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Abstract

The maturation of systems immunology methodologies requires novel and transparent

computational frameworks capable of integrating diverse data modalities in a reproducible manner.

Here, we present the ePlatypus computational immunology ecosystem for immunogenomics data

analysis, with a focus on adaptive immune repertoires and single-cell sequencing. ePlatypus is a

web-based platform and provides programming tutorials and an integrative database that elucidates

selection patterns of adaptive immunity. Furthermore, the ecosystem links novel and established

bioinformatics pipelines relevant for single-cell immune repertoires and other aspects of

computational immunology such as predicting ligand-receptor interactions, structural modeling,

simulations, machine learning, graph theory, pseudotime, spatial transcriptomics and phylogenetics.

The ePlatypus ecosystem helps extract deeper insight in computational immunology and

immunogenomics and promote open science.

Main

The fields of systems and computational immunology have advanced substantially in recent years,

most notably through progress in genomics and single-cell sequencing, which are transforming the

measurement of adaptive immune responses from qualitative to quantitative science. In recent
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years, a number of bioinformatic software tools have been developed that provide rapid and facile

exploration of single-cell RNA sequencing (scSeq) data and perform analysis such as differential

gene expression, cell clustering and transcriptional phenotyping (Efremova et al. 2020; Satija et al.

2015). However, in the context of immunogenomics, lymphocytes (B and T cells) and their

transcriptomes and immune receptor repertoires (B cell receptor, BCR and T cell receptor, TCR),

there is a lack of software enabling the simultaneous interrogation and integration of multiple

approaches capable of deconstructing high-dimensional immune responses, such as phylogenetics,

machine learning, graph theory, and structural modeling. Moreover, although deep sequencing of

immune repertoires has become a common method in modern immunology, locating, downloading,

and integrating data across experiments and research groups remains challenging. Finally, most

immunogenomics software tools require computational expertise involved in analyzing such

feature-rich datasets (Borcherding et al., 2020; Yaari & Kleinstein, 2015; Yermanos et al., 2021).

Here, we present ePlatypus, a computational immunology ecosystem that expands upon Platypus,

a previously developed immunogenomics software. The ePlatypus ecosystem (Figure 1) consists of

an R package hosted on CRAN and possesses hundreds of functions, including those most relevant

for single-cell immunogenomics (transcriptome and immune repertoires) as well as many other

aspects of computational immunology. These include the following: i) profiling the relationship

between clonal expansion and transcriptional phenotypes to identify distinct activation phenotypes

of expanded lymphocytes (Figure S1), ii) pseudobulk differential expression pipelines to robustly

characterize transcriptional clusters leveraging methods originally designed for bulk

RNA-sequencing (Figure S2), iii) immune repertoire diversity metrics to characterize clonal

distributions and to ensure sufficient sampling depths have been recovered (Figure S3), iv)

phylogenetics to identify evolutionary trajectories and intraclonal network properties of B cells during

infection (Figure S4), v) B and T cell sequence similarity networks to identify fundamental principles

of lymphocyte repertoire architecture in the course of an immune response (Figure S4), vi)

machine-learning guided classification to predict BCR and TCR specificity and further uncover

feature importance of antigen-specific sequences (Figure S5), vii) predicting ligand-receptor

interactions under homeostatic and disease conditions using the CellphoneDB repository (Efremova

et al. 2020) (Figure S6), viii) spatial transcriptomics to spatially interrogate gene expression patterns

and further integrate clonal selection and clonal evolution of adaptive immune responses (Figure S7),
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ix) and structural modeling of immune receptor sequences and repertoires using multiple external

tools including AlphaFold, IgFold, and DeepAb (Ruffolo et al. 2022; Jumper et al. 2021) (Figure S8).

Importantly, ePlatypus currently hosts an online portal with 20 tutorials and walk-throughs (Figure

S9), each of which contain code, comments, and explanatory text (Figure S10) for various

computational immunology frameworks (Table S1, Figure S1).

Additionally, the ePlatypus ecosystem contains a database component, PlatypusDB, that directly

integrates into the R programming language, thereby allowing the rapid analysis and integration of B

and T cells containing both adaptive immune receptor information (VDJ) and single-cell

transcriptomes (GEX). PlatypusDB both stores raw output files from the commonly used aligner tool

Cellranger (10x Genomics) and also holds the immune-relevant data in the form of an R object that

can be loaded directly into the R environment without explicitly requiring file download. Importantly,

the data is stored as both the processed aligned output and as a preprocessed R object that

contains transcriptome, immune repertoire, and metadata information. Within the programming

interface, the user has the ability to perform the following actions: i) download entire public

sequencing datasets, ii) download individual samples from publications, and iii) download and

integrate public repertoires with samples stored locally (Figure 1). While the ePlatypus development

team will continuously update the ecosystem with newly published datasets, external users can also

submit their preprocessed immune receptor repertoires directly for manual curation and addition to

the database.

To demonstrate several use cases of the ePlatypus computational ecosystem, we integrated and

analyzed multiple single-cell transcriptomes and immune receptor repertoires across different

disease conditions, viral infections, and vaccination studies. We directly downloaded murine T cell

repertoires from previously published datasets containing both CD4 and CD8 T cells from conditions

such as acute and chronic viral infections (Khatun et al., 2021; Kuhn et al., 2022; Merkenschlager et

al., 2021; Shlesinger et al., 2022), homeostatic aging (Yermanos, et al., 2021) and experimental

autoimmune encephalomyelitis (Shlesinger et al., 2022) (Table S2). Following transcriptional

integration with Harmony (Korsunsky et al., 2019), which aims to reduce batch effects across

different datasets, we visualized all cells using uniform manifold approximation projection (UMAP)

(Figure S11A, S11B). This demonstrated two major transcriptional regions, dominated by either Cd4

or Cd8 gene expression, which could be simultaneously interrogated with other known gene markers
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of activation or exhaustion such as Cd44, Ifng, Pdcd1, Lag3 and Il7r (Figures S11B, S12).

Supplementing this focused analysis with ProjectTILS, a recently developed reference atlas which

helps resolve murine T cell heterogeneity of tumor-infiltrating T cells (Andreatta et al., 2021),

demonstrated that T cells from PlatypusDB almost entirely cover the ProjecTILs main reference

dataset (Figures S11C, S11D, S11E, S13). To highlight the potential to link repertoire features with

transcriptional heterogeneity, we visualized the most expanded T cell clones on the transcriptional

landscape (Figure S11F). This demonstrated diverse levels of clonal expansion within the database,

with those expanded clones corresponding to a relative upregulation of activation markers compared

to those with lower expansion (Figure S12).

Next, we used ePlatypus to investigate whether similar transcriptional heterogeneity could be

detected for B cells present in the PlatypusDB. Multiple datasets derived from murine models of

infection, immunization and autoimmune disease (Agrafiotis et al., 2021; Mathew et al., 2021b;

Neumeier et al., 2021; Shlesinger et al., 2022; Yewdell et al., 2021) were integrated as previously

described (Table S2). Transcriptional clustering suggested that common B cell clusters were present

across multiple datasets (Figure S14A), which exhibited varying expression levels of markers relating

to antibody secretion and B cell differentiation (e.g. Cd138, Xbp1, Slamf7) (Figure S15) and diverse

isotype usage (Figure S14B). The analyses presented here highlights the breadth of B and T cell

phenotypes and selection patterns already available within ePlatypus, which will only continue to

grow as more user-supplied public datasets are added.

The maturation of systems immunology methodologies requires novel and transparent

computational frameworks capable of integrating diverse data modalities in a reproducible manner.

The ePlatypus ecosystem, composed of a core R package with hundreds of functions, programming

tutorials, and a comprehensive database, helps extract deeper insight in immunogenomics while

promoting open science.
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Figure 1. Breadth of the ePlatypus Computational Immunology Ecosystem. The ecosystem
currently is composed of a core R package that has pipelines pertaining to immune repertoires, gene
expression, receptor-ligand interactions, spatial transcriptomics, pseudotime, simulations, structural
modeling and machine learning. Similarly, the ecosystem contains an integrated database and a
website currently containing 20 tutorials with accompanying code.
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Figure S1. Differentially expressed genes between lowly (n=1 cell per clone) and highly (n>1
cell per clone) expanded clones for different B cell datasets. Positive log2(avgFC) indicates
upregulated genes in the expanded clones for all datasets. Headers indicate the origin of the dataset
as can be found in PlatypusDB.
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Figure S2. Pseudobulk pipeline within the ePlatypus ecosystem. A. Graphical overview of the
Pseudobulk workflow. B. Violin plots displaying the expression levels of differentially expressed
genes between two user-defined categories (group 1 and group 2). Single-cell transcriptional clusters
2, 3, 5 and 9 were grouped in comparison levels (or clusters) according to user-defined categories.
Cells within the same comparison level belonging to different groups were tested for differential gene
expression using the Platypus pseudo_bulk_DE function. C. Heatmap highlighting normalized
expression levels of differentially expressed genes between the different comparison levels.
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Figure S3. Sampling and diversity analysis pipelines. A. Graphical overview of the sampling and
diversity workflow. Single-cell immune repertoire sequencing samples are formatted into a single
VDJ_GEX_matrix object, which can be supplied to downstream calculations of diversity, rarefaction,
and ordination analyses. B. VDJ_diversity includes a wide range of α and β-diversity calculators.
α-diversity is displayed as per-sample bar plots for the Chao1 index, whereas β-diversity is shown
as a heatmap. C. Dimensionality reduction on the abundance data can be performed using
VDJ_ordination – several dimensionality reduction algorithms are available inside the function
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(UMAP, t-SNE, PCA, PCoA). D. Rarefaction curves can be displayed using the VDJ_rarefaction
function: in this example, the curve indicative of each Hill number is grouped by sample.
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Figure S4. Repertoire similarity networks and quantification. A. The AntibodyForests pipeline
designed for network inference, direct visualization, and network analysis of immune receptor
minimum spanning trees or sequence similarity graphs. B. Clusters can be determined in a sequence
similarity network using the AntibodyForests_communities function and then colored using the
AntibodyForests_plot function. Moreover, the tool can produce per-cluster bar plots of various
sequence or cell features (e.g., the Seurat transcriptomic cluster per sequence-similarity clusters). C.
The AntibodyForests_metrics function calculates a wide range of node and edge metrics for the
resulting AntibodyForests networks: in this case, a violin plot depicts the node degree distribution
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across each Seurat transcriptomic cluster for the similarity graph showcased in B (each node was
assigned the most frequent Seurat cluster across all cells with that particular receptor sequence).

Figure S5. Machine learning pipelines for adaptive immune receptor classification. A. Workflow
for machine learning (ML) classification of virus-specificity within the ePlatypus Ecosystem. B.
Receiver operating characteristic (ROC) curves and area under the curve (AUC) scores for different
classification models (logreg: logistic regression, rForest: random forest, gnb: gaussian naive bayes,
xgb: XG Boost, svm: Support vector machine) for binary binding vs non-binding classification of
virus-specific T cell receptors following viral infection. C. Confusion matrices for each of the models
shown in (B). Green intensity is proportional to the number of true positives and true negatives, while
red intensity  is proportional to the number of false negatives and false positives.
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Figure S6. Predicting receptor-ligand interaction using CellphoneDB. A. Graphical overview for
processing, generating, and analyzing ligand-receptor interactions. B. Heatmap displaying the level
of interaction between cells belonging to different clusters. The interaction level is calculated on the
single-cell gene expression data using the CellPhoneDB software. The heatmap is part of the output
from the Platypus CellPhoneDB_analyse function. C. Dot plot depicting the interaction levels of the
gene pairs reported (y-axis) in the cluster pairs reported (x-axis). Color of the dot indicates the
logarithm of the ligand-receptor interaction mean value across cells of the cluster pair. Size of the dot
indicates the negative logarithm of the p-value, highlighting which interactions are to be considered
significant. The dot plot is part of the output of CellPhoneDB_analyse. A customized version of the
plot can be generated using the dot_plot function by selecting the gene and cluster pairs to be
displayed, in addition to a mean or p-value threshold.
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Figure S7. Spatial transcriptomics analysis pipeline. A. Graphical overview for the generation and
analysis of spatial transcriptomics experiments. B. Unsupervised transcriptional clustering of cells
from a human lymph node (LN) sample. The colors indicate the cluster to which the cell belongs for
either all cells (right) or only T cells (right).
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Figure S8. The Steropodon pipeline for immune receptor structural modeling and integrated,
cross-repertoire analysis. A. The Steropodon workflow for obtaining receptor structures, starting
from the Platypus VGM object. B. A sample structure from the TNFR2 dataset obtained via
Steropodon_model and visualized using Steropodon_visualize, with the CDR regions labelled. C. A
heatmap of the root mean square deviation (RMSD) between structures from the 10 most frequent
clonotypes in 6 samples from the TNFR2 dataset, showcasing the overall structural similarities at the
intra and cross-repertoire levels. D. UMAP projection of the gene expression vectors for each cell
corresponding to the structures modeled from the 10 most expanded clonotypes from the TNFR2
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dataset (left), UMAP projection of the coordinate vectors of the modeled structures after structural
alignment (middle), and UMAP projection of the multimodal embeddings for the 2 modalities from
before, integrated using Seurat’s weighted nearest neighbors algorithm. E. UMAP projection of the
GEX values of all cells in the 6 samples selected from the TNFR2 dataset, with cells highlighted by
the structural clusters obtained on the coordinate feature vectors from D and the distance matrix
from C, respectively, following hierarchical clustering.
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Figure S9. Example of three vignettes available within the ePlatypus Computational
Immunology Ecosystem. All other available vignettes presented on the website are detailed in Table
S1.
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Figure S10. Example of one walk-through present in the ePlatypus Computational Immunology
Ecosystem.
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Figure S11. Repertoire and phenotypic breadth of PlatypusDB. A. Uniform manifold
approximation projection of murine T cells from various experimental conditions. Each point
represents an individual cell and color corresponds to the Seurat assigned cluster. B. Dottile plot
showing T cell subset assignment across all datasets based on expression of specific gene lists. C.
Projection of reference dataset from projectTILS coloured by T cell phenotype. D. Projection of the
complete T cell repertoire (black) over reference dataset from projecTILS (Figure S8C). E. Distribution
of T-cell types across experiments from projectTILS. F. Uniform manifold approximation projection of
murine T cells from various experimental conditions where each point represents an individual cell.
Cells belonging to the most expanded clones overall are highlighted. Clones were defined as
containing identical CDRb3+CDRa3 sequences.
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Figure S12. Uniform manifold approximation projection (UMAP) plots showing gene
expression for selected T cell associated genes.

Figure S13. Uniform manifold approximation projection of each individual experiment over the
projecTILS reference dataset.
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Figure S14. PlatypusDB contains a diverse collection of B cell phenotypes. A. Dottile plot
showing B cell subset assignment across all clusters based on expression of specific gene lists
(Mathew et al. 2021). B. Analysis of the top 30 most highly expanded clones across all experimental
conditions. Clonotyping was performed based on those B cells containing identical HCDR3 +
LCDR3 amino acid sequences. The clones were colored by isotype expression.
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Figure S15. Uniform manifold approximation projection (UMAP) plots showing gene
expression for selected B cell genes.
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Vignette References of

implemented tools
Content overview

Quickstart Overview of Platypus functions starting from import modes, central
processing via VDJ_GEX_matrix and basic GEX, VDJ and integrated
VDJ-GEX analysis

VDJ-GEX matrix Deep dive into the standard Platypus VDJ GEX matrix format (VGM) and
advanced parameters during preprocessing

PlatypusDB Tutorial for downloading, processing and merging datasets from
PlatypusDB as well as local datasets.

Clonotyping Deep dive into clonotyping strategies available in Platypus and options for
dealing cells with less or more than 1 VDJ 1 VJ chains

VDJ-GEX integration Overview of functions to co-analyze VDJ and GEX information and methods
to transfer custom annotations

AIRR compatibility TRUST4 (Song et al., 2021)
AIRR community standards (Vander Heiden et
al., 2018)

Single-cell immune repertoire and transcriptome of FACS sorted Tfh cells in
acute and chronic LCMV infection

Echidna Echidna (Han et al., 2022) Repertoire and GEX data simulations

Antibody Forests Full guide on network inference and analysis of immune receptor repertoires

Phylogenetic trees Flexible pipeline for the generation and visualisation of phylogenetic trees of
BCR and antibody lineages

Bulk repertoires Guide to analysing MiXCR- or MAF-generated bulk repertoire datasets
within the Platypus framework

Pseudo-bulk Tutorial for Platypus functions that allow GEX pseudo-bulking and flexible
differential gene analysis.

TCR lookup and
specificity

VDJdb (Shugay et al., 2018)
McPAS-TCR (Tickotsky et al., 2017)
PIRD (Zhang et al., 2020)

Framework to annotate TCRs using public specificity databases (VDJdb,
McPAS-TCR and PIRD TBAdb) for epitope specificity

Diversity and
sampling

Functions for repertoire diversity and comparative metrics

Sequence Kmers Guide to kmer and motif analysis across repertoires

VDJ dynamics Functions to analyse and visualise longitudinal repertoire dynamics and
tracking of clones

CellphoneDB CellphoneDB (Efremova et al., 2020) Tutorial to run the CellphoneDB receptor-ligand interaction analysis pipeline
within the Platypus framework

ProjecTILs and
pseudotime

ProjecTILs (Andreatta et al., 2021)
Monocle3 (Trapnell et al., 2014)
Velocyto (La Manno et al., 2018)

Guide to using and visualising projection and pseudotime algorithms and
pipelines within the Platypus framework

Machine Learning Tutorial for extraction of features, encoding and predicting repertoire
features within the VDJ GEX matrix object. Features may include receptor
specificity and others.

Structural modelling AlphaFold (Jumper et al. 2021) Pipeline for structural modelling of immune receptors via AlphaFold on
computational clusters.

Spatial
transcriptomics

Guide to analysis and visualisation of 10x Genomics-generated spatial
transcriptomics data within the Platypus framework

Table S1. Overview of current tutorials present within the ePlatypus Computational
Immunology Ecosystem.
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PlatypusDB ID Citation DOI Dataset or publication title

khatun2019a Khatun et al., 2021 10.1084/jem.20200650 Single-cell lineage mapping of a diverse virus-specific naive CD4 T
cell repertoire

kuhn2021a Kuhn et al., 2022 10.3389/fimmu.2022.782441 Clonally expanded virus specific CD8 T cells acquire diverse
transcriptional phenotypes during acute, chronic and latent
infections

Merkenschlager
2021a

Merkenschlager et al.,
2021

10.1038/s41586-021-03187-x Dynamic regulation of Tfh selection during germinal centre reaction

mathew2021a Mathew et al. 2021 10.1016/j.celrep.2021.109286 Temporal dynamics of persistent germinal centers and memory B
cell differentiation following respiratory virus infection

shlesinger2022a Shlesinger et al., 2022 10.1101/2022.02.07.479381 Single-cell immune repertoire and transcriptome of GP33+
Tetramer sorted CD8 T cells from single mouse infected with acute
LCMV or chronic MCMV infection

shlesinger2022b Shlesinger et al., 2022 10.1101/2022.02.07.479381 Single-cell immune repertoire and transcriptome of FACS sorted
Tfh cells in acute and chronic LCMV infection

shlesinger2022c Shlesinger et al., 2022 10.1101/2022.02.07.479381 Single-cell immune repertoire and transcriptome of
NP396-tetramer sorted CD8 T cells in a rechallenge déjà vu model

yermanos2021a Yermanos et al., 2021 10.1098/rspb.2020.2793 Single-cell immune repertoire and transcriptome sequencing
reveals that clonally expanded and transcriptionally distinct
lymphocytes populate the aged central nervous system in mice

yermanos2022b NA NA Single-cell immune repertoire and transcriptome sequencing of Tfh
cells in Influenza infection

kreiner2021a Shlesinger et al., 2022 10.1101/2022.02.07.479381 Characterization of immune repertoires and phenotypes of  T cells
in experimental autoimmune encephalomyelitis by single cell
sequencing

kreiner2021b Shlesinger et al., 2022 10.1101/2022.02.07.479381 Characterization of immune repertoires and phenotypes of  B cells
in experimental autoimmune encephalomyelitis by single cell
sequencing

yewdell2021a Yewdell et al., 2021 10.1016/j.celrep.2021.109961 Temporal dynamics of persistent germinal centers and memory B
cell differentiation following respiratory virus infection

neumeier2021a Neumeier et al., 2021 10.1002/eji.202149331 Single-cell sequencing reveals clonally expanded plasma cells
during chronic viral infection produce virus-specific and
cross-reactive antibodies

neumeier2021b Neumeier et al., 2021 10.1002/eji.202149331 Single-cell sequencing reveals clonally expanded plasma cells
during chronic viral infection produce virus-specific and
cross-reactive antibodies

agrafiotis2021a Agrafiotis et al., 2021 10.1101/2021.11.09.467876 B cell clonal expansion is correlated with antigen-specificity in
young but not old mice

Table S2. List of datasets used for the examples and analysis in this manuscript. The
PlatypusDB ID is used in code to download datasets. In some cases, more than one dataset was
published within the same publication. In that case the title corresponds to the dataset, while the
citation and doi correspond to the overarching publication.
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Online Methods

PlatypusDB architecture: The computational infrastructure for PlatypusDB was developed based

on the analysis package Platypus and the Google Cloud storage API. The process of uploading a

dataset includes the following steps: First, raw sequencing files are sourced locally, downloaded

from public repositories such as GEO, or acquired directly from another research group. Raw reads

were then aligned with Cellranger 6.0.1 to the following 10x Genomics reference genomes:

refdata-gex-mm10-2020-A, refdata-cellranger-vdj-GRCm38-alts-ensembl-5.0.0,

refdata-gex-GRCh38-2020-A, and refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0. Raw output

files were then uploaded as compressed directories to the PlatypusDB Google Cloud storage

database. Raw outputs were then loaded and processed in R resulting in two formats. Firstly a

per-sample list object containing main Cellranger output tables and secondly a VDJ-GEX-matrix

object from Platypus v3.2.2. This object was generated using the VDJ_GEX_matrix function with

default settings, if not otherwise noted. All output objects were uploaded to PlatypusDB using the

package googleCloudStorageR. To allow for easy access to the database, download of R objects as

well as compressed directories is available directly via URL without the need to install Google Cloud

storage compatibility packages for R. The URL for a database lookup table is delivered with Platypus

and allows for a single access point to the database, which remains constant as more datasets will

be added in the future.

Data analysis: The filtered feature matrix directory was supplied as input to the VDJ_GEX_matrix

function in the R package Platypus (v3.3) (Yermanos, Agrafiotis, et al. 2021), which uses the

transcriptome analysis workflow of the R package Seurat (Satija et al. 2015). Only those cells

containing less than 20% of mitochondrial reads were retained in the analysis. Genes involved in the

adaptive immune receptor (e.g., TRB, TRBV1-1), were removed from the count matrix to prevent

clonal relationships from influencing transcriptional phenotypes. Gene expression was normalized

using the “harmony” argument in the VDJ_GEX_matrix function. 2000 variable features were selected

using the “vst” selection method and used as input to principal component analysis (PCA) using the

first 10 dimensions. Graph-based clustering using the Louvain modularity optimization and

hierarchical clustering was performed using the functions FindNeighbors and FindClusters in Seurat

using the first ten dimensions and a cluster resolution of 0.5. UMAP was similarly inferred using the
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first ten dimensions. The FindMarkers function from Seurat was used when calculating differentially

expressed genes (both across groups or across clusters) with logfc.threshold set to 0 and minimum

number of cells expressing each gene set to 0.25 and subsequently supplied to the GEX_volcano

function from Platypus. Mitochondrial and ribosomal genes were removed when visualizing DE

genes. Feature plots were produced by supplying genes of interest to the function FeaturePlot in

Seurat. Module scores for public gene sets (Mathew et al. 2021) were calculated using the

AddModuleScore from Seurat. Cells containing no or more than one α/heavy and β/light chain were

filtered out for TCR/BCR repertoire analysis. Clones were defined by identical CDR3α/CDRH3 and

CDR3β/CDRL3 sequence (nucleotide or amino acid sequence) across all repertoires. Clones

represented by more than one cell were considered highly-expanded clones, while single-celled

clones were defined as lowly-expanded. The projection of cells onto reference UMAPs and cell state

predictions were done using the R package ProjecTILs (Andreatta et al. 2021) under default

conditions. Experiments were either individually or all together projected onto the ProjecTILs atlas.

For Figures S1 to S8, single-cell immune repertoire sequencing experiments present in PlatypusDB

were formatted into a single VDJ_GEX_matrix object that was then supplied to downstream analyses

pipelines. Specifically, the pseudobulk analysis was performed using the pseudo_bulk_DE function

from Platypus. Sampling and diversity analyses were performed using the VDJ_diversity and

VDJ_rarefaction. The sequence similarity network of clusters was generated using the

AntibodyForests_communities function and then colored using the AntibodyForests_plot. Node and

edge metrics were calculated using the AntibodyForests_metrics function from Platypus. The

PlatypusML_classification function from Platypus, which takes input the encoded features obtained

from the PlatypusML_extract_features function, was used to run cross validation on a specified

number of folds for different classification models (XGBoost, SVM, Random Forest, Logistic

Regression & Gaussian Naive Bayes), outputting the AUC scores, ROC curve and confusion matrix

for each classification model. Prediction of receptor-ligand interaction was calculated on the

single-cell gene expression data using the CellPhoneDB software. The heatmap and dot plot were

generated as an output of the CellPhoneDB_analyse function from Platypus. Receptor structures in

the Steropodon workflow were obtained using the Steropodon_model function and visualized using

the Steropodon_visualize function in Platypus.
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Data visualization: Figure 1 and the supplementary graphical overviews were created with

Biorender.com. Feature plots were produced using “FeaturePlot” (Seurat 4.0). Volcano plots were

produced using “GEX_volcano” (Platypus v3.3). Dottile plots were produced using DotPlot (Seurat

4.0). All other figures were produced using Prism v9 (Graphpad).

Data availability: The accession numbers and publications for the sequencing data used in this

manuscript are located in table S1. Platypus code used in this manuscript can be found at

github.com/alexyermanos/Platypus.
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