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ARTICLE INFO ABSTRACT

Bayesian inference

Keywords: The human thalamus is a highly connected brain structure, which is key for the control of numerous
Thalamus functions and is involved in several neurological disorders. Recently, neuroimaging studies have
Atlasing increasingly focused on the volume and connectivity of the specific nuclei comprising this structure,
Diffusion MRI rather than looking at the thalamus as a whole. However, accurate identification of cytoarchitectoni-
Segmentation cally designed histological nuclei on standard in vivo structural MRI is hampered by the lack of image

contrast that can be used to distinguish nuclei from each other and from surrounding white matter
tracts. While diffusion MRI may offer such contrast, it has lower resolution and lacks some boundaries
visible in structural imaging. In this work, we present a Bayesian segmentation algorithm for the
thalamus. This algorithm combines prior information from a probabilistic atlas with likelihood models
for both structural and diffusion MRI, allowing label boundaries to be informed by both modalities.
We present an improved probabilistic atlas, incorporating 26 thalamic nuclei identified from histology
and 45 white matter tracts identified in ultra-high gradient strength diffusion imaging. We present a
family of likelihood models for diffusion tensor imaging, ensuring compatibility with the vast majority
of neuroimaging datasets that include diffusion MRI data. The use of these diffusion likelihood
models greatly improves identification of nuclei versus segmentation based solely on structural MRI.
Dice comparison of 5 manually identifiable groups of nuclei to ground truth segmentations show
improvements of up to 10 percentage points. Additionally, our chosen model shows a high degree
of reliability, with median test-retest Dice scores above 0.85 for four out of five nuclei groups, whilst
also offering improved detection of differential thalamic involvement in Alzheimer’s disease (AUROC
83.36%). The probabilistic atlas and segmentation tool will be made publicly available as part of the

neuroimaging package FreeSurfer.

1. Introduction

The thalamus has traditionally been considered a relay
station for information in the brain, with extensive connec-
tions to both cortical and subcortical structures (Schmah-
mann, 2003; Behrens et al., 2003). As such, it integrates
information processing between cortical regions (Sherman,
2007, 2016; Hwang et al., 2017) and is associated with
a wide range of functions including cognition, memory,
sensory and motor functions, regulation of consciousness
and spoken language among others (Sherman and Guillery,
2001; Schmahmann, 2003; Fama and Sullivan, 2015). Ad-
ditionally, neurodegenerative pathological processes in the
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thalamus have been associated with Alzheimer’s disease
(AD) (de Jong et al., 2008; Zarei et al., 2010), frontotemporal
dementia (Bocchetta et al., 2018; McKenna et al., 2022),
Huntington’s disease (Aron et al., 2003; Kassubek et al.,
2005) and multiple sclerosis (Minagar et al., 2013; Planche
et al., 2019).

With such wide established connections and functions,
the thalamus is a frequent target in MRI-based neuroimaging
studies and a focus for research in relation to both healthy
and disordered brain function. This creates a need for reliable
identification of thalamic borders. Therefore, the thalamus
is defined by several structural MRI (sMRI) segmentation
methods, including multi-atlas segmentation (Heckemann
et al., 2006), Bayesian segmentation (Puonti et al., 2016)
and convolutional neural networks (CNNs) (Wachinger et al.,
2018; Billot et al., 2020; Henschel et al., 2020). Additionally,
the thalamus has been included in popular image processing
packages, including FreeSurfer’s (Fischl, 2012) recon-all
stream, which uses a probabilistic atlas of anatomy and MRI
intensity (Fischl et al., 2002), and the FMRIB Software
Library (FSL) (Smith et al., 2004), which includes a model

H.F.J. Tregidgo et al.: Preprint submitted to Elsevier

Page 1 of 16

10

11

12

13

14

15

16

17

18

19

20

21


https://doi.org/10.1101/2022.09.28.508731
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.508731; this version posted September 30, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Multi-modal thalamic segmentation

of shape and appearance in its implementation (FIRST)
(Patenaude et al., 2011).

The methods above segment the thalamus as a single
label, however in reality it is a complex and heterogeneous
structure. It is composed of 14 major nuclei, which may
be split further into 50 subnuclei depending on the level of
detail in the classification and agreement on neuroanatom-
ical definition. There are multiple such definitions with
varying numbers of subnuclei (Morel, 2007; Jones, 2012;
Mai and Majtanik, 2019). These nuclei have distinct pat-
terns of connections with other brain regions and subserve
different functions, including associative, sensory, motor,
cognitive and limbic (Schmahmann, 2003). For example,
the ventral lateral posterior nucleus is involved in motor
function through connections with the cerebellum and the
motor cortex, while the mediodorsal nucleus has connec-
tions with the prefrontal cortex and plays a role in cognitive
and emotional processes (Mai and Forutan, 2012; Schmah-
mann, 2003). In addition, neuropathological studies have
demonstrated preferential involvement of certain thalamic
nuclei in several conditions, such as the caudal intralaminar
nuclei in Parkinson’s disease (Henderson et al., 2000), the
anterior nuclei in AD (Braak and Braak, 1991a,b), and the
pulvinar in the C9orf72 genetic subtype of frontotemporal
dementia (Vatsavayai et al., 2016). These studies provide
strong motivation for the design of automated segmentation
algorithms that accurately define thalamic nuclei in vivo,
enabling identification of reliable and precise biomarkers.

Different approaches have been used to segment thala-
mic nuclei. There are segmentation strategies that attempt
to directly register histology derived labels to MRI. For
instance, manually labelled histology can be used to generate
a reference space atlas that may then be applied to in vivo
MRI through registration-based segmentation (Krauth et al.,
2010; Jakab et al., 2012; Sadikot et al., 2011). However,
such approaches are limited by the difficulty in registering
MR images with different contrasts. Other techniques define
their label scheme based on information derived from the
imaging data to be segmented. For example, diffusion MRI
(dMRI) has been used to define thalamic regions by cluster-
ing voxels based on diffusion tensor imaging (DTT) indices
(Mang et al., 2012) and orientation distribution functions
(Battistella et al., 2017; Semedo et al., 2018). Other stud-
ies have divided the thalamus into regions based on their
cortical connectivity, either through resting-state functional
MRI time course correlations (Zhang et al., 2008) or dMRI
tractography (Behrens et al., 2003; Johansen-Berg et al.,
2005). However, exactly how thalamic regions defined by
functional MRI relate to neurobiology is not fully under-
stood (Eickhoff et al., 2015) and there is some indication
that tractography-based segmentations are insensitive to the
internal structure of the thalamus (Clayden et al., 2019).

The development of advanced MRI acquisitions has also
allowed for atlases to be defined from manual segmentation
of in vivo imaging directly, due to improved resolution and
contrast. For example, guided by histological atlases, it has
been possible to manually identify nuclei on advanced SMRI

Figure 1: Thalamic segmentation of a T1l-weighted structural
MRI overlaid on the co-registered T1-weighted image (left) and
a co-registered directionally encoded colour FA image (right).
High contrast between medial and lateral thalamic regions on
structural imaging improves the accuracy of these boundaries
(white arrows). However, low contrast between the lateral
thalamus and white matter causes over-segmentation into the
internal capsule, which can easily be discerned in the colour
FA image (red arrows).

acquired at 7T (Tourdias et al., 2014; Liu et al., 2020)
and on dMRI through short-track track density imaging
(Basile et al., 2021). In particular, segmentations of 7T
white-matter-nulled imaging have been used to generate
both multi-atlas segmentation ("THOMAS" Su et al. 2019)
and CNN (Umapathy et al., 2021) segmentation algorithms.
However, these segmentations do not have the full level
of detail present in histological atlases and performance is
impacted by changes in acquired contrast, due to domain
gap effects for CNNs and poorer registration in multi-atlas
segmentation.

Aiming to provide detailed segmentations of thalamic
nuclei that is robust to changes in MRI acquisition and
contrast, we previously constructed a probabilistic atlas of
the thalamus and surrounding tissue from manually labelled
histology (Iglesias et al., 2018). We then combined this
atlas with Bayesian inference methods (Wells et al., 1996;
Van Leemput et al., 1999; Ashburner and Friston, 2005; Pohl
et al., 2006) to allow segmentation of 25 bilateral histologi-
cal labels from sMRI. This approach had the advantage that
the intensity model of each label was learned from the target
image, allowing the resulting labels to remain stable across
acquisition contrasts. However, these segmentations can be
less accurate in areas where sMRI shows poor contrast.
For example, Fig. 1 shows that our previous method can
accurately follow the boundary between groups of medial
and lateral nuclei, but the lack of contrast between lateral
nuclei and white matter can lead to oversegmentation into
the internal capsule.

The availability of complementary information from
dMRI sequences provides a possible avenue for minimis-
ing such segmentation errors. An increasing number of
large multi-site neuroimaging studies, including the Hu-
man Connectome Project (HCP) (Van Essen et al., 2013),
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Jack Jr. et al., 2008), and the GENetic Frontotemporal de-
mentia Initiative (GENFI) (Rohrer et al., 2015) are acquiring
both structural and diffusion MRI. Additionally, use of DTI
combined with registration-based segmentation has been
proposed for segmentation of the whole thalamus in subjects
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Multi-modal thalamic segmentation

where T1-weighted MRI contrast is very low (Al-Saady
et al., 2022). As can be seen in Fig. 1, dMRI shows good
contrast between the thalamus and the adjacent white matter,
while structural MRI provides better contrast between the
medial nuclei and cerebrospinal fluid (CSF) as well as higher
resolution. Therefore, we look towards creating joint models
of structural and diffusion MRI, incorporating likelihood
models of DTI such as those used in the modelling of white
matter fibres (Jian and Vemuri, 2007).

We present an extension of our structural Bayesian in-
ference segmentation algorithm to incorporate dMRI. We
focus on DTI due to the ease of fitting tensors to diffusion-
weighted images, even from legacy data or in studies with
short acquisitions. We explore our recently proposed diffu-
sion likelihood model, combining the Dimroth-Scheidegger-
Watson (DSW) and Beta distributions (Iglesias et al., 2019).
We compare this model to both the Wishart distribution,
from fibre modelling literature (Jian and Vemuri, 2007),
and the log-Gaussian distribution, influenced by tensor in-
terpolation methods (Arsigny et al., 2006). Additionally, we
build on our previous histological atlas of the thalamus by
adding 45 labels for white matter tracts passing adjacent to
the thalamus, allowing the DTI likelihood models to capture
the varying directionality of fibers in white matter without
becoming sensitive to non-white-matter tissue. The result-
ing segmentation method allows constraints to be imposed
independently on both the structural and diffusion modelling
by including separate shared parameter models, enforcing
reflective symmetry, incorporating prior distributions on
likelihood parameters, and re-weighting likelihood terms to
account for the lower resolution of DTI.

This paper is structured as follows. In Section 2 we
outline our joint segmentation method. This includes ex-
planations of: the general Bayesian inference model; the
model fitting and segmentation process; the three likeli-
hood models; the atlas and its construction; and general
implementation details. In Section 3 we evaluate our joint
segmentation method on both high and low resolution data.
This evaluation includes: model optimisation and evaluation
on a population template constructed from both T1-weighted
MP-RAGE and DTI images; evaluation of the optimised
models on subjects from HCP, providing comparison to
manual ground truth and test-retest reliability; and test-
retest and indirect evaluation on conventional quality data.
Section 4 concludes the paper.

2. Bayesian segmentation of brain MRI

2.1. Probabilistic model and Bayesian inference
Here we outline the theory and implementation of our
Bayesian segmentation algorithm. As in existing Bayesian
segmentation literature (Van Leemput et al., 1999; Zhang
et al., 2001; Ashburner and Friston, 2005; Iglesias et al.,
2015; Puonti et al., 2016), our strategy relies on modelling
the voxel-wise data as observable random variables. These

N

A
\ Ve
%

Yo L, Ve

6 S dy bd

\ J

Figure 2: Graphical model of the proposed framework. Larger
circles represent random variables with open circles for the
hidden variables (6,7), and shaded circles for the observed
variables (s,d). Smaller solid circles are deterministic parame-
ters such as the atlas (A) and encoded prior information ().
Rectangles indicate replication across voxels (V') or classes (C).

follow a different distribution for each label class in a sup-
plied deformable probabilistic atlas of the volume encom-
passing the thalamus (Van Leemput, 2009; Iglesias et al.,
2018). Both the voxel-data distributions and deformation
of the atlas are parameterised by hidden random variables
dependent on the subject and image acquisition. Estimat-
ing these hidden random variables allows us to generate a
voxel-wise probability of membership in each label class
(Van Leemput et al., 1999; Ashburner and Friston, 2005). In
the Bayesian approach, this is used to construct the posterior
probability of a labelling (or segmentation) given paired
sMRI and dMRI data.

For the purposes of this method we assume that both the
sMRI and dMRI have been registered and resampled to the
same grid comprised of voxels indexed by v € {1,...,V}.
We denote the labelling of these voxels by L = [y, ..., [;],
with [, € {I,...,C} — where C is the number of label
classes in our model. Similarly, we construct a matrix S =
[sy,...,sy] holding vectors of sMRI voxel data, s,, and
matrix D = [dy, ..., dy] to hold the dMRI voxel data, d,,.
We explore different representations of d,, in later sections.

Using this notation and applying Bayes’ rule, the poste-
rior probability of a specific labelling for a pair of sMRI and
dMRI scans of a subject is:

p(L|S, D)  p(S, D|L)p(L), 6]

and the labelling that maximises Eq. (1) is known as the
maximum a posteriori (MAP) estimate for the segmentation.
To obtain this MAP estimate we need both the likelihood dis-
tribution, p(S, D|L), of our imaging data given a segmen-
tation, and a prior distribution, p(L), generated from prior
anatomical knowledge of the thalamus and its surroundings.
As these can be used to generate random scans by sampling
first from the prior then from the likelihood, segmentation
can be thought of as fitting a generative probabilistic forward
model to our data and “inverting” it to obtain the labelling.
To make the problem in Eq. (1) tractable, we assume:
i) that both the likelihood and prior factorise over voxels
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and ii) that the SMRI and dMRI are independent of each
other given the labels. The exact graphical model of our
framework is shown in Fig. 2. At the top of this model we
define the prior distribution on the labels, beginning with a
probabilistic atlas A. This atlas is constructed within a refer-
ence brain space, meaning it is likely to match the topology
of any segmentation subject, but will require deformation to
match accurately. The atlas A provides, at each spatial loca-
tion, the prior probability of observing each neuroanatom-
ical label class. We define A on a deformable tetrahedral
mesh, where each vertex has an associated vector of class
probabilities, and barycentric interpolation can be used to
obtain probabilities at non-vertex locations (Van Leemput,
2009). We define a set of parameters, 8¢, that move the
mesh nodes to deform the atlas into the space of the target
MRI voxel grid, accommodating the anatomical variability
across subjects. These parameters are themselves a sample
from a distribution that is regularised by setting the stiffness
y?, preventing folding of the atlas mesh and preserving
topology. We then assume that our labelling L is sampled
from the categorical distribution over classes defined by the
deformed atlas, with each voxel location sampled indepen-
dently allowing factorisation.

Given L we can define the likelihood model for our
observed data. We assume that the sMRI and dMRI are
conditionally independent from each other and across voxels
given the labelling, with s, and d, modelled as samples
from separate distributions parameterised by 67 and 9?
respectively. These hidden parameters are dependent on the
corresponding label /, = c. Any prior knowledge on these
parameters is encoded in prior distributions controlled by
hyperparameters y; and yf .

Under these assumptions we can define the full joint
probability density function (PDF) for Fig. 2 as

p(S,D,L,0|A,y)
= p(S|L,0°)p(D|L,0")p(L|A, 6")pO|y)

14
= (H p(s,16; )p(d, |6 )p(l, | A, 0“))

v=1
C
<H p(ezwj)p(eiwj)) pO°1y"), @)
c=1

where 0 = {6%,69,0%} and y = {y5,y?,y7}.

With the model described by Fig. 2 and Eq. (2) we can
formulate the MAP estimate for our segmentation as

LMAP = argll:nax p(S’ D ILs A’ Y)P(L|As }')
= arg max / p(S,D|L,0, A)p(L|6, A)p(6|S, D, A, y)d6.  (3)
L

However, integrating the joint PDF over the full space of
possible parameters 0 is intractable. For this reason we make
the standard assumption that the posterior distribution of
the hidden parameters is heavily peaked around the mode,
pO|S,D) ~ 6(0 — 9). In this way, we can segment our
images by applying Bayes’ rule to Eq. (2) and marginalising

over the hidden labelling L to obtain these optimal hidden
parameters (so called "point estimates"):

6 = argmax | p(6°|y*)p(®°|y*)p(6°|y?)
{9",9»‘.0‘1 }

ZP(S, DIL,6",6")p(L|6", A) |, 4
L

and then optimising L to obtain the MAP estimate

Ly,p = argmax p(S, D|L, 0, A)p(L|0, A). 5)
L

2.2. Parameter estimation and segmentation

The first step in the segmentation process is to estimate
the optimal hidden parameters  from Eq. (4). We begin by
formulating the likelihood PDFs for both sMRI and dMRI
as mixture models such that each label class is described
by mixtures of G structural component distributions and W
diffusion component distributions, giving

p(s,109) =D g.p(s,100).  p(d,16) = ) w,;p(d,|69).  (6)
i J

Here, g.; > 0 and w, ; > 0 are mixture weights in the model
of label class ¢ indicating the contribution of the i-th sMRI
and j-th dMRI component’s distribution to the appearance of
the class in the respective modality. These distributions are
parameterised by Of and 9;.1, respectively, withi € 1,...,G
and j € 1, ..., W.Inboth cases the sum over the component
weights for a given class must be equal to one, )7, g.; = 1
and }’; w, ; = 1. This mixture model formulation provides
a high degree of flexibility, allowing us to specify a priori
which label classes may be modelled jointly by constraining
specific weights to 0 or 1 while others are allowed to vary.
Combining Eq. (6) with Egs. (2) and (4) and taking
logarithms we can then obtain an objective function to be
optimised with respect to the distribution parameters,

0@|S,D,A,y)
G w

= log p(6°[y") + ) log p(O:1y}) + Y log p(6"|r?)
i J

|4 C G w
+ ) log )" p(°] 4,6 [Z gc,,-p(svw,f)] [Z w, ;p(d, |6 >} :
v c i J
(7)

To optimise Eq. (7) we adapt the approach proposed by
Puonti et al. (2016). In this approach the atlas deforma-
tion parameters and likelihood parameters are optimised
iteratively in a coordinate ascent scheme, with each being
optimised while the other is fixed. The optimisation of the
6 is performed using a standard conjugate gradient operator
with the deformation prior p(6%|y?) taking the form of
the penalty term defined by Ashburner et al. (2000). The
likelihood parameters ©° and @¢ are then optimised using
a Generalised Expectation Maximisation (GEM) algorithm
(Dempster et al., 1977; Van Leemput et al., 1999), iterating
between expectation (E) and Maximisation (M) steps.
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E step: 1In the E step, we build a lower bound Q(6) for the
objective function in Eq. (7) using Jensen’s inequality:

G w
0(0) = log p(6°[y*) + ) log p(6:|y;) + ) log p(6" |y?)
i J

Coij c a s d
+ Y @ log (1514, 0)p(s5,10,)0(d, 109)]

0,C,1,J

- 2 4" [logg;™ ~logg,, ~logw, | ®

XN

Here /7 indicates the event that the voxel label /, = ¢ and
g, is a soft segmentation at the current parameter estimates
indicating the combination of class ¢, SMRI distribution i
and dMRI distribution j:

8eiw. ;P A,09p(s,10)p(d,|09)
Deigy 8eae pUSIA, 69p(s,|6))p(d,69)

e —

4,

©))

M step: In the generalised M step we attempt to increase
the bound Q(0) in Eq. (8). We note that the two sets of distri-
bution parameters 6; and 69 can be optimised individually,
as they make independent contributions to the bound:

14
0,(0) =log p(&ly) + )’ [2 qz,[,,] log p(s, |69, (10)

v c.j

14
0,(8)) = log p(®1r{) + {Z qj’"’] log p(d,6). (1n

These contributions can then be optimised using either
closed form solutions or numerical methods, depending on
the distribution used as we will describe in Section 2.3.
Finally we can calculate the new optimal weightings as

Zion 4 2o 4"
= — w,. =

8ei c,irj c.J c,irj
i) o i) o

Segmentation: The mesh deformation and likelihood pa-
rameter optimisation steps are repeated alternately until the
objective function in Eq. (7) has converged. At this point,
we note that the formulation of the posterior factorises over
voxels and the posterior probability of each class may be
found by summing over the soft segmentations g, . Hence
the final MAP estimate segmentation is given by

12)

G W

7 = C.inj

I, = argmax Z q,".
=1

¢ i=1j

13)

2.3. Likelihoods

So far, we have outlined the Bayesian framework and
segmentation process without specifying the likelihood
models used for both sets of MRI data. The steps outlined
above are not affected by the choice of distributions used.
Here we provide an overview of the distributions used to
model the SMRI and dMRI data, including the likelihood
term and, where applicable, the prior over its parameters.
Detailed equations for the calculation of PDF values as well
as the optimisation of model parameters, 6, may be found in
Section S.1 of the supplement.

2.3.1. Structural MRI model

To model the sMRI intensities, we follow the Bayesian
brain MR segmentation literature and use a mixture of Gaus-
sian intensity distributions (Ashburner and Friston, 2005;
Zhang et al., 2001; Van Leemput et al., 1999). In this model
the intensity values for each structural modality are held in
the vector s, and the model parameters 6 are the mean and
covariance, {4;,2;}, of the structural mixture component i.
We choose to use the natural conjugate prior, the Normal-
Inverse-Wishart distribution, on these Gaussian parameters.
The likelihood and prior distributions are therefore

P10 ~ N(n 2D, plpn Ty ~ NTW(M, 1, W5, 0°),
(14)

where M, ni,W] and v; encode any prior knowledge we
may have on the structural distribution. Formulations for
the structural PDFs and closed form solutions to the pa-
rameter M step parameter optimisations can be found in
Section S.1.1 of the supplement.

2.3.2. Diffusion MRI models

To model the dMRI data, we consider distributions over
tensors estimated with DTI. Even though higher-order mod-
els can be used with modern dMRI acquisitions, using DTI
models ensures that our method is compatible with virtually
every dMRI dataset, including huge amounts of legacy data.
In this work, we compare two competing models, based on
the Wishart and Gaussian distributions, to our previously-
proposed DSW-beta distribution (Iglesias et al., 2019).

Wishart: Following existing white matter fibre modelling
literature, we look to the Wishart distribution (Jian and
Vemuri, 2007). DTI produces at each voxel a covariance
matrix describing the displacements of water molecules in
the voxel. Therefore, the natural conjugate prior for these
tensors is an Inverse-Wishart distribution. We use this in
combination with a Gamma distribution on the degrees of
freedom parameter (Goriir and Rasmussen, 2010), with the
effect of lowering the degrees of freedom and increasing the
breadth of the resulting Wishart distributions. In this model,
we define d,, as the inverse of the diffusion tensor T,. We
then use the Wishart and Gamma distributions to model d,,
and 97:

d, ~ Wnl, v, (n] =2)/2 ~ T(, p),

where a and f are set to 0.5 and 1.5 respectively to provide
a non-informative prior. Formulations for the Wishart PDFs
and the optimisation problem in the M step can be found in
Section S.1.2 of the supplement.

s)

Log-Gaussian: This model is motivated by literature on
the interpolation of DTI volumes. Direct interpolation of
DTI can lead to swelling of the ellipsoids representing the
diffusion tensors, but interpolating in the log domain reduces
this effect (Arsigny et al., 2006; Dryden et al., 2009). For this
reason, and noting that the DTI tensors, T,, are symmetric
with only six independent variables, we define d, as a vector

d, = P vec(logT,), vec(logT,) = P'd,, (16)
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where P is a constant 6 X 9 matrix (values listed in supple-
ment) designed with the constraint that

[l log(T}) — log(Ty)l7. = lld; - d, I3, an

and therefore interpolation of the vectors d,, is equivalent
to interpolation of the tensors in the log domain. In this
formulation the natural distribution to choose based on the
distance metric in Eq. (17) is a Gaussian distribution with a
scalar variance

d, ~ N(mj_, a;_’)‘ (18)
We then define uniform priors on both m¢ and 0';,1 due to
the difficulty in informing these parameters a priori. For-
mulations for the log-Gaussian PDFs and the optimisation
problem in the M step can be found in Section S.1.3 of the
supplement.

DSW-beta: This model is a custom distribution proposed
in our prior work (Iglesias et al., 2019) motivated by a desire
to lower the dimensionality of d,,, leading to a reduction
in extreme values of the likelihood that may overwhelm
the prior. Here only the fractional anisotropy (FA), f,, and
the principal eigenvector, ¢,,, of the tensor T, are modelled
so that d, = {f,,¢,}. In this approach, we use the two
parameter Beta distribution to model the FA as it is able to
model both the location and dispersion of signals in the range
[0, 1]. We then use the DSW distribution to model ¢,,.

This DSW distribution has the advantages of symme-
try and simplicity. As DSW is antipodally symmetric, it
accommodates the directional invariance of dMRI (Zhang
et al., 2012). It is also rotationally symmetric around a mean
direction and its opposite {y, —y lyll = 1}, with a
dispersion around the mean parameterized by a concentra-
tion k (Mardia et al., 2000). This x allows us to incorporate
the higher directional dispersion in voxels with lower FA
by multiplying the component specific concentration by the
voxel FA to give an effective concentration for each voxel.
The likelihood distribution in this formulation of the dMRI
is therefore a joint DSW-beta distribution

fo~ B, p)), b, ~ DSW(y!| fx).

Formulations for the DSW-beta PDFs and M step can be
found in Section S.1.4 of the supplement.

19)

2.4. Prior distribution: an improved probabilistic
atlas of the thalamus

In Iglesias et al. (2018), we presented a highly detailed
probabilistic atlas of the human thalamus built from a combi-
nation of in vivo MRI and histology. The spatial distribution
of the thalamic nuclei was learnt from manual delineations
drawn on 3D reconstructed histological sections from 12
specimens (Fig. 3a), whereas 39 MRI scans with manual
delineations (Fischl et al., 2002) were used to learn the
distribution of surrounding tissue (Fig. 3b). Direct use of
this atlas (Fig. 3d) in our new framework is not ideal, as the
cerebral white matter was modelled using only two classes —
one per hemisphere. While such a parsimonious model with

.

(d)
Figure 3: (a-c) Types of segmentations used to build the
atlas. (a) Coronal histological section of the thalamus, with
manual delineations of the nuclei. (b) Coronal slice of an
in vivo T1l-weighted MRI scan, with manual delineations for
whole brain structures. (c) Similar coronal slice of one of the
new 16 cases, with the white matter subdivided into tracts.
(d-e) Corresponding axial slices of the previous and updated
probabilistic atlases. The original atlas (d) was trained with
segmentations like the ones in (a-b), while the new atlas
used (a-c).

a single component is adequate for modelling the unimodal
distribution of white mater intensities in sSMRI, it is largely
insufficient to model the dMRI orientations. The distribution
over white matter voxels is highly multimodal due to the
variety of fibre tracts that traverse this tissue in different
orientations.

In principle we could model such a complex distribution
using a mixture model with many components. However,
such an approach is likely to fail, as some of these com-
ponents may end up modelling non-white-matter tissue.
Instead, we have refined our atlas by subdividing the white
matter surrounding the thalamus into 45 tracts. To achieve
this, we complemented the training data in Iglesias et al.
(2018) (12 ex vivo thalami and 39 in vivo whole brains)
with in vivo sMRI/AMRI data from 16 additional subjects,
that were labelled manually as part of an update (Maffei
et al.,, 2021) to the TRACULA (TRacts Constrained by
UnderLying Anatomy) package distributed with FreeSurfer
(Yendiki et al., 2011).

The TRACULA training set (16 healthy adults from
the publicly available MGH-USC HCP; Fan et al. 2016)
consisted of dMRI data, acquired using 512 directions at a
maximum b-value of 10,000 s/mm? with 1.5 mm isotropic
spatial resolution, and sMRI T1-weighted data, acquired
with an MPRAGE sequence at 1 mm isotropic resolution.
Cortical parcellations and subcortical segmentations, in-
cluding the whole thalami and cerebral white matter (left
and right), were obtained through FreeSurfer (Dale et al.,
1999; Fischl et al., 1999, 2002, 2004). Whole-brain prob-
abilistic tractograms were generated for each subject using
constrained spherical deconvolution approaches (Tax et al.,
2014; Jeurissen et al., 2014) and streamlines used to man-
ually label 42 white matter tracts through a combination
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of inclusion and exclusion criteria (Maffei et al., 2021).
Resulting tractograms were transformed to the sMRI of the
subject using a boundary-based, affine registration method
(Greve and Fischl, 2009) and converted into visitation maps.
These soft segmentations were spatially smoothed with a
Gaussian kernel (c = 2mm). For each white matter voxel
in the FreeSurfer subcortical segmentation, we replaced its
label by the tract with the highest probability (unless such
probability was below 5%), dividing the white matter into
42 tracts and a generic white matter class (Fig. 3c).

The three types of segmentations (Fig. 3a-c) were used
to rebuild the atlas, using a technique that enables combining
labellings with different levels of detail (Iglesias et al., 2015).
The new atlas (Fig. 3e) is almost identical to the old one
(Fig. 3d), but now includes more specific subclasses in
the white matter. As a last adjustment, we subdivided the
anterior commissure and other tracts comprising the corpus
callosum, while excluding tracts not passing adjacent to
the thalamus. This resulted in 45 final labels for the white
matter tracts. Each of these subclasses can be modelled
either with unimodal distributions or mixtures with very few
components, effectively preventing the modelling of non-
white-matter tissue.

2.5. Implementation details
2.5.1. Data preparation

We assume that the sMRI has been processed with
FreeSurfer, which yields a bias field corrected image and a
whole brain segmentation (aseg.mgz, Fischl et al. 2002). The
labels in aseg.mgz are used to initialise both the atlas defor-
mation (Iglesias et al., 2015, 2018) and hyperparameters in
the structural prior in Eq. (14). In practice the hypermean
M is estimated from the median of the relevant label in this
initial coarse segmentation, and nf relates to the number of
voxels used in estimating M;’. However, it is more difficult
to robustly inform prior distributions of the covariance, so
we set both W7 and v to zero to provide a non-informative
prior, giving the set of prior parameters y; = {M?,n’}.

We also assume that the source dMRI has been put
through the preprocessing stages of TRACULA (Yendiki
et al., 2011; Maffei et al., 2021). This includes FSL’s
eddy current and subject motion correction (Andersson
and Sotiropoulos, 2016) before fitting the tensor model.
Additionally, we identify DTI voxels with poor fits as those
with tensors that have negative eigenvalues or FA outside
the range [0, 1]. These are replaced by a local average tensor
constructed by convolution of the log space tensors with a
3D Gaussian kernel. These cleaned tensors are converted to
the log domain (Arsigny et al., 2006) before interpolation to
the voxel grid of the sMRI.

2.5.2. Mixture model specification

The assignment of component distributions to label
classes is one of the modelling choices that must be made
before segmentation. We assign structural and diffusion
components independently for each label class, defining
what we will call the structural mixture model (sMM) and
diffusion mixture model (dMM) respectively. In practice,

this constrains most weights g.; and w, ; to 0 or 1, with a
single component distribution often shared between groups
of labels. However, we do allow for many-to-many rela-
tionships between the label-classes and components. For
example, allowing the structural appearance of the CSF label
to be modelled by two Gaussian components, one for "clean"
CSF that is also used to model ventricle labels and one for
"messy" CSF that is shared with the choroid plexus.

For class likelihoods composed of multiple distributions,
the non-zero weights are set to be equal for the first E step and
initial component parameters are obtained by use of k-means
clustering. Details of this clustering for each likelihood
formulation can be found in Section S.3 of the supplement,
while optimisation of the default sMM and dMM definitions
is performed in Section 3.2.

2.5.3. Reflective symmetry

Another regularising constraint we impose on our seg-
mentation is reflective symmetry of contralateral structures.
Classes in one hemisphere share structural distributions
with the corresponding classes in the opposite hemisphere.
However, in dMRI we assume the average ellipsoids de-
scribed by tensors from two contralateral structures should
be reflections of each other in the median plane. As the
head is never positioned in a perfect alignment with the
scanner coordinate system, we optimise for a vector normal
to the plane of reflection, r, initially assumed to be parallel
to the left-right axis of the voxel grid. Prior to the M step,
we substitute reflected distribution parameters to the bound
in Eq. (8) and formulate the contribution of r, producing
an objective function that is fourth order in r with known
first and second derivatives. This objective can be optimised
using an interior-point method under the constraint that
[|r]] = 1. We then jointly fit parameters for corresponding
component distributions in the left and right hemispheres.
Detailed formulations for the reflection optimisation and
joint distribution fitting can be found in Section S.1 of the
supplement.

2.5.4. Likelihood adjustment

Our model assumes that the resolutions of the dMRI
and sMRI are identical. While datasets such as the HCP
deviate from this assumption to a lesser degree, conventional
quality datasets have much lower resolution for the dMRI
in particular, for example T1-weighted images are typically
acquired with each voxel dimension at approximately 1 mm
while dMRI voxel dimensions can approach 2.5 mm in
each direction. As we resample to the resolution of the
sMRI, more dMRI voxels are used in likelihood parameter
estimation than are available from the source imaging, which
leads to overfitting of the dMRI. In practice, we counteract
this effect by downplaying the weight of the dMRI voxels in
the objective function by a factor e equal to the ratio of voxel
sizes between dMRI and sMRI. Further details can be found
in Section S.2 of the supplement.
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/

3. Experiments and Results

To quantitatively evaluate our method and compare be-
tween the three likelihood formulations we performed ex-
periments using co-registered sMRI and dMRI from three
datasets. In Section 3.1 we generate a population template
from HCP subjects, and use it to identify manually seg-
mentable labels corresponding to groups of labels from our
histological atlas. In Section 3.2 we use this template to tune
our method in a process of model selection. In Section 3.3
we evaluate application of our method to high resolution
dMRI on subjects from HCP, including comparisons to
manual segmentations and test-retest reliability. Finally, in
Section 3.4 we evaluate application of our method to con-
ventional quality dMRI. This includes test-retest reliability
on images acquired locally at the University College London
Dementia Research Centre (UCL DRC) and indirect evalu-
ation on subjects with underlying pathologies by testing our
method’s ability to distinguish between healthy controls and
subjects with AD from the ADNI dataset.

In the following experiments, when comparing regions
of interest (ROIs) corresponding to the same label in two
separate segmentations we use the Dice Similarity Coef-
ficient (DSC) and 95" percentile of Hausdorff distance
(95HD). For two ROIs X and Y these are defined as

21X nY||

DSC(X,Y)= —— 1 (20)
(110 + 1Yl

95HD(X,Y) = max(dos (X, Y), dos (Y, X)), @1

where || - || indicates the volume of the ROI and dg5(X, Y) is
the 95 percentile of the set of distances between points on
the ROI boundaries, {d, = min g, |x — y| Yxesy

3.1. Population template and manual labels

When evaluating segmentation methods for medical im-
ages, it is common practice to compare the resulting label
maps to a gold standard, usually obtained from manual
delineation by a trained rater. However, manual delineation
of 52 histological labels on in vivo MRI is infeasible, as
many of the boundaries between are invisible at ~Imm
resolution. Manual segmentation protocols for larger groups
of thalamic regions (with fewer labels) exist in the literature
(Tourdias et al., 2014), but their anatomical definitions are
incompatible with those of our histological labels, introduc-
ing bias and preventing direct and fair comparison. In this
study, our goal is to compare the performance of our tool
with a gold standard that is based on our 52 histological
labels and informed by both sSMRI and dMRI contrast. For
this reason, we adapted these labels to define our own
manual segmentation criteria for thalamic labels that can
be accurately visualised and segmented on a combination
of T1-weighted MPRAGE and directionally-encoded colour
FA (DEC-FA); when labels of smaller thalamic nuclei were
not identifiable from the intensity and contrast of the MRIs,
these labels were combined and grouped together, so that the
boundaries of the original 52 histological atlas labels can be
easily matched and compared.

!

Figure 4: Axial views of the T1-weighted (left) and DEC-FA
(right) population templates of the thalamus, overlaid with the
outlined labels obtained by manual segmentation. Manually
segmented label colour maps are given in Table 1.

Table 1

Summary of the label merging operations used to generate
the manually segmented labels from histological atlas nuclei,
and groupings of manual labels used for evaluation. Displayed
colours follow the convention used in figures throughout this
manuscript. Abbreviation definitions are listed in Section S.4
of the supplement.

Manual label |Histological atlas labels
Anterior AV
Dorsal LP
Lat-Rostral VA [VAmc
Lat-Caudal VPL
CeM
Int-Imnr-Post | CM
Medial CL
Pulvinar L-Sg
Posterior LGN LGN

Ant-Lat

Via VM

Lat-Caudal
Intralaminar

Medial

The first step in defining these criteria was to create
a high resolution template using 500 subjects from the
WashU-UMN HCP dataset (Van Essen et al., 2013) and an
unbiased template construction method (Joshi et al., 2004).
We used three channels in the registration: T1-weighted
intensity, T2-weighted intensity, and FA. In order to include
directional information in the template, we used the final
set of registrations to align and average the DTI tensors in
the log domain. The resolution of the template is equal to
the resolution of the HCP sMRI data, i.e., 0.7mm isotropic.
Slices from the template are shown in Fig. 4.

As a second step to define the gold standard for compari-
son, we registered the histological atlas to the template, pro-
ducing a preliminary segmentation of 52 separate thalamic
labels. This preliminary segmentation was then manually
refined by an anatomy expert (JA, assisted by MB), to correct
any anatomical errors from registration, and to combine
those thalamic regions which were not reliably identifiable
from the multi-modal template into labels which represent
larger thalamic groups. This process resulted in a set of
10 bilateral labels that were manually identifiable from the
template. The template labels are used in Section 3.2 to aid
in tuning our method, and criteria for these labels are used
in Section 3.3 to generate gold standard segmentations for
comparison. However, the reduced contrast and resolution of
scans for individual subjects resulted in increased ambiguity
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Wishart Log-Gaussian DSW-beta

Diffusion model

Structural Model
Figure 5: TOPSIS fitness plots for combinations of structural
(horizontal axis) and diffusion (vertical axis) grouping models.
Plots are displayed for Wishart, Log-Gaussian and DSW-
beta likelihood models. A mapping from model numbers
to parameter groupings is provided as a spreadsheet in the
supplementary material.

for some boundaries, hence we further combine our 10 labels
into a final set of 5 coarser groupings that are visually
identifiable in vivo, enabling evaluation without biasing re-
sults. Manual labels for the template can be seen in Fig. 4
and the correspondences between the evaluation groupings,
manually segmented labels and original histological atlas
labels can be seen in Table 1.

3.2. Model selection

Practical implementation of the proposed framework
requires decisions on how to share the sMM and dMM pa-
rameters (Section 2.5.2), which amounts to a model selection
problem. In principle, our generative models enables the
computation of the so-called model evidence, which enables
comparison of models with different number of parameters.
While theoretically appealing, computing this evidence re-
quires marginalisation over all parameters, which leads to
intractable integrals that require approximations. Instead, we
selected the SMM/dMM groupings with a combination of
prior knowledge and a systematic approach called “Tech-
nique for Order Preference by Similarity to Ideal Solution”
(TOPSIS) Behzadian et al. (2012).

Structural groupings. In our previous work, we used two
Gaussian components to model the contrast difference be-
tween medial and lateral classes (Iglesias et al., 2018). Here,
we added a third Gaussian modelling the medial portion of
the medial pulvinar (PuM) nucleus, which has a structural
appearance closer to grey matter compared with the lateral
portion of the PuM. We then compared the atlas prior and
histograms of the template volumes to identify 33 possible
sMMs grouping nuclei into three component distributions,
which were considered by TOPSIS (detailed below).

Diffusion groupings. In Section 3.1 we defined 10 labels
for each thalamus that are manually identifiable from com-
bined sMRI and DEC-FA. However, inspection of the dMRI
tensors within these regions found greater heterogeneity in
some regions than in others. As additional borders within
these labels could not be confidently matched with bound-
aries in the histological atlas, we examined multiple options
for combining histological nuclei into larger structures to be
fit with a component distribution. Including these additional
boundaries, and allowing for the possibility of bimodal

histograms for some labels, we arrived at 21 possible dMMs,
grouping nuclei into between 11 and 13 component distribu-
tions.

TOPSIS. To optimise the choice of sMMs and dMMs in
a systematic fashion, we tested each possible combination
of sMM and dMM parameter groupings on the population
template. We then evaluated these models by comparing
Dice scores and 95HD for the whole thalamus as well as the
"grouping” and "manual label" regions listed in Table 1. We
then used TOPSIS to create a single, normalised fitness score
for each combination of shared parameter specifications
allowing them to be ranked. The resulting scores for each
likelihood model are shown in Fig. 5. The chosen models
are provided in a spreadsheet in the supplementary material
as well as descriptions of all candidate models.

3.3. Application to high resolution dMRI

Having individually tuned the mixture models and de-
fined a manual protocol corresponding to our histological
labels, the obvious next step is to assess the performance
of our joint segmentation method on HCP quality data. A
comparison of our joint segmentation to both the FreeSurfer
whole thalamus segmentation (aseg.mgz) and our previous
structural-only method are shown in Fig. 6. This figure
shows each segmentation overlaid on both the T1-weighted
sMRI and the DEC-FA for two healthy subjects”.

In both subjects the whole thalamus aseg segmenta-
tion, used as an initialisation for both Bayesian methods,
shows obvious errors when overlaid on the DEC-FA, with
more extreme over-segmentation for subject 2. In subject 1
the structural-only segmentation appears to compensate for
these errors and provides an improved exterior boundary.
However, our joint method shows marked improvement in
the agreement of internal boundaries with colours displayed
in the dMRI (solid arrows) as well as a smaller improve-
ment in the exterior boundary. This effect is much more
pronounced in subject 2, where the initial over-segmentation
of the thalamus propagates to the structural-only method but
is corrected by the joint method (arrow outlines).

Such observations provide compelling qualitative evi-
dence for the efficacy of our new method. However, to fully
evaluate its usefulness we must quantitatively assess both
accuracy and repeatability.

3.3.1. Direct evaluation with manual ground truth

To provide a quantitative measure of segmentation qual-
ity, our anatomy expert (JA, assisted by MB) manually seg-
mented images for 10 randomly selected subjects from the
WashU-UMN HCP dataset (Van Essen et al., 2013) using the
protocol outlined in Section 3.1. The manual segmentations
were performed using a combination of T1-weighted and
DEC-FA at a 1.25 mm isotropic resolution, corresponding

2The joint segmentation shown here uses our DSW-beta likelihood
model and the structural method has been optimised for the HCP dataset by
tuning of the stiffness parameter. For a visual comparison of all likelihood
models and the default structural segmentation please see the Section S.5
of the supplement.
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Subject 1

Structural

Subject 2

Figure 6: Comparison of thalamic segmentations generated from FreeSurfer's recon-all (aseg.mgz), structural and joint (DSW-
beta) Bayesian segmentation on two HCP subjects. Arrows have been overlaid to indicate significant instances of correct (white)
and incorrect (red) identification of both internal (solid) and external (outline) boundaries.

to the native resolution of the diffusion data in HCP. We
generated segmentations for these subjects using each of
the three joint likelihood implementations from Section 2.3
as well as our previously published structural-only imple-
mentation® (Iglesias et al., 2018). These automated segmen-
tations, which have the resolution of the structural scans
(0.7 mm), were resampled to 1.25 mm isotropic resolution
and compared with the ground truth using DSC and 95HD.
Dice scores and 95HD for the five groupings (in column one
of Table 1) and the whole thalamus are shown in Fig. 7.

In general, both the DSC and 95HD plots follow similar
trends. The median Dice scores for the whole thalamus in
structural-only, Wishart and Log-Gaussian implementations
were 0.88 with a small increase to 0.89 for DSW-beta. Simi-
larly the 95HD for all methods was between 2.3 and 2.5 mm
or equivalent to approximately 2 voxels on the manual seg-
mentations. This contrasts to the marked improvement in the
exterior boundary for subject 2 in Fig. 6. As subject 2 was not
selected for manual segmentation, the direct comparisons in
Fig. 7 indicate that joint segmentation may only provide a
small improvement in exterior boundary where the structural
segmentation has worked well, but that it is more robust to
errors in initialisation and atypical cases.

Of more interest are the interior boundaries. In nearly
all labels the joint methods outperform structural-only with

31t should be noted that, to ensure a fair comparison of joint and
single channel approaches, the mesh stiffness parameter of the structural
implementation was modified to match the joint model that had been
developed on the HCP dataset. This improved both the DSC and 95HD
structural results compared to the default FreeSurfer distribution.

lateral-caudal class showing an improvement of 10 Dice
points. This can be seen in Fig. 6 where the solid arrows
indicate this changes in this boundary for subject 1. The
only label class where the structural method outperforms our
joint implementation is the medial class. This is expected
as a medial-lateral contrast change is modelled explicitly in
the structural-only method. However, the difference is small
with a median DSC of 0.72 in structural compared to 0.67
for the joint methods and comparable 95SHD measurements
in this class.

There is comparatively little difference between the three
diffusion likelihood implementations. The Wishart and Log-
Gaussian implementations show the most similar results,
while in the DSW-beta implementation small decreases in
accuracy of the intralaminar and posterior classes are offset
by improvements in the antero-lateral classes and whole
thalamus exterior.

3.3.2. Test-retest reliability analysis

In order to assess the test-retest reliability of the method
(a crucial feature in large scale, multi-centre studies), we
segmented images from 110 HCP subjects using two differ-
ent sets of DTI images for each subject — one based on the
b=1000 s/mm? shell and one based on the b=2000 s/mm?
shell — and compared the outputs. While the results of such
an experiment are optimistic when compared to experiments
in which images are acquired with multiple scanners, it does
enable thorough comparison within the same dataset; test-
retest experiments with multiple acquisitions are described
in Section 3.4.1 below.
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Figure 7: Dice score (top) and 95HD (bottom) comparison of
automated thalamic segmentations to manual delineations of
10 HCP subjects. Scores are stated for our previous structural
only method as well as the three likelihood implementations of
our joint method.

Dice comparison of each likelihood implementation on
these two sets of reconstructed tensors can be seen in Fig. 8.
These results generally show that all three models are rea-
sonably robust to such an acquisition change in HCP qual-
ity data, with a median Dice score of 0.85 or greater in
each grouped label across all models. Similarly, each model
showed Dice scores of greater than 0.95 for whole thalamus
outlines. While median Dice scores for each grouped label
are comparable between models, the DSW-beta does appear
to be more robust for whole thalamus as well as three of
the five grouped labels. Additionally, both Wishart and Log-
Gaussian show a larger number of low Dice outliers with
minimum values reaching as low as 30 points bellow the
median in some cases.

3.4. Applications to conventional quality dMRI
While our method assumes that the resolution of the
diffusion MRI approaches 1 mm isotropic (which is the
case for many modern datasets, e.g., following the HCP
protocol), it is of high interest to segment the thalamic nuclei
in lower resolution scans for two reasons. First, because large
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Figure 8: Dice score evaluation of test-retest reliability on
110 HCP subjects. For each subject, we performed two
segmentations using DT| images obtained by fitting the tensor
to the data from b=1000 s/mm? and b=2000 s/mm? shells
separately and computed Dice scores for groups of labels in
the two resulting segmentations.

amounts of legacy data were acquired at lower resolution.
And second, because many current studies (e.g., ADNI,
GENFI) still use those acquisitions, either in order not to
deviate from the protocol used to acquire images earlier in
the project or to accommodate acquisition constraints such
as available scanner time. As explained in Section 2.3 above,
compatibility with conventional quality data is actually the
reason why we chose to model the diffusion tensor in our
likelihood term, rather than using a more sophisticated,
higher order model.

Reduced resolution and contrast on such scans, com-
pared to HCP, make manual delineation using the criteria
from Section 3.1 infeasible. For this reason we do not do a
direct comparison of our methods to the 10 labels defined
by manual segmentation. Instead, we first evaluate the relia-
bility of the joint segmentation method through test-retest
analysis, then assess the utility of our method, using the
ability to discriminate individuals with AD vs controls as
a proxy for accuracy.

3.4.1. Test-retest reliability analysis

In order to assess the test-retest reliability of the method
on lower resolution dMRI, we used a separate dataset, com-
prising 21 healthy volunteers (9 male, 12 female, aged 53 —
80 years) acquired at the UCL DRC. Three MRI sequences
were performed for each subject in a single session: one T1-
weighted MPRAGE 1.1 mm isotropic resolution; and two
diffusion weighted acquisitions each consisting of 64 gradi-
ent directions at a b-value of 1,000 s /mm2 and a 2.5 mm
isotropic resolution. Using the two dMRI acquisitions as
separate tests, segmentations were performed at a 1 mm
isotropic resolution in the native orientation of the individual
dMRI volumes before being resampled to the native space
of the structural volume for calculation of test-retest Dice
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Figure 9: Dice score evaluation of test-retest reliability on
conventional-quality data from 21 subjects acquired at the UCL
Dementia Research Centre. For each subject, we performed two
segmentations using dMRI data acquired in the same session
using the same acquisition parameters and computed Dice
scores for groups of labels.

scores. The Dice scores for this experiment are shown in
Fig. 9.

While this experiment shows lower Dice scores than in
HCP, possibly due to the increased voxel size and reduced
quality of the data, median scores are still above 0.9 for
whole thalamus and 0.8 for four of the five grouped labels.
However, it is more apparent from this plot that both the
Wishart and Log-Guassian implementations are less robust
in lower quality data. This may be due the increased di-
mensionality of these two models, meaning imprecise fitting
of the tensor model caused by partial volume effects has a
greater impact than for the more robust FA and principle
direction model used by the DSW-beta likelihood.

3.4.2. Alzheimer’s disease study

In order to evaluate the usefulness of our method in
a classical group study with imaging data of conventional
quality, we ran a further experiment using the ADNI dataset.
The ADNI was launched in 2003 by the National Institute
on Aging, the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, private
pharmaceutical companies and non-profit organizations, as
a $60 million, 5-year public-private partnership. The main
goal of ADNI is to test whether MRI, positron emission
tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to
analyze the progression of MCI and early AD. Markers of
early AD progression can aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as
well as decrease the time and cost of clinical trials. The
Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California— San
Francisco. ADNI is a joint effort by co-investigators from
industry and academia. Subjects have been recruited from
over 50 sites across the U.S. and Canada. The initial goal

Figure 10: Comparison of thalamic segmentations of a subject
from the ADNI dataset using equal (a) and reduced (b) dMRI
likelihood weighting. Weighting the dMRI likelihood by the
ratio of voxel volumes between sMRI and dMRI results in
more accurate estimation of boundaries with heavy partial
voluming in the diffusion channel, e.g., the CSF/posterior-
thalamus boundary (red arrows).

of ADNI was to recruit 800 subjects but ADNI has been
followed by ADNI-GO and ADNI-2. These three protocols
have recruited over 1500 adults (ages 55-90) to participate in
the study, consisting of cognitively normal older individuals,
people with early or late MCI, and people with early AD.
The follow up duration of each group is specified in the
corresponding protocols for ADNI-1, ADNI-2 and ADNI-
GO. Subjects originally recruited for ADNI-1 and ADNI-
GO had the option to be followed in ADNI-2. For up-to-date
information, see http://www.adni-info.org.

Specifically, we repeated the experiment from our previ-
ous article (Iglesias et al., 2019) using the T1-weighted and
dMRI scans of 92 subjects from ADNI2. Here we considered
47 subjects with AD and 45 age-matched controls (73.8+7.7
years; 44 females total). The data consisted of T1-weighted
scans, with a resolution of 1.2x1x1 mm (sagittal), and dMRI
with a resolution of 1.35%1.35%2.7 mm (axial). We fit the
DTI model to the b=1000 s/ mm? shell (41 directions),
combined with 5 volumes at b=0. Given the test-retest
results above and considering the similar levels of accuracy
seen between dMRI likelihood models in the ground truth
comparisons, we focus on our DSW-beta likelihood model
in this experiment.

Initial tests on subjects from the ADNI dataset revealed
some cases where the inclusion of the dMRI shifts bound-
aries in the segmentation due to the lower resolution of
the dMRI data (and thus increased partial volume effects).
An example is the over-segmentation of the thalamus into
the CSF in Fig. 10a. We addressed this by allowing the
contribution of the dMRI likelihood term to be reduced in
proportion to the ratio between voxel volumes in the sMRI
and dMRI volumes (Fig. 10b) as outlined in Section 2.5 and
Section S.2 of the supplement.

As in Iglesias et al. 2019, we computed receiver op-
erating characteristic (ROC) curves for discrimination of
subjects into the two classes using five approaches: three
based on thresholding the volume of the whole thalamus
(as given by the FreeSurfer recon-all stream, the struc-
tural segmentation, and the joint segmentation); and two
based on thresholding the likelihood ratio given by a linear
discriminant analysis (LDA, Fisher 1936) on the volumes
of the histological nuclei (as given by the structural and
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Figure 11: ROC curves for subjects with AD vs controls
classification based on thalamic volumes.

Table 2
AUC, accuracy at elbow, and p-value for improved AUC values
as given by a Delong test.

FreeSurfer ~ Structural  Diffusion

(whole) (nuclei) (nuclei)

AUC 61.28% 71.30% 83.36%
Acc. at elbow 61.96% 68.48% 76.09%
p-value vs FreeSurfer 1.6e-01 1.1e-03
p-value vs Structural 2.1e-02

joint segmentation). The resulting ROC curve is shown in
Fig. 11 with the area under the curve (AUC), accuracy at the
elbow and p-values for comparison of AUC values shown in
Table 2.

From these curves we can see that all three methods
relying on the total volume of the thalamus have poor
discriminative ability, with little difference between using
FreeSurfer, structural or joint segmentations. This contrasts
to the nuclei specific methods, which both show marked
improvements. Structural showing an increase of 10% AUC
over FreeSufer’s whole thalamus and joint segmentation an
increase of 22%. However, only the improvements of the
joint method show statistical significance with p = 1.1e — 03
vs. Freesurfer and p = 2.1e — 02 vs structural nuclei
segmentation.

4. Discussion and Conclusion

In this article, we have presented and tested a novel
segmentation method for thalamic subregions from struc-
tural and diffusion MRI. Building on the Bayesian segmen-
tation literature, we use novel likelihood models to exploit
structural and diffusion MRI information jointly in order

to obtain an accurate parcellation of the thalamic nuclei.
The information in structural MRI enables placement of
boundaries in regions with strong contrast (e.g., medial
boundary with the ventricles) with high precision, attributed
to its higher resolution; the diffusion information enables
the accurate segmentation of boundaries that are invisible
in typical structural MRI sequences. Furthermore, we have
presented an improved version of our previous histological
atlas, which enables more accurate modelling of diffusion
MRI in the cerebral white matter. The proposed method
will be distributed with FreeSurfer and is widely applicable
because the likelihood: (i) relies on a simple DTI model,
which makes it compatible with virtually every diffusion
dataset; (ii) adjusts to different resolutions by correcting for
voxel sizes; and (iii) relies on an unsupervised model that is
robust against changes in MR contrast.

We have conducted extensive experiments with manual
segmentations, test-retest acquisition, and group studies —
including datasets with different resolutions. The results
have shown that the joint model exploiting the diffusion
information improves accuracy over structural-only segmen-
tation. Moreover, we have also found that the varying res-
olution gap between structural and diffusion MRI may be
accommodated by weighting the diffusion likelihood term
to account for voxel size differences, thus bypassing the
need to explicitly model partial voluming — which quickly
becomes intractable, particularly in multi-modal images de-
fined on different voxel grids. While both our proposed
likelihood model (DSW-beta) and the two competing al-
ternatives showed similar levels of improved accuracy over
structural-only segmentation, we found the DSW-beta distri-
bution to have the highest test-retest reliability and to be the
most robust to changes in the DTI resolution. Compared with
other approaches, we produce Dice scores that are within
an expected range. For example Su et al. (2019) reported
mean scores of 0.64 and above, but direct comparison is
complicated by differences in label definition, acquisition
type and image resolution.

Our proposed method has a large number of design
choices, particularly linked to the specification of shared
parameters across classes in the structural and diffusion
mixture models. We set these parameters with the combi-
nation of expert prior knowledge, a labelled template, and
a well-known approach from the decision making literature
(TOPSIS). While this approach is suboptimal (our prior
knowledge is imperfect; a single template is biased towards
a certain population, contrast, and resolution; and TOPSIS’s
criteria may not necessarily be ideal), it yielded groupings
that worked well in practice for different datasets with dif-
ferent resolution.

This work has two main limitations. First, the lack of
quantitative validation of our adapted manual segmentation
against other segmentation criteria for the thalamus, e.g.,
with intra- and inter-rater variability. And second, the lack
of explicit modelling for the partial volume effect; while
accounting for the voxel size ratio mitigated this problem
in our experiments, it is possible that it does not suffice
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for more extreme ratios. Addressing these two issues with
further experiments and solutions based on CNNs remain as
future work.

The presented method will be publicly available in
FreeSurfer as an extension of our current structural-only
code. As high-resolution diffusion data become increasingly
accessible, algorithms that can exploit them to produce
accurate segmentations — particularly for boundaries that are
invisible in structural MRI — have the potential to greatly
enhance neuroimaging studies.
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