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Summary 

Social decision-making is omnipresent in everyday life, carrying the potential for both 

positive and negative consequences for the decision-maker and those closest to them. 

While evidence suggests that decision makers use value-based heuristics to guide 

choice behavior, very little is known about how decision makers’ representations of 

other agents influence social choice behavior. We used multivariate pattern expression 

analyses on fMRI data to understand how value-based processes shape neural 

representations of those affected by one’s social decisions and whether value-based 

encoding is associated with social decision preferences. We found that stronger value-

based encoding of a given close other (e.g., parent) relative to a second close other 

(e.g., friend) was associated with a greater propensity to favor the former during 

subsequent social decision-making. These results are the first to our knowledge to 

explicitly show that value-based processes affect decision behavior via representations 

of close others.  

Keywords: Social Decision-Making; Value; Pattern Expression; fMRI; Close 

Relationships 
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Human beings are intrinsically social creatures and our decisions often have 

consequences for others. Such decisions—whose social consequences are direct or 

indirect—has been termed social decision-making. Neuroscientific research on social 

decision-making has increased dramatically over the past two decades, commensurate 

with its importance to both individual well-being (Lamba et al., 2020; Ong et al., 2017)  

and societal good (e.g., Johnson & Mislin, 2011). However, little research has examined 

the neural and behavioral underpinnings of decision making involving close others, 

instead focusing on decisions about strangers. This is surprising given that in everyday 

life we ostensibly care most about social choices that impact those closest to us. 

Moreover, despite the critical role that social and cognitive representations play in 

motivating social behavior, broadly construed (Guthrie et al., 2022; Tamir & Thornton, 

2018), almost no research has examined how a decision-maker’s representations of 

others drives social decision processes. The present study sought to address these two 

gaps in the literature by testing how multivariate neural representations of two close 

others (a parent and a friend) predict subsequent social decisions about said others.  

Most neuroscientific studies of social decision-making to date have paired 

behavioral paradigms from psychology and behavioral economics with neuroimaging to 

infer the underlying neural mechanisms supporting social decisions. One common 

approach involves fitting a computational model of decision-making to behavioral data, 

and subsequently examining the neural correlates of its parameters. A second, less 

common approach, is ‘model-agnostic’ and instead measures how brain activity is 

recruited during various task conditions. Both approaches have informed our 

understanding of social decision making – allowing us to observe seemingly 
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fundamental rules such as preventing harm to others, obviating social uncertainty, and 

minimizing negative affect such as guilt or regret (Crockett et al., 2014; Feldmanhall & 

Chang, 2018; Lamba et al., 2020). Despite this, we argue these approaches have 

overlooked a critical component of social decision-making: how the decision-maker’s 

representations of other agents’ influences decision behaviors involving said agents.  

Here, we define “representations” as internal models of others that dynamically 

integrate past and current information to guide prediction and future behavior (Clark & 

Toribio, 1994; DeCharms & Zador, 2000; Morgan, 2014; Poldrack, 2021). 

Representations have been shown to affect behavior in several adjacent fields such as 

cognitive science and social psychology. For instance, representations of similarity 

between another and oneself is thought to influence decisions about giving to others 

(Hackel et al., 2017). Similarly, subject-idiosyncratic representations of familiar, 

everyday objects predict between-object similarity judgments (Charest et al., 2014). 

Thus, this prior work from adjacent fields suggests how a decision maker internally 

represents specific individuals impacts social behaviors involving said individuals, 

though this assumption has rarely been explicitly tested. 

It is thus likely that social decision preferences are also driven by representations 

in general, and value-based representations in particular. Social neuroscience research 

shows that brain regions involved in processing value such as the ventral striatum and 

medial prefrontal cortex are critical for encoding and tracking social information about 

other individuals (Zerubavel et al., 2015) as well as supporting cognitive heuristics 

during social decision-making (Chang et al., 2011; Fareri et al., 2015). Given the 

importance of value-based computations in social behavior, and the significance of 
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representations in driving decision making, it seems likely that value-based 

representations play a key role in coordinating social decision making behavior. 

Specifically, the literature begs the question of whether stronger value-based encoding 

of representations of specific others (e.g., parents, friends) is linked to social decision 

preferences for said others. However, this possibility has yet to be formally tested.  

In the current study, we sought to determine the extent to which neural 

representations of two specific close others (parents and friends) were encoded as 

neural signatures of valuation, and related these estimates to social decision-making 

preferences involving these others. Specifically, we examined whether value-based 

representations of parents and friends predicted whether individuals would prioritize one 

close other at the expense of another. We elected to focus on this type of decision 

scenario (pitting a parent versus friend) for two reasons. First, the vast majority of social 

decision research to date has focused on social decisions about unfamiliar others, 

rather than close others. However, recent studies indicate that social decision behavior 

often changes as a function of whom is affected (Fareri et al., 2020, 2022; Powers et al., 

2017; van de Groep et al., 2022), As such, we chose to focus on close others so as to 

increase the generalizability of social decision research. Second, we have conducted 

extensive behavioral work specifically examining social decisions between parents and 

friends (Guassi Moreira et al., 2018, 2020, 2021), having previously observed a general 

tendency among older adolescents to favor a parent over a friend, in addition to 

considerable heterogeneity in the direction and magnitude of individual preferences. 

That this particular decision scenario is well studied—and has been replicated—renders 

it an ideal test case for the current study. We hypothesized (pre-registered; 
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osf.io/muv2c) (1) that individual neural representations of parents—relative to friends—

would be more strongly expressed as neural signatures of value, and (2) that individual 

differences in value-based expression in neural representations would predict social 

decision preferences (i.e., greater value-based expression in one’s neural 

representation of a close other will be associated with a greater tendency to favor said 

close other). Testing these two hypotheses stands to enrich our understanding of how 

value-based representations drive consequential social decision making behavior, 

especially in contexts that have relatively greater ecological validity (e.g., navigating 

decisions with conflicting outcomes for multiple close others).  

Methods 

Overview.  The goal of this study was to examine the role of value-based neural 

representations in social decision-making preferences. We did this using pattern 

expression analyses (Doré et al., 2017; Hong et al., 2019; Cosme et al., 2020). Pattern 

expression analyses are commonly used to answer questions about how strongly a 

given brain state is expressed as a psychological process of interest, resulting in a 

single score that is used to compare relative differences in expression between brain 

states (Cosme et al., 2019; Doré et al., 2017). For this study, our intent was (i) to 

determine how strongly neural representations of parents and friends were expressed 

as signatures of value and then (ii) examine whether the scores could predict social 

decision preferences.  

Participants. Participants for this study were comprised of 48 older adolescents 

(18-19 years). We targeted older adolescents because theoretically heightened social 

sensitivity to peer processes coinciding with continued reliance on parental relationships 
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makes this developmental stage an ideal phase during which to examine social decision 

behavior that pits the interests of two relatively important close others (Blakemore & 

Mills, 2014; Steinberg & Morris, 2001). Participants were recruited by posting flyers and 

sending mass emails to undergraduate college students. In order to be eligible to 

participate, individuals were required to (i) be between the ages of 18 and 19 years old, 

(ii) be eligible for MRI scanning (e.g., no metal implants, no claustrophobia, etc.), (iii) be 

a fluent English speaker, (iv) have no neurological impairments, (v) be able to nominate 

two close others (a parent and friend) and provide photographs and names for each 

(more information about the nomination procedure and stimuli follow below). 

Participants were compensated with a $25 (USD) cash payment plus an additional $1-5 

bonus chosen at random (described in greater detail below). Three participants were 

excluded from all analyses (one because of a scanner computer error, a second due to 

poor overall data quality, and a third due to discovery of a biological artifact), resulting in 

a final sample size of 45. All participants provided written consent in accordance with 

the policies of the UCLA Institutional Review Board.  

Sample Size Considerations. The best practices for determining sample size in 

human neuroimaging research are relatively unclear given the complexity and difficulty 

in calculating power for task-based fMRI studies (Chen et al., 2017; Cremers et al., 

2017; Mumford, 2012; Poldrack et al., 2017). Recent research suggests very large 

sample sizes are needed to examine individual differences between resting state fMRI 

and behavior (Marek, Tervo-Clemmens, et al., 2022), yet it is unclear how this finding 

generalizes to task-based analyses, multivoxel fMRI approaches, or analyses that 

involves repeated behavioral measurements nested within subjects. Further 
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complicating matters is the fact that fMRI is a particularly expensive neuroimaging 

modality. Given these realities and the lack of clear sample size requires, our goal set 

prior to data collection was to scan as many participants as our funding would allow, 

preferably exceeding the most recently estimated median cell size in human fMRI 

research (N = 35; Poldrack et al., 2017). We acquired funding to scan 50 participants, 

but stopped data collection early in light of the COVID-19 pandemic.  

Experimental Protocol. 

Overview. Participants were asked to nominate a parent and close friend of their 

choice, and provide stimuli (photos, names) of each person prior to their scheduled 

scan date. Participants completed a fMRI task to elicit neural representations of their 

parent and friend (Parent-Friend Representation Task, described below), as well as 

another fMRI task which was used to define a sample-specific neural signature of value 

(Coin Flip Task, also described below). Last, participants completed a post-scan 

session to assess behavioral social decision preferences. Each element of this 

procedure is described in greater detail below.  

Parent-Friend Nomination and Stimuli Collection. Participants were instructed to 

nominate a parent and a close friend, and provide custom stimuli of each of them for an 

fMRI task. Details about these nominations and the stimuli can be accessed in the 

Supplemental Information.   

fMRI Tasks.  

Parent-Friend Representation Task. In a block design, participants were shown 

custom stimuli of their own parent and nominated friend to elicit and record neural 
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representations of each close other. In a given block, participants saw randomly ordered 

stimuli pertaining to one close other (parent or friend). Various elements of this task 

were designed to be broadly consistent with prior social and affective neuroscience 

literature (Gee et al., 2014; Parkinson et al., 2017; Taylor et al., 2009; Zerubavel et al., 

2015). These stimuli were comprised of the five headshots in addition to the close 

other’s name1 printed in five unique fonts – ‘Berlin’, ‘Broadway’, ‘Calibri’, ‘Colonna’, and 

‘Comic Sans’ (10 unique stimuli). The use of varying photographic and text stimuli was 

intended to elicit amodal neural representations of parents and friends, thereby avoiding 

basic perceptual confounds. Each block contained 20 rapid presentations (2 for each of 

the 10 unique stimuli) of said stimuli (1000ms) with a brief inter-stimulus interval (ISI) 

between images (500ms). Participants completed a one-back task based on stimulus 

type (photo vs text, regardless of orientation or font) to ensure they were paying 

attention (i.e., press a button if the current stimulus type matches the one shown just 

before it). 15000ms of fixation between blocks was presented to account for lagged 

effects of the hemodynamic response function. Six blocks (3 parent, 3 friend) and six 

inter-block fixation periods were presented per run. As a result, the entire task lasted 

approximately 4.5 minutes (270s): [1500ms/trial x 20 trials/block x 6 blocks] + [15000ms 

inter-block fixation periods x 6 fixation periods].  

Coin Flip Task. Following the representation task, participants completed two 

runs of a reward task intended to evoke neural representations of value (Braams & 

Crone, 2016). During this event-related task, participants guessed the outcome (‘Heads’ 

                                                           
1 Based on participant feedback received during two pilot scans, participants were asked to provide the 

labels they use to address each close other (e.g., ‘Mom’ or ‘Dad’ for a parent).  
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or ‘Tails’) of a series of coin flip gambles in order to win or lose monetary rewards 

(presented as coins). Each trial began with a reward summary (3000ms), a screen that 

lists the amount awarded or lost for guessing correctly or incorrectly, respectively. 

Participants made their guess, via button press, at this stage (‘Heads’ or ‘Tails’). 

Following a 1000ms inter-stimulus interval, participants received feedback about 

whether their guess was correct or incorrect (2500ms). A jittered inter-trial interval 

separated trials, with values drawn from an exponential distribution (mean = 2880ms, 

SD = 2660ms, range = 1000-10000ms). Each run lasted approximately 6 minutes. 

Participants completed 30 trials per run, broken down across three distinct trial types: (i) 

win 3 coins, lose 3 coins; (ii) win 5 coins, lose 2 coins; (iii) win 2 coins, lose 5 coins. 

Participants were told the coin is fair (i.e., P(‘Heads’) = ½). In reality, the task was rigged 

such that individuals won approximately half of the trials to ensure enough gain and loss 

events for subsequent modeling and estimation. To obtain a generalized signature of 

valuation, one run varied the type of coins (Kennedy coin vs Sacagawea coin) and thus 

the perceptual features of the coin (color: silver vs gold; gender of the head: male vs 

female; etc.). The orientation of the coin also varied for this reason (i.e., half of the 

reward summaries showed the coins on the ‘Heads’ side, the other half showed them 

on the ‘Tails’ side). Last, participants were informed a subset of the trials would be 

selected at random and added to, or subtracted from, their earnings (up to +/- $5). In 

actuality, participants always received a randomly selected bonus between $1 - $5.  

Figure 1. Schematic of the two fMRI tasks.  

FIGURE OMITTED DUE TO BIORXIV POLICY OVER IDENTIFIABLE INFORMATION 
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Note. ‘Representation Task’ refers to the Parent and Friend Representation task. The 
Representation Task was always administered before the Coin Flip Task.  

fMRI Data Acquisition. Neuroimaging data were collected using a research-

dedicated 3 Tesla, Siemens Magnetom Prisma MRI scanner and 32-channel head coil. 

A high resolution T1* magnetization-prepared rapid-acquisition gradient echo structural 

image was acquired for registration purposes (MPRAGE; TR = 2400ms, TE = 2.22ms, 

Flip Angle = 8º, FOV = 256 mm2, 0.8 mm3 isotropic voxels, 208 slices, A >> P phase 

encoding). Functional runs were comprised of T2*-weighted multiband echoplanar 

images (TR = 1000ms, TE = 37ms, Flip Angle = 60º, FOV = 208 mm2, 2.0 mm3 isotropic 

voxels, 60 slices, A >> P phase encoding, multi-band acceleration factor = 6). These 

parameters were informed by studies on related topics using similar analytic techniques 

(e.g., Chang et al., 2015; Chavez et al., 2017).  

Post Scan Procedure. 

 Participants completed the following procedure directly after the fMRI scan. This 

procedure was intended to measure social decision preferences between the 

participants’ nominated parent and friend, and acquire additional information about 

these nominees. 

Parent-Friend Salience Procedure. Before completing the social decision-making 

paradigm described below, participants answered brief prompts about the parent and 

friend they had nominated. This procedure was enacted to amplify the salience of 

completing the subsequent social decision-making task in the absence of their parent 

and friend, consistent with prior studies (Guassi Moreira et al., 2018, 2020). Participants 

provided basic information about each close others (e.g., name, age, sex), briefly wrote 
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about a memory (~1 paragraph) they share with each close other, and listed a handful 

of words and phrases describing each close other.  

Social Decision-Making Paradigm. After scanning, and consistent with our prior 

behavioral work (Guassi Moreira et al., 2018, 2020), we used a modified version of the 

computerized “hot” Columbia Card Task (CCT) to assess social decision-making 

preferences involving conflicting outcomes for parents and friends (Figner et al., 2009; 

van Duijvenvoorde et al., 2015). The modified CCT is an iterative risk-taking task in 

which individuals turn over cards that can result in hypothetical rewards or losses. The 

modification we previously introduced applied a trade-off such that rewards exclusively 

benefitted one of the two close others and losses were exclusively incurred by the 

second of the two close others.  

Participants in our study completed two runs of this task, one in which the 

rewards benefitted the parent and the losses were incurred by the friend, and a second 

run where the opposite was true (condition order counterbalanced between subjects). 

Because there is always a trade-off in the conflicting outcomes for the two close others, 

the task can be modeled to reveal whether there is an aggregate preference for a 

parent or friend. Technical details of the task and its administration can be accessed in 

the Supplemental Information. This was administered after the scan, with an 

experimenter present to unobtrusively monitor the participant.  

Additional Measures. Participants completed a series of self-report measures on 

a laboratory computer via Qualtrics (an online survey administration platform), including 

measures of subjective relationship quality, domain-specific risk-taking for oneself, 
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sensation seeking, and family obligation. Participants also completed a computerized 

risk-taking task that affected only themselves (i.e., self-oriented risks).  

Analysis Plan 

fMRI Data Preprocessing. Prior to preprocessing, data were visually inspected 

for artifacts and anatomical abnormalities. Data were preprocessed and analyzed using 

the fMRI Expert Analysis Tool (FEAT, Version 6.00) of the MFRIB Software Library 

package (FSL, Version 5.0.9; fsl.fmrib.ox.ac.uk). Preprocessing began by using the 

brain extraction tool (BET) to remove nonbrain tissue from functional and structural 

images, followed by head motion correction via spatial realignment of functional 

volumes using MCFLIRT. The data were hi-pass filtered to remove low frequency 

artifacts (45s for the Parent and Friend Representation Task; 100s for the Coin Flip 

task). From there, the extent of head motion artifacts was estimated by using the FSL 

Motion Outliers command to document volumes that exceed a 0.9 mm threshold of 

framewise displacement (FD; Siegel et al., 2014). Runs with 25% of volumes exceeding 

this threshold were excluded from analysis. Head motion in the sample was low overall: 

the ‘average subject’ moved less than one volume above the threshold with a maximum 

FD value of 0.6 (full descriptive information about head motion can be accessed in the 

Supplemental Information). To help reduce high frequency noise introduced by 

realignment (Etzel et al., 2011; Misaki et al., 2014), data were smoothed with a 1 mm 

Gaussian kernel (full width at half maximum). Data were pre-whitened prior to analysis 

to correct for autocorrelated residuals. FSL’s boundary based registration algorithm 

(Greve & Fischl, 2009) was used to register functional data to the high resolution 

structural scan (MPRAGE). MPRAGE images were then nonlinearly registered to the 
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MNI152 template image (10-mm warp resolution), and the ensuing transformation 

matrix was used to register functional images to standard space. This step also 

resampled voxel size to 2mm3 isotropic.  

All participants had usable data for the Parent and Friend Representation Task, 

although three participants only had 1, 2 and 3 usable runs (out of four), respectively, of 

the task available for analysis. Three participants were excluded from analyses 

involving the Coin Flip task. Two such participants were excluded because they lowered 

part of their heads out of the coil during the Coin Flip task, rendering missing data for 

large parts of the temporal pole. The third such participant was excluded due to head 

motion, as they averaged 22 volumes exceeding the FD threshold (average maximum 

FD = 8.82mm) across both runs. The final sample size for all analyses was N = 45. 

Multivariate Pattern Estimation. We used our data to estimate three multivariate 

neural patterns: a parent representation, a friend representation, and a value-based 

signature.  

Parent and friend representations. Estimating the parent and friend neural 

representations was accomplished by modeling the Parent and Friend Representation 

Task with a standard General Linear Model (GLM) analysis. Each run of the task was 

submitted to a fixed effects GLM analysis in FSL. Parent and friend blocks were 

modeled with respective boxcar regressors, convolved with the hemodynamic response 

function (double gamma) and bandpass filtered to avoid reintroducing noise into the 

data. Slice timing effects were addressed by also modeling the temporal derivative of 

each task regressor. Head motion was statistically adjusted for by adding rotation and 

translation parameters, along with their derivatives and squares (obtained from 
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MCFLIRT motion correction) as nuisance regressors. To further statistically adjust for 

potential spurious effects of head motion, we included additional regressors for 

individual volumes that exceeded the 0.9 mm FD threshold. Two linear contrasts were 

computed: parent > baseline and friend > baseline. A second level (subject level) 

analysis was carried out to average contrast estimates over the four runs, using a fixed 

effects model and forcing random effects variance to zero. The ensuing parent > 

baseline and friend > baseline maps, one each per subject, served as the estimates of 

parent and friend representations.  

Value-based signature. We created a neural signature of value consistent with 

methods previously employed with similar tasks (Chang et al., 2015; Cosme et al., 

2019; Wager et al., 2013; Reddan et al., 2018). This process involved training a 

statistical model to predict gain and loss values on each trial of the Coin Flip Task 

based on brain activity, and ultimately yielded a statistical map containing voxel weights 

that represent the strength of association between voxel activity and reward/loss 

outcomes.  

The first step in this task was to compute brain activity for individual trials on the 

Coin Flip task. We accomplished this by conducting a least squares single (LSS) 

analysis (Mumford et al., 2012, 2014). Briefly, LSS entails creating a unique fixed effect 

GLM for every trial, in every run, for all participants2. We created a single-event 

regressor for a given trial in its respective GLM and model all other trials in their 

respective conditions. For the coinflip task, this meant that any given LSS GLM would 

                                                           
2 All other GLM specifications (e.g., slice timing correction via temporal derivatives, regressor convolution, 
etc.) for the LSS analysis were identical to those used in the parent-friend representation GLMs.  
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contain a regressor for the current ‘target trial’, a regressor for gain outcomes, a 

regressor for loss outcomes, and a regressor for guessing between ‘Heads’ or ‘Tails’ 

(i.e., the length of presentation time for the reward summary). A linear contrast 

comparing trial > baseline was estimated for each GLM. The ensuing single-trial 

estimates from all participants were used to extract a t x v matrix, containing brain 

activity during the t-th trial in the v-th voxel (whole brain). Given the high dimensionality 

of this matrix (209,036 voxels), principal components analysis (PCA) was employed to 

reduce the number of features (i.e., voxels). Finally, penalized regression (e.g., LASSO, 

ridge) models were fit to the data, predicting the monetary outcome of each trial from its 

brain activity and thus yielding a set of weights for each principal component. Weights 

for each component were backtransformed into voxel space, yielding the final neural 

signature of value. Given some sparsity observed among the voxel weights, we created 

two additional versions of the map by smoothing the maps using a 2mm and 4mm 

Gaussian kernel (fwhm). All three versions are used in analyses reported below. More 

details about the signature creation process can be accessed in the Supplemental 

Information, along with a visualization of the unsmoothed signature (Figure 2).  
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Figure 2. Sample-specific neural signature of value (unsmoothed). 

 

Robustness checks. Two types of robustness checks were performed on our 

value signature methods. First, to ensure the signature was specific to value and did not 

inadvertently tap another psychological process, we cross-referenced its similarity with 

publicly available meta-analytic maps of similar and distinct constructs (see 

Supplemental Information). Second, we re-ran all analyses using two additional neural 

signatures of value, defined by Neurosynth (Yarkoni et al., 2011) to ensure our findings 

were robust to the method of signature definition (see Supplemental Information). 

Notably, we see merit in using a two-pronged approach to capturing neural signatures in 

that one signature is representative of the population of interest here (sample-specific) 

and another is based on data derived from thousands of participants (Neurosynth). As 

described below, results were largely consistent between these two approaches.  

Pattern Expression Analysis. Pattern expression analysis captures how much 

a given psychological process (indexed by a neural signature) contributes to a 

representation or state. The analysis involves taking the voxel-wise dot product between 
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values in a neural representation and a neural signature of interest. The computation is 

given by the following equation. 

                                                         ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1                                                               (1) 

 Where n is the number of voxels, wi are the weights of the neural signature 

(value patterns created from the coin flip task data), and xi is the neural activity (inferred 

via BOLD) from the representation’s voxels (for parent and friend representations, 

respectively).  

Statistical Analysis. After extracting pattern expression scores, we first 

examined whether parent representations were more strongly encoded as signatures of 

value, relative to friend representations. We tested this by analyzing paired differences 

in parent – friend pattern expression scores.  

                                                  Yi ~ N(δ*σ, σ2)                                                          (2) 

Here Yi represents the paired pattern expression difference score for the i-th 

participant, and it is modeled as being drawn from a normal distribution, centered 

around a mean (δ*σ) and variance (σ2). The mean was parameterized as δ*σ so that 

draws from this distribution are in Yi’s ‘native units’, but the resulting summary statistics 

reflect standardized effect sizes (i.e., mean/standard deviation). The model assigned 

priors for both δ and σ. The variance was given a Jeffreys prior (p(σ2) ∝ 1/σ2), and δ—

the mean effect size—was modeled as being distributed Cauchy (δ ~ Cauchy(0, r), 

where r = 1/sqrt(2)). This model was fit using rstan, a package in the R statistical 

software library that allows the user to interface with Stan a Bayesian modeling software 
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(Stan Development Team, 2020) (no thinning, 4 chains, 2,000 samples per chain, 1,000 

discarded burn-in samples). 

 The next analytic step tested whether individual differences in pattern expression 

scores predicted social decision preferences. To this end, we used a hierarchical 

Bayesian model. Details of the model, including selection of priors, are described in the 

Supplemental Information.  

 Inference Criterion. Inference was performed on the posterior samples by using 

the region of practical equivalence method popularized by Kruschke (2011, 2013). We 

employed this method in three steps. First, a credible interval (CI)—a span of the 

posterior distribution capturing a user-defined portion of its mass—was computed for a 

given posterior using the Highest Density Interval (HDI) method (bayestestR package; 

Makowski et al., 2019). We used 89% credible intervals upon the recommendation that 

wider intervals (e.g., 95%) are more to sensitive Monte Carlo sampling error (Makowski 

et al., 2019; McElreath, 2018). Second, we specified a region of practical equivalence 

(ROPE), which is a user-defined interval in the parameter space whose values are 

deemed virtually equivalent to a null value (i.e., spans effects of such little magnitude 

that they are, for practical purposes, considered comparable to the null value). We 

defined a ROPE of [-0.1, 0.1] for analyses involved paired comparisons because we 

were uninterested in standardized effects below 0.1 in magnitude and a ROPE of [-

0.095, 0.095] was defined for hierarchical logistic regression (i.e., a 10% expected 

change in the likelihood of flipping over a card after transforming logistic regression 

coefficients back into the odds scale). Finally, we inspected the degree of overlap 

between the CI and ROPE and compared it to the inferential criteria specified by 
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Spiegelhalter and colleagues (1994). Here, if the CI falls completely outside of the 

ROPE, evidence for an effect is said to be robust (Kruschke, 2011), whereas if the CI 

overlaps with ROPE on side, then there is evidence to rule out parameter values only 

on the non-overlapping side of the ROPE. If the ROPE entirely contains the CI, then 

that is evidence in favor of accepting a null effect, and if the CI spans the ROPE but 

extends outside both ends of it, then the evidence is ‘equivocal’.  

Results  

Manipulation Checks. We conducted two key manipulation checks prior to 

executing the aforementioned analysis plan. First, we computed linear contrasts (win > 

loss) from a traditional univariate analysis of the Coin Flip task to ensure the task was 

recruiting brain regions previously implicated in valuation (Haber & Knutson, 2009; 

Knutson et al., 2001). Second, we analyzed behavioral data from the modified CCT data 

(collected post-scan) without any between-person predictors to check whether we could 

replicate a previously observed overall parent-over-friend preference (Guassi Moreira et 

al., 2018, 2020). Both manipulation checks suggested replication of prior findings, with 

imaging results showing robust activity in the ventral striatum and medial prefrontal 

cortex, and parameters of the behavioral decision-making model suggesting a parent-

over-friend preference (see Supplemental Information). These results suggest any 

potential null effects in other analyses would not be due to the current sample exhibiting 

differing social decision preferences than those of samples that inspired the current 

study.  

Paired Differences in Value-Based Pattern Expression of Neural 

Representations. Using the five different neural signatures of value (3 sample-specific 
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signatures created using different levels of smoothing; uniformity and association 

Neurosynth maps), we observed mixed evidence for the hypothesis that parent and 

friend neural representations are differentially encoded as a function of value, with more 

evidence in favor of friends than parents. Results using the sample-specific and 

Neurosynth neural signatures of value both showed a bias towards friends, not parents, 

as indicated by the mean of posterior samples.  

The results were relatively stronger in favor of friends over parents with the 

Neurosynth signature than the sample-specific signature. Results using the Neurosynth 

maps as neural signatures showed that the majority of the posterior mass either fell 

within ROPE or in the negatively signed region encoding friend > parent relatively 

stronger evidence for a value-based bias in friend neural representations (NS: posterior 

mean, (SD): d = -0.24 (0.15), 89% CI: [-0.48, -0.01]) (NS_Asc: posterior mean, (SD): d = 

-0.14 (0.14), 89% CI: [-0.37, 0.09]). This was contrary to hypotheses, in that it 

suggested that friend representations are more strongly encoded as value-based 

signatures, Figure 3, bottom row).  

For the sample-specific results, roughly equal amounts of the posterior mass lay 

on either side of ROPE, suggesting the evidence for an effect in either direction was 

equivocal (Figure 3, top row; Samp Specific: posterior mean, (SD): d = -0.08 (0.14), 

89% CI: [-0.31, 0.15]) (Samp Specific – 2mm: posterior mean, (SD): d = -0.03 (0.14), 

89% CI: [-0.25, 0.20]) (Samp Specific – 4mm: posterior mean, (SD): d = -0.03 (0.14), 

89% CI: [-0.27, 0.19]). Again, these results were contrary to hypotheses. We conducted 

two post-hoc follow-up analyses to determine whether these unanticipated results could 

have been driven by brain regions in the neural signature that were potentially capturing 
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a non-relevant psychological process, thereby obscuring relevant signal. However, 

neither post-hoc analysis substantially changed results (see Supplemental Information).  

Figure 3. Posterior distributions of paired differences in value-based pattern expression 

values 

 

  

 

 

 

 

 

 

 

 

Note. ‘Samp Specific’ and ‘Neurosynth’ refer to the type of signature used (Samp specific = 
sample-specific signature built using ridge regression; NS = Neurosynth signature obtained from 
large scale, automated meta analysis). ‘2mm’ and ‘4mm’ refer to the degree of smoothing 
applied to the sample specific signature (the top left signature had no smoothing applied). ‘Asc’ 
refers to the Neurosynth association map; ‘unif’ refers to the Neurosynth uniformity map. Paired 
differences are in a standardized metric (d). ‘ROPE’ refers to Region of Practical Equivalence; 
‘HDI’ refers to highest density credible intervals. Difference scores were computed by 
subtracting friend from parent (parent – friend).  

 

Modeling Social Decision Preferences as a Function of Value-Based Pattern 

Expression. Pattern expression values derived using the three versions of the sample-

specific neural value signature and the two versions of the Neurosynth neural value 

signature predicted subsequent social decision preferences on the modified CCT 

(Tables 1-2, Figures 4-5). Across multiple signatures, we observed that greater value-
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based pattern representation of a given close other predicted favoring said other in the 

modified CCT (e.g., greater value-based pattern expression for parent predicted a 

subsequent behavioral preference for parent on the CCT). For the sample-specific 

signatures, these results were observed on the two models using a smoothed neural 

signature value, whereas contradictory results were observed with an unsmoothed 

neural value signature. Based on our inferential criteria, greater parent value-based 

pattern expression was either related to equivocal preferences or parent preferences, 

but not friend preferences. Confidence is strengthened by the fact that a plurality of the 

posterior mass fell in the direction of the hypothesized effect (parent PE predicting 

parent preference) for all parameter estimates.  

Table 1. Predicting social decision preferences as a function of value-based 
representations using a sample-specific neural signature. 

Note. Parameter estimates for the intercept, reward, and risk terms are not reported. ‘PE’ refers 
to pattern expression scores, obtained by using each individual subject’s parent and friend 
neural representations and a value-based neural signature. ‘Samp Specific’ refers to the type of 
signature used (Samp specific = sample-specific signature built using ridge regression). ‘2mm’ 
and ‘4mm’ refer to the degree of smoothing applied to the sample specific signature (the left-
most column had no smoothing applied). Values in brackets represent 89% highest density 
credible intervals. 

  

Figure 4. Posterior distribution plots for model interaction terms capturing the influence 
of value-based representations on social decision preferences (sample-specific neural 
signature). 

Term Sample Spec Sample Spec – 2mm Sample Spec – 4mm 

Condition 0.30 [0.16, 0.44] 0.30 [0.17, 0.46] 0.30 [0.16, 0.44] 

Parent Value PE -0.02 [-0.23, 0.19] -0.01 [-0.28, 0.28] 0.01 [-0.24, 0.26] 

Friend Value PE -0.13 [-0.32, 0.08] -0.01 [-0.26, 0.26] -0.00 [-0.26, 0.24] 

Parent Value PE x Condition -0.14 [-0.30, 0.03] 0.16 [-0.05, 0.37] 0.19 [-0.01, 0.39] 

Friend Value PE x Condition 0.14 [-0.02, 0.30] -0.12 [-0.33, 0.07] -0.14 [-0.33, 0.06] 
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Note. ‘Samp Specific’ refers to the type of signature used (Samp specific = sample-specific 
signature built using ridge regression). ‘2mm’ and ‘4mm’ refer to the degree of smoothing 
applied to the sample specific signature (the left-most signature had no smoothing applied). ‘PE’ 
refers to pattern expression score. ‘Condition x Parent/Friend’ refers to the interaction term 
entered in the statistical model to assess the association between pattern expression scores 
and social decision preferences. ‘ROPE’ refers to Region of Practical Equivalence; ‘HDI’ refers 
to highest density credible intervals. 

Table 2. Predicting social decision preferences as a function of value-based 
representations using a Neurosynth meta-analytic neural signature. 

 

 

 
 
 

Note. ‘PE’ refers to pattern expression score. ‘unif’ refers to Neurosynth uniformity map; ‘Asc’ 
refers to the Neurosynth association map. ‘Condition x Parent/Friend’ refers to the interaction 
term entered in the statistical model to assess the association between pattern expression 
scores and social decision preferences. Values in brackets represent 89% highest density 
credible intervals. 

  

Term Neurosynth - Unif Neurosynth - Asc 

Condition 0.30 [0.17, 0.44] 0.30 [0.16, 0.45] 

Parent Value PE 0.07 [-0.26, 0.40] -0.14 [-0.38, 0.12] 

Friend Value PE -0.03 [-0.34, 0.30] 0.07 [-0.18, 0.33] 

Parent Value PE x Condition 0.20 [-0.06, 0.43] 0.13 [-0.06, 0.33] 

Friend Value PE x Condition -0.23 [-0.50, -0.01] -0.14 [-0.33, 0.07] 
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Figure 5. Posterior distribution plots for model interaction terms capturing the influence 
of value-based representations on social decision preferences (sample-specific neural 
signature). 

 

 

 

  
  
  
  
  
  
  
 

 

 

  
  
Note. ‘Unif’ refers to Neurosynth uniformity map; ‘Asc’ refers to the Neurosynth association 

map. ‘PE’ refers to pattern expression score. ‘PE’ refers to pattern expression score. ‘Condition 
x Parent/Friend’ refers to the interaction term entered in the statistical model to assess the 
association between pattern expression scores and social decision preferences. ‘ROPE’ refers 
to Region of Practical Equivalence; ‘HDI’ refers to highest density credible intervals. 

  To be consistent with our approach to analyzing paired differences, we 

conducted two similar post-hoc analyses. This involved re-running our hierarchical 

model (i) with V1 voxels masked out when computing pattern expression scores as well 

as (ii) computing pattern expression values in reward-related ROIs only. Overall, the 

results of these two post-hoc analyses are largely consistent with each other, as well as 

the initial planned analysis: a greater pattern expression score for a given individual was 

related with a stronger propensity to favor them on the modified CCT (see Supplemental 

Information, Supplementary Tables 1-2). 

Discussion 
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The current study sought to test what drives social decision preferences among 

close others. Cumulative evidence from multiple pattern expression analyses suggest 

that social decision preferences between two close others (i.e., one’s parent versus 

friend) are predicted by the extent to which the brain represents said close others in 

terms of value. These findings carry important implications about how representations of 

social agents drive social decision-making, as well as how representations are 

distributed across the brain.  

 Underscoring the role of neural representations in social decision making. 

Excitingly, this study is among the first to examine how neural representations of others 

influence social decision behavior. By and large, the primary focus of most prior work 

has been on how individuals process and respond to various features of social 

decisions, often as applied to unfamiliar or distant others(e.g., the value of each 

decision alternative, the degree of risk involved, beliefs about a social partner’s 

resources or their attitudes) (e.g., Chang et al., 2011; Crockett et al., 2017; Fareri et al., 

2015). By contrast, the present study focused on how individuals represent decision 

partners themselves (specifically, neural representations). This is noteworthy for a few 

reasons. First, examining social representations is a direct way of parsing the 

mechanisms that underlie social decision preferences. Representations of others are, 

theoretically, the lens through which we perceive and contextualize other’s behavior 

(Amodio, 2019; Tamir & Thornton, 2018). For example, representing one’s parent in 

terms of value could indicate a subjective sense of their relationship being fulfilling and 

of their basic needs (Tottenham, 2020). However, further work is needed to interrogate 

when said social preferences emerge – for example, they could theoretically stem from 
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a sense of gratitude, a desire to maintain relationship strength or an entirely different 

motivational process. Second, and relatedly, the putative mechanistic influence that 

representations may have on social decision preferences are likely generalizable across 

contexts because of evidence that representations of others are theoretically stable and 

domain-general (Tamir & Thornton, 2018). For example, psychological theories of 

human development posit that initial representations of caregivers become internalized, 

remain stable across contexts and time, and inform how future representations of others 

are established (Bretheron, 1985, 1992). Such theories are strengthened by 

neuroscientific evidence showing that representational entities—ranging from objects to 

concepts—are enduring and stable across contexts (Ward et al., 2018; Lin & Thornton, 

2021).    

The present findings also have implications for understanding the role that neural 

computations of value play in social cognition and behavior (Zerubavel et al., 2015). 

Together with prior work, our results suggest that humans view others, at least in part, 

in terms of how they satisfy their own individual needs, which in turn motivates social 

behavior (Amodio, 2019; Tamir & Thornton, 2018). Our findings suggest that using a 

value-based neural architecture to construct representations of others is an efficient 

manner of determining the association between other social agents and one’s own 

goals. In other words, it suggests that conserved neural circuitry supports value 

computations across both social and non-social contexts (i.e., if our representations of a 

close other are aligned with value, it could suggest that our relationship with them is 

goal fulfilling). Future work may further unpack links between value-based 

representations and social behavior by attempting to explicitly formalize how value-
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based processes are integrated into representations of others. For instance, future work 

could examine how social experiences contribute to value-based encoding of others as 

a means to understand how such an encoding comes to be in the first place (e.g., 

Gonzalez & Chang, 2019).  

 Representations are distributed across the brain. Another key takeaway from 

these findings is that they suggest the brain is not simply relying on two or three node 

circuits to perform low dimensional computations over decision-level inputs during social 

decision-making (e.g., computing subject value of a safe or risky option based on the 

degree of reward, uncertainty, etc.) (Gangopadhyay et al., 2021; Rilling & Sanfey, 

2011). Our results are instead consistent with the notion that representations 

themselves are intrinsically high dimensional, given that they require storing and 

integrating a wealth of information in order to make real time predictions (Kriegeskorte & 

Douglas, 2018). This suggests that finely coded, multivariate information about others is 

leveraged to guide behavior during social decision making. Future work might seek to 

build on our findings and leverage more sophisticated techniques to learn more about 

the mechanistic details of high dimensional representations. For example, researchers 

might use neural networks to construct artificial representations of social agents that 

vary based on different facets of network architecture. This approach could be used to 

track how manipulating representations predicts simulated changes in social decision-

making, and would have the added benefit of creating formalized models of how 

representational information is used in decision-making. Alternately, one could leverage 

animal models of social decision-making (Ben-Ami Bartal et al., 2011; Dal Monte et al., 

2020) to better decode the specific computations by which representations guide 
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behavior by decomposing value-based processes into its constituent components (e.g., 

White & Monosov, 2016) and examining how each component may map onto distinct 

neuronal populations that also encode representations of others.  

  Limitations. Like all studies, the current one has limitations that warrant 

discussion. First, the lack of consistent evidence for a group-level value-based bias for 

parent or friend representations in either direction was somewhat surprising. One 

reason behind this may be due to the fact that parent and friend relationships are highly 

heterogeneous from person to person, enough so that group-level effects of this sort 

may be misleading or simply non-informative. Second, confidence in the present results 

would be strengthened by replication in larger and more diverse samples in light of 

ongoing debates about power in fMRI research (Marek, Tervo-Clemmens, et al., 2022). 

Third, future work might build on our findings regarding representations of value by 

looking at expression of other cognitive or affective processes (e.g., modeling 

representations of others in terms of semantic information, etc), as well as testing 

whether the modality of value matters (e.g., social versus monetary). 

 Conclusion. Social decision-making in everyday life is nuanced and complex. 

The present study sought to better incorporate this complexity into the neuroscience of 

social decision-making by examining how representations of close others influence 

social decision making behavior. We found that value-based processes may influence 

social choice behavior in part via neural representations of close others.  
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Supplementary Information  

Methods 

Parent-Friend Nomination and Stimuli Collection. Upon signing up for the study, 

participants were informed that the study involved making hypothetical decisions on the 

behalf of a parent and close friend, and were asked to nominate one of each. 

Participants were not allowed to nominate current romantic partners or family members 

as “friends” in effort to avoid potential confounds. Afterwards, participants were asked to 

for the names they use to address their parent and friend, respectively, and for five 

‘passport style’ headshots of each close other (each from a different angle). Images 

required neutral facial expressions, both eyes to be open, mouth shut, eyes locked 

straight ahead, and no head tilt (See Supplementary Figure 1 for an example). The 

experimenter first reviewed these requirements with participants via telephone and then 

sent them a PDF file with complete, detailed instructions (osf.io/muv2c). The 

experimenter assessed images for quality prior to the scan and asked participants for 

re-shoots if images did not comply with requirements. 

Social Decision-making Paradigm. Consistent with our prior work (Guassi 
Moreira et al., 2018, 2020), we used a modified version of the computerized “hot” 
Columbia Card Task (CCT) to assess social decision-making preferences involving 
conflicting outcomes for parents and friends (Figner et al., 2009; van Duijvenvoorde et 
al., 2015). Participants completed two runs of the CCT, each consisting of 24 rounds. A 
single round is comprised of a series of iterative decisions, ranging between one and 
sixteen. During each round, participants were shown a set of sixteen overturned cards 
(i.e., collectively, a deck) and were told the objective of the task was to win points by 
iteratively turning over cards. Participants were informed that each card is associated 
with a gain or loss of points, and were made aware of a descriptive header above each 
deck that indicated the total number of loss in the deck (one or two), the point value of 
each loss card (-30 or -60), the point value of each gain card (10 or 20), and a running 
total meant to keep track of points earned so far on that deck. The configuration of loss 
cards, loss and gain values were crossed, yielding eight distinct deck types. Participants 
made choices regarding each deck type three times, hence 24 rounds.  

Each round began with a score of zero points and all cards overturned. 
Participants were required to choose between turning over a card—a risky choice—or 
not turning over a card (‘passing’, a safe choice). If participants chose to turn over a 
card, the computer randomly selected a card and turned it over. Choosing to pass, by 
contrast, ended the round and participants could not gain or lose any additional points 
(akin to ‘cashing out’ at a casino). Each round lasted until the participant decided to 
pass or randomly flipped a loss card. Participants were informed the computer selected 
cards to flip at random. In reality, the first three risky choices for any deck were always 
rigged to flip a gain card to safeguard against participants losing too early and then 
feeling disproportionately discouraged from taking further risks. Participants completed 
four practice rounds to ensure proper understanding of the task. A trained experimenter 
did not allow them to proceed unless they demonstrated a clear understanding of the 
rules.  
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As previously mentioned, the CCT was modified to assess late adolescents’ 
social decision-making preferences between parents and friends. During one run of the 
task, participants were informed all points associated with gain cards would be awarded 
to their nominated parent, whereas any losses associated with each loss card would be 
incurred by their nominated friend. The opposite was true during the second run (gains 
solely benefit friend, losses solely incurred by parent). Critically, this manipulation 
models real-world trade-offs as participants were forced to make decisions that 
benefitted a close other at the potential expense of a second close other. The run order 
of the two conditions (Parent Gain-Friend Lose, Friend Gain-Parent Lose) was 
counterbalanced between subjects to ensure ordering of conditions did not affect 
decision behavior. There was never a trial in which only one close other is affected, 
ensuring there is always a potential cost for favoring one close other. Text describing 
the condition of the current run (‘Parent Gain | Friend Lose’ or ‘Friend Gain | Parent 
Lose’) was presented at the bottom of the screen on each trial as a reminder to 
participants. Outcomes were also clearly labeled to ensure participants understood what 
each close other may have won or lost following a given set of cards. The task was 
programmed and administered using the open-source, python-based PsychoPy 
software (Peirce, 2007). An experimenter remained present and unobtrusively monitor 
the participant during completion of the task in order to ensure participant focus and 
diligence.  

Head Motion Statistics. Overall, head motion in this sample was low. For 
volumes exceeding the FD threshold, mean and maximum FD values were computed 
within each subject for each fMRI task. The means of these intra-subject metrics were 
used as a descriptive metric to reflect the overall head motion in the sample. The mean 
intra-subject average of n volumes exceeding the FD threshold on the parent-friend 
representation eliciting task was 0.484mm. The mean intra-subject average of the 
maximum FD value for this task was 0.620mm. Substantively, this means an ‘average 
subject’ is expected to move less than one volume above the FD threshold per run, and 
that their maximum FD value per run is expected to be ~ 0.6mm. Only fifteen subjects 
exceeded the FD threshold during any run of the parent-friend representation eliciting 
task. For the coin flip task, the mean intra-subject average of n volumes exceeding the 
FD threshold was 0.467, and the mean intra-subject average of the maximum FD value 
was 0.637mm1. Twelve subjects exceeded the frame displacement threshold during any 

run of this task, whereas the rest did not.  

Defining a Neural Signature of Value via Meta-Analysis (Neurosynth). A second 
neural value signature was defined using meta-analytic maps from the online 
Neurosynth platform (Yarkoni et al., 2011). Neurosynth is an automated tool that 
extracts coordinates of brain activity from an actively maintained database of 14,371 
studies (last updated July 2018), extracts high frequency terms occurring in the 
database’s studies, and uses this information to conduct a meta-analysis of activations 
for each term. Two images are computed for any given term: a uniformity image and 
association image. The uniformity map captures the degree of activity in the brain for a 
given term (comparable to how one would interpret results from a ‘standard’ whole-

                                                           
1 This estimate excludes the aforementioned outlying participant who averaged 20+ volumes exceeding the FD 

threshold. 
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brain, univariate analysis). The association map is more selective, as it controls for base 
rates (e.g., quantifies how much more likely a given brain region is likely to be activated 
for a given term relative to studies that don’t include that term). More detailed on the 
platform can be accessed at neurosynth.org/faq. For this study, we used the meta-
analytic map for the term ‘reward’. According to Neurosynth, 922 individual studies 
contributed to this term’s meta-analysis when our team downloaded the maps in late 
2020. Both maps, uniformity and association, were used in analyses we report here.  

Modeling Social Decision Preferences in a Hierarchical Bayesian Framework. 
Decisions on the i-th trial from the j-th participant on the modified CCT were modeled as 
being distributed Bernoulli. 

                                        Decisionij ~ Ber(p¬ij)                                                    (3) 

The Bernoulli distribution is frequently used to model binary outcomes, and takes 
a single parameter (p) describing the probability of ‘success’. Here, pij represents the 
probability of the j-th participant making a risky decision (i.e., turning over a card) on the 
-th trial. The log odds of these probabilities were further modeled as a linear 
combination of trial-level variables; an intercept (b0j), the experimental condition (b1j; 1 
= Parent Gain-Friend Lose, 0 = Friend Gain-Parent Lose), return (b2j), and risk (b3j).  

                   ln(p_ij/(1- p_ij )) = b0j + b1jConditionij + b2jReturnij + b3jRiskij                 (4) 

Critically, b1j is the key parameter of interest, as it encodes social decision 
preferences. A value equal to zero indicates no preference, a positive value indicates a 
parent-over-friend preference, and a negative value indicates a friend-over-friend 
preference. Return represents the expected value associated with flipping over a card 
on the i-th trial; risk represents the variance in the outcome distribution for the i-th trial. 
Modeling both is a common practice that helps statistically adjust for decision-level 
features as well as provides a ‘sanity check’ that participants are completing the task 
correctly (van Duijvenvoorde et al., 2015) Coefficients represent expected changes in 
logit units – that is, a one unit increase in any predictor will be associated with an 
expected change in the log odds of a risky decision equivalent to b (referring to a 
generic coefficient). Logit units can be converted to an odds ratio (i.e., the expected 
change in the odds) by exponentiating a given coefficient (i.e., exp(b)).  

Notably, coefficients associated with these trial-level variables can be 
decomposed into population-level (γ) and group-level (u) parameters, loosely analogous 
to the concept of fixed and random effects. Between-subject predictors were included in 
the model, as moderators of the effect of condition (social decision preferences). This 
means the slopes associated with the intercept (b0j) and condition (b1j) were 
parameterized as equations (5-6).  

                      b0j = γ00 + γ01Parent Value PEij + γ02Friend Value PEij + uoj                                
(5) 

                      b1j = γ10 + γ11Parent Value PEij + γ12Friend Value PEij + u1j                                
(6) 
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Here, Parent Value PE refers to value-based pattern expression scores for the 
parent representation, and Friend Value PE refers to same quantity but with friend 
representations. Between-subjects predictors were not added to the slopes for return 
(b2j) and risk (b3j), as notated in equations (7-8).  

                                                 b2j = γ20 + u2j                                                    (7) 

                                                 b3j = γ30 + u3j                                                    (8) 

Hierarchical models were fit using the default sampling procedures in the brms R 
package (no thinning, 4 chains, 4000 samples per chains, 2000 discarded warm-up 
samples).  

When selecting priors for the hierarchical model, we hoped to achieve two goals: 
(i) avoid adding substantial bias to the analysis (e.g., the prior suggests an effect that is 
not actually present), (ii) achieve principled regularization of model parameters. While 
regularization is traditionally used in the context of predictive modeling (e.g., Hine & 
Usynin, 2005; Stiglic et al., 2015; Xiao et al., 2018; Yao & Yang, 2016), regularized 
approaches can also aid inference by minimizing the influence of noise in parameter 
estimation and therefore enhancing parameter generalizability (Efron & Morris, 1975, 
1977; James & Stein, 1992). This left us to consider two types of prior distributions: non-
informative and weakly informative. Non-informative priors assume all parameter values 
are equally likely, whereas weakly informative priors are modestly confident about which 
parameter values are more likely than not. These categories are in contrast to 
informative priors which encode highly specific beliefs about model parameters and, in 
our case here, carried greater potential to bias the analysis. We ultimately selected 
weakly informative priors because the non-informative prior is too diffuse to regularize 
parameter estimates and is more likely to lead to inappropriately high posterior mass 
around extreme, highly implausible parameter value.  

Thus, all fixed effects received a standard normal prior (N(0,1)). The normal 
distribution was selected because we did not have reason to suspect asymmetry in the 
parameter space and did not have a reason to believe that fatter tails (e.g., in a t-
distribution) were necessary given the logistic regression model. The location and scale 
(mean, standard deviation) parameters of 0 and 1 were selected because (i) zero 
corresponds with the null value and regularization typically occurs by biasing 
coefficients to a null value, and (ii) a standard deviation of 1—in logistic regression—
would virtually cover the entire range of plausible parameter estimates (effects greater 
than |3| in logistic regression correspond to enormous effect sizes on an odds scale, 
certainly larger than would be expected in behavioral science research). The random 
effects from the model were drawn from a student’s distribution (t(3, 0, 2.5)). This t-
distribution was used at the recommendation of the brms developer, who notes that 
group-level effects often require distributions with fatter tails. 

Deriving a Sample-Specific Neural Signature of Value. We started to create a 
sample-specific neural signature of value by concatenating single trial activations from 
all subjects in a time by voxel matrix, where each row represented a single trial from the 
i-th subject, and each column represented a specific voxel. The matrix was reduced 
using PCA, following the precedent established by other similar studies (Chang et al., 
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2015; Krishnan et al., 2016; Wager et al., 2013), resulting in 1500 components that 
comprised 90% of the explained variance from the original matrix. LASSO (Least 
Absolute Shrinkage and Selection Operator) and ridge regression were used to predict 
each trial’s monetary value from BOLD activity, indexed by the set of principle 
components.  

Ridge and LASSO regression were selected for several reasons. Foremost, the 
nature of the data demanded an analytic method that could handle continuous 
outcomes. Second, both methods use penalized estimators, which have the effect of 
regularizing parameter estimates (i.e., biasing them towards, or to, zero in order to 
reduce variability in sample-to-sample estimates). As previously mentioned, this helps 
enhance the generalizability of parameter estimates and safeguards against overfitting. 
Third, they are broadly consistent with existing, similar studies (Chang et al., 2015; 
Krishnan et al., 2016; Wager et al., 2013). Last, these models can handle highly 
parameterized models without encountering estimation problems (e.g., parameter 
estimate instability).  

We used 10-fold cross-validation to determine the best penalty for both ridge and 
LASSO models. After obtaining the ideal tuning parameter, a model using each type of 
estimator was fit to the complete dataset predicting monetary value on each trial from 
principle components of brain activity (indexed via the BOLD signal). Evaluating both 
models using the R2 metric of model fit, we found that the ridge regression model fit the 
data better than LASSO. We backtransformed the weights of each principal component 
into the original voxel space, and thresholded the weights at zero2, creating the final 

neural signature map. Visually inspecting the final ridge regression-based neural 
signature revealed some degree of sparsity among the voxel weights. Realizing this 
could be a potential signal-to-noise issue, we created two additional versions of the map 
by spatially smoothing the weights using a 2mm and 4mm Gaussian kernel (fwhm). 
Subsequent analyses using the sample-specific signature report results using all three 
of these models. The unsmoothed signature is depicted in Figure 2 in the main 
document.  

To further check whether this sample-specific map was properly indicative of 
reward, we correlated the weights in our map with meta-analytic maps of reward and of  
four other terms: language, pain, working memory and social (all obtained via 
Neurosynth). The correlations between the neural signature of value and meta-analytic 
maps from unrelated constructs (language, pain, working memory, social) were low in 
magnitude (non-smoothed signature rs = -0.068 – 0.001; 2mm-smoothed signature rs = 
-0.063 – 0.018; 4mm-smoothed signature rs = -0.052 – 0.019), whereas the correlation 
between the reward map and the signature was higher (non-smooth signature r = 0.306; 
2mm-smoothed signature r = 0.356; 4mm-smoothed signature r = 0.505). This provides 
discriminant and converging evidence that the signature measures what it is intended 
to. Further, that the correlation with the meta-analytic map of reward was not very high 
(e.g., >.7), suggests our signature could be capturing unique or distinct facets of 
valuation (i.e., it is not redundant with the meta-analytic map). Visual inspection of the 

                                                           
2 It was difficult to conceptualize what a negative association between brain responses and coin flip task values 

could indicate.  
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signature shows regions canonically associated with reward (e.g., striatum, medial 
prefrontal cortex) are present in the anticipated direction, further suggesting the 
signature is at least measuring the intended psychological process. 

 

Results 

Manipulation Checks. In terms of behavioral social decision preferences, we 
used the same modeling framework as described in the main texts and this supplement. 
We observed evidence for a mean-level parent-over-friend social decision preference 
(posterior mean of social decision preference parameter: 0.30, 89% CI = [0.16, 0.44]).  

Imaging results obtained using a mixed effects model (FSL’s FLAME1) and 
subsequently cluster-corrected using random field theory (Family-wise-error < .05, 
cluster defining threshold Z > 3.1) show robust activation in the ventral striatum (k = 
1570, L: x = -14 y = 6 z = -10, Z = 5.516 ; R: x = 16 y = 4 z = -12, Z = 5.517 ) as well as 
the medial prefrontal cortex (k = 539, x = -4 y = 56 z  = 2, Z = 4.500) for the Win > Loss 
contrast, indicating a successful replication of prior work (Haber & Knutson, 2009; 
Knutson et al., 2001; Supplementary Figure 2). This suggests the desired psychological 
state was evoked during the task rendering the data suitable for attempting to define a 
sample-specific neural signature of value.  

Post-Hoc Analyses for Paired Differences in Value-Based Pattern Expression of 
Neural Representations. The first post-hoc analysis involved excluding primary visual 
cortex (V1) from the neural signature, under the reasoning that visual processes are 
unlikely to reflect meaningful information about valuation (Kragel et al., 2019). However, 
re-running the pattern expression analysis with a custom neural signature that excluded 
V1 voxels did not meaningfully change the results (Samp specific: posterior mean, (SD): 
d = -0.07 (0.14), 89% CI: [-0.29, 0.17]) (Samp specific – 2mm: posterior mean, (SD): d = 
-0.04 (0.14), 89% CI: [-0.27, 0.20]) (Samp specific – 4mm: posterior mean, (SD): d = -
0.04 (0.14), 89% CI: [-0.26, 0.19]). The second post-hoc analysis masked brain regions 
in the custom signature thought to be central to valuation, the ventral striatum (VS) and 
medial prefrontal cortex (mPFC) (Dabney et al., 2020; Haber & Knutson, 2009; Kutlu et 
al., 2021; Lopez-Persem et al., 2020; Vlaev et al., 2011).  However, this analysis again 
yielded equivocal evidence for a value-based signature bias in either direction (Samp 
specific: posterior mean, (SD): d = 0.07 (0.14), 89% CI: [-0.16, 0.30]) (Samp specific – 
2mm: posterior mean, (SD): d = 0.02 (0.14), 89% CI: [-0.21, 0.25]) (Samp specific – 
4mm: posterior mean, (SD): d = 0.02 (0.14), 89% CI: [-0.25, 0.21]). 
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Supplementary Figure 1. Sample example stimuli. 

FIGURE OMITTED DUE TO BIORXIV POLICY OVER IDENTIFIABLE INFORMATION 
 
Note. These images were taken from the sample PDF instruction file. These images are not 
actual subject data. 
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Supplementary Figure 2. Results of Win>Loss contrast during the coin flip task (value) 

Note. Winning, relative to losing, on the coin flip task evoked robust activity in the 
ventral striatum and medial prefrontal cortex (circled in red). Cluster corrected (Family-
Wise-Error of p < .05) using FLS’s FLAME1 (Cluster Defining Threshold of Z > 3.1).  
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Supplementary Figure 3. Posterior distribution plots for model interaction terms 
capturing the influence of value-based representations on social decision preferences 
(sample-specific neural signature, excluding V1 – post-hoc analysis). 

 

 

 

Note. ‘Samp Specific’ refers to the type of signature used (Samp specific = sample-specific 
signature built using ridge regression). ‘2mm’ and ‘4mm’ refer to the degree of smoothing 
applied to the sample specific signature (the left-most signature had no smoothing applied). ‘PE’ 
refers to pattern expression score. ‘Condition x Parent/Friend’ refers to the interaction term 
entered in the statistical model to assess the association between pattern expression scores 
and social decision preferences. ‘ROPE’ refers to Region of Practical Equivalence; ‘HDI’ refers 
to highest density credible intervals. 
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Supplementary Figure 4. Posterior distribution plots for model interaction terms 
capturing the influence of value-based representations on social decision preferences 
(sample-specific neural signature, including only VS, mPFC – post-hoc analysis). 

 

 

Note. ‘Samp Specific’ refers to the type of signature used (Samp specific = sample-specific 
signature built using ridge regression). ‘2mm’ and ‘4mm’ refer to the degree of smoothing 
applied to the sample specific signature (the left-most signature had no smoothing applied). ‘PE’ 
refers to pattern expression score. ‘Condition x Parent/Friend’ refers to the interaction term 
entered in the statistical model to assess the association between pattern expression scores 
and social decision preferences. ‘ROPE’ refers to Region of Practical Equivalence; ‘HDI’ refers 
to highest density credible intervals. 
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Supplementary Table 1. Predicting social decision preferences as a function of value-
based representations using a sample-specific neural signature, excluding primary 
visual cortex (V1 – post-hoc analysis) 

Note. Parameter estimates for the intercept, reward, and risk terms are not reported. ‘PE’ refers 
to pattern expression scores, obtained by using each individual subject’s parent and friend 
neural representations and a value-based neural signature. ‘Samp Specific’ refers to the type of 
signature used (Samp specific = sample-specific signature built using ridge regression). ‘2mm’ 
and ‘4mm’ refer to the degree of smoothing applied to the sample specific signature (the left-
most signature had no smoothing applied). Values in brackets represent 89% highest density 
credible intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Term Samp Specific Samp Specific – 2mm Samp Specific – 4mm 

Condition 0.29 [0.16, 0.43] 0.30 [0.15, 0.44] 0.30 [0.15, 0.44] 
Parent Value PE -0.03 [-0.22, 0.17] -0.11 [-0.33, 0.12] -0.11 [-0.33, 0.12] 
Friend Value PE -0.14 [-0.35, 0.05] -0.02 [-0.18, 0.25] 0.02 [-0.21, 0.24] 

Parent Value PE x Condition -0.14 [-0.28, 0.01] 0.05 [-0.13, 0.22] 0.11 [-0.05, 0.30] 
Friend Value PE x Condition 0.14 [-0.02, 0.29] -0.01 [-0.17, 0.17] -0.04 [-0.22, 0.13] 
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Supplementary Table 2. Predicting social decision preferences as a function of value-
based representations using a sample-specific neural signature, including only reward 
regions (VS, mPFC – post-hoc analysis). 

Note. Parameter estimates for the intercept, reward, and risk terms are not reported. ‘PE’ refers 
to pattern expression scores, obtained by using each individual subject’s parent and friend 
neural representations and a value-based neural signature. ‘Samp Specific’ refers to the type of 
signature used (Samp specific = sample-specific signature built using ridge regression). ‘2mm’ 
and ‘4mm’ refer to the degree of smoothing applied to the sample specific signature (the left-
most signature had no smoothing applied). Values in brackets represent 89% highest density 
credible intervals. ‘VS’ refers to ventral striatum, mPFC refers to medial prefrontal cortex.  

 

 

 

 

Term Samp Specific Samp Specific – 2mm Samp Specific – 4mm 

Condition 0.30 [0.16, 0.44] 0.30 [0.16, 0.44] 0.30 [0.16, 0.44] 
Parent Value PE -0.03 [-0.27, 0.21] -0.00 [-0.23, 0.24] -0.03 [-0.28, 0.20] 
Friend Value PE -0.04 [-0.27, 0.19] -0.05 [-0.28, 0.18] -0.02 [-0.25, 0.23] 

Parent Value PE x Condition 0.18 [0.00, 0.36] 0.14 [-0.05, 0.32] 0.14 [-0.05, 0.33] 
Friend Value PE x Condition -0.11 [-0.28, 0.08] -0.10 [-0.28, 0.08] -0.09 [-0.28, 0.08] 
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