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18 Abstract

19  Circulating tumor DNA detection using Next-Generation Sequencing (NGS) data of plasma DNA is
20  promising for cancer identification and characterization. However, the tumor signal in the blood is
21 often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling
22 of Sequencing-errors) for estimating error rates of individual read positions. Using DREAMS, we

23 developed statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc).

24 For evaluation, we generated deep targeted NGS data of matching tumor and plasma DNA from 85
25  colorectal cancer patients. The DREAMS approach performed better than state-of-the-art methods

26  forvariant calling and cancer detection.

27 Background

28  Degraded DNA fragments are released into the blood through apoptosis, necrosis and active
29  secretion from a range of cell types and can be detected as circulating free DNA (cfDNA)[1]. Solid
30  tumors also shed DNA into the bloodstream and cfDNA of cancer origin is called circulating tumor
31  DNA (ctDNA)[2]. The ctDNA level in blood is reported to be positively associated with tumor
32 burden(3, 4]. As the half-life of ¢fDNA is less than an hour, ctDNA measurements can be considered
33  real-time assessments of tumor burden and studies have shown that ctDNA can be more sensitive
34  than radiological imaging[5-7]. This makes ctDNA measurements a promising approach for detecting
35 relapse in patients who have undergone curative surgery[6-10]. Other proposed applications include
36  diagnosis and intervention planning, tracking therapeutic response, monitoring the development of
37  treatment resistance, and ultimately early detection of cancer in screening programs[8, 11]. Since
38 obtaining liquid biopsies, such as plasma from blood samples, is both cost-effective and minimally
39 invasive, techniques for efficient ctDNA detection holds great promise for targeted treatment in

40 precision medicine.
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41  In clinical contexts with low tumor burden, e.g. detection of minimal residual disease after curative-
42  intended surgery and early detection of recurrence, the ctDNA constitute only a minor fraction of
43 the cfDNA, often less than 0.1%. Hence, the error rate of current sequencing methods is in the same
44 order of magnitude as the tumor signal[12], making it challenging to accurately distinguish errors
45  from true mutations in ctDNA applications. Errors can arise in several steps between the initial
46  shedding of cfDNA and the final generation of next-generation sequencing (NGS) reads (Figure 1).
47 DNA fragments may be damaged e.g. by deamination or oxidation[13, 14], during PCR amplification
48  of the sequencing library[13], and during sequencing from PCR amplification and/or sequencing
49  artefacts.{{Ma, 2019 #25}} For deep sequencing, some of the PCR and sequencing errors can be
50 rectified using unique molecular identifiers (UMIs). With the use of UMlIs, each DNA fragment is
51 labeled with a unique “barcode” prior to PCR amplification, such that replicates of the same
52 fragment can be grouped together. Errors can then be eliminated by comparing the replicates within
53  agroup, as errors from PCR amplification and sequencing are likely to be present in only a minority
54  of reads. However, some errors, such as DNA damage introduced prior to UMI labeling remains and

55  continue to challenge the discrimination of true low frequency mutational signal from these errors.

56  Several methods for detecting low frequency variants using NGS data have been developed. Most of
57  these establish a model for the expected frequency of errors and then assess the mutational signal
58  with a statistical test. They differ greatly in the required data prerequisites, how the errors are

59  modelled and handled, and the final assessment of the mutational signal.

60  Mutect2[15] and Shearwater[16] are examples of general somatic variant callers applicable for most
61  NGS data. Mutect2 realigns reads in regions with mutational signal and then calculates a log-odds for
62  the existence of the alternative allele using a statistical model in which the error rates are derived
63  from the PHRED scores. Shearwater is developed specifically for low-frequency somatic variant
64  detection for sub-clonal tumor mutations. It builds a position-specific error model based on the

65  observed rate of read alignment mismatches across a set of training samples. A mutation is called if
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66  the observed signal exceeds what is expected from the error model. Additionally, this method can

67  incorporate prior knowledge about the probability of the mutations of interest.

68 Other methods, including MRDetect[17], INVAR [18]and iDES[12], have been specifically tailored to
69  detect ctDNA in NGS data. These methods build on the idea of aggregating the signal across multiple
70  mutations to classify a sample as ctDNA positive or negative, as opposed to calling each individual
71  mutation. For this purpose, a patient specific catalogue of mutations is generated from a matched
72 tumor sample. However, the enhanced performance of these methods come at the expense of
73 general applicability as they assume the presence of curated data from known ctDNA fragments or

74  specialized lab protocols.

75  Here we develop a generally applicable ctDNA detection method based on a detailed background
76 error model of individual read positions. This approach aims to capture general read-level error
77  behavior and thus be applicable even for genomic regions where training data is not available. Data
78 from reads known to come from ctDNA is not needed, and all data outside known mutated
79  positions, or from independent normal samples can be used as training data. However, training data
80  that was obtained similarly to the test data will provide the most precise model. Thus, severe
81  changes in laboratory protocols should optimally be accompanied by re-training of the model. Some
82 features such as the read position[19], proximity to fragment ends[14], UMI group size[12], GC-
83 content[20] and trinucleotide context[21] have been shown to affect the probability of errors at
84  individual read positions. By modelling their effect, the error rate of individual read positions may be
85  predicted. Thereby, a read alignment mismatch, i.e. a non-reference base, with a low predicted error
86  rate can provide more mutational evidence than a mismatch with a high error rate. This allows for

87  improved cfDNA error modelling, which is key to develop accurate ctDNA applications.

88 In the following, we demonstrate how cfDNA errors can be modelled accurately using a neural
89  network, by combining read level features with information about the sequencing context. For this

90 we developed DREAMS (Deep Read-level Modelling of Sequencing-errors) that incorporates both


https://doi.org/10.1101/2022.09.27.509150
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.27.509150; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

91 read-level and local sequence-context features for positional error rate estimation. Based on
92  DREAMS, we developed a method for variant calling (DREAMS-vc) to accurately call individual cancer
93  mutations in cfDNA data. The method was generalized for cancer calling in DREAMS-cc that
94 aggregates the signal across a catalogue of mutations for accurate estimation of the tumor fraction
95  and sensitive determination of the overall cancer status. To evaluate the performance of DREAMS,
96 we performed deep-targeted sequencing of pre- and post-operative cfDNA samples from 85 stage I-
97 Il colorectal cancer (CRC) patients and compared to state-of-the art methods Mutect2[15] and

98 Shearwater[16].

99 Results

100  Plasma cfDNA was extracted from pre-operative (Pre-OP) and post-operative (Post-OP) blood draws
101 of 85 stage I-Il CRC patients (Table 1) undergoing curative surgery. In addition, two stage Ill CRC
102 patients were used in the model training. A biopsy from the resected tumor and paired peripheral
103 blood cells was sequenced to generate a patient-specific mutational catalogue. Post-OP samples
104  were collected 2-4 weeks after surgical removal of the primary tumor (Figure 2). Each cfDNA sample
105 was sequenced using a custom hybrid-capture panel, designed to capture 41 exonic regions,
106  spanning 15.413 bp, frequently mutated in CRC (Supplementary section 1 and Supplementary table
107  1). After UMI collapse the median of the average depths with corresponding interquartile range
108  (IQR) of samples were for Pre-OP; 3307 (IQR: 3560), Post-OP; 7143 (IQR: 8844), buffycoat; 1850 (IQR:
109 1468), and tumor samples; 2132 (IQR: 2145), no samples had an average read depth below 100. All

110  samples have been mapped and processed through the same pipeline (Supplementary section 1).
111
112
113

114
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115
116
Table 1: Clinical characteristics
Characteristic Count or Median
(percent or range)
Patients 85 (100%)
Gender
Male 53 (62%)
Female 32 (38%)
Age [years] 71 (49-87)
Tumor location
Right colon 23 (27%)
Left colon 26 (31%)
Rectum 36 (42%)
Pathological T-stage
pT1 15 (18%)
pT2 25 (29%)
pT3 41 (48%)
pT4 4 (4.7%)
UICC stage
/ 40 (47%)
Il 45 (53%)
117

118  We first identified features that are known or expected to affect the error rate (Figure 3a). In
119  general, they can be split into two types: local sequence-context features and read-level features.
120 The local sequence-context features capture the genomic sequence context, including the
121  trinucleotide context, information about the sequence complexity (Shannon entropy of nucleotide

122 frequency), and GC contents in an 11 bp window around the position of interest (Methods).
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123 The read-level features capture the structural composition of the read, UMI characteristics and
124  sequencing information. The structural composition includes the strand a read aligns to (forward or
125  reverse), the number of insertions and deletions in the read, and the total size of the underlying
126  fragment. In the read pre-processing, UMIs were used to generate consensus reads with lowered
127 error rates (Supplementary section 2). For each consensus read, we extracted the UMI-group size,
128  the number of reads disagreeing with the consensus at the position, and the overall number of
129 mismatches outside the position of interest. As sequencing related features, we included the base
130  position in the read (read position) and whether the read is the first to be sequenced from the read-
131  pair. The read quality (PHRED score) was not included, as it had the same high value for all positions

132  inthe UMI-collapsed consensus reads.

133 We evaluated the individual features association with the error rate by analyzing the total set of
134  read alignment mismatches (n=707,562) across all Post-OP samples (Figure 3b-d), after excluding
135  mutations and variants found in matching tumor and germline samples. The mismatches were
136 compared to an equal number of randomly sampled matches, to estimate the error rate for each

137  feature across its values (Supplementary section 3).

138  Since fragment lengths of cfDNA are influenced by nucleosome binding patterns, the fragment
139  length distribution have peaks at around 162 bp (mono-nucleosomal) and 340 bp (di-
140  nucleosomal)[22]. The error rate tended to be minimized in fragments of these lengths (Figure 3b).
141  As expected, we observed a lower error rate in consensus reads formed by larger UMI groups[12]

142  (Figure 3c).

143  The error distribution for the read position showed an increased error rate in the beginning of the
144  reads (Figure 3d). We also observed a clear difference in error distribution along the read between
145  the first and second read of the pair. The 12 different nucleotide alterations showed widely different

146  error rates (Figure 3e), which is expected as error-induced mismatches are not equally likely, and the
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147  rate further differed between the two strands. However, strand symmetric alterations were

148 generally similar, apart from the mismatches C>T/G>A and C2>A/G>T.

149  Overall, we saw variation in the error rate for all the presented features (the remaining are shown in
150 Supplementary section 3). Thus, for a given genomic position, different reads may have different
151  error rates due to differences in read-level features. In the following, we present how this variation

152  can be captured and used to potentially improve detection of ctDNA.

153 Neural network model and feature selection

154  To predict the error rate at a given read position, we used a neural network model with the input
155  features described above (Methods). The predictive ability of individual features was evaluated
156  using a “leave-one-covariate-out” (LOCO) scheme[23] (Supplementary section 4). In short, we
157  evaluated the performance of a full model containing all features (baseline) and then the relative
158  performances of restricted models where each feature had been left out one by one. We used the
159  latter to measure and rank the importance of each feature (Figure 4a). When leaving out the
160 trinucleotide context, the reference base was provided instead to assess only the importance of the

161  two neighboring nucleotides.

162  We found the most informative feature for modelling the error rate to be the strand (Figure 4a). The
163  second and thirds most informative features were whether the read is the first in a pair and the read
164  position. The trinucleotide context was fourth, indicating that there is a difference in error rate for
165  different contexts, as found by others[18]. The fragment length and the UMI group size also
166  contribute significantly to the model. The remaining features showed little to no effect on the model

167  performance.

168  An optimal subset of informative features was chosen using a stepwise procedure where features
169  were excluded in order of importance (Methods). The set of features chosen was the smallest model

170  that did not perform significantly worse than the full model (Supplementary section 4). The four
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171  least important features could be removed without any significant negative effect on the
172 performance (Figure 4b). Of the remaining ten features, eight were read-level features, namely the
173 features describing the UMI group, the number of errors in the UMI group, the number of deletions
174 in the read, the number of other errors in the read, the fragment length, read position, strand, and if
175  the read was first in pair. This showed that read-level features do contribute to accurate modelling

176 of the error rate.

177  The numerical and categorical variables are processed differently in the neural network prior to the
178  hidden layers (Figure 4c). The numerical features are batch normalized, the categorical features are
179 one-hot encoded, and the tri-nucleotide context is embedded in three dimensions to handle the

180  large number of possible contexts (Methods).

181 Predictive performance in clinical data

182  To validate the utilization of the DREAMS error model, we applied it in calling tumor variants
183  (DREAMS-vc) and cancer (DREAMS-cc) (Methods). We assessed the performance using five repeats
184  of 2-fold cross-validation (5x2 CV) (Figure 5a). The model was trained on the Post-OP samples, and
185  Pre-OP samples were used for method validation. The split was done on patient level to ensure that
186  a model is not trained and tested on data from the same patient. This analysis was repeated with

187 five different randomized splits to control for split induced variation.

188  The performance of calling tumor mutations in the plasma samples was assessed by looking at the
189  area under Receiver Operating Characteristic curves (AUC). The performance of DREAMS-vc was
190 compared to state-of-the-art algorithms Mutect2 and Shearwater. Only positions with at least one
191  observed mismatch were included in the performance calculations (Figure 5b). Positions without

192  signal was called negative by any method, making them redundant for performance comparisons.

193  Using DREAMS-vc, we aimed to call the tumor mutations of each patient from their respective

194  mutation catalogue. As negative controls, we attempted to call cross-patient mutations, by
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195  searching for the mutations found in other patients. Additionally, a validation set of 500 randomly
196  generated alterations within the covered sequencing panel was used as negative controls. Evaluating
197  across the combined negative set of both cross-patient mutations and validation alterations and
198 cancer stages, DREAMS-vc performs significantly better than both Shearwater and Mutect2 (Figure
199 5b). Additionally, the performance was assessed separately for stage | and stage Il CRC patients. This
200  showed that superior performance of DREAMS-vc is predominantly due to the stage Il CRC patients
201 (Figure 5b). As expected, all models perform better on later stage patient samples as these are

202  expected to have a higher mutational signal in the cfDNA due to a higher tumor burden.

203  All methods perform similarly on stage | patients, however DREAMS-vc has marginally better
204  performance. Performance evaluations for each of the separate negative sets showed that DREAMS
205  performs better than Mutect2 with the cross-patient negative set and better than Shearwater with
206  the validation set as the negative set. The variation in performance of DREAMS-vc across splits and
207 folds is lower than for Mutect2 and Shearwater, which indicates that its variant calling is more stable

208 across patients and mutation types.

209 By maintaining the false positive rate at 5% for the alterations with signal in the validation set for
210  each model, we get comparable thresholds for the three confidence measures: p-values, Bayes
211 factor and TLOD for DREAMS-vc, Shearwater, and Mutect2, respectively. This allows for a
212 comparison of the sensitivity of the models at a pre-determined specificity of 95%. The model could
213  then be assessed across an alteration catalogue of 191 true positive mutations from the mutation
214  catalogue and 1290 cross-patient negative calls based on the mutation catalogue of the other
215  patients. Out of the alteration catalogue, 88 true mutations and 1100 cross-patient negative calls

216  had asignal for the alteration.

217  Using this threshold DREAMS-vc called 83% of the tumor mutations with signal, while Shearwater
218  and Mutect2 called 75% and 72.7%, respectively (Table 2). F1 and G-mean scores were calculated to

219  assess the performance of the models by using the cross-patient mutations as negative controls. G-

10
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mean is the geometric mean of sensitivity and specificity, and F1 is the harmonic mean of precision
and sensitivity. For G-mean, DREAMS-vc performed better than Shearwater and Mutect2, however
the F1 score of Shearwater was very similar to DREAMS-vc, due to lower false-positive rate of
shearwater (Table 2). Considering all mutations observed in the tumors, including those without

signal in plasma, we found that about 38.2% could be recalled in Pre-OP liquid biopsy samples.

Table 2 Full alteration catalog® Catalogue alterations with signalb
Sensitivity Specificity Sensitivity Specificity F1 G-mean
DREAMS-vc 0.382 0.998 0.830 0.957 0.702 0.891
Shearwater 0.346 0.998 0.750 0.971 0.710 0.853
Mutect2 0.336 0.997 0.727 0.933 0.566 0.831

® Full alteration catalogue consisting of n=191 true positive mutations, and n=1290 potential cross-patient

negative calls.

b Catalogue of alterations with signal consisting of n=88 true positive mutations, and n=1100 potential cross-

patient negative calls.

By setting the threshold based on a 5% false positive rate in the cross-patient mutation set, the
validation mutation set can be used as negative controls. The true positives are still the same 191
mutations of which 88 has a signal for the alteration. The negatives are the 500 validation positions
multiplied with the 87 tested samples, giving a total of 43,500 possible alterations of which 1,350
had a signal. With this set we obtained an 83% true positive rate, compared to 77.3% for Shearwater
and 68.2% for Mutect2 (Table 3). DREAMS-vc scored highest in both F1 and G-mean scores. Here,
DREAMS-vc performed distinctly better than Shearwater, while Mutect2 had a more comparable F1

score.

Table 3 Full alteration catalog® Catalogue alterations with signal®

11
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Sensitivity Specificity Sensitivity Specificity F1 G-mean
DREAMS-vc 0.382 0.998 0.830 0.944 0.616 0.885
Shearwater 0.356 0.997 0.773 0.911 0.493 0.839
Mutect2 0.314 0.999 0.682 0.962 0.603 0.810

240
241 ® Whole catalogue consisting of n=191 true positive mutations, and n=43500 potential validation set calls.
242 b Catalogue of positions with signal consisting of n=88 true positive mutations, and n=1350 potential validation

243 calls.

244 A common measure used to predict the presence of ctDNA is the estimated tumor fraction in
245  plasma. DREAMS-cc combines the mutational evidence across the mutation catalogue, to estimate
246  the tumor fraction with an accompanying p-value for the presence of cancer (Methods). We aimed
247  to detect cancer in the Pre-OP samples, since cancer is present and should, in theory, be detectable
248  given enough ctDNA is present in the blood. As a negative control, we attempted to detect cancer in
249  each Pre-OP sample (Tested Sample) with the mutation catalogue from all other patients (Candidate
250  patient) (Figure 6a). In case of shared mutations between the mutation catalogues, these were
251  eliminated to prevent false positives. As a benchmark, we constructed a cancer call score using the
252 product of the individual Bayes factors across the mutation catalogue from Shearwater, resulting in
253  a similar tendency (Figure 6b). The performance of calling cancer can be assessed by treating the
254 cross-patient mutation catalogues as expected negatives and calculate an AUC score. Performance
255  was compared using the 5x2 cross validation setup as above (Figure 5a). The AUC was very similar
256 between DREAMS-cc and Shearwater with respect to calling cancer, however DREAMS-cc showed a
257  slightly increased performance (p = 0.0343, one tailed t-test). As for variant calling, we only included
258  the samples with mutational signal to showcase and compare the performance of the different

259  methods in discriminating tumor from error signal.

260  For the patients with stage | and Il CRC, we found tumor supporting reads in 47.5% (19/40) and 73%
261  (33/45) of the Pre-OP samples, respectively. We called cancer in 34% of the stage | CRC patients,

262  corresponding to 74% (14/19) of the patients with a mutational signal. We called cancer in 73% of

12
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263 the stage Il CRC patients, corresponding to 94% (31/33) of the patients with signal. These results
264  were obtained whilst still limiting the false positive rate to 5 % in cross-patient cancer calls with a

265  non-zero mutational signal.

266  Detailed analysis of the false positive cancer calls reveals that most are due to a specific KRAS G12V
267  variant: chr12:25245350 C>A. This variant is common in colon cancer, and it is therefore not
268  surprising to find in the patients [24]. However, the mutation was not found in the patient’s
269  corresponding tumor or buffycoat samples. A possible explanation for this is that the mutation is not
270  detected in the tumor biopsy due to sub-clonality [25] or that there is an underlying germline signal

271  that was not caught in the buffycoat.

272 Discussion

273  We have developed DREAMS, as a new approach for modelling the error rates in sequencing data
274  that incorporates information from both the local sequence context and read-level information.
275  DREAMS is intended for settings that rely on accurate error identification and quantification. We
276  applied the error model for low-frequency ctDNA variant calling (DREAMS-vc) and cancer detection

277  (DREAMS-cc).

278  The error rate was found to vary depending on several of the proposed read-level features.
279  Surprisingly, fragment size was found to be correlated with the error rate, with the smallest error-
280 rates being observed for fragment sizes corresponding to the mono-nucleosomal and di-
281  nucleosomal lengths (Figure 3b). Fragments that deviate from these in length may have been
282  degraded in the blood for a longer time and thereby accumulated more errors. Fragments of ctDNA
283  are generally shorter and error rates are generally highest in short fragments, which shows the
284 importance of accurate error modelling[26, 27]. The error rate was also found to vary with the
285  strand, and symmetric mismatches occurred at different rates (Figure 3e). The G>T/C>A asymmetry
286 can be explained by the hybridization capture protocol only targeting one strand and thus only

287  capturing oxidative damage of that strand[14]. A similar mechanism might explain the C>T/G>A
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288  asymmetry in the case of cytosine deamination. The error rate varied with the position in the read
289  and was especially increased in the beginning of reads (Figure 3d). This may be because ends of
290 fragments are prone to damage[14] and in thermodynamic equilibrium with being single stranded.
291  The error rate also varied depending on whether the read was the first or second in the pair (Figure
292  3d). Besides being intermitted by a PCR amplification step, the reads differ in composition and

293 length of adapters sequenced prior to the insert, which might cause this difference.

294  Training a background error model using DREAMS does not require known mutation sites in reads,
295  as it only models the errors found in aligned reads (BAM-files). These can originate from normal
296  samples or mutation filtered cancer samples, as in this study. Since error patterns are highly
297  dependent on laboratory procedures, the same protocol should be used for training samples and
298  subsequent testing samples. Training across multiple samples gathered over time, is expected to
299  learn the error patterns that are general across samples and batches. Conversely, if the amount of
300 data in a single sample is large, the error model can be trained on the sample itself, which
301  potentially yields a highly specific model that accounts for sample specific error patterns. The model
302 is built to be position agnostic and can therefore be used to predict error rates for positions for
303  which no training data is available. Furthermore, it is fit for both deep sequencing of panels and

304  shallow sequencing of whole genomes.

305 The error model has been implemented using a neural network, allowing the feature set to be
306 tailored to capture the relevant information of a specific setting. Analysis of the feature importance
307 revealed that several of the proposed read-level features are useful in predicting the error rate in
308 sequencing data (Figure 4a). Most features presented in this paper are general to NGS data,
309 however not all sequencing protocols use UMI based error correction, rendering UMI related
310 features redundant. In particular, UMI cannot be exploited for shallow whole-genome sequencing as
311  read groups cannot be formed. In such cases error rates would be increased, making accurate error

312 modelling as performed by DREAMS even more important.
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313  Compared to simpler methods, the presented approach is more computationally demanding, due to
314  training of the neural network model and the use of complex data extracted from BAM-files. A
315  neural network is a simple and flexible approach for bridging the gap between a complex set of
316 contexts and read level features and the error rate of a given read position but might not be the
317  most efficient solution. The model can be trained on a regular laptop within a few hours, which
318  should only be done once, when the training dataset is defined. Using the trained model and the
319  statistical modules adds no significant computation time for calling mutations and cancer in the
320  current setting. However, very large mutation catalogues are expected to increase the computation

321 time for DREAMS-cc.

322  DREAMS was built to exploit read-level features under the assumption that these affect the error
323  rate in sequencing data. Thus, the power of this approach increases with the variability in the error
324  rate explained by read level features. Thereby, less emphasize is put on mismatches that are likely
325  errors, and more confidence in the potential tumor signal from other mismatches. Conversely, if
326  read level features are not improving error prediction, the performance is expected to be similar to
327  methods working with simpler summary data. Although DREAMS use information about the local
328  sequence-context, strong regional effects on the error rate are not expected to be captured by the

329 model.

330 In all performance comparisons DREAMS-vc performed better or equal to the other methods in
331  calling tumor mutations. This indicates that read-position level features can improve performance in
332 separating error from mutational signal. Similarly for cancer detection, DREAMS-cc performed equal
333  tocalls based on Shearwater. Cancer was detected in most (73%) of stage Il CRC cancer patients and

334  athird (34%) of stage | patients.

335  There are false positive cancer and mutation calls, some of which could potentially be explained by
336  clonal hematopoiesis of indeterminate potential (CHIP) or an unexpected error signal. To reduce the

337  signal from CHIP, we have excluded positions with significant presence of non-reference nucleotides,
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338 found in the germline samples, however, a low signal might still be present. Remaining false positive
339  calls might be due to regional effects or sample specific artifacts. Many of the false positive mutation
340 calls in the Pre-OP samples were found to be a mutation leading to the KRAS G12V variant, and it
341 could therefore potentially be explained by a sub-clonal variant that was not identified in the tumor
342  sample or a germline signal of clonal hematopoiesis of indeterminate potential (CHIP) that was not

343  identified in the buffycoat samples.

344  Sensitive variant calling in liquid biopsies can provide non-invasive insight into tumor genetics, which
345 can potentially enable personalized treatment of patients and be a cost-effective approach for
346 cancer screening. DREAMS-cc integrates evidence across a mutation catalogue to increase sensitivity
347  in cancer detection. Cancer detection is expected to get more sensitive as the number of mutations
348 in the catalogue rises. A potential application of DREAMS-cc could be tumor agnostic cancer

349  detection based on a catalogue of commonly known tumor variants.

350 The approach presented in this paper does not utilize tumor specific signals such as the fragment
351  size distribution, fragmentation patterns, mutational signatures, expression information, etc.
352  However, together with the error characterizing properties of DREAMS-cc, this could potentially
353  refine the cancer calls. Addition of regional properties and positional information could potentially
354  further increase sensitivity. In this paper, we focus on the single nucleotide variants in the tumor,
355  but the model could be extended to be able to look for indels. The underlying ideas in DREAMS are
356  not restricted to variant calling and could be used in other tasks of sequencing data analysis such as

357  advanced error filtering.

358 Conclusion

359  We have presented the DREAMS error rate model and demonstrated the importance of using read-
360 level features for modelling the errors in NGS data. The model was validated in a tumor informed
361  setting, using DREAMS-vc for variant calling and DREAMS-cc for cancer detection in patients with

362  CRC. DREAMS-vc allowed accurate detection of mutation signal in plasma samples extracted prior to
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363  curative intended surgery with an improved performance compared to state-of-the-art methods.
364  This highlights the importance of including read-level information in modelling the background error
365  rate. Furthermore, DREAMS-cc demonstrated the ability to combine signal from multiple mutations
366 known from the tumor biopsy for improved cancer detection. DREAMS-cc was able to call cancer in
367 73 % of Pre-OP samples from CRC stage Il patients, and 34 % of CRC stage | patients. Potential future
368 applications of DREAMS include analysis of WGS data and tumor agnostic cancer detection. The
369 approach presented with DREAMS is generally applicable across NGS applications that need accurate
370 handling and quantifications of errors, and the presented algorithms (DREAMS-vc and DREAMS-cc)
371 are only examples of how to exploit this. The specific application presented in this paper is

372  implemented as a user-friendly R package [https://github.com/JakobSkouPedersenLab/dreams].
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s08 Methods

409 Error rate prediction using read level information

410  In this study we present a method called DREAMS (Deep Read-level Modelling of Sequencing-errors)
411  for estimating the error rate at each read position using features of the individual read and the
412 genomic context of the position. In practice, this is achieved by predicting the probability of
413  observing each allele given the describing features of a position in a read and considering the
414  probabilities of observing the alternative alleles as the error rates. The read specific features can
415  include information such as the read position, the strand of the mapped read, the length of the
416  fragment, and UMI-group size. The read position refers to the cycle number at which the position
417  was sequenced starting with the first nucleotide of the fragment, thus disregarding cycles used for
418  reading primers, adapters, unaligned ends etc. Context specific features contain information about
419  the genomic sequence surrounding the position, including the neighboring bases (tri-nucleotide
420 context), the complexity, and GC-content. The local complexity is calculated as the Shannon entropy
421  for both single nucleotides and pairs. Similarly, the local GC content is calculated as the fraction of C
422  and G nucleotides. In principle, any feature that can be thought to affect the error rate of a read
423 position can be added to improve the error rate prediction. Another possible feature would be the
424 positional read quality score given by the sequencing machine. However, the estimated quality for
425  the collapsed consensus reads were all capped at the same high value and thus excluded as they do

426  notinclude any information for further modelling.

427 Data

428  Data for aread position can be extracted from a read mapping (BAM-file) with sequencing data from
429 a next generation sequencing experiment. The training data for the model consists of a set of read
430 positions from multiple samples, for which the observed allele is denoted together with the relevant
431 features. This means that the training data includes both matches, where read positions where the

432  observed allele is equal to the reference allele and mismatches where the observed and reference
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433  allele differ. Mismatches that correspond to known single nucleotide polymorphisms found in the
434  germline samples are excluded from the training. Assuming that the training samples are non-
435  cancerous means that all remaining mismatches in the dataset can be assumed to be errors that

436 have occurred on a molecular level in the body or lab, or during sequencing of the sample.

437  The mismatches are extracted from the BAM-file using the mismatched positions annotated in the
438  MD-tag. The equivalent genomic position is found, and the 11- and 3-mer context is extracted from
439  the reference genome and used for calculation of local sequence-context features. The UMI errors
440 and UMI count are extracted from the cE and c¢D tags generated by the
441  CallMolecularConsensusReads from fgbio used for calling UMI consensus reads. Information about
442  the insertions and deletions is extracted from the cigar tag. The fragment size is the insert-size
443  (isize), and the read position is the position in the read sequence from the 5’-end of the read. Strand

444  and first in pair are extracted from BAM flag where this information is encoded in a bitwise fashion.

445  The model assumes that the input data for both training and testing is based on readings of unique
446  fragments, so each position in a fragment is only represented in one read. This can be assured using

447  unique molecular identifiers (UMIs) and by trimming overlapping read positions in the read pairs.

448  As training on every single read position in every single read is very demanding and inefficient, we
449  employ a methodology akin to importance sampling where we extract all the mismatches from the
450 data and randomly sample a subset of the non-mismatches. To account for this skew induced by
451 down-sampling one category of the training data a rescaling scheme inspired by[28] is used on the

452 predicted error rates. The method outlined in Supplementary section 5.

453  Neural network model

454  Structure of the neural network

455  To predict the error rate at a given read position we use a multilayer perceptron (MLP) which is a

456  simple neural network setup with multiple fully connected layers. The neural network allows us to
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457  use the features without prior knowledge of how they interact amongst each other or how they
458  affect the error rate. The neural network is trained using a set of read positions where the features

459  describing the read positions are used as inputs and the observed allele as output.

460  For a given read position the possible observed outcomes are the alleles A, T, C or G. Interpreting
461  this as a random event, the observed allele can be seen as an outcome from a four-dimensional

462  multinomial distribution with one trial. Let X;; represents the observed allele in read j at position i
463  and D;; be the set of observed features for that read position. For a non-mutated, homozygote
464  position the observed allele should predominantly be the reference allele, and any observations of
465  non-reference alleles, would be considered errors. In this situation P(Xij = A|Dij) would be close to
466 1 if A was the reference allele for read position (i,j), and P(Xl-]- = x|DL-]-), x € {T, C, G} would be
467  the error rates for the remaining three alleles. Given a set of observations {(xi]-,Dij)}iV:l it is then

468  possible to write the log-likelihood function for the observed data:
L ({(xij’ DL-]-)}L.J.)
iJ

Z log(P(Xij=A|Dij))+ Z log(P(XL-,-=T|Di,-))+

Ljxij=A i,jixij=T
Ljixij=C L,jixij=G

469  The problem now becomes how to estimate the distribution P(Xij|Dij) above. To do this, start by

470  defining the probability functions via the SoftMax function:

efa(Dij)

efa (Dij)

P(Xy = a|D;;) =

a'€{A,T,CG}

471 , where fa(Dij) is a predictor function for the allele a using the observed information D;;. As an

472  example, for classic multinomial logistic regression a linear predictor function is chosen such that
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473 f.(X;) = B, - X;, where B, is a vector of feature specific weights that can be found by maximizing
474 the log-likelihood function. To get a more flexible model, a neural network is chosen, since this can
475  approximate any arbitrary predictor function well including arbitrary interactions between input
476  features. To do this P(Xl-j = a|Dij) can be interpreted as the output from a neural network model
477  where SoftMax is used as the last activation function and fa(Dij) is the output from the last hidden
478  layer. To train such a model inspiration is drawn from likelihood theory and the negative log-

479 likelihood function is chosen as the loss function to minimize.

480  Architecture

481  The neural network model allows for high flexibility in the choice of features and requires very
482  limited prior knowledge about the effect of the features on the error rate. The neural network was
483  selected to be a MLP with an input layer, three hidden layers and an output layer. The dimension of
484  the input layer depends on the selected input features, the hidden layers have a configuration of
485 128, 64, and 32 nodes with a Relu activation function, and the output layer contains 4 nodes with
486  SoftMax activation, as explained above, corresponding to probability of observing each of the 4
487  alleles. The configuration of hidden layers can be varied, depending on the input data and the
488  available computational resources. The models were training using the Keras library (2.3.0) in R,

489  which is an interface that builds in Tensorflow (2.6.0) [29].

490 Feature handling / embedding

491 The features are split into numeric, categorical, and embedded variables and handled accordingly.
492  Categorical features are one-hot encoded, and the numeric features are batch normalized. The
493  trinucleotide context can be seen as the three distinct features: reference allele and the two
494  neighboring bases. These can be handled as categorical features with individual one-hot encoded 4-
495  dimensional inputs using 12 (3x4) input nodes in total. Alternatively, a 64-dimensional (4x4x4) one-
496  hot encoded input of the entire trinucleotide context (TNC) can be used. We will employ another

497  alternative that takes the 64-dimensional feature in the input layer and embeds it into a continuous
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498  3-dimensional vector before including it in the model alongside the remaining input features.
499  Thereby, the model can learn the relationship between the contexts, and cluster contexts that have

500 asimilar effect on the error rate close together and vice versa.

501 Assessing cancer status across a catalogue of multiple mutation candidates

502 Based on the neural network error model developed above, it can now be assumed that the
503 individual error rates for a given position in each read is known. In this section the error rates will be
504  exploited to develop a statistical framework for estimating the tumor fraction in a sample based on a
505 catalogue of candidate mutations. This framework can ignore some mutation candidates if these are
506 not found in the sample, for example due to relatively low allelic frequency due to sub-clonality in
507  the tumor or due to little tumor in the circulation. Reduction in the candidate mutations allows for a
508  comprehensive mutation catalogue to be used, where mutation candidates with limited evidence
509 may be excluded. The subset of candidate mutations is selected statistically by finding mutations
510  with a consistently high mutational signal, and the tumor fraction is estimated based on these
511  candidates. This subset of mutations is then used in a statistical procedure for testing if the observed
512 mutational signal exceeds what we would expect if no mutated DNA were present, making it

513 possible to determine the cancer status of a patient based on the sample.

514  The statistical model
515  Start by introducing Z; as a variable that controls the presence of a given mutation on the site i, such
516 that Z; = 1 represent the case where the site is mutated, and Z; = 0 when it is not. Furthermore

517 let:
Z;~Bernulli(r)

518  Thus, given a catalogue of possible mutations, r is the probability that each of them is present in the
519  sample. For site i let R be the germline reference allele and M the alternative allele of interest.
520  Furthermore, it is assumed that the germline site is homozygote, such that any signal from non-

521  reference alleles must be due to errors or mutational signal from a tumor. To model the molecular
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522 composition of the fragments covering site i let Y;; € {R, M} be the true error-free nucleotide of the
523  j’th fragment. If the i"th mutation is not present in the sample (Z; = 0), we are sure that the true

524  nuclectide of the fragment is the reference and thus the following distribution holds:
P(Y;=RIZ;=0)=1, P(Y; =M|Z;=0)=0

525  To model the mutational DNA present in the sample let f > 0 denote the tumor fraction. This is the
526  fraction of the DNA in the blood that originates from tumor cells. Assuming that the mutation of
527  interest is (sufficiently) clonal in the tumor, i.e. half of the DNA in the tumor has this mutation, the
528  probability of a given fragment having the mutation is f/2. Using this the following distribution for

529  Y;; can be assumed when the mutation is present in the sample (Z; = 1):

f

P(Yij=R|Zi=1)=1—§' P(Yy; =M|Z;=1) =

530  To model the errors that occur in NGS data let X;; be the observed nucleotide in fragment j at
531  position i. Assume that the distribution of X;; depends only on the corresponding true nucleotide

532 Yj;, in the sense that the event X;; #Y;; corresponds to the observation being an error. This

j’
533  distribution is exactly what the neural network model described above aims to approximate using
534  the observed features D;;. To simplify notation the dependence of X;; on D;; will be omitted from
535  notation in the following. Note that observations X;; outside {R, M} will have little information
536  about the true nucleotide Y;;. Furthermore, since the error rates generally are low, the difference
537  between including interactions between all four possible alleles and only the two allele of interest is
538  negligible. Thus, to simplify the following calculations, we assume that X;; € {R, M}. In practice this

539  means that all fragments, j', for which x;; & {R, M} are eliminated from the analysis. Using this

540  assumption, we define the probability of observing the alternative allele in a reference allele

541  position as the following error rate:

P(X;; = M|Y;; =R)

R->M _ L= L= . =
e = P(X’-J M|YL} R;XLJ € {R;M}) P(XU _ RlYL] — R) +P(XL] — MlYLJ — R)

ij
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542  Conversely, for a fragment that stems from a tumor cell and contains the mutated allele we define:

M-R _ P(X;; = R|Y; = M)
Y P(X;; = R|Y;; = M) + P(X;; = M|Y;; = M)

543  Estimating the tumor fraction and mutation presence
544  In this section we will develop a procedure for estimating the tumor fraction (f) and mutation

545  presence probability (r). For this, let i € {1,...,K} be the index of a catalogue of K candidate

546  mutations, N; the corresponding number of covering reads and {(xij)je{l N}} all the
i€{1,..K}

547 observed alleles. First, we write the likelihood function for f and r:
L (f’ r|{(xij)}iE{l,...,K},jE{l,...,N})

=BP(ZL-=0)-

[ ] [PCxy = RIYy = RYP(vy; = RIZ; = 0) + P(Xy; = RIY;; = M)P(¥,; = M|2Z;; = 0)]

Jixij=R

1_[ [P(X;; = MIY;; = R)P(Y;; = R|Z;; = 0) + P(X;; = M|Y;; = M)P(Y;; = M|Z;; = 0)] +

Jixij=M

P(Z, =1)-

[] [P(xy = RIvy = R)P(Y, = RIZ; = 1) + P(X,; = RI¥; = M)P(Y,; = M|Z,; = 1)]-

j:xl-j:R

[] [pCty =M%, = RYP(vy = RIZy = 1) + P(x,; = MIY;; = M)P(¥ = MIZ;; = 1)]

jxij=M
1_[(1—r) 1_[ (1—ef~™) 1_[ e ™M +
Jixi=R jixy=M
]HR[(l efM (1 ];>+ M-R f] JEM[R_)M (1_—>+(1 el ch]

548  Getting a maximum likelihood estimate (MLE) of f and r by optimizing this expression analytically is

549  not tractable. However, by seeing Y;; and Z; as latent variables, estimates can be found by
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550 employing an EM-algorithm, which will be developed in a Supplementary section 6. For now,

551  assume that f and # are a MLEs of f and  respectively.

552  To test if a sample has a significant content of mutational DNA, we focus on the parameter in the
553  model. By representing the hypothesis of a negative sample as a tumor fraction of 0 and no

554  mutations present (Hy: f,r = 0 ) and a positive sample as a positive tumor fraction and some
555  mutations present (HA:f >0,r= %) a likelihood ratio test can be used to test for significance.
556 Note that r > % in Hy corresponds to at least one mutation being present in the sample. The LR-test
557  statistic for this test is:

L (00f(Cx)},)
AGEIED N

Q = —2log

558  Since there are 2 free parameters in the model, it can be assumed that Q is approximately y2(2)-

559  distributed, and a p-value can be obtained as follows:
Pvar =1— sz(z) (@

560  Using this statistical model for cancer calling on top of the error rate predictions from DREAMS we

561 refer to as the DREAMS-cc.

562  Calling individual mutations

563 In the special case where the number of mutations in the catalogue is K = 1, the algorithm outlined
564  above can be thought of as a regular variant caller. In this case the concept of some mutations not
565  being present in the sample is unnecessary, as the presence of the single mutations of interest can
566  be governed solely by the tumor fraction f. The algorithm above is easily modified to handle this by
567  assuming that r = 1, and using one degree of freedom for the y2-distribution in the significance
568 test. The equations in the EM-algorithm can also be simplified by making this assumption. We refer

569 to the variant caller will be referred to as DREAMS-vc.
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570 Figure legends

571 Figure 1:

572  Error generation in Next Generation Sequencing data. Normal cells (grey) and tumor cells (blue) shed
573 DNA into the bloodstream. The tumor DNA (blue) contains a tumor mutation (yellow). The
574  circulating free DNA in the blood becomes damaged both in vivo and in vitro (green triangle). Errors
575 can be introduced at each PCR duplication during amplification (red circle). Further errors are
576  accumulated during sequencing and mapping (purple square). The final data contains mapped reads,

577 where some mismatches are errors, and others are mutation from tumor cells.
578 Figure 2:

579  The data collection setup for tumor-informed relapse detection in colon cancer patients. After the
580 patient is diagnosed with colorectal cancer a liquid biopsy is extracted prior to curative surgery (Pre-
581  OP). A biopsy is taken from the tumor. Following surgery liquid biopsies (Post-OP) can be collected to

582  monitor relapse. All collected samples are sequenced using Next-Generation Sequencing.
583 Figure 3:

584  a) Examples of local sequence-context features and read-level features extracted from a read for a
585  single position of interest in a read mapping. Centered at the position of interest, the trinucleotide
586 context is extracted, and the surrounding 11 bp region is used for calculating the regional features,
587 including GC content and K-mer complexity. The read pairs contain a forward and reverse read that
588  are enumerated as either the first or second of the pair according to the order of sequencing. Two
589  read pairs are used for illustration of the read-centric features in the panels on the right. The UMI
590  groups are shown to indicate the variation in the number of reads used for the consensus reads. The
591 read position and fragment size are shown for the consensus reads. b-e) Variation in observed error
592  rate for selected features based on their observed distribution: b) Fragment size, ¢) UMI group size,

593  d) Read position and the variation between the first and second read in a pair. e) Error type for each
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594  strand (forward and reverse). For each feature the 95% confidence interval is indicated by the
595  shaded areas or error bars. See Supplementary section 3 for how the error rates and confidence

596 intervals are calculated and similar plots of the remaining features.

597 Figure 4:

598  a) Features are individually removed one-by-one from the full model containing all features to
599  measure the decrease in validation error. The most important feature is then defined as the one that
600  decreases the validation error the most, and vice versa. The grey points show the mean decrease in
601  validation error for each fold of a 5-fold cross validation. The average of these is used to rank the
602 features by importance, indicated by the black points. b) Based on the importance ranking, the
603  features are cumulatively removed one-by-one to from a full model. If the decrease in validation
604  error compared to the full model is significant, the feature should not be removed from the model. A
605  feature is only kept if removing it worsen the performance in all folds of the 5-fold cross validation.
606  c) Structure of the neural network. The neural network uses three different types of input features:
607  numeric, categorical, and embedded. The input features are processed differently in each group. The
608  input features are then parsed through three hidden layers of decreasing width. The output contains
609 4 nodes representing the probability of observing each of the four based (A, T, C, G) at the given

610 read position.

611 Figure 5:

612  a) lllustration of 5x2-cross-validation procedure for the estimation of performance. The patients are
613  first split into two approximately equally sized folds. The neural network model is trained on the
614  Post-OP data of fold 1 and validated by testing the models on the Pre-OP samples of the other fold
615  (Test B). Thisis then repeated by swapping the data in fold 1 and 2. The whole process is repeated 5
616 times. b) Performance of variant calling using DREAMS-vc compared to state-of-the-art tools
617  Shearwater and Mutect2. The AUC is estimated based on the different negative sets: The cross-

618  patient calls, 500 random validation alterations and these sets combined (All). The AUC is also
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619  estimated for the full group of patients (All), and the patients with stage | and stage Il CRC,

620  individually (ns: p20.05, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001).
621 Figure 6:

622  Prediction of cancer using DREAMS-cc (a) and Shearwater (b). For each patient’s LB-sample (y-axis)
623  the mutation catalogue (x-axis) for every candidate patient is used for calling cancer. The patients
624  are stratified into patients with stage | and stage Il CRC, respectively. The diagonal is showing the
625  result of using a patient’'s own mutation catalogue for cancer calling and constitutes the expected
626  positives. The off diagonal is the cross-patient results, for which the mutation catalogue is filtered
627  with the patient’s tumour and germline variants prior to cancer calling, and thus these are expected
628  to be negative. The colour scheme is chosen based on the matched quantiles from the p-value and
629 combined Bayes factors from DREAMS-cc (a) and Shearwater, respectively. The cancer predictions
630  show the results from one split in the 5x2 CV. c¢) AUC performance of DREAMS-cc and shearwater

631  with respect to calling cancer.
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