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Abstract

The maturation of systems immunology methodologies requires novel and transparent
computational frameworks capable of integrating diverse data modalities in a reproducible manner.
Here, we present the ePlatypus computational immunology ecosystem for immunogenomics data
analysis, with a focus on adaptive immune repertoires and single-cell sequencing. ePlatypus is a
web-based platform and provides programming tutorials and an integrative database that elucidates
selection patterns of adaptive immunity. Furthermore, the ecosystem links novel and established
bioinformatics pipelines relevant for single-cell immune repertoires and other aspects of
computational immunology such as predicting ligand-receptor interactions, structural modeling,
simulations, machine learning, graph theory, pseudotime, spatial transcriptomics and phylogenetics.
The ePlatypus ecosystem helps extract deeper insight in computational immunology and

immunogenomics and promote open science.

Main

The fields of systems and computational immunology have advanced substantially in recent years,
most notably through progress in genomics and single-cell sequencing, which are transforming the

measurement of adaptive immune responses from qualitative to quantitative science. In recent
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years, a number of bioinformatic software tools have been developed that provide rapid and facile

exploration of single-cell RNA sequencing (scSeq) data and perform analysis such as differential
gene expression, cell clustering and transcriptional phenotyping (Efremova et al. 2020; Satija et al.
2015). However, in the context of immunogenomics, lymphocytes (B and T cells) and their
transcriptomes and immune receptor repertoires (B cell receptor, BCR and T cell receptor, TCR),
there is a lack of software enabling the simultaneous interrogation and integration of multiple
approaches capable of deconstructing high-dimensional immune responses, such as phylogenetics,
machine learning, graph theory, and structural modeling. Moreover, although deep sequencing of
immune repertoires has become a common method in modern immunology, locating, downloading,
and integrating data across experiments and research groups remains challenging. Finally, most
immunogenomics software tools require computational expertise involved in analyzing such

feature-rich datasets (Borcherding et al., 2020; Yaari & Kleinstein, 2015; Yermanos et al., 2021).

Here, we present ePlatypus, a computational immunology ecosystem that expands upon Platypus,
a previously developed immunogenomics software. The ePlatypus ecosystem (Figure 1) consists of
an R package hosted on CRAN and possesses hundreds of functions, including those most relevant
for single-cell immunogenomics (transcriptome and immune repertoires) as well as many other
aspects of computational immunology. These include the following: i) profiling the relationship
between clonal expansion and transcriptional phenotypes to identify distinct activation phenotypes
of expanded lymphocytes (Figure S1), ii) pseudobulk differential expression pipelines to robustly
characterize transcriptional clusters leveraging methods originally designed for bulk
RNA-sequencing (Figure S2), iii) immune repertoire diversity metrics to characterize clonal
distributions and to ensure sufficient sampling depths have been recovered (Figure S3), iv)
phylogenetics to identify evolutionary trajectories and intraclonal network properties of B cells during
infection (Figure S4), v) B and T cell sequence similarity networks to identify fundamental principles
of lymphocyte repertoire architecture in the course of an immune response (Figure S4), vi)
machine-learning guided classification to predict BCR and TCR specificity and further uncover
feature importance of antigen-specific sequences (Figure S5), vii) predicting ligand-receptor
interactions under homeostatic and disease conditions using the CellphoneDB repository (Efremova
et al. 2020) (Figure S6), viii) spatial transcriptomics to spatially interrogate gene expression patterns

and further integrate clonal selection and clonal evolution of adaptive immune responses (Figure S7),
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ix) and structural modeling of immune receptor sequences and repertoires using multiple external

tools including AlphaFold, IgFold, and DeepAb (Ruffolo et al. 2022; Jumper et al. 2021) (Figure S8).
Importantly, ePlatypus currently hosts an online portal with 20 tutorials and walk-throughs (Figure
S9), each of which contain code, comments, and explanatory text (Figure S10) for various

computational immunology frameworks (Table S1, Figure S1).

Additionally, the ePlatypus ecosystem contains a database component, PlatypusDB, that directly
integrates into the R programming language, thereby allowing the rapid analysis and integration of B
and T cells containing both adaptive immune receptor information (VDJ) and single-cell
transcriptomes (GEX). PlatypusDB both stores raw output files from the commonly used aligner tool
Cellranger (10x Genomics) and also holds the immune-relevant data in the form of an R object that
can be loaded directly into the R environment without explicitly requiring file download. Importantly,
the data is stored as both the processed aligned output and as a preprocessed R object that
contains transcriptome, immune repertoire, and metadata information. Within the programming
interface, the user has the ability to perform the following actions: i) download entire public
sequencing datasets, ii) download individual samples from publications, and iii) download and
integrate public repertoires with samples stored locally (Figure 1). While the ePlatypus development
team will continuously update the ecosystem with newly published datasets, external users can also
submit their preprocessed immune receptor repertoires directly for manual curation and addition to

the database.

To demonstrate several use cases of the ePlatypus computational ecosystem, we integrated and
analyzed multiple single-cell transcriptomes and immune receptor repertoires across different
disease conditions, viral infections, and vaccination studies. We directly downloaded murine T cell
repertoires from previously published datasets containing both CD4 and CD8 T cells from conditions
such as acute and chronic viral infections (Khatun et al., 2021; Kuhn et al., 2022; Merkenschlager et
al., 2021; Shlesinger et al., 2022), homeostatic aging (Yermanos, et al., 2021) and experimental
autoimmune encephalomyelitis (Shlesinger et al., 2022) (Table S2). Following transcriptional
integration with Harmony (Korsunsky et al., 2019), which aims to reduce batch effects across
different datasets, we visualized all cells using uniform manifold approximation projection (UMAP)
(Figure S11A, S11B). This demonstrated two major transcriptional regions, dominated by either Cd4

or Cd8 gene expression, which could be simultaneously interrogated with other known gene markers
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of activation or exhaustion such as Cd44, Ifng, Pdcd1, Lag3 and II7r (Figures S11B, S12).

Supplementing this focused analysis with ProjectTILS, a recently developed reference atlas which
helps resolve murine T cell heterogeneity of tumor-infiltrating T cells (Andreatta et al., 2021),
demonstrated that T cells from PlatypusDB almost entirely cover the ProjecTILs main reference
dataset (Figures S11C, S11D, S11E, S13). To highlight the potential to link repertoire features with
transcriptional heterogeneity, we visualized the most expanded T cell clones on the transcriptional
landscape (Figure S11F). This demonstrated diverse levels of clonal expansion within the database,
with those expanded clones corresponding to a relative upregulation of activation markers compared

to those with lower expansion (Figure S12).

Next, we used ePlatypus to investigate whether similar transcriptional heterogeneity could be
detected for B cells present in the PlatypusDB. Multiple datasets derived from murine models of
infection, immunization and autoimmune disease (Agrafiotis et al., 2021; Mathew et al., 2021b;
Neumeier et al., 2021; Shlesinger et al., 2022; Yewdell et al., 2021) were integrated as previously
described (Table S2). Transcriptional clustering suggested that common B cell clusters were present
across multiple datasets (Figure S14A), which exhibited varying expression levels of markers relating
to antibody secretion and B cell differentiation (e.g. Cd138, Xbp1, Slamf7) (Figure S15) and diverse
isotype usage (Figure S14B). The analyses presented here highlights the breadth of B and T cell
phenotypes and selection patterns already available within ePlatypus, which will only continue to

grow as more user-supplied public datasets are added.

The maturation of systems immunology methodologies requires novel and transparent
computational frameworks capable of integrating diverse data modalities in a reproducible manner.
The ePlatypus ecosystem, composed of a core R package with hundreds of functions, programming
tutorials, and a comprehensive database, helps extract deeper insight in immunogenomics while

promoting open science.
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Figure 1. Breadth of the ePlatypus Computational Immunology Ecosystem. The ecosystem
currently is composed of a core R package that has pipelines pertaining to immune repertoires, gene
expression, receptor-ligand interactions, spatial transcriptomics, pseudotime, simulations, structural
modeling and machine learning. Similarly, the ecosystem contains an integrated database and a
website currently containing 20 tutorials with accompanying code.
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Figure S1. Differentially expressed genes between lowly (n=1 cell per clone) and highly (n>1
cell per clone) expanded clones for different B cell datasets. Positive log2(avgFC) indicates
upregulated genes in the expanded clones for all datasets. Headers indicate the origin of the dataset
as can be found in PlatypusDB.
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Figure S2. Pseudobulk pipeline within the ePlatypus ecosystem. A. Graphical overview of the
Pseudobulk workflow. B. Violin plots displaying the expression levels of differentially expressed
genes between two user-defined categories (group 1 and group 2). Single-cell transcriptional clusters
2, 3, 5 and 9 were grouped in comparison levels (or clusters) according to user-defined categories.
Cells within the same comparison level belonging to different groups were tested for differential gene
expression using the Platypus pseudo_bulk_DE function. C. Heatmap highlighting normalized
expression levels of differentially expressed genes between the different comparison levels.
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Figure S3. Sampling and diversity analysis pipelines. A. Graphical overview of the sampling and
diversity workflow. Single-cell immune repertoire sequencing samples are formatted into a single
VDJ_GEX_matrix object, which can be supplied to downstream calculations of diversity, rarefaction,
and ordination analyses. B. VDJ_diversity includes a wide range of a and B-diversity calculators.
a-diversity is displayed as per-sample bar plots for the Chao1 index, whereas [-diversity is shown
as a heatmap. C. Dimensionality reduction on the abundance data can be performed using
VDJ_ordination — several dimensionality reduction algorithms are available inside the function
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(UMAP, t-SNE, PCA, PCoA). D. Rarefaction curves can be displayed using the VDJ_rarefaction

function: in this example, the curve indicative of each Hill number is grouped by sample.
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Figure S4. Repertoire similarity networks and quantification. A. The AntibodyForests pipeline
designed for network inference, direct visualization, and network analysis of immune receptor
minimum spanning trees or sequence similarity graphs. B. Clusters can be determined in a sequence
similarity network using the AntibodyForests_communities function and then colored using the
AntibodyForests_plot function. Moreover, the tool can produce per-cluster bar plots of various
sequence or cell features (e.g., the Seurat transcriptomic cluster per sequence-similarity clusters). C.
The AntibodyForests_metrics function calculates a wide range of node and edge metrics for the
resulting AntibodyForests networks: in this case, a violin plot depicts the node degree distribution
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across each Seurat transcriptomic cluster for the similarity graph showcased in B (each node was

assigned the most frequent Seurat cluster across all cells with that particular receptor sequence).
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Figure S5. Machine learning pipelines for adaptive immune receptor classification. A. Workflow
for machine learning (ML) classification of virus-specificity within the ePlatypus Ecosystem. B.
Receiver operating characteristic (ROC) curves and area under the curve (AUC) scores for different
classification models (logreg: logistic regression, rForest: random forest, gnb: gaussian naive bayes,
xgb: XG Boost, svm: Support vector machine) for binary binding vs non-binding classification of
virus-specific T cell receptors following viral infection. C. Confusion matrices for each of the models
shown in (B). Green intensity is proportional to the number of true positives and true negatives, while
red intensity is proportional to the number of false negatives and false positives.
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Figure S6. Predicting receptor-ligand interaction using CellphoneDB. A. Graphical overview for
processing, generating, and analyzing ligand-receptor interactions. B. Heatmap displaying the level
of interaction between cells belonging to different clusters. The interaction level is calculated on the
single-cell gene expression data using the CellPhoneDB software. The heatmap is part of the output
from the Platypus CellPhoneDB_analyse function. C. Dot plot depicting the interaction levels of the
gene pairs reported (y-axis) in the cluster pairs reported (x-axis). Color of the dot indicates the
logarithm of the ligand-receptor interaction mean value across cells of the cluster pair. Size of the dot
indicates the negative logarithm of the p-value, highlighting which interactions are to be considered
significant. The dot plot is part of the output of CellPhoneDB_analyse. A customized version of the
plot can be generated using the dot_plot function by selecting the gene and cluster pairs to be
displayed, in addition to a mean or p-value threshold.
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from a human lymph node (LN) sample. The colors indicate the cluster to which the cell belongs for
either all cells (right) or only T cells (right).
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Figure S8. The Steropodon pipeline for immune receptor structural modeling and integrated,
cross-repertoire analysis. A. The Steropodon workflow for obtaining receptor structures, starting
from the Platypus VGM object. B. A sample structure from the TNFR2 dataset obtained via
Steropodon_model and visualized using Steropodon_visualize, with the CDR regions labelled. C. A
heatmap of the root mean square deviation (RMSD) between structures from the 10 most frequent
clonotypes in 6 samples from the TNFR2 dataset, showcasing the overall structural similarities at the
intra and cross-repertoire levels. D. UMAP projection of the gene expression vectors for each cell
corresponding to the structures modeled from the 10 most expanded clonotypes from the TNFR2
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dataset (left), UMAP projection of the coordinate vectors of the modeled structures after structural
alignment (middle), and UMAP projection of the multimodal embeddings for the 2 modalities from
before, integrated using Seurat’s weighted nearest neighbors algorithm. E. UMAP projection of the
GEX values of all cells in the 6 samples selected from the TNFR2 dataset, with cells highlighted by
the structural clusters obtained on the coordinate feature vectors from D and the distance matrix
from C, respectively, following hierarchical clustering.
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Platypus and PlatypusDB vignettes Links

View on CRAN

Here we provide a comprehensive overview of the functions of the Platypus package in form of concise vignettes by topic. ~ Browse source code
If you are new to Platypus we suggest to go through in order. As Platypus included many wrapper functions employing Report a bug at
Seurat for GEX analysis, please also refer to the correspdonding. documentation.
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Figure S9. Example of three vignettes available within the ePlatypus Computational
Immunology Ecosystem. All other available vignettes presented on the website are detailed in Table
S1.
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3. Creating phylogenetic trees via VD|_phylogenetic_trees

1. Choosing the sequence type

The sequence type an be controlled via the sequence.type, as.nuclectide, and trimmed parameters in
VD)_phylogenetic_trees. For sequence.type, the following options are available: VD' for the VDJ full sequence, VJ' for the
full V] sequence, VD).V for the combined VDJ/V] sequences, ‘cdr3’ for the CDR3 region, ‘cdrh3’ for the CORH3 region. To
infer trees for protein sequences, use as.nuclectide = F. If trimmed is set to T, VDJ_phylogenetic_trees will look for the
trimmed full sequences - ensure trim.and.align was set to T when obtaining your VGM using the VD]_GEX_matrix function;
else, trees will be inferred for the raw sequences.

We will next infer trees for the CDR3 sequences, with as.nucleotide set to T. We will only create 3 trees for a single sample
(maximum.lineages = 3 which will subset the VD) for the 3 most abundant clonotypes before creating the trees) for easier
visualization. However, the usual output of VD)_phylogenetic_trees is a nested list of tidytree objects (per sample, per
clonotype), whereas the output of VDJ_phylogenetic_trees_plot is a list of intraclonal trees for each clonotype/lineage
obtained from VDJ_phylogenetic_trees.

We will also set the maximum.sequences parameter to 20 to only obtain trees with a maximum of 20 sequences (the top
20 most frequent sequences per clonotype) and minimum.sequences to 1 (avoiding singletons). Moreover, we will set
include.germline to F (otherwise VD)_phylogenetic_trees will look for germlines/10x references in the VD) and
V)_trimmed_ref columns).

s1_subset <- VDI[VDI$sample_id == 's1',]

p <- sl _subset ¥»>% VDI_phylogenetic_trees(sequence.type = 'cdr3’,
as.nucleoctide = T,
trimmed = F,
minimum.sequences = 3,
maximum. sequences = 28,
maximum.lineages = 3,
include.germline = F) %%

VvDI_phylogenetic_trees plot()

cowplot::plot_grid(plotlist = p)

clonotype_id E
type.! Sequence frequency
® clonotype3
20
clonotype2 g
. @

@«

Sequence frequency

: 0 clonotype_id
100
® = ® clonotype3
. clonotype?2
200 .
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We can see how the first clonotype was filtered out, as it had fewer sequences that the minimum in minimum.sequences.

Contents

1 Introduction
2. Loading the VGM
3. Creating phylogenetic trees via
VD)_phylogenetic_trees
1. Choosing the sequence type

2. Phylogenetic tree algorithms
3. Per-repertoire/global trees

4. Custom tree plots via
VDJ_phylogenetic_trees_plot

5. Version information

Figure S10. Example of one walk-through present in the ePlatypus Computational Immunology

Ecosystem.
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Figure S11. Repertoire and phenotypic breadth of PlatypusDB. A. Uniform manifold
approximation projection of murine T cells from various experimental conditions. Each point
represents an individual cell and color corresponds to the Seurat assigned cluster. B. Dottile plot
showing T cell subset assignment across all datasets based on expression of specific gene lists. C.
Projection of reference dataset from projectTILS coloured by T cell phenotype. D. Projection of the
complete T cell repertoire (black) over reference dataset from projecTILS (Figure S8C). E. Distribution
of T-cell types across experiments from projectTILS. F. Uniform manifold approximation projection of
murine T cells from various experimental conditions where each point represents an individual cell.
Cells belonging to the most expanded clones overall are highlighted. Clones were defined as
containing identical CDRb3+CDRa3 sequences.
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Figure S12. Uniform manifold approximation projection (UMAP) plots showing gene

expression for selected T cell associated genes.
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Figure S13. Uniform manifold approximation projection of each individual experiment over the

projecTILS reference dataset.


https://doi.org/10.1101/2022.09.28.509709
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509709; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

22
A B
] 2000 4
DZ_reentry_module11{® 0000000 - @ -
. . Average IGHM
TFH_signal_modile10 {@9® - e «@o® 'Y I Expregsion % = GHA
Q
5 5 B 1GHD
PC_module9 {- - @@ T N TN &5 1000 1 B IGHE
1 £ L] Unknown
LZ_module8 {je@e 00 000 900 - - 0 2
-1
DZ_module7 { @00 - 00:0- -9 04
-2 10 20 30
naive_like_module6 {980 00000 00 -0 Clonal rank
PreBmem_moduleS{+ @+ coe@ocos -@o oo poreant
Expressed
Bmem_module4 {e@- - ® oo -@-0s0-- - [
® 25
GC_module3 - o009 - - -0 @ 50
@ s
MZ_module2 4+ = s ® - *0 @ 0@ - .100
naive_module1d- -

Cluster

Figure S14. PlatypusDB contains a diverse collection of B cell phenotypes. A. Dottile plot
showing B cell subset assignment across all clusters based on expression of specific gene lists
(Mathew et al. 2021). B. Analysis of the top 30 most highly expanded clones across all experimental
conditions. Clonotyping was performed based on those B cells containing identical HCDR3 +
LCDR3 amino acid sequences. The clones were colored by isotype expression.
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Figure S15. Uniform manifold approximation projection (UMAP) plots showing gene
expression for selected B cell genes.


https://doi.org/10.1101/2022.09.28.509709
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509709; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Vignette

available under aCC-BY-NC-ND 4.0 International license.

References of

implemented tools

Content overview

Quickstart

VDJ-GEX matrix

PlatypusDB

Clonotyping

VDJ-GEX integration

AIRR compatibility

Echidna

Antibody Forests

Phylogenetic trees

Bulk repertoires

Pseudo-bulk

TCR lookup and
specificity

Diversity and
sampling

Sequence Kmers

VDJ dynamics

CellphoneDB

ProjecTILs and
pseudotime

Machine Learning

Structural modelling

Spatial
transcriptomics

TRUST4 (Song et al., 2021)

AIRR community standards (Vander Heiden et

al., 2018)

Echidna (Han et al., 2022)

VDJdb (Shugay et al., 2018)
MCcPAS-TCR (Tickotsky et al., 2017)
PIRD (Zhang et al., 2020)

CellphoneDB (Efremova et al., 2020)

ProjecTILs (Andreatta et al., 2021)
Monocle3 (Trapnell et al., 2014)
Velocyto (La Manno et al., 2018)

AlphaFold (Jumper et al. 2021)

Overview of Platypus functions starting from import modes, central
processing via VDJ_GEX_matrix and basic GEX, VDJ and integrated
VDJ-GEX analysis

Deep dive into the standard Platypus VDJ GEX matrix format (VGM) and
advanced parameters during preprocessing

Tutorial for downloading, processing and merging datasets from
PlatypusDB as well as local datasets.

Deep dive into clonotyping strategies available in Platypus and options for
dealing cells with less or more than 1 VDJ 1 VJ chains

Overview of functions to co-analyze VDJ and GEX information and methods
to transfer custom annotations

Single-cell immune repertoire and transcriptome of FACS sorted Tth cells in
acute and chronic LCMV infection

Repertoire and GEX data simulations

Full guide on network inference and analysis of immune receptor repertoires

Flexible pipeline for the generation and visualisation of phylogenetic trees of
BCR and antibody lineages

Guide to analysing MiXCR- or MAF-generated bulk repertoire datasets
within the Platypus framework

Tutorial for Platypus functions that allow GEX pseudo-bulking and flexible
differential gene analysis.

Framework to annotate TCRs using public specificity databases (VDJdb,
MCcPAS-TCR and PIRD TBAdb) for epitope specificity

Functions for repertoire diversity and comparative metrics

Guide to kmer and motif analysis across repertoires

Functions to analyse and visualise longitudinal repertoire dynamics and
tracking of clones

Tutorial to run the CellphoneDB receptor-ligand interaction analysis pipeline
within the Platypus framework

Guide to using and visualising projection and pseudotime algorithms and
pipelines within the Platypus framework

Tutorial for extraction of features, encoding and predicting repertoire
features within the VDJ GEX matrix object. Features may include receptor
specificity and others.

Pipeline for structural modelling of immune receptors via AlphaFold on
computational clusters.

Guide to analysis and visualisation of 10x Genomics-generated spatial
transcriptomics data within the Platypus framework

24

Table S1. Overview of current tutorials present within the ePlatypus Computational
Immunology Ecosystem.
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Dataset or publication title

khatun2019a

kuhn2021a

Merkenschlager
2021a

mathew2021a

shlesinger2022a

shlesinger2022b

shlesinger2022¢c

yermanos2021a

yermanos2022b

kreiner2021a

kreiner2021b

yewdell2021a

neumeier2021a

neumeier2021b

agrafiotis2021a

Table S2.

Khatun et al., 2021

Kuhn et al., 2022

Merkenschlager
2021

Mathew et al. 2021

Shlesinger et al., 2022

Shlesinger et al., 2022

Shlesinger et al., 2022

Yermanos et al., 2021

NA

Shlesinger et al., 2022

Shlesinger et al., 2022

Yewdell et al., 2021

Neumeier et al., 2021

Neumeier et al., 2021

Agrafiotis et al., 2021

et al.,

10.1084/jem.20200650

10.3389/fimmu.2022.782441

10.1038/s41586-021-03187-x

10.1016/j.celrep.2021.109286

10.1101/2022.02.07.479381

10.1101/2022.02.07.479381

10.1101/2022.02.07.479381

10.1098/rspb.2020.2793

NA

10.1101/2022.02.07.479381

10.1101/2022.02.07.479381

10.1016/j.celrep.2021.109961

10.1002/¢ii.202149331

10.1002/€ji.202149331

10.1101/2021.11.09.467876

Single-cell lineage mapping of a diverse virus-specific naive CD4 T
cell repertoire

Clonally expanded virus specific CD8 T cells acquire diverse
transcriptional phenotypes during acute, chronic and latent
infections

Dynamic regulation of Tth selection during germinal centre reaction

Temporal dynamics of persistent germinal centers and memory B
cell differentiation following respiratory virus infection

Single-cell immune repertoire and transcriptome of GP33+
Tetramer sorted CD8 T cells from single mouse infected with acute
LCMV or chronic MCMV infection

Single-cell immune repertoire and transcriptome of FACS sorted
Tth cells in acute and chronic LCMV infection

Single-cell immune repertoire and transcriptome of
NP396-tetramer sorted CD8 T cells in a rechallenge déja vu model

Single-cell immune repertoire and transcriptome sequencing
reveals that clonally expanded and transcriptionally distinct
lymphocytes populate the aged central nervous system in mice

Single-cell immune repertoire and transcriptome sequencing of Tth
cells in Influenza infection

Characterization of immune repertoires and phenotypes of T cells
in experimental autoimmune encephalomyelitis by single cell
sequencing

Characterization of immune repertoires and phenotypes of B cells
in experimental autoimmune encephalomyelitis by single cell
sequencing

Temporal dynamics of persistent germinal centers and memory B
cell differentiation following respiratory virus infection

Single-cell sequencing reveals clonally expanded plasma cells
during chronic viral infection produce virus-specific and
cross-reactive antibodies

Single-cell sequencing reveals clonally expanded plasma cells
during chronic viral infection produce virus-specific and
cross-reactive antibodies

B cell clonal expansion is correlated with antigen-specificity in
young but not old mice

List of datasets used for the examples and analysis in this manuscript. The

PlatypusDB ID is used in code to download datasets. In some cases, more than one dataset was
published within the same publication. In that case the title corresponds to the dataset, while the
citation and doi correspond to the overarching publication.
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Online Methods

PlatypusDB architecture: The computational infrastructure for PlatypusDB was developed based
on the analysis package Platypus and the Google Cloud storage API. The process of uploading a
dataset includes the following steps: First, raw sequencing files are sourced locally, downloaded
from public repositories such as GEO, or acquired directly from another research group. Raw reads
were then aligned with Cellranger 6.0.1 to the following 10x Genomics reference genomes:
refdata-gex-mm10-2020-A, refdata-cellranger-vdj-GRCm38-alts-ensembl-5.0.0,
refdata-gex-GRCh38-2020-A, and refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0. Raw output
files were then uploaded as compressed directories to the PlatypusDB Google Cloud storage
database. Raw outputs were then loaded and processed in R resulting in two formats. Firstly a
per-sample list object containing main Cellranger output tables and secondly a VDJ-GEX-matrix
object from Platypus v3.2.2. This object was generated using the VDJ_GEX_matrix function with
default settings, if not otherwise noted. All output objects were uploaded to PlatypusDB using the
package googleCloudStorageR. To allow for easy access to the database, download of R objects as
well as compressed directories is available directly via URL without the need to install Google Cloud
storage compatibility packages for R. The URL for a database lookup table is delivered with Platypus
and allows for a single access point to the database, which remains constant as more datasets will

be added in the future.

Data analysis: The filtered feature matrix directory was supplied as input to the VDJ_GEX_matrix
function in the R package Platypus (v3.3) (Yermanos, Agrafiotis, et al. 2021), which uses the
transcriptome analysis workflow of the R package Seurat (Satija et al. 2015). Only those cells
containing less than 20% of mitochondrial reads were retained in the analysis. Genes involved in the
adaptive immune receptor (e.g., TRB, TRBV1-1), were removed from the count matrix to prevent
clonal relationships from influencing transcriptional phenotypes. Gene expression was normalized
using the “harmony” argument in the VDJ_GEX _matrix function. 2000 variable features were selected
using the “vst” selection method and used as input to principal component analysis (PCA) using the
first 10 dimensions. Graph-based clustering using the Louvain modularity optimization and
hierarchical clustering was performed using the functions FindNeighbors and FindClusters in Seurat

using the first ten dimensions and a cluster resolution of 0.5. UMAP was similarly inferred using the
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first ten dimensions. The FindMarkers function from Seurat was used when calculating differentially

expressed genes (both across groups or across clusters) with logfc.threshold set to 0 and minimum
number of cells expressing each gene set to 0.25 and subsequently supplied to the GEX_volcano
function from Platypus. Mitochondrial and ribosomal genes were removed when visualizing DE
genes. Feature plots were produced by supplying genes of interest to the function FeaturePlot in
Seurat. Module scores for public gene sets (Mathew et al. 2021) were calculated using the
AddModuleScore from Seurat. Cells containing no or more than one a/heavy and /light chain were
filtered out for TCR/BCR repertoire analysis. Clones were defined by identical CDR3a/CDRH3 and
CDRB3B/CDRL3 sequence (nucleotide or amino acid sequence) across all repertoires. Clones
represented by more than one cell were considered highly-expanded clones, while single-celled
clones were defined as lowly-expanded. The projection of cells onto reference UMAPs and cell state
predictions were done using the R package ProjecTILs (Andreatta et al. 2021) under default
conditions. Experiments were either individually or all together projected onto the ProjecTILs atlas.
For Figures S1 to S8, single-cell immune repertoire sequencing experiments present in PlatypusDB
were formatted into a single VDJ_GEX_matrix object that was then supplied to downstream analyses
pipelines. Specifically, the pseudobulk analysis was performed using the pseudo_bulk_DE function
from Platypus. Sampling and diversity analyses were performed using the VDJ_diversity and
VDJ_rarefaction. The sequence similarity network of clusters was generated using the
AntibodyForests_communities function and then colored using the AntibodyForests_plot. Node and
edge metrics were calculated using the AntibodyForests_metrics function from Platypus. The
PlatypusML _classification function from Platypus, which takes input the encoded features obtained
from the PlatypusML_extract_features function, was used to run cross validation on a specified
number of folds for different classification models (XGBoost, SVM, Random Forest, Logistic
Regression & Gaussian Naive Bayes), outputting the AUC scores, ROC curve and confusion matrix
for each classification model. Prediction of receptor-ligand interaction was calculated on the
single-cell gene expression data using the CellPhoneDB software. The heatmap and dot plot were
generated as an output of the CellPhoneDB_analyse function from Platypus. Receptor structures in

the Steropodon workflow were obtained using the Steropodon_model function and visualized using

the Steropodon_visualize function in Platypus.
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Data visualization: Figure 1 and the supplementary graphical overviews were created with

Biorender.com. Feature plots were produced using “FeaturePlot” (Seurat 4.0). Volcano plots were
produced using “GEX_volcano” (Platypus v3.3). Dottile plots were produced using DotPlot (Seurat

4.0). All other figures were produced using Prism v9 (Graphpad).

Data availability: The accession numbers and publications for the sequencing data used in this
manuscript are located in table S1. Platypus code used in this manuscript can be found at

github.com/alexyermanos/Platypus.
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