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Summary

Social decision-making is omnipresent in everyday life, carrying the potential for both
positive and negative consequences for the decision-maker and those closest to them.
While evidence suggests that decision makers use value-based heuristics to guide
choice behavior, very little is known about how decision makers’ representations of
other agents influence social choice behavior. We used multivariate pattern expression
analyses on fMRI data to understand how value-based processes shape neural
representations of those affected by one’s social decisions and whether value-based
encoding is associated with social decision preferences. We found that stronger value-
based encoding of a given close other (e.g., parent) relative to a second close other
(e.g., friend) was associated with a greater propensity to favor the former during
subsequent social decision-making. These results are the first to our knowledge to
explicitly show that value-based processes affect decision behavior via representations
of close others.

Keywords: Social Decision-Making; Value; Pattern Expression; fMRI; Close
Relationships
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Human beings are intrinsically social creatures and our decisions often have
consequences for others. Such decisions—whose social consequences are direct or
indirect—has been termed social decision-making. Neuroscientific research on social
decision-making has increased dramatically over the past two decades, commensurate
with its importance to both individual well-being (Lamba et al., 2020; Ong et al., 2017)
and societal good (e.g., Johnson & Mislin, 2011). However, little research has examined
the neural and behavioral underpinnings of decision making involving close others,
instead focusing on decisions about strangers. This is surprising given that in everyday
life we ostensibly care most about social choices that impact those closest to us.
Moreover, despite the critical role that social and cognitive representations play in
motivating social behavior, broadly construed (Guthrie et al., 2022; Tamir & Thornton,
2018), almost no research has examined how a decision-maker’s representations of
others drives social decision processes. The present study sought to address these two
gaps in the literature by testing how multivariate neural representations of two close

others (a parent and a friend) predict subsequent social decisions about said others.

Most neuroscientific studies of social decision-making to date have paired
behavioral paradigms from psychology and behavioral economics with neuroimaging to
infer the underlying neural mechanisms supporting social decisions. One common
approach involves fitting a computational model of decision-making to behavioral data,
and subsequently examining the neural correlates of its parameters. A second, less
common approach, is ‘model-agnostic’ and instead measures how brain activity is
recruited during various task conditions. Both approaches have informed our

understanding of social decision making — allowing us to observe seemingly
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fundamental rules such as preventing harm to others, obviating social uncertainty, and
minimizing negative affect such as guilt or regret (Crockett et al., 2014; Feldmanhall &
Chang, 2018; Lamba et al., 2020). Despite this, we argue these approaches have
overlooked a critical component of social decision-making: how the decision-maker’s

representations of other agents’ influences decision behaviors involving said agents.

Here, we define “representations” as internal models of others that dynamically
integrate past and current information to guide prediction and future behavior (Clark &
Toribio, 1994; DeCharms & Zador, 2000; Morgan, 2014; Poldrack, 2021).
Representations have been shown to affect behavior in several adjacent fields such as
cognitive science and social psychology. For instance, representations of similarity
between another and oneself is thought to influence decisions about giving to others
(Hackel et al., 2017). Similarly, subject-idiosyncratic representations of familiar,
everyday objects predict between-object similarity judgments (Charest et al., 2014).
Thus, this prior work from adjacent fields suggests how a decision maker internally
represents specific individuals impacts social behaviors involving said individuals,

though this assumption has rarely been explicitly tested.

It is thus likely that social decision preferences are also driven by representations
in general, and value-based representations in particular. Social neuroscience research
shows that brain regions involved in processing value such as the ventral striatum and
medial prefrontal cortex are critical for encoding and tracking social information about
other individuals (Zerubavel et al., 2015) as well as supporting cognitive heuristics
during social decision-making (Chang et al., 2011; Fareri et al., 2015). Given the

importance of value-based computations in social behavior, and the significance of
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representations in driving decision making, it seems likely that value-based
representations play a key role in coordinating social decision making behavior.
Specifically, the literature begs the question of whether stronger value-based encoding
of representations of specific others (e.g., parents, friends) is linked to social decision

preferences for said others. However, this possibility has yet to be formally tested.

In the current study, we sought to determine the extent to which neural
representations of two specific close others (parents and friends) were encoded as
neural signatures of valuation, and related these estimates to social decision-making
preferences involving these others. Specifically, we examined whether value-based
representations of parents and friends predicted whether individuals would prioritize one
close other at the expense of another. We elected to focus on this type of decision
scenario (pitting a parent versus friend) for two reasons. First, the vast majority of social
decision research to date has focused on social decisions about unfamiliar others,
rather than close others. However, recent studies indicate that social decision behavior
often changes as a function of whom is affected (Fareri et al., 2020, 2022; Powers et al.,
2017; van de Groep et al., 2022), As such, we chose to focus on close others so as to
increase the generalizability of social decision research. Second, we have conducted
extensive behavioral work specifically examining social decisions between parents and
friends (Guassi Moreira et al., 2018, 2020, 2021), having previously observed a general
tendency among older adolescents to favor a parent over a friend, in addition to
considerable heterogeneity in the direction and magnitude of individual preferences.
That this particular decision scenario is well studied—and has been replicated—renders

it an ideal test case for the current study. We hypothesized (pre-registered,;
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osf.io/muv2c) (1) that individual neural representations of parents—relative to friends—
would be more strongly expressed as neural signatures of value, and (2) that individual
differences in value-based expression in neural representations would predict social
decision preferences (i.e., greater value-based expression in one’s neural
representation of a close other will be associated with a greater tendency to favor said
close other). Testing these two hypotheses stands to enrich our understanding of how
value-based representations drive consequential social decision making behavior,
especially in contexts that have relatively greater ecological validity (e.g., navigating
decisions with conflicting outcomes for multiple close others).

Methods

Overview. The goal of this study was to examine the role of value-based neural
representations in social decision-making preferences. We did this using pattern
expression analyses (Doré et al., 2017; Hong et al., 2019; Cosme et al., 2020). Pattern
expression analyses are commonly used to answer questions about how strongly a
given brain state is expressed as a psychological process of interest, resulting in a
single score that is used to compare relative differences in expression between brain
states (Cosme et al., 2019; Doré et al., 2017). For this study, our intent was (i) to
determine how strongly neural representations of parents and friends were expressed
as signatures of value and then (ii) examine whether the scores could predict social

decision preferences.

Participants. Participants for this study were comprised of 48 older adolescents
(18-19 years). We targeted older adolescents because theoretically heightened social

sensitivity to peer processes coinciding with continued reliance on parental relationships
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makes this developmental stage an ideal phase during which to examine social decision
behavior that pits the interests of two relatively important close others (Blakemore &
Mills, 2014; Steinberg & Morris, 2001). Participants were recruited by posting flyers and
sending mass emails to undergraduate college students. In order to be eligible to
participate, individuals were required to (i) be between the ages of 18 and 19 years old,
(ii) be eligible for MRI scanning (e.g., no metal implants, no claustrophobia, etc.), (iii) be
a fluent English speaker, (iv) have no neurological impairments, (v) be able to nominate
two close others (a parent and friend) and provide photographs and names for each
(more information about the nomination procedure and stimuli follow below).
Participants were compensated with a $25 (USD) cash payment plus an additional $1-5
bonus chosen at random (described in greater detail below). Three participants were
excluded from all analyses (one because of a scanner computer error, a second due to
poor overall data quality, and a third due to discovery of a biological artifact), resulting in
a final sample size of 45. All participants provided written consent in accordance with

the policies of the UCLA Institutional Review Board.

Sample Size Considerations. The best practices for determining sample size in
human neuroimaging research are relatively unclear given the complexity and difficulty
in calculating power for task-based fMRI studies (Chen et al., 2017; Cremers et al.,
2017; Mumford, 2012; Poldrack et al., 2017). Recent research suggests very large
sample sizes are needed to examine individual differences between resting state fMRI
and behavior (Marek, Tervo-Clemmens, et al., 2022), yet it is unclear how this finding
generalizes to task-based analyses, multivoxel fMRI approaches, or analyses that

involves repeated behavioral measurements nested within subjects. Further
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complicating matters is the fact that fMRI is a particularly expensive neuroimaging
modality. Given these realities and the lack of clear sample size requires, our goal set
prior to data collection was to scan as many participants as our funding would allow,
preferably exceeding the most recently estimated median cell size in human fMRI
research (N = 35; Poldrack et al., 2017). We acquired funding to scan 50 participants,

but stopped data collection early in light of the COVID-19 pandemic.
Experimental Protocol.

Overview. Participants were asked to nominate a parent and close friend of their
choice, and provide stimuli (photos, names) of each person prior to their scheduled
scan date. Participants completed a fMRI task to elicit neural representations of their
parent and friend (Parent-Friend Representation Task, described below), as well as
another fMRI task which was used to define a sample-specific neural signature of value
(Coin Flip Task, also described below). Last, participants completed a post-scan
session to assess behavioral social decision preferences. Each element of this

procedure is described in greater detail below.

Parent-Friend Nomination and Stimuli Collection. Participants were instructed to
nominate a parent and a close friend, and provide custom stimuli of each of them for an
fMRI task. Details about these nominations and the stimuli can be accessed in the

Supplemental Information.
fMRI Tasks.

Parent-Friend Representation Task. In a block design, participants were shown

custom stimuli of their own parent and nominated friend to elicit and record neural
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representations of each close other. In a given block, participants saw randomly ordered
stimuli pertaining to one close other (parent or friend). Various elements of this task
were designed to be broadly consistent with prior social and affective neuroscience
literature (Gee et al., 2014; Parkinson et al., 2017; Taylor et al., 2009; Zerubavel et al.,
2015). These stimuli were comprised of the five headshots in addition to the close
other’'s name! printed in five unique fonts — ‘Berlin’, ‘Broadway’, ‘Calibri’, ‘Colonna’, and
‘Comic Sans’ (10 unique stimuli). The use of varying photographic and text stimuli was
intended to elicit amodal neural representations of parents and friends, thereby avoiding
basic perceptual confounds. Each block contained 20 rapid presentations (2 for each of
the 10 unique stimuli) of said stimuli (1000ms) with a brief inter-stimulus interval (ISI)
between images (500ms). Participants completed a one-back task based on stimulus
type (photo vs text, regardless of orientation or font) to ensure they were paying
attention (i.e., press a button if the current stimulus type matches the one shown just
before it). 15000ms of fixation between blocks was presented to account for lagged
effects of the hemodynamic response function. Six blocks (3 parent, 3 friend) and six
inter-block fixation periods were presented per run. As a result, the entire task lasted
approximately 4.5 minutes (270s): [1500ms/trial x 20 trials/block x 6 blocks] + [15000ms

inter-block fixation periods x 6 fixation periods].

Coin Flip Task. Following the representation task, participants completed two
runs of a reward task intended to evoke neural representations of value (Braams &

Crone, 2016). During this event-related task, participants guessed the outcome (‘Heads’

! Based on participant feedback received during two pilot scans, participants were asked to provide the
labels they use to address each close other (e.g., ‘Mom’ or ‘Dad’ for a parent).
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or ‘Tails’) of a series of coin flip gambles in order to win or lose monetary rewards
(presented as coins). Each trial began with a reward summary (3000ms), a screen that
lists the amount awarded or lost for guessing correctly or incorrectly, respectively.
Participants made their guess, via button press, at this stage (‘Heads’ or ‘Tails’).
Following a 1000ms inter-stimulus interval, participants received feedback about
whether their guess was correct or incorrect (2500ms). A jittered inter-trial interval
separated trials, with values drawn from an exponential distribution (mean = 2880ms,
SD = 2660ms, range = 1000-10000ms). Each run lasted approximately 6 minutes.
Participants completed 30 trials per run, broken down across three distinct trial types: (i)
win 3 coins, lose 3 coins; (ii) win 5 coins, lose 2 coins; (iii) win 2 coins, lose 5 coins.
Participants were told the coin is fair (i.e., P(‘Heads’) = %). In reality, the task was rigged
such that individuals won approximately half of the trials to ensure enough gain and loss
events for subsequent modeling and estimation. To obtain a generalized signature of
valuation, one run varied the type of coins (Kennedy coin vs Sacagawea coin) and thus
the perceptual features of the coin (color: silver vs gold; gender of the head: male vs
female; etc.). The orientation of the coin also varied for this reason (i.e., half of the
reward summaries showed the coins on the ‘Heads’ side, the other half showed them
on the ‘Tails’ side). Last, participants were informed a subset of the trials would be
selected at random and added to, or subtracted from, their earnings (up to +/- $5). In

actuality, participants always received a randomly selected bonus between $1 - $5.

Figure 1. Schematic of the two fMRI tasks.

FIGURE OMITTED DUE TO BIORXIV POLICY OVER IDENTIFIABLE INFORMATION
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Note. ‘Representation Task’ refers to the Parent and Friend Representation task. The
Representation Task was always administered before the Coin Flip Task.

fMRI Data Acquisition. Neuroimaging data were collected using a research-
dedicated 3 Tesla, Siemens Magnetom Prisma MRI scanner and 32-channel head coil.
A high resolution T1* magnetization-prepared rapid-acquisition gradient echo structural
image was acquired for registration purposes (MPRAGE; TR = 2400ms, TE = 2.22ms,
Flip Angle = 8°, FOV = 256 mm?, 0.8 mm? isotropic voxels, 208 slices, A >> P phase
encoding). Functional runs were comprised of T2*-weighted multiband echoplanar
images (TR = 1000ms, TE = 37ms, Flip Angle = 60°, FOV = 208 mm?, 2.0 mm? isotropic
voxels, 60 slices, A >> P phase encoding, multi-band acceleration factor = 6). These
parameters were informed by studies on related topics using similar analytic techniques

(e.g., Chang et al., 2015; Chavez et al., 2017).
Post Scan Procedure.

Participants completed the following procedure directly after the fMRI scan. This
procedure was intended to measure social decision preferences between the
participants’ nominated parent and friend, and acquire additional information about

these nominees.

Parent-Friend Salience Procedure. Before completing the social decision-making
paradigm described below, participants answered brief prompts about the parent and
friend they had nominated. This procedure was enacted to amplify the salience of
completing the subsequent social decision-making task in the absence of their parent
and friend, consistent with prior studies (Guassi Moreira et al., 2018, 2020). Participants

provided basic information about each close others (e.g., name, age, sex), briefly wrote
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about a memory (~1 paragraph) they share with each close other, and listed a handful

of words and phrases describing each close other.

Social Decision-Making Paradigm. After scanning, and consistent with our prior
behavioral work (Guassi Moreira et al., 2018, 2020), we used a modified version of the
computerized “hot” Columbia Card Task (CCT) to assess social decision-making
preferences involving conflicting outcomes for parents and friends (Figner et al., 2009;
van Duijvenvoorde et al., 2015). The modified CCT is an iterative risk-taking task in
which individuals turn over cards that can result in hypothetical rewards or losses. The
modification we previously introduced applied a trade-off such that rewards exclusively
benefitted one of the two close others and losses were exclusively incurred by the

second of the two close others.

Participants in our study completed two runs of this task, one in which the
rewards benefitted the parent and the losses were incurred by the friend, and a second
run where the opposite was true (condition order counterbalanced between subjects).
Because there is always a trade-off in the conflicting outcomes for the two close others,
the task can be modeled to reveal whether there is an aggregate preference for a
parent or friend. Technical details of the task and its administration can be accessed in
the Supplemental Information. This was administered after the scan, with an

experimenter present to unobtrusively monitor the participant.

Additional Measures. Participants completed a series of self-report measures on
a laboratory computer via Qualtrics (an online survey administration platform), including

measures of subjective relationship quality, domain-specific risk-taking for oneself,
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sensation seeking, and family obligation. Participants also completed a computerized

risk-taking task that affected only themselves (i.e., self-oriented risks).

Analysis Plan

fMRI Data Preprocessing. Prior to preprocessing, data were visually inspected
for artifacts and anatomical abnormalities. Data were preprocessed and analyzed using
the fMRI Expert Analysis Tool (FEAT, Version 6.00) of the MFRIB Software Library
package (FSL, Version 5.0.9; fsl.fmrib.ox.ac.uk). Preprocessing began by using the
brain extraction tool (BET) to remove nonbrain tissue from functional and structural
images, followed by head motion correction via spatial realignment of functional
volumes using MCFLIRT. The data were hi-pass filtered to remove low frequency
artifacts (45s for the Parent and Friend Representation Task; 100s for the Coin Flip
task). From there, the extent of head motion artifacts was estimated by using the FSL
Motion Outliers command to document volumes that exceed a 0.9 mm threshold of
framewise displacement (FD; Siegel et al., 2014). Runs with 25% of volumes exceeding
this threshold were excluded from analysis. Head motion in the sample was low overall:
the ‘average subject’ moved less than one volume above the threshold with a maximum
FD value of 0.6 (full descriptive information about head motion can be accessed in the
Supplemental Information). To help reduce high frequency noise introduced by
realignment (Etzel et al., 2011; Misaki et al., 2014), data were smoothed with a 1 mm
Gaussian kernel (full width at half maximum). Data were pre-whitened prior to analysis
to correct for autocorrelated residuals. FSL’s boundary based registration algorithm
(Greve & Fischl, 2009) was used to register functional data to the high resolution

structural scan (MPRAGE). MPRAGE images were then nonlinearly registered to the
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MNI152 template image (10-mm warp resolution), and the ensuing transformation
matrix was used to register functional images to standard space. This step also

resampled voxel size to 2mm? isotropic.

All participants had usable data for the Parent and Friend Representation Task,
although three participants only had 1, 2 and 3 usable runs (out of four), respectively, of
the task available for analysis. Three participants were excluded from analyses
involving the Coin Flip task. Two such participants were excluded because they lowered
part of their heads out of the coil during the Coin Flip task, rendering missing data for
large parts of the temporal pole. The third such participant was excluded due to head
motion, as they averaged 22 volumes exceeding the FD threshold (average maximum

FD = 8.82mm) across both runs. The final sample size for all analyses was N = 45.

Multivariate Pattern Estimation. We used our data to estimate three multivariate
neural patterns: a parent representation, a friend representation, and a value-based

signature.

Parent and friend representations. Estimating the parent and friend neural
representations was accomplished by modeling the Parent and Friend Representation
Task with a standard General Linear Model (GLM) analysis. Each run of the task was
submitted to a fixed effects GLM analysis in FSL. Parent and friend blocks were
modeled with respective boxcar regressors, convolved with the hemodynamic response
function (double gamma) and bandpass filtered to avoid reintroducing noise into the
data. Slice timing effects were addressed by also modeling the temporal derivative of
each task regressor. Head motion was statistically adjusted for by adding rotation and

translation parameters, along with their derivatives and squares (obtained from
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MCFLIRT motion correction) as nuisance regressors. To further statistically adjust for
potential spurious effects of head motion, we included additional regressors for
individual volumes that exceeded the 0.9 mm FD threshold. Two linear contrasts were
computed: parent > baseline and friend > baseline. A second level (subject level)
analysis was carried out to average contrast estimates over the four runs, using a fixed
effects model and forcing random effects variance to zero. The ensuing parent >
baseline and friend > baseline maps, one each per subject, served as the estimates of

parent and friend representations.

Value-based signature. We created a neural signature of value consistent with
methods previously employed with similar tasks (Chang et al., 2015; Cosme et al.,
2019; Wager et al., 2013; Reddan et al., 2018). This process involved training a
statistical model to predict gain and loss values on each trial of the Coin Flip Task
based on brain activity, and ultimately yielded a statistical map containing voxel weights
that represent the strength of association between voxel activity and reward/loss

outcomes.

The first step in this task was to compute brain activity for individual trials on the
Coin Flip task. We accomplished this by conducting a least squares single (LSS)
analysis (Mumford et al., 2012, 2014). Briefly, LSS entails creating a unique fixed effect
GLM for every trial, in every run, for all participants?. We created a single-event
regressor for a given trial in its respective GLM and model all other trials in their

respective conditions. For the coinflip task, this meant that any given LSS GLM would

2 All other GLM specifications (e.g., slice timing correction via temporal derivatives, regressor convolution,
etc.) for the LSS analysis were identical to those used in the parent-friend representation GLMs.
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contain a regressor for the current ‘target trial’, a regressor for gain outcomes, a
regressor for loss outcomes, and a regressor for guessing between ‘Heads’ or ‘Tails’
(i.e., the length of presentation time for the reward summary). A linear contrast
comparing trial > baseline was estimated for each GLM. The ensuing single-trial
estimates from all participants were used to extract a t x v matrix, containing brain
activity during the t-th trial in the v-th voxel (whole brain). Given the high dimensionality
of this matrix (209,036 voxels), principal components analysis (PCA) was employed to
reduce the number of features (i.e., voxels). Finally, penalized regression (e.g., LASSO,
ridge) models were fit to the data, predicting the monetary outcome of each trial from its
brain activity and thus yielding a set of weights for each principal component. Weights
for each component were backtransformed into voxel space, yielding the final neural
signature of value. Given some sparsity observed among the voxel weights, we created
two additional versions of the map by smoothing the maps using a 2mm and 4mm
Gaussian kernel (fwhm). All three versions are used in analyses reported below. More
details about the signature creation process can be accessed in the Supplemental

Information, along with a visualization of the unsmoothed signature (Figure 2).
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Figure 2. Sample-specific neural signature of value (unsmoothed).
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Robustness checks. Two types of robustness checks were performed on our
value signature methods. First, to ensure the signature was specific to value and did not
inadvertently tap another psychological process, we cross-referenced its similarity with
publicly available meta-analytic maps of similar and distinct constructs (see
Supplemental Information). Second, we re-ran all analyses using two additional neural
signatures of value, defined by Neurosynth (Yarkoni et al., 2011) to ensure our findings
were robust to the method of signature definition (see Supplemental Information).
Notably, we see merit in using a two-pronged approach to capturing neural signatures in
that one signature is representative of the population of interest here (sample-specific)
and another is based on data derived from thousands of participants (Neurosynth). As

described below, results were largely consistent between these two approaches.

Pattern Expression Analysis. Pattern expression analysis captures how much
a given psychological process (indexed by a neural signature) contributes to a

representation or state. The analysis involves taking the voxel-wise dot product between
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values in a neural representation and a neural signature of interest. The computation is

given by the following equation.
i=1 WiX; (1)

Where n is the number of voxels, w; are the weights of the neural signature
(value patterns created from the coin flip task data), and x; is the neural activity (inferred
via BOLD) from the representation’s voxels (for parent and friend representations,

respectively).

Statistical Analysis. After extracting pattern expression scores, we first
examined whether parent representations were more strongly encoded as signatures of
value, relative to friend representations. We tested this by analyzing paired differences

in parent — friend pattern expression scores.
Yi~ N(d*c, 0%) 2

Here Yi represents the paired pattern expression difference score for the i-th
participant, and it is modeled as being drawn from a normal distribution, centered
around a mean (8*c0) and variance (02). The mean was parameterized as &*o so that
draws from this distribution are in Yi's ‘native units’, but the resulting summary statistics
reflect standardized effect sizes (i.e., mean/standard deviation). The model assigned
priors for both 3 and 0. The variance was given a Jeffreys prior (p(o?) « 1/02), and 6—
the mean effect size—was modeled as being distributed Cauchy (& ~ Cauchy(0, r),
where r = 1/sqrt(2)). This model was fit using rstan, a package in the R statistical

software library that allows the user to interface with Stan a Bayesian modeling software
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(Stan Development Team, 2020) (no thinning, 4 chains, 2,000 samples per chain, 1,000

discarded burn-in samples).

The next analytic step tested whether individual differences in pattern expression
scores predicted social decision preferences. To this end, we used a hierarchical
Bayesian model. Details of the model, including selection of priors, are described in the

Supplemental Information.

Inference Criterion. Inference was performed on the posterior samples by using
the region of practical equivalence method popularized by Kruschke (2011, 2013). We
employed this method in three steps. First, a credible interval (Cl)—a span of the
posterior distribution capturing a user-defined portion of its mass—was computed for a
given posterior using the Highest Density Interval (HDI) method (bayestestR package;
Makowski et al., 2019). We used 89% credible intervals upon the recommendation that
wider intervals (e.g., 95%) are more to sensitive Monte Carlo sampling error (Makowski
et al., 2019; McElreath, 2018). Second, we specified a region of practical equivalence
(ROPE), which is a user-defined interval in the parameter space whose values are
deemed virtually equivalent to a null value (i.e., spans effects of such little magnitude
that they are, for practical purposes, considered comparable to the null value). We
defined a ROPE of [-0.1, 0.1] for analyses involved paired comparisons because we
were uninterested in standardized effects below 0.1 in magnitude and a ROPE of [-
0.095, 0.095] was defined for hierarchical logistic regression (i.e., a 10% expected
change in the likelihood of flipping over a card after transforming logistic regression
coefficients back into the odds scale). Finally, we inspected the degree of overlap

between the Cl and ROPE and compared it to the inferential criteria specified by
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Spiegelhalter and colleagues (1994). Here, if the ClI falls completely outside of the
ROPE, evidence for an effect is said to be robust (Kruschke, 2011), whereas if the CI
overlaps with ROPE on side, then there is evidence to rule out parameter values only
on the non-overlapping side of the ROPE. If the ROPE entirely contains the ClI, then
that is evidence in favor of accepting a null effect, and if the CI spans the ROPE but

extends outside both ends of it, then the evidence is ‘equivocal’.

Results

Manipulation Checks. We conducted two key manipulation checks prior to
executing the aforementioned analysis plan. First, we computed linear contrasts (win >
loss) from a traditional univariate analysis of the Coin Flip task to ensure the task was
recruiting brain regions previously implicated in valuation (Haber & Knutson, 2009;
Knutson et al., 2001). Second, we analyzed behavioral data from the modified CCT data
(collected post-scan) without any between-person predictors to check whether we could
replicate a previously observed overall parent-over-friend preference (Guassi Moreira et
al., 2018, 2020). Both manipulation checks suggested replication of prior findings, with
imaging results showing robust activity in the ventral striatum and medial prefrontal
cortex, and parameters of the behavioral decision-making model suggesting a parent-
over-friend preference (see Supplemental Information). These results suggest any
potential null effects in other analyses would not be due to the current sample exhibiting
differing social decision preferences than those of samples that inspired the current

study.

Paired Differences in Value-Based Pattern Expression of Neural

Representations. Using the five different neural signatures of value (3 sample-specific
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signatures created using different levels of smoothing; uniformity and association
Neurosynth maps), we observed mixed evidence for the hypothesis that parent and
friend neural representations are differentially encoded as a function of value, with more
evidence in favor of friends than parents. Results using the sample-specific and
Neurosynth neural signatures of value both showed a bias towards friends, not parents,

as indicated by the mean of posterior samples.

The results were relatively stronger in favor of friends over parents with the
Neurosynth signature than the sample-specific signature. Results using the Neurosynth
maps as neural signatures showed that the majority of the posterior mass either fell
within ROPE or in the negatively signed region encoding friend > parent relatively
stronger evidence for a value-based bias in friend neural representations (NS: posterior
mean, (SD): d =-0.24 (0.15), 89% CI: [-0.48, -0.01]) (NS_Asc: posterior mean, (SD): d =
-0.14 (0.14), 89% CI: [-0.37, 0.09]). This was contrary to hypotheses, in that it
suggested that friend representations are more strongly encoded as value-based

signatures, Figure 3, bottom row).

For the sample-specific results, roughly equal amounts of the posterior mass lay
on either side of ROPE, suggesting the evidence for an effect in either direction was
equivocal (Figure 3, top row; Samp Specific: posterior mean, (SD): d = -0.08 (0.14),
89% CI: [-0.31, 0.15]) (Samp Specific — 2mm: posterior mean, (SD): d =-0.03 (0.14),
89% CI: [-0.25, 0.20]) (Samp Specific — 4mm: posterior mean, (SD): d =-0.03 (0.14),
89% CI: [-0.27, 0.19]). Again, these results were contrary to hypotheses. We conducted
two post-hoc follow-up analyses to determine whether these unanticipated results could

have been driven by brain regions in the neural signature that were potentially capturing
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a non-relevant psychological process, thereby obscuring relevant signal. However,

neither post-hoc analysis substantially changed results (see Supplemental Information).

Figure 3. Posterior distributions of paired differences in value-based pattern expression

values
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Note. ‘Samp Specific’ and ‘Neurosynth’ refer to the type of signature used (Samp specific =
sample-specific signature built using ridge regression; NS = Neurosynth signature obtained from
large scale, automated meta analysis). ‘2mm’ and ‘4mm’ refer to the degree of smoothing
applied to the sample specific signature (the top left signature had no smoothing applied). ‘Asc’
refers to the Neurosynth association map; ‘unif’ refers to the Neurosynth uniformity map. Paired
differences are in a standardized metric (d). ‘ROPE’ refers to Region of Practical Equivalence;
‘HDI’ refers to highest density credible intervals. Difference scores were computed by
subtracting friend from parent (parent — friend).

Modeling Social Decision Preferences as a Function of Value-Based Pattern
Expression. Pattern expression values derived using the three versions of the sample-
specific neural value signature and the two versions of the Neurosynth neural value
signature predicted subsequent social decision preferences on the modified CCT

(Tables 1-2, Figures 4-5). Across multiple signatures, we observed that greater value-
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based pattern representation of a given close other predicted favoring said other in the
modified CCT (e.qg., greater value-based pattern expression for parent predicted a
subsequent behavioral preference for parent on the CCT). For the sample-specific
signatures, these results were observed on the two models using a smoothed neural
signature value, whereas contradictory results were observed with an unsmoothed
neural value signature. Based on our inferential criteria, greater parent value-based
pattern expression was either related to equivocal preferences or parent preferences,
but not friend preferences. Confidence is strengthened by the fact that a plurality of the
posterior mass fell in the direction of the hypothesized effect (parent PE predicting

parent preference) for all parameter estimates.

Table 1. Predicting social decision preferences as a function of value-based
representations using a sample-specific neural signature.

Term Sample Spec Sample Spec — 2mm Sample Spec — 4mm
Condition 0.30[0.16, 0.44] 0.30[0.17, 0.46] 0.30[0.16, 0.44]
Parent Value PE -0.02 [-0.23, 0.19] -0.01 [-0.28, 0.28] 0.01[-0.24, 0.26]
Friend Value PE -0.13 [-0.32, 0.08] -0.01 [-0.26, 0.26] -0.00 [-0.26, 0.24]
Parent Value PE x Condition -0.14 [-0.30, 0.03] 0.16 [-0.05, 0.37] 0.19 [-0.01, 0.39]
Friend Value PE x Condition 0.14 [-0.02, 0.30] -0.12 [-0.33, 0.07] -0.14 [-0.33, 0.06]

Note. Parameter estimates for the intercept, reward, and risk terms are not reported. ‘PE’ refers
to pattern expression scores, obtained by using each individual subject’s parent and friend
neural representations and a value-based neural signature. ‘Samp Specific’ refers to the type of
signature used (Samp specific = sample-specific signature built using ridge regression). ‘2mm’
and ‘4mm’ refer to the degree of smoothing applied to the sample specific signature (the left-
most column had no smoothing applied). Values in brackets represent 89% highest density
credible intervals.

Figure 4. Posterior distribution plots for model interaction terms capturing the influence
of value-based representations on social decision preferences (sample-specific neural
signature).
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Note. ‘Samp Specific’ refers to the type of signature used (Samp specific = sample-specific
signature built using ridge regression). 2mm’ and ‘4mm’ refer to the degree of smoothing
applied to the sample specific signature (the left-most signature had no smoothing applied). ‘PE’
refers to pattern expression score. ‘Condition x Parent/Friend’ refers to the interaction term
entered in the statistical model to assess the association between pattern expression scores
and social decision preferences. ‘ROPE’ refers to Region of Practical Equivalence; ‘HDI’ refers

to highest density credible intervals.

Table 2. Predicting social decision preferences as a function of value-based
representations using a Neurosynth meta-analytic neural signature.

Term

Neurosynth - Unif

Neurosynth - Asc

Condition
Parent Value PE
Friend Value PE

Parent Value PE x Condition
Friend Value PE x Condition

0.30 [0.17, 0.44]
0.07 [-0.26, 0.40]
-0.03 [-0.34, 0.30]
0.20 [-0.06, 0.43]
-0.23 [-0.50, -0.01]

0.30 [0.16, 0.45]
-0.14 [-0.38, 0.12]
0.07 [-0.18, 0.33]
0.13 [-0.06, 0.33]
-0.14 [-0.33, 0.07]

Note. ‘PE’ refers to pattern expression score. ‘unif’ refers to Neurosynth uniformity map; ‘Asc

’

refers to the Neurosynth association map. ‘Condition x Parent/Friend’ refers to the interaction
term entered in the statistical model to assess the association between pattern expression
scores and social decision preferences. Values in brackets represent 89% highest density

credible intervals.
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Figure 5. Posterior distribution plots for model interaction terms capturing the influence
of value-based representations on social decision preferences (sample-specific neural
signature).

Neurosynth - Unif Neurosynth - Asc
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Note. ‘Unif refers to Neurosynth uniformity map; ‘Asc’ refers to the Neurosynth association
map. ‘PE’ refers to pattern expression score. ‘PE’ refers to pattern expression score. ‘Condition
x Parent/Friend’ refers to the interaction term entered in the statistical model to assess the
association between pattern expression scores and social decision preferences. ‘ROPE’ refers
to Region of Practical Equivalence; ‘HDI’ refers to highest density credible intervals.

To be consistent with our approach to analyzing paired differences, we
conducted two similar post-hoc analyses. This involved re-running our hierarchical
model (i) with V1 voxels masked out when computing pattern expression scores as well
as (ii) computing pattern expression values in reward-related ROIs only. Overall, the
results of these two post-hoc analyses are largely consistent with each other, as well as
the initial planned analysis: a greater pattern expression score for a given individual was
related with a stronger propensity to favor them on the modified CCT (see Supplemental

Information, Supplementary Tables 1-2).

Discussion
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The current study sought to test what drives social decision preferences among
close others. Cumulative evidence from multiple pattern expression analyses suggest
that social decision preferences between two close others (i.e., one’s parent versus
friend) are predicted by the extent to which the brain represents said close others in
terms of value. These findings carry important implications about how representations of
social agents drive social decision-making, as well as how representations are

distributed across the brain.

Underscoring the role of neural representations in social decision making.
Excitingly, this study is among the first to examine how neural representations of others
influence social decision behavior. By and large, the primary focus of most prior work
has been on how individuals process and respond to various features of social
decisions, often as applied to unfamiliar or distant others(e.g., the value of each
decision alternative, the degree of risk involved, beliefs about a social partner’'s
resources or their attitudes) (e.g., Chang et al., 2011; Crockett et al., 2017; Fareri et al.,
2015). By contrast, the present study focused on how individuals represent decision
partners themselves (specifically, neural representations). This is noteworthy for a few
reasons. First, examining social representations is a direct way of parsing the
mechanisms that underlie social decision preferences. Representations of others are,
theoretically, the lens through which we perceive and contextualize other’s behavior
(Amodio, 2019; Tamir & Thornton, 2018). For example, representing one’s parent in
terms of value could indicate a subjective sense of their relationship being fulfilling and
of their basic needs (Tottenham, 2020). However, further work is needed to interrogate

when said social preferences emerge — for example, they could theoretically stem from
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a sense of gratitude, a desire to maintain relationship strength or an entirely different
motivational process. Second, and relatedly, the putative mechanistic influence that
representations may have on social decision preferences are likely generalizable across
contexts because of evidence that representations of others are theoretically stable and
domain-general (Tamir & Thornton, 2018). For example, psychological theories of
human development posit that initial representations of caregivers become internalized,
remain stable across contexts and time, and inform how future representations of others
are established (Bretheron, 1985, 1992). Such theories are strengthened by
neuroscientific evidence showing that representational entities—ranging from objects to
concepts—are enduring and stable across contexts (Ward et al., 2018; Lin & Thornton,

2021).

The present findings also have implications for understanding the role that neural
computations of value play in social cognition and behavior (Zerubavel et al., 2015).
Together with prior work, our results suggest that humans view others, at least in part,
in terms of how they satisfy their own individual needs, which in turn motivates social
behavior (Amodio, 2019; Tamir & Thornton, 2018). Our findings suggest that using a
value-based neural architecture to construct representations of others is an efficient
manner of determining the association between other social agents and one’s own
goals. In other words, it suggests that conserved neural circuitry supports value
computations across both social and non-social contexts (i.e., if our representations of a
close other are aligned with value, it could suggest that our relationship with them is
goal fulfilling). Future work may further unpack links between value-based

representations and social behavior by attempting to explicitly formalize how value-
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based processes are integrated into representations of others. For instance, future work
could examine how social experiences contribute to value-based encoding of others as
a means to understand how such an encoding comes to be in the first place (e.g.,

Gonzalez & Chang, 2019).

Representations are distributed across the brain. Another key takeaway from
these findings is that they suggest the brain is not simply relying on two or three node
circuits to perform low dimensional computations over decision-level inputs during social
decision-making (e.g., computing subject value of a safe or risky option based on the
degree of reward, uncertainty, etc.) (Gangopadhyay et al., 2021; Rilling & Sanfey,
2011). Our results are instead consistent with the notion that representations
themselves are intrinsically high dimensional, given that they require storing and
integrating a wealth of information in order to make real time predictions (Kriegeskorte &
Douglas, 2018). This suggests that finely coded, multivariate information about others is
leveraged to guide behavior during social decision making. Future work might seek to
build on our findings and leverage more sophisticated techniques to learn more about
the mechanistic details of high dimensional representations. For example, researchers
might use neural networks to construct artificial representations of social agents that
vary based on different facets of network architecture. This approach could be used to
track how manipulating representations predicts simulated changes in social decision-
making, and would have the added benefit of creating formalized models of how
representational information is used in decision-making. Alternately, one could leverage
animal models of social decision-making (Ben-Ami Bartal et al., 2011; Dal Monte et al.,

2020) to better decode the specific computations by which representations guide
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behavior by decomposing value-based processes into its constituent components (e.g.,
White & Monosov, 2016) and examining how each component may map onto distinct

neuronal populations that also encode representations of others.

Limitations. Like all studies, the current one has limitations that warrant
discussion. First, the lack of consistent evidence for a group-level value-based bias for
parent or friend representations in either direction was somewhat surprising. One
reason behind this may be due to the fact that parent and friend relationships are highly
heterogeneous from person to person, enough so that group-level effects of this sort
may be misleading or simply non-informative. Second, confidence in the present results
would be strengthened by replication in larger and more diverse samples in light of
ongoing debates about power in fMRI research (Marek, Tervo-Clemmens, et al., 2022).
Third, future work might build on our findings regarding representations of value by
looking at expression of other cognitive or affective processes (e.g., modeling
representations of others in terms of semantic information, etc), as well as testing

whether the modality of value matters (e.g., social versus monetary).

Conclusion. Social decision-making in everyday life is nuanced and complex.
The present study sought to better incorporate this complexity into the neuroscience of
social decision-making by examining how representations of close others influence
social decision making behavior. We found that value-based processes may influence

social choice behavior in part via neural representations of close others.
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Supplementary Information
Methods

Parent-Friend Nomination and Stimuli Collection. Upon signing up for the study,
participants were informed that the study involved making hypothetical decisions on the
behalf of a parent and close friend, and were asked to nominate one of each.
Participants were not allowed to nominate current romantic partners or family members
as “friends” in effort to avoid potential confounds. Afterwards, participants were asked to
for the names they use to address their parent and friend, respectively, and for five
‘passport style’ headshots of each close other (each from a different angle). Images
required neutral facial expressions, both eyes to be open, mouth shut, eyes locked
straight ahead, and no head tilt (See Supplementary Figure 1 for an example). The
experimenter first reviewed these requirements with participants via telephone and then
sent them a PDF file with complete, detailed instructions (osf.io/muv2c). The
experimenter assessed images for quality prior to the scan and asked participants for
re-shoots if images did not comply with requirements.

Social Decision-making Paradigm. Consistent with our prior work (Guassi
Moreira et al., 2018, 2020), we used a modified version of the computerized “hot”
Columbia Card Task (CCT) to assess social decision-making preferences involving
conflicting outcomes for parents and friends (Figner et al., 2009; van Duijvenvoorde et
al., 2015). Participants completed two runs of the CCT, each consisting of 24 rounds. A
single round is comprised of a series of iterative decisions, ranging between one and
sixteen. During each round, participants were shown a set of sixteen overturned cards
(i.e., collectively, a deck) and were told the objective of the task was to win points by
iteratively turning over cards. Participants were informed that each card is associated
with a gain or loss of points, and were made aware of a descriptive header above each
deck that indicated the total number of loss in the deck (one or two), the point value of
each loss card (-30 or -60), the point value of each gain card (10 or 20), and a running
total meant to keep track of points earned so far on that deck. The configuration of loss
cards, loss and gain values were crossed, yielding eight distinct deck types. Participants
made choices regarding each deck type three times, hence 24 rounds.

Each round began with a score of zero points and all cards overturned.
Participants were required to choose between turning over a card—a risky choice—or
not turning over a card (‘passing’, a safe choice). If participants chose to turn over a
card, the computer randomly selected a card and turned it over. Choosing to pass, by
contrast, ended the round and participants could not gain or lose any additional points
(akin to ‘cashing out’ at a casino). Each round lasted until the participant decided to
pass or randomly flipped a loss card. Participants were informed the computer selected
cards to flip at random. In reality, the first three risky choices for any deck were always
rigged to flip a gain card to safeguard against participants losing too early and then
feeling disproportionately discouraged from taking further risks. Participants completed
four practice rounds to ensure proper understanding of the task. A trained experimenter
did not allow them to proceed unless they demonstrated a clear understanding of the
rules.
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As previously mentioned, the CCT was modified to assess late adolescents’
social decision-making preferences between parents and friends. During one run of the
task, participants were informed all points associated with gain cards would be awarded
to their nominated parent, whereas any losses associated with each loss card would be
incurred by their nominated friend. The opposite was true during the second run (gains
solely benefit friend, losses solely incurred by parent). Critically, this manipulation
models real-world trade-offs as participants were forced to make decisions that
benefitted a close other at the potential expense of a second close other. The run order
of the two conditions (Parent Gain-Friend Lose, Friend Gain-Parent Lose) was
counterbalanced between subjects to ensure ordering of conditions did not affect
decision behavior. There was never a trial in which only one close other is affected,
ensuring there is always a potential cost for favoring one close other. Text describing
the condition of the current run (‘Parent Gain | Friend Lose’ or ‘Friend Gain | Parent
Lose’) was presented at the bottom of the screen on each trial as a reminder to
participants. Outcomes were also clearly labeled to ensure participants understood what
each close other may have won or lost following a given set of cards. The task was
programmed and administered using the open-source, python-based PsychoPy
software (Peirce, 2007). An experimenter remained present and unobtrusively monitor
the participant during completion of the task in order to ensure participant focus and
diligence.

Head Motion Statistics. Overall, head motion in this sample was low. For
volumes exceeding the FD threshold, mean and maximum FD values were computed
within each subject for each fMRI task. The means of these intra-subject metrics were
used as a descriptive metric to reflect the overall head motion in the sample. The mean
intra-subject average of n volumes exceeding the FD threshold on the parent-friend
representation eliciting task was 0.484mm. The mean intra-subject average of the
maximum FD value for this task was 0.620mm. Substantively, this means an ‘average
subject’ is expected to move less than one volume above the FD threshold per run, and
that their maximum FD value per run is expected to be ~ 0.6mm. Only fifteen subjects
exceeded the FD threshold during any run of the parent-friend representation eliciting
task. For the coin flip task, the mean intra-subject average of n volumes exceeding the
FD threshold was 0.467, and the mean intra-subject average of the maximum FD value
was 0.637mm?. Twelve subjects exceeded the frame displacement threshold during any
run of this task, whereas the rest did not.

Defining a Neural Signature of Value via Meta-Analysis (Neurosynth). A second
neural value signature was defined using meta-analytic maps from the online
Neurosynth platform (Yarkoni et al., 2011). Neurosynth is an automated tool that
extracts coordinates of brain activity from an actively maintained database of 14,371
studies (last updated July 2018), extracts high frequency terms occurring in the
database’s studies, and uses this information to conduct a meta-analysis of activations
for each term. Two images are computed for any given term: a uniformity image and
association image. The uniformity map captures the degree of activity in the brain for a
given term (comparable to how one would interpret results from a ‘standard’ whole-

1 This estimate excludes the aforementioned outlying participant who averaged 20+ volumes exceeding the FD
threshold.
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brain, univariate analysis). The association map is more selective, as it controls for base
rates (e.g., quantifies how much more likely a given brain region is likely to be activated
for a given term relative to studies that don’t include that term). More detailed on the
platform can be accessed at neurosynth.org/fag. For this study, we used the meta-
analytic map for the term ‘reward’. According to Neurosynth, 922 individual studies
contributed to this term’s meta-analysis when our team downloaded the maps in late
2020. Both maps, uniformity and association, were used in analyses we report here.

Modeling Social Decision Preferences in a Hierarchical Bayesian Framework.
Decisions on the i-th trial from the j-th participant on the modified CCT were modeled as
being distributed Bernoulli.

Decisionj ~ Ber(p-ij) (3)

The Bernoulli distribution is frequently used to model binary outcomes, and takes
a single parameter (p) describing the probability of ‘success’. Here, pij represents the
probability of the j-th participant making a risky decision (i.e., turning over a card) on the
-th trial. The log odds of these probabilities were further modeled as a linear
combination of trial-level variables; an intercept (b0j), the experimental condition (b1j; 1
= Parent Gain-Friend Lose, 0 = Friend Gain-Parent Lose), return (b2j), and risk (b3)).

In(p_ij/(1- p_ij )) = b0j + b1jConditionij + b2jReturnij + b3jRiskij (4)

Critically, b1j is the key parameter of interest, as it encodes social decision
preferences. A value equal to zero indicates no preference, a positive value indicates a
parent-over-friend preference, and a negative value indicates a friend-over-friend
preference. Return represents the expected value associated with flipping over a card
on the i-th trial; risk represents the variance in the outcome distribution for the i-th trial.
Modeling both is a common practice that helps statistically adjust for decision-level
features as well as provides a ‘sanity check’ that participants are completing the task
correctly (van Duijvenvoorde et al., 2015) Coefficients represent expected changes in
logit units — that is, a one unit increase in any predictor will be associated with an
expected change in the log odds of a risky decision equivalent to b (referring to a
generic coefficient). Logit units can be converted to an odds ratio (i.e., the expected
change in the odds) by exponentiating a given coefficient (i.e., exp(b)).

Notably, coefficients associated with these trial-level variables can be
decomposed into population-level (y) and group-level (u) parameters, loosely analogous
to the concept of fixed and random effects. Between-subject predictors were included in
the model, as moderators of the effect of condition (social decision preferences). This
means the slopes associated with the intercept (b0j) and condition (b1lj) were
parameterized as equations (5-6).

b0j = y00 + yO1Parent Value PEij + yO2Friend Value PEij + uoj
(5)

b1j =y10 + y11Parent Value PEij + y12Friend Value PEij + ulj
(6)
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Here, Parent Value PE refers to value-based pattern expression scores for the
parent representation, and Friend Value PE refers to same quantity but with friend
representations. Between-subjects predictors were not added to the slopes for return
(b2j) and risk (b3j), as notated in equations (7-8).

b2j = y20 + u2j (7)
b3j = y30 + u3j (8)

Hierarchical models were fit using the default sampling procedures in the brms R
package (no thinning, 4 chains, 4000 samples per chains, 2000 discarded warm-up
samples).

When selecting priors for the hierarchical model, we hoped to achieve two goals:
(i) avoid adding substantial bias to the analysis (e.g., the prior suggests an effect that is
not actually present), (ii) achieve principled regularization of model parameters. While
regularization is traditionally used in the context of predictive modeling (e.g., Hine &
Usynin, 2005; Stiglic et al., 2015; Xiao et al., 2018; Yao & Yang, 2016), regularized
approaches can also aid inference by minimizing the influence of noise in parameter
estimation and therefore enhancing parameter generalizability (Efron & Morris, 1975,
1977; James & Stein, 1992). This left us to consider two types of prior distributions: non-
informative and weakly informative. Non-informative priors assume all parameter values
are equally likely, whereas weakly informative priors are modestly confident about which
parameter values are more likely than not. These categories are in contrast to
informative priors which encode highly specific beliefs about model parameters and, in
our case here, carried greater potential to bias the analysis. We ultimately selected
weakly informative priors because the non-informative prior is too diffuse to regularize
parameter estimates and is more likely to lead to inappropriately high posterior mass
around extreme, highly implausible parameter value.

Thus, all fixed effects received a standard normal prior (N(0,1)). The normal
distribution was selected because we did not have reason to suspect asymmetry in the
parameter space and did not have a reason to believe that fatter tails (e.g., in a t-
distribution) were necessary given the logistic regression model. The location and scale
(mean, standard deviation) parameters of 0 and 1 were selected because (i) zero
corresponds with the null value and regularization typically occurs by biasing
coefficients to a null value, and (ii) a standard deviation of 1—in logistic regression—
would virtually cover the entire range of plausible parameter estimates (effects greater
than |3| in logistic regression correspond to enormous effect sizes on an odds scale,
certainly larger than would be expected in behavioral science research). The random
effects from the model were drawn from a student’s distribution (t(3, 0, 2.5)). This t-
distribution was used at the recommendation of the brms developer, who notes that
group-level effects often require distributions with fatter tails.

Deriving a Sample-Specific Neural Signature of Value. We started to create a
sample-specific neural signature of value by concatenating single trial activations from
all subjects in a time by voxel matrix, where each row represented a single trial from the
i-th subject, and each column represented a specific voxel. The matrix was reduced
using PCA, following the precedent established by other similar studies (Chang et al.,
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2015; Krishnan et al., 2016; Wager et al., 2013), resulting in 1500 components that
comprised 90% of the explained variance from the original matrix. LASSO (Least
Absolute Shrinkage and Selection Operator) and ridge regression were used to predict
each trial's monetary value from BOLD activity, indexed by the set of principle
components.

Ridge and LASSO regression were selected for several reasons. Foremost, the
nature of the data demanded an analytic method that could handle continuous
outcomes. Second, both methods use penalized estimators, which have the effect of
regularizing parameter estimates (i.e., biasing them towards, or to, zero in order to
reduce variability in sample-to-sample estimates). As previously mentioned, this helps
enhance the generalizability of parameter estimates and safeguards against overfitting.
Third, they are broadly consistent with existing, similar studies (Chang et al., 2015;
Krishnan et al., 2016; Wager et al., 2013). Last, these models can handle highly
parameterized models without encountering estimation problems (e.g., parameter
estimate instability).

We used 10-fold cross-validation to determine the best penalty for both ridge and
LASSO models. After obtaining the ideal tuning parameter, a model using each type of
estimator was fit to the complete dataset predicting monetary value on each trial from
principle components of brain activity (indexed via the BOLD signal). Evaluating both
models using the R? metric of model fit, we found that the ridge regression model fit the
data better than LASSO. We backtransformed the weights of each principal component
into the original voxel space, and thresholded the weights at zero?, creating the final
neural signature map. Visually inspecting the final ridge regression-based neural
signature revealed some degree of sparsity among the voxel weights. Realizing this
could be a potential signal-to-noise issue, we created two additional versions of the map
by spatially smoothing the weights using a 2mm and 4mm Gaussian kernel (fwhm).
Subsequent analyses using the sample-specific signature report results using all three
of these models. The unsmoothed signature is depicted in Figure 2 in the main
document.

To further check whether this sample-specific map was properly indicative of
reward, we correlated the weights in our map with meta-analytic maps of reward and of
four other terms: language, pain, working memory and social (all obtained via
Neurosynth). The correlations between the neural signature of value and meta-analytic
maps from unrelated constructs (language, pain, working memory, social) were low in
magnitude (non-smoothed signature rs = -0.068 — 0.001; 2mm-smoothed signature rs =
-0.063 — 0.018; 4mm-smoothed signature rs = -0.052 — 0.019), whereas the correlation
between the reward map and the signature was higher (non-smooth signature r = 0.306;
2mm-smoothed signature r = 0.356; 4mm-smoothed signature r = 0.505). This provides
discriminant and converging evidence that the signature measures what it is intended
to. Further, that the correlation with the meta-analytic map of reward was not very high
(e.g., >.7), suggests our signature could be capturing unique or distinct facets of
valuation (i.e., it is not redundant with the meta-analytic map). Visual inspection of the

2 |t was difficult to conceptualize what a negative association between brain responses and coin flip task values
could indicate.
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signature shows regions canonically associated with reward (e.g., striatum, medial
prefrontal cortex) are present in the anticipated direction, further suggesting the
signature is at least measuring the intended psychological process.

Results

Manipulation Checks. In terms of behavioral social decision preferences, we
used the same modeling framework as described in the main texts and this supplement.
We observed evidence for a mean-level parent-over-friend social decision preference
(posterior mean of social decision preference parameter: 0.30, 89% CI = [0.16, 0.44]).

Imaging results obtained using a mixed effects model (FSL’s FLAME1) and
subsequently cluster-corrected using random field theory (Family-wise-error < .05,
cluster defining threshold Z > 3.1) show robust activation in the ventral striatum (k =
1570, L: x=-14y=62z=-10,Z=5516;R: x=16y=42z=-12,Z=5.517) as well as
the medial prefrontal cortex (k =539, x=-4y =56 z =2, Z = 4.500) for the Win > Loss
contrast, indicating a successful replication of prior work (Haber & Knutson, 2009;
Knutson et al., 2001; Supplementary Figure 2). This suggests the desired psychological
state was evoked during the task rendering the data suitable for attempting to define a
sample-specific neural signature of value.

Post-Hoc Analyses for Paired Differences in Value-Based Pattern Expression of
Neural Representations. The first post-hoc analysis involved excluding primary visual
cortex (V1) from the neural signature, under the reasoning that visual processes are
unlikely to reflect meaningful information about valuation (Kragel et al., 2019). However,
re-running the pattern expression analysis with a custom neural signature that excluded
V1 voxels did not meaningfully change the results (Samp specific: posterior mean, (SD):
d =-0.07 (0.14), 89% CI: [-0.29, 0.17]) (Samp specific — 2mm: posterior mean, (SD): d =
-0.04 (0.14), 89% CI: [-0.27, 0.20]) (Samp specific — 4mm: posterior mean, (SD): d = -
0.04 (0.14), 89% CI: [-0.26, 0.19]). The second post-hoc analysis masked brain regions
in the custom signature thought to be central to valuation, the ventral striatum (VS) and
medial prefrontal cortex (mPFC) (Dabney et al., 2020; Haber & Knutson, 2009; Kutlu et
al., 2021; Lopez-Persem et al., 2020; Vlaev et al., 2011). However, this analysis again
yielded equivocal evidence for a value-based signature bias in either direction (Samp
specific: posterior mean, (SD): d = 0.07 (0.14), 89% CI: [-0.16, 0.30]) (Samp specific —
2mm: posterior mean, (SD): d = 0.02 (0.14), 89% CI: [-0.21, 0.25]) (Samp specific —
4mm: posterior mean, (SD): d = 0.02 (0.14), 89% CI: [-0.25, 0.21]).
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Supplementary Figure 1. Sample example stimuli.

FIGURE OMITTED DUE TO BIORXIV POLICY OVER IDENTIFIABLE INFORMATION

Note. These images were taken from the sample PDF instruction file. These images are not
actual subject data.
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Supplementary Figure 2. Results of Win>Loss contrast during the coin flip task (value)

Note. Winning, relative to losing, on the coin flip task evoked robust activity in the
ventral striatum and medial prefrontal cortex (circled in red). Cluster corrected (Family-
Wise-Error of p <.05) using FLS’s FLAME1 (Cluster Defining Threshold of Z > 3.1).
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Supplementary Figure 3. Posterior distribution plots for model interaction terms
capturing the influence of value-based representations on social decision preferences
(sample-specific neural signature, excluding V1 — post-hoc analysis).
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Note. ‘Samp Specific’ refers to the type of signature used (Samp specific = sample-specific
signature built using ridge regression). 2mm’ and ‘4mm’ refer to the degree of smoothing
applied to the sample specific signature (the left-most signature had no smoothing applied). ‘PE’
refers to pattern expression score. ‘Condition x Parent/Friend’ refers to the interaction term
entered in the statistical model to assess the association between pattern expression scores
and social decision preferences. ‘ROPE’ refers to Region of Practical Equivalence; ‘HDI’ refers
to highest density credible intervals.


https://doi.org/10.1101/2022.09.28.509596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509596; this version posted September 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Supplementary Figure 4. Posterior distribution plots for model interaction terms
capturing the influence of value-based representations on social decision preferences
(sample-specific neural signature, including only VS, mPFC — post-hoc analysis).
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Note. ‘Samp Specific’ refers to the type of signature used (Samp specific = sample-specific
signature built using ridge regression). 2mm’ and ‘4mm’ refer to the degree of smoothing
applied to the sample specific signature (the left-most signature had no smoothing applied). ‘PE’
refers to pattern expression score. ‘Condition x Parent/Friend’ refers to the interaction term
entered in the statistical model to assess the association between pattern expression scores
and social decision preferences. ‘ROPE’ refers to Region of Practical Equivalence; ‘HDI’ refers
to highest density credible intervals.
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Supplementary Table 1. Predicting social decision preferences as a function of value-
based representations using a sample-specific neural signature, excluding primary
visual cortex (V1 — post-hoc analysis)

Term Samp Specific Samp Specific —2mm  Samp Specific — 4mm
Condition 0.29[0.16, 0.43] 0.30 [0.15, 0.44] 0.30 [0.15, 0.44]
Parent Value PE -0.03[-0.22, 0.17] -0.11 [-0.33, 0.12] -0.11 [-0.33, 0.12]
Friend Value PE -0.14 [-0.35, 0.05] -0.02 [-0.18, 0.25] 0.02 [-0.21, 0.24]
Parent Value PE x Condition -0.14 [-0.28, 0.01] 0.05[-0.13, 0.22] 0.11 [-0.05, 0.30]
Friend Value PE x Condition 0.14 [-0.02, 0.29] -0.01 [-0.17, 0.17] -0.04 [-0.22, 0.13]

Note. Parameter estimates for the intercept, reward, and risk terms are not reported. ‘PE’ refers
to pattern expression scores, obtained by using each individual subject’s parent and friend
neural representations and a value-based neural signature. ‘Samp Specific’ refers to the type of
signature used (Samp specific = sample-specific signature built using ridge regression). 2mm’
and ‘4mm’ refer to the degree of smoothing applied to the sample specific signature (the left-
most signature had no smoothing applied). Values in brackets represent 89% highest density
credible intervals.
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Supplementary Table 2. Predicting social decision preferences as a function of value-
based representations using a sample-specific neural signature, including only reward
regions (VS, mPFC — post-hoc analysis).

Term Samp Specific Samp Specific — 2mm  Samp Specific — 4mm
Condition 0.30 [0.16, 0.44] 0.30[0.16, 0.44] 0.30[0.16, 0.44]
Parent Value PE -0.03 [-0.27, 0.21] -0.00 [-0.23, 0.24] -0.03 [-0.28, 0.20]
Friend Value PE -0.04 [-0.27, 0.19] -0.05[-0.28, 0.18] -0.02 [-0.25, 0.23]
Parent Value PE x Condition 0.18 [0.00, 0.36] 0.14 [-0.05, 0.32] 0.14 [-0.05, 0.33]
Friend Value PE x Condition -0.11 [-0.28, 0.08] -0.10 [-0.28, 0.08] -0.09 [-0.28, 0.08]

Note. Parameter estimates for the intercept, reward, and risk terms are not reported. ‘PE’ refers
to pattern expression scores, obtained by using each individual subject’s parent and friend
neural representations and a value-based neural signature. ‘Samp Specific’ refers to the type of
signature used (Samp specific = sample-specific signature built using ridge regression). ‘2mm’
and ‘4mm’ refer to the degree of smoothing applied to the sample specific signature (the left-
most signature had no smoothing applied). Values in brackets represent 89% highest density
credible intervals. ‘VS’ refers to ventral striatum, mPFC refers to medial prefrontal cortex.
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