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Summary 20 
 21 
     Spatiotemporal regulation of the cellular transcriptome is crucial for proper protein expression 22 
and cellular function1. However, the intricate subcellular dynamics of RNA synthesis, decay, 23 
export, and translocation remain obscured due to the limitations of existing transcriptomics 24 
methods2–8. Here, we report a spatiotemporally resolved RNA mapping method (TEMPOmap) to 25 
uncover subcellular RNA profiles across time and space at the single-cell level in heterogeneous 26 
cell populations. TEMPOmap integrates pulse-chase metabolic labeling of the transcriptome with 27 
highly multiplexed three-dimensional (3D) in situ sequencing to simultaneously profile the age 28 
and location of individual RNA molecules.  Using TEMPOmap, we constructed the subcellular 29 
RNA kinetic landscape of 991 genes in human HeLa cells from upstream transcription to 30 
downstream subcellular translocation. Clustering analysis of critical RNA kinetic parameters 31 
across single cells revealed kinetic gene clusters whose expression patterns were shaped by multi-32 
step kinetic sculpting. Importantly, these kinetic gene clusters are functionally segregated, 33 
suggesting that subcellular RNA kinetics are differentially regulated to serve molecular and 34 
cellular functions in cell-cycle dependent manner. Together, these single-cell spatiotemporally 35 
resolved transcriptomics measurements provide us the gateway to uncover new gene regulation 36 
principles and understand how kinetic strategies enable precise RNA expression in time and space. 37 
 38 
 39 
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 2 

Main text 41 
  42 
Introduction 43 
 44 
   Cell state and function are shaped by the spatiotemporal regulation of gene expression. This 45 
heterogeneous expression is, in part, achieved through precise mRNA metabolism and trafficking 46 
over time. The ability to systematically profile transcriptomes across time and space at a single-47 
cell level from intact cellular networks is critical to understanding transcriptional and post-48 
transcriptional gene regulatory mechanisms in cells and tissues.  49 
 50 
   However, current transcriptomic approaches are unable to simultaneously capture both the 51 
spatial and time dependence of RNA profiles. For instance, spatially resolved transcriptomics 52 
methods have enabled integrated profiling of gene expression from heterogeneous cell types in the 53 
context of tissue morphology2–8. Nonetheless, these spatial transcriptomics approaches alone can 54 
only provide static snapshots of cells and tissues, while the dynamic flow of gene expression 55 
cannot be determined1. In contrast, existing metabolic RNA labeling approaches have enabled 56 
temporal profiling of the nascent single-cell transcriptome but lack spatial resolution9–13. In 57 
addition, live-cell imaging can directly track RNA trajectory inside cells, but simultaneously 58 
visualizing multiplexed transcripts remains challenging14. Thus, there exists a pressing need for 59 
highly-multiplexed, spatially and temporally-resolved sequencing methods that tracks nascent 60 
mRNAs in situ from birth to death at subcellular and single-cell resolutions.  61 
 62 
   Here, to provide a systematic single-cell analysis of RNA life cycle in time and space, we 63 
introduce TEMPOmap (temporally resolved in situ sequencing and mapping), a method that tracks 64 
the spatiotemporal evolution of the nascent transcriptomes over time at subcellular resolution 65 
(Extended data Fig. 1a). TEMPOmap integrates metabolic labeling and selective amplification of 66 
pulse-labeled nascent transcriptomes with the current state-of-the-art three-dimensional (3D) in 67 
situ RNA sequencing at 200 nm resolution within a hydrogel-cell scaffold2 (Fig. 1a). Using pulse-68 
chase labeling, we were able to simultaneously track key kinetic parameters for hundreds to 69 
thousands of genes during their RNA life cycle, including rates of transcription, decay, nuclear 70 
export, and cytoplasmic translocation. Using these spatiotemporal parameters, we show that 71 
mRNAs of different genes are kinetically sorted at different steps of the RNA life cycle and across 72 
different cell-cycle phases, which ultimately serves gene functions.  73 
 74 
TEMPOmap strategy for spatiotemporally resolved transcriptomics 75 
 76 
     TEMPOmap begins with metabolically labeling the cultured cells using 5-ethynyl uridine (5-77 
EU)13,15, which adds a bioorthogonal chemical handle on the labeled mRNAs (Fig. 1b). Next, we 78 
designed a tri-probe set (splint, padlock, and primer) for each mRNA species to selectively 79 
generate complementary DNA (cDNA) amplicons derived from metabolically-labeled RNAs (Fig. 80 
1b-c and Extended data Fig. 1b-c): (1) the splint DNA probe is modified with 5′ azide- and 3′ 81 
chain-terminator groups to covalently attach with the 5-EU labeled mRNAs via copper(I)-82 
catalyzed azide-alkyne cycloaddition (CuAAC, Extended data Fig. 1b), thus excluding unlabeled 83 
RNAs from subsequent cDNA amplification; (2) the padlock probes recognize mRNA targets with 84 
20-25 nucleotide (nt) cDNA sequence and gene barcodes, which can be circularized when the 85 
splint probe is in physical proximity on the same RNA; (3) the primer probes target the neighboring 86 
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20-25 nt next to the padlock probes, which serve as the primer to amplify circularized padlocks in 87 
situ via rolling cycle amplification (RCA), forming cDNA nanoballs (amplicons); in combination, 88 
only mRNAs that are bound by all three types of probes will be amplified for selective detection 89 
of labeled mRNA population in a label- and sequence-controlled manner via a two-step 90 
thresholding strategy (Fig. 1d). Notably, a single gene-targeting padlock probe (bi-probe design) 91 
cannot achieve specific gene detection (Extended data Figure 1c) and the dual gene-targeting 92 
primer and padlock pair in the tri-probe design is necessary1. For proof of concept, we tested 93 
representative tri-probes targeted for ACTB in HeLa cells, demonstrating specific detection of 94 
metabolically labeled transcripts (Fig. 1d, Extended data Fig. 1e). For highly multiplexed 95 
transcriptome detection, the in situ generated cDNA amplicon libraries are subsequently embedded 96 
in a hydrogel matrix for multiple cycles of fluorescent imaging to decode the gene-encoding 97 
barcodes via SEDAL (sequencing with error-reduction by dynamic annealing and ligation) (Fig.  98 
1b, Extended data Fig. 1d) to simultaneously detect hundreds to thousands of genes. After the 99 
completion of sequencing cycles, the amplicon reads are subsequently registered, decoded, and 100 
subjected to 3D segmentation for subcellular and single-cell resolved analysis (Extended data Fig. 101 
2a). 102 
 103 
Spatiotemporal evolution of single-cell nascent transcriptome 104 
 105 

To assess TEMPOmap in human cells, we mapped a curated list of 991 genes (981 coding, 10 106 
non-coding RNA) with diversified spatial and temporal RNA expression profiles13,16 in HeLa cell 107 
cultures. Then, we designed a pulse-chase experiment13,17 with one hour (hr) of pulse labeling and 108 
various chase times (0, 1, 2, 4, and 6 hrs) as well as one steady-state reference with 20-hour pulse 109 
labeling (Fig. 2a), followed by the TEMPOmap experiment workflow (Fig. 1b). The barcodes in 110 
all the samples were sequenced over six rounds of in situ sequencing, followed by a final round of 111 
subcellular compartment staining (nuclei and cytoplasm) to segment cell bodies and assign the 112 
subcellular locations of amplicons in 19,856 cells in 3D (Extended data Fig. 2b-d). From 0 to 6 hrs 113 
chase time post-labeling, we observed a decline of total RNA reads per cell, a gradual shift of the 114 
RNA distribution from the nucleus to the cytoplasm, and further allocation from the middle 115 
cytoplasmic region to the periphery (Fig. 2c, d), in agreement with the expected trajectory of RNAs. 116 
Interestingly, a significant fraction of reads (~40%) was retained in the nucleus even after 6 hrs 117 
chase. A closer inspection of the retained RNA molecules revealed that RNAs with the highest 118 
nuclear-to-cytoplasm read ratio included long non-coding RNAs (NEAT1, MALAT1), supported 119 
by deep sequencing of RNA from cellular fractions (Extended data Fig. 3a)18,19. Notably, a group 120 
of mRNAs (e.g. KIF13A, LENG8, CCNL2, COL7A) showed high ratio of nuclear retention 121 
(nuc/cyto > 2, Extended data Fig. 3a). Our observation validates the previous discovery of nuclear 122 
retention of mRNA, which may serve as a regulatory role to buffer the cytoplasmic gene expression 123 
noise20,21.  124 
 125 
     Next, we asked whether the TEMPOmap dataset could resolve the heterogeneity of single cells. 126 
To this end, we pooled all the cells under the 1 hr pulse conditions (18,176 cells) for single-cell 127 
resolved dynamic trajectory analysis using PHATE (Fig.  2e, I)22,23. Our results showed a clear 128 
trajectory along the progression of chase time, which suggests that the temporally resolved single-129 
cell transcriptional states could be readily distinguished and aligned in the latent space. Overlaying 130 
the same coordinates with RNA degradation kinetics vectors (represented as the quivers) further 131 
recapitulated the single-cell trajectory along RNA life cycle progression23–25.  We further asked 132 
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how the RNA life cycle defined by the pulse-chase timeline aligns with cell-cycle progression. To 133 
this end, we classified the cells into three cell cycle phases (G1, G1/S, and G2/M) based on their 134 
nascent expression of marker genes (Extended data Fig. 3b,c) using cell-cycle scoring26. 135 
Interestingly, the direction of cell-cycle progression is orthogonal to that of the pulse-chase time 136 
point progression (Fig. 2e, II). This observation suggests that TEMPOmap provided independent 137 
temporal information regarding the RNA life cycle in addition to the cell cycle.  138 
  139 
     Besides single-cell analysis, we considered that TEMPOmap dataset could reveal the 140 
subcellular dynamics. To this end, we generated a nucleocytoplasmic gene-by-cell matrix by 141 
concatenating single-cell nuclear expression with cytoplasmic expression for trajectory analysis 142 
(Fig. 2f). Apart from recovering the unidirectional trajectory of single cells along with the labeling 143 
time points (Fig. 2f, III), we found a small fraction (n = 137 cells, 2.1%) of G2/M cells formed a 144 
narrow trajectory and projected into a distinct space, suggesting that the nucleocytoplasmic RNA 145 
distribution in this group of G2/M cells drastically differs from the rest of the G2/M cells (Extended 146 
data Fig. 3d). We suspected that these spatially distinct cells were the cells undergoing mitosis 147 
with their unique RNA nucleocytoplasmic distribution27. Indeed, the cells on this trajectory had 148 
been in different phases of mitosis, during which RNAs were mostly evicted from the chromatin 149 
regions compared to that in G2 cells (Fig.  2f, V). Furthermore, the uniform direction of this distinct 150 
trajectory aligns well with the time progression of mitosis (Fig. 2f, V, 5-8), indicating that the 151 
temporal mitotic transitions could be inferred by subcellular RNA localization patterns. As a result, 152 
by jointly making use of the time-gated nucleocytoplasmic distribution, we not only separated G2 153 
and M cells but also traced the trajectory of mitosis on the gene expression space, during which M 154 
cells undergo drastic RNA eviction from chromosomes28.  155 
  156 
Subcellular RNA kinetic landscape across RNA lifespan 157 
 158 
     To further quantify the kinetics during different stages of transcription and post-transcriptional 159 
processing, we estimated four key kinetic constants for all detected transcripts across RNA lifespan 160 
– synthesis (α), degradation (β), nuclear export (λ) (Fig. 3a), and cytoplasmic translocation (γ) (Fig. 161 
3b). We noticed a correlated relation between physical cell volumes and single-cell RNA reads 162 
(Extended data Fig. 4a-b). To remove the potential bias caused by cell volume, we estimated α and 163 
β values based on the averaged concentrations of each RNA species (reads/voxel) across single 164 
cells (Extended data Fig. 4c). Built on the previous studies18,22,30, our model assumed zero-order 165 
kinetics for α and first-order kinetics for β17,29. In addition, a threshold of fitting β for each gene 166 
(936 genes out of 991 genes with the coefficient of determination R2 >= 0.5) was applied for quality 167 
control purposes (Extended data Fig. 4c-d). In parallel, we estimated the nuclear export rate (λ) 168 
based on the change in the ratios of nuclear-to-total reads over time. We noted that the estimation 169 
of λ might also be complicated by nuclear and cytoplasmic degradation, and therefore was more 170 
fitting for describing the change in the homeostasis of nucleocytoplasmic RNA distribution. Lastly, 171 
to systematically evaluate the relative positions of each RNA species in physical cytoplasm space 172 
in 3D over time, we derived a distance-ratio (DR) based method (Extended data Fig. 2d, Extended 173 
data Fig. 4c), where the cytoplasmic translocation rate (γ) was calculated by tracking the change 174 
of DR over time (Fig. 3b).  175 
 176 
     Notably, while nuclear export of RNA had been considered to be a constant in the previous 177 
RNA velocity-based model29, our result suggested that λ varies substantially among different RNA 178 
species, which indicates gene-specific regulatory mechanisms to control the homeostasis of 179 
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nucleocytoplasmic transcript distribution (Extended data Fig. 4e). In addition, for the first time to 180 
the best of our knowledge, we could systematically study the cytoplasmic translocation of RNAs 181 
of a large number of genes simultaneously at 1 hr resolution. Most genes had γ > 0 (Extended data 182 
Fig. 4f, g), which suggested a translocating direction from the nuclear membrane to the 183 
cytoplasmic membrane. However, we found a small subset of genes with γ < 0 (R2 > 0.5) that were 184 
significantly enriched in secreted and organellar proteins (Extended data Fig. 4h), indicating 185 
possible relocation events from the cytosol to the endoplasmic reticulum or faster degradation rates 186 
for non-ER anchored RNAs than ER-anchored ones. Further studies need to be conducted to 187 
investigate the kinetic mechanism that directs the cytoplasmic translocation of different RNA 188 
molecules (Extended data Fig. 4i). 189 
 190 
     Next, we asked whether any of the four RNA kinetic parameters were intrinsically coupled. 191 
Here, we performed pairwise correlations of the four parameters across 936 genes. We found that 192 
the overall correlation between each pair of parameters was weak (Fig. 3c, ρ < 0.1), suggesting 193 
that the kinetic parameters of RNA transcription, post-transcriptional processing13 and allocation 194 
are relatively independent16. We then explored the correlations of these kinetic parameters across 195 
the cell cycle. To this end, we performed a further pairwise correlation analysis of the four 196 
parameters across different genes at three cell-cycle phases (800 genes passed quality control; Fig. 197 
3d). Interestingly, for each parameter, depending on its temporal sequence in the RNA life cycle, 198 
a trend of decreasing correlations in cell cycle phases emerged: at the early stage of RNA 199 
production, the synthesis rates α were highly correlated (𝜌 = 0.9-1.0, Extended data Fig. 5a); 200 
during post-transcriptional processing in the nucleus, λ in the three phases have moderate 201 
correlations (𝜌 = 0.4-0.5, Extended data Fig. 5c); near the end of the RNA life cycle, cytoplasmic 202 
translocation γ have much weaker correlations (𝜌 = 0-0.2, Extended data Fig. 5d). This observation 203 
suggested that RNA metabolism and trafficking of different genes become less synchronized and 204 
increasingly heterogeneous from the upstream to the downstream stages of RNA life cycle, 205 
potentially due to gene-specific and cell-cycle-dependent regulation.  206 
 207 

Given the cell-cycle resolved RNA kinetic landscape, we further investigated how RNAs could 208 
be dynamically “sculpted” to fine-tune the temporal RNA expression profiles. First, we identified 209 
potentially co-regulated RNAs through a pairwise single-cell covariation analysis of 936 genes 210 
from the aforementioned pulse-chase HeLa cell samples (1 hr pulse, 0-6 hrs chase, Extended data 211 
Fig. 6a, left). Using the matrix of pairwise correlation single-cell expression variation combining 212 
all time points, we identified four groups of genes with significant intra-group correlation, 213 
indicating potential gene co-regulation patterns (Extended data Fig. 6a, right, Group 1-4). Notably, 214 
while these genes are enriched with cell-cycle-related functions (Extended data Fig. 6b), the four 215 
groups differ significantly in multiple stages of RNA kinetics (Extended data Fig. 6c). Next, we 216 
repeated the single-cell covariation analysis to each individual time point using the same gene 217 
order, and found that the shift in the co-variation pattern of each group varies from 0 to 6 hrs 218 
(Extended data Fig. 6d): Group 1 shows decreasing co-variation pattern from 0 to 2 hrs post-219 
synthesis; Group 2 shows consistently high expression co-variation across time; in contrast, the 220 
co-variation patterns of Group 3 and 4 gradually emerged from 2 hrs to 6 hrs post-synthesis. This 221 
observation suggests that, at the RNA level, cell cycle progression is jointly shaped by an 222 
orchestration of genes with distinct transcriptional and post-transcriptional kinetic features. 223 
 224 
Differential RNA kinetic strategies by gene function 225 
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      226 
     After recognizing the aforementioned four gene groups whose RNA temporal profiles coupled 227 
with cell-cycle phasing, we asked if such correspondence between RNA kinetics and gene 228 
functions globally exists for other genes. To identify gene modules based on their shared kinetic 229 
patterns in the context of RNA life cycle and cell cycle, we first clustered 800 genes using the 12 230 
parameters (four kinetic constants across three cell cycle stages. The clustering analysis revealed 231 
five kinetic gene clusters of distinct kinetic landscapes (Fig. 4a) that also had distinct subcellular 232 
distributions over time (Extended data Fig. 7a, b). Importantly, gene ontology analyses showed 233 
that the five clusters associate with distinct biological and molecular functions (Fig. 4b). For 234 
example, genes with unstable and slowly exported RNAs were strongly enriched in metal-binding 235 
and transcription factor binding activities (Cluster 1, n = 231 genes); genes with high RNA stability 236 
and moderate export rate (Cluster 3, n = 153 genes) were enriched in hydrolase and ATP-binding 237 
activities.  On the other hand, genes with fast synthesis and greater RNA stability (Cluster 5, n = 238 
86 genes) were enriched in constitutive cellular processes like mRNA splicing, translation, and 239 
mitochondrial functions. We reasoned that these housekeeping genes tend to produce abundant 240 
and stable RNAs for a longer persistence of genetic information due to energy cost of protein 241 
production30.  242 
 243 
     Notably, while Cluster 2 (n = 205 genes) and 4 (n = 125 genes) have slower synthesis, moderate 244 
degradation, and faster export, they significantly differ in cytoplasmic translocation rates (γ), 245 
which are cell-cycle-dependent. In G1 phase, RNAs of Cluster 2 exhibited significantly higher γ 246 
compared to the other phases, whereas Cluster 4 showed the opposite trend (Fig. 4a, right). We 247 
found the genes in Cluster 2 have a functional enrichment of DNA damage and repair, and those 248 
in Cluster 4 are functionally related to organellar and membrane-bound proteins (Fig. 4b). Closer 249 
examination of the genes in Cluster 4 showed that, most of the genes (109/125) have negative γ 250 
values in G1, indicating an overall reverse direction of translocation in G1 phase. Previous research 251 
showed that many mRNAs encoding membrane-bound proteins were anchored to the surface of 252 
endoplasmic reticulum (ER) for localized protein synthesis31. We reasoned that the RNAs 253 
encoding these membrane proteins might also be regulated at the dynamic level, executed by both 254 
spatial and temporal localization control in a cell-cycle-dependent manner. Since the duplication 255 
of organelles and cell expansion are the major activities at G1 phase, our discovery also suggests 256 
that, ER-localized protein synthesis might be more active in G1, either by RNA transport toward 257 
ER or local degradation of non-ER-anchored RNAs in the cell periphery (Fig. 4d). Hence, we 258 
proposed a more comprehensive picture of the regulation dynamics of membrane protein at the 259 
RNA processing level from both spatial and temporal perspectives. While the mechanism that 260 
underlies our observed translocation values is still open to further investigations, we revealed the 261 
importance of regulating the spatiotemporal localization of transcripts that carry different genetic 262 
information. 263 
 264 
     Finally, we examined RNA kinetic landscape in the context of N6-methyladenosine 265 
modifications (m6A), a critical posttranscriptional chemical modification of RNA that plays vital 266 
physiological roles32,33. RNA methylation m6A is known to mediate a wide range of post-267 
transcriptional gene regulation, however, the full landscape of the spatiotemporal dynamics on 268 
m6A-RNA has not been systematically addressed. To this end, we separated the genes encoding 269 
RNAs with and without m6A modifications by previous m6A profiling studies34,35 (m6A- or non-270 
m6A-RNAs, Extended data Fig. 8a). Consistent with the previous report, m6A-modified RNAs 271 
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were significantly less stable than non-m6A-RNAs (higher β, Fig. 4e). In addition, we observed 272 
the same trend when comparing the degradation constants in different cell cycle phases, suggesting 273 
that regulating the decay of m6A-methylated RNA is persistent across cell cycle (Extended data 274 
Fig. 8b). Together, we demonstrate the potential of using TEMPOmap dataset to study 275 
spatiotemporal transcriptomics in combination with post-transcriptional modification, a path to 276 
incorporate multi-modality transcriptomic analysis at single-cell and subcellular resolution. 277 
 278 
 279 
Discussion 280 
  281 
     TEMPOmap serves as a novel in situ transcriptomic platform that simultaneously profiles time- 282 
and space-resolved transcriptomics in single cells, a multimodal single-cell transcriptomics 283 
technology at the subcellular resolution that has not been achieved before. We demonstrated the 284 
capacity of TEMPOmap to systematically detect the subcellular allocation and cytoplasmic 285 
translocation of transcripts over time. More importantly, our study provided a full landscape of 286 
RNA subcellular kinetics at the single-cell level and revealed how RNA kinetics contribute to 287 
cellular functions such as cell-cycle progression. We observed a strong correlation of RNA kinetic 288 
patterns with the molecular functions of genes-- such function-oriented regulation of RNA life 289 
cycle might have evolved under survival and energy constraints to control spatiotemporal gene 290 
expression in a precise and economic way30. In future work, TEMPOmap can be combined with 291 
high-throughput single-cell functional genomics (e.g. CRISPR screens36) to determine key 292 
molecular factors that impact the kinetic landscape of RNA life cycle. Furthermore, such 293 
spatiotemporally coordinated transcriptomic patterning may shed light on understanding the 294 
molecular mechanisms of various biological phenomena, including in development and pattern 295 
formation, learning and memory, biological clocks, as well as disease progression. With 296 
optimization of metabolic labeling conditions15,37,38 and integration of various molecular probing 297 
schemes, such methodology can be adapted for ex vivo or in vivo tissue samples to systematically 298 
profile dynamic events in tissue biology. 299 
 300 
  301 
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 419 

 420 

 421 
Fig. 1 TEMPOmap enables spatiotemporally resolved transcriptomics. a, Overview of 422 
TEMPOmap pipeline: nascent RNAs of multiple time points are collected and in situ sequenced, 423 
followed by spatiotemporal RNA analyses. b, TEMPOmap experimental workflow. After 5-EU 424 
labelled cells are prepared, a set of tri-probes (splint, primer and padlock) are conjugated or 425 
hybridized to cellular mRNAs (Extended Data Fig. 1c for more details), resulting in the enzymatic 426 
replication of each padlock sequence into cDNA amplicons. The amplicons are anchored in situ 427 
via a functionalized acrylic group (blue) to a hydrogel mesh to create a DNA-gel hybrid (blue 428 
wavy lines). The five-base barcode on each amplicon is read out by six rounds of SEDAL 429 
(sequencing with error-reduction by dynamic annealing and ligation). Thus, multiplexed RNA 430 
quantification reveals gene expression in nascent subcellular locations. c, DNA tri-probe design 431 
rationale. The generation of an amplicon requires the presence of splint, circularized padlock, and 432 
primer probes in proximity. d, Left: schematics and representative fluorescent cell images of 433 
negative control experiments of c, showing three-part probe requirement for signal amplification. 434 
mRNA_I represents ACTB and mRNA_II represents GAPDH. All four images show ACTB (red) 435 
mRNA in HeLa cells (DAPI in blue). Right: quantification of cell images showing the average 436 
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amplicon reads per cells (n = 5 images were measured containing 469, 305, 714 and 520 cells for 437 
each condition from left to right, respectively). ****p <10!", two-tailed t-test. Data shown as 438 
mean + s.d. Scale bars: 10 µm.  439 
  440 
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 441 
Fig. 2 Spatiotemporal tracing of single-cell transcriptome. a, Pulse-chase experiment design 442 
on HeLa cells. For the first five time points, we used 1 hr metabolic labeling (pulse) followed by 443 
0, 1, 2, 4 and 6 hrs chase. At the last time point, we metabolically labeled the cells for 20 hrs. All 444 
of the cells were then processed by TEMPOmap workflow measuring 998 genes. b, RNA reads 445 
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(cDNA amplicons) per cell for each pulse-chase time point. c, 3D fluorescent images of in-process 446 
TEMPOmap with zoomed views of representative single cells of cycle 1 at each time point. Z-447 
stack range: 10 µm. d, Top, boxplot summarizing the fraction of reads in each subcellular region 448 
of all cells at each time point. Vertical lines indicate s.d. The statistics compares the fractions of 449 
nuclear reads (blue) across the first five time points. ****p < 0.001, Kruskal–Wallis test with post 450 
hoc Tukey’s HSD. Number of cells (n) in each time point is shown. Bottom, subcellular region 451 
assignment (nuclear, middle and periphery) of one representative cell. e-f, TEMPOmap single-cell 452 
(e) or nucleocytoplasmic (f) RNA measurements rendered as a visualization by PHATE and 453 
colored by pulse-chase time points (I, III) or cell-cycle marker gene expression (II, IV). Black 454 
arrows inferred by RNA degradation vectors indicate the directions of chase time progression. 455 
Bottom row, representative raw images of G2/M phase cells separated on PHATE coordinates. All 456 
images show mRNAs (in white) in HeLa cells (DAPI in blue). Scale bars: 15 µm. 457 
  458 
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 459 

 460 

Fig. 3 TEMPOmap reveals subcellular RNA kinetic landscape across RNA lifespan and cell 461 
cycle. a, The dynamic model for estimating RNA kinetic parameters. For each gene, RNA 462 
synthesis (α) and degradation constant (β) were estimated using single-cell RNA concentration. 463 
The export constant (λ) was estimated using the subcellular RNA concentrations. b, The dynamic 464 
model for estimating cytoplasmic translocation (γ) using distance ratio (DR)-based analysis (see 465 
Methods). c, Upper Right: the mathematical model of RNA life cycle and kinetic assumptions used 466 
for the parameter estimation. Bottom Left: The histogram of the four parameters for all genes that 467 
passed qualify control and the scatter plots depicting the pairwise correlation of parameters with ρ 468 
value (Pearson correlation) and linear fitting curve. Color intensity of the dots indicates local 469 
density. d, Heatmap depicting pairwise correlation matrix of the four parameters estimated using 470 
single-cells from three cell-cycle phases (G1, G1/S, G2/M). Color indicates the value of Pearson 471 
correlation coefficients. Boxed regions indicate the correlations of each parameter among three 472 
cell-cycle phases.  473 
  474 
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 475 

 476 
Fig. 4 Differential RNA dynamics by gene function and post-transcriptional characteristics. 477 
a, UMAP representation (left) and heatmap (right) showing the gene clustering using all 18 478 
estimated parameters across cell cycle. Color in the heatmap represents the parameter-wise z-score 479 
normalized value. b, Pathway enrichment analysis of genes in each cluster in a using DAVID. c, 480 
Left: visualization of cytoplasmic RNAs of Cluster 2 and 4 in representative cells across pulse-481 
chase time points. Scale bar: 10 µm. Right: density plot showing the distributions of γ values of 482 
genes in cluster 2 and 4. d, diagram illustrating two possible mechanisms of reverse mRNA 483 
translocation (γ) at the G1 phase of cluster 4 genes: directed RNA transport and localized RNA 484 
degradation. e, Boxplots comparing the four parameters estimated for m6A and non-m6A genes. 485 
Data shown as means (notches), 25-75% quartiles (boxes) and ranges (vertical lines). *** p<0.01, 486 
Wilcoxin test in c and e.  487 
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Extended Data Fig. 1 TEMPOmap experimental design and optimization. a, Method 489 
conceptualization. TEMPOmap combines RNA metabolic labeling and state-of-the-art spatial 490 
transcriptomics to achieve single-cell spatiotemporal transcriptomics for RNA dynamic analysis. 491 
b, CuAAC-mediated click chemistry to conjugate azide-modified splint and EU-labeled nascent 492 
transcript. c, Comparison of TEMPOmap bi-probe and tri-probe design targeting ACTB mRNA. 493 
Left, probe design schematics. Middle, representative fluorescent images of cells treated with 494 
sense-targeting and antisense-targeting padlocks and primers. Right, quantification of fluorescence 495 
in cell images (6 images containing 400-600 cells were measured under each condition). Data 496 
shown as mean + s.d. d, DNA sequences of TEMPOmap tri-probe system. e, Proof-of-concept 497 
pulse-chase experiment (top) followed by raw cell images (bottom) showing the translocation of 498 
ACTB mRNAs when chased after 1 hr EU treatment with different times. Cell nuclei (blue), 499 
amplicons (red). f, Simultaneous mapping and sequencing of nascent RNAs by TEMPOmap and 500 
total RNAs by STARmap in the experimental workflow. TEMPOmap-targeted amplicon reads 501 
were normalized against the reads of STARmap-targeted RNAs. Scale bar: 10 µm. 502 
  503 
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 504 

 505 
Extended data Fig. 2 TEMPOmap data processing and analysis. a, TEMPOmap data analysis 506 
pipeline. b, Schematics of reads assignment in subcellular compartments. c, Histograms showing 507 
detected reads (cDNA amplicons) per cell (left), and genes per cell (right). d, Schematics of 508 
distance ratio (DR)-based subcellular segmentation in the cytoplasm. Two values for each 509 
amplicon were computed in 3D: dn, the shortest distance to nuclear membrane; dc, the shortest 510 
distance to cell membrane. “Middle” is the region defined between DR = 0 and 0.9. “Periphery” 511 
is defined as DR > 0.9.  512 
  513 
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 514 

 515 
 516 
Extended data Fig. 3 RNA subcellular analysis and cell-cycle phase identification. a, nuclear-517 
to-cytoplasmic ratio of amplicon reads of 991 genes at 6 hrs chase time point. Genes were ranked 518 
from top to bottom according to the ratios. b, Cell-cycle identification (G1, G1/S, G2/M) by cell-519 
cycle gene marker measured via TEMPOmap labeled RNA expression. Cell-cycle scores were 520 
calculated via `score_genes_cell_cycle` in scanpy. The cells were visualized via PCA and colored 521 
by cell-cycle phases (top). Variations in the raw counts of all cell-cycle gene markers (bottom left) 522 
and four representative markers (bottom) were projected by the pseudotime analysis. c, 523 
Comparison of cell-cycle identification by 1 hr pulse-labeled reads and total reads using scEU-seq 524 
dataset14 shows that the nascent transcriptome can accurately define cell-cycle states. The number 525 
in each box indicates the number of cells. d, Cell clustering result based on PHATE embedding of 526 
the nucleocytoplasmic matrix. Cluster 1 incorporates the cells (n = 137 cells) in the M phase by 527 
visual inspection of raw images. 528 
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 529 
Extended data Fig. 4 Quantification of RNA subcellular kinetic parameters. a, Correlated 530 
relation between cell volume (in voxels) and single-cell reads, indicating the influence of transcript 531 
number by cell volume. b, Schematics showing the biased single-cell RNA read counts with 532 
varying physical cell volumes. c, Mathematical models for estimating RNA kinetic parameters 533 
(α,β and λ) and the detailed workflow of calculation and fitting procedure. Note: X(t) = single-cell 534 
RNA concentration; N(t) = nuclear RNA concentration; C(t) = cytoplasmic RNA concentration. d, 535 
Changes in the natural log of X(t) across time points of genes with R2 = 0.99-1.0 (top) and R2 = 536 
0.46-0.53 (down). Representative genes are shown. The estimated β values for all genes were 537 
filtered with a threshold of R2 > 0.5 as a quality control. e, Histogram of estimated λ (nuclear 538 
export) values for all genes. f, The distribution of single cell-averaged DR values for all 991 genes 539 
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across 0-6 hrs chase time points. g, Histogram of estimated γ (cytoplasmic translocation) values 540 
for all genes. Blue dashed line separates the genes with γ > 0 and γ < 0, which indicates the opposite 541 
direction of observed translocation. h, Left, 19 genes with γ < 0 (R2 > 0.5) were strongly enriched 542 
in secreted and organellar proteins. Middle, time-lapsed DR values of representative genes. i, 543 
Schematics showing the observed inward direction of RNA translocation of genes with γ < 0. Two 544 
potential mechanisms are shown: 1). RNA translocation (active or passive); 2). Local RNA 545 
degradation. 546 
  547 
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 548 

 549 
 550 
Extended data Fig. 5 RNA kinetic parameter correlation in two cell-cycle stages.  551 
a-d, Examples of pairwise correlation in Fig. 3d, showing scatter plots of the relationships 552 
between G1 and G2/M. Pearson’s correlation coefficients from left to right: α (ρ = 0.99), β (ρ = 553 
0.60), λ (ρ = 0.46), γ (ρ = 0.04).  554 
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 555 
Extended data Fig. 6 Single-cell RNA expression co-variation analysis. a, Heatmap depicting 556 
the pairwise correlation of 911 genes by TEMPOmap-measured single-cell RNA co-variation 557 
when combining four time points (0, 2, 4, 6 hrs chase), where the color indicates the value of 558 
Pearson correlation. Group 1-4 are highlighted for highly correlated gene modules (left) and 559 
zoomed-in (right). b, Pathway enrichment analysis result of genes in Group 1-4 from single-cell 560 
gene covariation heatmap in a using DAVID. c, Boxplots showing the distribution of six kinetic 561 
parameters of four gene groups (n = 14 genes in Group 1; n = 7 genes in Group 2, n = 7 genes in 562 
Group 3, n = 15 genes in Group 4). P values, one-way ANOVA test. Data shown as means, 25-563 
75% quartiles and ranges. d, Heatmaps were generated showing matrices of the pairwise gene co-564 
variation in each of the 0, 2, 4 and 6 hrs chase time points. Gene order along each matrix was the 565 
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same and determined by the hierarchical clustering tree of the matrix combining the four time 566 
points in a (results were not shown). Zoom-in views of Group 1-4 from the co-variation heatmaps 567 
generated by gene expression in each time point, showing the correlation of RNA co-variation of 568 
each gene module across individual time points. Color in heatmaps indicates the value of Pearson 569 
correlation. G1/S and G2/M marker genes were annotated in each gene block.  570 
 571 
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 572 
Extended data Fig. 7 Visualization of gene clusters with different combination of RNA 573 
kinetic strategies. a,  Visualization of all the amplicons in representative cells (combined, left) 574 
and separated by gene clusters (right) across pulse-chase time points. Scale bar: 10 µm. Colors of 575 
amplicons indicate unique gene clusters. b, Boxplots showing the subcellular distribution of RNA 576 
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reads over time in each kinetic cluster. Vertical lines indicate s.d. For each cluster, 0, 2, 4, 6 hrs 577 
chase have n = 1028, 910, 946, 542 cells, respectively. 578 
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 580 

 581 
Extended data Fig. 8 Subcellular RNA kinetics in the context of m6A post-transcriptional 582 
modification. a, Pie chart describing m6A-RNA methylation in the gene pool (see Methods). c, 583 
Boxplots comparing the four parameters estimated for m6A (n = 476 genes) and non-m6A RNAs 584 
(n = 89 genes) across three cell-cycle phases. *** p<0.01, Wilcoxin test. Data shown as means 585 
(notches), 25-75% quartiles (boxes) and ranges (vertical lines).  586 
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