonical correlation analysis (CCA) within Seurat and the principles of nearest neighbor (127). 1469 

Recommended settings were used for the integration (30 canonical correlation vectors for 1470 

canonical correlation analysis in the FindIntegrationAnchors function and 30 principal 1471 

components for the anchor weighting procedure in IntegrateData function). Principal component 1472 

analysis and cell type assignments were performed as described in GoT-IM. Integration via the 1473 

ATAC-seq data was performed by normalizing the merged counts using first term frequency 1474 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.09.28.509751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45 

inverse document frequency (TFIDF) normalization with RunTFDIF followed by linear 1475 

dimensional reduction using latent semantic indexing (LSI). The first 2:30 dimensions were 1476 

retained, and batch-correction was performed with runHarmony (Harmony, v0.1.0) which 1477 

iteratively learns cell-specific linear correction function to account for batch effect. Pseudotime 1478 

analysis was performed by constructing cell lineage trajectory with Monocle 3 (138-140). We used 1479 

as.cell_data_set function from SeuratWrappers package to convert Seurat object to CellDataSet 1480 

object used by Monocle 3. IronThrone-GoT protocol was used to determine mutation calling 1481 

within the GoT-ATAC assay, as described for GoT-IM. A requirement of at least four reads 1482 

supporting a UMI was implemented for GoT-ATAC. To capture genotyping reads within the 1483 

snRNA-seq data, we called CALR variants using the gene expression BAM derived from the 1484 

standard Multiome workflow. BAMQL (141) and the CIGAR string of the BAM file were used to 1485 

parse reads containing the expected wildtype and mutant sequences. Cells expressing at least one 1486 

mutant UMI were categorized as mutant and cells with just wildtype UMI were assigned as 1487 

wildtype. Genotyping assignments were then appended to calls made by IronThrone. 1488 

 1489 

Identification of distal regulatory elements with gene-peak cis-association  1490 

For each GoT-ATAC sample, we examined all ATAC peaks within ± 500kb of all annotated TSS 1491 

to identify regulatory networks of genes using LinkPeaks function (72). Pearson correlation 1492 

between gene expression and accessibility of the peaks located in the window was calculated after 1493 

correcting for bias arising from GC content, overall accessibility and peak size. Recommended 1494 

settings were implemented (200 background peaks per peak with similar GC content and 1495 

accessibility, P-value < 0.05 and min.cell = 10).  1496 

 1497 

Motif enrichment analysis in GoT-ATAC  1498 

Per-cell TF motif activity score (chromatin accessibility) was calculated by running chromVAR 1499 

(v1.18.0) (69). We used the curated Cis-BP motif database (137) which contains 1141 human TF 1500 

motif position frequency matrices (PFMs). The function matchMotifs was first called to identify 1501 

which peaks contain which motifs (P-value = 5 x 10-5). A set of background peaks that are similar 1502 

to a peak in GC content and average accessibility was internally picked and used for normalizing 1503 

the deviation scores. Deviation Z-scores, namely bias-corrected deviation z-scores in accessibility 1504 

from the expected accessibility based on the average of all the cells, were then calculated for each 1505 

TF motif and each cell.  1506 

To perform differential motif enrichment analysis, within a sample and on the deviation z-score 1507 

computed by chromVAR, we applied the function FindMarkers in Signac (Wilcoxon Rank Sum 1508 

test), where the average difference in z-score between the groups was calculated. For integrated 1509 

data, we combined the P-values (Fisher’s method) and calculated weighted mean deviation score 1510 

across individual samples. P-values were adjusted by the Benjamini-Hochberg method.  1511 

To find over-enriched motifs for a group of genomic features, the FindMotifs function was used, 1512 

accounting for accessibility and GC content bias by selecting 5000 accessible background peaks 1513 

with similar GC content for each feature set. To identify motifs enriched in a singular genomic 1514 

range, FIMO (v5.4.1) from MEME suite (142) was used to scan for Cis-BP TF motifs along the 1515 

nucleotide sequence from human reference genome GRCh38 with a p-value threshold of 0.0001. 1516 

We de-prioritized zinc fingers (ZNFs) in the list of motifs specific to genomic regions as each 1517 
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individual ZNF binds to three bp motif leading to more frequent matches and higher match scores 1518 

(143). chromVAR was used to compute the synergy between pairs of TF motifs, where synergy is 1519 

defined as the excess variability of chromatin accessibility for peaks sharing both motifs compared 1520 

to a random subsample of the same size of peaks with one motif. High synergy usually indicated 1521 

a cooperative binding relationship between pairs of TFs. The function getAnnotationSynergy was 1522 

called to calculate synergy scores (69).  1523 

 1524 

Retrospective flow cytometry data analysis  1525 

Retrospective flow cytometry data analysis was performed in accordance with relevant guidelines, 1526 

regulations and approval by the Institutional Review Board at Weill Cornell Medicine (IRB 1527 

#1007011151). Patient flow cytometry data selected corresponded to patients with 1528 

myeloproliferative neoplasms and which had the same antibody panel analyzed by flow cytometry. 1529 

Patients with a diagnosis of ET or polycythemia vera with no increase in myelofibrosis or blast 1530 

counts were included in the study. The antibody panel chosen for evaluation was a modified 1531 

version of the EuroFlow AML/MDS tube #4 (144, 145) that consisted of the following antibody-1532 

fluorophore pairs, in addition to forward scattering and side scattering pulse area and width 1533 

measurements (FSC-A, FSC-H, SSC-A, and SSC-H): cytoplasmic TdT/FITC (clone HT-6, 1534 

Agilent/Dako, cat. F7139), CD56/PE (clone C5.9, Cytognos, cat. CYT-56PE), CD34/PerCP-Cy5.5 1535 

(clone 8G12, BD Biosciences, cat. 347213), CD117/PE-Cy7 (clone 104D2D1, Beckman 1536 

Coulter/Immunotech, cat. IM3698), CD7/APC (clone GP40 [Leu-9], Invitrogen, cat. 17-0079-42), 1537 

Fixable Viability Stain 700 (BD Biosciences, cat. 564997), CD19/APC-H7, HLA-DR/Pacific Blue 1538 

(clone SJ25C1, BD Biosciences, cat. 643078), and CD45/V500 (clone 2D1, BD Biosciences, cat. 1539 

347213). Data was collected using BD LSR II flow cytometers, with approximately 500,000 events 1540 

collected per antibody panel per sample to generate the raw data FCS files.  1541 

Custom software was developed using python, FlowKit (146) and umap-learn (128) to detect the 1542 

antibody panels that were used to generate each raw data FCS file and to determine the unused 1543 

flow cytometer channels that should be disregarded using the self-contained metadata for each file. 1544 

Subsamples from each FCS file were combined to make an “ensemble FCS file” that could be used 1545 

to create the UMAP embedding that could be applied to each of the individual files. Each 1546 

subsample consisted of the same number of randomly selected flow cytometer events such that the 1547 

combined total number of events was approximately 250,000 for each unique antibody panel. The 1548 

various channels were normalized and processed using UMAP to calculate the normalization 1549 

constants and UMAP embedding that were then applied to all FCS files of the given antibody 1550 

panel. Of note, the UMAP calculations included the forward scatter height (FSC-H), side scatter 1551 

height (SSC-H) and each of the defined fluorescence channels. The normalization factors and 1552 

UMAP embedding were then applied to all the individual files. Modified FCS files were created 1553 

that included the UMAPs as additional channels for subsequent evaluation and gating using 1554 

FlowJo software (v10.8.1, FlowJo LLC, Ashland, Oregon, USA).  1555 

Using FlowJo, appropriate gates based on the UMAP plot were determined using the ensemble 1556 

FCS file. Additional standard gating was also performed using the original data channels (gating 1557 

using the other channels is essential to determine the identities of the various cell clusters within 1558 

the UMAP plots). UMAP gates were based on data after gating out doublets and non-viable cells 1559 

via standard gating approaches. Once the UMAP gates were determined to adequate satisfaction 1560 

(sufficient segregation of cell subpopulations and verified to encompass cells of the same or similar 1561 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.09.28.509751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 47 

type), they were then applied to all the FCS files of the given antibody panel. The FCS files were 1562 

divided into untreated/only aspirin treated cohort (n = 33), an interferon-treated cohort (n = 9), a 1563 

hydroxyurea-treated cohort (n = 10). The ratios and absolute numbers of cells, as well as other 1564 

summary statistics were then calculated, and the values exported as CSV files. Statistics included 1565 

numbers of CD34+ blasts; CD19+, cTDT+, CD34+ lymphoid progenitors; CD19+ lymphocytes; 1566 

CD19-negative lymphocytes/NK cells; and monocytes. Relevant distributions of cells for each 1567 

cohort are plotted, and the Wilcoxon p-statistic was calculated for various compared distributions.  1568 

 1569 

Multiplexed Immunofluorescence  1570 

Multiplexed immunofluorescence (mIF) was performed using the Opal system (Akoya 1571 

Biosciences) by staining 4 micron-thick Bouin-fixed, paraffin-embedded whole-tissue sections 1572 

from decalcified human bone marrow core biopsy specimens in a Bond RX automated tissue 1573 

stainer (Leica Biosystems, Buffalo Grove, IL), as described previously (147, 148). Briefly, tissue 1574 

sections were first deparaffinized prior to EDTA-based antigen retrieval (Leica ER2 solution, 1575 

20min). A cyclical staining protocol was then performed, with horseradish peroxidase-mediated 1576 

deposition of tyramide-Opal fluorophore constructs (Akoya Biosciences) in each cycle, with 1577 

intervening application of heat, citrate-based epitope retrieval solution (Leica ER1), and Bond 1578 

Wash Solution (Leica) to execute stripping of primary/secondary antibody complexes between 1579 

staining cycles. Finally, 4’, 6-diamidino-2-phenylindole (Spectral DAPI, Akoya Biosciences) was 1580 

applied per provided protocols to label nuclei. The following panel of primary 1581 

antibody/fluorophore pairs was applied to all cases, in a sequential order as shown: 1) Opal 1582 

480/anti-mutant CALR (1:120, CAL2, Dianova), 2) Opal 520/anti-CD38 (1:50, 38C03 (SPC32), 1583 

Invitrogen), 3) Opal 570/anti-CD117 (1:100, D3W6Y, Cell Signaling), 4) Opal 620/anti-TdT (1:8, 1584 

SEN28, Invitrogen), 5) Opal 690/anti-CD34 (1:100, QBEND/10, Invitrogen), 6) Opal 780/anti-1585 

Ki67 (Ready-to-use, MM1, Leica). Slides were cover-slipped using ProLong™ Diamond Antifade 1586 

Mountant (Invitrogen). Whole slide scans were subsequently obtained at 20X magnification using 1587 

the Vectra Polaris Automated Quantitative Pathology Imaging System (Akoya Biosciences) to 1588 

generate a collection of tiled images, which were subsequently spectrally unmixed in InForm 1589 

(v2.4.8, Akoya Biosciences). Unmixed tiles were finally fused together in HALO (v3.3.2541.231, 1590 

Indica Labs) to generate a multi-layered TIFF image file for each sample, which was used in 1591 

downstream analyses.  1592 

  1593 

Image Analysis with PathML  1594 

Vectra whole-slide images (WSIs) were digitized using digital whole-slide scanners and stored in 1595 

tiff format. WSIs of bone marrow sections were captured (n = 9 samples). Each sample was stained 1596 

based on 8 cell markers including DAPI, mutant-specific CALR, CD38, CD117, TdT, CD34, 1597 

Ki67, and auto-fluorescence. The image contrast was enhanced using histogram equalization in 1598 

Fiji. To analyze the Fiji-preprocessed WSIs, PathML, a toolkit for computational image analysis 1599 

(149), was applied to images. Images were loaded and divided into equal-sized tiles on which we 1600 

ran our preprocessing pipeline. This pipeline starts with coercing the tile shape into the standard 1601 

x,y,c format followed by segmentation. Nuclear and cellular segmentation were performed using 1602 

the Mesmer (150) deep learning segmentation model implemented in PathML with DAPI and 1603 

autofluorescence used as nuclear and cell membrane markers, respectively. Subsequently, we used 1604 

the ‘QuantifyMIF’ function from PathML to convert the segmented images into count matrix 1605 
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which includes the intensity of each marker in each segmented cell along with cell coordinates, 1606 

size, and eccentricity. To remove the noise from the count matrix data, any cell with raw intensity 1607 

less than 50 for DAPI and auto-fluorescence markers was excluded from the analysis. Next, the 1608 

thresholds were obtained to find the positive and negative expression level for each cell marker. 1609 

The thresholds were manually set for each marker based on examination by a board-certified 1610 

hematopathologist. 1611 

 1612 

CUT&RUN Assay 1613 

UT7 cell lines expressing MPL (thrombopoietin receptor) and either the mutant CALR (type 1, 1614 

L367Tfs*46) or wildtype CALR transgene (93) were seeded in 10cm plates in DMEM 1615 

supplemented with 10% FBS (Thomas Scientific) and 5 ng/ml GM-CSF (Miltenyi-Biotec). Cells 1616 

were treated with 0.1μg/ml Recombinant Human IFN-alpha2a (RC217-14) or PBS-1X control for 1617 

24hrs. After treatment, cells were washed 1x with PBS and collected for use with the CUTANA™ 1618 

CUT&RUN assay (EpiCypher) according to the manufacturer’s protocol. 0.5μg of anti-human 1619 

rabbit monoclonal PU.1 antibody (ab76543) and IgG antibody (ab172730) were used in the assay.  1620 

CUT&RUN data were down-sampled to have same number of reads across all conditions within 1621 

the sample replicate to account for difference in sequencing depth. Among the down-sampled 1622 

reads, low-quality reads were filtered out using Trimmomatic (151), resulting reads were aligned 1623 

with hg38 genome with Bowtie2 (152), and PCR duplicates were removed with SAMtools (153) 1624 

with a previously described workflow (154). Aligned reads were then used for peak calling with 1625 

MACS3 (136) with a q-value threshold of 0.01 and reads from IgG antibody as the control. SPI1 1626 

over-enrichment in the called peaks was confirmed with Simple Enrichment Analysis (SEA, 1627 

v5.5.5) (155). Overlapping peaks between replicates of the same condition were kept for further 1628 

processing. The peaks were processed with multiBamSummary function from deepTools (156) to 1629 

obtain counts matrix per sample for downstream analysis.  1630 

Differential peak enrichment analysis was run between conditions (MUT vs WT and IFN⍺-treated 1631 

vs control) using DESEQ2 (157) for distal PU.1 peaks. Differential peaks in each condition were 1632 

centered around SPI1 motif and motif enrichment was performed for regions +/- 250 bp from SPI1 1633 

motif using HOMER (v.4.1.1) (96). Differential ranking between each motif two conditions was 1634 

calculated (Fig. 6H, right, fig. S12B, D).  1635 

 1636 

Single-cell Differentiation Assay  1637 

One day before sorting HSCs, flat-bottom 96-well plates were coated with 60μL 0.2% gelatine 1638 

(Sigma) per well for 1 hour and then removed. Low passage murine MS5 stroma cells were plated 1639 

at a density of 1500 cells/well in 100μL Myelocult H5100 medium (Stem Cell Technologies), 1% 1640 

Penicillin-Streptomycin (Pen/Strep, 10,000 U/mL, Gibco) and 1% glutamine (Gibco). On the day 1641 

of the assay, the medium was changed to lympho-myeloid media consisting on 100μL/well 1642 

Myelocult H5100 medium, 1% Pen/Strep and 1% glutamine supplemented with the following 1643 

cytokines: IL-2 10ng/mL, IL-6 20ng/mL, IL-7 20ng/mL, SCF 100ng/mL, TPO 50ng/mL, G-CSF 1644 

20ng/mL, FLT3L 10ng/mL and GM-CSF 20ng/mL (all from Bio-Techne). Cryopreserved bone 1645 

marrow mononuclear cells (n = 2 baseline and 3 IFN⍺-treated samples) were thawed and CD34+ 1646 

cells were isolated using the EasySep™ Human CD34 Positive Selection Kit II (StemCell 1647 

Technologies #17856) following manufacturer’s protocol. CD34+ isolated cells were then stained 1648 
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with FITC CD45RA (1:50), APC-Cy7 CD34 (1:200), APC CD90 (1:50), Pe-Cy7 FLT3 (1:100), 1649 

PerCP-Cy5.5 HLA-DR (1:100), and BV786 CD41 (1:100) (antibody details in table S31). CD34+ 1650 

CD90+ cells were index-sorted by FACS directly into 96-well plates with pre-plated MS5 stromal 1651 

cells. Eight days after sorting, 70μL of media were removed from the top of the plate without 1652 

disturbing the colonies, and 170μL of IMDM medium (Gibco) with 10% BIT 9500 (StemCell 1653 

Technologies), 1% Pen/Strep, 1% glutamine, supplemented with IL-2 10ng/mL, IL-3 20ng/mL, 1654 

IL-6 10ng/mL, IL-7 10ng/mL, SCF 100ng/mL, TPO 50ng/mL, G-CSF 10ng/mL, FLT3L 1655 

10ng/mL, SDF1 5ng/mL and 2-ME (1.8μL per 50mL), were added. Colonies were analyzed under 1656 

the microscope 16-18 days after sorting and all visible colonies were detached by pipetting from 1657 

the stromal cell layer and transferred into a 96-well U-bottom plate using a plate filter (Pall 1658 

AcroPrep), to prevent the carryover of MS5 cells. Cells were stained for 1 hour at 4ºC with FITC 1659 

CD66b (1:100), PE CD16 (1:100), PerCP-Cy5.5 CD184 (1:100), Pe-Cy7 CD83 (1:100), APC 1660 

CD14 (1:100), V500 CD45 (1:100), BV650 CD71 (1:100), and BV711 CD33 (1:100) (antibody 1661 

details in table S31) with 50μL/well antibody mix and washed afterwards with 200μL PBS and 1662 

2.5% FBS. Immunophenotype of the colonies was assessed in a BD LSRFortessa Analyzer. Flow 1663 

cytometric analysis was performed using FlowJo and OMIQ. To generate differentiation plots, 1664 

OMIQ was used to gate live cells and calculate UMAP dimensional reduction based on expression 1665 

of CD14, CD34, CD45, CD71, CD33, CD16, and CD66b after integrating cells across every 1666 

colony using recommended settings. A total of 177 colonies were included in the analysis from 5 1667 

samples (after filtering for colonies with <350 live cells). GEMM colonies showed CD71+, CD14+, 1668 

and CD66b+ populations. GM colonies showed both CD14+ and CD66+ populations (at least 1% 1669 

each). Neutrophil-only colonies showed <1% CD14+ cells and at least 95% CD66b+ cells. To 1670 

increase the stringency of the neutrophil-only assignment, a minimum of 4000 events was required 1671 

for this assignment. The remainder of the colonies were labeled as early myeloid (EM) colonies 1672 

showing a large CD33+ population (>40%) that lacked either CD14 or CD66b expression. 1673 

 1674 

Western Blot  1675 

1x10^6 K562 cells were seeded in triplicate in a 10cm plate in RPMI 10% FBS 1% Pen/Strep. 1676 

Recombinant Human IFN-alpha2a (RC217-14) was diluted in PBS and added to treatment 1677 

condition plates at a concentration of 2000U/ml. Corresponding control plates were treated with 1678 

equal volumes of PBS. Cells were kept in media with or without IFN⍺ for 24hrs or 48hrs, after 1679 

which cells were collected and cell count and viability was recorded. Cells were then centrifuged 1680 

at 300g for 5min at 4°C. Pellet was resuspended in cold PBS and centrifuged at 300g for 5min at 1681 

4°C. Dry cell pellets were frozen at -80°C until ready for use. Cell pellets were lysed in RIPA 1682 

Buffer (ThermoFisher #89901) with Protease Inhibitor (ThermoFisher #78420) and Phosphatase 1683 

Inhibitor (ThermoFisher #78429) for 15min on a shaker at 4°C. Total protein was quantified using 1684 

colorimetric BioRad DC Protein Assay (#5000113). Samples were run on a Novex Tris-Glycine 1685 

Mini Protein Gel (ThermoFisher) according to manufacturer’s protocol and transferred via 1686 

standard wet transfer protocol. After blocking with 5% milk for 1hr at room temperature, blot was 1687 

stained with anti-human mouse PU.1 monoclonal antibody (1:1000) (CST #89136) and anti-1688 

human rabbit Vinculin monoclonal antibody (1:10000) (ab129002) diluted in Intercept T20 1689 

Antibody Diluent (LI-COR) overnight at 4°C. After washing with TBS-T (1X TBS, 0.1% Tween 1690 

20) buffer, blot was stained with secondary antibodies including anti-mouse IRDye 800CW Goat 1691 

anti-Mouse IgG Secondary Antibody (1:5000) AND IRDye 680RD Goat anti-Rabbit IgG 1692 
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Secondary Antibody (1:5000) for 1hr at room temperature (antibody details in table S31). Blot 1693 

was then imaged using LI-COR machine and absorbance quantified using LI-COR software. 1694 

 1695 

Lentiviral Constructs for Overexpression Experiments 1696 

Lentiviral overexpression (OE) vectors and their corresponding control vectors were designed and 1697 

obtained from VectorBuilder. All constructs included a lentivirus backbone (pLV) with gene-1698 

specific inserts, a fluorophore and an antibiotic resistance insert. The RFX3-OE insert consisted 1699 

of human RFX3 ORF (NM_001377999.1) driven by the human phosphoglycerate kinase (hPGK) 1700 

high-expression promoter, with CMV-mCherry-T2A-Puro for selection. The SPI1-OE and 1701 

CEBPA-OE inserts consisted of the human SPI1 ORF (NM_001080547.2) and human CEBPA 1702 

ORF (NM_001287424.2) respectively, driven by the hPGK promoter, with CMV-EGFP-T2A-1703 

Puro for selection. The control vectors contained the hPGK promoter driving an empty ORF 1704 

stuffer, followed by CMV-mCherry-T2A-Puro or CMV-EGFP-T2A-Puro. The plasmid vectors 1705 

were generated and amplified by VectorBuilder. 1706 

 1707 

Lentivirus Production 1708 

HEK-293T cells were seeded at a density of 2x106 cells in DMEM, 10% FBS and 1% Pen/Strep 1709 

in a 10cm plate. After 24 hours, media was changed to DMEM and 10% FBS. 9μg OE or control 1710 

plasmid was added to 1mL Opti-MEM (ThermoFisher) containing 3μg pMD2.G plasmid and 8μg 1711 

psPAX2 plasmid and incubated with Lipofectamine 2000 (ThermoFisher) in 1mL of Opti-MEM 1712 

for 15min at room temperature. Mixture was then added dropwise to the cells and incubated at 1713 

37°C for 24 hours. Media containing virus was collected over the next 48 hours. Lentivirus was 1714 

then concentrated using Lenti-X Concentrator (Clontech #631231) according to manufacturer’s 1715 

protocol. Viral titer was determined using the qPCR Lentivirus Titer Kit (Applied Biological 1716 

Materials LV900). 1717 

 1718 

Lentiviral RFX3 Overexpression of CD34+ Cells 1719 

Frozen umbilical cord blood mononuclear cells were purchased from the NYC Blood Center. After 1720 

cells were thawed rapidly at 37°C, red blood cell lysis was performed using ACK Lysis Buffer 1721 

(ThermoFisher) on ice for 7min. Cells were then centrifuged at 300g for 5min at 4°C. Supernatant 1722 

was discarded, and cell pellet was resuspended in cold MACS buffer (PBS-1X with 0.5% BSA). 1723 

Cells were centrifuged at 300g for 5min at 4°C, and resuspended in cold MACs buffer at a 1724 

concentration of 1x10^7 cells/mL. CD34+ cells were then isolated with the EasySep™ Human 1725 

CD34 Positive Selection Kit II (StemCell Technologies #17856) according to manufacturer’s 1726 

protocol. After isolation, cells were counted and plated in 96-well round-bottom plates (Falcon) in 1727 

StemSpan™ SFEM II media (StemCell Technologies) with StemSpan™ CD34+ Expansion 1728 

Supplement (StemCell Technologies) and 1% Pen/Strep. After 24 hours in culture, cells were spun 1729 

down and resuspended in minimal media consisting of StemSpan StemSpan™ SFEM II media 1730 

with StemSpan™ CD34+ Expansion Supplement, 1% Pen/Strep, 10μM prostaglandin E2 1731 

(StemCell Technologies #72192) and 100ng/μl poloxamer 407 (Millipore Sigma P2164030). Cells 1732 

were split into 2 technical replicates each for untransduced condition, mCherry-control vector 1733 

transduction, and RFX3-OE vector transduction. Lentivirus or PBS control was added at an MOI 1734 

of 100 directly into the well. Cells were then spinoculated at 300g, 32°C for 1 hour. After the spin, 1735 
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cells were incubated in same lentivirus-containing media for 24 hours at 37°C before resuspension 1736 

in fresh media consisting of StemSpan™ SFEM II media with StemSpan™ CD34+ Expansion 1737 

Supplement and 1% Pen/Strep. After 48 hours of incubation, cells were stained with CD34-APC 1738 

antibody (1:50) (table S31). Cells were then FACS isolated for the CD34+ population in the 1739 

untransduced condition and the CD34+ mCherry+ populations in the RFX3-OE and mCherry-1740 

control conditions. Three independent transduction experiments were completed with new units of 1741 

umbilical cord blood cells.  1742 

Untransduced, mCherry-Control, and RFX3-OE CD34+ cells were stained with Cell Hashing 1743 

antibodies (HTO TotalSeq-A, BioLegend) for 30 min at 4°C. Cells were then washed with FACs 1744 

Buffer three times, pooled, and counted for loading. scRNA-sequencing was then performed using 1745 

the 10x 3’ v3.1 platform according to manufacturer’s protocol. HTO demultiplexing and 1746 

downstream analyses such as differential gene expression and gene set enrichment were performed 1747 

as in GoT-IM for CD34+ bone marrow samples. scRNA-seq experiment was completed on one 1748 

replicate of three independent transduction experiments. 1749 

The FACS-sorted cells were also used for colony-forming unit (CFU) assays. MethoCult total 1750 

media were prepared using MethoCult™ H4034 Optimum (StemCell Technologies # 04044) 1751 

supplemented with 10ng/ml human FLT3L and IL-6 (Miltenyi-Biotec) and 1% Pen/Strep. 250 1752 

cells per group (Untransduced, mCherry-Control, and RFX3-OE) were added to 3mL MethoCult 1753 

total and vortexed thoroughly. Tubes were then left at room temperature until bubbles rose to the 1754 

surface. 1.25mL of MethoCult with cell suspension was transferred per well of a 6-well plate (2 1755 

replicates per group) via blunt-edge 16g needle. Plate was incubated at 37°C for 14 days after 1756 

which colonies were counted and identified by morphology. CFU assay was completed on all three 1757 

of the independent transduction experiments.  1758 

 1759 

Lentiviral Transduction of K562 Cells 1760 

K562 cells were seeded at density of 3x105 cells/mL in 24-well tissue-culture treated plates 1761 

(Falcon) in 500μL of K562 media (RPMI with 10% FBS and 1% Pen/Strep) in triplicate for each 1762 

of the following conditions: untransduced, mCherry-Control, RFX3-OE, EGFP-control, SPI1-OE, 1763 

and CEBPA-OE. Concentrated lentivirus (or PBS-1X control for untransduced condition) was 1764 

added directly to each well at MOI of 20, shaken gently and incubated at 37°C for 24 hours. After 1765 

24 hours in lentivirus-containing media, plates were spun at 300g for 5min at room temperature, 1766 

and supernatant media was replaced with fresh K562 media. Cells were then incubated at 37°C for 1767 

72 hours to allow for vector expression. Post-72 hours, cells were pooled per condition and washed 1768 

with FACS buffer (PBS-1X with 2% FBS). mCherry+ or EGFP+ cells per condition were then 1769 

FACS-isolated and plated in K562 media in tissue-culture treated T25 flasks and allowed to 1770 

recover for 48 hours before use in subsequent experiments. Two independent transduction 1771 

experiment replicates of mCherry-Control, RFX3-OE and SPI1-OE and three independent 1772 

replicates of EGFP-control and CEBPA-OE were performed.  1773 

 1774 

In vitro IFN⍺ Treatments of SPI1-OE and CEBPA-OE Cells 1775 

5x106 untransduced, EGFP-control and SPI-OE K562 cells were seeded in 24-well TC-treated 1776 

plates in 1mL of K562 media (RPMI with 10% FBS and 1% Pen/Strep). Recombinant Human 1777 

IFN-alpha2a (RC217-14) was diluted in PBS-1X and added to treatment condition plates at a 1778 
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concentration of 2000U/mL. Equal volume of PBS-1X was added to untreated controls. After 1779 

gentle shaking, cells were incubated at 37°C for 24 hours. Post-incubation, cell suspension was 1780 

collected and spun at 350g for 5min at 4°C. Supernatant was aspirated and cell pellet was washed 1781 

with 1mL cold PBS. Cells were spun again at 350g for 5min at 4°C. Supernatant was aspirated and 1782 

dry cell pellets were frozen at -80°C until RNA was extracted.  1783 

 1784 

RNA extraction and RT-QPCR 1785 

Total RNA was prepared using the RNeasy Plus Micro or RNeasy Micro kit (Qiagen, #74034/ 1786 

74004) according to the manufacturer’s instruction. RT-QPCR assays were performed using a 1787 

QuantStudio™ 5 Real‑Time PCR System (Applied Biosystems). One-step qRT-PCR assays were 1788 

performed using the Power SYBR™ Green RNA-to-CT™ 1-Step Kit (Thermo Fisher Scientific, 1789 

#4389986) according to manufacturer’s instructions. The thermal cycling conditions comprised a 1790 

reverse transcription step at 48°C for 30min, an initial denaturation (enzyme activation) step at 1791 

95°C for 10min and 40 cycles at 95°C for 15s and 60°C for 1min. Transcripts of the TBP gene 1792 

encoding the TATA box-binding protein (a component of the DNA-binding protein complex 1793 

TFIID) were quantified as an endogenous RNA control. Quantitative values were obtained from 1794 

the cycle number (Ct value), according to the manufacturer’s manuals (Applied Biosystems) and 1795 

2-ΔCT values were calculated relative to TBP. Sequences of primers used for QPCR are listed in 1796 

table S31. 1797 

 1798 

Statistics and reproducibility  1799 

Linear mixed modeling (LMM) was implemented using the lme4 R package (v.1.2-1). In all cases, 1800 

LMMs were generated with/without cell mutational status, treatment status or cell types, as 1801 

specified in the figure legends. This allowed inclusion of random effects to account for biological 1802 

variation. We included patient sample as random effects in our statistical comparisons. P-values 1803 

were calculated by analysis of variance with likelihood ratio test using the Stats R package (v.3.5.1) 1804 

between two models (with or without the fixed variable of interest). P-value adjustments were 1805 

done with Benjamini-Hochberg FDR-correction unless specified otherwise.  1806 

For all box plots presented, the box represents the interquartile range; upper and lower whiskers 1807 

represent the largest and smallest values within 1.5 times the interquartile range above the 75th or 1808 

below the 25th percentile, respectively; the central line represents the median. Dots represent 1809 

outlier values or data value distributions. For all violin plots, the violin represents the kernel 1810 

probability density of the data and dots represent the observed values. 1811 

1812 
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Supplementary Figures 1813 
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1814 
Fig. S1 (related to Fig. 1): Genotyping of Transcriptomes integrated with 1815 
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immunophenotyping (GoT-IM) profiles thousands of CD34+ cells at baseline and following 1816 

treatment with IFN⍺. A. Change in platelet frequency at baseline and one year upon IFN⍺ 1817 

treatment for samples (IFN01-IFN13) included in the study (top) and samples that were not 1818 

available (bottom) from MPN-RC-111/112 trial. Patient samples with both baseline and year 1 1819 

were included. P-values from likelihood ratio test of LMM with/without treatment status 1820 

(methods). B. Box plots showing number of UMIs (left panel), and genes (right panel) detected 1821 

per cell in sorted CD34+ hematopoietic progenitors from each patient after filtering based on 1822 

quality control (QC) metrics (methods). C. Top: Time-point assignment (data demultiplexing) 1823 

using time-point specifying barcodes. Cells in which both barcodes are detected are considered as 1824 

doublets and excluded. Representative patient sample IFN01 (n = 8,696 cells) shown. Bottom: 1825 

Heatmap showing HTO expression level for baseline and IFN⍺-treated cells from IFN01. D. 1826 

Uniform Manifold Approximation and Projection (UMAP) of sorted CD34+ progenitors (n = 1827 

65,452 cells, samples from this study and Nam et al., 2019) highlighted by patient ID (n = 13 1828 

individuals, left) and treatment status (right) after integration with zoomed in view of the region 1829 

with IGP cluster. E. Integrated UMAP of sorted CD34+ progenitors from Nam et al., 2019 (n = 1830 

14,872 cells) highlighted by patient ID (n = 3 individuals, left) and cell type clusters (right). F. 1831 

Integrated UMAP of sorted CD34+ progenitors of ET patients from the MPN-RC-111/112 trials 1832 

(n = 50,580 cells) highlighted by patient ID (n = 10 individuals, left) and cell type clusters (right).  1833 
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1834 
Fig. S2 (related to Fig. 1): GoT-IM of baseline and IFN⍺-treated samples identifies HSPC 1835 

populations. A. Heatmap of top 15 differentially expressed genes for each progenitor cell type. 1836 

Cells of each progenitor type were down-sampled to the same number (n = 100 cells per cluster) 1837 

for visualization. B. Heatmap showing median scaled expression of canonical HSPC protein 1838 

markers from a representative patient IFN03. C. Dot plot showing expression levels of cell type 1839 

specific gene markers in each progenitor subset. D. UMAP of sorted CD34+ HSPCs (n = 65,452 1840 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.09.28.509751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 57 

cells) highlighting CD38, CD90 and CD45RA protein expression and AVP RNA expression. E. 1841 

Bar plot showing normalized IGP frequency from paired samples (n = 7 individuals) at baseline 1842 

and IFN⍺ treatment. P-value from likelihood ratio test of LMM with/without treatment status 1843 

(methods). F. Box plot showing the cell frequency at baseline and upon IFN⍺ treatment per sample 1844 

(right). For IFN02, IFN04 and IFN05, the time-point powered with greater number of cells was 1845 

selected. P-value from likelihood ratio test of LMM with/without treatment status (methods). G. 1846 

UMAP of sorted CD34+ HSPCs overlaid with cell type assignment after separate integration for 1847 

baseline (left, n = 33,877 cells) and IFN⍺-treated (right, n = 31,575 cells) samples. H. UMAP of 1848 

CD34+ HSPCs overlaid with cell type assignment from representative samples IFN04 (n = 7,282 1849 

cells, left) and IFN05 (n = 3, 375 cells, right). 1850 

 1851 

 1852 
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Fig. S3 (related to Fig. 1): IFN⍺ induces a novel inflammatory granulocytic progenitor state. 1853 
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A. UMAP showing gene expression levels of differentially upregulated TFs in IGPs compared to 1854 

IMPs. B. Left: Volcano plot of differentially expressed genes between IFN⍺-treated IGPs and 1855 

HSC-IGs. P-values from likelihood ratio test of linear mixed modeling with/without cluster 1856 

identity as a fixed effect variable (methods). Genes in blue represent genes enriched in the TNF⍺ 1857 

signaling via NF-κB and those in green enriched in the G2M Checkpoint pathway (box 1858 

representation is same as Fig. 1E).  C. Pre-ranked gene set enrichment analysis using the MSigDB 1859 

Hallmark collection of G2M Checkpoint and E2F Targets gene set. D. Cell cycle gene expression 1860 

in IFN⍺-treated HSC-IGs vs IFN⍺-treated IGPs. P-value from likelihood ratio test of LMM 1861 

with/without cluster identity. E. Schematic showing proposed model of HSC vs HSC-IG 1862 

differentiation (top-left). UMAPs generated from flow-cytometric data showing representative 1863 

colonies from single-cell differentiation assay from baseline and IFN⍺-treated BM HSCs 1864 

(methods) depicting differentiation trajectories (bottom-left). Normalized frequency of colonies 1865 

including early myeloid (EM), granulocytic (G), mixed granulocytic-monocytic (GM), mixed 1866 

granulocytic, monocytic, early myeloid (GEMM) across single-cell differentiation assays from 1867 

sorted baseline (n=2) and IFN⍺-treated (n=3) samples (methods) (right).  1868 

  1869 
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1870 
Fig. S4 (related to Fig. 2): Genotyping of Transcriptomes integrated with 1871 

immunophenotyping (GoT-IM) profiles thousands of CD34- cells at baseline and following 1872 

treatment with IFN⍺. A. Box plots showing number of UMIs (left panel), and genes (right panel) 1873 

detected per cell in sorted CD34- mature immune cells from each patient after filtering based on 1874 

quality control (QC) metrics (methods). B. UMAP of sorted CD34- immune cells (n = 59,912 1875 

cells) highlighted by patient ID (n = 7 individuals, left) and treatment status (right) after 1876 

integration. C. Heatmap of top 15 differentially expressed genes for each immune cell type. Cells 1877 

from each group was down-sampled to the same number (n = 75 cells per cluster) for visualization. 1878 

D. Integrated UMAP of sorted CD34+ progenitors and CD34- mature immune cells from 1879 

representative samples (n = 4 individuals, IFN09-IFN12) highlighted by cell type assignment.   1880 
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Fig. S5 (related to Fig. 3). IFN⍺ induces HSC cell cycle entry. A. UMAP of CD34+ cells from 1881 
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patient IFN02 highlighting treatment status (n = 4,326 baseline cells, 2,912 IFN⍺-treated cells at 1882 

year 1 and 541 IFN⍺-treated cells at year 2, left). Box plot showing transcriptional distance 1883 

measurements between HSCs from each time-point and HSCs at baseline (right). Transcriptional 1884 

distance corresponds to Euclidean distance of the first thirty principal components. P-values from 1885 

Wilcoxon rank sum test, two-sided. B. Volcano plot showing differentially expressed genes 1886 

between baseline and IFN⍺-treated MkPs. P-values from likelihood ratio test of linear mixed 1887 

modeling (LMM) with/without treatment status (methods). Genes in black are enriched in the 1888 

TGFβ signaling and those in orange enriched in the IFN⍺/γ response. Enrichment is based on pre-1889 

ranked gene set enrichment analysis (GSEA) using the MSigDB Hallmark collection. C. Cell cycle 1890 

status of progenitor cells. For each cell type, left subpanel: Cell cycle gene expression in progenitor 1891 

cells (representative patient IFN01, see table S2 for cell numbers). Right subpanel: Frequencies 1892 

of cells in G2/M/S phase as assessed in left subpanel (n = 11 baseline and 9 treated samples). P-1893 

values were derived from likelihood ratio test of LMM with/without treatment status. D. 1894 

Frequencies of cells in G2/M/S phase in HSCs and progenitor cells at baseline and upon IFN⍺ 1895 

treatment (n = 12 paired samples from 6 individuals). P-values were derived from likelihood ratio 1896 

test of LMM with/without treatment status. E. CXCR4 (CD184) protein expression in stem and 1897 

early progenitor subsets (HSCs, IMPs, MLPs, MEPs and MDPs) at baseline and under IFN⍺ 1898 

treatment. P value from likelihood ratio test LMM with/without treatment status. F. Volcano plot 1899 

showing DE genes between baseline and HU treated HSPCs highlighting genes in cellular response 1900 

to DNA damage (light-blue) the MSigDB GOBP collection, IFN⍺UP genes (teal) and IFN⍺DN 1901 

genes (purple) from. P-values from likelihood ratio test of LMM with/without treatment status. G. 1902 

Heatmap showing results of the pre-ranked gene set enrichment analysis comparing baseline and 1903 

HU treated HSPCs. Values show the sign of the normalized enrichment score (NES) multiplied by 1904 

-log10(Adjusted P-value). H. Gene expression of IFN⍺ response signature, TGFβ pathway and 1905 

TNF⍺ signaling from the MSigDB Hallmark collection and HSC-IG vs HSC1 (Fig. 1G) signature 1906 

at baseline, during and post-IFN⍺-treatment in HSCs (HSC1 and HSC2 subclusters from Fig. 1G), 1907 

HSC-IGs and IGPs from a representative sample IFN05. I. Scatterplot showing correlation 1908 

between patients' age and their normalized HSC-IG and IGP frequency at baseline (left) and upon 1909 

IFN⍺ treatment (right). J. Boxplots showing module gene expression of previously identified 1910 

aging-specific upregulated genes (left) and downregulated (right) genes (56) in IFN⍺-treated HSCs 1911 

(HSC1 and HSC2 subsets from Fig. 1G), HSC-IGs and IGPs. P-values from likelihood ratio test 1912 

of LMM with/without cluster identity (methods). (56) in IFN⍺-treated HSCs (HSC1 and HSC2 1913 

subsets from Fig. 1G), HSC-IGs and IGPs. P-values from likelihood ratio test of LMM 1914 

with/without cluster identity (methods). K. Heatmap showing results of the pre-ranked gene set 1915 

enrichment analysis comparing baseline and during IFN⍺ treatment across CD34- mature cells. 1916 

Values show the sign of the normalized enrichment score (NES) multiplied by -log10(Adjusted P-1917 

value). L. Frequency of regulatory T cells in G2/M/S phase as assessed based on cell cycle gene 1918 

expression at baseline and upon IFN⍺ treatment. P-values were derived from likelihood ratio test 1919 

of LMM with/without treatment status. M. Normalized frequency of cell types within all CD34- 1920 

mature immune cells (left), monocytes (middle) and T cells (right) at baseline and active IFN⍺ 1921 

treatment. Cells from each treatment status and individual were down-sampled to the same number 1922 

(n = 500 cells per treatment status per sample, 10 baseline and IFN⍺-treated paired samples from 1923 

5 individuals). For IFN02 and IFN05, treated time-point powered with greater number of cells was 1924 

selected. N. Normalized frequency of CD16+ monocytes and regulatory T (Treg) cells at baseline 1925 

and upon IFN⍺ treatment (n = 10 samples from 5 individuals). For IFN02 and IFN05, the treated 1926 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.09.28.509751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 63 

time-point powered with greater number of cells was selected. P-values from likelihood ratio test 1927 

of LMM with/without treatment status.  1928 

  1929 
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 1930 

1931 
Fig. S6 (related to Fig. 4). IFN⍺ induces lymphoid differentiation. A. Bar plot showing 1932 

normalized cell type frequencies at baseline and during IFN⍺ treatment (n = 14 paired samples 1933 

from 7 individuals). For IFN02, IFN04 and IFN05, the time-point powered with greater number 1934 

of cells was selected. P-values from likelihood ratio test of linear-mixed modeling (LMM) 1935 

with/without treatment status (methods). B. Box plots showing cell frequencies of B-lymphoid 1936 

progenitors and B cells from bone marrow of patients with early stage MPN treated with IFN⍺ and 1937 

HU treatment (n = 9 and 10 respectively) and without treatment (n = 33 samples), as determined 1938 

by multiparametric flow cytometry. P-values from Wilcoxon rank sum test, two-sided. C. Scatter 1939 

plot showing correlation between HSC module expression (based on differentially expressed genes 1940 

in HSC cluster, fig. S2A) and protein expression of canonical stem/progenitor markers i.e., CD90 1941 

(top-left), CD38 (top-right) and CD45RA (bottom) in stem and progenitor subsets. P-value from 1942 

F-test, Pearson correlation. Shading denotes 95% confidence interval. D. Frequency of B cells in 1943 

G2/M/S phase as assessed based on cell cycle gene expression at baseline and upon IFN⍺ 1944 

treatment. P-values were derived from likelihood ratio test of LMM with/without treatment status. 1945 

 1946 

 1947 
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 1948 
Fig. S7 (related to Fig. 5). GoT-ATAC captures genotyping, snRNA-seq and snATAC-seq 1949 

data for CD34+ HSPCs. A. Box plots showing number of UMIs (left) and genes (right) detected 1950 

per cell in sorted CD34+ hematopoietic stem and progenitors from each patient after filtering based 1951 

on quality control (QC) metrics (methods) from GoT-ATAC experiments. B. Density plot 1952 

comparing percentage of snATAC fragments within peaks to the total number of fragments 1953 

detected per sample (n = 7 samples from 4 individuals, additional IFN03 IFN⍺-treated cells also 1954 

sequenced separately). C. Distribution of mean TSS enrichment score at each position relative to 1955 

the TSS per sample. D. Average distribution of fragment length per sample. E. Heatmap showing 1956 

HTO expression level for baseline and IFN⍺-treated cells from representative IFN01 (n = 1471 1957 

cells).   1958 
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Fig. S8 (related to Fig. 5). GoT-ATAC identifies the novel inflammatory granulocytic 1960 

progenitor population. A. UMAP of sorted CD34+ stem and progenitors (n = 23,137 cells, 7 1961 

samples from 4 individuals), with cell type (left), patient ID (middle) and treatment status (right) 1962 

using weighted-nearest neighbor (WNN) analysis of snRNA-seq and snATAC-seq data 1963 

(methods). B. UMAP of CD34+ cells based on snRNA-seq (left) and snATAC-seq (right) data, 1964 

overlaid with cell type assignment. C. Heatmap of top 15 differentially expressed genes for each 1965 

HSPC type. Cells of each progenitor type were down-sampled to the same number (n = 100 cells 1966 

per cluster). D. Dot plot showing expression levels of cell type-specific gene markers in each 1967 

progenitor subset. E. UMAP based on weighted nearest neighbor (WNN) analysis (n = 23,137 1968 

cells) highlighting TF motif accessibility. TF accessibility scores added with 1969 

AddChromatinModule function in Signac. F. Heatmap showing cell type specific TF accessibility 1970 

scores.  1971 
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 1972 
Fig. S9 (related to Fig. 5). Transcription factor activities in inflammatory granulocytic 1973 

progenitors. A. Ranked transcription factor (TF) motifs in the most significant individual positive 1974 

regulatory peak of RFX3 (top) and RFX2 (bottom, 1st peak: upstream of TSS, 2nd peak: 1975 

downstream of TSS) identified using motif scanning with FIMO for a representative sample 1976 

(IFN03, methods). B. Chromatin accessibility track (left) of the regulatory region of RFX3 1977 
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(representative example from IFN03). Violin plots (right) display gene expression level of RFX3. 1978 

C. Chromatin accessibility tracks of regulatory regions of RFX2 (representative example from 1979 

IFN03, bottom) and distal region enriched with the two most significant positively regulating loci 1980 

(top-left, top-right). Violin plots display gene expression level of RFX2.  1981 

  1982 
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 1983 

 1984 

 1985 
Fig. S10 (related to Fig. 5). RFX3 overexpression induces an IGP-like cell state. A. Chromatin 1986 

accessibility tracks of regulatory regions of HLA-DRA1 (bottom), distal region enriched with 1987 

negative regulatory loci (inset), and IGP-specific regulatory locus (top, representative example 1988 
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from IFN07). Violin plots display gene expression level of HLA-DRA1. B. Box plots showing 1989 

normalized expression of HLA-DR protein expression. P-values from likelihood ratio tests of 1990 

linear-mixed modeling (LMM) with/without cell type identity. C. RFX3 overexpression lentiviral 1991 

vector validated in K562 cells by assessing RFX3 mRNA levels by RT-QPCR (n = 2 independent 1992 

experiments). mRNA levels correspond to RFX3 Ct values normalized to TBP Ct values. P-value 1993 

from t-test. D. Normalized frequency of erythroid (BFU-E), granulocytic (CFU-G), granulo-1994 

monocytic (CFU-GM), monocytic (CFU-M) and myeloid (CFU-GEMM) colonies grown from 1995 

RFX3-OE CD34+ umbilical cord blood (UCB) cells in methylcellulose-based CFU assays 1996 

compared to control CD34+ UCB cells. P-value from likelihood ratio test linear-mixed modeling 1997 

(LMM) with/without RFX3 overexpression. E. Box plots showing number of UMIs (top) and 1998 

genes (bottom) detected per cell in sorted CD34+ UCB cells after filtering based on quality control 1999 

(QC) metrics (methods) from GoT-IM experiments. F. UMAP of sorted CD34+ UCB cells (n = 2000 

2,609 cells) highlighted by three transduction statuses. G. UMAP of RFX3-OE and mCherry 2001 

(control) subsets (n = 1,520 cells) highlighted by their status. H. UMAP of RFX3-OE and control 2002 

subset showing gene expression levels of cell type specific gene markers for HSPCs. I. UMAP of 2003 

RFX3-OE and control subset, highlighting cell type assignments.  2004 

 2005 
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Fig. S11 (related to Fig. 5). PU.1 is the master regulator of IFN⍺-mediated lymphoid 2007 

differentiation and remodeling of hematopoiesis. A. Left: Normalized cell frequencies of 2008 

progenitor subsets at baseline and after IFN⍺ treatment from all GoT-ATAC samples (n = 4 2009 

individuals). Cells from each treatment status and individual were down-sampled to the same 2010 

number (n = 100 cells per treatment status per sample). Right: Cell frequency distribution as in left 2011 

panel for patients IFN01, IFN03 and IFN07. B. Chromatin accessibility tracks of regulatory 2012 

regions of SPI1 (representative example from IFN07, bottom-left), distal region enriched with the 2013 

two most significant positively regulating loci (top-left). Violin plots display gene expression level 2014 

of SPI1. Ranked TF motif enrichment of all positive regulatory peaks of the SPI1 gene, relative to 2015 

background peaks using the hypergeometric test across three samples IFN01, IFN03 and IFN07 2016 

(right, see methods). C. SPI1 gene expression in stem and early progenitors (HSCs, IMPs, MLPs, 2017 

MEPs and MDPs) at baseline and upon IFN⍺ treatment. P-value from likelihood ratio test linear-2018 

mixed modeling (LMM) with/without treatment status. D. SPI1 mRNA levels in K562 cells treated 2019 

with IFN⍺ in vitro for 24 hours (assessed by RT-QPCR, n=6 independent experiments). mRNA 2020 

levels correspond to SPI1 Ct values normalized to TBP Ct values. P-values from likelihood ratio 2021 

test of LMM with/without treatment status. E. Representative western blot showing PU.1 protein 2022 

levels in K562 cells treated with IFN⍺ in vitro across for 0, 24 and 48 hours with vinculin as 2023 

loading control (left). Log-fold change analysis of quantified PU.1 protein levels based on 2024 

luminescence intensity of western blot bands across three replicates (right) (methods). F. CEBPA 2025 

and SPI1 mRNA levels in K562 cells upon expression of control or CEBPA-OE lentiviral vectors 2026 

(assessed by RT-QPCR, n=3 independent experiments). mRNA levels correspond to Ct values of 2027 

gene target normalized to TBP Ct values (2–∆∆Ct).  P-values from likelihood ratio test of LMM 2028 

with/without CEBPA overexpression. G. SPI1 mRNA levels in K562 cells upon expression of 2029 

control or SPI1-OE lentiviral vectors (assessed by RT-QPCR, n=2-3 independent experiments). 2030 

mRNA levels correspond to Ct values of gene target normalized to TBP Ct values (2–∆Ct).  P-values 2031 

from likelihood ratio test of LMM with/without SPI1overexpression. H. Heatmap depicting scaled 2032 

mRNA levels(2–∆Ct) of IFN-related genes in K562 cells upon expression of control or SPI1-OE 2033 

lentiviral vectors at baseline and after 24-hour IFN⍺ treatment (assessed by RT-QPCR, n = 4-7 2034 

independent experiments). Scaled across all data points for each gene. P-values from likelihood 2035 

ratio tests of LMM with/without SPI1 overexpression status. 2036 

 2037 
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 2038 
Fig. S12 (related to Fig. 6). CALR mutations modify the effects of IFN⍺ signaling. A. UMAP 2039 

of sorted CD34+ stem and progenitors at baseline and after IFN⍺ treatment from GoT-IM 2040 
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experiments with CALR mutation status highlighted. Cells from each sample were down-sampled 2041 

to the same number for each mutation status (n = 1,000 cells from each mutation status per sample). 2042 

B. Normalized frequencies of CALR-mutated (MUT) and wildtype (WT) HSCs at each time-point 2043 

(n= 8 individuals with at least 2 time-points). C. Bar plots showing frequencies of MUT and WT 2044 

cells in G2/M/S phase as assessed in Fig. 3C for all CD34+  GoT-IM samples (n = 11 baseline and 2045 

9 IFN⍺ year 1 samples, top) and paired CD34+ GoT-IM samples (n = 12 samples from 6 2046 

individuals, bottom). P-values were derived from likelihood ratio test of linear mixed modeling 2047 

(LMM) with/without treatment status. D. Frequencies of Ki67+ myeloid cells before and after 2048 

IFN⍺ treatment. P-values from Wilcoxon rank sum test, two-sided. E. Scatter plot showing 2049 

pathways from pre-ranked DE gene set enrichment analysis comparing mutated (MUT) versus 2050 

wildtype (WT) cells at baseline and after IFN⍺ treatment. Values show the sign of the normalized 2051 

enrichment score (NES) multiplied by -log10(Adjusted P-value). Pathways in red are present in 2052 

HSCs. P-value from F-test, Pearson correlation. Shading denotes 95% confidence interval. F. 2053 

Heatmap showing results of the pre-ranked gene set enrichment analysis of genes DE between 2054 

MUT and WT cells at baseline and after IFN⍺ treatment. G. Platelet counts versus frequencies of 2055 

MUT MEPs and MkPs. P-value from F-test, Pearson correlation. Shading denotes 95% confidence 2056 

interval. H. Normalized mutant cell frequency at baseline versus after IFN⍺ treatment for GoT-2057 

IM CD34+ samples (cell type clusters with at least 10 genotyped cells were within each sample 2058 

were used).  2059 

  2060 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.09.28.509751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 76 

 2061 

 2062 

2063 
Fig. S13 (related to Fig. 6). CALR mutated cells display enhanced PU.1 binding activity at 2064 

regulatory regions with distinct cooperating TF binding sites. A. Top five hits from Ranked 2065 

transcription factor (TF) motif enrichment of peaks captured from CUT&RUN targeting PU.1 2066 

motif with SEA v5.5.5. B. Differential TF motif enrichment between baseline and IFN⍺-treated 2067 

focusing on exclusive PU.1 peaks in WT (top) and MUT cells (bottom). Analyses with HOMER. 2068 

Highlighted are IRF TFs (blue). C. Bar plot showing difference in the number of distal and 2069 

proximal PU.1 peaks between control and IFN⍺-treated UT7-MPL cells. Peaks less than 500 bp 2070 

from TSS were considered proximal. D. Differential TF motif enrichment between MUT and WT 2071 

exclusive PU.1 peaks in baseline cells. TFs enriched in differentially accessible PU.1 peaks for 2072 

MUT and WT cells are highlighted in blue and green respectively. 2073 
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 2075 

2076 
Fig. S14 (related to Fig. 6). IFN⍺ perturbs clonal evolution via the IGP differentiation 2077 

program. A. Relative density of proportion of Type 1-mutant reads versus SNV-mutant reads in 2078 

UMIs captured via GoT, showing mutual exclusivity. B. Normalized frequencies of each 2079 

progenitor subset among WT, single MUT (Type 1 CALR) and double MUT (Type 1 and SNV 2080 

mutations in CALR) cell populations at each time-point for IFN02 (n = 7,779 cells). C. Bar plots 2081 

showing normalized frequency of baseline HSCs in G1/G2/M/S phases as assessed in Fig. 3C. P-2082 

values from Fisher’s exact test between mutation status and cell-cycle entry status (G2/M/S vs 2083 

G1). D. Volcano plot showing genes differentially expressed (DE) between single mutant and 2084 

double mutant HSCs at baseline (n = 890 genotyped HSCs). DE genes identified using logistic 2085 

regression model (methods). Genes highlighted in blue are enriched in the TNF⍺ signaling via 2086 

NF-κB, red in the unfolded protein response, and orange in the IFNγ response (box representation 2087 
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is same as Fig. 1E). E. Heatmap showing results of the pre-ranked gene set enrichment analysis 2088 

of genes DE between HSC clones at baseline. Values correspond to the sign of the normalized 2089 

enrichment score (NES) multiplied by the -log10(Adjusted P-value). F. UMAP of IFN02 patient 2090 

based on scRNA-seq data highlighting cell types (left), treatment status (middle) and mutation 2091 

status (right). G. UMAP of HSCs from IFN02 (n = 1,879 cells) overlaid with treatment status and 2092 

HSC clones (left) and module score for HSC-specific IFN⍺-induced upregulated genes (right). H. 2093 

Box plots showing IGP-specific signature score in HSC clones at baseline in IFN02. Scores 2094 

calculated using IGP-upregulated or downregulated genes (left and right panels, respectively, 2095 

methods). P-values from Wilcoxon rank sum test, two-sided. 2096 
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Supplementary Tables 2098 

 2099 

Table S1. Summary of patients’ clinical history, pathology and laboratory data, and mutation 2100 

status. 2101 

Table S2. Number of cells for each cell type in GoT-IM CD34+ compartment. 2102 

Table S3. Differential gene expression analyses for IGP versus IMP and treated IGP versus treated 2103 

HSC1 via the linear mixed modeling framework. 2104 

Table S4. Gene set enrichment analysis of genes differentially expressed between IGPs versus 2105 

IMPs and treated IGPs versus treated HSC-IG.  2106 

Table S5. RNA velocity analysis with scVelo between HSPC subpopulations. Cluster-to-cluster 2107 

transition and connectivity scores calculated based on velocity graph based on pseudotime values.  2108 
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Table S7. Differential gene expression analyses for Neu1 versus Neu2 subsets via the linear mixed 2110 

modeling framework. Gene set enrichment analysis of genes differentially expressed between 2111 
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Table S9. Gene set enrichment analysis of genes differentially expressed between baseline and 2114 

IFN⍺-treated HSPC subtypes.  2115 

Table S10. Differential gene expression analysis between baseline and IFN⍺-treated CD34- 2116 
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Table S11. Gene set enrichment analysis of genes differentially expressed between baseline and 2118 
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Table S18. Genes positively regulated by RFX2 and RFX3 using gene-peak cis-association. 2128 
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Table S19. Differential gene expression analyses for IGP-like vs IMP subsets in CD34+ cells with 2129 

RFX3 overexpression. Gene set enrichment analysis of genes differentially expressed between 2130 

IGP-like vs IMP subsets.  2131 

Table S20. Differential transcription factor motif enrichment analysis between baseline and IFN⍺-2132 

treated HSCs. 2133 

Table S21. Differential gene expression analysis between CALR-mutated and wildtype cells at 2134 

baseline in HSPC subsets.  2135 

Table S22. Gene set enrichment analysis of genes differentially expressed between CALR-mutated 2136 

and wildtype cells at baseline in HSPC subsets.  2137 

Table S23. Differential gene expression analysis between CALR-mutated and wildtype cells after 2138 

IFN⍺ treatment in HSPC subsets.   2139 

Table S24. Gene set enrichment analysis of genes differentially expressed between CALR-mutated 2140 

and wildtype cells after IFN⍺ treatment in HSPC subsets.  2141 

Table S25. Differential transcription factor motif enrichment analysis between MUT vs WT stem 2142 

and early progenitor cells at baseline and upon IFN⍺ treatment. 2143 

Table S26. Motifs identified in PU.1 bound peaks captured from CUT&RUN data of CALR-2144 

mutated versus WT UT-7 cells.  2145 

Table S27. Differential TF motif enrichment in MUT and WT exclusive PU.1 peaks at baseline 2146 

and upon IFN⍺ treatment.  2147 

Table S28. Differential TF motif enrichment in IFN⍺ and Baseline exclusive PU.1 peaks for MUT 2148 

and for WT.  2149 

Table S29. Differential gene expression analysis between HSC clones from IFN02 at baseline. 2150 

Table S30. Gene set enrichment analysis of genes differentially expressed between HSC clones 2151 
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