N —

(98]

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509751; this version posted August 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Title: Type 1 interferon perturbates clonal competition by reshaping human blood
development

Authors: Chhiring Lama'#, Danielle Isakov'-*, Shira Rosenberg', Miguel Quijada-Alamo®, Mirca
S. Saurty-Seerunghen!, Sara Moein!, Tsega-Ab Abera!, Olivia Sakaguchi!, Mansi Totwani!, Grace
Freed®’, Chi-Lam Poon*, Neelang Parghi!, Andrea Kubas-Meyer!, Amy X. Xie>, Mohamed
Omar', Daniel Choi’, Franco Castillo-Tokumori’, Ghaith Abu-Zeinah’, Alicia Dillard', Nathaniel
D. Omans’®°, Neville Dusaj>”#, Paulina Chamely’®, Eleni Mimitou'®, Peter Smibert!!, Heidi E.
Kosiorek'?, Amylou C. Dueck'?, Rona Weinberg'4, Ronan Chaligne®, Bridget Marcellino'®, Luigi
Marchionni!, Sanjay Patel!, Paul Simonson', Dan A. Landau’®°, Elvin Wagenblast’>, Ronald

—_— O O 00 JON DN

p—

—_
\S)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Hoffman!>!%*, Anna S. Nam!-9+*
Affiliations:

'Department of Pathology and Laboratory Medicine, Weill Cornell Medicine; New York, NY,
USA.

2Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial
Sloan Kettering Cancer Center; New York, NY, USA.

3Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai; New York, NY,

USA

“Department of Physiology, Biophysics & Systems Biology, Weill Cornell Medicine; New York,

NY, USA.

>Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology

Graduate Programs, Weill Cornell Medicine; New York, NY, USA.

®Computational Oncology Service, Memorial Sloan Kettering Cancer Center; New York, NY,
USA.

"Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer
Center, Weill Cornell Medicine; New York, NY, USA.

8New York Genome Center; New York, NY, USA.

Tri-Institutional Training Program in Computational Biology and Medicine, Memorial Sloan
Kettering Cancer Center, Cornell University, Weill Cornell Medicine, New York, NY, USA.
Tmmunai; New York, NY, USA.

"110x Genomics; Pleasanton, CA, USA.

2Department of Biostatistics, Mayo Clinic Arizona; Scottsdale, AZ, USA.

BDepartment of Quantitative Health Sciences and Alliance Statistics and Data Management
Center, Mayo Clinic, Rochester, MN, USA.

“New York Blood Center; New York, NY, USA.

SMyeloproliferative Neoplasms Research Consortium; New York, NY, USA.

16Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY, USA.

#Authors contributed equally to the work
tJointly supervised this work
*Corresponding author. Email: shn9035@med.cornell.edu


https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/

43
44
45
46
47
48
49
50
51
52
53
54
55
56

57

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509751; this version posted August 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Abstract

Inflammation perturbs evolutionary dynamics of hematopoietic stem cell (HSC) clones in clonal
hematopoiesis and myeloid neoplasms. We studied HSCs, progenitors and immune cells from
patients with myeloproliferative neoplasm (MPN) at baseline and following interferon-a (IFNa)
treatment, the only MPN therapy to deplete clonal stem cells. We focused on essential
thrombocythemia, an informative model of early-phase neoplastic hematopoiesis. We integrated
somatic genotyping, transcriptomes, immunophenotyping, and chromatin accessibility across
single cells. IFNa simultaneously activated HSCs into two polarized states, a lymphoid progenitor
expansion associated with an anti-inflammatory state and an IFNa-specific inflammatory
granulocytic progenitor (IGP) state derived directly from HSCs. The augmented lymphoid
differentiation balanced the typical MPN-induced myeloid bias, associated with normalized blood
counts. Clonal fitness upon IFNa exposure was due to resistance of clonal stem cells to
differentiate into IGPs. These results support a paradigm wherein inflammation perturbs clonal
dynamics by HSC induction into the precipitous IGP differentiation program.
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One-Sentence Summary

Inflammation accelerates clonal evolution by driving stem cell differentiation into an alternate
interferon-a-induced progenitor state.
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62 Introduction

63  Systemic inflammation increases with aging and is implicated in accelerating the development of
64  clonal hematopoiesis (CH) and myeloid neoplasms (/-§). Clonal stem cells may be resistant to
65 inflammatory signaling that leads to functional defects in hematopoietic stem cells (HSC) (4, 6-8).
66  On the other hand, inflammatory cytokines, such as interferon-a (IFNa), directly activate HSCs
67 into cell cycle entry in mice (9-/17), an observation that has been proposed to undergird both
68  enhanced clonal expansion upon inflammation (5) and clonal depletion in the setting of IFNa
69  therapy for myeloproliferative neoplasms (MPN) (9, 12, 13). Indeed, the ability of [FNa to
70  modulate clonal dynamics in patients with MPN presents a unique opportunity to assess the effects
71  of chronic IFNa signaling on clonal HSC fitness in human.

72 MPNs are driven by somatic mutations in CALR, JAK2 or MPL that override the highly regulated
73  process of hematopoiesis resulting in an overproduction of one or more myeloid lineages, such as
74  increased platelet production in essential thrombocythemia (ET) (/4). IFNa is the only clonally
75  selective MPN treatment, often effecting molecular response (12, 13, 15). Even in the absence of
76  molecular response, IFNa treatment frequently induces normalization of the patients’ blood counts
77 (12, 13, 15). To define the downstream effects of IFNa therapy that undergird the phenotypic
78  response and clonal dynamics in human, we require methods that can isolate the differential [IFNa
79  effects on mutated stem cells from the wildtype. However, as clonal cells cannot be distinguished
80  from the admixed wildtype cells via cell surface markers, we leveraged single-cell multi-omics
81  platforms that detect the mutational status and whole transcriptomes (/6) with
82  immunophenotyping or chromatin accessibility data, within thousands of individual cells. These
83  methods allowed us to overlay two hematopoietic differentiation landscapes—one mutated and the
84  other wildtype—from the same individual, thus facilitating a direct comparison between mutated
85  and wildtype cells both at baseline and following treatment. We focused on CALR-mutated ET due
86  to the heterogeneous molecular response despite clinical response in most patients (/3, /7) and
87  applied these multi-modality single-cell methods to CD34" hematopoietic stem and progenitor
88  cells (HSPC) and immune cells from serial bone marrow sampling from patients treated with IFNa
89  for at least one year. This approach enabled us to assess the phenotypic and epigenetic alterations,
90 jointly together with clonal dynamics, induced by IFNa in human neoplasm.

91  Results
92  IFNa paves an alternate route of granulocytic differentiation

93  To define the effects of IFNa on wildtype and neoplastic hematopoiesis in human, we leveraged
94  the Genotyping of Transcriptomes (GoT) technology that simultaneously captures the mutation
95  status and whole transcriptomes in thousands of single cells (/6). To overcome inter-patient
96  variability in baseline hematopoiesis, we applied GoT to FACS-isolated CD34" cells from serial
97 (i.e., baseline and treated) bone marrow from individuals who were diagnosed with CALR-mutated
98 ET (I8) (Fig. 1A). As serial bone marrow biopsies are not typically performed in the absence of
99  suspected disease progression, we utilized cryopreserved specimens from the MPN-RC-111 and -
100 112 clinical trials wherein patients were treated weekly with a pegylated form of IFNa (19, 20)
101  (Fig. 1A, n =10 individuals, 8 baseline samples, 13 treated samples; additional 3 baseline samples
102 included from our previous work (/6); see table S1 for patient and sample information). Patients
103 with samples available for this study exhibited partial or complete clinical response (i.e.,
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104  improvement in platelet counts) and were representative of the other patients with CALR mutations
105 in these clinical trials (fig. S1A, table S1). We incorporated time-point specifying barcoded
106  antibodies (27) that enabled multiplexing baseline and IFNa-treated samples into the same GoT
107  experiments, in order to obviate technical batch effects (e.g., sequencing depth) between serial
108  samples (Fig. 1B). We also advanced the GoT method by incorporating immunophenotyping (22)
109  (GoT-IM) to link transcriptional and immunophenotypic cell identities (Fig. 1B). GoT-IM
110  provided genotyping data for the canonical CALR frameshift mutations for 72% of CD34" HSPCs
111 (n=46,883 cells of total 65,452 cells), consistent with our previously reported genotyping rates
112 (16). In this way, we obtained somatic genotyping, whole transcriptomes, immunophenotyping
113 and treatment status for thousands of cells from the same GoT-IM experiment.

114  We hypothesized that IFNa may alter cell states but not induce novel cellular identities. We
115  integrated across the individual 24 samples to define the cell identities of the CD34" HSPCs
116  consistently across individual sampling (after analytically segregating the cells by time-point from
117  the same experiments, Fig. 1C, fig. S1B-F, methods) (23). As single-cell gene expression provides
118  high-resolution mapping of the HSPC identities, we clustered the cells based on gene expression
119  data and annotated the clusters based on canonical cell markers (fig. S2A-C, see table S2 for cell
120 numbers)(/6, 24-26). To identify HSCs, we leveraged the jointly captured immunophenotyping to
121  identify the CD38", CD45RA", CD90" HSCs (with high RNA expression of the HSC marker AVP
122 (27), Fig. 1D, fig. S2D). We observed the expected cell types, such as megakaryocytic progenitors
123 (MkP) and immature myeloid progenitors (IMP, consisting predominantly of phenotypically
124 defined common myeloid progenitors (CMP) and granulo-monocytic progenitors (GMP) (24), Fig.
125  1C, fig. S2A-C).

126  Contrary to our hypothesis that [IFNa may not induce novel cellular identities, we identified an
127  unknown cluster (Cluster X), previously not described in studies of normal or MPN bone marrow
128  CD34" cells (16, 24-26, 28-30) (Fig. 1C). Cluster X was immunophenotypically similar to the
129 IMPs based on CD38™¢ CD45RA™Y, and CD90" expression (Fig. 1D). To elucidate the identity
130  of Cluster X, we performed differential expression analysis between Cluster X and IMPs (Fig. 1E,
131  left, table S3, linear mixed model that explicitly models the effects of patient batch and treatment
132 status, see methods). We observed a striking upregulation of the immediate early response
133 transcription factors (TF) of the AP-1 (JUN, FOS, JUNB, FOSB, ATF3, FOSLI, MAFF), KLF
134 (KLF2, KLF4, KLF6), and NR4A (NR4A1, NR4A42) tfamilies (Fig. 1E, left, table S3). Other TFs
135  included interferon regulatory factor 1 (IRFI), indicating an inflammatory response. In addition,
136  we observed a robust upregulation of RFX2 and RFX3 TFs. While the RFX2/3 factors are not well
137  characterized in HSPCs, RFX2 activity was identified as one of the key pro-survival transcription
138  factors activated in neutrophils during an inflammatory challenge in mice, particularly in the
139  transition from bone marrow to blood (37). Upregulation of CEBPB and CEBPD, implicated in
140  emergency granulopoiesis (32) and granulopoiesis under cellular stress (33), respectively, further
141  suggested a neutrophilic differentiation trajectory. Gene set enrichment analysis identified the
142 upregulation of TNFa signaling via NF-xB pathway (Adj. P-val = 1.6 x 10™%), and downregulation
143 ofthe MYC targets (Adj. P-val = 1.6 x 10, Fig. 1E, right, table S4). Incorporation of other HSPC
144  immunophenotypic markers revealed that these cells were also positive for CD44, CD117, dim
145  CD66b, and negative for HLA-DR, similar to IMPs and neutrophil progenitors (fig. S2B). Based
146  on the transcription factors, immunophenotypes and pathways activated in Cluster X, we termed
147  these cells inflammatory granulocytic progenitors (IGP). Consistent with the identification of the
148  IGPs in this cohort of patients, the IGPs derived predominately from the IFNa-treated samples
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149  with elevated frequencies in the IFNa-treated versus baseline CD34" cells (Fig. 1F, fig. S2E). As
150  the frequencies of IGPs were low, we confirmed that the elevated IGP frequencies in the [IFNa
151  treatment samples were not simply due to a greater number of total CD34" cells captured in the
152 treated samples (fig. S2E-F). Separately integrating the samples based on treatment status also
153  confirmed the specificity of the IGPs to IFNa-treated bone marrow (fig. S2G). The presence of a
154  distinct IGP cluster in dimensional reduction of cells from individual experiments without any
155  batch correction reassured that IGPs were not a technical artifact of integration (fig. S2H).
156  Altogether, these data revealed that IFNa induces an alternate IGP state.

157  The differentially upregulated TFs in the IGPs were also highly enriched in a subset of quiescent
158  HSCs with elevated AVP (27) and CD90 expression, we labeled HSC-IG (Fig. 1G, fig. S2D, S3A).
159  The transcriptional similarities of the IGPs and HSC-IG (as revealed by their proximity on the
160  UMAP space) suggested that the IGPs may derive from HSC-IG. RNA velocity measurements
161 (34, 35) combined with partition-based graph abstraction (36) predicted cell state transitions from
162 HSC-IG to IGPs (Fig. 1G, left, table S5). To define the transcriptional state transitions from HSC-
163  IG to IGPs, we compared IGPs to HSC-IG and identified a reinforcement of the RFX3, AP-1,
164  CEBPB/D, and KLF family TF expressions and downregulation of NR4A2 (Fig. 1G, right, fig.
165  S3B, table S3; only IFNa-treated cells included in the differential expression analysis). As
166  NR4A1/2 have been reported to maintain HSC quiescence (37, 38), their downregulation in IGPs
167  relative to HSC-1IG was consistent with the upregulation of differentiation and cell cycle-related
168  genes in the IGPs (Fig. 1G, right, fig. S3B-D, table S4). Upregulation of MPO (encoding
169  myeloperoxidase in primary granules) and CSF3R (encoding the G-CSF receptor), and
170  downregulation of the MHC class Il genes (CD74, HLA-DPAI, HLA-DRBI, HLA-DPBI) further
171  provided evidence for its differentiation into the neutrophil lineage (fig. S3B, table S4).

172 To test the ability of HSCs to directly give rise to neutrophils, bypassing the conventional CMP
173  and GMP oligo-potent progenitor states, we utilized a similar strategy by which the direct
174  derivation of MkPs from HSCs (without traversing through the megakaryocytic-erythroid
175  progenitor state) was demonstrated in human cells (39). We performed single cell colony forming
176  unit assays by which we could track the differentiation of individual CD34*, CD90"¢" bone
177  marrow HSCs from MPN patients at baseline and on IFN«a therapy (Fig. 1H, fig. S3E, methods).
178  We identified that HSCs gave rise to mixed multilineage and monocyte-neutrophil colonies,
179  consistent with a passage through the oligo-potent progenitor states, but HSCs from IFNa-treated
180  patients also frequently gave rise to neutrophil-only colonies (CD66b", CD16", CD14"), supporting
181  a direct passage to neutrophil development (Fig. 1H, fig. S3E). These data suggested that I[FN«
182  induces an alternate and precipitous neutrophil developmental pathway that bypasses the typical
183  granulo-monocytic bi-potent progenitor states.

184  Inflammatory neutrophils are enriched in IFNa-treated bone marrow

185  To determine the identity of the immune cells that are downstream of the IGPs in an unbiased
186  manner, we performed GoT-IM on the CD34" compartments of the serial [IFNa-treated samples
187  (Fig. 2A, fig. S4A-B, sce table S6 for cell numbers, methods). Similar to the CD34" cells, we
188  clustered the cells based on gene expression and annotated the cell types based on canonical gene
189  and protein markers (Fig. 2B, fig. S4C). We identified that the IGP gene signature was the highest
190  in a distinct group of neutrophils (Neul, Fig. 2C). Consistently, unsupervised co-embedding of
191  the myeloid progenitors with the mature myeloid compartment revealed that the IGPs clustered
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192 with the Neul subset of ‘inflammatory’ neutrophils (fig. S4D). Comparison of the gene expression
193  of'the Neul subset to the other neutrophil group, Neu2 (at an equivalent stage of maturation based
194  on the expression level of CD66b, CD11b, CD16, Fig. 2B) revealed that Neul expressed
195  inflammatory cytokines such as CXCLS and CXCL2 and the transcription factors observed in the
196  1GPs including RFX2/3, AP-1, KLF2/4/6, and CEBPB/D (Fig. 2D, left, table S7). Gene set
197  enrichment of the differentially expressed genes also highlighted TNFa signaling via NF-xkB and
198  inflammatory pathways in the Neul subset (Fig. 2D, right, table S7), suggesting the propagation
199  of the inflammatory state of the IGPs to the mature progeny. These inflammatory neutrophils
200  derived predominantly from the IFNa-treated samples (Fig. 2E). Overall, these data demonstrated
201  that [FNa induced the development of inflammatory neutrophils.

202  IFNa concurrently coordinates anti- and pro-inflammatory programs

203  To assess the global transcriptional impact of IFNa, we examined the transcriptional distance of
204  HSCs between treatment time-points for individual patients. In an example case of patient IFN04
205  who showed partial clinical response (without evidence of disease progression, table S1), samples
206  from three timepoints were available — (1) baseline, (2) at one year on active treatment, and (3) at
207  four years but off therapy for 3 weeks at the time of collection. HSCs at year 1 displayed a
208  strikingly distinct transcriptional profile compared to baseline cells, whereas cells that had been
209  collected following discontinuation of therapy at year 4 were more similar to baseline HSCs (Fig.
210  3A), consistent with clearance of pegylated-IFNa at ~2-3 weeks (40). This contrasted with HSCs
211  from samples with two timepoints under active IFNa therapy (at years 1 and 2), which were
212 similarly distinct from the baseline HSCs (fig. S5A). Projection of the progenitor identity
213 assignments revealed that the HSPCs clustered based on cell identity as well as treatment status
214  (Fig. 3A, fig. S2H). The magnitude of the transcriptional impact of [FNa was in contrast to the
215  subtler effects of somatic mutations, such as those in CALR (16), JAK2 (29, 41), and DNMT3A
216  (42), resulting in co-mingling of mutated and wildtype cells, which could not be distinguished by
217  scRNA-seq data alone, as revealed by methods that incorporate genotyping and scRNA-seq (/6,
218 29, 42, 43). Thus, we first examined the impact of [FNa on the overall hematopoiesis agnostic to
219  genotype status.

220  To define the transcriptional perturbations by IFNa, differential expression analyses were
221  performed between baseline and treated CD34" cells, as a function of cell identity. We identified
222 genes commonly regulated across multiple progenitor subsets upon IFNa administration,
223 including the canonical IFN« genes, such as ISG15, IFITM3, IFI6 and EPSTII (Fig. 3B, fig. S5B,
224  table S8). To test whether IFNa induces human HSCs into cell cycle entry, as reported in mice
225  (9), we examined the gene signatures for cell cycle phases shown to be an accurate assessment of
226  cell cycle status (44). Indeed, HSC rates of cell cycle entry were enhanced upon IFNa treatment
227  (Fig. 3C, fig. SSC-D). A positive regulator of HSC quiescence (45), CXCR4, was downregulated
228  upon IFNa therapy, suggesting that CXCR4 downregulation may help coordinate HSC activation
229  (Fig.3B). We incorporated protein detection for CXCR4 (CD184) via GoT-IM and identified that
230  IFNa reduced surface CD184 expression (fig. SSE). Consistently, CD184 downregulation was
231  observed in HSCs in cell cycle and enriched in IFNa-treated populations and, conversely, HSCs
232 with elevated CD184 expression were less likely to be in cell cycle and enriched in baseline
233 samples (P = 1.5 x 10, Fisher’s exact test, Fig. 3D). In light of enhanced rates cell cycle entry of
234  HSCs with abrogation of Cxcr4 in mice (45), these data suggested that CXCR4 downregulation
235  may play a role in permitting HSC cell cycle entry upon IFNa exposure.
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236  In the treated MkPs, CD9 and VWF, closely associated with MkP differentiation (46-49), were
237  downregulated (fig. S5B, table S8). We also observed a downregulation of TGFBI1 (fig. S5B),
238  which encodes the pro-fibrotic cytokine TGFf established as one of the main inducers of marrow
239  fibrosis in patients with myelofibrosis (50, 5/). We and others have shown that MPN
240  megakaryocytes exhibit increased 7TGFBI expression (16, 50, 52), and thus downregulation of
241  TGFBI by IFN« indicates a potential mechanism of disease amelioration by IFNa. To ensure that
242 the transcriptional changes we observed were specific to IFNa therapy, we performed scRNA-seq
243 on CD34" HSPCs from individuals with CALR-mutated ET who were treated with hydroxyurea,
244  at baseline and at one year of treatment, and observed no significant overlap between the genes
245  differentially regulated by IFNa and hydroxyurea (P = 0.599, Fisher’s exact test, fig. SSF-G).

246  To determine which canonical pathways may be modulated by IFNa, we performed gene set
247  enrichment analysis using the Hallmark gene sets in the IFNa-treated versus baseline cells and
248  identified an upregulation of the IFN« signaling pathway across the cell subsets as expected (Fig.
249  3E, table S9). The analysis also confirmed the upregulation of cell cycle-related pathways (G2M
250  check point and E2F targets) as well as MYC targets (Fig. 3E, table S9), corroborating a previous
251  study that reported enhanced MYC protein expression during IFNa-induced cell cycle entry of
252 mouse HSCs (53). Consistent with the downregulation of TGFBI gene itself, gene set enrichment
253  analysis between baseline and [FNa-treated cells revealed a decrease in TGFf signaling across
254  several HSPCs, including downregulation of 7THBS!I and SERPINE! (Fig. 3E, fig. S5B, table
255  S8,9). TGF signaling was particularly downregulated in the HSCs (Fig. 3E), as was observed in
256  mice and associated with HSC exit from quiescence (/0).

257  Furthermore, in contrast to the pro-inflammatory state of the IFNa-associated IGPs, we observed
258  a downregulation of pro-inflammatory pathways, including the TNFa signaling via NF-xB and
259  inflammatory response pathways, across the stem and progenitor cells and especially pronounced
260 in the cDCPs (Fig. 3E-F, table S9). Downregulated genes in the TNFa signaling via NF-kB
261  pathway included AP-1 subunits, an NF-«B subunit NFKBI, and /LB, which encodes the pro-
262  inflammatory cytokine IL-1b (Fig. 3F, table S8,9). Expression of /L/R] and CXCLS8 genes from
263  the inflammatory response pathway were also downregulated (table S8). Previously, IFNa
264  treatment in mice has yielded mixed results demonstrating either an upregulation (/0) or
265  downregulation (54) of TNFa by IFNa. Our findings indicated that in human, isolated IFNa exerts
266  an overall anti-inflammatory response, consistent with a previous report demonstrating decreased
267  TNF mRNA levels following IFNa therapy in patient samples (55).

268  To determine whether the IFNa-regulated pathways may be partially retained in the HSCs after
269  discontinuation of therapy, we compared HSCs from baseline to post-treated samples (IFNO04,
270  IFNOS5, IFNO06) not on active IFNa therapy (off therapy for ~3-4 weeks). We observed a residual
271  IFNa response signature and a slight downregulation of the TNFa signaling via NF-kB pathway
272  in the post-therapy samples compared to the baseline, but intriguingly, the TGFp signaling was
273  upregulated in the post-treated HSCs compared to both baseline and actively treated HSCs (Fig.
274 3G, fig. SSH). These data suggested that following IFNa exposure, HSCs actively upregulate the
275  quiescence program, consistent with the report in mice that HSCs re-enter quiescence following
276  activation by type 1 IFN (/0). Furthermore, post-therapy HSC-IG upregulated the gene expression
277  program that defined HSC-IG (versus HSC1, Fig. 3G, fig. SSH), suggesting the reinforcement of
278  the inflammatory signature with prior inflammatory exposure. Consistently, the HSC-IG and IGP
279  frequencies at baseline showed a trending increase with age (fig. S5I), and HSC-IGs exhibited a
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280  higher aging gene signature compared to the other HSCs (fig. S5J) (56). Altogether, these data
281  implicated inflammatory neutrophil development as a feature of HSC memory — i.e., trained
282  immunity, a field that has largely focused on monocyte development thus far (57).

283  We next determined whether the anti-inflammatory state propagated to the mature immune cells
284  upon IFNa therapy. The mature immune cells displayed a greater degree of heterogeneity in their
285  response to IFNa compared to stem and progenitors, indicating a cell type-specific response to
286  IFNa (fig. SS5K, table S10,11). Notably, [FNa did not induce cell cycle entry of mature immune
287  cells (fig. SSK-L). Nonetheless, [FNa therapy downregulated TNFa signaling in innate immune
288  cells, specifically classic dendritic cells and natural killer cells (Fig. 3H, fig. SS5K). Immune cell
289  composition also reflected this shift to an anti-inflammatory condition, with the expansion of
290  regulatory T (Treg) cells (relative to other T-cell subsets), as well as a diminution of the pro-
291  inflammatory CD16" monocytes (within the monocytic compartment, fig. SSM-N) (58, 59). These
292  dataindicated that the anti-inflammatory effects of IFNa on the stem and progenitor cells are likely
293  compounded by the anti-inflammatory state of the bone marrow immune microenvironment.

294  Given the induction of IGP differentiation and inflammatory neutrophils with upregulation of AP-
295 1 and NF-kB targets, these findings suggest that isolated IFNa initiates both anti-inflammatory
296  and pro-inflammatory states — both occurring in parallel within the same individual’s
297  hematopoiesis. Consistently, we observed a significant overlap between the IFNa-downregulated
298  (IFNa”M) genes and genes upregulated in the IGPs (IGPYF, Fig. 1E, 3B, table S3,8, P = 1.6 x 10
299 3 hypergeometric test). The inverse, i.e., a significant intersection of IFNa'" genes and IGPPY
300  genes, was also observed (P = 1.73 x 10"%, hypergeometric test, table S3,8). Coherently, the HSC-
301  specific IENa'" gene signature (displayed in Fig. 3B) was significantly downregulated in the IGPs
302  compared to the HSCs while the IFNa”" genes were upregulated in the IGPs (with both cell groups
303  under [FNa treatment; Fig. 3I). Altogether these data indicated that IFNa can precipitate opposing
304  cell states within the same HSC population. While previously the heterogeneity of HSC cell states
305  was linked with lineage outputs (60, 617), these data revealed that HSC heterogeneity may also
306 mediate polarized anti- and pro-inflammatory responses to regulate specialized immune function.

307 IFNa potentiates lymphoid differentiation shift

308 To determine how the transcriptional remodeling by IFNa may impact the hematopoietic
309 differentiation trajectories, we computed the proportion of stem and progenitor subsets within the
310 CD34" compartment before and following IFNa therapy. In addition to the expansion of the
311  alternate IGP state, IFNa also paradoxically induced a significant expansion of the lymphoid
312 progenitors (Fig. 4A-B, fig. S6A). While the expansion of lymphoid progenitors was an
313 unexpected finding as inflammatory cytokines have been demonstrated to induce myeloid priming
314 (62-64), it was consistent with the downregulation of pro-inflammatory pathways, including those
315 of the AP-1 subunits, associated with myeloid differentiation (65). In congruence with
316  downregulation of VWF and CD9 expressions, we observed diminutions of the megakaryocytic-
317  erythroid lineage progenitors, including MkPs and erythroid progenitors (EP, Fig. 4A-B; paired
318  analyses from serial samples in fig. S6A).

319  To validate the generalizability of the lymphoid expansion, we analyzed clinical multi-parametric
320  flow cytometry data of bone marrow aspirates from patients with early-phase MPN with J4K2 or
321  CALR mutations (n = 33 samples without IFNa exposure; n = 9 samples with IFNa therapy).
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322 Indeed, we identified that the proportion of TdT*, CD19" B-lymphoid progenitors within CD34"
323  HSPCs increased in [FNa-treated bone marrow compared to control (Fig. 4C, S6B, table S12).
324  We also observed an increased proportion of CD34", TdT', CDI19" cells of all viable cells
325  analyzed, as well as an increase in the CD34", TdT -, CD19" B-lymphocytes (Fig. 4C), providing
326  evidence for an active lymphoid priming of HSCs leading to an expansion of the lymphoid
327  progenitors. These findings were specific to IFNa, and not observed upon hydroxyurea therapies
328  (fig. S6B, table S12). In support of lymphoid priming, HSCs exhibited an increased protein
329  expression of CD45RA (used to identify multipotent lymphoid progenitors, MLP) after [FN«a
330 treatment (Fig. 4D). CD90 was downregulated, consistent with the IFNa effect of driving cell
331 cycle entry and differentiation (Fig. 4D). Importantly, CD90, CD38 and CD45RA expressions
332 were coherent with the transcriptional signature of HSCs following IFNa treatment (fig. S6C), in
333 contrast to mice progenitors that upregulate an HSC marker Sca-1 upon type 1 IFN treatment (10).
334  Consistent with active differentiation bias toward B-lymphoid progenitors, the mature B cell
335  compartment from [FNa-treated samples revealed a more immature B cell state compared to the
336  Dbaseline B cells (Fig. 4E), in the absence of proliferation of the CD34" B cell compartment (fig.
337  SSK, S6D). The major shifts in progenitor output by the HSCs suggested that the clinical
338 improvement in the patients’ platelet count (despite variable molecular responses) may be due to
339  the differentiation skewing away from the megakaryocytic to the lymphoid lineage. Consistent
340  with this model, the proportions of MEPs and MkPs in CD34" cells could help predict the patient’s
341  platelet counts (P = 0.0063, generalized linear model, Fig. 4F). These data thus supported a model
342  wherein the imbalance of hematopoietic differentiation landscape caused by somatic mutations in
343  HSCs may be corrected by IFNa, as a mode of therapeutic efficacy in hematopoietic neoplasms.

344  GoT-ATAC identifies transcription factor regulatory networks that govern IGP
345  differentiation

346  Chromatin accessibility enables approximation of TF activity based on accessibility of the TF
347  binding sites (66-70). Thus, to determine the regulatory networks that govern IFNa-induced
348  modulation of inflammatory and differentiation states, we expanded upon GoT to capture somatic
349  mutational status, chromatin accessibility and whole transcriptomes. We adapted the 10x
350  Multiome platform that captures single-nuclei RNA-seq (snRNA-seq) and chromatin accessibility
351  (snATAC-seq) to include somatic genotyping, i.e., GoT-ATAC (Fig. SA). We applied GoT-ATAC
352 to serial bone marrow CD34" cells (n = 23,137 cells) from the clinical trial cohorts (n = 4 baseline,
353 3 IFNa-treated samples). As in GoT-IM, we incorporated time-point specifying barcoded
354  antibodies (7/) to combine serial samples from the same individuals into a single experiment to
355 remove technical batch effects (Fig. SA, fig. STA-E). After we analytically segregated the baseline
356 and IFNoa-treated samples (fig. S7TE), we clustered the cells across samples based on the
357  transcriptomic and chromatin accessibility data and identified the same cell states identified by
358  GoT-IM, including the IGPs (fig. S8A-E, table S13).

359  As the IGPs were defined by a robust upregulation in gene expression of immediate early factors
360 and RFX2/3, we determined whether these TFs showed increased activity based on chromatin
361  accessibility of their binding sites. A differential TF motif enrichment analysis between IGPs and
362  HSCs revealed that the same TFs showed enhanced accessibility, including the motifs of the AP-
363 1 family (FOS, JUN, JUND, JUNB, FOSL1, FOSL2), CEBPB/D, and RFX2/3 (Fig. 5B, fig. S8F,
364  table S14). Consistent with the overexpression of /RFI in 1GPs, differential motif enrichment
365 analysis also isolated IRF1 as the main interferon regulatory factor active in the IGPs. The
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366  differential motif analysis further revealed an upregulation of STAT2 and the proinflammatory
367 REL of the NF-kB complex (Fig. 5B, fig. S8F, table S14), consistent with the observed gene
368  expression upregulation of the NF-xB pathway (Fig. 1E, fig. S3B). While TF expression data are
369  often sparse in scRNA-seq, these data demonstrated a high concordance of TF gene expression
370  and their binding motif accessibility, suggesting a rapid induction of the IFNa transcriptional
371  regulatory program.

372  To determine which TFs upregulated the gene expressions of RFX2/3, we determined TF motifs
373  present in the regulatory peaks that correlated with their gene expression (i.e., linked peaks
374  analysis) (72). In the cis-regulatory region of RFX3, we identified the binding motifs of STAT2
375  and IRFI, as well as FOSB and PU.1, which were upregulated at the gene expression level in IGPs
376  (fig. S9A-B, table S15). Likewise, the most significant regulatory regions for RFX2 included
377  motifs for PU.1, KLF factors, NR4A1/2 and AP-1 subunit factors (fig. S9A,C, table S15). To
378  determine the regulatory networks that govern the robust upregulation of the AP-1 subunits in the
379  1GPs, we assessed for motif enrichment in the positive regulatory peaks for the AP-1 TFs in
380 aggregate and identified RFX2-4 (which have the same binding motifs) as among the most
381  significant TFs (Fig. SC, table S16). Thus, RFX2/3 and AP-1 TF groups positively regulated the
382  expression of the other, synergizing IGP development. These data provided evidence for a model
383  wherein HSC-IG with elevated expression of RFX2/3 and AP-1 subunits and other immediate
384  early response factors were primed toward a robust transcriptional program for IGP differentiation
385  upon IFNa signaling.

386  Furthermore, as other RFX members (i.e., RFX1 and RFXS8) play key regulatory roles in MHC
387  class II expression (73-75), we hypothesized that RFX2/3 may downregulate MHC class II in the
388  IGPs. To test this, we determined the significantly linked peaks that negatively regulated HLA-
389  DRA expression (fig. S10A, bottom) (72). We identified a distal regulatory region with four
390 negative regulatory loci (fig. S10A, inset). These peaks included motifs for IRF1 and STAT2 as
391  well as immediate response factors including AP-1 and KLF families, but not RFX2/3 (fig. S10A,
392  inset, table S17). However, within the same negative regulatory region, we identified an IGP-
393  specific peak that included the binding motif for RFX1-4, KLF factors and IRF1 (fig. S10A, top,
394  table S17). These findings identified the immediate response factors, IRF1 and STAT?2 as negative
395  regulators of MHC class II genes across cell types, while RFX2/3 binding was specific for MHC
396  class Il downregulation during IGP differentiation. Consistently, surface HLA-DR was suppressed
397  inthe IGPs in the GoT-IM data (fig. S10B). Genes positively regulated by RFX2/3 included MPO
398 and genes involved in cell cycle entry (table S18), suggesting that these factors play an essential
399  role in activating the IGPs.

400  As RFX3 was upregulated in the HSC-IG to IGP transition, we overexpressed RFX3 in primary
401  cord blood CD34" cells via lentiviral transduction to determine whether RFX3 may regulate
402  granulocytic differentiation. Methylcellulose-based colony forming unit assays of RFX3
403  overexpressing (RFX3-OE) CD34" cells revealed that RFX3 overexpression expanded the
404  granulocytic colonies (CFU-G) and diminished the erythroid colonies (CFU-E) compared to
405  control-vector transduced CD34" cells (Fig. 5D, fig. S10C-D). To determine whether RFX3 may
406  regulate neutrophil differentiation at the CD34" HSPC stage, we performed single-cell RNA-seq
407  of RFX3-OE CD34" cells with control-vector cells and non-transduced cells. We identified an
408  IGP-like progenitor state that was highly enriched for the RFX3-OE HSPCs (Fig. SE, fig. S10E-
409  I). Compared to the IMPs, this IGP-like progenitor state recapitulated the IGP signature including
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410  upregulation of AP-1 subunit TFs and CEBPD among other TNFa signaling via NF-kB pathway
411  genes, and downregulation of the MYC pathway (Fig. 5F, table S19). These data highlighted
412  RFX3 as a key transcription factor regulator of IGP development.

413  PU.1 underlies hematopoietic differentiation remodeling by IFNa

414  Furthermore, the GoT-ATAC data also confirmed the expansion of the lymphoid progenitors upon
415 IFNa treatment (fig. S11A). To determine the regulatory networks that governed the
416  differentiation skewing by IFNa, we performed differential motif enrichment analysis between
417  IFNa-treated and baseline HSCs. IFNa enhanced the activities of STAT2 and several interferon
418  regulatory factors in HSCs, in contrast to the specific activity of IRF1 in IGPs (Fig. 5G, table
419  S20). IFNa downregulated the motif accessibility of AP-1 TFs (Fig. 5G), consistent with the
420  downregulation of AP-1 TF gene expression associated with TNFa signaling via NF-kB (Fig. 3B).
421  Moreover, the accessibility of the TWIST1 motif was enhanced after treatment (Fig. 5G),
422  consistent with a previous report that identified TWIST1 as mediating the downregulation of
423  TNFa upon type 1 IFN treatment (54). Furthermore, the activity of TGFp induced factor
424 homeobox 2 (TGIF2), which inhibits TGFp response genes, was also enhanced (Fig. 5G, table
425  S20), highlighting TGIF2 as another key factor involved in the downregulation of the observed
426  TGFp signaling after [FN« treatment.

427  Importantly, critical TFs involved in hematopoietic differentiation (76) were differentially
428  regulated. Notably, motif accessibilities of PU.1 and RUNXI1, essential for early lymphoid and
429  granulo-monocytic differentiation (76), were enhanced by IFNa (Fig. 5G, table S20). The
430 activities of GATA1/2, reported to be negatively regulated by PU.1 (76), were downregulated as
431  well as those of another critical megakaryocytic-erythroid lineage factor, TAL1 (77). These
432  findings were consistent with the differentiation away from the megakaryocytic-erythroid lineages
433 upon IFN« treatment. Furthermore, the accessibilities of the motifs of the critical early B-lymphoid
434  differentiation factors TCF3/4 were enhanced (71, 78, 79), highlighting TCF3/4 as TFs that govern
435  the differentiation toward lymphoid progenitors by IFNa. CEBPA/B/D, essential for granulo-
436  monocytic development (80, 81), were also upregulated in its motif accessibility (Fig. 5G, table
437  S20). Importantly, the IRFs (82, 83), RUNX1 (84), CEBPA (85) and TCF3 (86) have been
438  demonstrated to co-regulate target gene expression with PU.1, suggesting that enhanced PU.1
439  activities may have enhanced the activities of its co-regulating TFs, such as CEBPA and TCF3.
440  To confirm these co-regulations in IFNa-remodeled hematopoiesis, we examined the synergistic
441  activities of the different combinatorial TFs by measuring the excess variability of accessibility
442  for peaks with both TF motifs (compared to peaks with one motif) (69). Indeed, PU.1 exhibited
443  synergistic activities with IRF1, RUNX1, CEBPA and TCF3, while displaying antagonism with
444  GATAIl and TAL1 (Fig. SH). To determine the activities of these TFs upon lymphoid
445  differentiation, we assessed the motif accessibilities of the TFs across the early and late
446  progenitors. The activities of PU.1, RUNX1 and CEBPA were enhanced upon IFNa signaling
447  during the early stages of hematopoiesis and diminished with lymphoid development, whereas the
448  activities of TCF3 were more pronounced in the later stages of development (Fig. SI). These data
449  highlighted PU.1 as a master regulator of IFNa-induced differentiation.

450  To determine whether IFNa may directly upregulate the expression of PU.1, we assessed the

451  regulatory peaks of PU.1 gene itself and identified the binding motifs of interferon regulatory
452  factors (fig. S11B, table S16). Consistently, PU.1 gene expression increased upon IFNa treatment
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453  in stem and early progenitor cells (fig. S11C). IFNa treatment of a hematopoietic cell line (K562)
454  in vitro upregulated PU.1 gene and protein expression (fig. S11D-E), consistent with a previous
455  report (87), demonstrating that [FNa directly upregulates the expression of PU.1. As PU.I
456  regulatory peaks also included CEBPA binding motifs, we overexpressed CEBPA in K562 cells
457  and observed enhanced expression of PU.1 (fig. S11F). We further tested whether enhanced PU.1
458  may, in turn, co-regulate the expressions of canonical type 1 IFN targets. Overexpression of PU.1
459 in K562 cells with or without IFNa treatment revealed that PU.1 overexpression led to
460  upregulation of /RF'1 and B2M and downregulation of ISG20 and [FIH1, as examples (fig. S11G-
461  H). Altogether, these studies revealed that IFNa signaling caused a global rewiring of TF
462  regulatory activities, particularly through PU.1 for both lymphoid and IGP expansion, that
463  underpinned the concerted transcriptional and differentiation remodeling.

464  Somatic mutations modify the downstream effects of IFNa

465 Having established the overall effects of IFNa on hematopoiesis, we next determined the
466  differential effects of IFNa on CALR-mutated versus wildtype stem and progenitor cells,
467  specifically in relation to the effects of IFNa on the clonal fitness of HSCs (Fig. 6A, fig. S12A).
468  The high genotyping efficiency of GoT-IM enabled us to track the clone size precisely within the
469  HSCs, revealing that IFNa caused variable changes to the CALR-mutated clone size (Fig. 6B, fig.
470  S12B), consistent with previous reports of bulk sequencing on peripheral blood samples (72, 13,
471 15, 17). Current models of inflammation-induced perturbation to clonal evolution build on the
472  induction of cell cycle entry of clonal HSCs for enhanced fitness (5) or differentiation and
473 depletion (9, 12, 13). We therefore determined whether differential upregulation of HSC cell cycle
474  entry might predict clonal dynamics. Across the patients regardless of clonal dynamics, IFNa
475  induced greater rates of cell cycle entry of CALR-mutated HSCs compared to the wildtype
476  counterparts (Fig. 6C, fig. S12C). These results indicated that the mutated HSCs were likely
477  primed for a more robust proliferative response, compared to the wildtype counterparts, potentially
478  due to the baseline cell cycle activity enhanced by the CALR mutations. In support of this model,
479  IFNa boosted the proliferation to a greater degree in the mutated cells compared to wildtype within
480 the myeloid lineages, especially those of the megakaryocytic-erythroid, but not the lymphoid
481  progenitor compartment—that is, restricted to the progenitor subsets in which the CALR-mutation
482  caused enhanced proliferation at baseline (/6) (fig. S12C). We orthogonally validated that [FNa
483  effected greater proliferative rates in the myeloid HSPCs by performing multiplexed in situ
484  fluorescent imaging of bone marrow paraffin-embedded sections from patients with CALR-
485  mutated MPN with or without IFNa treatment (n = 5 without IFNa, n = 4 with IFNa, Fig. 6D, fig.
486  S12D). We determined the protein expression of CD34, CD117, CD38, Ki67 and mutated CALR
487  (88) to assess the frequencies of CD34", CD38", CD117" myeloid progenitors that express Ki67,
488  a gold standard of cell cycle entry (89). The availability of a mutated CALR-specific antibody
489  enabled us to identify that the frequency of cycling mutated myeloid progenitors was higher
490  compared to that of wildtype with or without IFNa exposure (Fig. 6D). Overall, these findings
491  provided evidence that IFNa enhanced the cell cycle entry of the HSPCs to the degree
492  predetermined by baseline priming. Thus, while enhancing absolute rates of cell cycle entry across
493  the stem cells, the relative difference in cell cycle rates between mutated and wildtype HSCs at
494  baseline were preserved upon IFNa exposure. These data indicated that inflammation-induced cell
495  cycle entry rates may be decoupled from clonal dynamics.
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496  To determine whether IFNa exposure may preserve other key features of C4ALR-mutation effects,
497  we compared the gene expression profiles between wildtype and mutated cells, at baseline and
498  following IFNa therapy. Intriguingly, we observed the same differentially expressed pathways
499  between the IFNa-treated mutated and wildtype HSCs, including the unfolded protein response
500 (UPR) (16, 90, 91), likely due to a heterozygous loss of the wildtype CALR that encodes a critical
501  chaperone protein (fig. S12E-F, table S21-24). [FNa globally remodeled the differentiation
502  toward lymphoid development, reducing the overall megakaryocytic bias in the mutated cells (Fig.
503  6E). Indeed, the frequencies of mutated MkPs and MEPs better predicted the patients’ platelet
504  counts compared to overall frequencies of MkPs and MEPs (fig. S12G). However, the lymphoid
505  expansion was constrained in the mutated compartment due to the relative expansion of the
506  granulo-monocytic and megakaryocytic-erythroid progenitors compared to wildtype HSPCs
507  (consistent with the differential upregulation of cell cycle entry in the mutated myeloid
508  progenitors, Fig. 6E-F, fig. S12C). Furthermore, computation of the mutant cell frequency across
509 the progenitor subsets before and after treatment revealed that the enrichment of the mutated cells
510  in the myeloid compartments did not change following IFNa treatment (fig. S12H). Altogether,
511  these data revealed that phenotypic responses to IFNa are constrained (e.g. lymphoid
512 differentiation) or amplified (e.g. cell cycle entry) by somatic mutations, such that cell state
513  distinctions between the mutated and wildtype cells are preserved upon IFNa signaling.

514  We therefore hypothesized that C4LR-mutations may alter the chromatin state of the binding sites
515  of IFNa-regulated TFs and thereby modulate their activities following therapy. We tested
516  differential TF motif enrichment via GoT-ATAC between the mutated versus wildtype stem and
517  early progenitors at baseline (Fig. SA). The binding sites of NFKB1/2 were enhanced in the
518  mutated cells, consistent with our previous report of the gene set enrichment of the NF-«B pathway
519  inthe CALR-mutated early HSPCs (/6). We also identified that the chromatin accessibility of PU.1
520 and CEBPA were increased in the mutated cells (Fig. 6G, table S25). These data suggested that
521  CALR mutations alter the chromatin state of key lineage specifying TF binding sites, skewing the
522  lineage-modulating activities of IFNa. Specifically, these data indicated that [FNa-induced PU.1
523  activities may be skewed toward granulo-monocytic (versus lymphoid) development via enhanced
524  PU.1 and CEBPA co-activity in the mutated HSPCs.

525  To directly assess the impact of differential PU.1 activity due to the mutation status on modulating
526  the effects of [IFNa, we performed a chromatin binding assay (CUT&RUN) (92) for PU.1 in UT7
527  cell lines expressing MPL (thrombopoietin receptor) and either the mutant CALR (type 1,
528  L367Tfs*46) or wildtype CALR transgene (93) treated with IFNa (fig. S13A, table S26). We
529  observed that PU.1 binding sites were enriched in the mutated cells compared to wildtype,
530  consistent with the GoT-ATAC data and the myeloid bias induced by the CALR mutation (Fig.
531  6H, left). Following [FNa treatment in vitro, we observed co-enrichment of PU.1-bound peaks
532 with IFNa-specific transcription factor motifs, including IRF4/8, which are known to cooperate
533  with PU.1 in the Ets-IRF composite elements (EICE) to mediate lymphoid and myeloid
534  differentiation (fig. S13B, table S27) (83, 94, 95). We observed that [IFNa enhanced PU.1 binding
535  at distal regulatory regions (fig. S13C), the regions that regulate the differential commitment to
536  the lymphoid versus monocytic lineages by PU.1 (96). In these distal peaks, PU.1 binding sites
537  were enriched for CEBPA/B co-binding sites in the CALR mutated cells compared to the wildtype
538  (Fig. 6H, right, fig. S13D, table S28). These data demonstrated that CALR mutations enhance
539  PU.I binding activities and alter the preferential cooperating TF partners of PU.1. Overall, these
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540  results suggested that somatic mutations may alter the chromatin state of TF regulatory regions,
541  which in turn modulate the downstream effects of inflammatory activation.

542 IFNa regulates clonal fitness of HSCs via IGP development

543  While IFNa induced cycling of CALR-mutated HSCs at a higher frequency than wildtype HSCs
544  consistently across patient samples, clonal dynamics following therapy was heterogeneous (Fig.
545  6B). To investigate other factors that may contribute to the effects of IFNa on clonal dynamics,
546  we examined an unusual case in which the mutated clone expanded substantially with IFNa
547  therapy in patient IFNO2 (Fig. 6B). Interestingly, the HSPCs from patient IFNO2 harbored a
548  subclone with another mutation in CALR, a single nucleotide variant in the CALR allele (M1311,
549  predicted to impact protein structure (97)) which is trans to the MPN-causing frameshift mutation
550  (fig. S14A). At baseline, the double mutant clone remained subclonal to the dominant clone with
551  the single canonical CALR mutation (Fig. 61, fig. S14B). Upon IFN«a therapy, the double mutant
552 clone overtook the neoplasm and the overall stem cell population, even though the double mutant
553  clone did not exhibit significant difference in cell-cycle entry rates compared to single mutant
554  HSCs at baseline (Fig. 61, fig. S14C). The additional insult to CALR activities in the double mutant
555  clone effected a greater UPR activation compared to single mutant HSCs, as expected (fig. S14D-
556 E, table S29-30). Surprisingly, however, the predominant signatures of the double mutant HSCs
557  compared to other HSCs at baseline were an upregulation of IFN response genes and decreased
558 TNFa and TGFp signaling (fig. S14D-E, table S29-30), thus recapitulating the HSC response to
559  extrinsic IFNa and supporting a potential causal link between UPR and IFN activation (98).
560  Consistently, the double mutant HSCs exhibited increased expression of the HSC-specific IFNa'”
561  gene signature (Fig. 3B) at baseline and even higher expression upon IFNa therapy (Fig. 6J, left).
562  Similarly, the IFNa”" gene signature was downregulated in the double mutant clone at baseline
563 and to a greater degree following treatment (fig. 6J, right). Further, unbiased clustering and
564  dimensional reduction revealed that the double mutant clone at baseline clustered with the treated
565  HSCs rather than with the other baseline HSCs (fig. S14F-G). As the double mutant HSCs share
566  the same microenvironment as the wildtype and single mutant HSCs, the striking similarity of the
567 intrinsically activated IFNa signaling in the double mutant cells at baseline to the extrinsic IFNa
568 effects indicated that the predominant IFNa signaling signatures observed in the IFNa-treated
569  HSCs may be largely direct rather than secondarily mediated by the effects of [IFNa on other cell
570  types. These findings also highlighted a genotype-specific modulation of HSC fitness by [FNa.

571  As the IGPY? signature has a significant overlap with the IFNa”" gene signature (including the
572  immediate early response TFs), the significant downregulation of the I[FNa”V gene signature of
573  the double mutant cells suggested that the double mutant HSCs may be resistant to IGP
574  development. Consistent with this hypothesis, the double mutant HSCs expressed lower /GPYP
575  and higher IGPPV signatures (fig. S14H). Altogether, these data raised the hypothesis that the
576  resistance of clonal stem cells to differentiate into the IGPs may dictate its clonal fitness upon
577  IFNasignaling. We therefore computed the fold change in clone size as a function of the difference
578  inthe frequencies of mutant cell frequency within the HSC-IG and IGPs relative to that of the total
579  CD34" compartment (Fig. 6K). Indeed, the propensity of clonal HSCs to differentiate into IGPs
580  could model clonal dynamics (Fig. 6K). These findings identified the alternate [IFNa-specific route
581  of differentiation into IGPs as an avenue to perturb clonal dynamics, while perturbations to the
582  existing programs did not lead to a net difference in fitness between mutated and wildtype HSCs.
583  To test the generalizability of this model, we examined the /GPPY gene signatures in DNMT3A-
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584  mutated HSCs from individuals with clonal hematopoiesis (42), as DNMT3A-mutated clones are
585  resistant to IFNa, frequently expanding upon treatment (/5). Consistently, the DNMT3A4-mutated
586  HSCs demonstrated increased expression of the IGPPY gene signature compared to the admixed
587  wildtype HSCs (Fig. 6L.), suggesting that the DNMT3A4-mutated HSCs may be resistant to IGP
588  development. These results therefore support a unified model of clonal dynamics wherein the
589  differential propensity of HSC clones to differentiate into the IGPs determines the clonal
590  composition of the stem cell niche under inflammation.

591 Discussion

592  Here, our studies deconvoluted the pleotropic effects of IFNa in reshaping the differentiation
593  trajectories of human HSCs for normalization of blood counts and modulation of clonal dynamics
594  in myeloproliferative neoplasms. The single-cell multi-omics methods applied to serial sampling
595  enabled us to track clonal evolution over a treatment period together with differential phenotypic
596  remodeling of mutated versus wildtype stem and progenitor cells. We identified that the underlying
597  somatic mutations both amplified the IFNa effects (e.g., cell cycle entry) and constrained others
598  (e.g., lineage skewing). In this way, the relative distinctions between the mutated and wildtype
599  HSPCs were preserved, despite the global remodeling of hematopoiesis. These findings suggested
600 that the relative fitness of clonal HSCs via programs already activated at baseline also remained
601  constant. Thus, differential HSC activation into cell cycle entry alone could not fully explicate the
602  inflammation-induced changes in clonal dynamics.

603  Instead, we identified an IFNa-specific alternate route of differentiation directly from HSCs that
604  predicted clonal dynamics based on priming of clonal stem cells to differentiate into the IGP state,
605  enabling resisting HSC clones to dominate the stem cell niche. Furthermore, identification of the
606  IGP population highlighted an intriguing phenomenon in human HSCs: induction of the IGP
607  differentiation through upregulation of the pro-inflammatory AP-1 and NF-«kB activities indicated
608 that [FNa potentiates a pro-inflammatory as well as an overall anti-inflammatory cell states with
609  downregulation of the same AP-1 and NF-kB activities within the same hematopoietic
610  differentiation program. Differential expression levels of RFX2/3 and immediate early response
611  programs within the HSC populations were highlighted in our data as mediating the polarized
612  response to IFNa, revealing a key functional relevance of HSC heterogeneity. These data
613  suggested that HSC-1G with elevated RFX2/3 and immediate early response gene expressions were
614  poised to a precipitous pro-inflammatory response to stimuli, implicating these HSCs in innate
615 immune memory or trained immunity, i.e. an adapted innate immune response due to a prior
616  inflammatory activation of HSCs (99, 100). Trained immunity may thus serve as a non-genetic
617  modifier of IGP priming, reflecting the interpatient variabilities in the rates of IGP development
618 by the CALR-mutated stem cells. Notably, these results were highly concordant with a recent report
619  of inflammatory memory HSCs that have significant overlaps with HSC-IG in gene expression
620  and a similar retention of the inflammatory phenotype following resolution of active inflammatory
621  stimulation (56). In this study, downregulation of the inflammatory signature by clonal stem cells
622  in the context of CH was also associated with clonal fitness (56). These findings therefore
623  highlighted a novel connection between trained immunity and clonal dynamics, further shedding
624  insights into the impact of age-related inflammation to clonal expansion and malignant
625  transformation.

16


https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509751; this version posted August 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

626  Furthermore, Type 1 IFN, the first FDA-approved immunotherapy (/0/), remains an effective
627  treatment and is being tested across various autoimmune (/02, 103), cancer (/04) and infectious
628  disease contexts (105, 106), including COVID-19 (107, 108). In the context of MPN, IFNa is the
629  only agent to consistently to deplete clonal stem cells. While previous studies have not detected
630  improvement in disease progression in patients treated with IFNa (20, 109), large clinical trial cohorts
631  would be required to detect significant differences between the IFNa and control arms, as the rates of
632  disease progression are low in patients with ET. Moreover, our identification of the HSC-specific IFNa
633  response, which includes IFNo/y response upregulation and downregulation of the targets of TNFa
634 and TGFP signaling pathways, may help clarify its therapeutic efficacy in other disease contexts
635  beyond MPN. In mouse studies, [IFNa has been demonstrated to modulate TNFa expression (/70)
636  with data suggesting either an upregulation (/0) or downregulation (54) of TNFa by IFNa. Thus,
637  our studies clarify that the predominant effect of IFNa in human HSPCs is the downregulation of
638  downstream pathways involved in TNFa signaling via AP-1 and NF-kB, consistent with
639  amelioration of the inflammatory state in MPN and multiple sclerosis upon type 1 IFN
640  administration (/7, 107). It also suggested that individuals with deficiencies in type 1 IFN may
641  have exhibited exaggerated response to COVID-19 infections (//1, 112) due to the inability to
642  counterbalance the pro-inflammatory effects of the other cytokines. Coherently, TNF expression
643  was demonstrated to be decreased in patients with MPN who received [FNa treatment (55). The
644  pro-fibrotic TGF signaling was also broadly downregulated across progenitor subsets, through a
645  coordinated downregulation of the TGFBI gene itself and upregulation of the TGFp signal
646  inhibiting TGIF2 activity. In this way, IFNa downregulated two key cellular programs involved
647 in the MPN-associated pathology, potentially underlying improved disease states. Moreover, as
648 NF-xB and TGFp signaling are both implicated in HSC quiescence (/13-116), the anti-
649  inflammatory effects of IFNa were also linked with HSC exit from quiescence. The robust
650  upregulation of TGFf signaling in the HSCs following resolution of an acute IFNa exposure
651  supported data in mice of re-entry into quiescence to protect from HSC depletion following
652  inflammation-induced cell cycle entry (70).

653  Another major finding in our work was the remodeling of hematopoietic differentiation toward the
654  lymphoid lineage by IFNa. While various differentiation skewing by IFNa has been reported in
655  mice (1/17-119), the interpretation of the results is complicated by the alteration of the HSC-marker
656  Sca-1 upon IFNa exposure in mice (i.e. induction of Sca-1 in the CMPs, GMPs and MEPs,
657  resulting in their inclusion within the Sca-1", Kit" HSC/multipotent progenitor compartment) (10).
658  As other inflammatory cytokines, such as TNFa, IL-1, and IFNy, have been demonstrated to
659  induce granulo-monocytic differentiation (62-64, 120, 121), IFN« presents as a unique cytokine
660  among the inflammatory milieu to balance the granulo-monocytic differentiation with its positive
661  regulation of B-lymphoid differentiation as another mode of dampening the pro-inflammatory
662  response.

663  The reshaping of the differentiation landscape by IFNa provided a novel model of therapeutic
664  efficacy in patients with myeloid neoplasms. As MPNs are primarily the result of a defect in
665  homeostatic hematopoietic development, due to an abnormal differentiation skewing and
666  proliferation of the myeloid lineages, [IFNa-induced lymphoid differentiation may serve to balance
667  the differentiation landscape. IFNa reshaped the major bifurcation divide in MPN, that is, from
668 the JAK2/STATS5-mediated bifurcation at the myeloid (i.e., granulo-monocytic and
669  megakaryocytic-erythroid) versus lymphoid commitment, to the PU.I-mediated bifurcation at
670  granulo-monocytic and lymphoid versus megakaryocytic-erythroid commitments. These two
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671  models have been described based on the identification of stem progenitor cells that produce
672  myeloid (/22) or lymphoid lineages (/23) versus granulo-monocytic-lymphoid lineages (/24).
673  Our data provide evidence for a plastic differentiation hierarchy in which PU.1-mediated
674  production of granulo-monocytic and lymphoid lineages at the expense of megakaryocytic-
675  erythroid lineages are prioritized in perturbed settings, such as infection. The ability of IFNa to
676  directly upregulate PU.1 expression suggested that the differentiation modulating effects of [FN«a
677  may be largely direct. These findings are consistent with the landmark study from Essers et al. that
678  elegantly demonstrated the ability of I[FN« to directly activate HSCs into cell cycle entry, via an
679  in vivo cell mixing study in which only a small minority of the bone marrow cells harbored intact
680  IFNa receptors (9). The cell cycle entry rate was further enhanced with increasing frequency of
681  bone marrow cells with intact IFNa signaling, suggesting that IFNa effects are both directly and
682  indirectly mediated.

683  Overall, these studies revealed the pleiotropic modes of therapeutic efficacy of IFNa and principles
684  of clonal dynamics upon inflammatory activation. Importantly, our work motivates the
685 development of novel therapeutic strategies to deplete clonal stem cells by enhancing their
686  differentiation rates into the IGP state upon IFNa therapy, a strategy that may be generalizable
687  across myeloid neoplasms and clonal hematopoiesis.
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Figure 1. Integration of Genotyping of Transcriptomes with immunophenotyping and IFNa-
treatment status identifies an alternate IFNa-specific cell state in MPN stem and progenitor
cells. A. Primary bone marrow samples at baseline and after IFNa treatment included for
Genotyping of Transcriptomes with Immunophenotyping (GoT-IM) on CD34" cells. B. Schematic
of GoT-IM via CITE-seq and Cell Hashing. MPN, myeloproliferative neoplasms; WT, wildtype;
MUT, mutated. C. Uniform manifold approximation and projection (UMAP) of CD34" cells (n =
65,452 cells) from MPN samples (n = 24 samples from 13 individuals), overlaid with cell type
assignment. HSC, hematopoietic stem cells; IMP, immature myeloid progenitors; NP, neutrophilic
progenitors; MP, monocytic progenitors; cDCP, classic dendritic progenitors; pDCP, plasmacytoid
dendritic progenitors; MDP, monocytic dendritic progenitors; MLP, multipotent lymphoid
progenitors; E/B/M, eosinophil/basophil/mast cell progenitors; MkP, megakaryocytic progenitors;
EP, erythroid progenitors; MEP, megakaryocytic-erythroid progenitors. D. Box plots showing
normalized expression of HSC-defining protein and RN A markers. E. Volcano plot showing genes
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1108  differentially expressed (DE) between Cluster X (i.e., IGPs) and IMPs identified via linear mixed
1109  modeling (LMM) with/without cluster identity (left, methods). Highlighted are genes enriched in
1110  the MYC pathway (purple) and TNFa signaling via NF-kB (blue); Boxes represent transcription
1111 factors (TF) of the AP-1 (blue), KLF (light green), NR4A (purple), CEBP (dark green) families.
1112 Pre-ranked gene set enrichment analysis using the MSigDB Hallmark collection (right). F. Box
1113 plot showing normalized IGP frequency at baseline and IFNa treatment (n = 11 baseline samples,
1114  n =09 treated samples). P-values from likelihood ratio test of LMM with/without IFNa treatment
1115  (methods). G. Integrated UMAP highlighting IGP, IMP and the HSC subclusters with RNA
1116  velocity-based cell state trajectory for [FNa-treated cells (left, trajectory presented corresponds
1117  only to IMP, IGP and the HSC subclusters, see table S5, methods). Dot plot showing gene
1118  expression levels of upregulated TFs in IGPs (right). H. Representative flow cytometric analysis
1119  of colonies from the single-cell differentiation of individually sorted CD34*, CD90" HSCs (left).
1120 Normalized colony frequency from HSCs sorted from bone marrow samples from patients at
1121  baseline and following IFNa (right, n = 2 baseline; n = 3 [FNa-treated). The number of colonies
1122 were down-sampled to the same minimum count for each replicate for equal representation.
1123 GEMM, granulocyte, erythrocyte, monocyte and megakaryocyte; GM, granulocyte-monocyte
1124 colonies .
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1126  Figure 2. Inflammatory neutrophils are enriched in IFNa-treated bone marrow. A. Primary
1127  bone marrow samples at baseline and after IFNa treatment included in GoT-IM on CD34 cells
1128  (left). UMAP of CD34" cells (n = 59,912 cells; 15 samples from 7 individuals), overlaid with cell
1129  type assignment (right). Neul, Neutrophil subset 1; Neu2, Neutrophil subset 2; ¢DC, classic
1130  dendritic cells; pDC, plasmacytoid dendritic cells, Treg cell; Regulatory T cells, NKT cells;
1131  Natural Killer T cells. B. Heatmap showing median scaled expression of canonical immune cell
1132 protein markers from a representative patient IFN12. C. Box plots showing IGP-specific
1133 upregulated signature score (Fig. 1E, table S3) in CD34" cell type clusters. P-value from likelihood
1134 ratio test of linear-mixed modeling (LMM) with/without cluster identity (methods). D. Volcano
1135  plot showing genes differentially expressed (DE) between Neul and Neu?2 identified via LMM
1136  with/without cluster identity (left, methods). Highlighted are genes enriched in the TNFa
1137  signaling via NF-kB (blue, box representation is same as Fig. 1E). Pre-ranked gene set enrichment
1138  analysis using the MSigDB Hallmark collection (right). E. Normalized frequency of baseline and
1139  IFNa-treated cells in Neul and Neu?2 subsets. P-value from Fisher’s exact test, two-sided.
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1140
1141  Figure 3. IFNa concurrently regulates anti- and pro-inflammatory programs. A. UMAP

1142 showing a representative experiment that includes three time-points from patient IFN04 (n = 7,282
1143 cells, left). Box plot showing transcriptional distance measurements between HSCs from each
1144  time-point and HSCs from baseline (right). Transcriptional distance corresponds to Euclidean
1145  distance of the first thirty principal components. P-values from Wilcoxon rank sum test, two-sided.
1146 B. Volcano plot showing genes differentially expressed (DE) between baseline and IFNa-treated
1147  HSCs via linear mixed modeling (LMM) with/without treatment status (methods). Genes
1148  highlighted in blue are those in the TNFa signaling via NF-«kB and those in orange enriched in the
1149  IFNa/y response, identified by pre-ranked gene set enrichment analysis using the MSigDB
1150  Hallmark collection; box representation is same as Fig. 1E. C. Cell cycle gene expression
1151  (representative patient IFNO1, n = 97 baseline and 97 IFNa-treated HSCs, top). Frequencies of
1152 cells in S/G2/M phase as assessed in top subpanel at baseline (n = 11 samples) and at year 1 of
1153  IFNa treatment (n = 9 samples). For IFNO5 which has two IFN« year 1 samples, the active IFNa
1154  time-point was selected. P-values from likelihood ratio test of LMM with/without treatment status
1155  (methods). D. CXCR4 vs. cell cycle gene expression in HSCs before and after IFNa treatment.
1156  Pie charts show frequencies of baseline versus treated cells in cell cycle-low, CXCR4-high and
1157  those in cell cycle-high, CXCR4-low populations. P-value from two-sided Fisher’s exact test. E.
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1158  Heatmap showing results of the pre-ranked gene set enrichment analysis comparing baseline and
1159  during IFNa treatment across HSC and progenitor subsets. Values show the sign of the normalized
1160  enrichment score (NES) multiplied by -loglO(Adjusted P-value). F. Pre-ranked gene set
1161  enrichment analysis comparing before and after treatment with IFNa in ¢cDCPs, showing
1162  downregulation of TNFa signaling via NF-kB and the leading-edge genes. Genes highlighted in
1163  blue represent those upregulated in the IGP versus IMP (table S3, Fig. 1E). G. Heatmap showing
1164  results of the pre-ranked gene set enrichment analysis comparing baseline and upon IFNa
1165  treatment discontinuation in HSCs (combined HSC1 and HSC2 subsets from Fig. 1G) and HSC-
1166  1Gs. Values show the sign of the normalized enrichment score (NES) multiplied by -
1167  loglO(Adjusted P-value). HSC-IG (vs HSC1) module was calculated using net score of genes
1168  upregulated and downregulated in HSC-IG (table S3). H. Boxplot showing module expression for
1169  genes involved in TNFa signaling via NF-«kB at baseline and during IFN«a treatment in cDCs (left)
1170  and NK cells (right). P-value from likelihood ratio test of LMM with/without treatment status. L.
1171  Box plots showing HSC-specific IFNa-induced signature score in IFNa-treated HSCs and IGPs
1172 (methods). Score calculated using upregulated (left) or downregulated (right) genes (table S8). P-
1173 values from likelihood ratio tests of LMM with/without cell type.

1174
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1175

1176  Figure 4. IFNa induces IGP and lymphoid differentiation. A. Normalized cell type frequencies
1177  at baseline and IFNa treatment. Cells from each sample were down-sampled to the same number
1178  (n = 500 cells from each sample, n = 11 baseline samples, n = 9 treated samples). For IFN02,
1179  IFNO04, IFNOS5 and IFNOS8, which have two treated time-points, the time-point powered with greater
1180  number of cells was selected (also for panels B, D). B. Box plot showing normalized cell type
1181  frequencies at baseline and IFNa treatment (n = 11 baseline samples, n = 9 treated samples). P-
1182  values from likelihood ratio test of linear-mixed modeling (LMM) with/without treatment status.
1183  C. Box plots showing cell frequencies of B-lymphoid progenitors and B cells from bone marrow
1184  of patients with early stage MPN with no treatment or aspirin only (ASA) or with IFNa therapy
1185 (n = 33 and 9 samples, respectively), as determined by multiparametric flow cytometry (table
1186  S12). P-values from Wilcoxon rank sum test, two-sided. D. Box plots showing normalized protein
1187  expression in HSCs before and after treatment with IFNa. P-values from likelihood ratio tests of
1188 LMM with/without treatment status (methods). E. Gene expression of canonical B cell
1189  differentiation markers across immature and mature B cells in lymphoid development between
1190  baseline and IFNa-treated cells. F. Platelet counts versus frequencies of MEPs and MkPs. P-value
1191  from generalized linear model; Pearson correlation, shading denotes 95% confidence interval.
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1195  Figure 5. Regulatory networks of IGPs highlight PU.1 as the master regulator of IFNa-
1196  mediated remodeling of hematopoiesis. A. Representation of primary bone marrow samples at
1197  Dbaseline and after IFN« treatment (left). Schematic of GoT-ATAC (right). B. Motif enrichment
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1198 and expression of transcription factors (TF) in the IGPs relative to HSCs from IFNa-treated
1199  samples. Normalized gene expression derived from GoT-IM data within HSCs and IGPs. P-values
1200  from Wilcoxon rank sum test, two-sided, with Benjamini-Hochberg FDR-correction (methods).
1201  C. Ranked TF motif enrichment of all positive regulatory peaks of the AP-1 members, relative to
1202 background peaks using the hypergeometric test (see methods). D. Schematic of lentiviral RFX3-
1203 overexpression (RFX3-OE) transduction experiment in CD34" umbilical cord blood cells (UCB)
1204  (top). Normalized frequency of granulocytic (CFU-G) and erythroid (BFU-E) colonies grown via
1205  methylcellulose-based colony-forming unit (CFU) assay compared between control and RFX3-
1206  OE CD34" UCBs (n = 3 independent experiments, bottom). E. Normalized frequency of RFX3-
1207  OE and control cells obtained from scRNA-seq data. F. Volcano plot showing genes differentially
1208  expressed (DE) between IMP and IGP-like cells from control and RFX3-OE subsets identified via
1209  linear mixed model (LMM) with/without cluster identity (left, methods). Highlighted are genes
1210  enriched in the TNFa signaling via NF-xB (blue) and MYC targets (purple, box representation is
1211  same as Fig. 1E). Pre-ranked gene set enrichment analysis of TNFa signaling via NF-kB pathway
1212 and MYC targets comparing control and RFX3-OE UCBs (right). G. Volcano plot showing TF
1213 motifs differentially enriched in IFNa-treated versus baseline HSCs (chromVAR). P-values from
1214  Wilcoxon rank sum test, two sided, with Benjamini-Hochberg FDR-correction (n = 6 serial
1215  samples from 3 individuals, see table S13 for cell numbers, methods). H. Heatmap showing
1216  synergy scores between TFs as assessed by measuring the excess variability of accessibility for
1217  peaks with both TF motifs (/25). I. TF motif accessibility across stem and progenitor subsets in
1218  lymphoid development between baseline and IFNa-treated cells.
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Figure 6. IFNa modulates clonal dynamics via clonal HSC differentiation into IGP
differentiation. A. UMAP of CD34" cells (n = 65,452 cells) with mutation status highlighted for
wildtype (WT; n = 21,354), CALR-mutant (MUT; n = 25,529) or unassigned (NA; n =18,569)
cells. B. Bar plot showing HSC clone size changes at baseline and after IFNa treatment. C. Bar
plots showing frequencies of cells in G2/M/S phase as assessed in Fig. 3C (n = 11 baseline and 9
IFNa-treated, year 1 samples). P-values from likelihood ratio tests of linear mixed model (LMM)
with/without treatment status (for comparisons between treatment) or mutation status (for
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1227  comparisons between genotypes). D. Multiplex in situ fluorescence imaging of bone marrow
1228  biopsy sections from MPN patients with (n = 4) or without (n = 5) treatment with IFNa (methods).
1229  Representative images of protein markers (top). Bar plots showing frequencies of proliferating
1230  myeloid cells as assessed by Ki67 expression (bottom). P-values from likelihood ratio test of LMM
1231  with/without treatment status or mutation status. E. Normalized cell type frequencies of WT versus
1232 MUT cells at baseline (n = 11 samples, left) and following IFNa-treatment (n = 9 samples, right).
1233 Cells down-sampled to 500 for each sample. F. Fold change of normalized cell frequency of MUT
1234 versus WT cells in the progenitor groups at baseline and following IFNa treatment. G.
1235  Transcription factor (TF) motif enrichment in MUT versus WT stem and early progenitor cells
1236  (HSCs, IMPs, MDPs/MLPs and MEPs) at baseline. TFs differentially regulated by IFNa were
1237  tested (table S20). Red =P < 0.05. P-values combined using Fisher’s combined test (methods).
1238  H. Density plot showing PU.1 peak count in WT and MUT cells from the control group of
1239  megakaryoblastic cell line expressing TPO receptor (UT7-MPL) with wildtype or mutant CALR
1240  transgenes (n = 2 independent experiments, left). Differential TF motif enrichment between PU.1
1241  binding sites in WT IFNa-treated and MUT IFNa-treated UT7-MPL cells (right, methods).
1242 Analysis conducted with HOMER. TFs enriched in differentially accessible PU.1 peaks for MUT
1243  and WT cells are highlighted in blue and green respectively. I. Schematic of clonal structure of
1244  HSCs from patient IFNO2 (top). Bar plot of normalized mutant cell frequencies across treatment
1245  time-points (bottom). P-value from pairwise Fisher's exact test. J. Box plot showing HSC-specific
1246  IFNa-induced signature score in HSC clones at baseline and after one year of treatment. Scores
1247  calculated using upregulated or downregulated genes (left and right panels, respectively,
1248  methods). P-values from Wilcoxon rank sum test, two-sided. K. Clone size change with [FNa
1249  treatment versus difference in normalized frequency of MUT HSC-IGs and IGPs out of all MUT
1250  cells. P-value from F-test, Pearson correlation. Shading denotes 95% confidence interval. L. Box
1251  plots showing IGP-specific downregulated signature score in wildtype and DMNT3A-mutant
1252 HSCs from individuals with clonal hematopoiesis (CH) (n =4 samples, no. cells = 1316 wildtype,
1253 529 mutated cells) (42). P-values from likelihood ratio test of linear mixed model with/without
1254  mutation status.

1255
1256
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1257  Materials and Methods
1258  Patient samples

1259  The study was approved by the local ethics committee and by the Institutional Review Board (IRB)
1260  of Weill Cornell Medicine. The study was conducted in accordance with the Declaration of
1261  Helsinki protocol, and all patients provided informed consent. Cryopreserved bone marrow
1262  mononuclear cells were obtained from patients with CALR-mutated essential thrombocythemia
1263  (ET) treated with weekly pegylated IFN-alfa2a during clinical trials MPN-RC-111
1264  (NCT01259817) (19) and MPN-RC-112 (NCT01258856) (20). Samples used for CD34" cell
1265 analysis include 8 baseline and 13 treated samples (3 of which were collected post-IFNa
1266  discontinuation) collected from 10 individuals for GoT-IM. Three baseline ET samples (ETOI-
1267  ETO03) from our previous work (/6) were included as additional baseline controls with a similar
1268  distribution of age, gender, and disease status for treated samples that did not have a paired baseline
1269  control. For GoT-ATAC, n = 4 baseline and n = 3 treated samples were included from the clinical
1270  trials. For GoT-IM of CD34" mature cell analysis, 5 baseline and 10 treated samples (2 of which
1271  were collected following IFNa discontinuation) were collected from 7 individuals. Two
1272 hydroxyurea-treated peripheral blood samples from CALR-mutated ET patients from MPN-RC-
1273 112 were included for scRNA-seq of CD34" cells. Table S1 includes detailed clinical and sample
1274  information collected according to clinical trial protocols.

1275
1276  Cell preparation

1277  Cryopreserved bone marrow mononuclear cells were thawed and stained using standard
1278  procedures with the surface antibody CD34-PE (clone AC136, dilution 1:50, Miltenyi Biotec) and
1279  DAPI (Sigma-Aldrich), according to manufacturer’s protocol. To eliminate experimental batch
1280  effects, cells were labelled simultaneously with hashing antibodies with time-point-identifying
1281  barcodes as described (27) using Hashtag Antibodies 1-6 (TotalSeq-A, clone LNH-94, BioLegend)
1282  for GoT-IM and Anti-Nuclear Pore Hashing Antibodies 9 and 10 (Clone LNH-94, BioLegend) for
1283  GoT-ATAC. To link cell identities to expression of cell surface proteins, cells were also incubated
1284  with CITE-seq antibodies (22) according to manufacturer protocol (TotalSeq-A, BioLegend, see
1285  table S31 for information on antibodies). For IFNO1-IFN10 and IFN13, cells were subsequently
1286  sorted for DAPI" and CD34" cells to isolate CD34" populations. For IFNO1, IFN02, and IFN09,
1287  we sorted for DAPI™ and CD34 cells to isolate mature bone marrow cells. For IFNO5, IFNOS,
1288  IFNI11, and IFN12, CD34 expression by side scatter was used to enriched for granulocytes. CD34",
1289  high side-scatter (SSC) was used to sort for granulocytes, medium SSC to enrich for
1290  monocytes/DCs, and low SSC to enrich for lymphocytes. Mature cell populations were then pooled
1291  at approximately equal ratios for granulocytes, monocytes/DCs, and lymphocytes for each sample.
1292 All FACS sorting was completed using BD Influx at the Weill Cornell Medicine flow cytometry
1293 core.

1294
1295  GoT-IM

1296  To simultaneously capture genotyping data and whole transcriptomic data, Genotyping of
1297  Transcriptomes (GoT) was performed by adapting the 10x Genomics platform as previously
1298  described (/6). FACS-sorted CD34" cells for each time-point from the same individual were
1299  pooled. The standard 10x Genomics Chromium 3’ (v.3.1 chemistry) was implemented according
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1300  to the manufacturer’s recommendations up to the cDNA amplification step (10x Genomics,
1301  Pleasanton, CA). After cDNA amplification and SPRI bead (Beckman Coulter) cleanup, 10x
1302  scRNA-seq and ADT/HTO libraries were generated as recommended. A portion of the cDNA was
1303  used for somatic genotyping as previously described (/6). Briefly, to capture the somatic
1304  genotypes of cells, cDNA was amplified with a locus-specific amplification (10-16 PCR cycles),
1305  using the generic forward SI-PCR primer and a locus-specific reverse primer for the CALR
1306  mutations (see table S31 for primer sequences). The amplified locus-specific cDNAs are then
1307  cleaned using SPRI purification to remove unincorporated primers. Finally, the targeted amplicon
1308  libraries are generated through a PCR performed with a P5 generic forward PCR primer together
1309  with an RPI-x primer (table S31). The targeted amplicon libraries were spiked into the remainder
1310  of the gene expression and immunophenotyping libraries to be sequenced together on a NovaSeq
1311  (Illumina, San Diego, CA). The cycle settings were as follows: 28 cycles for Read 1, 90 cycles for
1312 Read 2, 10 cycles for 17 sample index and 10 cycles for i5 sample index.

1313
1314  GoT-IM scRNA-seq data processing, alignment, cell-type classification and clustering

1315  For single-cell GoT-IM data from IFNO1-IFN10 patient CD34" samples and from IFNO1, IFN02,
1316  IFNOS, IFNOS, IFN09, IFN11 and IFN12 patient CD34" samples, the pooled scRNA-seq, CITE-
1317  seq and hashing libraries were processed with Cell Ranger (v6.1.1 and v6.1.2) using cellranger-
1318  multi pipeline (vl). The reads were aligned to the human genome GRCh38 with default
1319  parameters. The Seurat package (/26) (v4.1.0) was used to perform unbiased clustering of the
1320  CD34" sorted cells from each patient. In brief, for individual datasets, cells with UMI > or < 3
1321  standard deviations from the mean UMI and mitochondrial gene percentage >10% were filtered
1322 (fig. S1A, S4A). The HTO data was normalized with centered log-ratio (CLR) transformation and
1323 wused to assign the time-points for each experiment (27). The cells from each time-point were
1324  analytically separated into individual datasets based on the HTO counts (fig. S1B). These
1325  individual datasets (in case of CD34" samples, together with the baseline ET samples from our
1326  previous work (/6)), were integrated and underwent batch-correction within Seurat, which
1327  implements reciprocal principal component analysis (RPCA) and the principles of mutual nearest
1328  neighbor (/27). Recommended settings were used for the integration (30 principal components for
1329  the anchor determining procedure in IntegrateLayers function). Principal component analysis was
1330  performed using variable genes using recommended settings (i.e., top 2000 variable genes using
1331  variance stabilizing transformation) (/27). The first 30 statistically significant principal
1332 components were used as inputs to the UMAP algorithm for dimensional reduction and
1333 visualization (/28). Clusters were manually assigned based on differentially expressed genes using
1334 the FindAllMarkers function using default settings (using top 2000 variable genes, in a minimum
1335  of 10% of cells in either of the two comparison sets as input, and log-transformed fold change of
1336 0.25 as the threshold, using Wilcoxon rank sum test). The clusters were annotated according to
1337  canonical lineage markers identified previously in single-cell RNA-seq data of normal
1338  hematopoietic progenitor cells (24) into 16 main progenitor subsets based on expression of levels
1339 of these canonical markers (Fig. 1C, fig. S2A-C, S4C). For dimensional reduction and
1340  visualization of individual experiments (e.g., fig. STH), top 3000 variable genes were included for
1341  principal component analysis, and the first 30 statistically significant principal components were
1342 used as inputs to the UMAP algorithm. The CITE-seq data after normalization using the CLR
1343  transformation was used to distinguish cell types (Fig. 2B, fig. S2B) and identify HSCs (fig. S2D).
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1344  Same integration and downstream clustering methods were used to analyze the two hydroxyurea
1345  (HU) samples.

1346
1347  IronThrone-GoT for processing targeted amplicon sequences and mutation calling

1348  Analysis of the GoT library was carried out as described previously (76) using IronThrone pipeline
1349 V2.1 (42). Amplicon reads (Read 2) were screened for the presence of the primer sequence and
1350  the shared sequence (i.e., the expected sequence between the primer sequence and the mutation
1351  locus). Reads (Read 1) from GoT-IM experiments were also assessed for matching to the cell
1352 barcode list of the 10x dataset. A mismatch of 20% was allowed for all sequence matching steps.
1353 Only UMIs with at least 2 or more supporting reads were retained for final genotyping
1354  assignments, after the UMI collapse algorithm, as previously described (42, 129). Filtered cells
1355  were then genotyped as follows, as previously described: cells with at least one mutant UMI were
1356  categorized as mutant cells whereas cells with no mutant UMI and at least one wildtype UMI were
1357  identified as wildtype.

1358
1359  Gene module scoring, differential expression and gene set enrichment analysis

1360  For statistical analysis, when the variable in question was cell type identity (e.g., IGP vs IMP), cell
1361  type identity was entered as the fixed effect and samples as random effects in a linear mixed model.
1362  For IGP and IMP comparison, treatment status was also included as a fixed effect. When the
1363  variable in question was genotype status (e.g., CALR mutant versus wildtype), genotype status was
1364  entered as the fixed effect and samples as random effects in a linear mixed model. P-values were
1365  obtained from likelihood ratio tests of the full model with the effect in question against the model
1366  without the effect in question. Linear mixed effects analysis was performed using the Ime4 package
1367  (v.1.2-1) (130).

1368  Differential gene expression testing between two groups within an individual experiment (e.g.,
1369  Fig. 6J) was performed using the logistic regression framework (/37) with the FindMarkers
1370  function. The tested genes included the top 2,000 variable genes from the CCA integration, which
1371  were filtered for those expressed in at least 10% of either group. In aggregated differential gene
1372 expression analysis (e.g., treated versus baseline as in Fig. 3B), the two groups were compared via
1373 the linear mixed model framework, as previously described (42). Among CD34" cells with GoT-
1374  IM data, IFNO1-IFN10 samples at baseline and active treatment were included for the differential
1375  expression analysis. For each gene, the variable in question (i.e., treatment or mutation status) was
1376  entered as the fixed effect and samples as random effects. P-values were obtained from likelihood
1377  ratio tests of the full model with the effect in question against the model without the effect in
1378  question. Individual genes with abs(avg_log2FC)> 0.1 and adjusted p-value <0.05 were significant
1379  for further analysis such as module scoring for HSC-specific IFNa-induced upregulated or
1380  downregulated genes.

1381  Pathway enrichment analysis was performed via a pre-ranked gene set enrichment approach
1382  (ranking based on the sign of the fold change * -logl0(adjusted P-value)) using the msigdbr
1383  (v7.2.1) (132) and fgsea (v1.12.0) (/33) R packages, using the canonical Hallmark pathway genes
1384  from MsigDB (/34).

1385  For examining gene module expression (e.g., HSC-specific I[FNa-upregulated or downregulated
1386  gene signature), the function AddModuleScore within the Seurat package (/26) was used to
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1387  calculate the relative expression of the genes (that are significantly upregulated or downregulated,
1388  as described above) for each cell. To calculate the module expression of cell-cycle related genes,
1389  G2M phase and S phase marker genes were used as available in Seurat with CellCycleScoring
1390  function. Briefly, expression of a control gene module was calculated and subtracted from the
1391  average gene module expression of interest, as previously described (44). All analyzed genes were
1392 classified based on average expression into 24 bins, and for each gene in the module, 100 control
1393 genes are randomly selected from the same expression bin as the gene of interest (44). For the
1394  overall IGP module score (Fig. 2C), the cells were first scored for the upregulated and
1395  downregulated genes (Fig. 1E); the downregulated gene score was subtracted from the upregulated
1396  gene score to obtain the overall IGP score.

1397
1398  RNA velocity analysis using scVelo and partition-based graph abstraction

1399  RNA velocity was assessed from the spliced and unspliced transcript variants using scVelo
1400  (v0.2.5) (34). Counts from loom files generated with Velocyto (v0.17.17) (35) for each GoT-IM
1401  sample (IFNO1-IFN09) were normalized and filtered (UMI counts > 100 and UMI count <20000).
1402  The annotated data matrices were combined by using anndata.concat() command and cell-specific
1403  annotations such as cell-type, time-point, UMAP and PCA embeddings were imported from the
1404  GoT-IM integrated object. Connectivities between the cell clusters were quantified
1405  using scvelo.tl.paga() within the partition-based graph abstraction (PAGA) framework (36).

1406
1407  GoT-ATAC

1408  Cryopreserved bone marrow mononuclear cells were thawed and stained using standard
1409  procedures with the surface antibody CD34-PE (clone AC136, dilution 1:50, MACS) and DAPI
1410  (Sigma-Aldrich), according to manufacturer’s protocol. Cells were subsequently sorted for DAPT,
1411  CD34" cells using BD Influx at the Weill Cornell Medicine flow cytometry core. Nuclei were
1412 isolated from DAPI, CD34" cells according to 10x Genomics Demonstrated Low Cell Input
1413 Nuclei Isolation protocol. Lysis buffer was prepared following manufacturer’s recommendations
1414  and then split into aliquots for each serial sample. Either TotalSeq-A Anti-Nuclei Pore Complex
1415  Proteins Hashtag 9 or 10 Antibody (1uL at 1:5 dilution; BioLegend) was added to each aliquot of
1416  lysis buffer. Low-input nuclei isolation was otherwise performed following manufacturer’s
1417  recommendations. Subsequently, nuclei from each time-point were counted and pooled together
1418  at approximately equal proportions. For IFN07, additional nuclei from the IFNa-treated sample
1419  were available to be run on a separate lane. Single-nucleus gene expression (GEX) and chromatin
1420  accessibility libraries were constructed from the pooled nuclei according to the Chromium Next
1421  GEM Single Cell Multiome User Guide (10x Genomics).

1422 Genotyping libraries targeting the CALR mutant transcripts were constructed from the remaining
1423 amplified cDNA, similar to the original GoT method. For each PCR, 12.5uL Kapa HiFI HotStart
1424  Ready Mix was mixed with 0.75uL of 10uM forward primer, 0.75uL of 10uM reverse primer, 3uL
1425  cDNA and nuclease-free water for a total reaction volume of 25uL. In the first PCR, 3uL cDNA
1426  was re-amplified with Partial TSO and Partial Read 1 primers (table S31), using the following
1427  PCR condition: 98°C for 3min; 3 cycles of 98°C for 15sec, 67°C for 20sec and 72°C for Imin;
1428  72°C for 1min. The re-amplified sample was purified and concentrated via 0.7X SPRI cleanup,
1429  eluting it into 10puL Buffer EB. To pre-enrich the CALR mutation locus, a gene-specific PCR was
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1430  performed with 3uL of cleaned re-amplified cDNA and Partial Read 1 and gene-specific primers
1431  (table S31). The following PCR condition was used: 98°C for 3min; 11 cycles of 98°C for 20sec,
1432 60°C for 20sec, and 72°C for 2min; 72°C for 2min. After 0.7X SPRI cleanup, cDNA was eluted
1433 into 10uL Buffer EB. CALR locus-specific amplification was then performed with 3uL of cleaned
1434  gene-specific amplified cDNA and SI-PCR and loci-specific Primers, using the PCR condition:
1435  98°C for 3min; 11 cycles of 98°C for 20sec, 60°C for 20sec, and 72°C for 2min; 72°C for 2min.
1436 A 0.7X SPRI cleanup was performed, and cDNA was eluted into 11pL Buffer EB. Finally, to
1437  construct the targeted amplicon library, loci-amplified cDNA was mixed with P5 Generic and
1438  RPIx indexing primers (table S31) and amplified with the PCR condition: 98°C for 3min; 5 cycles
1439  of 98°C for 15sec, 60°C for 20sec, and 72°C for Imin; 72°C for 1min. The constructed library was
1440  cleaned via 0.8X SPRI cleanup and eluted into 12uL. Buffer EB.

1441 At the cDNA amplification stage of the Chromium Next GEM Single Cell Multiome protocol,
1442 supernatant from the 0.6X size selection was retained and was used to generate the hashing
1443 libraries as per HTO protocol (27) with the following modification. For the hashing library
1444  construction step, the PCR reaction was prepared with 0.65uL of 10uM SI-PCR primer, 0.65uL of
1445  10uM TruSeq DNA D7xx_s primer (table S31), 11.25uL cleaned supernatant and 12.5 uL. KAPA
1446  HiFi HotStart Ready Mix (Roche, Basel, Switzerland). Hashing, gene expression and genotyping
1447  libraries were pooled and sequenced together on a NovaSeq (Illumina) with cycle settings: 28
1448  cycles for Read 1, 90 cycles for Read 2, 10 cycles for i7 sample index and 10 cycles for i5 sample
1449  index. The ATAC library was sequenced separately on a NovaSeq, with cycle settings: 50 cycles
1450  for Read 1 and Read 2, 8 cycles for 17 sample index and 24 cycles for i5 sample index.

1451
1452 Data preprocessing, alignment and cell type identification for GoT-ATAC

1453  For single-nuclei GoT-ATAC data from IFNOI1, IFNO3, IFNO7 and IFNI13 patient CD34"
1454  samples, 10x data were processed using Cell Ranger (v6.1.1 and v6.1.2). Multi-omic nuclear data
1455  for snATAC-seq and snRNA-seq were processed together with Cell Ranger Arc (v2.0.0). snRNA-
1456  seq data was also combined with cell hashing data (HTO) and run using the Cell Ranger Multi
1457  pipeline (v1). The reads were aligned to the human reference genome GRCh38. The downstream
1458  analysis of the processed data was performed using Seurat (v4.1.0) (/26) and Signac (v1.5.0) (/35)
1459  packages. For the ATAC analysis, we called peaks on individual samples using MACS2 peak
1460  caller (/36). Gene annotations from EnsDb.Hsapiens.v86 and motifs annotations from Cis-BP
1461  (137) for TF binding motifs were utilized. Cells with blacklist ratio >0.02, TSS enrichment <2 and
1462  nucleosome signal >4 were filtered out. For the RNA data, cells with UMI > or < 3 standard
1463  deviations from the mean UMI or mitochondrial gene percentage > 25%, were filtered (fig. S7TA-
1464 D). The nuclei hashing data processing was performed as for the GoT-IM data (fig. STE). As
1465  nuclear hashing is known to be noisier than cell hashing (/35), the nuclear hashing data was used
1466  in combination with cell clustering data, as the cells cluster based on treatment status. After the
1467  cells were segregated analytically based on time-point, the datasets were integrated as described
1468  for the GoT-IM data. snRNA-seq data were integrated where they underwent batch correction with
1469  canonical correlation analysis (CCA) within Seurat and the principles of nearest neighbor (/27).
1470  Recommended settings were used for the integration (30 canonical correlation vectors for
1471  canonical correlation analysis in the FindIntegrationAnchors function and 30 principal
1472 components for the anchor weighting procedure in IntegrateData function). Principal component
1473 analysis and cell type assignments were performed as described in GoT-IM. Integration via the
1474  ATAC-seq data was performed by normalizing the merged counts using first term frequency
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1475  inverse document frequency (TFIDF) normalization with RunTFDIF followed by linear
1476  dimensional reduction using latent semantic indexing (LSI). The first 2:30 dimensions were
1477  retained, and batch-correction was performed with runHarmony (Harmony, v0.1.0) which
1478  iteratively learns cell-specific linear correction function to account for batch effect. Pseudotime
1479  analysis was performed by constructing cell lineage trajectory with Monocle 3 (/38-740). We used
1480  as.cell data set function from SeuratWrappers package to convert Seurat object to CellDataSet
1481  object used by Monocle 3. IronThrone-GoT protocol was used to determine mutation calling
1482  within the GoT-ATAC assay, as described for GoT-IM. A requirement of at least four reads
1483  supporting a UMI was implemented for GoT-ATAC. To capture genotyping reads within the
1484  snRNA-seq data, we called CALR variants using the gene expression BAM derived from the
1485  standard Multiome workflow. BAMQL (/41/) and the CIGAR string of the BAM file were used to
1486  parse reads containing the expected wildtype and mutant sequences. Cells expressing at least one
1487  mutant UMI were categorized as mutant and cells with just wildtype UMI were assigned as
1488  wildtype. Genotyping assignments were then appended to calls made by IronThrone.

1489
1490  Identification of distal regulatory elements with gene-peak cis-association

1491  For each GoT-ATAC sample, we examined all ATAC peaks within + 500kb of all annotated TSS
1492 to identify regulatory networks of genes using LinkPeaks function (72). Pearson correlation
1493  between gene expression and accessibility of the peaks located in the window was calculated after
1494  correcting for bias arising from GC content, overall accessibility and peak size. Recommended
1495  settings were implemented (200 background peaks per peak with similar GC content and
1496  accessibility, P-value < 0.05 and min.cell = 10).

1497
1498  Motif enrichment analysis in GoT-ATAC

1499  Per-cell TF motif activity score (chromatin accessibility) was calculated by running chromVAR
1500  (v1.18.0) (69). We used the curated Cis-BP motif database (/37) which contains 1141 human TF
1501  motif position frequency matrices (PFMs). The function matchMotifs was first called to identify
1502  which peaks contain which motifs (P-value = 5 x 10). A set of background peaks that are similar
1503  to a peak in GC content and average accessibility was internally picked and used for normalizing
1504  the deviation scores. Deviation Z-scores, namely bias-corrected deviation z-scores in accessibility
1505  from the expected accessibility based on the average of all the cells, were then calculated for each
1506  TF motif and each cell.

1507  To perform differential motif enrichment analysis, within a sample and on the deviation z-score
1508  computed by chromVAR, we applied the function FindMarkers in Signac (Wilcoxon Rank Sum
1509 test), where the average difference in z-score between the groups was calculated. For integrated
1510  data, we combined the P-values (Fisher’s method) and calculated weighted mean deviation score
1511  across individual samples. P-values were adjusted by the Benjamini-Hochberg method.

1512 To find over-enriched motifs for a group of genomic features, the FindMotifs function was used,
1513  accounting for accessibility and GC content bias by selecting 5000 accessible background peaks
1514  with similar GC content for each feature set. To identify motifs enriched in a singular genomic
1515 range, FIMO (v5.4.1) from MEME suite (/42) was used to scan for Cis-BP TF motifs along the
1516  nucleotide sequence from human reference genome GRCh38 with a p-value threshold of 0.0001.
1517  We de-prioritized zinc fingers (ZNFs) in the list of motifs specific to genomic regions as each
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1518  individual ZNF binds to three bp motif leading to more frequent matches and higher match scores
1519  (143). chromVAR was used to compute the synergy between pairs of TF motifs, where synergy is
1520  defined as the excess variability of chromatin accessibility for peaks sharing both motifs compared
1521  to a random subsample of the same size of peaks with one motif. High synergy usually indicated
1522 acooperative binding relationship between pairs of TFs. The function getAnnotationSynergy was
1523  called to calculate synergy scores (69).

1524
1525  Retrospective flow cytometry data analysis

1526  Retrospective flow cytometry data analysis was performed in accordance with relevant guidelines,
1527  regulations and approval by the Institutional Review Board at Weill Cornell Medicine (IRB
1528  #1007011151). Patient flow cytometry data selected corresponded to patients with
1529  myeloproliferative neoplasms and which had the same antibody panel analyzed by flow cytometry.
1530  Patients with a diagnosis of ET or polycythemia vera with no increase in myelofibrosis or blast
1531  counts were included in the study. The antibody panel chosen for evaluation was a modified
1532 version of the EuroFlow AML/MDS tube #4 (144, 145) that consisted of the following antibody-
1533 fluorophore pairs, in addition to forward scattering and side scattering pulse area and width
1534  measurements (FSC-A, FSC-H, SSC-A, and SSC-H): cytoplasmic TdT/FITC (clone HT-6,
1535  Agilent/Dako, cat. F7139), CD56/PE (clone C5.9, Cytognos, cat. CYT-56PE), CD34/PerCP-Cy5.5
1536 (clone 8G12, BD Biosciences, cat. 347213), CD117/PE-Cy7 (clone 104D2D1, Beckman
1537  Coulter/Immunotech, cat. IM3698), CD7/APC (clone GP40 [Leu-9], Invitrogen, cat. 17-0079-42),
1538  Fixable Viability Stain 700 (BD Biosciences, cat. 564997), CD19/APC-H7, HLA-DR/Pacific Blue
1539  (clone SJ25C1, BD Biosciences, cat. 643078), and CD45/V500 (clone 2D1, BD Biosciences, cat.
1540  347213). Data was collected using BD LSR II flow cytometers, with approximately 500,000 events
1541  collected per antibody panel per sample to generate the raw data FCS files.

1542 Custom software was developed using python, FlowKit (/46) and umap-learn (/28) to detect the
1543  antibody panels that were used to generate each raw data FCS file and to determine the unused
1544  flow cytometer channels that should be disregarded using the self-contained metadata for each file.
1545  Subsamples from each FCS file were combined to make an “ensemble FCS file” that could be used
1546  to create the UMAP embedding that could be applied to each of the individual files. Each
1547  subsample consisted of the same number of randomly selected flow cytometer events such that the
1548  combined total number of events was approximately 250,000 for each unique antibody panel. The
1549  various channels were normalized and processed using UMAP to calculate the normalization
1550  constants and UMAP embedding that were then applied to all FCS files of the given antibody
1551  panel. Of note, the UMAP calculations included the forward scatter height (FSC-H), side scatter
1552 height (SSC-H) and each of the defined fluorescence channels. The normalization factors and
1553  UMAP embedding were then applied to all the individual files. Modified FCS files were created
1554  that included the UMAPs as additional channels for subsequent evaluation and gating using
1555  FlowlJo software (v10.8.1, FlowJo LLC, Ashland, Oregon, USA).

1556  Using FlowJo, appropriate gates based on the UMAP plot were determined using the ensemble
1557  FCS file. Additional standard gating was also performed using the original data channels (gating
1558  using the other channels is essential to determine the identities of the various cell clusters within
1559  the UMAP plots). UMAP gates were based on data after gating out doublets and non-viable cells
1560  via standard gating approaches. Once the UMAP gates were determined to adequate satisfaction
1561  (sufficient segregation of cell subpopulations and verified to encompass cells of the same or similar
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1562  type), they were then applied to all the FCS files of the given antibody panel. The FCS files were
1563  divided into untreated/only aspirin treated cohort (n = 33), an interferon-treated cohort (n =9), a
1564  hydroxyurea-treated cohort (n = 10). The ratios and absolute numbers of cells, as well as other
1565  summary statistics were then calculated, and the values exported as CSV files. Statistics included
1566  numbers of CD34" blasts; CD19", ¢cTDT", CD34" lymphoid progenitors; CD19" lymphocytes;
1567  CD19-negative lymphocytes/NK cells; and monocytes. Relevant distributions of cells for each
1568  cohort are plotted, and the Wilcoxon p-statistic was calculated for various compared distributions.

1569
1570  Multiplexed Immunofluorescence

1571  Multiplexed immunofluorescence (mlIF) was performed using the Opal system (Akoya
1572  Biosciences) by staining 4 micron-thick Bouin-fixed, paraffin-embedded whole-tissue sections
1573  from decalcified human bone marrow core biopsy specimens in a Bond RX automated tissue
1574  stainer (Leica Biosystems, Buffalo Grove, IL), as described previously (/47, 148). Briefly, tissue
1575  sections were first deparaffinized prior to EDTA-based antigen retrieval (Leica ER2 solution,
1576  20min). A cyclical staining protocol was then performed, with horseradish peroxidase-mediated
1577  deposition of tyramide-Opal fluorophore constructs (Akoya Biosciences) in each cycle, with
1578  intervening application of heat, citrate-based epitope retrieval solution (Leica ER1), and Bond
1579  Wash Solution (Leica) to execute stripping of primary/secondary antibody complexes between
1580  staining cycles. Finally, 4°, 6-diamidino-2-phenylindole (Spectral DAPI, Akoya Biosciences) was
1581 applied per provided protocols to label nuclei. The following panel of primary
1582  antibody/fluorophore pairs was applied to all cases, in a sequential order as shown: 1) Opal
1583  480/anti-mutant CALR (1:120, CAL2, Dianova), 2) Opal 520/anti-CD38 (1:50, 38C03 (SPC32),
1584  Invitrogen), 3) Opal 570/anti-CD117 (1:100, D3W6Y, Cell Signaling), 4) Opal 620/anti-TdT (1:8,
1585  SEN28, Invitrogen), 5) Opal 690/anti-CD34 (1:100, QBEND/10, Invitrogen), 6) Opal 780/anti-
1586  Ki67 (Ready-to-use, MM1, Leica). Slides were cover-slipped using ProLong™ Diamond Antifade
1587  Mountant (Invitrogen). Whole slide scans were subsequently obtained at 20X magnification using
1588  the Vectra Polaris Automated Quantitative Pathology Imaging System (Akoya Biosciences) to
1589  generate a collection of tiled images, which were subsequently spectrally unmixed in InForm
1590  (v2.4.8, Akoya Biosciences). Unmixed tiles were finally fused together in HALO (v3.3.2541.231,
1591 Indica Labs) to generate a multi-layered TIFF image file for each sample, which was used in
1592  downstream analyses.

1593
1594  Image Analysis with PathML

1595  Vectra whole-slide images (WSIs) were digitized using digital whole-slide scanners and stored in
1596  tiff format. WSIs of bone marrow sections were captured (n =9 samples). Each sample was stained
1597  based on 8 cell markers including DAPI, mutant-specific CALR, CD38, CD117, TdT, CD34,
1598  Ki67, and auto-fluorescence. The image contrast was enhanced using histogram equalization in
1599  Fiji. To analyze the Fiji-preprocessed WSIs, PathML, a toolkit for computational image analysis
1600  (149), was applied to images. Images were loaded and divided into equal-sized tiles on which we
1601  ran our preprocessing pipeline. This pipeline starts with coercing the tile shape into the standard
1602  x,y,c format followed by segmentation. Nuclear and cellular segmentation were performed using
1603  the Mesmer (/50) deep learning segmentation model implemented in PathML with DAPI and
1604  autofluorescence used as nuclear and cell membrane markers, respectively. Subsequently, we used
1605  the ‘QuantifyMIF’ function from PathML to convert the segmented images into count matrix
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1606  which includes the intensity of each marker in each segmented cell along with cell coordinates,
1607  size, and eccentricity. To remove the noise from the count matrix data, any cell with raw intensity
1608 less than 50 for DAPI and auto-fluorescence markers was excluded from the analysis. Next, the
1609  thresholds were obtained to find the positive and negative expression level for each cell marker.
1610  The thresholds were manually set for each marker based on examination by a board-certified
1611  hematopathologist.

1612
1613 CUT&RUN Assay

1614  UT7 cell lines expressing MPL (thrombopoietin receptor) and either the mutant CALR (type 1,
1615  L367Tfs*46) or wildtype CALR transgene (93) were seeded in 10cm plates in DMEM
1616  supplemented with 10% FBS (Thomas Scientific) and 5 ng/ml GM-CSF (Miltenyi-Biotec). Cells
1617  were treated with 0.1pg/ml Recombinant Human IFN-alpha2a (RC217-14) or PBS-1X control for
1618  24hrs. After treatment, cells were washed 1x with PBS and collected for use with the CUTANA™
1619  CUT&RUN assay (EpiCypher) according to the manufacturer’s protocol. 0.5ug of anti-human
1620  rabbit monoclonal PU.1 antibody (ab76543) and IgG antibody (ab172730) were used in the assay.

1621  CUT&RUN data were down-sampled to have same number of reads across all conditions within
1622 the sample replicate to account for difference in sequencing depth. Among the down-sampled
1623  reads, low-quality reads were filtered out using Trimmomatic (/57), resulting reads were aligned
1624  with hg38 genome with Bowtie2 (/52), and PCR duplicates were removed with SAMtools (/53)
1625  with a previously described workflow (/54). Aligned reads were then used for peak calling with
1626  MACS3 (136) with a g-value threshold of 0.01 and reads from IgG antibody as the control. SPI1
1627  over-enrichment in the called peaks was confirmed with Simple Enrichment Analysis (SEA,
1628  v5.5.5) (155). Overlapping peaks between replicates of the same condition were kept for further
1629  processing. The peaks were processed with multiBamSummary function from deepTools (/56) to
1630  obtain counts matrix per sample for downstream analysis.

1631  Differential peak enrichment analysis was run between conditions (MUT vs WT and IFNa-treated
1632 vs control) using DESEQ2 (/57) for distal PU.1 peaks. Differential peaks in each condition were
1633 centered around SPI1 motif and motif enrichment was performed for regions +/- 250 bp from SPI1
1634  motif using HOMER (v.4.1.1) (96). Differential ranking between each motif two conditions was
1635  calculated (Fig. 6H, right, fig. S12B, D).

1636
1637  Single-cell Differentiation Assay

1638  One day before sorting HSCs, flat-bottom 96-well plates were coated with 60uL 0.2% gelatine
1639  (Sigma) per well for 1 hour and then removed. Low passage murine MS5 stroma cells were plated
1640  at a density of 1500 cells/well in 100uL Myelocult H5100 medium (Stem Cell Technologies), 1%
1641  Penicillin-Streptomycin (Pen/Strep, 10,000 U/mL, Gibco) and 1% glutamine (Gibco). On the day
1642  of the assay, the medium was changed to lympho-myeloid media consisting on 100uL/well
1643  Myelocult H5100 medium, 1% Pen/Strep and 1% glutamine supplemented with the following
1644  cytokines: IL-2 10ng/mL, IL-6 20ng/mL, IL-7 20ng/mL, SCF 100ng/mL, TPO 50ng/mL, G-CSF
1645  20ng/mL, FLT3L 10ng/mL and GM-CSF 20ng/mL (all from Bio-Techne). Cryopreserved bone
1646  marrow mononuclear cells (n = 2 baseline and 3 IFNa-treated samples) were thawed and CD34"
1647  cells were isolated using the EasySep™ Human CD34 Positive Selection Kit II (StemCell
1648  Technologies #17856) following manufacturer’s protocol. CD34" isolated cells were then stained
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1649  with FITC CD45RA (1:50), APC-Cy7 CD34 (1:200), APC CD90 (1:50), Pe-Cy7 FLT3 (1:100),
1650  PerCP-Cy5.5 HLA-DR (1:100), and BV786 CD41 (1:100) (antibody details in table S31). CD34"
1651  CD90" cells were index-sorted by FACS directly into 96-well plates with pre-plated MS5 stromal
1652 cells. Eight days after sorting, 70ulL of media were removed from the top of the plate without
1653  disturbing the colonies, and 170uL of IMDM medium (Gibco) with 10% BIT 9500 (StemCell
1654  Technologies), 1% Pen/Strep, 1% glutamine, supplemented with IL-2 10ng/mL, IL-3 20ng/mL,
1655 IL-6 10ng/mL, IL-7 10ng/mL, SCF 100ng/mL, TPO 50ng/mL, G-CSF 10ng/mL, FLT3L
1656  10ng/mL, SDF1 5ng/mL and 2-ME (1.8uL per 50mL), were added. Colonies were analyzed under
1657  the microscope 16-18 days after sorting and all visible colonies were detached by pipetting from
1658  the stromal cell layer and transferred into a 96-well U-bottom plate using a plate filter (Pall
1659  AcroPrep), to prevent the carryover of MSS5 cells. Cells were stained for 1 hour at 4°C with FITC
1660  CD66b (1:100), PE CD16 (1:100), PerCP-Cy5.5 CD184 (1:100), Pe-Cy7 CDS83 (1:100), APC
1661  CD14 (1:100), V500 CD45 (1:100), BV650 CD71 (1:100), and BV711 CD33 (1:100) (antibody
1662  details in table S31) with 50uL/well antibody mix and washed afterwards with 200uLL. PBS and
1663  2.5% FBS. Immunophenotype of the colonies was assessed in a BD LSRFortessa Analyzer. Flow
1664  cytometric analysis was performed using FlowJo and OMIQ. To generate differentiation plots,
1665 OMIQ was used to gate live cells and calculate UMAP dimensional reduction based on expression
1666  of CD14, CD34, CD45, CD71, CD33, CD16, and CD66b after integrating cells across every
1667  colony using recommended settings. A total of 177 colonies were included in the analysis from 5
1668  samples (after filtering for colonies with <350 live cells). GEMM colonies showed CD717, CD14",
1669  and CD66b" populations. GM colonies showed both CD14* and CD66" populations (at least 1%
1670  each). Neutrophil-only colonies showed <1% CD14" cells and at least 95% CD66b" cells. To
1671  increase the stringency of the neutrophil-only assignment, a minimum of 4000 events was required
1672  for this assignment. The remainder of the colonies were labeled as early myeloid (EM) colonies
1673  showing a large CD33" population (>40%) that lacked either CD14 or CD66b expression.

1674
1675 Western Blot

1676  1x1076 K562 cells were seeded in triplicate in a 10cm plate in RPMI 10% FBS 1% Pen/Strep.
1677  Recombinant Human IFN-alpha2a (RC217-14) was diluted in PBS and added to treatment
1678  condition plates at a concentration of 2000U/ml. Corresponding control plates were treated with
1679  equal volumes of PBS. Cells were kept in media with or without IFNa for 24hrs or 48hrs, after
1680  which cells were collected and cell count and viability was recorded. Cells were then centrifuged
1681  at 300g for Smin at 4°C. Pellet was resuspended in cold PBS and centrifuged at 300g for Smin at
1682  4°C. Dry cell pellets were frozen at -80°C until ready for use. Cell pellets were lysed in RIPA
1683  Buffer (ThermoFisher #89901) with Protease Inhibitor (ThermoFisher #78420) and Phosphatase
1684  Inhibitor (ThermoFisher #78429) for 15min on a shaker at 4°C. Total protein was quantified using
1685  colorimetric BioRad DC Protein Assay (#5000113). Samples were run on a Novex Tris-Glycine
1686  Mini Protein Gel (ThermoFisher) according to manufacturer’s protocol and transferred via
1687  standard wet transfer protocol. After blocking with 5% milk for 1hr at room temperature, blot was
1688  stained with anti-human mouse PU.1 monoclonal antibody (1:1000) (CST #89136) and anti-
1689  human rabbit Vinculin monoclonal antibody (1:10000) (ab129002) diluted in Intercept T20
1690  Antibody Diluent (LI-COR) overnight at 4°C. After washing with TBS-T (1X TBS, 0.1% Tween
1691  20) buffer, blot was stained with secondary antibodies including anti-mouse IRDye 800CW Goat
1692  anti-Mouse IgG Secondary Antibody (1:5000) AND IRDye 680RD Goat anti-Rabbit IgG

49


https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509751; this version posted August 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1693  Secondary Antibody (1:5000) for 1hr at room temperature (antibody details in table S31). Blot
1694  was then imaged using LI-COR machine and absorbance quantified using LI-COR software.

1695
1696  Lentiviral Constructs for Overexpression Experiments

1697  Lentiviral overexpression (OE) vectors and their corresponding control vectors were designed and
1698  obtained from VectorBuilder. All constructs included a lentivirus backbone (pLV) with gene-
1699  specific inserts, a fluorophore and an antibiotic resistance insert. The RFX3-OE insert consisted
1700  of human RFX3 ORF (NM_001377999.1) driven by the human phosphoglycerate kinase (hPGK)
1701  high-expression promoter, with CMV-mCherry-T2A-Puro for selection. The SPI1-OE and
1702  CEBPA-OE inserts consisted of the human SPI1 ORF (NM _001080547.2) and human CEBPA
1703  ORF (NM_001287424.2) respectively, driven by the hPGK promoter, with CMV-EGFP-T2A-
1704  Puro for selection. The control vectors contained the hPGK promoter driving an empty ORF
1705  stuffer, followed by CMV-mCherry-T2A-Puro or CMV-EGFP-T2A-Puro. The plasmid vectors
1706  were generated and amplified by VectorBuilder.

1707
1708  Lentivirus Production

1709  HEK-293T cells were seeded at a density of 2x10° cells in DMEM, 10% FBS and 1% Pen/Strep
1710  in a 10cm plate. After 24 hours, media was changed to DMEM and 10% FBS. 9ug OE or control
1711  plasmid was added to ImL Opti-MEM (ThermoFisher) containing 3ug pMD2.G plasmid and 8ug
1712 psPAX2 plasmid and incubated with Lipofectamine 2000 (ThermoFisher) in 1mL of Opti-MEM
1713 for 15min at room temperature. Mixture was then added dropwise to the cells and incubated at
1714 37°C for 24 hours. Media containing virus was collected over the next 48 hours. Lentivirus was
1715  then concentrated using Lenti-X Concentrator (Clontech #631231) according to manufacturer’s
1716  protocol. Viral titer was determined using the qPCR Lentivirus Titer Kit (Applied Biological
1717  Materials LV900).

1718
1719  Lentiviral RFX3 Overexpression of CD34" Cells

1720  Frozen umbilical cord blood mononuclear cells were purchased from the NYC Blood Center. After
1721  cells were thawed rapidly at 37°C, red blood cell lysis was performed using ACK Lysis Buffer
1722 (ThermoFisher) on ice for 7min. Cells were then centrifuged at 300g for Smin at 4°C. Supernatant
1723  was discarded, and cell pellet was resuspended in cold MACS buffer (PBS-1X with 0.5% BSA).
1724  Cells were centrifuged at 300g for Smin at 4°C, and resuspended in cold MACs buffer at a
1725  concentration of 1x10"7 cells/mL. CD34" cells were then isolated with the EasySep™ Human
1726  CD34 Positive Selection Kit II (StemCell Technologies #17856) according to manufacturer’s
1727  protocol. After isolation, cells were counted and plated in 96-well round-bottom plates (Falcon) in
1728  StemSpan™ SFEM II media (StemCell Technologies) with StemSpan™ CD34" Expansion
1729  Supplement (StemCell Technologies) and 1% Pen/Strep. After 24 hours in culture, cells were spun
1730  down and resuspended in minimal media consisting of StemSpan StemSpan™ SFEM II media
1731  with StemSpan™ CD34" Expansion Supplement, 1% Pen/Strep, 10uM prostaglandin E2
1732 (StemCell Technologies #72192) and 100ng/ul poloxamer 407 (Millipore Sigma P2164030). Cells
1733 were split into 2 technical replicates each for untransduced condition, mCherry-control vector
1734  transduction, and RFX3-OE vector transduction. Lentivirus or PBS control was added at an MOI
1735 of 100 directly into the well. Cells were then spinoculated at 300g, 32°C for 1 hour. After the spin,
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1736  cells were incubated in same lentivirus-containing media for 24 hours at 37°C before resuspension
1737  in fresh media consisting of StemSpan™ SFEM II media with StemSpan™ CD34" Expansion
1738  Supplement and 1% Pen/Strep. After 48 hours of incubation, cells were stained with CD34-APC
1739  antibody (1:50) (table S31). Cells were then FACS isolated for the CD34" population in the
1740  untransduced condition and the CD34" mCherry” populations in the RFX3-OE and mCherry-
1741  control conditions. Three independent transduction experiments were completed with new units of
1742 umbilical cord blood cells.

1743  Untransduced, mCherry-Control, and RFX3-OE CD34" cells were stained with Cell Hashing
1744  antibodies (HTO TotalSeq-A, BioLegend) for 30 min at 4°C. Cells were then washed with FACs
1745  Buffer three times, pooled, and counted for loading. scRNA-sequencing was then performed using
1746 the 10x 3° v3.1 platform according to manufacturer’s protocol. HTO demultiplexing and
1747  downstream analyses such as differential gene expression and gene set enrichment were performed
1748  as in GoT-IM for CD34" bone marrow samples. scRNA-seq experiment was completed on one
1749  replicate of three independent transduction experiments.

1750  The FACS-sorted cells were also used for colony-forming unit (CFU) assays. MethoCult total
1751  media were prepared using MethoCult™ H4034 Optimum (StemCell Technologies # 04044)
1752 supplemented with 10ng/ml human FLT3L and IL-6 (Miltenyi-Biotec) and 1% Pen/Strep. 250
1753 cells per group (Untransduced, mCherry-Control, and RFX3-OE) were added to 3mL MethoCult
1754  total and vortexed thoroughly. Tubes were then left at room temperature until bubbles rose to the
1755  surface. 1.25mL of MethoCult with cell suspension was transferred per well of a 6-well plate (2
1756  replicates per group) via blunt-edge 16g needle. Plate was incubated at 37°C for 14 days after
1757  which colonies were counted and identified by morphology. CFU assay was completed on all three
1758  of the independent transduction experiments.

1759
1760  Lentiviral Transduction of K562 Cells

1761 K562 cells were seeded at density of 3x10° cells/mL in 24-well tissue-culture treated plates
1762  (Falcon) in 500pL of K562 media (RPMI with 10% FBS and 1% Pen/Strep) in triplicate for each
1763  of'the following conditions: untransduced, mCherry-Control, RFX3-OE, EGFP-control, SPI1-OE,
1764  and CEBPA-OE. Concentrated lentivirus (or PBS-1X control for untransduced condition) was
1765  added directly to each well at MOI of 20, shaken gently and incubated at 37°C for 24 hours. After
1766 24 hours in lentivirus-containing media, plates were spun at 300g for Smin at room temperature,
1767  and supernatant media was replaced with fresh K562 media. Cells were then incubated at 37°C for
1768 72 hours to allow for vector expression. Post-72 hours, cells were pooled per condition and washed
1769  with FACS buffer (PBS-1X with 2% FBS). mCherry+ or EGFP+ cells per condition were then
1770  FACS-isolated and plated in K562 media in tissue-culture treated T25 flasks and allowed to
1771  recover for 48 hours before use in subsequent experiments. Two independent transduction
1772  experiment replicates of mCherry-Control, RFX3-OE and SPII-OE and three independent
1773 replicates of EGFP-control and CEBPA-OE were performed.

1774
1775  Invitro IFNa Treatments of SPI1-OE and CEBPA-OE Cells

1776  5x10° untransduced, EGFP-control and SPI-OE K562 cells were seeded in 24-well TC-treated
1777  plates in ImL of K562 media (RPMI with 10% FBS and 1% Pen/Strep). Recombinant Human
1778  IFN-alpha2a (RC217-14) was diluted in PBS-1X and added to treatment condition plates at a
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1779  concentration of 2000U/mL. Equal volume of PBS-1X was added to untreated controls. After
1780  gentle shaking, cells were incubated at 37°C for 24 hours. Post-incubation, cell suspension was
1781  collected and spun at 350g for Smin at 4°C. Supernatant was aspirated and cell pellet was washed
1782  with ImL cold PBS. Cells were spun again at 350g for Smin at 4°C. Supernatant was aspirated and
1783  dry cell pellets were frozen at -80°C until RNA was extracted.

1784
1785  RNA extraction and RT-QPCR

1786  Total RNA was prepared using the RNeasy Plus Micro or RNeasy Micro kit (Qiagen, #74034/
1787  74004) according to the manufacturer’s instruction. RT-QPCR assays were performed using a
1788  QuantStudio™ 5 Real-Time PCR System (Applied Biosystems). One-step qRT-PCR assays were
1789  performed using the Power SYBR™ Green RNA-to-CT™ 1-Step Kit (Thermo Fisher Scientific,
1790  #4389986) according to manufacturer’s instructions. The thermal cycling conditions comprised a
1791  reverse transcription step at 48°C for 30min, an initial denaturation (enzyme activation) step at
1792 95°C for 10min and 40 cycles at 95°C for 15s and 60°C for 1min. Transcripts of the TBP gene
1793 encoding the TATA box-binding protein (a component of the DNA-binding protein complex
1794  TFIID) were quantified as an endogenous RNA control. Quantitative values were obtained from
1795  the cycle number (Ct value), according to the manufacturer’s manuals (Applied Biosystems) and
1796  2°2°T values were calculated relative to TBP. Sequences of primers used for QPCR are listed in
1797  table S31.

1798
1799  Statistics and reproducibility

1800  Linear mixed modeling (LMM) was implemented using the Ime4 R package (v.1.2-1). In all cases,
1801 LMMs were generated with/without cell mutational status, treatment status or cell types, as
1802  specified in the figure legends. This allowed inclusion of random effects to account for biological
1803  variation. We included patient sample as random effects in our statistical comparisons. P-values
1804  were calculated by analysis of variance with likelihood ratio test using the Stats R package (v.3.5.1)
1805  between two models (with or without the fixed variable of interest). P-value adjustments were
1806  done with Benjamini-Hochberg FDR-correction unless specified otherwise.

1807  For all box plots presented, the box represents the interquartile range; upper and lower whiskers
1808  represent the largest and smallest values within 1.5 times the interquartile range above the 75th or
1809  below the 25th percentile, respectively; the central line represents the median. Dots represent
1810  outlier values or data value distributions. For all violin plots, the violin represents the kernel
1811  probability density of the data and dots represent the observed values.

1812
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1813 Supplementary Figures
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1814
1815 Fig. S1 (related to Fig. 1): Genotyping of Transcriptomes integrated with
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1816 immunophenotyping (GoT-IM) profiles thousands of CD34" cells at baseline and following
1817  treatment with IFNa. A. Change in platelet frequency at baseline and one year upon IFNa
1818  treatment for samples (IFNO1-IFN13) included in the study (top) and samples that were not
1819  available (bottom) from MPN-RC-111/112 trial. Patient samples with both baseline and year 1
1820  were included. P-values from likelihood ratio test of LMM with/without treatment status
1821  (methods). B. Box plots showing number of UMIs (left panel), and genes (right panel) detected
1822  per cell in sorted CD34" hematopoietic progenitors from each patient after filtering based on
1823  quality control (QC) metrics (methods). C. Top: Time-point assignment (data demultiplexing)
1824  using time-point specifying barcodes. Cells in which both barcodes are detected are considered as
1825  doublets and excluded. Representative patient sample IFNO1 (n = 8,696 cells) shown. Bottom:
1826  Heatmap showing HTO expression level for baseline and IFNa-treated cells from IFNO1. D.
1827  Uniform Manifold Approximation and Projection (UMAP) of sorted CD34" progenitors (n =
1828 65,452 cells, samples from this study and Nam et al., 2019) highlighted by patient ID (n = 13
1829  individuals, left) and treatment status (right) after integration with zoomed in view of the region
1830  with IGP cluster. E. Integrated UMAP of sorted CD34" progenitors from Nam et al., 2019 (n =
1831 14,872 cells) highlighted by patient ID (n = 3 individuals, left) and cell type clusters (right). F.
1832  Integrated UMAP of sorted CD34" progenitors of ET patients from the MPN-RC-111/112 trials
1833  (n= 50,580 cells) highlighted by patient ID (n = 10 individuals, left) and cell type clusters (right).
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Fig. S2 (related to Fig. 1): GoT-IM of baseline and IFNa-treated samples identifies HSPC
populations. A. Heatmap of top 15 differentially expressed genes for each progenitor cell type.
Cells of each progenitor type were down-sampled to the same number (n = 100 cells per cluster)
for visualization. B. Heatmap showing median scaled expression of canonical HSPC protein
markers from a representative patient IFNO3. C. Dot plot showing expression levels of cell type
specific gene markers in each progenitor subset. D. UMAP of sorted CD34" HSPCs (n = 65,452
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cells) highlighting CD38, CD90 and CD45RA protein expression and 4VP RNA expression. E.
Bar plot showing normalized IGP frequency from paired samples (n = 7 individuals) at baseline
and IFN«a treatment. P-value from likelihood ratio test of LMM with/without treatment status
(methods). F. Box plot showing the cell frequency at baseline and upon IFNa treatment per sample
(right). For IFN02, IFN04 and IFNOS, the time-point powered with greater number of cells was
selected. P-value from likelihood ratio test of LMM with/without treatment status (methods). G.
UMAP of sorted CD34" HSPCs overlaid with cell type assignment after separate integration for
baseline (left, n = 33,877 cells) and IFNa-treated (right, n = 31,575 cells) samples. H. UMAP of
CD34" HSPCs overlaid with cell type assignment from representative samples IFN04 (n = 7,282
cells, left) and IFNOS5 (n = 3, 375 cells, right).
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1853  Fig. S3 (related to Fig. 1): IFNa induces a novel inflammatory granulocytic progenitor state.
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1854  A. UMAP showing gene expression levels of differentially upregulated TFs in IGPs compared to
1855  IMPs. B. Left: Volcano plot of differentially expressed genes between IFNa-treated IGPs and
1856  HSC-IGs. P-values from likelihood ratio test of linear mixed modeling with/without cluster
1857  identity as a fixed effect variable (methods). Genes in blue represent genes enriched in the TNFa
1858  signaling via NF-kB and those in green enriched in the G2M Checkpoint pathway (box
1859  representation is same as Fig. 1E). C. Pre-ranked gene set enrichment analysis using the MSigDB
1860  Hallmark collection of G2M Checkpoint and E2F Targets gene set. D. Cell cycle gene expression
1861  in IFNa-treated HSC-IGs vs IFNa-treated IGPs. P-value from likelihood ratio test of LMM
1862  with/without cluster identity. E. Schematic showing proposed model of HSC vs HSC-IG
1863  differentiation (top-left). UMAPs generated from flow-cytometric data showing representative
1864  colonies from single-cell differentiation assay from baseline and IFNa-treated BM HSCs
1865  (methods) depicting differentiation trajectories (bottom-left). Normalized frequency of colonies
1866  including early myeloid (EM), granulocytic (G), mixed granulocytic-monocytic (GM), mixed
1867  granulocytic, monocytic, early myeloid (GEMM) across single-cell differentiation assays from
1868  sorted baseline (n=2) and IFNa-treated (n=3) samples (methods) (right).
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1870
1871  Fig. S4 (related to Fig. 2): Genotyping of Transcriptomes integrated with

1872  immunophenotyping (GoT-IM) profiles thousands of CD34" cells at baseline and following
1873  treatment with IFNa. A. Box plots showing number of UMIs (left panel), and genes (right panel)
1874  detected per cell in sorted CD34™ mature immune cells from each patient after filtering based on
1875  quality control (QC) metrics (methods). B. UMAP of sorted CD34" immune cells (n = 59,912
1876  cells) highlighted by patient ID (n = 7 individuals, left) and treatment status (right) after
1877  integration. C. Heatmap of top 15 differentially expressed genes for each immune cell type. Cells
1878  from each group was down-sampled to the same number (n = 75 cells per cluster) for visualization.
1879  D. Integrated UMAP of sorted CD34" progenitors and CD34" mature immune cells from
1880  representative samples (n = 4 individuals, IFN09-IFN12) highlighted by cell type assignment.
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1881  Fig. S5 (related to Fig. 3). IFNa induces HSC cell cycle entry. A. UMAP of CD34" cells from

61


https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509751; this version posted August 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1882  patient IFNO2 highlighting treatment status (n = 4,326 baseline cells, 2,912 IFNa-treated cells at
1883  year 1 and 541 IFNa-treated cells at year 2, left). Box plot showing transcriptional distance
1884  measurements between HSCs from each time-point and HSCs at baseline (right). Transcriptional
1885  distance corresponds to Euclidean distance of the first thirty principal components. P-values from
1886  Wilcoxon rank sum test, two-sided. B. Volcano plot showing differentially expressed genes
1887  between baseline and IFNa-treated MkPs. P-values from likelihood ratio test of linear mixed
1888  modeling (LMM) with/without treatment status (methods). Genes in black are enriched in the
1889  TGFP signaling and those in orange enriched in the IFNa/y response. Enrichment is based on pre-
1890  ranked gene set enrichment analysis (GSEA) using the MSigDB Hallmark collection. C. Cell cycle
1891  status of progenitor cells. For each cell type, left subpanel: Cell cycle gene expression in progenitor
1892  cells (representative patient IFNO1, see table S2 for cell numbers). Right subpanel: Frequencies
1893  of cells in G2/M/S phase as assessed in left subpanel (n = 11 baseline and 9 treated samples). P-
1894  values were derived from likelihood ratio test of LMM with/without treatment status. D.
1895  Frequencies of cells in G2/M/S phase in HSCs and progenitor cells at baseline and upon IFNa
1896  treatment (n = 12 paired samples from 6 individuals). P-values were derived from likelihood ratio
1897  test of LMM with/without treatment status. E. CXYCR4 (CD184) protein expression in stem and
1898  early progenitor subsets (HSCs, IMPs, MLPs, MEPs and MDPs) at baseline and under IFNa
1899  treatment. P value from likelihood ratio test LMM with/without treatment status. F. Volcano plot
1900  showing DE genes between baseline and HU treated HSPCs highlighting genes in cellular response
1901  to DNA damage (light-blue) the MSigDB GOBP collection, IFNa'” genes (teal) and IFNa”V
1902  genes (purple) from. P-values from likelihood ratio test of LMM with/without treatment status. G.
1903  Heatmap showing results of the pre-ranked gene set enrichment analysis comparing baseline and
1904  HU treated HSPCs. Values show the sign of the normalized enrichment score (NES) multiplied by
1905  -logl0(Adjusted P-value). H. Gene expression of IFNa response signature, TGFf pathway and
1906  TNFa signaling from the MSigDB Hallmark collection and HSC-IG vs HSC1 (Fig. 1G) signature
1907  atbaseline, during and post-IFNa-treatment in HSCs (HSC1 and HSC2 subclusters from Fig. 1G),
1908  HSC-IGs and IGPs from a representative sample IFNOS. I. Scatterplot showing correlation
1909  between patients' age and their normalized HSC-IG and IGP frequency at baseline (left) and upon
1910  IFNa treatment (right). J. Boxplots showing module gene expression of previously identified
1911  aging-specific upregulated genes (left) and downregulated (right) genes (56) in IFNa-treated HSCs
1912  (HSCI1 and HSC2 subsets from Fig. 1G), HSC-1Gs and IGPs. P-values from likelihood ratio test
1913  of LMM with/without cluster identity (methods). (56) in [FNa-treated HSCs (HSC1 and HSC2
1914  subsets from Fig. 1G), HSC-IGs and IGPs. P-values from likelihood ratio test of LMM
1915  with/without cluster identity (methods). K. Heatmap showing results of the pre-ranked gene set
1916  enrichment analysis comparing baseline and during IFNa treatment across CD34™ mature cells.
1917  Values show the sign of the normalized enrichment score (NES) multiplied by -log10(Adjusted P-
1918  value). L. Frequency of regulatory T cells in G2/M/S phase as assessed based on cell cycle gene
1919  expression at baseline and upon IFNa treatment. P-values were derived from likelihood ratio test
1920  of LMM with/without treatment status. M. Normalized frequency of cell types within all CD34"
1921  mature immune cells (left), monocytes (middle) and T cells (right) at baseline and active I[FNa
1922 treatment. Cells from each treatment status and individual were down-sampled to the same number
1923 (n =500 cells per treatment status per sample, 10 baseline and IFNa-treated paired samples from
1924 5 individuals). For IFNO2 and IFNOS, treated time-point powered with greater number of cells was
1925  selected. N. Normalized frequency of CD16" monocytes and regulatory T (Treg) cells at baseline
1926  and upon IFNa treatment (n = 10 samples from 5 individuals). For IFNO2 and IFNOS, the treated
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1927  time-point powered with greater number of cells was selected. P-values from likelihood ratio test
1928  of LMM with/without treatment status.
1929
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1932 Fig. S6 (related to Fig. 4). IFNa induces lymphoid differentiation. A. Bar plot showing
1933  normalized cell type frequencies at baseline and during [FNa treatment (n = 14 paired samples
1934  from 7 individuals). For IFNO2, IFN04 and IFNO5, the time-point powered with greater number
1935  of cells was selected. P-values from likelihood ratio test of linear-mixed modeling (LMM)
1936  with/without treatment status (methods). B. Box plots showing cell frequencies of B-lymphoid
1937  progenitors and B cells from bone marrow of patients with early stage MPN treated with [IFNa and
1938  HU treatment (n = 9 and 10 respectively) and without treatment (n = 33 samples), as determined
1939 by multiparametric flow cytometry. P-values from Wilcoxon rank sum test, two-sided. C. Scatter
1940  plot showing correlation between HSC module expression (based on differentially expressed genes
1941  in HSC cluster, fig. S2A) and protein expression of canonical stem/progenitor markers i.e., CD90
1942 (top-left), CD38 (top-right) and CD45RA (bottom) in stem and progenitor subsets. P-value from
1943 F-test, Pearson correlation. Shading denotes 95% confidence interval. D. Frequency of B cells in
1944  G2/M/S phase as assessed based on cell cycle gene expression at baseline and upon IFNa
1945  treatment. P-values were derived from likelihood ratio test of LMM with/without treatment status.
1946
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Fig. S7 (related to Fig. 5). GoT-ATAC captures genotyping, snRNA-seq and snATAC-seq
data for CD34* HSPCs. A. Box plots showing number of UMIs (left) and genes (right) detected
per cell in sorted CD34" hematopoietic stem and progenitors from each patient after filtering based
on quality control (QC) metrics (methods) from GoT-ATAC experiments. B. Density plot
comparing percentage of snATAC fragments within peaks to the total number of fragments
detected per sample (n = 7 samples from 4 individuals, additional IFNO3 IFNa-treated cells also
sequenced separately). C. Distribution of mean TSS enrichment score at each position relative to
the TSS per sample. D. Average distribution of fragment length per sample. E. Heatmap showing
HTO expression level for baseline and IFNa-treated cells from representative IFNO1 (n = 1471
cells).
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1960  Fig. S8 (related to Fig. 5). GoT-ATAC identifies the novel inflammatory granulocytic
1961  progenitor population. A. UMAP of sorted CD34" stem and progenitors (n = 23,137 cells, 7
1962  samples from 4 individuals), with cell type (left), patient ID (middle) and treatment status (right)
1963  using weighted-nearest neighbor (WNN) analysis of snRNA-seq and snATAC-seq data
1964  (methods). B. UMAP of CD34" cells based on snRNA-seq (left) and snATAC-seq (right) data,
1965  overlaid with cell type assignment. C. Heatmap of top 15 differentially expressed genes for each
1966  HSPC type. Cells of each progenitor type were down-sampled to the same number (n = 100 cells
1967  per cluster). D. Dot plot showing expression levels of cell type-specific gene markers in each
1968  progenitor subset. E. UMAP based on weighted nearest neighbor (WNN) analysis (n = 23,137
1969  cells) highlighting TF motif accessibility. TF accessibility scores added with
1970  AddChromatinModule function in Signac. F. Heatmap showing cell type specific TF accessibility
1971  scores.
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1973  Fig. S9 (related to Fig. 5). Transcription factor activities in inflammatory granulocytic
1974  progenitors. A. Ranked transcription factor (TF) motifs in the most significant individual positive
1975  regulatory peak of RFX3 (top) and RFX2 (bottom, Ist peak: upstream of TSS, 2nd peak:
1976  downstream of TSS) identified using motif scanning with FIMO for a representative sample
1977  (IFNO3, methods). B. Chromatin accessibility track (left) of the regulatory region of RFX3
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1978  (representative example from IFNO03). Violin plots (right) display gene expression level of RFX3.
1979  C. Chromatin accessibility tracks of regulatory regions of RFX2 (representative example from
1980  IFNO3, bottom) and distal region enriched with the two most significant positively regulating loci
1981  (top-left, top-right). Violin plots display gene expression level of RFX2.
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1986  Fig. S10 (related to Fig. 5). RFX3 overexpression induces an IGP-like cell state. A. Chromatin
1987  accessibility tracks of regulatory regions of HLA-DRAI (bottom), distal region enriched with
1988  negative regulatory loci (inset), and IGP-specific regulatory locus (top, representative example

70


https://doi.org/10.1101/2022.09.28.509751
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509751; this version posted August 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1989  from IFNO7). Violin plots display gene expression level of HLA-DRAI. B. Box plots showing
1990  normalized expression of HLA-DR protein expression. P-values from likelihood ratio tests of
1991  linear-mixed modeling (LMM) with/without cell type identity. C. RFX3 overexpression lentiviral
1992 vector validated in K562 cells by assessing RFX3 mRNA levels by RT-QPCR (n = 2 independent
1993  experiments). mRNA levels correspond to RFX3 Ct values normalized to TBP Ct values. P-value
1994  from t-test. D. Normalized frequency of erythroid (BFU-E), granulocytic (CFU-G), granulo-
1995  monocytic (CFU-GM), monocytic (CFU-M) and myeloid (CFU-GEMM) colonies grown from
1996 RFX3-OE CD34" umbilical cord blood (UCB) cells in methylcellulose-based CFU assays
1997  compared to control CD34" UCB cells. P-value from likelihood ratio test linear-mixed modeling
1998 (LMM) with/without RFX3 overexpression. E. Box plots showing number of UMIs (top) and
1999  genes (bottom) detected per cell in sorted CD34" UCB cells after filtering based on quality control
2000  (QC) metrics (methods) from GoT-IM experiments. F. UMAP of sorted CD34" UCB cells (n =
2001 2,609 cells) highlighted by three transduction statuses. G. UMAP of RFX3-OE and mCherry
2002  (control) subsets (n = 1,520 cells) highlighted by their status. H. UMAP of RFX3-OE and control
2003  subset showing gene expression levels of cell type specific gene markers for HSPCs. I. UMAP of
2004  RFX3-OE and control subset, highlighting cell type assignments.
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2007  Fig. S11 (related to Fig. 5). PU.1 is the master regulator of IFNa-mediated lymphoid
2008  differentiation and remodeling of hematopoiesis. A. Left: Normalized cell frequencies of
2009  progenitor subsets at baseline and after IFNa treatment from all GoT-ATAC samples (n = 4
2010  individuals). Cells from each treatment status and individual were down-sampled to the same
2011  number (n= 100 cells per treatment status per sample). Right: Cell frequency distribution as in left
2012 panel for patients IFNO1, IFNO3 and IFNO7. B. Chromatin accessibility tracks of regulatory
2013  regions of SPII (representative example from IFNO7, bottom-left), distal region enriched with the
2014  two most significant positively regulating loci (top-left). Violin plots display gene expression level
2015  of SPI1. Ranked TF motif enrichment of all positive regulatory peaks of the SPI1 gene, relative to
2016  background peaks using the hypergeometric test across three samples IFNO1, IFNO3 and IFNO7
2017  (right, see methods). C. SPI1 gene expression in stem and early progenitors (HSCs, IMPs, MLPs,
2018  MEPs and MDPs) at baseline and upon IFNa treatment. P-value from likelihood ratio test linear-
2019  mixed modeling (LMM) with/without treatment status. D. SP// mRNA levels in K562 cells treated
2020  with IFNa in vitro for 24 hours (assessed by RT-QPCR, n=6 independent experiments). mRNA
2021  levels correspond to SPI1 Ct values normalized to TBP Ct values. P-values from likelihood ratio
2022 test of LMM with/without treatment status. E. Representative western blot showing PU.1 protein
2023  levels in K562 cells treated with IFNa in vitro across for 0, 24 and 48 hours with vinculin as
2024  loading control (left). Log-fold change analysis of quantified PU.1 protein levels based on
2025  luminescence intensity of western blot bands across three replicates (right) (methods). F. CEBPA
2026  and SPII mRNA levels in K562 cells upon expression of control or CEBPA-OE lentiviral vectors
2027  (assessed by RT-QPCR, n=3 independent experiments). mRNA levels correspond to Ct values of
2028  gene target normalized to TBP Ct values (27*4"). P-values from likelihood ratio test of LMM
2029  with/without CEBPA overexpression. G. SPI] mRNA levels in K562 cells upon expression of
2030  control or SPI1-OE lentiviral vectors (assessed by RT-QPCR, n=2-3 independent experiments).
2031 mRNA levels correspond to Ct values of gene target normalized to TBP Ct values (274Y). P-values
2032  from likelihood ratio test of LMM with/without SPI1overexpression. H. Heatmap depicting scaled
2033  mRNA levels(22%Y) of IFN-related genes in K562 cells upon expression of control or SPI1-OE
2034  lentiviral vectors at baseline and after 24-hour IFNa treatment (assessed by RT-QPCR, n = 4-7
2035 independent experiments). Scaled across all data points for each gene. P-values from likelihood
2036  ratio tests of LMM with/without SPI1 overexpression status.
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2039  Fig. S12 (related to Fig. 6). CALR mutations modify the effects of IFNa signaling. A. UMAP
2040  of sorted CD34" stem and progenitors at baseline and after IFNa treatment from GoT-IM
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2041  experiments with CALR mutation status highlighted. Cells from each sample were down-sampled
2042  to the same number for each mutation status (n = 1,000 cells from each mutation status per sample).
2043  B.Normalized frequencies of CALR-mutated (MUT) and wildtype (WT) HSCs at each time-point
2044  (n= 8 individuals with at least 2 time-points). C. Bar plots showing frequencies of MUT and WT
2045  cells in G2/M/S phase as assessed in Fig. 3C for all CD34" GoT-IM samples (n = 11 baseline and
2046 9 IFNa year 1 samples, top) and paired CD34" GoT-IM samples (n = 12 samples from 6
2047  individuals, bottom). P-values were derived from likelihood ratio test of linear mixed modeling
2048  (LMM) with/without treatment status. D. Frequencies of Ki67" myeloid cells before and after
2049  IFNa treatment. P-values from Wilcoxon rank sum test, two-sided. E. Scatter plot showing
2050  pathways from pre-ranked DE gene set enrichment analysis comparing mutated (MUT) versus
2051  wildtype (WT) cells at baseline and after IFNa treatment. Values show the sign of the normalized
2052  enrichment score (NES) multiplied by -log10(Adjusted P-value). Pathways in red are present in
2053  HSCs. P-value from F-test, Pearson correlation. Shading denotes 95% confidence interval. F.
2054  Heatmap showing results of the pre-ranked gene set enrichment analysis of genes DE between
2055 MUT and WT cells at baseline and after [FNa treatment. G. Platelet counts versus frequencies of
2056  MUT MEPs and MkPs. P-value from F-test, Pearson correlation. Shading denotes 95% confidence
2057  interval. H. Normalized mutant cell frequency at baseline versus after [IFNa treatment for GoT-
2058 IM CD34" samples (cell type clusters with at least 10 genotyped cells were within each sample
2059  were used).
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2064  Fig. S13 (related to Fig. 6). CALR mutated cells display enhanced PU.1 binding activity at
2065  regulatory regions with distinct cooperating TF binding sites. A. Top five hits from Ranked
2066  transcription factor (TF) motif enrichment of peaks captured from CUT&RUN targeting PU.1
2067  motif with SEA v5.5.5. B. Differential TF motif enrichment between baseline and IFNa-treated
2068  focusing on exclusive PU.1 peaks in WT (top) and MUT cells (bottom). Analyses with HOMER.
2069  Highlighted are IRF TFs (blue). C. Bar plot showing difference in the number of distal and
2070  proximal PU.1 peaks between control and IFNa-treated UT7-MPL cells. Peaks less than 500 bp
2071  from TSS were considered proximal. D. Differential TF motif enrichment between MUT and WT
2072  exclusive PU.1 peaks in baseline cells. TFs enriched in differentially accessible PU.1 peaks for
2073  MUT and WT cells are highlighted in blue and green respectively.
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2077  Fig. S14 (related to Fig. 6). IFNa perturbs clonal evolution via the IGP differentiation
2078  program. A. Relative density of proportion of Type 1-mutant reads versus SNV-mutant reads in
2079  UMIs captured via GoT, showing mutual exclusivity. B. Normalized frequencies of each
2080  progenitor subset among WT, single MUT (Type 1 CALR) and double MUT (Type 1 and SNV
2081  mutations in CALR) cell populations at each time-point for IFNO2 (n = 7,779 cells). C. Bar plots
2082  showing normalized frequency of baseline HSCs in G1/G2/M/S phases as assessed in Fig. 3C. P-
2083  values from Fisher’s exact test between mutation status and cell-cycle entry status (G2/M/S vs
2084  Gl). D. Volcano plot showing genes differentially expressed (DE) between single mutant and
2085  double mutant HSCs at baseline (n = 890 genotyped HSCs). DE genes identified using logistic
2086  regression model (methods). Genes highlighted in blue are enriched in the TNFa signaling via
2087  NF-kB, red in the unfolded protein response, and orange in the IFNy response (box representation
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is same as Fig. 1E). E. Heatmap showing results of the pre-ranked gene set enrichment analysis
of genes DE between HSC clones at baseline. Values correspond to the sign of the normalized
enrichment score (NES) multiplied by the -log10(Adjusted P-value). F. UMAP of IFN02 patient
based on scRNA-seq data highlighting cell types (left), treatment status (middle) and mutation
status (right). G. UMAP of HSCs from IFNO2 (n = 1,879 cells) overlaid with treatment status and
HSC clones (left) and module score for HSC-specific [IFNa-induced upregulated genes (right). H.
Box plots showing IGP-specific signature score in HSC clones at baseline in IFN0O2. Scores
calculated using IGP-upregulated or downregulated genes (left and right panels, respectively,
methods). P-values from Wilcoxon rank sum test, two-sided.
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2098  Supplementary Tables
2099

2100  Table S1. Summary of patients’ clinical history, pathology and laboratory data, and mutation
2101  status.

2102  Table S2. Number of cells for each cell type in GoT-IM CD34" compartment.

2103  Table S3. Differential gene expression analyses for IGP versus IMP and treated IGP versus treated
2104  HSCI1 via the linear mixed modeling framework.

2105  Table S4. Gene set enrichment analysis of genes differentially expressed between IGPs versus
2106  IMPs and treated IGPs versus treated HSC-IG.

2107  Table S5. RNA velocity analysis with scVelo between HSPC subpopulations. Cluster-to-cluster
2108 transition and connectivity scores calculated based on velocity graph based on pseudotime values.
2109  Table S6. Number of cells for each cell type in GoT-IM CD34" compartment.

2110  Table S7. Differential gene expression analyses for Neul versus Neu2 subsets via the linear mixed
2111  modeling framework. Gene set enrichment analysis of genes differentially expressed between
2112 Neul versus Neu?2 subsets.

2113 Table S8. Differential gene expression analysis between baseline and IFNa-treated HSPC subsets.
2114  Table S9. Gene set enrichment analysis of genes differentially expressed between baseline and
2115  IFNa-treated HSPC subtypes.

2116  Table S10. Differential gene expression analysis between baseline and IFNa-treated CD34"
2117  mature cells subsets.

2118  Table S11. Gene set enrichment analysis of genes differentially expressed between baseline and
2119  IFNa-treated CD34" mature cells subsets.

2120  Table S12. Clinical data multi-parametric flow cytometry data of bone marrow aspirates from
2121  patients with early-phase MPN with [IFNa/HU and without treatment.

2122 Table S13. Number of cells identified for each cell type in each sample via GoT-ATAC.

2123  Table S14. Differential transcription factor motif enrichment analysis between IGPs and HSCs
2124 under IFN« treatment.

2125  Table S15. Motifs identified in peaks linked with RFX2/3 via motif scanning with FIMO.

2126  Table S16. Over-enrichment motif analysis for peaks linked with AP-1 genes and SPI1 gene.
2127  Table S17. Motifs identified in peaks linked with MHC class II genes.

2128  Table S18. Genes positively regulated by RFX2 and RFX3 using gene-peak cis-association.
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2129  Table S19. Differential gene expression analyses for IGP-like vs IMP subsets in CD34" cells with
2130  RFX3 overexpression. Gene set enrichment analysis of genes differentially expressed between
2131  IGP-like vs IMP subsets.

2132 Table S20. Differential transcription factor motif enrichment analysis between baseline and I[FNa-
2133 treated HSCs.

2134  Table S21. Differential gene expression analysis between CALR-mutated and wildtype cells at
2135  baseline in HSPC subsets.

2136  Table S22. Gene set enrichment analysis of genes differentially expressed between CALR-mutated
2137  and wildtype cells at baseline in HSPC subsets.

2138  Table S23. Differential gene expression analysis between CALR-mutated and wildtype cells after
2139  IFNa treatment in HSPC subsets.

2140  Table S24. Gene set enrichment analysis of genes differentially expressed between CALR-mutated
2141  and wildtype cells after [IFNa treatment in HSPC subsets.

2142 Table S25. Differential transcription factor motif enrichment analysis between MUT vs WT stem
2143  and early progenitor cells at baseline and upon IFNa treatment.

2144  Table S26. Motifs identified in PU.1 bound peaks captured from CUT&RUN data of CALR-
2145  mutated versus WT UT-7 cells.

2146  Table S27. Differential TF motif enrichment in MUT and WT exclusive PU.1 peaks at baseline
2147  and upon IFNa treatment.

2148  Table S28. Differential TF motif enrichment in [IFNa and Baseline exclusive PU.1 peaks for MUT
2149  and for WT.

2150  Table S29. Differential gene expression analysis between HSC clones from IFN02 at baseline.
2151  Table S30. Gene set enrichment analysis of genes differentially expressed between HSC clones
2152 from IFNO2.

2153  Table S31. List of antibodies used for FACS, CITE-seq, and Cell Hashing and primer sequences
2154  used in GoT-IM, GoT-ATAC, and RT-PCR.
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