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Summary

Spatiotemporal regulation of the cellular transcriptome is crucial for proper protein expression
and cellular function!. However, the intricate subcellular dynamics of RNA synthesis, decay,
export, and translocation remain obscured due to the limitations of existing transcriptomics
methods?=®. Here, we report a spatiotemporally resolved RNA mapping method (TEMPOmap) to
uncover subcellular RNA profiles across time and space at the single-cell level in heterogeneous
cell populations. TEMPOmap integrates pulse-chase metabolic labeling of the transcriptome with
highly multiplexed three-dimensional (3D) irn situ sequencing to simultaneously profile the age
and location of individual RNA molecules. Using TEMPOmap, we constructed the subcellular
RNA kinetic landscape of 991 genes in human HeLa cells from upstream transcription to
downstream subcellular translocation. Clustering analysis of critical RNA kinetic parameters
across single cells revealed kinetic gene clusters whose expression patterns were shaped by multi-
step kinetic sculpting. Importantly, these kinetic gene clusters are functionally segregated,
suggesting that subcellular RNA kinetics are differentially regulated to serve molecular and
cellular functions in cell-cycle dependent manner. Together, these single-cell spatiotemporally
resolved transcriptomics measurements provide us the gateway to uncover new gene regulation
principles and understand how kinetic strategies enable precise RNA expression in time and space.
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Main text
Introduction

Cell state and function are shaped by the spatiotemporal regulation of gene expression. This
heterogeneous expression is, in part, achieved through precise mRNA metabolism and trafficking
over time. The ability to systematically profile transcriptomes across time and space at a single-
cell level from intact cellular networks is critical to understanding transcriptional and post-
transcriptional gene regulatory mechanisms in cells and tissues.

However, current transcriptomic approaches are unable to simultaneously capture both the
spatial and time dependence of RNA profiles. For instance, spatially resolved transcriptomics
methods have enabled integrated profiling of gene expression from heterogeneous cell types in the
context of tissue morphology?®. Nonetheless, these spatial transcriptomics approaches alone can
only provide static snapshots of cells and tissues, while the dynamic flow of gene expression
cannot be determined'. In contrast, existing metabolic RNA labeling approaches have enabled
temporal profiling of the nascent single-cell transcriptome but lack spatial resolution®'*. In
addition, live-cell imaging can directly track RNA trajectory inside cells, but simultaneously
visualizing multiplexed transcripts remains challenging'®. Thus, there exists a pressing need for
highly-multiplexed, spatially and temporally-resolved sequencing methods that tracks nascent
mRNAs in situ from birth to death at subcellular and single-cell resolutions.

Here, to provide a systematic single-cell analysis of RNA life cycle in time and space, we
introduce TEMPOmap (temporally resolved in situ sequencing and mapping), a method that tracks
the spatiotemporal evolution of the nascent transcriptomes over time at subcellular resolution
(Extended data Fig. 1a). TEMPOmap integrates metabolic labeling and selective amplification of
pulse-labeled nascent transcriptomes with the current state-of-the-art three-dimensional (3D) in
situ RNA sequencing at 200 nm resolution within a hydrogel-cell scaffold? (Fig. 1a). Using pulse-
chase labeling, we were able to simultaneously track key kinetic parameters for hundreds to
thousands of genes during their RNA life cycle, including rates of transcription, decay, nuclear
export, and cytoplasmic translocation. Using these spatiotemporal parameters, we show that
mRNAs of different genes are kinetically sorted at different steps of the RNA life cycle and across
different cell-cycle phases, which ultimately serves gene functions.

TEMPOmap strategy for spatiotemporally resolved transcriptomics

TEMPOmap begins with metabolically labeling the cultured cells using 5-ethynyl uridine (5-
EU)!*15, which adds a bioorthogonal chemical handle on the labeled mRNAs (Fig. 1b). Next, we
designed a tri-probe set (splint, padlock, and primer) for each mRNA species to selectively
generate complementary DNA (cDNA) amplicons derived from metabolically-labeled RNAs (Fig.
1b-c and Extended data Fig. 1b-c): (1) the splint DNA probe is modified with 5’ azide- and 3’
chain-terminator groups to covalently attach with the 5-EU labeled mRNAs via copper(I)-
catalyzed azide-alkyne cycloaddition (CuAAC, Extended data Fig. 1b), thus excluding unlabeled
RNAs from subsequent cDNA amplification; (2) the padlock probes recognize mRNA targets with
20-25 nucleotide (nt) cDNA sequence and gene barcodes, which can be circularized when the
splint probe is in physical proximity on the same RNA; (3) the primer probes target the neighboring
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87  20-25 nt next to the padlock probes, which serve as the primer to amplify circularized padlocks in
88  situ viarolling cycle amplification (RCA), forming cDNA nanoballs (amplicons); in combination,
89  only mRNAs that are bound by all three types of probes will be amplified for selective detection
90 of labeled mRNA population in a label- and sequence-controlled manner via a two-step
91 thresholding strategy (Fig. 1d). Notably, a single gene-targeting padlock probe (bi-probe design)
92  cannot achieve specific gene detection (Extended data Figure 1c) and the dual gene-targeting
93  primer and padlock pair in the tri-probe design is necessary'. For proof of concept, we tested
94  representative tri-probes targeted for ACTB in HeLa cells, demonstrating specific detection of
95  metabolically labeled transcripts (Fig. 1d, Extended data Fig. le). For highly multiplexed
96 transcriptome detection, the in situ generated cDNA amplicon libraries are subsequently embedded
97 in a hydrogel matrix for multiple cycles of fluorescent imaging to decode the gene-encoding
98  barcodes via SEDAL (sequencing with error-reduction by dynamic annealing and ligation) (Fig.
99 1b, Extended data Fig. 1d) to simultaneously detect hundreds to thousands of genes. After the
100  completion of sequencing cycles, the amplicon reads are subsequently registered, decoded, and
101 subjected to 3D segmentation for subcellular and single-cell resolved analysis (Extended data Fig.

102 2a).

103

104  Spatiotemporal evolution of single-cell nascent transcriptome

105

106 To assess TEMPOmap in human cells, we mapped a curated list of 991 genes (981 coding, 10

107 non-coding RNA) with diversified spatial and temporal RNA expression profiles'*!® in HeLa cell
108  cultures. Then, we designed a pulse-chase experiment!>!” with one hour (hr) of pulse labeling and
109  wvarious chase times (0, 1, 2, 4, and 6 hrs) as well as one steady-state reference with 20-hour pulse
110  labeling (Fig. 2a), followed by the TEMPOmap experiment workflow (Fig. 1b). The barcodes in
111 all the samples were sequenced over six rounds of in situ sequencing, followed by a final round of
112 subcellular compartment staining (nuclei and cytoplasm) to segment cell bodies and assign the
113 subcellular locations of amplicons in 19,856 cells in 3D (Extended data Fig. 2b-d). From 0 to 6 hrs
114 chase time post-labeling, we observed a decline of total RNA reads per cell, a gradual shift of the
115 RNA distribution from the nucleus to the cytoplasm, and further allocation from the middle
116  cytoplasmic region to the periphery (Fig. 2c, d), in agreement with the expected trajectory of RNAs.
117  Interestingly, a significant fraction of reads (~40%) was retained in the nucleus even after 6 hrs
118  chase. A closer inspection of the retained RNA molecules revealed that RNAs with the highest
119  nuclear-to-cytoplasm read ratio included long non-coding RNAs (NEATI, MALATI), supported
120 by deep sequencing of RNA from cellular fractions (Extended data Fig. 3a)'®!°. Notably, a group
121  of mRNAs (e.g. KIFI134, LENGS, CCNL2, COL74) showed high ratio of nuclear retention
122 (nuc/cyto > 2, Extended data Fig. 3a). Our observation validates the previous discovery of nuclear
123 retention of mMRNA, which may serve as a regulatory role to buffer the cytoplasmic gene expression
124 noise?*?!,

125

126 Next, we asked whether the TEMPOmap dataset could resolve the heterogeneity of single cells.
127  To this end, we pooled all the cells under the 1 hr pulse conditions (18,176 cells) for single-cell
128  resolved dynamic trajectory analysis using PHATE (Fig. 2e, 1)*>?*. Our results showed a clear
129  trajectory along the progression of chase time, which suggests that the temporally resolved single-
130 cell transcriptional states could be readily distinguished and aligned in the latent space. Overlaying
131  the same coordinates with RNA degradation kinetics vectors (represented as the quivers) further
132 recapitulated the single-cell trajectory along RNA life cycle progression?*~2°, We further asked
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133 how the RNA life cycle defined by the pulse-chase timeline aligns with cell-cycle progression. To
134  this end, we classified the cells into three cell cycle phases (G1, G1/S, and G2/M) based on their
135 nascent expression of marker genes (Extended data Fig. 3b,c) using cell-cycle scoring?s.
136  Interestingly, the direction of cell-cycle progression is orthogonal to that of the pulse-chase time
137  point progression (Fig. 2e, I1). This observation suggests that TEMPOmap provided independent
138  temporal information regarding the RNA life cycle in addition to the cell cycle.

139

140 Besides single-cell analysis, we considered that TEMPOmap dataset could reveal the
141  subcellular dynamics. To this end, we generated a nucleocytoplasmic gene-by-cell matrix by
142 concatenating single-cell nuclear expression with cytoplasmic expression for trajectory analysis
143 (Fig. 2f). Apart from recovering the unidirectional trajectory of single cells along with the labeling
144 time points (Fig. 2f, III), we found a small fraction (n = 137 cells, 2.1%) of G2/M cells formed a
145  narrow trajectory and projected into a distinct space, suggesting that the nucleocytoplasmic RNA
146  distribution in this group of G2/M cells drastically differs from the rest of the G2/M cells (Extended
147  data Fig. 3d). We suspected that these spatially distinct cells were the cells undergoing mitosis
148  with their unique RNA nucleocytoplasmic distribution?’. Indeed, the cells on this trajectory had
149  been in different phases of mitosis, during which RNAs were mostly evicted from the chromatin
150  regions compared to that in G2 cells (Fig. 2f, V). Furthermore, the uniform direction of this distinct
151  trajectory aligns well with the time progression of mitosis (Fig. 2f, V, 5-8), indicating that the
152  temporal mitotic transitions could be inferred by subcellular RNA localization patterns. As a result,
153 by jointly making use of the time-gated nucleocytoplasmic distribution, we not only separated G2
154  and M cells but also traced the trajectory of mitosis on the gene expression space, during which M
155  cells undergo drastic RNA eviction from chromosomes?®.

156

157  Subcellular RNA Kkinetic landscape across RNA lifespan

158

159 To further quantify the kinetics during different stages of transcription and post-transcriptional

160  processing, we estimated four key kinetic constants for all detected transcripts across RNA lifespan
161  —synthesis (a), degradation (B), nuclear export (1) (Fig. 3a), and cytoplasmic translocation (y) (Fig.
162 3b). We noticed a correlated relation between physical cell volumes and single-cell RNA reads
163  (Extended data Fig. 4a-b). To remove the potential bias caused by cell volume, we estimated o and
164 B values based on the averaged concentrations of each RNA species (reads/voxel) across single
165  cells (Extended data Fig. 4¢). Built on the previous studies'®?23° our model assumed zero-order
166  kinetics for o and first-order kinetics for B'7%°. In addition, a threshold of fitting B for each gene
167 (936 genes out 0f 991 genes with the coefficient of determination R’ >=0.5) was applied for quality
168  control purposes (Extended data Fig. 4c-d). In parallel, we estimated the nuclear export rate (1)
169  based on the change in the ratios of nuclear-to-total reads over time. We noted that the estimation
170  of A might also be complicated by nuclear and cytoplasmic degradation, and therefore was more
171  fitting for describing the change in the homeostasis of nucleocytoplasmic RNA distribution. Lastly,
172 to systematically evaluate the relative positions of each RNA species in physical cytoplasm space
173 in 3D over time, we derived a distance-ratio (DR) based method (Extended data Fig. 2d, Extended
174  data Fig. 4c), where the cytoplasmic translocation rate (y) was calculated by tracking the change
175  of DR over time (Fig. 3b).

176

177 Notably, while nuclear export of RNA had been considered to be a constant in the previous
178  RNA velocity-based model?’, our result suggested that A varies substantially among different RNA
179  species, which indicates gene-specific regulatory mechanisms to control the homeostasis of
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180  nucleocytoplasmic transcript distribution (Extended data Fig. 4e). In addition, for the first time to
181  the best of our knowledge, we could systematically study the cytoplasmic translocation of RNAs
182  of a large number of genes simultaneously at 1 hr resolution. Most genes had y > 0 (Extended data
183  Fig. 4f, g), which suggested a translocating direction from the nuclear membrane to the
184  cytoplasmic membrane. However, we found a small subset of genes with y <0 (R? > 0.5) that were
185  significantly enriched in secreted and organellar proteins (Extended data Fig. 4h), indicating
186  possible relocation events from the cytosol to the endoplasmic reticulum or faster degradation rates
187  for non-ER anchored RNAs than ER-anchored ones. Further studies need to be conducted to
188  investigate the kinetic mechanism that directs the cytoplasmic translocation of different RNA
189  molecules (Extended data Fig. 41).

190

191 Next, we asked whether any of the four RNA kinetic parameters were intrinsically coupled.
192 Here, we performed pairwise correlations of the four parameters across 936 genes. We found that
193 the overall correlation between each pair of parameters was weak (Fig. 3¢, p < 0.1), suggesting
194 that the kinetic parameters of RNA transcription, post-transcriptional processing!3 and allocation
195  are relatively independent!'®. We then explored the correlations of these kinetic parameters across
196  the cell cycle. To this end, we performed a further pairwise correlation analysis of the four
197  parameters across different genes at three cell-cycle phases (800 genes passed quality control; Fig.
198  3d). Interestingly, for each parameter, depending on its temporal sequence in the RNA life cycle,
199 a trend of decreasing correlations in cell cycle phases emerged: at the early stage of RNA
200  production, the synthesis rates o were highly correlated (p = 0.9-1.0, Extended data Fig. 5a);
201  during post-transcriptional processing in the nucleus, A in the three phases have moderate
202  correlations (p = 0.4-0.5, Extended data Fig. 5c); near the end of the RNA life cycle, cytoplasmic
203  translocation y have much weaker correlations (p = 0-0.2, Extended data Fig. 5d). This observation
204  suggested that RNA metabolism and trafficking of different genes become less synchronized and
205  increasingly heterogeneous from the upstream to the downstream stages of RNA life cycle,
206  potentially due to gene-specific and cell-cycle-dependent regulation.

207

208 Given the cell-cycle resolved RNA kinetic landscape, we further investigated how RNAs could
209  be dynamically “sculpted” to fine-tune the temporal RNA expression profiles. First, we identified
210  potentially co-regulated RNAs through a pairwise single-cell covariation analysis of 936 genes
211 from the aforementioned pulse-chase HeLa cell samples (1 hr pulse, 0-6 hrs chase, Extended data
212 Fig. 6a, left). Using the matrix of pairwise correlation single-cell expression variation combining
213 all time points, we identified four groups of genes with significant intra-group correlation,
214  indicating potential gene co-regulation patterns (Extended data Fig. 6a, right, Group 1-4). Notably,
215  while these genes are enriched with cell-cycle-related functions (Extended data Fig. 6b), the four
216  groups differ significantly in multiple stages of RNA kinetics (Extended data Fig. 6¢). Next, we
217  repeated the single-cell covariation analysis to each individual time point using the same gene
218  order, and found that the shift in the co-variation pattern of each group varies from 0 to 6 hrs
219  (Extended data Fig. 6d): Group 1 shows decreasing co-variation pattern from 0 to 2 hrs post-
220  synthesis; Group 2 shows consistently high expression co-variation across time; in contrast, the
221  co-variation patterns of Group 3 and 4 gradually emerged from 2 hrs to 6 hrs post-synthesis. This
222 observation suggests that, at the RNA level, cell cycle progression is jointly shaped by an
223 orchestration of genes with distinct transcriptional and post-transcriptional kinetic features.

224

225  Differential RNA Kkinetic strategies by gene function
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226

227 After recognizing the aforementioned four gene groups whose RNA temporal profiles coupled
228  with cell-cycle phasing, we asked if such correspondence between RNA kinetics and gene
229  functions globally exists for other genes. To identify gene modules based on their shared kinetic
230  patterns in the context of RNA life cycle and cell cycle, we first clustered 800 genes using the 12
231  parameters (four kinetic constants across three cell cycle stages. The clustering analysis revealed
232 five kinetic gene clusters of distinct kinetic landscapes (Fig. 4a) that also had distinct subcellular
233 distributions over time (Extended data Fig. 7a, b). Importantly, gene ontology analyses showed
234 that the five clusters associate with distinct biological and molecular functions (Fig. 4b). For
235  example, genes with unstable and slowly exported RNAs were strongly enriched in metal-binding
236  and transcription factor binding activities (Cluster 1, » =231 genes); genes with high RNA stability
237  and moderate export rate (Cluster 3, n = 153 genes) were enriched in hydrolase and ATP-binding
238  activities. On the other hand, genes with fast synthesis and greater RNA stability (Cluster 5, n =
239 86 genes) were enriched in constitutive cellular processes like mRNA splicing, translation, and
240  mitochondrial functions. We reasoned that these housekeeping genes tend to produce abundant
241  and stable RNAs for a longer persistence of genetic information due to energy cost of protein
242 production®®.

243

244 Notably, while Cluster 2 (n =205 genes) and 4 (n = 125 genes) have slower synthesis, moderate
245  degradation, and faster export, they significantly differ in cytoplasmic translocation rates (y),
246  which are cell-cycle-dependent. In G1 phase, RNAs of Cluster 2 exhibited significantly higher y
247  compared to the other phases, whereas Cluster 4 showed the opposite trend (Fig. 4a, right). We
248  found the genes in Cluster 2 have a functional enrichment of DNA damage and repair, and those
249  in Cluster 4 are functionally related to organellar and membrane-bound proteins (Fig. 4b). Closer
250  examination of the genes in Cluster 4 showed that, most of the genes (109/125) have negative y
251  valuesin G1, indicating an overall reverse direction of translocation in G1 phase. Previous research
252  showed that many mRNAs encoding membrane-bound proteins were anchored to the surface of
253 endoplasmic reticulum (ER) for localized protein synthesis’!. We reasoned that the RNAs
254  encoding these membrane proteins might also be regulated at the dynamic level, executed by both
255  spatial and temporal localization control in a cell-cycle-dependent manner. Since the duplication
256  of organelles and cell expansion are the major activities at G1 phase, our discovery also suggests
257  that, ER-localized protein synthesis might be more active in G1, either by RNA transport toward
258  ER or local degradation of non-ER-anchored RNAs in the cell periphery (Fig. 4d). Hence, we
259  proposed a more comprehensive picture of the regulation dynamics of membrane protein at the
260  RNA processing level from both spatial and temporal perspectives. While the mechanism that
261  underlies our observed translocation values is still open to further investigations, we revealed the
262  importance of regulating the spatiotemporal localization of transcripts that carry different genetic
263  information.

264

265 Finally, we examined RNA kinetic landscape in the context of N°-methyladenosine
266  modifications (m°A), a critical posttranscriptional chemical modification of RNA that plays vital
267  physiological roles*?33. RNA methylation m®A is known to mediate a wide range of post-
268  transcriptional gene regulation, however, the full landscape of the spatiotemporal dynamics on
269 mCA-RNA has not been systematically addressed. To this end, we separated the genes encoding
270  RNAs with and without m®A modifications by previous m°A profiling studies***> (m®A- or non-
271  m°A-RNAs, Extended data Fig. 8a). Consistent with the previous report, m°A-modified RNAs
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272  were significantly less stable than non-m®A-RNAs (higher B, Fig. 4¢). In addition, we observed
273 the same trend when comparing the degradation constants in different cell cycle phases, suggesting
274  that regulating the decay of m°A-methylated RNA is persistent across cell cycle (Extended data
275  Fig. 8b). Together, we demonstrate the potential of using TEMPOmap dataset to study
276  spatiotemporal transcriptomics in combination with post-transcriptional modification, a path to
277  incorporate multi-modality transcriptomic analysis at single-cell and subcellular resolution.

278

279

280  Discussion

281

282 TEMPOmap serves as a novel in situ transcriptomic platform that simultaneously profiles time-

283  and space-resolved transcriptomics in single cells, a multimodal single-cell transcriptomics
284  technology at the subcellular resolution that has not been achieved before. We demonstrated the
285  capacity of TEMPOmap to systematically detect the subcellular allocation and cytoplasmic
286  translocation of transcripts over time. More importantly, our study provided a full landscape of
287  RNA subcellular kinetics at the single-cell level and revealed how RNA kinetics contribute to
288  cellular functions such as cell-cycle progression. We observed a strong correlation of RNA kinetic
289  patterns with the molecular functions of genes-- such function-oriented regulation of RNA life
290  cycle might have evolved under survival and energy constraints to control spatiotemporal gene
291  expression in a precise and economic way*’. In future work, TEMPOmap can be combined with
292  high-throughput single-cell functional genomics (e.g. CRISPR screens®®) to determine key
293  molecular factors that impact the kinetic landscape of RNA life cycle. Furthermore, such
294  spatiotemporally coordinated transcriptomic patterning may shed light on understanding the
295  molecular mechanisms of various biological phenomena, including in development and pattern
296  formation, learning and memory, biological clocks, as well as disease progression. With
297  optimization of metabolic labeling conditions!>37-8 and integration of various molecular probing
298  schemes, such methodology can be adapted for ex vivo or in vivo tissue samples to systematically
299  profile dynamic events in tissue biology.

300

301
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422  Fig. 1 TEMPOmap enables spatiotemporally resolved transcriptomics. a, Overview of
423  TEMPOmap pipeline: nascent RNAs of multiple time points are collected and in situ sequenced,
424 followed by spatiotemporal RNA analyses. b, TEMPOmap experimental workflow. After 5-EU
425 labelled cells are prepared, a set of tri-probes (splint, primer and padlock) are conjugated or
426  hybridized to cellular mRNAs (Extended Data Fig. 1¢ for more details), resulting in the enzymatic
427  replication of each padlock sequence into cDNA amplicons. The amplicons are anchored in situ
428  via a functionalized acrylic group (blue) to a hydrogel mesh to create a DNA-gel hybrid (blue
429  wavy lines). The five-base barcode on each amplicon is read out by six rounds of SEDAL
430  (sequencing with error-reduction by dynamic annealing and ligation). Thus, multiplexed RNA
431  quantification reveals gene expression in nascent subcellular locations. ¢, DNA tri-probe design
432  rationale. The generation of an amplicon requires the presence of splint, circularized padlock, and
433  primer probes in proximity. d, Left: schematics and representative fluorescent cell images of
434  negative control experiments of ¢, showing three-part probe requirement for signal amplification.
435  mRNA_I represents ACTB and mRNA_II represents GAPDH. All four images show ACTB (red)
436 mRNA in HeLa cells (DAPI in blue). Right: quantification of cell images showing the average
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437  amplicon reads per cells (n = 5 images were measured containing 469, 305, 714 and 520 cells for
438  each condition from left to right, respectively). ****p <107*, two-tailed -test. Data shown as
439  mean + s.d. Scale bars: 10 um.
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442  Fig. 2 Spatiotemporal tracing of single-cell transcriptome. a, Pulse-chase experiment design
443  on HeLa cells. For the first five time points, we used 1 hr metabolic labeling (pulse) followed by
444 0,1, 2,4 and 6 hrs chase. At the last time point, we metabolically labeled the cells for 20 hrs. All
445  of the cells were then processed by TEMPOmap workflow measuring 998 genes. b, RNA reads
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446  (cDNA amplicons) per cell for each pulse-chase time point. ¢, 3D fluorescent images of in-process
447  TEMPOmap with zoomed views of representative single cells of cycle 1 at each time point. Z-
448  stack range: 10 pm. d, Top, boxplot summarizing the fraction of reads in each subcellular region
449  of all cells at each time point. Vertical lines indicate s.d. The statistics compares the fractions of
450  nuclear reads (blue) across the first five time points. ****p < (0.001, Kruskal-Wallis test with post
451  hoc Tukey’s HSD. Number of cells (n) in each time point is shown. Bottom, subcellular region
452  assignment (nuclear, middle and periphery) of one representative cell. e-f, TEMPOmap single-cell
453  (e) or nucleocytoplasmic (f) RNA measurements rendered as a visualization by PHATE and
454  colored by pulse-chase time points (I, IIT) or cell-cycle marker gene expression (I, IV). Black
455  arrows inferred by RNA degradation vectors indicate the directions of chase time progression.
456  Bottom row, representative raw images of G2/M phase cells separated on PHATE coordinates. All
457  images show mRNAs (in white) in HeLa cells (DAPI in blue). Scale bars: 15 um.
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461  Fig. 3 TEMPOmap reveals subcellular RNA Kkinetic landscape across RNA lifespan and cell
462  cycle. a, The dynamic model for estimating RNA kinetic parameters. For each gene, RNA
463  synthesis (o) and degradation constant () were estimated using single-cell RNA concentration.
464  The export constant (A) was estimated using the subcellular RNA concentrations. b, The dynamic
465 model for estimating cytoplasmic translocation (y) using distance ratio (DR)-based analysis (see
466  Methods). ¢, Upper Right: the mathematical model of RNA life cycle and kinetic assumptions used
467  for the parameter estimation. Bottom Left: The histogram of the four parameters for all genes that
468  passed qualify control and the scatter plots depicting the pairwise correlation of parameters with p
469  value (Pearson correlation) and linear fitting curve. Color intensity of the dots indicates local
470  density. d, Heatmap depicting pairwise correlation matrix of the four parameters estimated using
471  single-cells from three cell-cycle phases (G1, G1/S, G2/M). Color indicates the value of Pearson
472  correlation coefficients. Boxed regions indicate the correlations of each parameter among three
473  cell-cycle phases.
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477  Fig. 4 Differential RNA dynamics by gene function and post-transcriptional characteristics.
478  a, UMAP representation (left) and heatmap (right) showing the gene clustering using all 18
479  estimated parameters across cell cycle. Color in the heatmap represents the parameter-wise z-score
480  normalized value. b, Pathway enrichment analysis of genes in each cluster in a using DAVID. ¢,
481  Left: visualization of cytoplasmic RNAs of Cluster 2 and 4 in representative cells across pulse-
482  chase time points. Scale bar: 10 um. Right: density plot showing the distributions of y values of
483  genes in cluster 2 and 4. d, diagram illustrating two possible mechanisms of reverse mRNA
484  translocation (y) at the G1 phase of cluster 4 genes: directed RNA transport and localized RNA
485  degradation. e, Boxplots comparing the four parameters estimated for m®A and non-m°A genes.
486  Data shown as means (notches), 25-75% quartiles (boxes) and ranges (vertical lines). *** p<0.01,
487  Wilcoxin test in ¢ and e.
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489  Extended Data Fig. 1 TEMPOmap experimental design and optimization. a, Method
490  conceptualization. TEMPOmap combines RNA metabolic labeling and state-of-the-art spatial
491  transcriptomics to achieve single-cell spatiotemporal transcriptomics for RNA dynamic analysis.
492 b, CuAAC-mediated click chemistry to conjugate azide-modified splint and EU-labeled nascent
493  transcript. ¢, Comparison of TEMPOmap bi-probe and tri-probe design targeting AC7TB mRNA.
494  Left, probe design schematics. Middle, representative fluorescent images of cells treated with
495  sense-targeting and antisense-targeting padlocks and primers. Right, quantification of fluorescence
496 in cell images (6 images containing 400-600 cells were measured under each condition). Data
497  shown as mean + s.d. d, DNA sequences of TEMPOmap tri-probe system. e, Proof-of-concept
498  pulse-chase experiment (top) followed by raw cell images (bottom) showing the translocation of
499  ACTB mRNAs when chased after 1 hr EU treatment with different times. Cell nuclei (blue),
500 amplicons (red). f, Simultaneous mapping and sequencing of nascent RNAs by TEMPOmap and
501  total RNAs by STARmap in the experimental workflow. TEMPOmap-targeted amplicon reads
502  were normalized against the reads of STARmap-targeted RNAs. Scale bar: 10 um.
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506 Extended data Fig. 2 TEMPOmap data processing and analysis. a, TEMPOmap data analysis
507  pipeline. b, Schematics of reads assignment in subcellular compartments. ¢, Histograms showing
508  detected reads (cDNA amplicons) per cell (left), and genes per cell (right). d, Schematics of
509  distance ratio (DR)-based subcellular segmentation in the cytoplasm. Two values for each
510  amplicon were computed in 3D: dn, the shortest distance to nuclear membrane; d., the shortest
511  distance to cell membrane. “Middle” is the region defined between DR = 0 and 0.9. “Periphery”
512 is defined as DR > 0.9.
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517 Extended data Fig. 3 RNA subcellular analysis and cell-cycle phase identification. a, nuclear-
518  to-cytoplasmic ratio of amplicon reads of 991 genes at 6 hrs chase time point. Genes were ranked
519  from top to bottom according to the ratios. b, Cell-cycle identification (G1, G1/S, G2/M) by cell-
520  cycle gene marker measured via TEMPOmap labeled RNA expression. Cell-cycle scores were
521  calculated via ‘score genes cell cycle’ in scanpy. The cells were visualized via PCA and colored
522 by cell-cycle phases (top). Variations in the raw counts of all cell-cycle gene markers (bottom left)
523 and four representative markers (bottom) were projected by the pseudotime analysis. c,
524  Comparison of cell-cycle identification by 1 hr pulse-labeled reads and total reads using scEU-seq
525  dataset'* shows that the nascent transcriptome can accurately define cell-cycle states. The number
526  in each box indicates the number of cells. d, Cell clustering result based on PHATE embedding of
527  the nucleocytoplasmic matrix. Cluster 1 incorporates the cells (n = 137 cells) in the M phase by
528  visual inspection of raw images.
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530 Extended data Fig. 4 Quantification of RNA subcellular kinetic parameters. a, Correlated
531 relation between cell volume (in voxels) and single-cell reads, indicating the influence of transcript
532 number by cell volume. b, Schematics showing the biased single-cell RNA read counts with
533  varying physical cell volumes. ¢, Mathematical models for estimating RNA kinetic parameters
534  (a,p and A) and the detailed workflow of calculation and fitting procedure. Note: X(?) = single-cell
535  RNA concentration; N(?) = nuclear RNA concentration; C(?) = cytoplasmic RNA concentration. d,
536  Changes in the natural log of X(#) across time points of genes with R? = 0.99-1.0 (top) and R? =
537  0.46-0.53 (down). Representative genes are shown. The estimated B values for all genes were
538  filtered with a threshold of R? > 0.5 as a quality control. e, Histogram of estimated A (nuclear

539  export) values for all genes. f, The distribution of single cell-averaged DR values for all 991 genes
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540  across 0-6 hrs chase time points. g, Histogram of estimated y (cytoplasmic translocation) values
541  forall genes. Blue dashed line separates the genes with y > 0 and y <0, which indicates the opposite
542  direction of observed translocation. h, Left, 19 genes with y < 0 (R? > 0.5) were strongly enriched
543  in secreted and organellar proteins. Middle, time-lapsed DR values of representative genes. i,
544  Schematics showing the observed inward direction of RNA translocation of genes with y < 0. Two
545  potential mechanisms are shown: 1). RNA translocation (active or passive); 2). Local RNA
546  degradation.

547
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550

551  Extended data Fig. 5 RNA kinetic parameter correlation in two cell-cycle stages.

552  a-d, Examples of pairwise correlation in Fig. 3d, showing scatter plots of the relationships

553  between G1 and G2/M. Pearson’s correlation coefficients from left to right: a (p = 0.99), B (p =
554 0.60), A (p =0.46), v (p = 0.04).
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Extended data Fig. 6 Single-cell RNA expression co-variation analysis. a, Heatmap depicting
the pairwise correlation of 911 genes by TEMPOmap-measured single-cell RNA co-variation
when combining four time points (0, 2, 4, 6 hrs chase), where the color indicates the value of
Pearson correlation. Group 1-4 are highlighted for highly correlated gene modules (left) and
zoomed-in (right). b, Pathway enrichment analysis result of genes in Group 1-4 from single-cell
gene covariation heatmap in a using DAVID. ¢, Boxplots showing the distribution of six kinetic
parameters of four gene groups (n = 14 genes in Group 1; n = 7 genes in Group 2, n = 7 genes in
Group 3, n = 15 genes in Group 4). P values, one-way ANOVA test. Data shown as means, 25-
75% quartiles and ranges. d, Heatmaps were generated showing matrices of the pairwise gene co-
variation in each of the 0, 2, 4 and 6 hrs chase time points. Gene order along each matrix was the
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566  same and determined by the hierarchical clustering tree of the matrix combining the four time
567  points in a (results were not shown). Zoom-in views of Group 1-4 from the co-variation heatmaps
568  generated by gene expression in each time point, showing the correlation of RNA co-variation of
569  each gene module across individual time points. Color in heatmaps indicates the value of Pearson
570  correlation. G1/S and G2/M marker genes were annotated in each gene block.

571
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Extended data Fig. 7 Visualization of gene clusters with different combination of RNA
kinetic strategies. a, Visualization of all the amplicons in representative cells (combined, left)
and separated by gene clusters (right) across pulse-chase time points. Scale bar: 10 um. Colors of
amplicons indicate unique gene clusters. b, Boxplots showing the subcellular distribution of RNA
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577  reads over time in each kinetic cluster. Vertical lines indicate s.d. For each cluster, 0, 2, 4, 6 hrs
578  chase have n = 1028, 910, 946, 542 cells, respectively.

579
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582  Extended data Fig. 8 Subcellular RNA Kinetics in the context of m°A post-transcriptional
583  modification. a, Pie chart describing m®A-RNA methylation in the gene pool (see Methods). ¢,
584  Boxplots comparing the four parameters estimated for m°A (n = 476 genes) and non-m°A RNAs
585  (n = 89 genes) across three cell-cycle phases. *** p<0.01, Wilcoxin test. Data shown as means
586  (notches), 25-75% quartiles (boxes) and ranges (vertical lines).

28


https://doi.org/10.1101/2022.09.27.509606
http://creativecommons.org/licenses/by-nc-nd/4.0/

