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ABSTRACT
The human thalamus is a highly connected brain structure, which is key for the control of numerous
functions and is involved in several neurological disorders. Recently, neuroimaging studies have
increasingly focused on the volume and connectivity of the specific nuclei comprising this structure,
rather than looking at the thalamus as a whole. However, accurate identification of cytoarchitectoni-
cally designed histological nuclei on standard in vivo structural MRI is hampered by the lack of image
contrast that can be used to distinguish nuclei from each other and from surrounding white matter
tracts. While diffusionMRI may offer such contrast, it has lower resolution and lacks some boundaries
visible in structural imaging. In this work, we present a Bayesian segmentation algorithm for the
thalamus. This algorithm combines prior information from a probabilistic atlas with likelihoodmodels
for both structural and diffusion MRI, allowing label boundaries to be informed by both modalities.
We present an improved probabilistic atlas, incorporating 26 thalamic nuclei identified from histology
and 45 white matter tracts identified in ultra-high gradient strength diffusion imaging. We present a
family of likelihoodmodels for diffusion tensor imaging, ensuring compatibility with the vast majority
of neuroimaging datasets that include diffusion MRI data. The use of these diffusion likelihood
models greatly improves identification of nuclei versus segmentation based solely on structural MRI.
Dice comparison of 5 manually identifiable groups of nuclei to ground truth segmentations show
improvements of up to 10 percentage points. Additionally, our chosen model shows a high degree
of reliability, with median test-retest Dice scores above 0.85 for four out of five nuclei groups, whilst
also offering improved detection of differential thalamic involvement in Alzheimer’s disease (AUROC
83.36%). The probabilistic atlas and segmentation tool will be made publicly available as part of the
neuroimaging package FreeSurfer.

1. Introduction1

The thalamus has traditionally been considered a relay2

station for information in the brain, with extensive connec-3

tions to both cortical and subcortical structures (Schmah-4

mann, 2003; Behrens et al., 2003). As such, it integrates5

information processing between cortical regions (Sherman,6

2007, 2016; Hwang et al., 2017) and is associated with7

a wide range of functions including cognition, memory,8

sensory and motor functions, regulation of consciousness9

and spoken language among others (Sherman and Guillery,10

2001; Schmahmann, 2003; Fama and Sullivan, 2015). Ad-11

ditionally, neurodegenerative pathological processes in the12
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thalamus have been associated with Alzheimer’s disease 1

(AD) (de Jong et al., 2008; Zarei et al., 2010), frontotemporal 2

dementia (Bocchetta et al., 2018; McKenna et al., 2022), 3

Huntington’s disease (Aron et al., 2003; Kassubek et al., 4

2005) and multiple sclerosis (Minagar et al., 2013; Planche 5

et al., 2019). 6

With such wide established connections and functions, 7

the thalamus is a frequent target inMRI-based neuroimaging 8

studies and a focus for research in relation to both healthy 9

and disordered brain function. This creates a need for reliable 10

identification of thalamic borders. Therefore, the thalamus 11

is defined by several structural MRI (sMRI) segmentation 12

methods, including multi-atlas segmentation (Heckemann 13

et al., 2006), Bayesian segmentation (Puonti et al., 2016) 14

and convolutional neural networks (CNNs) (Wachinger et al., 15

2018; Billot et al., 2020; Henschel et al., 2020). Additionally, 16

the thalamus has been included in popular image processing 17

packages, including FreeSurfer’s (Fischl, 2012) recon-all 18

stream, which uses a probabilistic atlas of anatomy and MRI 19

intensity (Fischl et al., 2002), and the FMRIB Software 20

Library (FSL) (Smith et al., 2004), which includes a model 21
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Multi-modal thalamic segmentation

of shape and appearance in its implementation (FIRST)1

(Patenaude et al., 2011).2

The methods above segment the thalamus as a single3

label, however in reality it is a complex and heterogeneous4

structure. It is composed of 14 major nuclei, which may5

be split further into 50 subnuclei depending on the level of6

detail in the classification and agreement on neuroanatom-7

ical definition. There are multiple such definitions with8

varying numbers of subnuclei (Morel, 2007; Jones, 2012;9

Mai and Majtanik, 2019). These nuclei have distinct pat-10

terns of connections with other brain regions and subserve11

different functions, including associative, sensory, motor,12

cognitive and limbic (Schmahmann, 2003). For example,13

the ventral lateral posterior nucleus is involved in motor14

function through connections with the cerebellum and the15

motor cortex, while the mediodorsal nucleus has connec-16

tions with the prefrontal cortex and plays a role in cognitive17

and emotional processes (Mai and Forutan, 2012; Schmah-18

mann, 2003). In addition, neuropathological studies have19

demonstrated preferential involvement of certain thalamic20

nuclei in several conditions, such as the caudal intralaminar21

nuclei in Parkinson’s disease (Henderson et al., 2000), the22

anterior nuclei in AD (Braak and Braak, 1991a,b), and the23

pulvinar in the C9orf72 genetic subtype of frontotemporal24

dementia (Vatsavayai et al., 2016). These studies provide25

strong motivation for the design of automated segmentation26

algorithms that accurately define thalamic nuclei in vivo,27

enabling identification of reliable and precise biomarkers.28

Different approaches have been used to segment thala-29

mic nuclei. There are segmentation strategies that attempt30

to directly register histology derived labels to MRI. For31

instance, manually labelled histology can be used to generate32

a reference space atlas that may then be applied to in vivo33

MRI through registration-based segmentation (Krauth et al.,34

2010; Jakab et al., 2012; Sadikot et al., 2011). However,35

such approaches are limited by the difficulty in registering36

MR images with different contrasts. Other techniques define37

their label scheme based on information derived from the38

imaging data to be segmented. For example, diffusion MRI39

(dMRI) has been used to define thalamic regions by cluster-40

ing voxels based on diffusion tensor imaging (DTI) indices41

(Mang et al., 2012) and orientation distribution functions42

(Battistella et al., 2017; Semedo et al., 2018). Other stud-43

ies have divided the thalamus into regions based on their44

cortical connectivity, either through resting-state functional45

MRI time course correlations (Zhang et al., 2008) or dMRI46

tractography (Behrens et al., 2003; Johansen-Berg et al.,47

2005). However, exactly how thalamic regions defined by48

functional MRI relate to neurobiology is not fully under-49

stood (Eickhoff et al., 2015) and there is some indication50

that tractography-based segmentations are insensitive to the51

internal structure of the thalamus (Clayden et al., 2019).52

The development of advanced MRI acquisitions has also53

allowed for atlases to be defined from manual segmentation54

of in vivo imaging directly, due to improved resolution and55

contrast. For example, guided by histological atlases, it has56

been possible to manually identify nuclei on advanced sMRI57

Figure 1: Thalamic segmentation of a T1-weighted structural
MRI overlaid on the co-registered T1-weighted image (left) and
a co-registered directionally encoded colour FA image (right).
High contrast between medial and lateral thalamic regions on
structural imaging improves the accuracy of these boundaries
(white arrows). However, low contrast between the lateral
thalamus and white matter causes over-segmentation into the
internal capsule, which can easily be discerned in the colour
FA image (red arrows).

acquired at 7T (Tourdias et al., 2014; Liu et al., 2020) 1

and on dMRI through short-track track density imaging 2

(Basile et al., 2021). In particular, segmentations of 7T 3

white-matter-nulled imaging have been used to generate 4

both multi-atlas segmentation ("THOMAS" Su et al. 2019) 5

and CNN (Umapathy et al., 2021) segmentation algorithms. 6

However, these segmentations do not have the full level 7

of detail present in histological atlases and performance is 8

impacted by changes in acquired contrast, due to domain 9

gap effects for CNNs and poorer registration in multi-atlas 10

segmentation. 11

Aiming to provide detailed segmentations of thalamic 12

nuclei that is robust to changes in MRI acquisition and 13

contrast, we previously constructed a probabilistic atlas of 14

the thalamus and surrounding tissue from manually labelled 15

histology (Iglesias et al., 2018). We then combined this 16

atlas with Bayesian inference methods (Wells et al., 1996; 17

Van Leemput et al., 1999; Ashburner and Friston, 2005; Pohl 18

et al., 2006) to allow segmentation of 25 bilateral histologi- 19

cal labels from sMRI. This approach had the advantage that 20

the intensity model of each label was learned from the target 21

image, allowing the resulting labels to remain stable across 22

acquisition contrasts. However, these segmentations can be 23

less accurate in areas where sMRI shows poor contrast. 24

For example, Fig. 1 shows that our previous method can 25

accurately follow the boundary between groups of medial 26

and lateral nuclei, but the lack of contrast between lateral 27

nuclei and white matter can lead to oversegmentation into 28

the internal capsule. 29

The availability of complementary information from 30

dMRI sequences provides a possible avenue for minimis- 31

ing such segmentation errors. An increasing number of 32

large multi-site neuroimaging studies, including the Hu- 33

man Connectome Project (HCP) (Van Essen et al., 2013), 34

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 35

(Jack Jr. et al., 2008), and the GENetic Frontotemporal de- 36

mentia Initiative (GENFI) (Rohrer et al., 2015) are acquiring 37

both structural and diffusion MRI. Additionally, use of DTI 38

combined with registration-based segmentation has been 39

proposed for segmentation of the whole thalamus in subjects 40
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where T1-weighted MRI contrast is very low (Al-Saady1

et al., 2022). As can be seen in Fig. 1, dMRI shows good2

contrast between the thalamus and the adjacent white matter,3

while structural MRI provides better contrast between the4

medial nuclei and cerebrospinal fluid (CSF) as well as higher5

resolution. Therefore, we look towards creating joint models6

of structural and diffusion MRI, incorporating likelihood7

models of DTI such as those used in the modelling of white8

matter fibres (Jian and Vemuri, 2007).9

We present an extension of our structural Bayesian in-10

ference segmentation algorithm to incorporate dMRI. We11

focus on DTI due to the ease of fitting tensors to diffusion-12

weighted images, even from legacy data or in studies with13

short acquisitions. We explore our recently proposed diffu-14

sion likelihoodmodel, combining the Dimroth-Scheidegger-15

Watson (DSW) and Beta distributions (Iglesias et al., 2019).16

We compare this model to both the Wishart distribution,17

from fibre modelling literature (Jian and Vemuri, 2007),18

and the log-Gaussian distribution, influenced by tensor in-19

terpolation methods (Arsigny et al., 2006). Additionally, we20

build on our previous histological atlas of the thalamus by21

adding 45 labels for white matter tracts passing adjacent to22

the thalamus, allowing the DTI likelihood models to capture23

the varying directionality of fibers in white matter without24

becoming sensitive to non-white-matter tissue. The result-25

ing segmentation method allows constraints to be imposed26

independently on both the structural and diffusion modelling27

by including separate shared parameter models, enforcing28

reflective symmetry, incorporating prior distributions on29

likelihood parameters, and re-weighting likelihood terms to30

account for the lower resolution of DTI.31

This paper is structured as follows. In Section 2 we32

outline our joint segmentation method. This includes ex-33

planations of: the general Bayesian inference model; the34

model fitting and segmentation process; the three likeli-35

hood models; the atlas and its construction; and general36

implementation details. In Section 3 we evaluate our joint37

segmentation method on both high and low resolution data.38

This evaluation includes: model optimisation and evaluation39

on a population template constructed from both T1-weighted40

MP-RAGE and DTI images; evaluation of the optimised41

models on subjects from HCP, providing comparison to42

manual ground truth and test-retest reliability; and test-43

retest and indirect evaluation on conventional quality data.44

Section 4 concludes the paper.45

2. Bayesian segmentation of brain MRI46

2.1. Probabilistic model and Bayesian inference47

Here we outline the theory and implementation of our48

Bayesian segmentation algorithm. As in existing Bayesian49

segmentation literature (Van Leemput et al., 1999; Zhang50

et al., 2001; Ashburner and Friston, 2005; Iglesias et al.,51

2015; Puonti et al., 2016), our strategy relies on modelling52

the voxel-wise data as observable random variables. These53

C
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Figure 2: Graphical model of the proposed framework. Larger
circles represent random variables with open circles for the
hidden variables (�, l), and shaded circles for the observed
variables (s,d). Smaller solid circles are deterministic parame-
ters such as the atlas (A) and encoded prior information (
).
Rectangles indicate replication across voxels (V ) or classes (C).

follow a different distribution for each label class in a sup- 1

plied deformable probabilistic atlas of the volume encom- 2

passing the thalamus (Van Leemput, 2009; Iglesias et al., 3

2018). Both the voxel-data distributions and deformation 4

of the atlas are parameterised by hidden random variables 5

dependent on the subject and image acquisition. Estimat- 6

ing these hidden random variables allows us to generate a 7

voxel-wise probability of membership in each label class 8

(Van Leemput et al., 1999; Ashburner and Friston, 2005). In 9

the Bayesian approach, this is used to construct the posterior 10

probability of a labelling (or segmentation) given paired 11

sMRI and dMRI data. 12

For the purposes of this method we assume that both the 13

sMRI and dMRI have been registered and resampled to the 14

same grid comprised of voxels indexed by v ∈ {1,… , V }. 15

We denote the labelling of these voxels by L = [l1,… , lV ], 16

with lv ∈ {1,… , C} – where C is the number of label 17

classes in our model. Similarly, we construct a matrix S = 18

[s1,… , sV ] holding vectors of sMRI voxel data, sv, and 19

matrix D = [d1,… ,dV ] to hold the dMRI voxel data, dv. 20

We explore different representations of dv in later sections. 21

Using this notation and applying Bayes’ rule, the poste- 22

rior probability of a specific labelling for a pair of sMRI and 23

dMRI scans of a subject is: 24

p(L|S,D) ∝ p(S,D|L)p(L), (1)
and the labelling that maximises Eq. (1) is known as the 25

maximum a posteriori (MAP) estimate for the segmentation. 26

To obtain thisMAP estimate we need both the likelihood dis- 27

tribution, p(S,D|L), of our imaging data given a segmen- 28

tation, and a prior distribution, p(L), generated from prior 29

anatomical knowledge of the thalamus and its surroundings. 30

As these can be used to generate random scans by sampling 31

first from the prior then from the likelihood, segmentation 32

can be thought of as fitting a generative probabilistic forward 33

model to our data and “inverting” it to obtain the labelling. 34

To make the problem in Eq. (1) tractable, we assume: 35

i) that both the likelihood and prior factorise over voxels 36
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Multi-modal thalamic segmentation

and ii) that the sMRI and dMRI are independent of each1

other given the labels. The exact graphical model of our2

framework is shown in Fig. 2. At the top of this model we3

define the prior distribution on the labels, beginning with a4

probabilistic atlas A. This atlas is constructed within a refer-5

ence brain space, meaning it is likely to match the topology6

of any segmentation subject, but will require deformation to7

match accurately. The atlas A provides, at each spatial loca-8

tion, the prior probability of observing each neuroanatom-9

ical label class. We define A on a deformable tetrahedral10

mesh, where each vertex has an associated vector of class11

probabilities, and barycentric interpolation can be used to12

obtain probabilities at non-vertex locations (Van Leemput,13

2009). We define a set of parameters, �a, that move the14

mesh nodes to deform the atlas into the space of the target15

MRI voxel grid, accommodating the anatomical variability16

across subjects. These parameters are themselves a sample17

from a distribution that is regularised by setting the stiffness18


a, preventing folding of the atlas mesh and preserving19

topology. We then assume that our labelling L is sampled20

from the categorical distribution over classes defined by the21

deformed atlas, with each voxel location sampled indepen-22

dently allowing factorisation.23

Given L we can define the likelihood model for our24

observed data. We assume that the sMRI and dMRI are25

conditionally independent from each other and across voxels26

given the labelling, with sv and dv modelled as samples27

from separate distributions parameterised by �sc and �dc28

respectively. These hidden parameters are dependent on the29

corresponding label lv = c. Any prior knowledge on these30

parameters is encoded in prior distributions controlled by31

hyperparameters 
sc and 
dc .32

Under these assumptions we can define the full joint33

probability density function (PDF) for Fig. 2 as34

p(S,D,L,�|A, 
)
= p(S|L,�s)p(D|L,�d)p(L|A,�a)p(�|
)

=

(

V
∏

v=1
p(sv|�slv )p(dv|�

d
lv
)p(lv|A,�a)

)

(

C
∏

c=1
p(�sc|


s
c )p(�

d
c |


d
c )

)

p(�a|
a), (2)

where � = {�sc ,�dc ,�ac} and 
 = {
sc , 
dc , 
ac }.35

With the model described by Fig. 2 and Eq. (2) we can36

formulate the MAP estimate for our segmentation as37

LMAP = argmax
L

p(S,D|L, A, 
)p(L|A, 
)

= argmax
L ∫ p(S,D|L,�, A)p(L|�, A)p(�|S,D, A, 
)d�. (3)

However, integrating the joint PDF over the full space of38

possible parameters � is intractable. For this reason wemake39

the standard assumption that the posterior distribution of40

the hidden parameters is heavily peaked around the mode,41

p(�|S,D) ≃ �(� − �̂). In this way, we can segment our42

images by applying Bayes’ rule to Eq. (2) and marginalising43

over the hidden labelling L to obtain these optimal hidden 1

parameters (so called "point estimates"): 2

�̂ = argmax
{�a ,�s ,�d}

[

p(�a|
a)p(�s|
s)p(�d|
d)

∑

L
p(S,D|L,�s,�d)p(L|�a, A)

]

, (4)

and then optimising L to obtain the MAP estimate 3

LMAP = argmax
L

p(S,D|L, �̂, A)p(L|�̂, A). (5)

2.2. Parameter estimation and segmentation 4

The first step in the segmentation process is to estimate 5

the optimal hidden parameters �̂ from Eq. (4). We begin by 6

formulating the likelihood PDFs for both sMRI and dMRI 7

as mixture models such that each label class is described 8

by mixtures of G structural component distributions andW 9

diffusion component distributions, giving 10

p(sv|�sc) =
∑

i
gc,ip(sv|�si ), p(dv|�dc ) =

∑

j
wc,jp(dv|�dj ). (6)

Here, gc,i ≥ 0 andwc,j ≥ 0 are mixture weights in the model 11

of label class c indicating the contribution of the i-th sMRI 12

and j-th dMRI component’s distribution to the appearance of 13

the class in the respective modality. These distributions are 14

parameterised by �si and �dj , respectively, with i ∈ 1,… , G 15

and j ∈ 1,… ,W . In both cases the sum over the component 16

weights for a given class must be equal to one, ∑i gc,i = 1 17

and ∑j wc,j = 1. This mixture model formulation provides 18

a high degree of flexibility, allowing us to specify a priori 19

which label classes may be modelled jointly by constraining 20

specific weights to 0 or 1 while others are allowed to vary. 21

Combining Eq. (6) with Eqs. (2) and (4) and taking 22

logarithms we can then obtain an objective function to be 23

optimised with respect to the distribution parameters, 24

O(�|S,D, A, 
)

= log p(�a|
a) +
G
∑

i
log p(�si |


s
i ) +

W
∑

j
log p(�dj |


d
j )

+
V
∑

v
log

C
∑

c
p(lcv|A,�

a)

[

G
∑

i
gc,ip(sv|�si )

][

W
∑

j
wc,jp(dv|�dj )

]

.

(7)
To optimise Eq. (7) we adapt the approach proposed by 25

Puonti et al. (2016). In this approach the atlas deforma- 26

tion parameters and likelihood parameters are optimised 27

iteratively in a coordinate ascent scheme, with each being 28

optimised while the other is fixed. The optimisation of the 29

�a is performed using a standard conjugate gradient operator 30

with the deformation prior p(�a|
a) taking the form of 31

the penalty term defined by Ashburner et al. (2000). The 32

likelihood parameters �s and �d are then optimised using 33

a Generalised Expectation Maximisation (GEM) algorithm 34

(Dempster et al., 1977; Van Leemput et al., 1999), iterating 35

between expectation (E) and Maximisation (M) steps. 36
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E step: In the E step, we build a lower bound Q(�) for the1

objective function in Eq. (7) using Jensen’s inequality:2

Q(�) = log p(�a|
a) +
G
∑

i
log p(�si |


s
i ) +

W
∑

j
log p(�dj |


d
j )

+
∑

v,c,i,j
qc,i,jv log

[

p(lcv|A,�
a)p(sv|�si )p(dv|�

d
j )
]

−
∑

v,c,i,j
qc,i,jv

[

log qc,i,jv − log gc,i − logwc,j
]

. (8)

Here lcv indicates the event that the voxel label lv = c and3

qc,i,jv is a soft segmentation at the current parameter estimates4

indicating the combination of class c, sMRI distribution i5

and dMRI distribution j:6

qc,i,jv =
gc,iwc,jp(lcv|A,�

a)p(sv|�si )p(dv|�
d
j )

∑

{c,i,j} gc,iwc,jp(lcv|A,�a)p(sv|�
s
i )p(dv|�

d
j )
. (9)

M step: In the generalised M step we attempt to increase7

the boundQ(�) in Eq. (8). We note that the two sets of distri-8

bution parameters �si and �dj can be optimised individually,9

as they make independent contributions to the bound:10

Qs(�si ) = log p(�
s
i |


s
i ) +

V
∑

v

[

∑

c,j
qc,i,jv

]

log p(sv|�si ), (10)

Qd(�dj ) = log p(�
d
j |


d
j ) +

V
∑

v

[

∑

c,i
qc,i,jv

]

log p(dv|�dj ). (11)

These contributions can then be optimised using either11

closed form solutions or numerical methods, depending on12

the distribution used as we will describe in Section 2.3.13

Finally we can calculate the new optimal weightings as14

gc,i =
∑

{v,j} qc,i,jv
∑

{v,i,j} q
c,i,j
v

wc,j =
∑

{v,i} qc,i,jv
∑

{v,i,j} q
c,i,j
v

(12)

Segmentation: The mesh deformation and likelihood pa-15

rameter optimisation steps are repeated alternately until the16

objective function in Eq. (7) has converged. At this point,17

we note that the formulation of the posterior factorises over18

voxels and the posterior probability of each class may be19

found by summing over the soft segmentations qc,i,jv . Hence20

the final MAP estimate segmentation is given by21

l̂v = argmax
c

G
∑

i=1

W
∑

j=1
qc,i,jv . (13)

2.3. Likelihoods22

So far, we have outlined the Bayesian framework and23

segmentation process without specifying the likelihood24

models used for both sets of MRI data. The steps outlined25

above are not affected by the choice of distributions used.26

Here we provide an overview of the distributions used to27

model the sMRI and dMRI data, including the likelihood28

term and, where applicable, the prior over its parameters.29

Detailed equations for the calculation of PDF values as well30

as the optimisation of model parameters, �, may be found in31

Section S.1 of the supplement.32

2.3.1. Structural MRI model 1

To model the sMRI intensities, we follow the Bayesian 2

brainMR segmentation literature and use a mixture of Gaus- 3

sian intensity distributions (Ashburner and Friston, 2005; 4

Zhang et al., 2001; Van Leemput et al., 1999). In this model 5

the intensity values for each structural modality are held in 6

the vector sv and the model parameters �si are the mean and 7

covariance, {�i,Σi}, of the structural mixture component i. 8

We choose to use the natural conjugate prior, the Normal- 9

Inverse-Wishart distribution, on these Gaussian parameters. 10

The likelihood and prior distributions are therefore 11

p(sv|�si ) ∼ (�i,Σi), p(�i,Σi|
si ) ∼(M s
i , n

s
i ,Ψ

s
i , �

s
i ),(14)

where Ms
i , n

s
i ,Ψ

s
i and �si encode any prior knowledge we 12

may have on the structural distribution. Formulations for 13

the structural PDFs and closed form solutions to the pa- 14

rameter M step parameter optimisations can be found in 15

Section S.1.1 of the supplement. 16

2.3.2. Diffusion MRI models 17

To model the dMRI data, we consider distributions over 18

tensors estimated with DTI. Even though higher-order mod- 19

els can be used with modern dMRI acquisitions, using DTI 20

models ensures that our method is compatible with virtually 21

every dMRI dataset, including huge amounts of legacy data. 22

In this work, we compare two competing models, based on 23

the Wishart and Gaussian distributions, to our previously- 24

proposed DSW-beta distribution (Iglesias et al., 2019). 25

Wishart: Following existing white matter fibre modelling 26

literature, we look to the Wishart distribution (Jian and 27

Vemuri, 2007). DTI produces at each voxel a covariance 28

matrix describing the displacements of water molecules in 29

the voxel. Therefore, the natural conjugate prior for these 30

tensors is an Inverse-Wishart distribution. We use this in 31

combination with a Gamma distribution on the degrees of 32

freedom parameter (Görür and Rasmussen, 2010), with the 33

effect of lowering the degrees of freedom and increasing the 34

breadth of the resulting Wishart distributions. In this model, 35

we define dv as the inverse of the diffusion tensor Tv. We 36

then use the Wishart and Gamma distributions to model dv 37

and �dj : 38

dv ∼(ndj , V
d
j ), (ndj − 2)∕2 ∼ Γ(�, �), (15)

where � and � are set to 0.5 and 1.5 respectively to provide 39

a non-informative prior. Formulations for the Wishart PDFs 40

and the optimisation problem in the M step can be found in 41

Section S.1.2 of the supplement. 42

Log-Gaussian: This model is motivated by literature on 43

the interpolation of DTI volumes. Direct interpolation of 44

DTI can lead to swelling of the ellipsoids representing the 45

diffusion tensors, but interpolating in the log domain reduces 46

this effect (Arsigny et al., 2006; Dryden et al., 2009). For this 47

reason, and noting that the DTI tensors, Tv, are symmetric 48

with only six independent variables, we define dv as a vector 49

dv = P vec(log Tv), vec(log Tv) = P ⊤dv, (16)
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where P is a constant 6 × 9 matrix (values listed in supple-1

ment) designed with the constraint that2

‖ log(T1) − log(T2)‖2 = ‖d1 − d2‖22, (17)
and therefore interpolation of the vectors dv is equivalent3

to interpolation of the tensors in the log domain. In this4

formulation the natural distribution to choose based on the5

distance metric in Eq. (17) is a Gaussian distribution with a6

scalar variance7

dv ∼ (md
j , �

d
j ). (18)

We then define uniform priors on both mdj and �dj due to8

the difficulty in informing these parameters a priori. For-9

mulations for the log-Gaussian PDFs and the optimisation10

problem in the M step can be found in Section S.1.3 of the11

supplement.12

DSW-beta: This model is a custom distribution proposed13

in our prior work (Iglesias et al., 2019) motivated by a desire14

to lower the dimensionality of dv, leading to a reduction15

in extreme values of the likelihood that may overwhelm16

the prior. Here only the fractional anisotropy (FA), fv, and17

the principal eigenvector, �v, of the tensor Tv are modelled18

so that dv = {fv,�v}. In this approach, we use the two19

parameter Beta distribution to model the FA as it is able to20

model both the location and dispersion of signals in the range21

[0, 1]. We then use the DSW distribution to model �v.22

This DSW distribution has the advantages of symme-23

try and simplicity. As DSW is antipodally symmetric, it24

accommodates the directional invariance of dMRI (Zhang25

et al., 2012). It is also rotationally symmetric around a mean26

direction and its opposite { ,− ∶ ‖ ‖ = 1}, with a27

dispersion around the mean parameterized by a concentra-28

tion � (Mardia et al., 2000). This � allows us to incorporate29

the higher directional dispersion in voxels with lower FA30

by multiplying the component specific concentration by the31

voxel FA to give an effective concentration for each voxel.32

The likelihood distribution in this formulation of the dMRI33

is therefore a joint DSW-beta distribution34

fv ∼ (�dj , �
d
j ), �v ∼ ( d

j |f�
d
j ). (19)

Formulations for the DSW-beta PDFs and M step can be35

found in Section S.1.4 of the supplement.36

2.4. Prior distribution: an improved probabilistic37

atlas of the thalamus38

In Iglesias et al. (2018), we presented a highly detailed39

probabilistic atlas of the human thalamus built from a combi-40

nation of in vivoMRI and histology. The spatial distribution41

of the thalamic nuclei was learnt from manual delineations42

drawn on 3D reconstructed histological sections from 1243

specimens (Fig. 3a), whereas 39 MRI scans with manual44

delineations (Fischl et al., 2002) were used to learn the45

distribution of surrounding tissue (Fig. 3b). Direct use of46

this atlas (Fig. 3d) in our new framework is not ideal, as the47

cerebral white matter was modelled using only two classes –48

one per hemisphere. While such a parsimonious model with49

(a)

(d)

(b) (c)

(e)

Figure 3: (a-c) Types of segmentations used to build the
atlas. (a) Coronal histological section of the thalamus, with
manual delineations of the nuclei. (b) Coronal slice of an
in vivo T1-weighted MRI scan, with manual delineations for
whole brain structures. (c) Similar coronal slice of one of the
new 16 cases, with the white matter subdivided into tracts.
(d-e) Corresponding axial slices of the previous and updated
probabilistic atlases. The original atlas (d) was trained with
segmentations like the ones in (a-b), while the new atlas
used (a-c).

a single component is adequate for modelling the unimodal 1

distribution of white mater intensities in sMRI, it is largely 2

insufficient to model the dMRI orientations. The distribution 3

over white matter voxels is highly multimodal due to the 4

variety of fibre tracts that traverse this tissue in different 5

orientations. 6

In principle we could model such a complex distribution 7

using a mixture model with many components. However, 8

such an approach is likely to fail, as some of these com- 9

ponents may end up modelling non-white-matter tissue. 10

Instead, we have refined our atlas by subdividing the white 11

matter surrounding the thalamus into 45 tracts. To achieve 12

this, we complemented the training data in Iglesias et al. 13

(2018) (12 ex vivo thalami and 39 in vivo whole brains) 14

with in vivo sMRI/dMRI data from 16 additional subjects, 15

that were labelled manually as part of an update (Maffei 16

et al., 2021) to the TRACULA (TRacts Constrained by 17

UnderLying Anatomy) package distributed with FreeSurfer 18

(Yendiki et al., 2011). 19

The TRACULA training set (16 healthy adults from 20

the publicly available MGH-USC HCP; Fan et al. 2016) 21

consisted of dMRI data, acquired using 512 directions at a 22

maximum b-value of 10,000 s∕mm2 with 1.5 mm isotropic 23

spatial resolution, and sMRI T1-weighted data, acquired 24

with an MPRAGE sequence at 1 mm isotropic resolution. 25

Cortical parcellations and subcortical segmentations, in- 26

cluding the whole thalami and cerebral white matter (left 27

and right), were obtained through FreeSurfer (Dale et al., 28

1999; Fischl et al., 1999, 2002, 2004). Whole-brain prob- 29

abilistic tractograms were generated for each subject using 30

constrained spherical deconvolution approaches (Tax et al., 31

2014; Jeurissen et al., 2014) and streamlines used to man- 32

ually label 42 white matter tracts through a combination 33
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of inclusion and exclusion criteria (Maffei et al., 2021).1

Resulting tractograms were transformed to the sMRI of the2

subject using a boundary-based, affine registration method3

(Greve and Fischl, 2009) and converted into visitation maps.4

These soft segmentations were spatially smoothed with a5

Gaussian kernel (� = 2mm). For each white matter voxel6

in the FreeSurfer subcortical segmentation, we replaced its7

label by the tract with the highest probability (unless such8

probability was below 5%), dividing the white matter into9

42 tracts and a generic white matter class (Fig. 3c).10

The three types of segmentations (Fig. 3a-c) were used11

to rebuild the atlas, using a technique that enables combining12

labellingswith different levels of detail (Iglesias et al., 2015).13

The new atlas (Fig. 3e) is almost identical to the old one14

(Fig. 3d), but now includes more specific subclasses in15

the white matter. As a last adjustment, we subdivided the16

anterior commissure and other tracts comprising the corpus17

callosum, while excluding tracts not passing adjacent to18

the thalamus. This resulted in 45 final labels for the white19

matter tracts. Each of these subclasses can be modelled20

either with unimodal distributions or mixtures with very few21

components, effectively preventing the modelling of non-22

white-matter tissue.23

2.5. Implementation details24

2.5.1. Data preparation25

We assume that the sMRI has been processed with26

FreeSurfer, which yields a bias field corrected image and a27

whole brain segmentation (aseg.mgz, Fischl et al. 2002). The28

labels in aseg.mgz are used to initialise both the atlas defor-29

mation (Iglesias et al., 2015, 2018) and hyperparameters in30

the structural prior in Eq. (14). In practice the hypermean31

Ms
i is estimated from the median of the relevant label in this32

initial coarse segmentation, and nsi relates to the number of33

voxels used in estimatingMs
i . However, it is more difficult34

to robustly inform prior distributions of the covariance, so35

we set both Ψsi and �si to zero to provide a non-informative36

prior, giving the set of prior parameters 
si = {Ms
i , n

s
i }.37

We also assume that the source dMRI has been put38

through the preprocessing stages of TRACULA (Yendiki39

et al., 2011; Maffei et al., 2021). This includes FSL’s40

eddy current and subject motion correction (Andersson41

and Sotiropoulos, 2016) before fitting the tensor model.42

Additionally, we identify DTI voxels with poor fits as those43

with tensors that have negative eigenvalues or FA outside44

the range [0, 1]. These are replaced by a local average tensor45

constructed by convolution of the log space tensors with a46

3D Gaussian kernel. These cleaned tensors are converted to47

the log domain (Arsigny et al., 2006) before interpolation to48

the voxel grid of the sMRI.49

2.5.2. Mixture model specification50

The assignment of component distributions to label51

classes is one of the modelling choices that must be made52

before segmentation. We assign structural and diffusion53

components independently for each label class, defining54

what we will call the structural mixture model (sMM) and55

diffusion mixture model (dMM) respectively. In practice,56

this constrains most weights gc,i and wc,j to 0 or 1, with a 1

single component distribution often shared between groups 2

of labels. However, we do allow for many-to-many rela- 3

tionships between the label-classes and components. For 4

example, allowing the structural appearance of the CSF label 5

to be modelled by twoGaussian components, one for "clean" 6

CSF that is also used to model ventricle labels and one for 7

"messy" CSF that is shared with the choroid plexus. 8

For class likelihoods composed of multiple distributions, 9

the non-zeroweights are set to be equal for the first E step and 10

initial component parameters are obtained by use of k-means 11

clustering. Details of this clustering for each likelihood 12

formulation can be found in Section S.3 of the supplement, 13

while optimisation of the default sMM and dMM definitions 14

is performed in Section 3.2. 15

2.5.3. Reflective symmetry 16

Another regularising constraint we impose on our seg- 17

mentation is reflective symmetry of contralateral structures. 18

Classes in one hemisphere share structural distributions 19

with the corresponding classes in the opposite hemisphere. 20

However, in dMRI we assume the average ellipsoids de- 21

scribed by tensors from two contralateral structures should 22

be reflections of each other in the median plane. As the 23

head is never positioned in a perfect alignment with the 24

scanner coordinate system, we optimise for a vector normal 25

to the plane of reflection, r, initially assumed to be parallel 26

to the left-right axis of the voxel grid. Prior to the M step, 27

we substitute reflected distribution parameters to the bound 28

in Eq. (8) and formulate the contribution of r, producing 29

an objective function that is fourth order in r with known 30

first and second derivatives. This objective can be optimised 31

using an interior-point method under the constraint that 32

‖r‖ = 1. We then jointly fit parameters for corresponding 33

component distributions in the left and right hemispheres. 34

Detailed formulations for the reflection optimisation and 35

joint distribution fitting can be found in Section S.1 of the 36

supplement. 37

2.5.4. Likelihood adjustment 38

Our model assumes that the resolutions of the dMRI 39

and sMRI are identical. While datasets such as the HCP 40

deviate from this assumption to a lesser degree, conventional 41

quality datasets have much lower resolution for the dMRI 42

in particular, for example T1-weighted images are typically 43

acquired with each voxel dimension at approximately 1 mm 44

while dMRI voxel dimensions can approach 2.5 mm in 45

each direction. As we resample to the resolution of the 46

sMRI, more dMRI voxels are used in likelihood parameter 47

estimation than are available from the source imaging, which 48

leads to overfitting of the dMRI. In practice, we counteract 49

this effect by downplaying the weight of the dMRI voxels in 50

the objective function by a factor � equal to the ratio of voxel 51

sizes between dMRI and sMRI. Further details can be found 52

in Section S.2 of the supplement. 53
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3. Experiments and Results1

To quantitatively evaluate our method and compare be-2

tween the three likelihood formulations we performed ex-3

periments using co-registered sMRI and dMRI from three4

datasets. In Section 3.1 we generate a population template5

from HCP subjects, and use it to identify manually seg-6

mentable labels corresponding to groups of labels from our7

histological atlas. In Section 3.2 we use this template to tune8

our method in a process of model selection. In Section 3.39

we evaluate application of our method to high resolution10

dMRI on subjects from HCP, including comparisons to11

manual segmentations and test-retest reliability. Finally, in12

Section 3.4 we evaluate application of our method to con-13

ventional quality dMRI. This includes test-retest reliability14

on images acquired locally at the University College London15

Dementia Research Centre (UCL DRC) and indirect evalu-16

ation on subjects with underlying pathologies by testing our17

method’s ability to distinguish between healthy controls and18

subjects with AD from the ADNI dataset.19

In the following experiments, when comparing regions20

of interest (ROIs) corresponding to the same label in two21

separate segmentations we use the Dice Similarity Coef-22

ficient (DSC) and 95th percentile of Hausdorff distance23

(95HD). For two ROIs X and Y these are defined as24

DSC(X, Y ) =
2‖X ∩ Y ‖
‖X‖ + ‖Y ‖

, (20)
95HD(X, Y ) = max(d95(X, Y ), d95(Y ,X)), (21)
where ‖ ⋅‖ indicates the volume of the ROI and d95(X, Y ) is25

the 95th percentile of the set of distances between points on26

the ROI boundaries, {dx = miny∈SY |x − y|}x∈SX27

3.1. Population template and manual labels28

When evaluating segmentation methods for medical im-29

ages, it is common practice to compare the resulting label30

maps to a gold standard, usually obtained from manual31

delineation by a trained rater. However, manual delineation32

of 52 histological labels on in vivo MRI is infeasible, as33

many of the boundaries between are invisible at ∼1mm34

resolution. Manual segmentation protocols for larger groups35

of thalamic regions (with fewer labels) exist in the literature36

(Tourdias et al., 2014), but their anatomical definitions are37

incompatible with those of our histological labels, introduc-38

ing bias and preventing direct and fair comparison. In this39

study, our goal is to compare the performance of our tool40

with a gold standard that is based on our 52 histological41

labels and informed by both sMRI and dMRI contrast. For42

this reason, we adapted these labels to define our own43

manual segmentation criteria for thalamic labels that can44

be accurately visualised and segmented on a combination45

of T1-weighted MPRAGE and directionally-encoded colour46

FA (DEC-FA); when labels of smaller thalamic nuclei were47

not identifiable from the intensity and contrast of the MRIs,48

these labels were combined and grouped together, so that the49

boundaries of the original 52 histological atlas labels can be50

easily matched and compared.51

Figure 4: Axial views of the T1-weighted (left) and DEC-FA
(right) population templates of the thalamus, overlaid with the
outlined labels obtained by manual segmentation. Manually
segmented label colour maps are given in Table 1.

Table 1
Summary of the label merging operations used to generate
the manually segmented labels from histological atlas nuclei,
and groupings of manual labels used for evaluation. Displayed
colours follow the convention used in figures throughout this
manuscript. Abbreviation definitions are listed in Section S.4
of the supplement.

Grouping Manual label
Anterior AV
Dorsal LD LP

Lat-Rostral VA VAmc VLa VLp VM
Lat-Caudal Lat-Caudal VPL

Intralaminar CeM Pc Pf MV(Re) Pt
Int-lmnr-Post CM

Medial Medial CL MDI MDm
Pulvinar L-Sg PuA Pul PuL PuM

LGN LGN
MGN MGN

Histological atlas labels

Ant-Lat

Intralaminar

Posterior

The first step in defining these criteria was to create 1

a high resolution template using 500 subjects from the 2

WashU-UMN HCP dataset (Van Essen et al., 2013) and an 3

unbiased template construction method (Joshi et al., 2004). 4

We used three channels in the registration: T1-weighted 5

intensity, T2-weighted intensity, and FA. In order to include 6

directional information in the template, we used the final 7

set of registrations to align and average the DTI tensors in 8

the log domain. The resolution of the template is equal to 9

the resolution of the HCP sMRI data, i.e., 0.7mm isotropic. 10

Slices from the template are shown in Fig. 4. 11

As a second step to define the gold standard for compari- 12

son, we registered the histological atlas to the template, pro- 13

ducing a preliminary segmentation of 52 separate thalamic 14

labels. This preliminary segmentation was then manually 15

refined by an anatomy expert (JA, assisted byMB), to correct 16

any anatomical errors from registration, and to combine 17

those thalamic regions which were not reliably identifiable 18

from the multi-modal template into labels which represent 19

larger thalamic groups. This process resulted in a set of 20

10 bilateral labels that were manually identifiable from the 21

template. The template labels are used in Section 3.2 to aid 22

in tuning our method, and criteria for these labels are used 23

in Section 3.3 to generate gold standard segmentations for 24

comparison. However, the reduced contrast and resolution of 25

scans for individual subjects resulted in increased ambiguity 26
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Figure 5: TOPSIS fitness plots for combinations of structural
(horizontal axis) and diffusion (vertical axis) grouping models.
Plots are displayed for Wishart, Log-Gaussian and DSW-
beta likelihood models. A mapping from model numbers
to parameter groupings is provided as a spreadsheet in the
supplementary material.

for some boundaries, hence we further combine our 10 labels1

into a final set of 5 coarser groupings that are visually2

identifiable in vivo, enabling evaluation without biasing re-3

sults. Manual labels for the template can be seen in Fig. 44

and the correspondences between the evaluation groupings,5

manually segmented labels and original histological atlas6

labels can be seen in Table 1.7

3.2. Model selection8

Practical implementation of the proposed framework9

requires decisions on how to share the sMM and dMM pa-10

rameters (Section 2.5.2), which amounts to amodel selection11

problem. In principle, our generative models enables the12

computation of the so-called model evidence, which enables13

comparison of models with different number of parameters.14

While theoretically appealing, computing this evidence re-15

quires marginalisation over all parameters, which leads to16

intractable integrals that require approximations. Instead, we17

selected the sMM/dMM groupings with a combination of18

prior knowledge and a systematic approach called “Tech-19

nique for Order Preference by Similarity to Ideal Solution”20

(TOPSIS) Behzadian et al. (2012).21

Structural groupings. In our previous work, we used two22

Gaussian components to model the contrast difference be-23

tween medial and lateral classes (Iglesias et al., 2018). Here,24

we added a third Gaussian modelling the medial portion of25

the medial pulvinar (PuM) nucleus, which has a structural26

appearance closer to grey matter compared with the lateral27

portion of the PuM. We then compared the atlas prior and28

histograms of the template volumes to identify 33 possible29

sMMs grouping nuclei into three component distributions,30

which were considered by TOPSIS (detailed below).31

Diffusion groupings. In Section 3.1 we defined 10 labels32

for each thalamus that are manually identifiable from com-33

bined sMRI and DEC-FA. However, inspection of the dMRI34

tensors within these regions found greater heterogeneity in35

some regions than in others. As additional borders within36

these labels could not be confidently matched with bound-37

aries in the histological atlas, we examined multiple options38

for combining histological nuclei into larger structures to be39

fit with a component distribution. Including these additional40

boundaries, and allowing for the possibility of bimodal41

histograms for some labels, we arrived at 21 possible dMMs, 1

grouping nuclei into between 11 and 13 component distribu- 2

tions. 3

TOPSIS. To optimise the choice of sMMs and dMMs in 4

a systematic fashion, we tested each possible combination 5

of sMM and dMM parameter groupings on the population 6

template. We then evaluated these models by comparing 7

Dice scores and 95HD for the whole thalamus as well as the 8

"grouping" and "manual label" regions listed in Table 1. We 9

then used TOPSIS to create a single, normalised fitness score 10

for each combination of shared parameter specifications 11

allowing them to be ranked. The resulting scores for each 12

likelihood model are shown in Fig. 5. The chosen models 13

are provided in a spreadsheet in the supplementary material 14

as well as descriptions of all candidate models. 15

3.3. Application to high resolution dMRI 16

Having individually tuned the mixture models and de- 17

fined a manual protocol corresponding to our histological 18

labels, the obvious next step is to assess the performance 19

of our joint segmentation method on HCP quality data. A 20

comparison of our joint segmentation to both the FreeSurfer 21

whole thalamus segmentation (aseg.mgz) and our previous 22

structural-only method are shown in Fig. 6. This figure 23

shows each segmentation overlaid on both the T1-weighted 24

sMRI and the DEC-FA for two healthy subjects2. 25

In both subjects the whole thalamus aseg segmenta- 26

tion, used as an initialisation for both Bayesian methods, 27

shows obvious errors when overlaid on the DEC-FA, with 28

more extreme over-segmentation for subject 2. In subject 1 29

the structural-only segmentation appears to compensate for 30

these errors and provides an improved exterior boundary. 31

However, our joint method shows marked improvement in 32

the agreement of internal boundaries with colours displayed 33

in the dMRI (solid arrows) as well as a smaller improve- 34

ment in the exterior boundary. This effect is much more 35

pronounced in subject 2, where the initial over-segmentation 36

of the thalamus propagates to the structural-only method but 37

is corrected by the joint method (arrow outlines). 38

Such observations provide compelling qualitative evi- 39

dence for the efficacy of our new method. However, to fully 40

evaluate its usefulness we must quantitatively assess both 41

accuracy and repeatability. 42

3.3.1. Direct evaluation with manual ground truth 43

To provide a quantitative measure of segmentation qual- 44

ity, our anatomy expert (JA, assisted by MB) manually seg- 45

mented images for 10 randomly selected subjects from the 46

WashU-UMNHCP dataset (Van Essen et al., 2013) using the 47

protocol outlined in Section 3.1. The manual segmentations 48

were performed using a combination of T1-weighted and 49

DEC-FA at a 1.25 mm isotropic resolution, corresponding 50

2The joint segmentation shown here uses our DSW-beta likelihood
model and the structural method has been optimised for the HCP dataset by
tuning of the stiffness parameter. For a visual comparison of all likelihood
models and the default structural segmentation please see the Section S.5
of the supplement.
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Figure 6: Comparison of thalamic segmentations generated from FreeSurfer’s recon-all (aseg.mgz), structural and joint (DSW-
beta) Bayesian segmentation on two HCP subjects. Arrows have been overlaid to indicate significant instances of correct (white)
and incorrect (red) identification of both internal (solid) and external (outline) boundaries.

to the native resolution of the diffusion data in HCP. We1

generated segmentations for these subjects using each of2

the three joint likelihood implementations from Section 2.33

as well as our previously published structural-only imple-4

mentation3 (Iglesias et al., 2018). These automated segmen-5

tations, which have the resolution of the structural scans6

(0.7 mm), were resampled to 1.25 mm isotropic resolution7

and compared with the ground truth using DSC and 95HD.8

Dice scores and 95HD for the five groupings (in column one9

of Table 1) and the whole thalamus are shown in Fig. 7.10

In general, both the DSC and 95HD plots follow similar11

trends. The median Dice scores for the whole thalamus in12

structural-only, Wishart and Log-Gaussian implementations13

were 0.88 with a small increase to 0.89 for DSW-beta. Simi-14

larly the 95HD for all methods was between 2.3 and 2.5mm15

or equivalent to approximately 2 voxels on the manual seg-16

mentations. This contrasts to the marked improvement in the17

exterior boundary for subject 2 in Fig. 6. As subject 2 was not18

selected for manual segmentation, the direct comparisons in19

Fig. 7 indicate that joint segmentation may only provide a20

small improvement in exterior boundary where the structural21

segmentation has worked well, but that it is more robust to22

errors in initialisation and atypical cases.23

Of more interest are the interior boundaries. In nearly24

all labels the joint methods outperform structural-only with25

3It should be noted that, to ensure a fair comparison of joint and
single channel approaches, the mesh stiffness parameter of the structural
implementation was modified to match the joint model that had been
developed on the HCP dataset. This improved both the DSC and 95HD
structural results compared to the default FreeSurfer distribution.

lateral-caudal class showing an improvement of 10 Dice 1

points. This can be seen in Fig. 6 where the solid arrows 2

indicate this changes in this boundary for subject 1. The 3

only label class where the structural method outperforms our 4

joint implementation is the medial class. This is expected 5

as a medial-lateral contrast change is modelled explicitly in 6

the structural-only method. However, the difference is small 7

with a median DSC of 0.72 in structural compared to 0.67 8

for the joint methods and comparable 95HD measurements 9

in this class. 10

There is comparatively little difference between the three 11

diffusion likelihood implementations. TheWishart and Log- 12

Gaussian implementations show the most similar results, 13

while in the DSW-beta implementation small decreases in 14

accuracy of the intralaminar and posterior classes are offset 15

by improvements in the antero-lateral classes and whole 16

thalamus exterior. 17

3.3.2. Test-retest reliability analysis 18

In order to assess the test-retest reliability of the method 19

(a crucial feature in large scale, multi-centre studies), we 20

segmented images from 110 HCP subjects using two differ- 21

ent sets of DTI images for each subject – one based on the 22

b=1000 s∕mm2 shell and one based on the b=2000 s∕mm2 23

shell – and compared the outputs. While the results of such 24

an experiment are optimistic when compared to experiments 25

in which images are acquired with multiple scanners, it does 26

enable thorough comparison within the same dataset; test- 27

retest experiments with multiple acquisitions are described 28

in Section 3.4.1 below. 29
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Figure 7: Dice score (top) and 95HD (bottom) comparison of
automated thalamic segmentations to manual delineations of
10 HCP subjects. Scores are stated for our previous structural
only method as well as the three likelihood implementations of
our joint method.

Dice comparison of each likelihood implementation on1

these two sets of reconstructed tensors can be seen in Fig. 8.2

These results generally show that all three models are rea-3

sonably robust to such an acquisition change in HCP qual-4

ity data, with a median Dice score of 0.85 or greater in5

each grouped label across all models. Similarly, each model6

showed Dice scores of greater than 0.95 for whole thalamus7

outlines. While median Dice scores for each grouped label8

are comparable between models, the DSW-beta does appear9

to be more robust for whole thalamus as well as three of10

the five grouped labels. Additionally, both Wishart and Log-11

Gaussian show a larger number of low Dice outliers with12

minimum values reaching as low as 30 points bellow the13

median in some cases.14

3.4. Applications to conventional quality dMRI15

While our method assumes that the resolution of the16

diffusion MRI approaches 1 mm isotropic (which is the17

case for many modern datasets, e.g., following the HCP18

protocol), it is of high interest to segment the thalamic nuclei19

in lower resolution scans for two reasons. First, because large20
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Figure 8: Dice score evaluation of test-retest reliability on
110 HCP subjects. For each subject, we performed two
segmentations using DTI images obtained by fitting the tensor
to the data from b=1000 s∕mm2 and b=2000 s∕mm2 shells
separately and computed Dice scores for groups of labels in
the two resulting segmentations.

amounts of legacy data were acquired at lower resolution. 1

And second, because many current studies (e.g., ADNI, 2

GENFI) still use those acquisitions, either in order not to 3

deviate from the protocol used to acquire images earlier in 4

the project or to accommodate acquisition constraints such 5

as available scanner time. As explained in Section 2.3 above, 6

compatibility with conventional quality data is actually the 7

reason why we chose to model the diffusion tensor in our 8

likelihood term, rather than using a more sophisticated, 9

higher order model. 10

Reduced resolution and contrast on such scans, com- 11

pared to HCP, make manual delineation using the criteria 12

from Section 3.1 infeasible. For this reason we do not do a 13

direct comparison of our methods to the 10 labels defined 14

by manual segmentation. Instead, we first evaluate the relia- 15

bility of the joint segmentation method through test-retest 16

analysis, then assess the utility of our method, using the 17

ability to discriminate individuals with AD vs controls as 18

a proxy for accuracy. 19

3.4.1. Test-retest reliability analysis 20

In order to assess the test-retest reliability of the method 21

on lower resolution dMRI, we used a separate dataset, com- 22

prising 21 healthy volunteers (9 male, 12 female, aged 53 – 23

80 years) acquired at the UCL DRC. Three MRI sequences 24

were performed for each subject in a single session: one T1- 25

weighted MPRAGE 1.1 mm isotropic resolution; and two 26

diffusion weighted acquisitions each consisting of 64 gradi- 27

ent directions at a b-value of 1,000 s∕mm2 and a 2.5 mm 28

isotropic resolution. Using the two dMRI acquisitions as 29

separate tests, segmentations were performed at a 1 mm 30

isotropic resolution in the native orientation of the individual 31

dMRI volumes before being resampled to the native space 32

of the structural volume for calculation of test-retest Dice 33
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Figure 9: Dice score evaluation of test-retest reliability on
conventional-quality data from 21 subjects acquired at the UCL
Dementia Research Centre. For each subject, we performed two
segmentations using dMRI data acquired in the same session
using the same acquisition parameters and computed Dice
scores for groups of labels.

scores. The Dice scores for this experiment are shown in1

Fig. 9.2

While this experiment shows lower Dice scores than in3

HCP, possibly due to the increased voxel size and reduced4

quality of the data, median scores are still above 0.9 for5

whole thalamus and 0.8 for four of the five grouped labels.6

However, it is more apparent from this plot that both the7

Wishart and Log-Guassian implementations are less robust8

in lower quality data. This may be due the increased di-9

mensionality of these two models, meaning imprecise fitting10

of the tensor model caused by partial volume effects has a11

greater impact than for the more robust FA and principle12

direction model used by the DSW-beta likelihood.13

3.4.2. Alzheimer’s disease study14

In order to evaluate the usefulness of our method in15

a classical group study with imaging data of conventional16

quality, we ran a further experiment using the ADNI dataset.17

The ADNI was launched in 2003 by the National Institute18

on Aging, the National Institute of Biomedical Imaging and19

Bioengineering, the Food and Drug Administration, private20

pharmaceutical companies and non-profit organizations, as21

a $60 million, 5-year public-private partnership. The main22

goal of ADNI is to test whether MRI, positron emission23

tomography (PET), other biological markers, and clinical24

and neuropsychological assessment can be combined to25

analyze the progression of MCI and early AD. Markers of26

early AD progression can aid researchers and clinicians to27

develop new treatments and monitor their effectiveness, as28

well as decrease the time and cost of clinical trials. The29

Principal Investigator of this initiative is MichaelW.Weiner,30

MD,VAMedical Center and University of California—San31

Francisco. ADNI is a joint effort by co-investigators from32

industry and academia. Subjects have been recruited from33

over 50 sites across the U.S. and Canada. The initial goal34

(a) (b) 

Figure 10: Comparison of thalamic segmentations of a subject
from the ADNI dataset using equal (a) and reduced (b) dMRI
likelihood weighting. Weighting the dMRI likelihood by the
ratio of voxel volumes between sMRI and dMRI results in
more accurate estimation of boundaries with heavy partial
voluming in the diffusion channel, e.g., the CSF/posterior-
thalamus boundary (red arrows).

of ADNI was to recruit 800 subjects but ADNI has been 1

followed by ADNI-GO and ADNI-2. These three protocols 2

have recruited over 1500 adults (ages 55–90) to participate in 3

the study, consisting of cognitively normal older individuals, 4

people with early or late MCI, and people with early AD. 5

The follow up duration of each group is specified in the 6

corresponding protocols for ADNI-1, ADNI-2 and ADNI- 7

GO. Subjects originally recruited for ADNI-1 and ADNI- 8

GO had the option to be followed in ADNI-2. For up-to-date 9

information, see http://www.adni-info.org. 10

Specifically, we repeated the experiment from our previ- 11

ous article (Iglesias et al., 2019) using the T1-weighted and 12

dMRI scans of 92 subjects fromADNI2. Here we considered 13

47 subjects with AD and 45 age-matched controls (73.8±7.7 14

years; 44 females total). The data consisted of T1-weighted 15

scans, with a resolution of 1.2×1×1mm (sagittal), and dMRI 16

with a resolution of 1.35×1.35×2.7 mm (axial). We fit the 17

DTI model to the b=1000 s∕mm2 shell (41 directions), 18

combined with 5 volumes at b=0. Given the test-retest 19

results above and considering the similar levels of accuracy 20

seen between dMRI likelihood models in the ground truth 21

comparisons, we focus on our DSW-beta likelihood model 22

in this experiment. 23

Initial tests on subjects from the ADNI dataset revealed 24

some cases where the inclusion of the dMRI shifts bound- 25

aries in the segmentation due to the lower resolution of 26

the dMRI data (and thus increased partial volume effects). 27

An example is the over-segmentation of the thalamus into 28

the CSF in Fig. 10a. We addressed this by allowing the 29

contribution of the dMRI likelihood term to be reduced in 30

proportion to the ratio between voxel volumes in the sMRI 31

and dMRI volumes (Fig. 10b) as outlined in Section 2.5 and 32

Section S.2 of the supplement. 33

As in Iglesias et al. 2019, we computed receiver op- 34

erating characteristic (ROC) curves for discrimination of 35

subjects into the two classes using five approaches: three 36

based on thresholding the volume of the whole thalamus 37

(as given by the FreeSurfer recon-all stream, the struc- 38

tural segmentation, and the joint segmentation); and two 39

based on thresholding the likelihood ratio given by a linear 40

discriminant analysis (LDA, Fisher 1936) on the volumes 41

of the histological nuclei (as given by the structural and 42
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Figure 11: ROC curves for subjects with AD vs controls
classification based on thalamic volumes.

Table 2
AUC, accuracy at elbow, and p-value for improved AUC values
as given by a DeLong test.

FreeSurfer Structural Diffusion
(whole) (nuclei) (nuclei)

AUC 61.28% 71.30% 83.36%
Acc. at elbow 61.96% 68.48% 76.09%
p-value vs FreeSurfer 1.6e-01 1.1e-03
p-value vs Structural 2.1e-02

joint segmentation). The resulting ROC curve is shown in1

Fig. 11 with the area under the curve (AUC), accuracy at the2

elbow and p-values for comparison of AUC values shown in3

Table 2.4

From these curves we can see that all three methods5

relying on the total volume of the thalamus have poor6

discriminative ability, with little difference between using7

FreeSurfer, structural or joint segmentations. This contrasts8

to the nuclei specific methods, which both show marked9

improvements. Structural showing an increase of 10% AUC10

over FreeSufer’s whole thalamus and joint segmentation an11

increase of 22%. However, only the improvements of the12

joint method show statistical significance with p = 1.1e−0313

vs. Freesurfer and p = 2.1e − 02 vs structural nuclei14

segmentation.15

4. Discussion and Conclusion16

In this article, we have presented and tested a novel17

segmentation method for thalamic subregions from struc-18

tural and diffusion MRI. Building on the Bayesian segmen-19

tation literature, we use novel likelihood models to exploit20

structural and diffusion MRI information jointly in order21

to obtain an accurate parcellation of the thalamic nuclei. 1

The information in structural MRI enables placement of 2

boundaries in regions with strong contrast (e.g., medial 3

boundary with the ventricles) with high precision, attributed 4

to its higher resolution; the diffusion information enables 5

the accurate segmentation of boundaries that are invisible 6

in typical structural MRI sequences. Furthermore, we have 7

presented an improved version of our previous histological 8

atlas, which enables more accurate modelling of diffusion 9

MRI in the cerebral white matter. The proposed method 10

will be distributed with FreeSurfer and is widely applicable 11

because the likelihood: (i) relies on a simple DTI model, 12

which makes it compatible with virtually every diffusion 13

dataset; (ii) adjusts to different resolutions by correcting for 14

voxel sizes; and (iii) relies on an unsupervised model that is 15

robust against changes in MR contrast. 16

We have conducted extensive experiments with manual 17

segmentations, test-retest acquisition, and group studies – 18

including datasets with different resolutions. The results 19

have shown that the joint model exploiting the diffusion 20

information improves accuracy over structural-only segmen- 21

tation. Moreover, we have also found that the varying res- 22

olution gap between structural and diffusion MRI may be 23

accommodated by weighting the diffusion likelihood term 24

to account for voxel size differences, thus bypassing the 25

need to explicitly model partial voluming – which quickly 26

becomes intractable, particularly in multi-modal images de- 27

fined on different voxel grids. While both our proposed 28

likelihood model (DSW-beta) and the two competing al- 29

ternatives showed similar levels of improved accuracy over 30

structural-only segmentation, we found the DSW-beta distri- 31

bution to have the highest test-retest reliability and to be the 32

most robust to changes in the DTI resolution. Comparedwith 33

other approaches, we produce Dice scores that are within 34

an expected range. For example Su et al. (2019) reported 35

mean scores of 0.64 and above, but direct comparison is 36

complicated by differences in label definition, acquisition 37

type and image resolution. 38

Our proposed method has a large number of design 39

choices, particularly linked to the specification of shared 40

parameters across classes in the structural and diffusion 41

mixture models. We set these parameters with the combi- 42

nation of expert prior knowledge, a labelled template, and 43

a well-known approach from the decision making literature 44

(TOPSIS). While this approach is suboptimal (our prior 45

knowledge is imperfect; a single template is biased towards 46

a certain population, contrast, and resolution; and TOPSIS’s 47

criteria may not necessarily be ideal), it yielded groupings 48

that worked well in practice for different datasets with dif- 49

ferent resolution. 50

This work has two main limitations. First, the lack of 51

quantitative validation of our adapted manual segmentation 52

against other segmentation criteria for the thalamus, e.g., 53

with intra- and inter-rater variability. And second, the lack 54

of explicit modelling for the partial volume effect; while 55

accounting for the voxel size ratio mitigated this problem 56

in our experiments, it is possible that it does not suffice 57
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for more extreme ratios. Addressing these two issues with1

further experiments and solutions based on CNNs remain as2

future work.3

The presented method will be publicly available in4

FreeSurfer as an extension of our current structural-only5

code. As high-resolution diffusion data become increasingly6

accessible, algorithms that can exploit them to produce7

accurate segmentations – particularly for boundaries that are8

invisible in structural MRI – have the potential to greatly9

enhance neuroimaging studies.10
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