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Abstract:

Mitophagy is a cargo-specific autophagic process that recycles damaged mitochondria
to promote mitochondrial turnover. PTEN-induced putative kinase 1 (PINK1) mediates the
canonical mitophagic pathway. We show that PINK1 expression is positively correlated with
decreased colon cancer survival, and mitophagy is required for colon cancer growth following
nutrient stress. However, the mechanism by which PINK1 maintains colon cancer growth
remains equivocal. Inducible knockdown (KD) of PINK1 in a panel of colon cancer cell lines
inhibited colon cancer cell proliferation, whereas disruption of other mitophagy receptors did not
similarly impact cellular proliferation. Mechanistically, we observed a decrease in mitochondrial
respiration, membrane hyperpolarization, accumulation of mitochondrial DNA, and depletion of
antioxidant glutathione following PINK1 KD. Mitochondria are important hubs for storing iron and
synthesizing iron-dependent cofactors such as heme and iron sulfur clusters. An increase iron
storage protein ferritin and a decrease labile iron pool was observed in PINK1 KD cells.
However, neither total cellular iron nor markers of iron starvation/overload were affected.
Cellular iron storage and the labile iron pool are maintained via autophagic degradation of
ferritin (ferritinophagy). Overexpressing nuclear receptor coactivator 4 (NCOA4), a key adaptor
for ferritinophagy, rescued cell growth and the labile iron pool in PINK1 KD cells. We
demonstrate that PINK1 regulates intracellular iron availability by integrating mitophagy to
ferritinophagy. In conclusion, these results indicate that PINK1 is essential for maintaining
intracellular iron homeostasis to support survival and growth in colorectal cancer cells.

Introduction:

Mitochondria are critical metabolic organelles that sustain cellular bioenergetics and
biosynthetic needs?. The electron transport chain (ETC) integrates central carbon metabolism
and redox homeostasis to support metabolic demands of the cells. To maintain a healthy
mitochondrial network, organellar functions are continuously monitored via quality control
mechanisms?. Dysfunctional mitochondria are turned over by a cargo-specific, lysosomal-
dependent, autophagic degradation mechanism termed mitophagy®. Dysregulation of mitophagy
has been associated with progression of several cancers®. Parkin-induced protein kinase 1
(PINK1) is a sensor of mitochondrial health, and activation of PINK1 regulates one of the most
well-defined mitophagy pathways®>®. However, the role of PINK1 as a tumor suppressive
surveillance mechanism for enhancing survival and proliferation are context dependent’®®.

Induction of PINK1-mediated mitophagy is triggered by loss of membrane potential from
uncoupling the proton or potassium gradient'®. Recent results illustrated that chelation of
mitochondrial iron potently induced mitophagy (insert ref). The role of mitochondria in iron
metabolism is well established as both iron sulfur cluster (Fe-S) and heme biosynthesis starts
within this organelle. Moreover, mitochondria ETC require Fe-S cluster and heme containing
protein such as cytochrome c to facilitate electron transfer. Nevertheless, the mechanistic
connection between mitochondrial iron loss and mitophagy remains unclear'*?,

In excess, iron is cytotoxic to cells. As such, cellular iron levels are balanced by an
intricate network of regulatory mechanisms. A central protein in iron handling is the iron storage
protein ferritin (FTN). Preliminary data suggest most bioavailable iron uptake goes through a
transient FTN intermediate to prevent oxidative damage?'®. Subsequently, FTN bound iron
release is mediated by autophagic degradation of nuclear receptor coactivator 4 (NCOA4) in a
process termed ferritinophagy. Following FTN degradation, lysosomal/endosomal iron can be
distributed in the cell via direct lysosome-organelle contacts or chaperones. As an example,
recent studies demonstrated that iron turnover from ferritinophagy is critical to support
mitochondrial iron sulfur cluster biogenesis and respiration in pancreatic cancer#1°,

To study the connection between mitophagy and iron balance, we generated a genetic,
PINK1 loss-of-function model in colorectal cancer cell models. We identified PINK1-mediated
mitophagy as a critical pathway for CRC cell proliferation and mitochondrial function. The loss of
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PINK1 led to increased sequestration of labile iron in ferritin. The proliferative defects and
cellular labile iron pool in PINK1 KD was rescued by activating ferritinophagy via nuclear
receptor coactivator 4 (NCOA4) overexpression. Overall, our study suggests that disruption of
the canonical mitophagy pathway contributes to cytosolic iron imbalance, which can be rescued
by activating ferritinophagy.

Results:
PINK1 is required for colorectal cancer cell proliferation in vitro and in vivo

Previously, we demonstrated that colorectal cancer cells utilize mitophagy to support
metabolic rewiring under nutrient deprived conditions®. Mining a large colon cancer patient
database demonstrated that high PINK1 expression is positively correlated with worsened
progression/regression free survival (Figure 1A). In addition, mining the Human Protein Atlas,
colorectal cancer cells robustly express PINK1 compared to several other cancers (Figure 1B).
PINK1 is the initiating kinase that licenses phospho ubiquitin (pUb)-dependent mitophagy
initiation!’, and we generated two independent doxycycline (DOX) inducible small hairpin RNA
(shRNA) targeting PINKL1. To test cell proliferation and viability, we counted cell number over
time to account for proliferation and utilized colony formation assay to assess the ability of cells
to form single unit colonies. When comparing between WT and PINK1 KD, we decided to
compare DOX treatment groups of shNT vs shPINKL1 instead of between isogenic shPINK1
cells with and without DOX. This minimizes any off-target effects of doxycycline. Upon PINK1
knock down (KD), we observed proliferative defects and decreased colony forming capacity in
several colorectal cancer cell lines (HCT116, SW480, RKO, HT29, MC38, CT26) (Figure 1C
and D). KD was validated by decreased PINK1 mRNA transcript (Supplemental figure 1A).
However, disruption of PINK1-independent mitophagy executors, parkin, BNIP3, NIX, FUNDC1
did not exhibit growth defects (Supplement figure 1B and 1C). In addition, analysis of PINK1
KD cells in a subcutaneous xenograft model reveled decreased tumor burden with decreased
tumor volume, decreased tumor weight, decreased BrdU staining, and increased TUNEL
staining following doxycycline treatment (Figure 2A, B, C, and D). This data demonstrates that
PINK1 has an essential role in mediating CRC cell growth.

Inhibition of PINK1 disrupts mitophagy and mitochondrial functions

Mitophagy is the process by which damaged mitochondria are degraded and the
components are recycled to support cell growth. Upon loss of mitochondrial membrane
potential, PINK1 accumulates on the outer mitochondrial membrane (OMM) and recruits E3
ligase Parkin to coordinate the decoration of OMM and OMM proteins with phospho-ubiquitin
(pUb) chains'®. pUb chains subsequently recruit autophagic adaptors such as p62 to deliver
mitochondria to autophagosomes for degradation?!. PINK1 knockdown (KD) prevented
accumulation of pUb in response to carbonyl cyanide m-chlorophenylhydrazone (CCCP), a
mitochondrial uncoupler (Figure 3A). In addition, we sought to characterize mitophagy flux
utilizing a mitochondrially-targeted tandem Cox8-mCherry-GFP mitophagy reporter (Figure 3B).
GFP is a pH-sensitive fluorophore, while mCherry is pH-insensitive. Upon engulfment of
mitochondria into the acidic autophagosome, it quenches the localized GFP signal, whereas
mCherry will remain fluorescent. PINK1 KD effectively decreased mitophagy flux (Figure 3C).
Moreover, we observed increased mitochondrial DNA (mtDNA) content, which indicated
accumulation of mitochondria (Figure 3D).

Next, mitochondrial function was investigated following PINK1 KD. Seahorse analysis
demonstrated lower basal oxygen consumption rate (OCR) and maximal respiration in PINK1
KD cells (Figure 3E and supplemental figure 2A and 2B). ETC is tightly coupled with
mitochondrial membrane potential, and PINK1 KD cells had increased mitochondrial membrane
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potential, which is indicative of mitochondrial hyperpolarization and a potential blockade in ETC
and proton motive force (Figure 3F). Another role of mitochondrial ETC complex | is to oxidize
NADH to sustain NAD pool, which can be assessed by measuring NADH/NAD ration. We
observed elevated levels NADH/NAD ration upon PINK1 KD, which contributes to cellular
reductive stress (Figure 3G).

Cellular redox balance and nucleotide metabolism are disrupted upon PINK1 inhibition

Mitochondria integrate the metabolism of nutrients such as glucose, glutamine, and fatty
acids to coordinate energy production, the regulation of redox homeostasis, and other
biosynthetic precursors. Liquid chromatography tandem mass spectrometry (LC-MS/MS)-based
metabolomics was used to profile changes in central carbon metabolism upon PINK1 KD. Here,
we observed a downregulation of the reduced glutathione (GSH) to oxidized glutathione
(GSSQG) ratio and nucleotides (i.e. ADP, AMP, UDP, IMP) in SW480 (Figure 4A, 4B, and table
1). Together with the bioenergetic profiling data in Figure 2, this evidence indicates that losing
the ability to recycle mitochondria via PINK1-dependent mitophagy inhibits mitochondrial
respiration and contributes to cellular metabolic dysfunction.

To reverse proliferation defects that resulted from PINK1 KD, based on our
metabolomics data, we supplemented cells with the antioxidants N-acetylcysteine (NAC) or
glutathione ethyl ester (GSH-ee), or the nucleosides (adenosine, thymidine, cytosine, and
guanosine) (Figure 4C and 4D). However, these metabolites did not rescue the growth defects
in PINK1 KD cells. Since mitochondrial dysfunction can contribute to elevated NADH/NAD ratio,
we assayed NADH/NAD ration in PINK1 KD cells. We observed elevated NADH/NAD ration
upon PINK1 KD. To resolve elevated NADH/NAD ratio, we employed Lactobacillus brevis
NADH oxidase (LbNOX) and mitochondrial targeted LONOX (mtLbNOX), which oxidize NADH to
water, in order to determine the impact of reductive stress on our PINK1 KD phenotype. Here
too, we failed to rescue PINK1 KD*° (Supplemental figure 2A). Lastly, the pan-
caspase/apoptosis inhibitor (z-VAD-FMK), ferroptosis inhibitor (Ferrostatin 1; Ferl), and
necroptosis inhibitor (Necrostatin 1; Necl) did not reverse growth defects in PINK1 KD cells
(Supplemental figure 2B). Collectively, these data suggested that metabolic dysregulation was
secondary of the growth suppressive and mitochondrial dysfunction phenotypes following
PINK1 KD.

PINK1 modulates intracellular iron distribution independent of the canonical iron starvation
response

In addition to their above noted role in metabolism, mitochondria are also important hubs
for cellular iron homeostasis. Iron sulfur clusters (Fe-S) and heme biosynthetic pathways initiate
in the mitochondria. Iron and iron-containing cofactors are critical for electron transport and
redox balance as iron is a redox active element that can shuttle electrons along the respiratory
chain. Moreover, we have shown that nucleotide metabolism requires iron for pyrimidine/purine
biosynthesis?®. Acute depletion of mitochondrial iron via deferiprone (DFP) induces mitophagy,
thus linking mitochondrial turnover to cellular iron homeostasis!'. To measure the mitochondrial
iron pool, we utilized a flow cytometry compatible mitochondrial iron stain, Mito-FerroGreen.
With this, we observed that PINK1 KD decreased mitochondrial iron levels (Figure 5A).

Mitochondrial iron is sensitive to cytosolic iron perturbation. For example, extracellular
iron depletion induces HIF activation, and thus drives expression of mitochondrial iron transport
SLC25A372122_ Cells have an extensive regulatory network that monitors iron homeostasis?.
Excess cytosolic labile iron pool (LIP) can lead to oxidative damage?*?°. Thus, iron is tightly
regulated through many overlapping and distinct pathways. Using FerroOrange to measure the
LIP, we observed that this was robustly decreased upon PINK KD (Figure 5B). In contrast, total
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cellular iron was not changed, as assessed by inductively coupled plasma-mass spectrometry
(ICP-MS), as well as other trace metal elements (Figure 5C). High levels of iron lead to the
upregulation of the iron storage protein ferritin (FTN) expression and stabilization, which is
composed of ferritin heavy chain (FTH1) and ferritin light chain (FTL). FTN sequesters
excessive iron, preventing cellular oxidative damage from excessive LIP. In PINK1 KD cells,
increased FTH1 and FTL was observed (Figure 5D).

Restoring iron homeostasis via NCOA4-mediated ferritinophagy reverses growth suppression
upon PINK1 inhibition

To understand the role of iron in the growth defects following PINK1 KD, we
supplemented with ferric ammonium citrate (FAC) to rescue LIP and mitochondrial iron.
Interestingly, growth was not rescued in the PINK1 KD cells (Figure 6A). An increase in FTN
levels upon FAC treatment was observed, but no increase in LIP or mitochondrial iron,
indicating that introduction of exogenous iron was primarily integrated to FTN complexes
(Figure 6B and 6C). Indeed, iron chelation with DFO decreased LIP (Figure 6D). Cells
compensate for the loss of cellular LIP via a cargo-specific autophagic degradation of FTN by
ferritinophagy?®?’. We show that deferoxamine (DFO) depleted FTN levels in WT cells, but
PINK1 KD maintained higher levels FTN (Figure 5D). This data suggested that there are
defects in ferritinophagy that decrease LIP in the PINK1 KD cells.

Ferritinophagy is coordinated by the cargo receptor NCOA4, which binds to both FTL
and FTH1 and delivers FTN to autophagosomes for degradation?’. In addition to liberating FTN
bound iron for other iron dependent processes, NCOA4 has been reported to be important for
mitochondrial iron balance and respiration?®. To rescue FTN accumulation in PINK1 KD cells,
NCOA4 was over expressed (OE). NCOA4 expression was sufficient to rescue proliferative
defects of PINK1 KD and restore labile iron pool (LIP) in these cells (Figure 6E and 6F).
Overall, here we demonstrated that PINK1 loss leads to mitochondrial dysfunction and iron
accumulation in ferritin. Liberating the sequestered iron from the ferritin complex by inducing
ferritinophagy was able to compensate for PINK1 KD. This data suggests an essential role of
mitophagy in regulating the LIP via ferrithophagy.

Discussion:

Mitochondria are important biosynthetic and metabolic hubs in tumorigenesis, and
functional mitochondria are critical to support cancer cell growth?®. Environmental stressors in
the tumor microenvironment such as hypoxia and nutrient dysregulation and intrinsic factors
driving mitochondrial DNA heteroplasmy require adaptations to mitochondrial dynamics,
turnover, and programs for cancer cell survival 33!, The induction of mitophagy requires
exogenous expression of parkin and mitochondrial damage to remove the mitochondrial pool®2.
Mitophagy is essential in colon cancer growth, however the underlying mechanisms are unclear.
The present work demonstrates that inhibition of PINK1-mediated mitophagy decreases colon
cancer growth in a panel of colon cancer-derived cell lines. CRC cells have high basal
mitophagy® and failure to execute mitophagy leads to proliferative defects. Mechanistically, we
show that colon cancer cells are dependent on PINK1 to maintain mitochondrial respiration.
Although we did observe metabolite changes such as decreased reduced glutathione and
several nucleotide species, simply added back these metabolites are not sufficient to restore
PINK1 dependent proliferative defects. Rather, we demonstrate that PINK1 KD decreases the
LIP and restoring ferritinophagy was sufficient to rescue cell proliferation.

The critical role of mitochondria in iron homeostasis is well appreciated. Mitochondrial
uptake of iron via the mitoferrins (SLC25A27/38) is essential for the biosynthesis of iron sulfur
clusters proteins and heme®. Iron sulfur clusters and heme are both important cofactors that
support ETC, nucleotide biosynthesis, and DNA replication®*. Although iron is a critical
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micronutrient essential for many biological processes, excessive free iron can be cytotoxic and
exert oxidative stress.® Therefore, the balance between iron storage in multimeric ferritin
complexes and ferritin turnover via ferritinophagy is tightly regulated. In addition to its role in
FTN turnover, the ferritinophagy adaptor NCOA4 has also been implicated in mitochondrial iron
balance'?. However, the canonical mitophagy pathway driven by PINK1, and how this cross-
talks with cellular iron homeostatic mechanisms, are still unclear.

The most well studied PINK1 substrates include the mitochondrial outer membrane
proteins mitofusins (MFN1/2), ubiquitin, and parkin6. The phosphorylation targets downstream
of PINK1 activation are often signals that recruit autophagy adaptors to delivery mitochondria to
autophagosomes. The kinase domain of PINK1 faces the cytosolic side and is postulated to
have targets outside of OMM proteins®’. Interestingly, phosphorylation targets for PINK1 were
identified under mitochondrial uncoupled conditions. However, our study pinpoints a role of
homeostatic PINK1 in CRC cells. This distinction may alter the subset of proteins targeted by
PINK1 basally. Although mitophagy and ferritinophagy are distinct cargo-selective autophagic
pathways, several players in these two pathways are shared®. We speculate that loss of PINK1
inhibits overlapping effectors that are central in mitophagy and ferritinophagy. Thus, future
studies will be needed to identify relevant PINK1 targets and the complex interplay of various
autophagy adaptors in balancing mitophagy and ferritinophagy.

We provide evidence of direct crosstalk between two cargo-specific autophagic
pathways, mitophagy and ferritinophagy. This connection between mitochondrial quality control
mechanism and iron homeostasis has been reported to mediate important cellular
pathophysiology, but mechanistic insights have been lacking. A study suggested the possibility
that NCOA4 recognizes mitochondrial ferritin (FTMT) on the outer mitochondria membrane and
directly degrading mitochondria via autophagy'?. However, we propose a potential alternative
mechanism to their NCOA4-dependent mitophagy paradigm since FTMT expression is
undetectable in our CRC cell lines. Previous studies have identified that intestinal epithelial
derived cancer cells utilize mitophagy to evade T cell immunity via lysosomal iron overload®. In
addition, genetic deletion of PINK1 in pancreatic cancer contributes to mitochondrial iron
overload via accumulation of mitochondrial iron importers?!. Since mitochondria can harbor
abundant cellular iron, their roles in mediating iron storage and subcellular utilization have been
increasingly scrutinized*®4!, Moreover, colon cancer cells sequester iron to fuel pro-survival
responses such as hypoxic signaling and nucleotide biosynthesis. Due to the redox reactivity of
iron, iron mobilization is swiftly carried out by chaperones and compartmentalized by different
organelles. Disruption of iron handling machineries have been implicated in cellular dysfunction.
Loss of mitochondrial iron contributes to decreased oxygen consumption and respiratory chain
defects.

Mitochondrial and ferritin turnover coordinate dynamic responses central in sustaining
CRC growth. Although there are no specific agents that specifically block mitophagy,
hydroxychloroquine is a lysosomotropic agent that blocks all form of autophagy consequent with
a neutralization of lysosomal pH and lysosome dysfunction. Hydroxychloroquine has
demonstrated promising results in conjunction with standard chemotherapeutics in metastatic
CRC patients (NCT01206530) and our work suggests assessing the role of cellular iron
availability in the efficacy of hydroxychloroquine in these patients. Moreover, recent work has
identified compounds that directly inhibit ferritinophagy and may lead to more direct and potent
growth inhibition of CRC*2,

Experimental procedures:
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Cell line and culture

HCT116, DLD1, MC38, HT29 and SW480 cells were maintained at 37°C in 5% CO2 and 21%
02. Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10%
FBS and 1% antibiotic/antimycotic. Constructs for doxycycline inducible shRNA were generated
using the Tet-pLKO-puro (Dmitri Wiederschain; Addgene plasmid #21915). shRNA primer
sequences are as follows: shPRKN (F: CCGGGCTTAGACTGTTTCCACTTATCTCGAGATAA
GTGGAAACAGTCTAAGCTTTTT, R: AATTAAAAAGCTTAGACTGTTTCCACTTATCTCGAGA
TAAGTGGAAACAGTCTAAGC), shPINK1.2 (F: CCGGGAAATCTTCGGGCTTGTCAATCTCG
AGATTGACAAGCCCGAAGATTTCTTTTT, R: AATTAAAAAGAAATCTTCGGGCTTGTCAATC
TCGAGATTGACAAGCCCGAAGATTTC), shPINK1.3 (F: CCGGGCCGCAAATGTGCTTCATC
TACTCGAGTAGATGAAGCACATTTGCGGCTTTTT, R: AATTAAAAAGCCGCAAATGTGCTTC
ATCTACTCGAGTAGATGAAGCACATTTGCGGC). CRISPR knockout line was generated using
gRNA in LenticrisprV2 (Feng Zhang; Addgene plasmid 49535). CRISPR primer sequences are
as follows: sgBNIP3 (F: CACCGATGGGATTGGTCAAGTCGGC, R: AAACGCCGACTTGACC
AATCCCATC), sgNIX/BNIP3L (F: CACCGCGGCGGCGGCTCGACTAGGT. R: AAACACC
TAGTCGAGCCGCCGCCGC), sgFUNDCL1 (F: CACCGTAATGGGTGGCGTTACTGGC, AA
ACGCCAGTAACGCCACCCATTAC). NCOA4 overexpression plasmid (pIND20-NCOA4) was
generously donated from Joseph D. Mancias’ group. Plasmids were generated and inserted in
to a lenti-viral vector for stable transfection. Knockdown was induced using 500 ng/mL of
doxycycline for 48-hours. Ferric ammonium citrate was obtained from Sigmal Aldrich
(RES20400-A7). CCCP (25458), Deferoxamine mesylate (14595), Ferrostatin-1 (17729), Z-
VAD(OH)-FMK (14467), Necrostatin-1 (11658), and doxycycline hyclate (14422) was obtained
from Cayman Chemicals.

Mouse xenograft model

Immunocompromised (NOD.Cg-Prkdcs®d/J), 6- to 8- or 8- to 10-week-old mice of both sexes
were maintained in the facilities of NCI Frederick National Laboratory. For subcutaneous
xenograft studies, HCT116 and SW480 or shNT, shPINK1.2 and shPINK.13 cells were
trypsinized and 2 million cells were implanted into the lower flanks. All treatments began on day
10 after tumors became visible. 200mg dox/kg diet was used to induce shRNA expression. The
diet was purchased from Bioserv. Subcutaneous tumor size was measured with digital calipers
at the indicated time points. Tumor volume (V) was calculated as V = 1/2(length x width2). At
the endpoint, mice were sacrificed and tumors were excised. The final tumor volume and weight
were measured, and tissue was used for proliferation and apoptosis assay.

Proliferation assay

Growth assays were performed using MTT (Thiazolyl Blue Tetrazolium Bromide) assays and
live cell imaging. Briefly, for MTT cells were plated down and 24-h following plating a Day 0
reading was taken. Cells were incubated for 45 min with MTT solution (5% concentrate stock: 5
mg/mL, in 1XPBS, pH 7.4). Media and MTT solution were then carefully aspirated followed by
solubilization with dimethyl sulfoxide. Absorbance was read at 570nm. Following the Day 0
read, the cells were treated with indicated doses and readings were taken after 24-h. Live cell
imaging was done using the Cytation 5 Imaging Multi-Mode reader. Cells were plated down,
treated 24 h later with indicated treatments, and immediately imaged and analyzed for cell
number. Images were then taken every 24 h.

Real time quantitative PCR

1 ug of total RNA extracted using Trizol reagent from mouse tissues human intestinal cell lines.
RNA was reverse transcribed to cDNA using SuperScriptTM Il First-Strand Synthesis System
(Invitrogen). Real time PCR reactions were set up in three technical replicates for each sample.
cDNA gene specific primers, SYBR green master mix was combined, and then run in
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QuantStudio 5 Real-Time PCR System (Applied BioSystems). The fold-change of the genes
were calculated using the AACt method using B-actin as the housekeeping gene. Primers are
listed as follows: human PINK1 (F: GCCTCATCGAGGAAAAACAGG. R:
GTCTCGTGTCCAACGGGTC), mouse PINK1 (F: TTCTTCCGCCAGTCGGTAG. R:
CTGCTTCTCCTCGATCAGCC), human PRKN/PARK2 (F: GTGTTTGTCAGGTTCAACTCCA.
R: GAAAATCACACGCAACTGGTC), human NIX/BNIP3L (F: ATGTCGTCCCACCTAGTCGAG.
R: TGAGGATGGTACGTGTTCCAG), human BNIP3 (F: CAGGGCTCCTGGGTAGAACT, R:
CTACTCCGTCCAGACTCATGC), human FUNDC1 (F: CCTCCCCAAGACTATGAAAGTGA, R:
AAACACTCGATTCCACCACTG), human beta-actin/ACTB (F:
CATGTACGTTGCTATCCAGGC, R: CTCCTTAATGTCACGCACGAT), mouse beta-actin/ACTB
(F: GTGACGTTGACATCCGTAAAGA, R: GCCGGACTCATCGTACTCC).

Western blotting

Whole-cell lysate preparations were described previously (Anderson et al., 2013). Whole cell
lysates were prepared from cell lines by RIPA buffer. Homogenates were incubated in RIPA
buffer for 15 min on ice followed by 13,000 rpm centrifugation for 15 min. Supernatants were
transferred to a new tube and mixed with 5x Laemmli buffer and boiled for 5 min. Lysates
containing 30—40 ug of protein per well were separated by SDS-PAGE, transferred onto
nitrocellulose membranes, and immunoblotted overnight at 4°C with indicated antibodies:
Phospho-Ubiquitin (Ser65) (E2J6T) Rabbit mAb #62802 (Cell Signaling Technology), Vinculin
(E1E9V) XP Rabbit mAb #13901(Cell Signaling Technology), Anti-ferritin heavy chain Antibody
(B-12): sc-376594 (Santa Cruz Biotechnology), Anti-ferritin light chain Antibody (D-9): sc-74513
(Santa Cruz Biotechnology). All the primary antibodies were used at a dilution of 1:1000. HRP-
conjugated secondary antibodies used were anti-rabbit and anti-mouse at a dilution of 1: 2000
and immunoblots were developed using Chemidoc imaging system (ChemiDoc, BioRad).

NAD/NADH measurement
NAD/NADH-GIlo assays from Promega (G9071) were purchased and performed based on
manufacturer instructions.

Clonogenic assays

Cells were plated in six-well plates in biological triplicates at 300—600 cells per well in 2 mL of
media. Dox-media were changed every 2 days. Assays were concluded after 10—-15 days by
fixing in =20 °C cold 100% methanol 10 min and staining with 0.5% crystal violet 20% methanol
solution for 15 min. Colonies were quantified using ImagedJ or manually counted.

FerroOrange and Mito-FerroGreen measurement

The cells were washed with HBSS three times. Mito-FerroGreen working solutions (5 pmol/l)
and FerroOrange working solution (1 pmol/l) were added to the cells, and the cells were
incubated at 37°C for 30 minutes in a 5% CO2 incubator. The supernatant was discarded and
the cells were washed with HBSS three times. Cells were then processed for flow cytometry
analyses.

Mitophagy assay with flow cytometry

Cells were seeded at 100,000 cells per well in a twelve-well plate. Next day, 500ng of pCLBW
cox8 EGFP mCherry (David Chan;Addgene plasmid #78520).) were transfected into the cells
with Lipofectamine 2000 according to manufacturer’s protocol. Cells were then treated with
doxycycline for 48hour to induce PINK1 KD. After 48hour post transfection, cells were
trypsinized and collected for flow cytometry analyses. Cells were counterstained with DAPI to
gate out dead cells. Then, mCherry positive cells were gated and EGFP fluorescence was
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assessed. Ratio of low EGFP to high EGFP was plotted as % mitophagy. Analysis was done
using FlowJo software.

Metabolomics

Cells were plated at 500,000 cells per well in six-well plates or ~1.5 million cells per 10-cm dish.
At the endpoint, cells were lysed with dry-ice cold 80% methanol and extracts were then
centrifuged at 10,000 x g for 10 min at 4 °C and the supernatant was stored at —80 °C until
further analyses. Protein concentration was determined by processing a parallel well/dish for
each sample and used to normalize metabolite fractions across samples. Based on protein
concentrations, aliquots of the supernatants were transferred to a fresh microcentrifuge tube
and lyophilized using a SpeedVac concentrator. Dried metabolite pellets were re-suspended in
45 pL 50:50 methanol:water mixture for LC—MS analysis.

The QqQ data were pre-processed with Agilent MassHunter Workstation Quantitative Analysis
Software (B0700). Each sample was normalized by the total intensity of all metabolites to scale
for loading. Finally, each metabolite abundance level in each sample was divided by the median
of all abundance levels across all samples for proper comparisons, statistical analyses, and
visualizations among metabolites. The statistical significance test was done by a two-tailed t-test
with a significance threshold level of 0.05.

Induced coupled plasma mass spectrometry (ICP-MS):

Metal quantifications by ICP-MS were performed as previously described?®®. Briefly, tissue
samples were digested with 2 mL/g total weight nitric acid (BDH Aristar Ultra) for 24 h and then
digested with 1 mL/g total weight hydrogen peroxide (BDH Aristar Ultra) for 24 h at room
temperature. Specimens were preserved at 4°C until quantification of metals. Ultrapure water
was used for the final sample dilution. Samples were analyzed using a Perkin-Elmer Nexion
2000 ICP-MS.

Seahorse mito stress test

Cells were seeded at 2 x 104 cells/well in 80 ul/well of normal growth media (DMEM with 25 mM
Glucose and 2 mM Glutamine) in an Agilent XF96 V3 PS Cell Culture Microplate (#101085-
004). To achieve an even distribution of cells within wells, plates were incubated on the bench
top at room temperature for 1 h before incubating at 37 °C, 5% CO2 overnight. To hydrate the
XF96 FluxPak (#102416-100), 200 pL/well of sterile water was added and the entire cartridge
was incubated at 37 °C, no CO2 overnight. The following day, 1 h prior to running the assay,
60 uL/well of growth media was removed from the cell culture plate, and cells were washed
twice with 200 pL/well of assay medium (XF DMEM Base Medium, pH 7.4 (#103575-100)
containing 25 mM glucose (#103577-100) and 2 mM glutamine (#103579-100)). After washing,
160 pL/well of assay medium was added to the cell culture plate for a final volume of

180 pL/well. Cells were then incubated at 37 °C, without CO2 until analysis. One hour prior to
the assay, water from the FluxPak hydration was exchanged for 200 uL/well of XF Calibrant
(#100840-000) and the cartridge was returned at 37 °C, without CO2 until analysis. Oligomycin
(100 uM), FCCP (100 pM), and Rotenone/Antimycin (50 uM) from the XF Cell Mito Stress Test
Kit (#103015-100) were re-constituted in assay medium to make the indicated stock
concentrations. Twenty microliters of Oligomycin was loaded into Port A for each well of the
FluxPak, 22 pL of FCCP into Port B, and 25 pL of Rotenone/Antimycin into Port C. Port D was
left empty. The final FCCP concentration was optimized to achieve maximal respiration in each
condition.

The Mito Stress Test was conducted on an XF96 Extracellular Flux Analyzer and OCR was
analyzed using Wave 2.6 software. Following the assay, OCR was normalized to cell number
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with the CyQUANT NF Cell Proliferation Assay (C35006) from Thermo Fisher according to
manufacturer’s instructions.

Quantification and statistical analysis

In vitro experiments were validated in 4 cell lines. Each cell line experiment was performed in
technical replicates for each condition and repeated at least three times with biological
triplicates to ensure reproducibility. Figures show a representative biological replicate unless
otherwise indicated. Blinding was performed whenever appropriate. Sample description and
identification was unavailable to the core personnel during data collection and analysis.
Statistical details of all experiments can be found in the figure legends. The sample numbers
are mentioned in each figure legend and denote biological replicates. Statistical details are
reported in figure legends. Results are expressed as the mean plus or minus the standard error
of the mean for all figures unless otherwise noted. Significance between 2 groups was tested
using a 2 tailed unpaired t test. Significance among multiple groups was tested using a one-way
ANOVA. GraphPad Prism 7.0 was used for the statistical analysis. Statistical significance is
described in the figure legends as: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 1. PINK1 is associated with poor patient survival and required for colorectal
cancer growth in vitro. A. Regression free survival in colorectal cancer patients stratified on
median PINK1 expression. B. Human Protein Atlas (HPA) data on % patient with positive PINK1
expression (Accession number HPA00193). Human colorectal cell lines (HCT116, SW480,
HT29, RKO) and mouse colorectal cancer cell lines (CT26 and MC38) with doxycycline (DOX)
inducible non-targeting (shNT) and 2 independent shRNA targeting human PINK1 (shPINK1.2
and shPINK1.3) or mouse PINK1 (shPINK1.2) were assessed for C. cell proliferation and D.
colony formation assays following 50 ng/ml of doxycycline.
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Figure 2. PINK1 is required for colorectal cancer in vivo growth. HCT116 and SW480
shNT, shPINK1.2, and shPINK1.3 tumors were injected into the flanks of NOD/SCID mice (N=6-
8) and A. tumor volume, B. end point tumor weight, C. Percent (%) TUNEL staining and D.
BrdU staining were quantified with or without doxycycline (DOX) chow. Data is presented as
mean +/- the standard error of the mean. **** indicates P < 0.0001.
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Figure 3. Loss of PINK1 disrupts mitophagy and contributes to mitochondrial
dysfunction. A. Schematic of the COX8-EGFP-mCherry mitophagy reporter. B. Mitophagy flux
was measured using the reporter. C. Cells were treated with vehicle or 10 uM CCCP, and
phosphorylated ubiquitin (pS65-Ub) was assessed by Western blot analysis. D. mtDNA content
was assessed using mitochondrially encoded gene D-Loop and Cytochrome c oxidase 2 (CO2).
E. Seahorse MitoStress Test was conducted with following order and concentration of inhibitors:
Oligomycin (1 pM), FCCP (1 uM), Rotenone (1 pM) and Antimycin A (1 pM). (mean -/+ SEM, N
= 4 per condition). F. Mitochondrial membrane potential is measured by Mitotracker Red
CMXRos. G. Relative NADH/NAD ratio. Data is presented as mean +/- the standard error of the
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mean, *P < 0.05, *P < 0.001, ***P < 0.0001. All experiments were done in triplicates and
repeated at least three times.
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Figure 4. Disruption of redox and nucleotide metabolism is secondary to PINK1-
dependent growth defects. A. Metabolite profiling via mass spectrometry-based metabolomics
3 days following induction of shNT and shPINK1 (n=3). B. Selected metabolites associated with
redox and nucleotides from SW480 were shown to decrease under PINK1 knockdown. Cell
growth following treatment with C.1mM NAC and GSHee or D. 100uM adenosine/thymidine or
cytosine /guanosine. Data is presented as mean +/- the standard error of the mean, *P < 0.05,
*P < 0.001, ***P < 0.0001. All experiments were done in triplicates and repeated at least three
times, the metabolomics were done with N = 3 per condition.
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Figure 5. PINK1 modulates intracellular iron distribution independent of canonical iron
starvation response. A. MitoFerroGreen and B. FerroOrange quantitation in shNT and
shPINK1 cells by flow cytometry analyses of mean fluorescence intensity (MFI). C. ICP-MS
analyses of divalent metals in shNT and shPINK1 cells. D. Immunoblotting of WT and shPINK1
cells treated with 100 uM of deferoxamine (DFO) for 24 and 48 hour. Data is presented as mean
+/- the standard error of the mean, *P < 0.05, **P < 0.001, ****P < 0.0001. All experiments were
done in triplicates and repeated at least three times, the ICP-MS were done with N = 5 per

condition.
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Figure 6. Restoring iron homeostasis via NCOA4-mediated ferritinophagy rescues growth
in following loss of PINK1. A. shNT and shPINK1 cells were treated with 100 uM ferric
ammonium citrate (FAC) and proliferation was measured for 72 hours. B. HCT116 and SW480
were treated with 100 uM FAC for 72 hours and the labile iron pool (LIP) was assessed by
FerroOrange. C. Immunoblot of ferritin heavy chain (FTH1) following 100 uM FAC treatment. D.
Measurement of LIP by FerroOrange upon DFO treatment. E. Cell growth or F. FerroOrange
staining following NCOA4 overexpression in shNT and shPINK1 cells (mean fluorescence
intensity (MFI)). Data is presented as mean +/- the standard error of the mean, *P < 0.05, **P <
0.001, ***P < 0.0001. All experiments were done in triplicates and repeated at least three
times, the FerroOrange staining was done with N = 4 per condition.
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