

1 **Spatiotemporally resolved transcriptomics reveals subcellular RNA kinetic landscape**

2
3 Jingyi Ren^{1,2,7}, Haowen Zhou^{2,7}, Hu Zeng^{2,7}, Connie Kangni Wang², Jiahao Huang², Xiaojie
4 Qiu^{4,5}, Kamal Maher^{2,6}, Zuwan Lin^{2,3}, Yichun He^{2,3}, Xin Tang^{2,3}, Brian Li², Jia Liu³, Xiao
5 Wang^{1,2*}

6
7 ¹Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.

8 ²Broad Institute of MIT and Harvard, Cambridge, MA, USA.

9 ³John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,
10 MA, USA.

11 ⁴Whitehead Institute for Biomedical Research Cambridge, MA, USA.

12 ⁵Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA,
13 USA.

14 ⁶Computational and Systems Biology Program, Massachusetts Institute of Technology,
15 Cambridge, MA 02139, USA

16 ⁷These authors contributed equally: Jingyi Ren, Haowen Zhou, Hu Zeng.

17 *e-mail: xwangx@mit.edu

18
19 **Summary**

20 Spatiotemporal regulation of the cellular transcriptome is crucial for proper protein expression
21 and cellular function¹. However, the intricate subcellular dynamics of RNA synthesis, decay,
22 export, and translocation remain obscured due to the limitations of existing transcriptomics
23 methods²⁻⁸. Here, we report a spatiotemporally resolved RNA mapping method (TEMPOmap) to
24 uncover subcellular RNA profiles across time and space at the single-cell level in heterogeneous
25 cell populations. TEMPOmap integrates pulse-chase metabolic labeling of the transcriptome with
26 highly multiplexed three-dimensional (3D) *in situ* sequencing to simultaneously profile the age
27 and location of individual RNA molecules. Using TEMPOmap, we constructed the subcellular
28 RNA kinetic landscape of 991 genes in human HeLa cells from upstream transcription to
29 downstream subcellular translocation. Clustering analysis of critical RNA kinetic parameters
30 across single cells revealed kinetic gene clusters whose expression patterns were shaped by multi-
31 step kinetic sculpting. Importantly, these kinetic gene clusters are functionally segregated,
32 suggesting that subcellular RNA kinetics are differentially regulated to serve molecular and
33 cellular functions in cell-cycle dependent manner. Together, these single-cell spatiotemporally
34 resolved transcriptomics measurements provide us the gateway to uncover new gene regulation
35 principles and understand how kinetic strategies enable precise RNA expression in time and space.

41 **Main text**

42

43 **Introduction**

44

45 Cell state and function are shaped by the spatiotemporal regulation of gene expression. This
46 heterogeneous expression is, in part, achieved through precise mRNA metabolism and trafficking
47 over time. The ability to systematically profile transcriptomes across time and space at a single-
48 cell level from intact cellular networks is critical to understanding transcriptional and post-
49 transcriptional gene regulatory mechanisms in cells and tissues.

50

51 However, current transcriptomic approaches are unable to simultaneously capture both the
52 spatial and time dependence of RNA profiles. For instance, spatially resolved transcriptomics
53 methods have enabled integrated profiling of gene expression from heterogeneous cell types in the
54 context of tissue morphology²⁻⁸. Nonetheless, these spatial transcriptomics approaches alone can
55 only provide static snapshots of cells and tissues, while the dynamic flow of gene expression
56 cannot be determined¹. In contrast, existing metabolic RNA labeling approaches have enabled
57 temporal profiling of the nascent single-cell transcriptome but lack spatial resolution⁹⁻¹³. In
58 addition, live-cell imaging can directly track RNA trajectory inside cells, but simultaneously
59 visualizing multiplexed transcripts remains challenging¹⁴. Thus, there exists a pressing need for
60 highly-multiplexed, spatially and temporally-resolved sequencing methods that tracks nascent
61 mRNAs *in situ* from birth to death at subcellular and single-cell resolutions.

62

63 Here, to provide a systematic single-cell analysis of RNA life cycle in time and space, we
64 introduce TEMPOmap (temporally resolved *in situ* sequencing and mapping), a method that tracks
65 the spatiotemporal evolution of the nascent transcriptomes over time at subcellular resolution
66 (Extended data Fig. 1a). TEMPOmap integrates metabolic labeling and selective amplification of
67 pulse-labeled nascent transcriptomes with the current state-of-the-art three-dimensional (3D) *in*
68 *situ* RNA sequencing at 200 nm resolution within a hydrogel-cell scaffold² (Fig. 1a). Using pulse-
69 chase labeling, we were able to simultaneously track key kinetic parameters for hundreds to
70 thousands of genes during their RNA life cycle, including rates of transcription, decay, nuclear
71 export, and cytoplasmic translocation. Using these spatiotemporal parameters, we show that
72 mRNAs of different genes are kinetically sorted at different steps of the RNA life cycle and across
73 different cell-cycle phases, which ultimately serves gene functions.

74

75 **TEMPOmap strategy for spatiotemporally resolved transcriptomics**

76

77 TEMPOmap begins with metabolically labeling the cultured cells using 5-ethynyl uridine (5-
78 EU)^{13,15}, which adds a bioorthogonal chemical handle on the labeled mRNAs (Fig. 1b). Next, we
79 designed a tri-probe set (splint, padlock, and primer) for each mRNA species to selectively
80 generate complementary DNA (cDNA) amplicons derived from metabolically-labeled RNAs (Fig.
81 1b-c and Extended data Fig. 1b-c): (1) the splint DNA probe is modified with 5' azide- and 3'
82 chain-terminator groups to covalently attach with the 5-EU labeled mRNAs via copper(I)-
83 catalyzed azide-alkyne cycloaddition (CuAAC, Extended data Fig. 1b), thus excluding unlabeled
84 RNAs from subsequent cDNA amplification; (2) the padlock probes recognize mRNA targets with
85 20-25 nucleotide (nt) cDNA sequence and gene barcodes, which can be circularized when the
86 splint probe is in physical proximity on the same RNA; (3) the primer probes target the neighboring

87 20-25 nt next to the padlock probes, which serve as the primer to amplify circularized padlocks *in*
88 *situ* via rolling cycle amplification (RCA), forming cDNA nanoballs (amplicons); in combination,
89 only mRNAs that are bound by all three types of probes will be amplified for selective detection
90 of labeled mRNA population in a label- and sequence-controlled manner via a two-step
91 thresholding strategy (Fig. 1d). Notably, a single gene-targeting padlock probe (bi-probe design)
92 cannot achieve specific gene detection (Extended data Figure 1c) and the dual gene-targeting
93 primer and padlock pair in the tri-probe design is necessary¹. For proof of concept, we tested
94 representative tri-probes targeted for *ACTB* in HeLa cells, demonstrating specific detection of
95 metabolically labeled transcripts (Fig. 1d, Extended data Fig. 1e). For highly multiplexed
96 transcriptome detection, the *in situ* generated cDNA amplicon libraries are subsequently embedded
97 in a hydrogel matrix for multiple cycles of fluorescent imaging to decode the gene-encoding
98 barcodes via SEDAL (sequencing with error-reduction by dynamic annealing and ligation) (Fig.
99 1b, Extended data Fig. 1d) to simultaneously detect hundreds to thousands of genes. After the
100 completion of sequencing cycles, the amplicon reads are subsequently registered, decoded, and
101 subjected to 3D segmentation for subcellular and single-cell resolved analysis (Extended data Fig.
102 2a).

103

104 Spatiotemporal evolution of single-cell nascent transcriptome

105

106 To assess TEMPOmap in human cells, we mapped a curated list of 991 genes (981 coding, 10
107 non-coding RNA) with diversified spatial and temporal RNA expression profiles^{13,16} in HeLa cell
108 cultures. Then, we designed a pulse-chase experiment^{13,17} with one hour (hr) of pulse labeling and
109 various chase times (0, 1, 2, 4, and 6 hrs) as well as one steady-state reference with 20-hour pulse
110 labeling (Fig. 2a), followed by the TEMPOmap experiment workflow (Fig. 1b). The barcodes in
111 all the samples were sequenced over six rounds of *in situ* sequencing, followed by a final round of
112 subcellular compartment staining (nuclei and cytoplasm) to segment cell bodies and assign the
113 subcellular locations of amplicons in 19,856 cells in 3D (Extended data Fig. 2b-d). From 0 to 6 hrs
114 chase time post-labeling, we observed a decline of total RNA reads per cell, a gradual shift of the
115 RNA distribution from the nucleus to the cytoplasm, and further allocation from the middle
116 cytoplasmic region to the periphery (Fig. 2c, d), in agreement with the expected trajectory of RNAs.
117 Interestingly, a significant fraction of reads (~40%) was retained in the nucleus even after 6 hrs
118 chase. A closer inspection of the retained RNA molecules revealed that mRNAs with the highest
119 nuclear-to-cytoplasm read ratio included long non-coding RNAs (*NEAT1*, *MALAT1*), supported
120 by deep sequencing of RNA from cellular fractions (Extended data Fig. 3a)^{18,19}. Notably, a group
121 of mRNAs (e.g. *KIF13A*, *LENG8*, *CCNL2*, *COL7A*) showed high ratio of nuclear retention
122 (nuc/cyto > 2, Extended data Fig. 3a). Our observation validates the previous discovery of nuclear
123 retention of mRNA, which may serve as a regulatory role to buffer the cytoplasmic gene expression
124 noise^{20,21}.

125

126 Next, we asked whether the TEMPOmap dataset could resolve the heterogeneity of single cells.
127 To this end, we pooled all the cells under the 1 hr pulse conditions (18,176 cells) for single-cell
128 resolved dynamic trajectory analysis using PHATE (Fig. 2e, f)^{22,23}. Our results showed a clear
129 trajectory along the progression of chase time, which suggests that the temporally resolved single-
130 cell transcriptional states could be readily distinguished and aligned in the latent space. Overlaying
131 the same coordinates with RNA degradation kinetics vectors (represented as the quivers) further
132 recapitulated the single-cell trajectory along RNA life cycle progression²³⁻²⁵. We further asked

133 how the RNA life cycle defined by the pulse-chase timeline aligns with cell-cycle progression. To
134 this end, we classified the cells into three cell cycle phases (G1, G1/S, and G2/M) based on their
135 nascent expression of marker genes (Extended data Fig. 3b,c) using cell-cycle scoring²⁶.
136 Interestingly, the direction of cell-cycle progression is orthogonal to that of the pulse-chase time
137 point progression (Fig. 2e, II). This observation suggests that TEMPOmap provided independent
138 temporal information regarding the RNA life cycle in addition to the cell cycle.
139

140 Besides single-cell analysis, we considered that TEMPOmap dataset could reveal the
141 subcellular dynamics. To this end, we generated a nucleocytoplasmic gene-by-cell matrix by
142 concatenating single-cell nuclear expression with cytoplasmic expression for trajectory analysis
143 (Fig. 2f). Apart from recovering the unidirectional trajectory of single cells along with the labeling
144 time points (Fig. 2f, III), we found a small fraction ($n = 137$ cells, 2.1%) of G2/M cells formed a
145 narrow trajectory and projected into a distinct space, suggesting that the nucleocytoplasmic RNA
146 distribution in this group of G2/M cells drastically differs from the rest of the G2/M cells (Extended
147 data Fig. 3d). We suspected that these spatially distinct cells were the cells undergoing mitosis
148 with their unique RNA nucleocytoplasmic distribution²⁷. Indeed, the cells on this trajectory had
149 been in different phases of mitosis, during which RNAs were mostly evicted from the chromatin
150 regions compared to that in G2 cells (Fig. 2f, V). Furthermore, the uniform direction of this distinct
151 trajectory aligns well with the time progression of mitosis (Fig. 2f, V, 5-8), indicating that the
152 temporal mitotic transitions could be inferred by subcellular RNA localization patterns. As a result,
153 by jointly making use of the time-gated nucleocytoplasmic distribution, we not only separated G2
154 and M cells but also traced the trajectory of mitosis on the gene expression space, during which M
155 cells undergo drastic RNA eviction from chromosomes²⁸.
156

157 Subcellular RNA kinetic landscape across RNA lifespan

158

159 To further quantify the kinetics during different stages of transcription and post-transcriptional
160 processing, we estimated four key kinetic constants for all detected transcripts across RNA lifespan
161 – synthesis (α), degradation (β), nuclear export (λ) (Fig. 3a), and cytoplasmic translocation (γ) (Fig.
162 3b). We noticed a correlated relation between physical cell volumes and single-cell RNA reads
163 (Extended data Fig. 4a-b). To remove the potential bias caused by cell volume, we estimated α and
164 β values based on the averaged concentrations of each RNA species (reads/voxel) across single
165 cells (Extended data Fig. 4c). Built on the previous studies^{18,22,30}, our model assumed zero-order
166 kinetics for α and first-order kinetics for β ^{17,29}. In addition, a threshold of fitting β for each gene
167 (936 genes out of 991 genes with the coefficient of determination $R^2 \geq 0.5$) was applied for quality
168 control purposes (Extended data Fig. 4c-d). In parallel, we estimated the nuclear export rate (λ)
169 based on the change in the ratios of nuclear-to-total reads over time. We noted that the estimation
170 of λ might also be complicated by nuclear and cytoplasmic degradation, and therefore was more
171 fitting for describing the change in the homeostasis of nucleocytoplasmic RNA distribution. Lastly,
172 to systematically evaluate the relative positions of each RNA species in physical cytoplasm space
173 in 3D over time, we derived a distance-ratio (DR) based method (Extended data Fig. 2d, Extended
174 data Fig. 4c), where the cytoplasmic translocation rate (γ) was calculated by tracking the change
175 of DR over time (Fig. 3b).
176

177 Notably, while nuclear export of RNA had been considered to be a constant in the previous
178 RNA velocity-based model²⁹, our result suggested that λ varies substantially among different RNA
179 species, which indicates gene-specific regulatory mechanisms to control the homeostasis of

180 nucleocytoplasmic transcript distribution (Extended data Fig. 4e). In addition, for the first time to
181 the best of our knowledge, we could systematically study the cytoplasmic translocation of RNAs
182 of a large number of genes simultaneously at 1 hr resolution. Most genes had $\gamma > 0$ (Extended data
183 Fig. 4f, g), which suggested a translocating direction from the nuclear membrane to the
184 cytoplasmic membrane. However, we found a small subset of genes with $\gamma < 0$ ($R^2 > 0.5$) that were
185 significantly enriched in secreted and organellar proteins (Extended data Fig. 4h), indicating
186 possible relocation events from the cytosol to the endoplasmic reticulum or faster degradation rates
187 for non-ER anchored RNAs than ER-anchored ones. Further studies need to be conducted to
188 investigate the kinetic mechanism that directs the cytoplasmic translocation of different RNA
189 molecules (Extended data Fig. 4i).
190

191 Next, we asked whether any of the four RNA kinetic parameters were intrinsically coupled.
192 Here, we performed pairwise correlations of the four parameters across 936 genes. We found that
193 the overall correlation between each pair of parameters was weak (Fig. 3c, $\rho < 0.1$), suggesting
194 that the kinetic parameters of RNA transcription, post-transcriptional processing¹³ and allocation
195 are relatively independent¹⁶. We then explored the correlations of these kinetic parameters across
196 the cell cycle. To this end, we performed a further pairwise correlation analysis of the four
197 parameters across different genes at three cell-cycle phases (800 genes passed quality control; Fig.
198 3d). Interestingly, for each parameter, depending on its temporal sequence in the RNA life cycle,
199 a trend of decreasing correlations in cell cycle phases emerged: at the early stage of RNA
200 production, the synthesis rates α were highly correlated ($\rho = 0.9-1.0$, Extended data Fig. 5a);
201 during post-transcriptional processing in the nucleus, λ in the three phases have moderate
202 correlations ($\rho = 0.4-0.5$, Extended data Fig. 5c); near the end of the RNA life cycle, cytoplasmic
203 translocation γ have much weaker correlations ($\rho = 0-0.2$, Extended data Fig. 5d). This observation
204 suggested that RNA metabolism and trafficking of different genes become less synchronized and
205 increasingly heterogeneous from the upstream to the downstream stages of RNA life cycle,
206 potentially due to gene-specific and cell-cycle-dependent regulation.
207

208 Given the cell-cycle resolved RNA kinetic landscape, we further investigated how RNAs could
209 be dynamically “sculpted” to fine-tune the temporal RNA expression profiles. First, we identified
210 potentially co-regulated RNAs through a pairwise single-cell covariation analysis of 936 genes
211 from the aforementioned pulse-chase HeLa cell samples (1 hr pulse, 0-6 hrs chase, Extended data
212 Fig. 6a, left). Using the matrix of pairwise correlation single-cell expression variation combining
213 all time points, we identified four groups of genes with significant intra-group correlation,
214 indicating potential gene co-regulation patterns (Extended data Fig. 6a, right, Group 1-4). Notably,
215 while these genes are enriched with cell-cycle-related functions (Extended data Fig. 6b), the four
216 groups differ significantly in multiple stages of RNA kinetics (Extended data Fig. 6c). Next, we
217 repeated the single-cell covariation analysis to each individual time point using the same gene
218 order, and found that the shift in the co-variation pattern of each group varies from 0 to 6 hrs
219 (Extended data Fig. 6d): Group 1 shows decreasing co-variation pattern from 0 to 2 hrs post-
220 synthesis; Group 2 shows consistently high expression co-variation across time; in contrast, the
221 co-variation patterns of Group 3 and 4 gradually emerged from 2 hrs to 6 hrs post-synthesis. This
222 observation suggests that, at the RNA level, cell cycle progression is jointly shaped by an
223 orchestration of genes with distinct transcriptional and post-transcriptional kinetic features.
224

225 **Differential RNA kinetic strategies by gene function**

226

227 After recognizing the aforementioned four gene groups whose RNA temporal profiles coupled
228 with cell-cycle phasing, we asked if such correspondence between RNA kinetics and gene
229 functions globally exists for other genes. To identify gene modules based on their shared kinetic
230 patterns in the context of RNA life cycle and cell cycle, we first clustered 800 genes using the 12
231 parameters (four kinetic constants across three cell cycle stages. The clustering analysis revealed
232 five kinetic gene clusters of distinct kinetic landscapes (Fig. 4a) that also had distinct subcellular
233 distributions over time (Extended data Fig. 7a, b). Importantly, gene ontology analyses showed
234 that the five clusters associate with distinct biological and molecular functions (Fig. 4b). For
235 example, genes with unstable and slowly exported RNAs were strongly enriched in metal-binding
236 and transcription factor binding activities (Cluster 1, $n = 231$ genes); genes with high RNA stability
237 and moderate export rate (Cluster 3, $n = 153$ genes) were enriched in hydrolase and ATP-binding
238 activities. On the other hand, genes with fast synthesis and greater RNA stability (Cluster 5, $n =$
239 86 genes) were enriched in constitutive cellular processes like mRNA splicing, translation, and
240 mitochondrial functions. We reasoned that these housekeeping genes tend to produce abundant
241 and stable RNAs for a longer persistence of genetic information due to energy cost of protein
242 production³⁰.

243

244 Notably, while Cluster 2 ($n = 205$ genes) and 4 ($n = 125$ genes) have slower synthesis, moderate
245 degradation, and faster export, they significantly differ in cytoplasmic translocation rates (γ),
246 which are cell-cycle-dependent. In G1 phase, RNAs of Cluster 2 exhibited significantly higher γ
247 compared to the other phases, whereas Cluster 4 showed the opposite trend (Fig. 4a, right). We
248 found the genes in Cluster 2 have a functional enrichment of DNA damage and repair, and those
249 in Cluster 4 are functionally related to organellar and membrane-bound proteins (Fig. 4b). Closer
250 examination of the genes in Cluster 4 showed that, most of the genes (109/125) have negative γ
251 values in G1, indicating an overall reverse direction of translocation in G1 phase. Previous research
252 showed that many mRNAs encoding membrane-bound proteins were anchored to the surface of
253 endoplasmic reticulum (ER) for localized protein synthesis³¹. We reasoned that the RNAs
254 encoding these membrane proteins might also be regulated at the dynamic level, executed by both
255 spatial and temporal localization control in a cell-cycle-dependent manner. Since the duplication
256 of organelles and cell expansion are the major activities at G1 phase, our discovery also suggests
257 that, ER-localized protein synthesis might be more active in G1, either by RNA transport toward
258 ER or local degradation of non-ER-anchored RNAs in the cell periphery (Fig. 4d). Hence, we
259 proposed a more comprehensive picture of the regulation dynamics of membrane protein at the
260 RNA processing level from both spatial and temporal perspectives. While the mechanism that
261 underlies our observed translocation values is still open to further investigations, we revealed the
262 importance of regulating the spatiotemporal localization of transcripts that carry different genetic
263 information.

264

265 Finally, we examined RNA kinetic landscape in the context of N^6 -methyladenosine
266 modifications (m⁶A), a critical posttranscriptional chemical modification of RNA that plays vital
267 physiological roles^{32,33}. RNA methylation m⁶A is known to mediate a wide range of post-
268 transcriptional gene regulation, however, the full landscape of the spatiotemporal dynamics on
269 m⁶A-RNA has not been systematically addressed. To this end, we separated the genes encoding
270 RNAs with and without m⁶A modifications by previous m⁶A profiling studies^{34,35} (m⁶A- or non-
271 m⁶A-RNAs, Extended data Fig. 8a). Consistent with the previous report, m⁶A-modified RNAs

272 were significantly less stable than non-m⁶A-RNAs (higher β , Fig. 4e). In addition, we observed
273 the same trend when comparing the degradation constants in different cell cycle phases, suggesting
274 that regulating the decay of m⁶A-methylated RNA is persistent across cell cycle (Extended data
275 Fig. 8b). Together, we demonstrate the potential of using TEMPOmap dataset to study
276 spatiotemporal transcriptomics in combination with post-transcriptional modification, a path to
277 incorporate multi-modality transcriptomic analysis at single-cell and subcellular resolution.
278
279

280 Discussion

281

282 TEMPOmap serves as a novel *in situ* transcriptomic platform that simultaneously profiles time-
283 and space-resolved transcriptomics in single cells, a multimodal single-cell transcriptomics
284 technology at the subcellular resolution that has not been achieved before. We demonstrated the
285 capacity of TEMPOmap to systematically detect the subcellular allocation and cytoplasmic
286 translocation of transcripts over time. More importantly, our study provided a full landscape of
287 RNA subcellular kinetics at the single-cell level and revealed how RNA kinetics contribute to
288 cellular functions such as cell-cycle progression. We observed a strong correlation of RNA kinetic
289 patterns with the molecular functions of genes-- such function-oriented regulation of RNA life
290 cycle might have evolved under survival and energy constraints to control spatiotemporal gene
291 expression in a precise and economic way³⁰. In future work, TEMPOmap can be combined with
292 high-throughput single-cell functional genomics (e.g. CRISPR screens³⁶) to determine key
293 molecular factors that impact the kinetic landscape of RNA life cycle. Furthermore, such
294 spatiotemporally coordinated transcriptomic patterning may shed light on understanding the
295 molecular mechanisms of various biological phenomena, including in development and pattern
296 formation, learning and memory, biological clocks, as well as disease progression. With
297 optimization of metabolic labeling conditions^{15,37,38} and integration of various molecular probing
298 schemes, such methodology can be adapted for *ex vivo* or *in vivo* tissue samples to systematically
299 profile dynamic events in tissue biology.

300

301

302

303 Acknowledgment

304

305 We thank Albert Liu, Jiakun Tian and Jianting Guo for their helpful comments on the manuscript.
306 We also thank Leslie Gaffney for her help in graphic illustration. X.W. acknowledges the support
307 from Searle Scholars Program, Thomas D. and Virginia W. Cabot Professorship, Edward Scolnick
308 Professorship, Ono Pharma Breakthrough Science Initiative Award, Merkin Institute Fellowship,
309 and NIH DP2 New Innovator Award.

310

311 Author contributions

312

313 X.W. and J.R. conceived the idea. X.W., J.R., and H.Zeng developed the methodology for the
314 study. J.R. and H.Zeng carried out experimental work. H. Zhou, J.H, K.W, X.Q, Y.H, X.T
315 performed computational and data analyses. Z.L. helped with TEMPOmap data collection. J.R.
316 and X.W. prepared the manuscript. H.Zeng. provided critical discussions during the whole
317 development. X.W., H.Zeng, and H.Zhou critically revised the manuscript. X.W. supervised the
study.

318

318

319 Competing interests

320 X.W., J.R. and H.Zeng are inventors on pending patent applications related to TEMPOmap.

321

322 References

- 323 1. Buxbaum, A. R., Haimovich, G. & Singer, R. H. In the right place at the right time:
324 Visualizing and understanding mRNA localization. *Nature Reviews Molecular Cell
325 Biology*. **16**, 95–109 (2015).
- 326 2. Wang, X. *et al.* Three-dimensional intact-tissue sequencing of single-cell transcriptional
327 states. *Science*. **361**, (2018). <https://doi.org/10.1126/science.aat5691>
- 328 3. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved,
329 highly multiplexed RNA profiling in single cells. *Science*. **348**, (2015).
<https://doi.org/10.1126/science.aaa6090>
- 330 4. Codeluppi, S. *et al.* Spatial organization of the somatosensory cortex revealed by
331 osmFISH. *Nat. Methods* **15**, 932–935 (2018).
- 332 5. Ståhl, P. L. *et al.* Visualization and analysis of gene expression in tissue sections by
333 spatial transcriptomics. *Science*. **353**, 78–82 (2016).
- 334 6. Lee, J. H. *et al.* Highly multiplexed subcellular RNA sequencing in situ. *Science*. **343**,
335 1360–1363 (2014).
- 336 7. Shah, S., Lubeck, E., Zhou, W. & Cai, L. In Situ Transcription Profiling of Single Cells
337 Reveals Spatial Organization of Cells in the Mouse Hippocampus. *Neuron* **92**, 342–357
338 (2016).
- 339 8. Stickels, R. R. *et al.* Highly sensitive spatial transcriptomics at near-cellular resolution
340 with Slide-seqV2. *Nat. Biotechnol.* **39**, 313–319 (2021).
- 341 9. Erhard, F. *et al.* scSLAM-seq reveals core features of transcription dynamics in single
342 cells. *Nature* **571**, 419–423 (2019).
- 343 10. Qiu, Q. *et al.* Massively parallel and time-resolved RNA sequencing in single cells with
344 scNT-seq. *Nat. Methods* **17**, 991–1001 (2020).
- 345 11. Cao, J., Zhou, W., Steemers, F., Trapnell, C. & Shendure, J. Sci-fate characterizes the
346 dynamics of gene expression in single cells. *Nat. Biotechnol.* **38**, 980–988 (2020).
- 347 12. Hendriks, G.-J. *et al.* NASC-seq monitors RNA synthesis in single cells. *Nat. Commun.*
348 **10**, 3138 (2019).
- 349 13. Battich, N. *et al.* Sequencing metabolically labeled transcripts in single cells reveals
350 mRNA turnover strategies. *Science*. **367**, 1151–1156 (2020).
- 351 14. Braselmann, E., Rathbun, C., Richards, E. M. & Palmer, A. E. Illuminating RNA Biology:
352 Tools for Imaging RNA in Live Mammalian Cells. *Cell Chem. Biol.* **27**, 891–903 (2020).
- 353 15. Jao, C. Y. & Salic, A. Exploring RNA transcription and turnover in vivo by using click
354 chemistry. *Proc. Natl. Acad. Sci.* **105**, 15779–15784 (2008).
- 355 16. Fazal, F. M. *et al.* Atlas of Subcellular RNA Localization Revealed by APEX-Seq. *Cell*.
356 **178**, 473–490.e26 (2019).
- 357 17. Rabani, M. *et al.* Metabolic labeling of RNA uncovers principles of RNA production and
358 degradation dynamics in mammalian cells. *Nat. Biotechnol.* **29**, 436–442 (2011).
- 359 18. Djebali, S. *et al.* Landscape of transcription in human cells. *Nat.* **489**, 101–108 (2012).
- 360 19. Bhatt, D. M. *et al.* Transcript Dynamics of Proinflammatory Genes Revealed by Sequence
361 Analysis of Subcellular RNA Fractions. *Cell*. **150**, 279–290 (2012).
- 362 20. Battich, N., Stoeger, T. & Pelkmans, L. Control of Transcript Variability in Single

364 Mammalian Cells. *Cell*. **163**, 1596–1610 (2015).

365 21. Bahar Halpern, K. *et al.* Nuclear Retention of mRNA in Mammalian Tissues. *Cell Rep.* **13**, 2653–2662 (2015).

366 22. Moon, K. R. *et al.* Visualizing structure and transitions in high-dimensional biological

367 data. *Nat. Biotechnol.* **37**, 1482–1492 (2019).

368 23. Qiu, X. *et al.* Mapping transcriptomic vector fields of single cells. *Cell*. (2022)

369 doi:10.1016/J.CELL.2021.12.045.

370 24. La Manno, G. *et al.* RNA velocity of single cells. *Nature* **560**, 494–498 (2018).

371 25. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to

372 transient cell states through dynamical modeling. *Nat. Biotechnol.* **38**, 1408–1414 (2020).

373 26. Tirosh, I. *et al.* Dissecting the multicellular ecosystem of metastatic melanoma by single-

374 cell RNA-seq. *Science*. **352**, 189–196 (2016).

375 27. Sharp, J. A., Perea-Resa, C., Wang, W. & Blower, M. D. Cell division requires RNA

376 eviction from condensing chromosomes. *J. Cell Biol.* **219**, (2020).

377 28. Tanenbaum, M. E., Stern-Ginossar, N., Weissman, J. S. & Vale, R. D. Regulation of

378 mRNA translation during mitosis. *Elife*. **4**, (2015).

379 29. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by

380 MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene

381 expression. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 19490–19499 (2019).

382 30. Schwahnüsser, B. *et al.* Global quantification of mammalian gene expression control.

383 *Nature*. **473**, 337–342 (2011).

384 31. Cui, X. A. & Palazzo, A. F. Localization of mRNAs to the endoplasmic reticulum. *Wiley*

385 *Interdiscip. Rev. RNA*. **5**, 481–492 (2014).

386 32. Shi, H., Wei, J. & He, C. Where, When, and How: Context-Dependent Functions of RNA

387 Methylation Writers, Readers, and Erasers. *Mol. Cell*. **74**, 640–650 (2019).

388 33. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA Modifications in Gene

389 Expression Regulation. *Cell* **169**, 1187–1200 (2017).

390 34. Wang, X. *et al.* N 6-methyladenosine-dependent regulation of messenger RNA stability.

391 *Nature*. **505**, 117–120 (2014).

392 35. Roundtree, I. A. *et al.* YTHDC1 mediates nuclear export of N6-methyladenosine

393 methylated mRNAs. *Elife*. **6**, (2017).

394 36. Dixit, A. *et al.* Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA

395 Profiling of Pooled Genetic Screens. *Cell*. **167**, 1853–1866.e17 (2016).

396 37. Akbalik, G. *et al.* Visualization of newly synthesized neuronal RNA in vitro and in vivo

397 using click-chemistry. *RNA Biol.* **14**, 20–28 (2017).

398 38. Sant, L. J. van't, White, J. J., Hoeijmakers, J. H. J., Vermeij, W. P. & Jaarsma, D. In vivo

399 5-ethynyluridine (EU) labelling detects reduced transcription in Purkinje cell degeneration

400 mouse mutants, but can itself induce neurodegeneration. *Acta Neuropathol. Commun.* **9**,

401 1–20 (2021).

402 39. Berry, S., Müller, M., Rai, A. & Pelkmans, L. Feedback from nuclear RNA on

403 transcription promotes robust RNA concentration homeostasis in human cells. *Cell Syst.*

404 (2022) doi:10.1016/J.CELS.2022.04.005.

405 40. Skinner, S. O. *et al.* Single-cell analysis of transcription kinetics across the cell cycle.

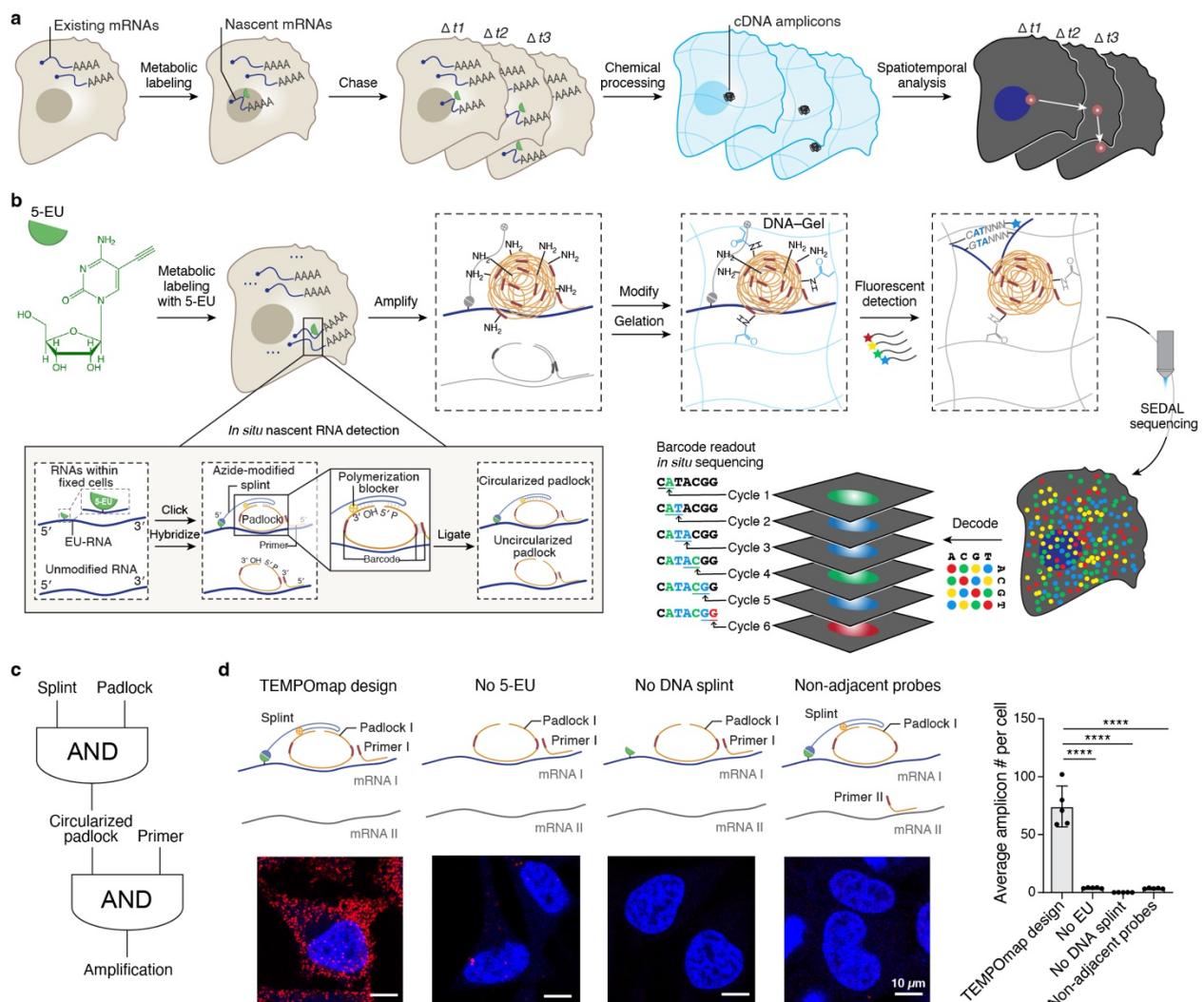
406 *Elife*. **5**, (2016).

407 41. Padovan-Merhar, O. *et al.* Single Mammalian Cells Compensate for Differences in

408 Cellular Volume and DNA Copy Number through Independent Global Transcriptional

409

419

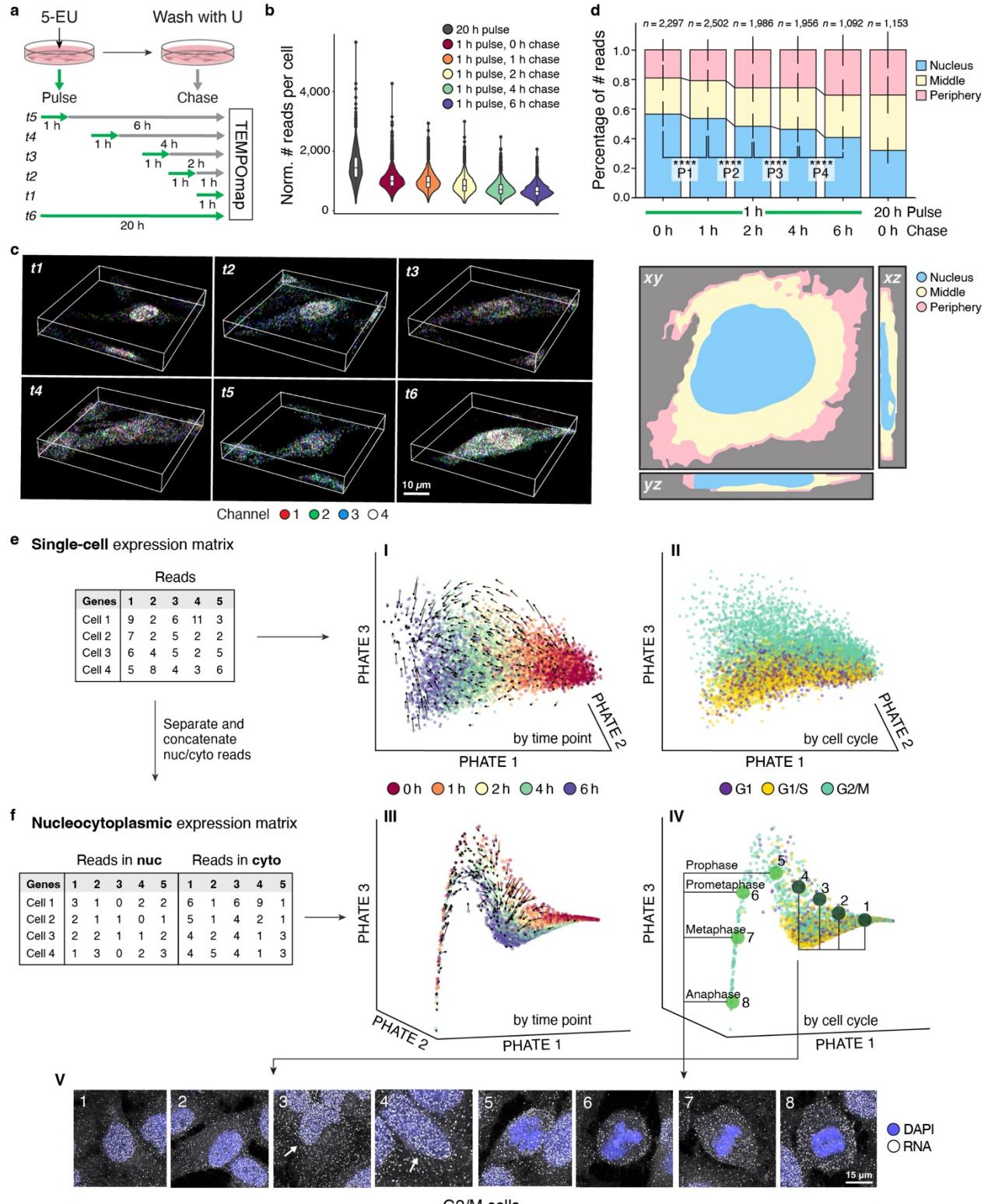


420

421

Fig. 1 TEMPOmap enables spatiotemporally resolved transcriptomics. a, Overview of TEMPOmap pipeline: nascent RNAs of multiple time points are collected and *in situ* sequenced, followed by spatiotemporal RNA analyses. **b**, TEMPOmap experimental workflow. After 5-EU labelled cells are prepared, a set of tri-probes (splint, primer and padlock) are conjugated or hybridized to cellular mRNAs (Extended Data Fig. 1c for more details), resulting in the enzymatic replication of each padlock sequence into cDNA amplicons. The amplicons are anchored *in situ* via a functionalized acrylic group (blue) to a hydrogel mesh to create a DNA-gel hybrid (blue wavy lines). The five-base barcode on each amplicon is read out by six rounds of SEDAL (sequencing with error-reduction by dynamic annealing and ligation). Thus, multiplexed RNA quantification reveals gene expression in nascent subcellular locations. **c**, DNA tri-probe design rationale. The generation of an amplicon requires the presence of splint, circularized padlock, and primer probes in proximity. **d**, Left: schematics and representative fluorescent cell images of negative control experiments of **c**, showing three-part probe requirement for signal amplification. mRNA_I represents ACTB and mRNA_II represents GAPDH. All four images show ACTB (red) mRNA in HeLa cells (DAPI in blue). Right: quantification of cell images showing the average

437 amplicon reads per cells ($n = 5$ images were measured containing 469, 305, 714 and 520 cells for
438 each condition from left to right, respectively). $****p < 10^{-4}$, two-tailed t -test. Data shown as
439 mean + s.d. Scale bars: 10 μ m.
440

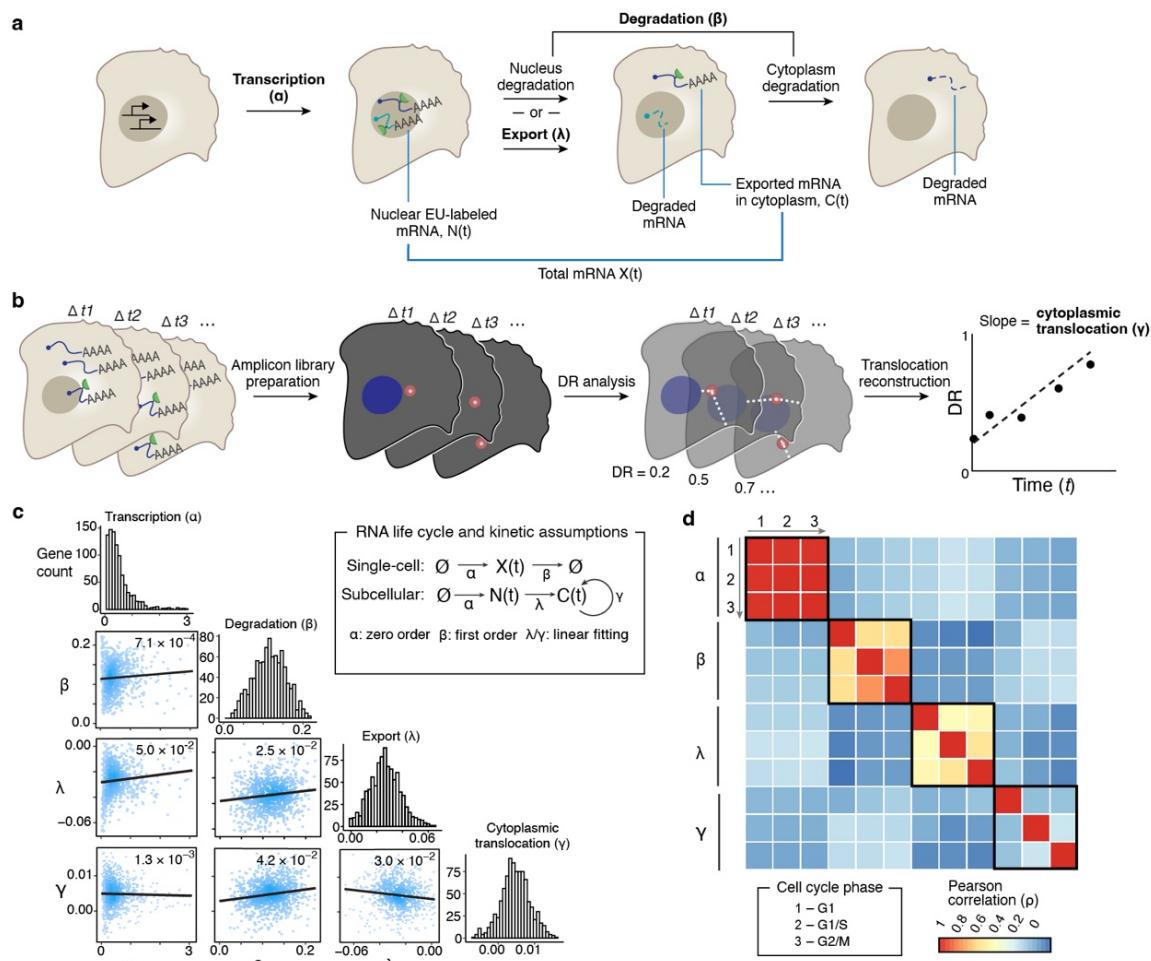


441
442
443
444
445

Fig. 2 Spatiotemporal tracing of single-cell transcriptome. a, Pulse-chase experiment design on HeLa cells. For the first five time points, we used 1 hr metabolic labeling (pulse) followed by 0, 1, 2, 4 and 6 hrs chase. At the last time point, we metabolically labeled the cells for 20 hrs. All of the cells were then processed by TEMPOmap workflow measuring 998 genes. **b**, RNA reads

446 (cDNA amplicons) per cell for each pulse-chase time point. **c**, 3D fluorescent images of in-process
447 TEMPOmap with zoomed views of representative single cells of cycle 1 at each time point. Z-
448 stack range: 10 μ m. **d**, Top, boxplot summarizing the fraction of reads in each subcellular region
449 of all cells at each time point. Vertical lines indicate s.d. The statistics compares the fractions of
450 nuclear reads (blue) across the first five time points. *** $p < 0.001$, Kruskal–Wallis test with post
451 hoc Tukey’s HSD. Number of cells (n) in each time point is shown. Bottom, subcellular region
452 assignment (nuclear, middle and periphery) of one representative cell. **e-f**, TEMPOmap single-cell
453 (**e**) or nucleocytoplasmic (**f**) RNA measurements rendered as a visualization by PHATE and
454 colored by pulse-chase time points (I, III) or cell-cycle marker gene expression (II, IV). Black
455 arrows inferred by RNA degradation vectors indicate the directions of chase time progression.
456 Bottom row, representative raw images of G2/M phase cells separated on PHATE coordinates. All
457 images show mRNAs (in white) in HeLa cells (DAPI in blue). Scale bars: 15 μ m.
458

459

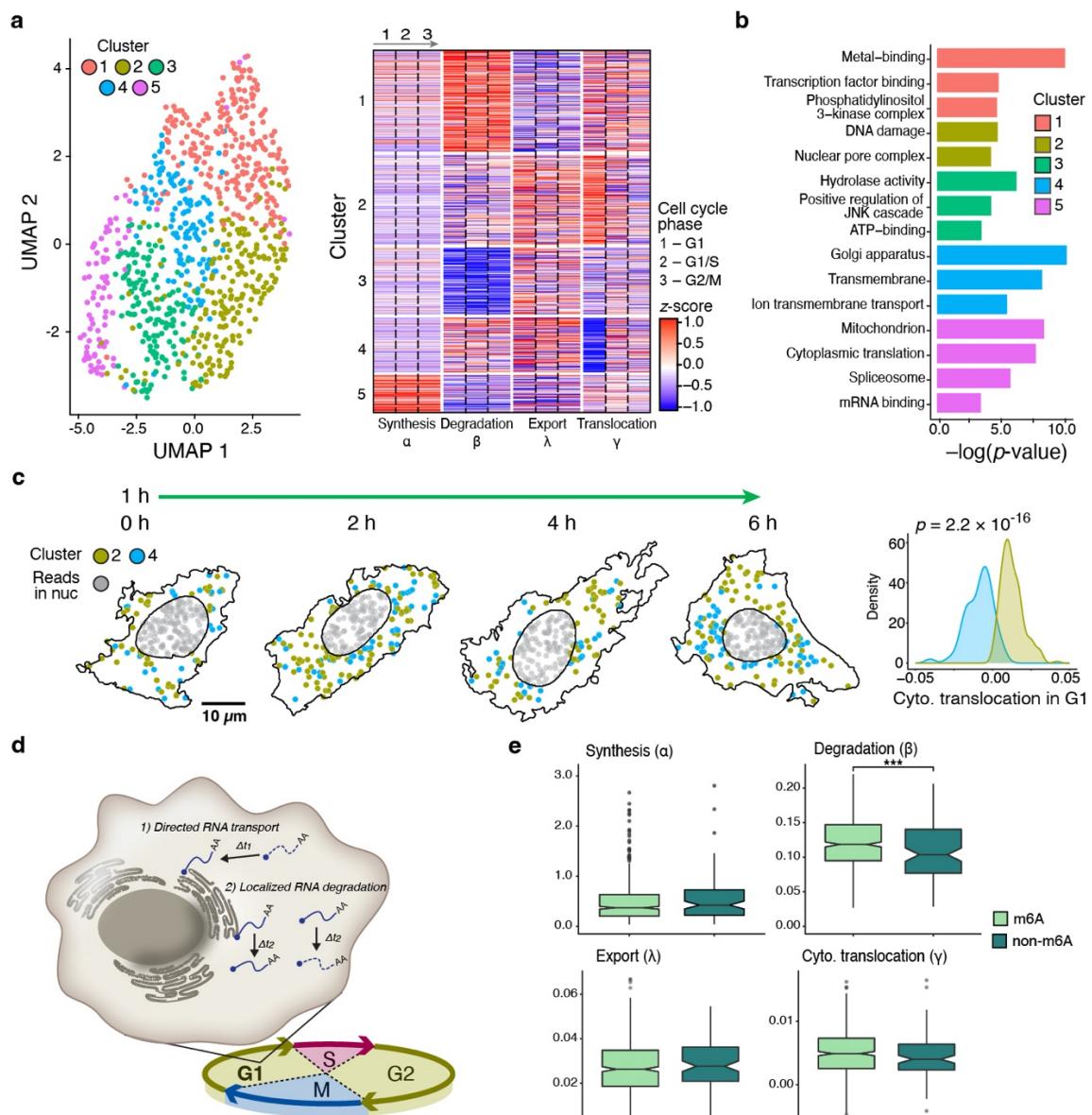


460

461 **Fig. 3 TEMPOmap reveals subcellular RNA kinetic landscape across RNA lifespan and cell**
 462 **cycle. a**, The dynamic model for estimating RNA kinetic parameters. For each gene, RNA
 463 synthesis (α) and degradation constant (β) were estimated using single-cell RNA concentration.
 464 The export constant (λ) was estimated using the subcellular RNA concentrations. **b**, The dynamic
 465 model for estimating cytoplasmic translocation (γ) using distance ratio (DR)-based analysis (see
 466 Methods). **c**, Upper Right: the mathematical model of RNA life cycle and kinetic assumptions used
 467 for the parameter estimation. Bottom Left: The histogram of the four parameters for all genes that
 468 passed quality control and the scatter plots depicting the pairwise correlation of parameters with ρ
 469 value (Pearson correlation) and linear fitting curve. Color intensity of the dots indicates local
 470 density. **d**, Heatmap depicting pairwise correlation matrix of the four parameters estimated using
 471 single-cells from three cell-cycle phases (G1, G1/S, G2/M). Color indicates the value of Pearson
 472 correlation coefficients. Boxed regions indicate the correlations of each parameter among three
 473 cell-cycle phases.

474

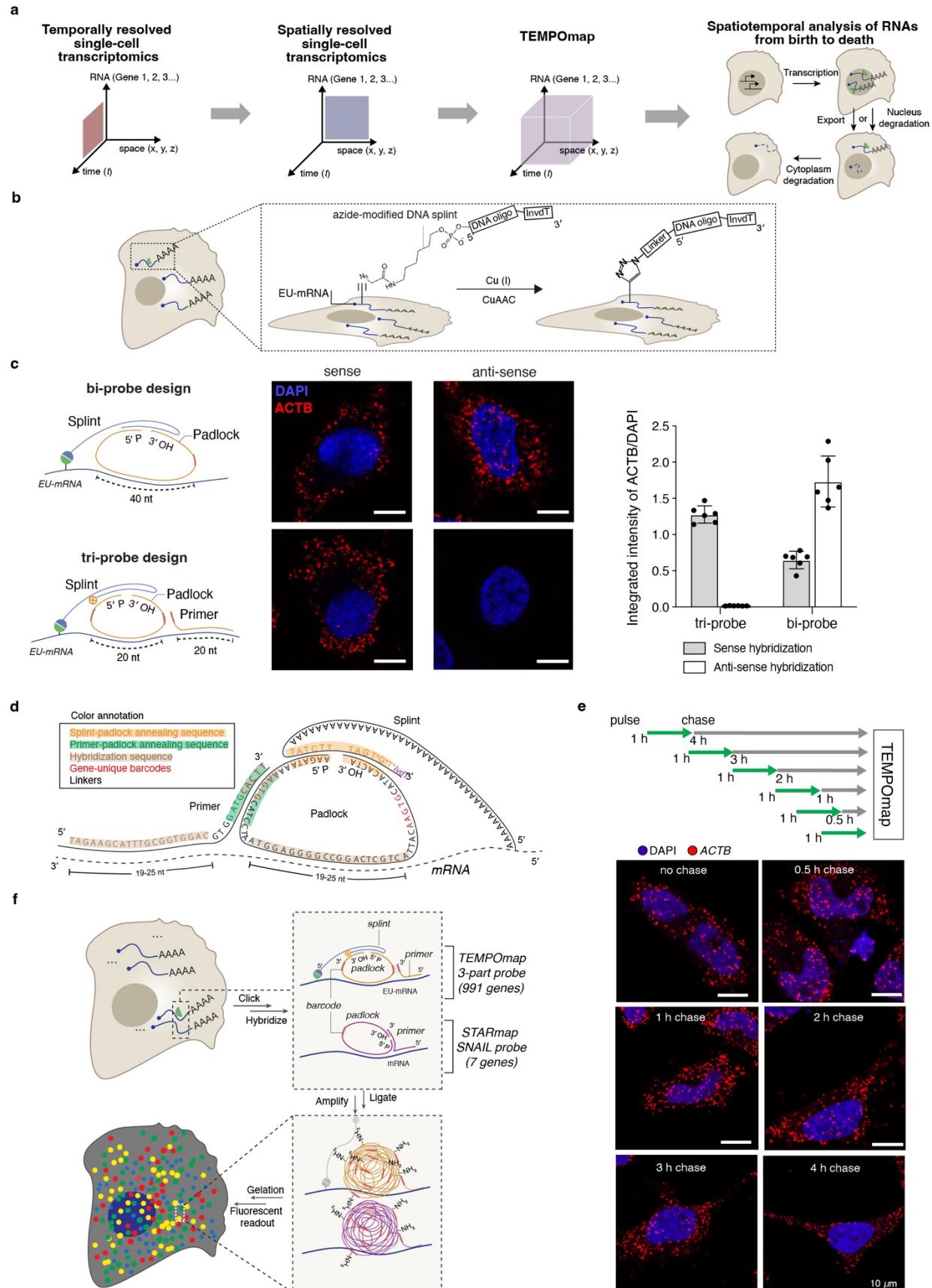
475



476
477
478
479
480
481
482
483
484
485
486
487

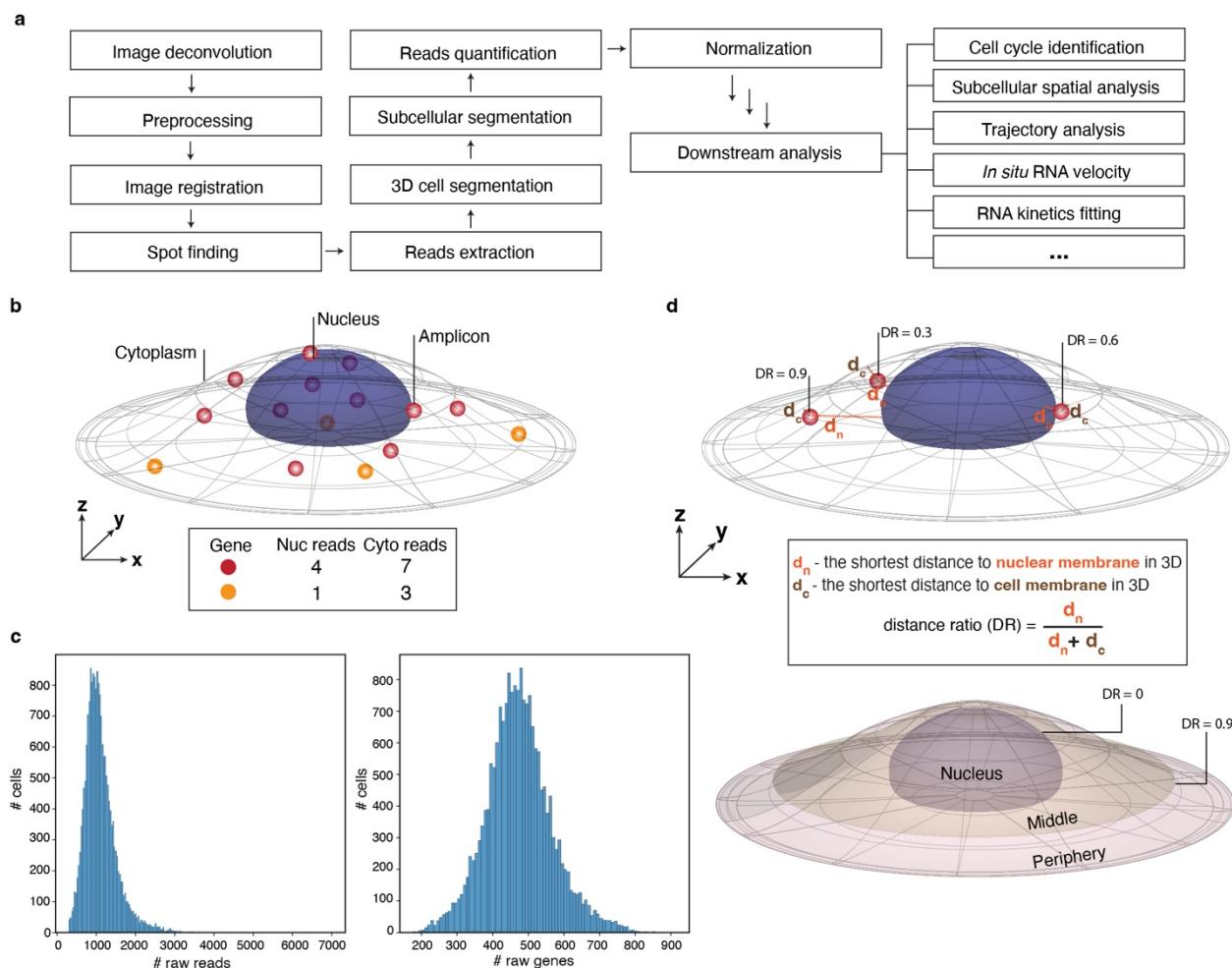
Fig. 4 Differential RNA dynamics by gene function and post-transcriptional characteristics.

a, UMAP representation (left) and heatmap (right) showing the gene clustering using all 18 estimated parameters across cell cycle. Color in the heatmap represents the parameter-wise z-score normalized value. **b**, Pathway enrichment analysis of genes in each cluster in **a** using DAVID. **c**, Left: visualization of cytoplasmic RNAs of Cluster 2 and 4 in representative cells across pulse-chase time points. Scale bar: 10 μ m. Right: density plot showing the distributions of γ values of genes in cluster 2 and 4. **d**, diagram illustrating two possible mechanisms of reverse mRNA translocation (γ) at the G1 phase of cluster 4 genes: directed RNA transport and localized RNA degradation. **e**, Boxplots comparing the four parameters estimated for m⁶A and non-m⁶A genes. Data shown as means (notches), 25-75% quartiles (boxes) and ranges (vertical lines). *** $p < 0.01$, Wilcoxon test in **c** and **e**.

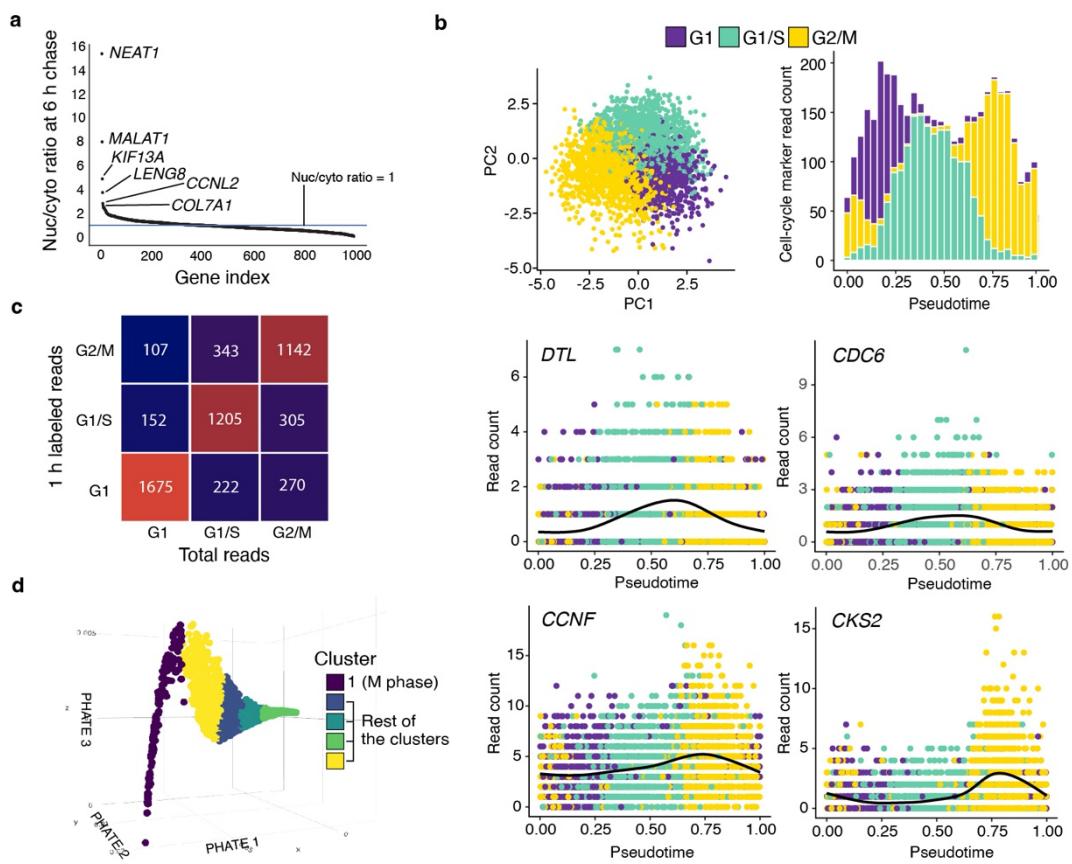


489 **Extended Data Fig. 1 TEMPOmap experimental design and optimization.** **a**, Method
490 conceptualization. TEMPOmap combines RNA metabolic labeling and state-of-the-art spatial
491 transcriptomics to achieve single-cell spatiotemporal transcriptomics for RNA dynamic analysis.
492 **b**, CuAAC-mediated click chemistry to conjugate azide-modified splint and EU-labeled nascent
493 transcript. **c**, Comparison of TEMPOmap bi-probe and tri-probe design targeting *ACTB* mRNA.
494 Left, probe design schematics. Middle, representative fluorescent images of cells treated with
495 sense-targeting and antisense-targeting padlocks and primers. Right, quantification of fluorescence
496 in cell images (6 images containing 400-600 cells were measured under each condition). Data
497 shown as mean + s.d. **d**, DNA sequences of TEMPOmap tri-probe system. **e**, Proof-of-concept
498 pulse-chase experiment (top) followed by raw cell images (bottom) showing the translocation of
499 *ACTB* mRNAs when chased after 1 hr EU treatment with different times. Cell nuclei (blue),
500 amplicons (red). **f**, Simultaneous mapping and sequencing of nascent RNAs by TEMPOmap and
501 total RNAs by STARmap in the experimental workflow. TEMPOmap-targeted amplicon reads
502 were normalized against the reads of STARmap-targeted RNAs. Scale bar: 10 μ m.
503

504

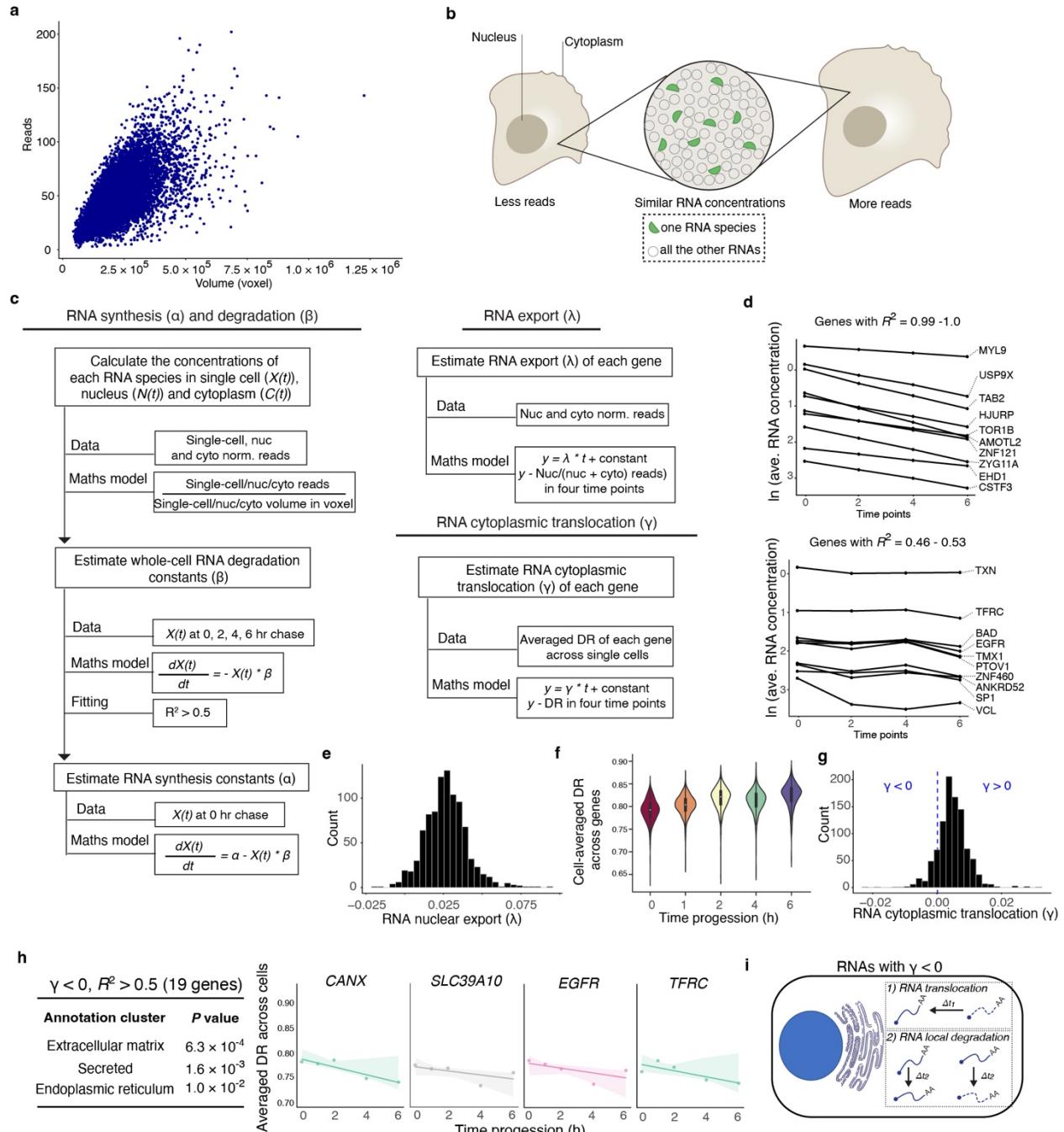


514



515
516

517 **Extended data Fig. 3 RNA subcellular analysis and cell-cycle phase identification.** **a**, nuclear-
518 to-cytoplasmic ratio of amplicon reads of 991 genes at 6 hrs chase time point. Genes were ranked
519 from top to bottom according to the ratios. **b**, Cell-cycle identification (G1, G1/S, G2/M) by cell-
520 cycle gene marker measured via TEMPOmap labeled RNA expression. Cell-cycle scores were
521 calculated via `score_genes_cell_cycle` in scanpy. The cells were visualized via PCA and colored
522 by cell-cycle phases (top). Variations in the raw counts of all cell-cycle gene markers (bottom left)
523 and four representative markers (bottom) were projected by the pseudotime analysis. **c**,
524 Comparison of cell-cycle identification by 1 hr pulse-labeled reads and total reads using scEU-seq
525 dataset¹⁴ shows that the nascent transcriptome can accurately define cell-cycle states. The number
526 in each box indicates the number of cells. **d**, Cell clustering result based on PHATE embedding of
527 the nucleocytoplasmic matrix. Cluster 1 incorporates the cells ($n = 137$ cells) in the M phase by
528 visual inspection of raw images.



529

530

531

532

533

534

535

536

537

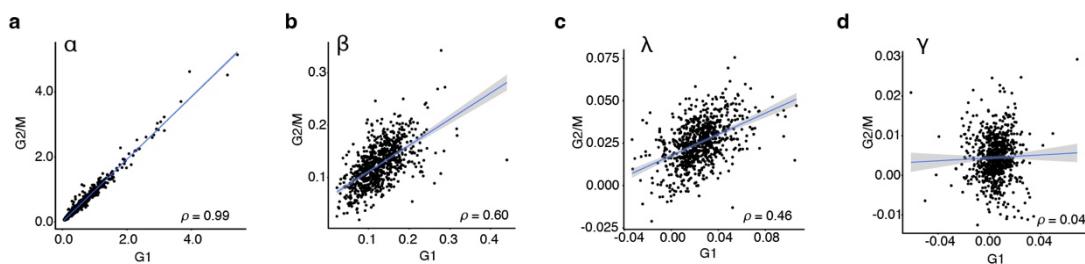
538

539

Extended data Fig. 4 Quantification of RNA subcellular kinetic parameters. **a**, Correlated relation between cell volume (in voxels) and single-cell reads, indicating the influence of transcript number by cell volume. **b**, Schematics showing the biased single-cell RNA read counts with varying physical cell volumes. **c**, Mathematical models for estimating RNA kinetic parameters (α, β and λ) and the detailed workflow of calculation and fitting procedure. Note: $X(t)$ = single-cell RNA concentration; $N(t)$ = nuclear RNA concentration; $C(t)$ = cytoplasmic RNA concentration. **d**, Changes in the natural log of $X(t)$ across time points of genes with $R^2 = 0.99-1.0$ (top) and $R^2 = 0.46-0.53$ (down). Representative genes are shown. The estimated β values for all genes were filtered with a threshold of $R^2 > 0.5$ as a quality control. **e**, Histogram of estimated λ (nuclear export) values for all genes. **f**, The distribution of single cell-averaged DR values for all 991 genes

540 across 0-6 hrs chase time points. **g**, Histogram of estimated γ (cytoplasmic translocation) values
541 for all genes. Blue dashed line separates the genes with $\gamma > 0$ and $\gamma < 0$, which indicates the opposite
542 direction of observed translocation. **h**, Left, 19 genes with $\gamma < 0$ ($R^2 > 0.5$) were strongly enriched
543 in secreted and organellar proteins. Middle, time-lapsed DR values of representative genes. **i**,
544 Schematics showing the observed inward direction of RNA translocation of genes with $\gamma < 0$. Two
545 potential mechanisms are shown: 1). RNA translocation (active or passive); 2). Local RNA
546 degradation.
547

548

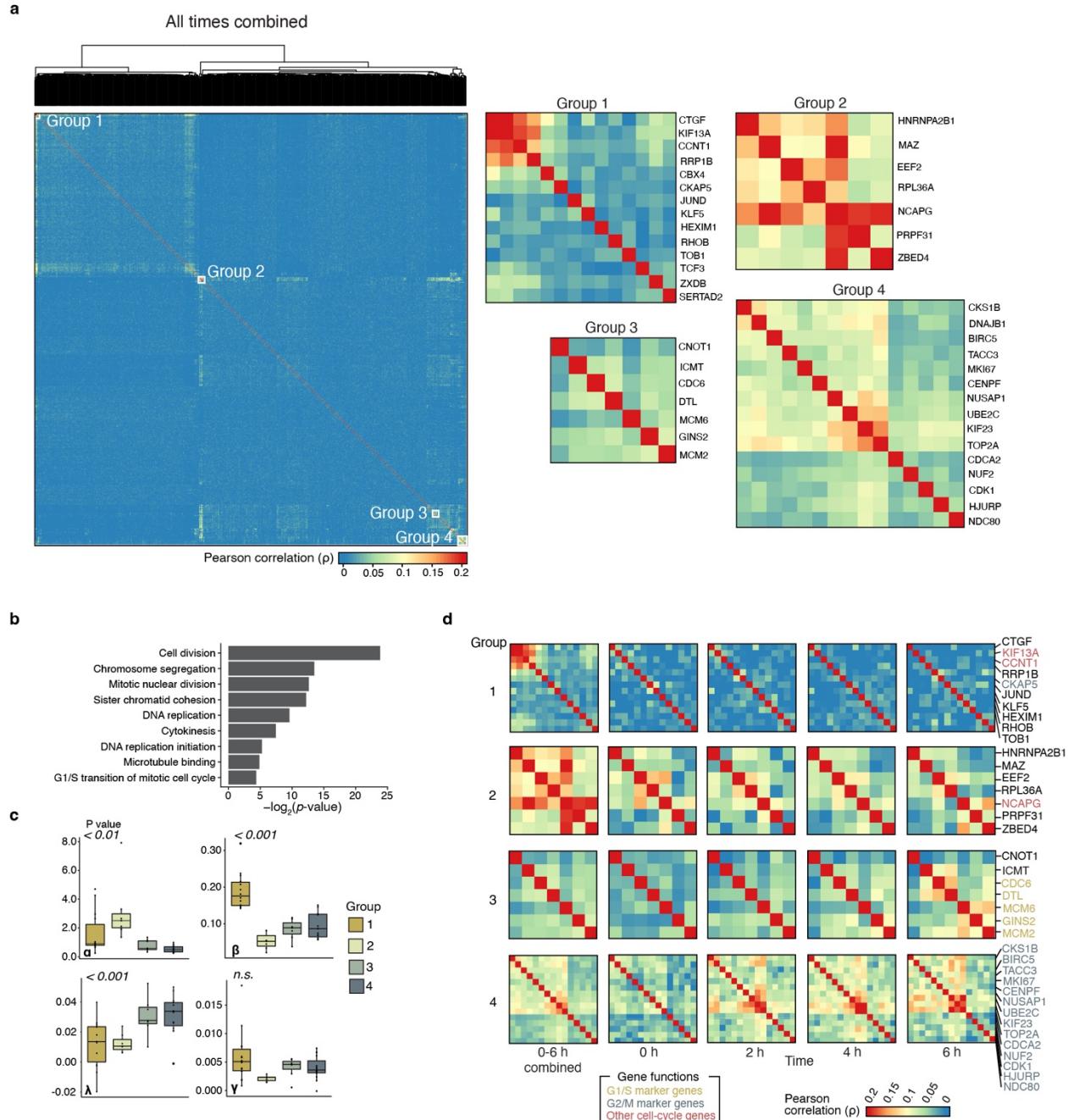


549

550

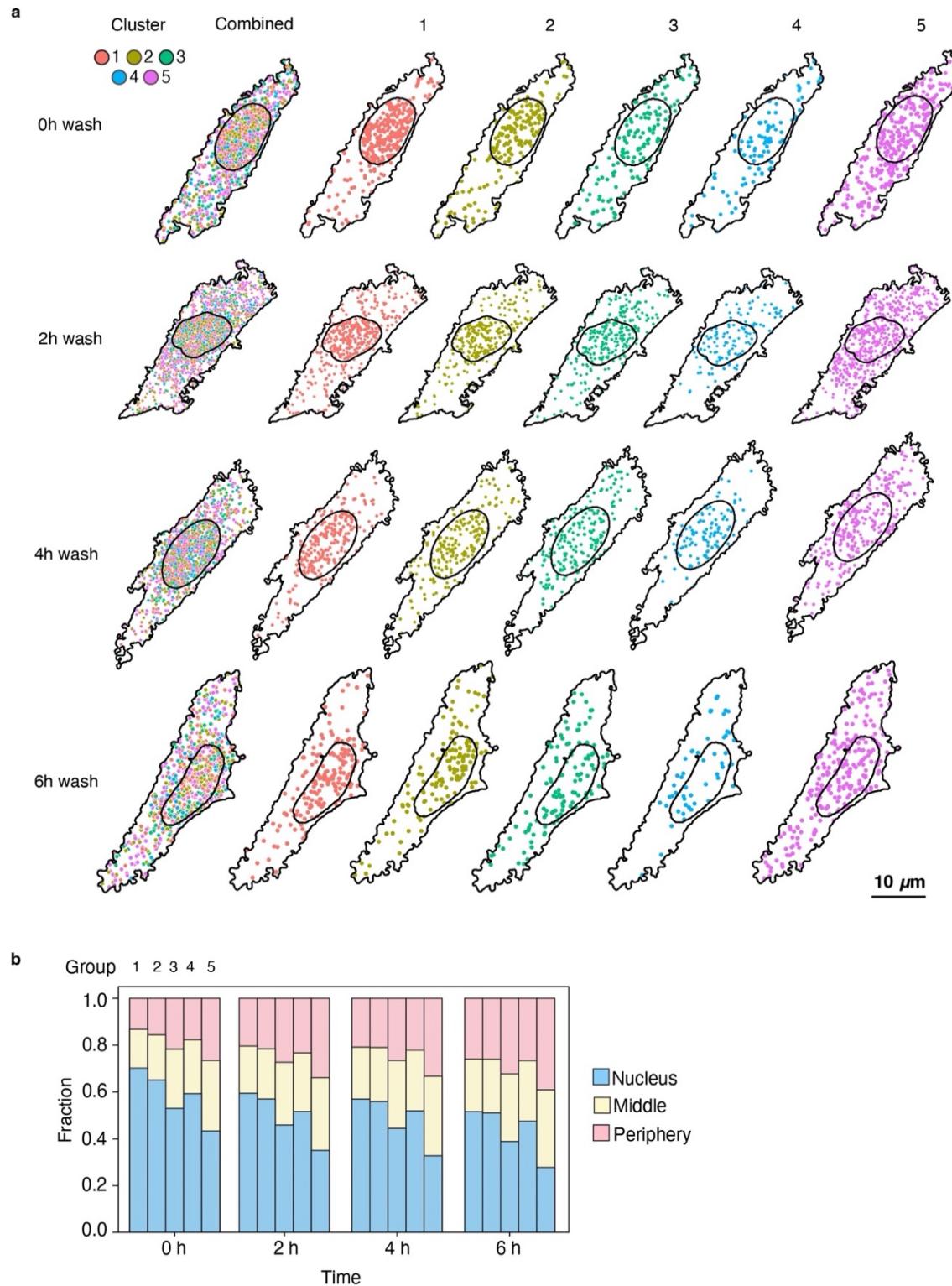
551 **Extended data Fig. 5 RNA kinetic parameter correlation in two cell-cycle stages.**

552 **a-d,** Examples of pairwise correlation in Fig. 3d, showing scatter plots of the relationships
553 between G1 and G2/M. Pearson's correlation coefficients from left to right: α ($\rho = 0.99$), β ($\rho =$
554 0.60), λ ($\rho = 0.46$), γ ($\rho = 0.04$).



555
556 **Extended data Fig. 6 Single-cell RNA expression co-variation analysis.** **a**, Heatmap depicting
557 the pairwise correlation of 911 genes by TEMPOmap-measured single-cell RNA co-variation
558 when combining four time points (0, 2, 4, 6 hrs chase), where the color indicates the value of
559 Pearson correlation. Group 1-4 are highlighted for highly correlated gene modules (left) and
560 zoomed-in (right). **b**, Pathway enrichment analysis result of genes in Group 1-4 from single-cell
561 gene covariation heatmap in **a** using DAVID. **c**, Boxplots showing the distribution of six kinetic
562 parameters of four gene groups ($n = 14$ genes in Group 1; $n = 7$ genes in Group 2, $n = 7$ genes in
563 Group 3, $n = 15$ genes in Group 4). P values, one-way ANOVA test. Data shown as means, 25-
564 75% quartiles and ranges. **d**, Heatmaps were generated showing matrices of the pairwise gene co-
565 variation in each of the 0, 2, 4 and 6 hrs chase time points. Gene order along each matrix was the

566 same and determined by the hierarchical clustering tree of the matrix combining the four time
567 points in **a** (results were not shown). Zoom-in views of Group 1-4 from the co-variation heatmaps
568 generated by gene expression in each time point, showing the correlation of RNA co-variation of
569 each gene module across individual time points. Color in heatmaps indicates the value of Pearson
570 correlation. G1/S and G2/M marker genes were annotated in each gene block.
571



572

573

574

575

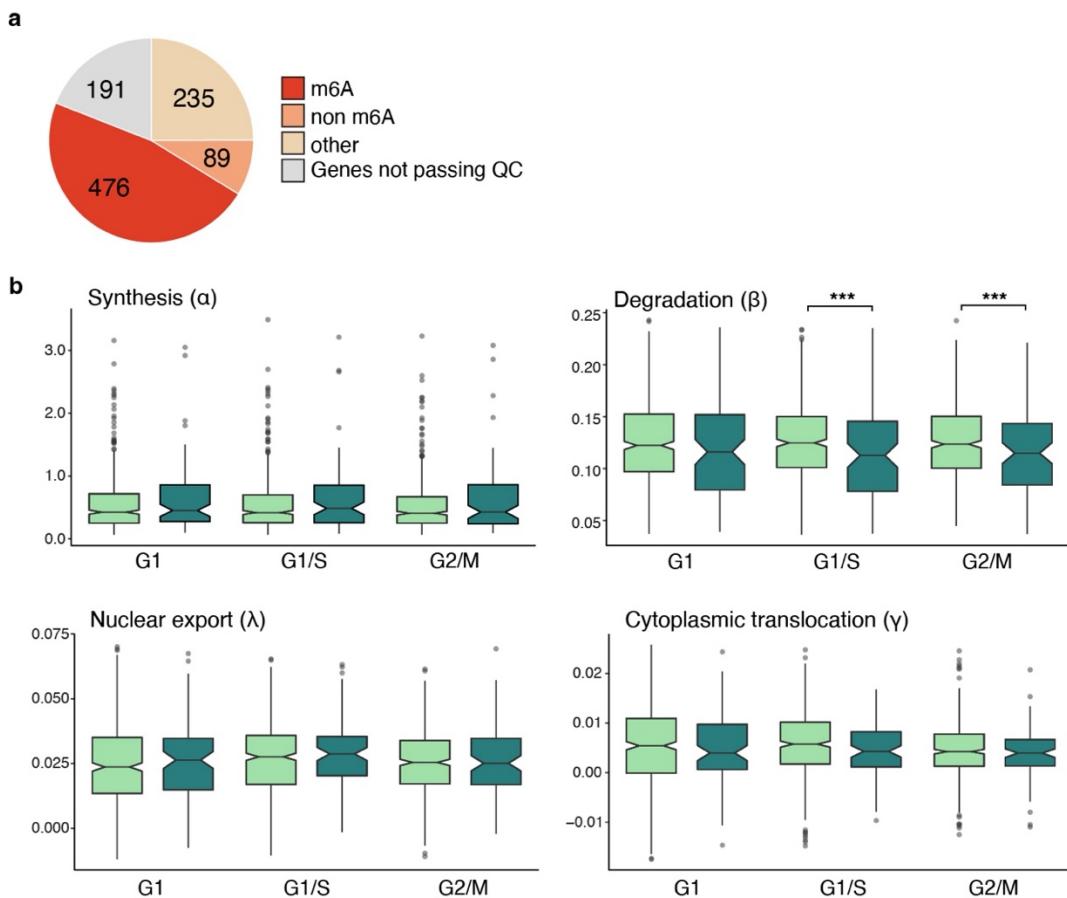
576

Extended data Fig. 7 Visualization of gene clusters with different combination of RNA kinetic strategies. a, Visualization of all the amplicons in representative cells (combined, left) and separated by gene clusters (right) across pulse-chase time points. Scale bar: 10 μm . Colors of amplicons indicate unique gene clusters. **b,** Boxplots showing the subcellular distribution of RNA

577 reads over time in each kinetic cluster. Vertical lines indicate s.d. For each cluster, 0, 2, 4, 6 hrs
578 chase have $n = 1028, 910, 946, 542$ cells, respectively.

579

580



581
582
583
584
585
586

Extended data Fig. 8 Subcellular RNA kinetics in the context of m⁶A post-transcriptional modification. **a**, Pie chart describing m⁶A-RNA methylation in the gene pool (see Methods). **c**, Boxplots comparing the four parameters estimated for m⁶A ($n = 476$ genes) and non-m⁶A RNAs ($n = 89$ genes) across three cell-cycle phases. *** $p < 0.01$, Wilcoxon test. Data shown as means (notches), 25-75% quartiles (boxes) and ranges (vertical lines).