

1 DREAMS: Deep Read-level Error
2 Model for Sequencing data applied to
3 low-frequency variant calling and
4 circulating tumor DNA detection

5 Mikkel H. Christensen ^{1,4} *, Simon Drue ¹ *, Mads H. Rasmussen ^{1,4} *, Amanda Frydendahl ^{1,4} *, Iben
6 Lyskjær ^{1,4}, Christina Demuth ¹, Jesper Nors ^{1,4}, Kåre A. Gotschalck ^{2,4}, Lene H. Iversen ^{3,4}, Claus L.
7 Andersen ^{1,4}# & Jakob Skou Pedersen ^{1,4}#

8 *Shared first author

9 #Shared senior authors / corresponding authors

10

11 ¹Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.

12 ²Department of Surgery, Horsens Regional Hospital, Horsens, Denmark.

13 ³Department of Surgery, Aarhus University Hospital, Aarhus, Denmark.

14 ⁴Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark

15 **Keywords:**

16 Circulating tumor DNA, Next-generation sequencing, cancer research, colorectal cancer, Machine
17 learning

18 Abstract

19 Circulating tumor DNA detection using Next-Generation Sequencing (NGS) data of plasma DNA is
20 promising for cancer identification and characterization. However, the tumor signal in the blood is
21 often low and difficult to distinguish from errors. We present DREAMS (**D**eep **R**ead-level **M**odelling
22 of **S**equencing-errors) for estimating error rates of individual read positions. Using DREAMS, we
23 developed statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc).
24 For evaluation, we generated deep targeted NGS data of matching tumor and plasma DNA from 85
25 colorectal cancer patients. The DREAMS approach performed better than state-of-the-art methods
26 for variant calling and cancer detection.

27 Background

28 Degraded DNA fragments are released into the blood through apoptosis, necrosis and active
29 secretion from a range of cell types and can be detected as circulating free DNA (cfDNA)[\[1\]](#). Solid
30 tumors also shed DNA into the bloodstream and cfDNA of cancer origin is called circulating tumor
31 DNA (ctDNA)[\[2\]](#). The ctDNA level in blood is reported to be positively associated with tumor
32 burden[\[3, 4\]](#). As the half-life of cfDNA is less than an hour, ctDNA measurements can be considered
33 real-time assessments of tumor burden and studies have shown that ctDNA can be more sensitive
34 than radiological imaging[\[5-7\]](#). This makes ctDNA measurements a promising approach for detecting
35 relapse in patients who have undergone curative surgery[\[6-10\]](#). Other proposed applications include
36 diagnosis and intervention planning, tracking therapeutic response, monitoring the development of
37 treatment resistance, and ultimately early detection of cancer in screening programs[\[8, 11\]](#). Since
38 obtaining liquid biopsies, such as plasma from blood samples, is both cost-effective and minimally
39 invasive, techniques for efficient ctDNA detection holds great promise for targeted treatment in
40 precision medicine.

41 In clinical contexts with low tumor burden, e.g. detection of minimal residual disease after curative-
42 intended surgery and early detection of recurrence, the ctDNA constitute only a minor fraction of
43 the cfDNA, often less than 0.1%. Hence, the error rate of current sequencing methods is in the same
44 order of magnitude as the tumor signal[[12](#)], making it challenging to accurately distinguish errors
45 from true mutations in ctDNA applications. Errors can arise in several steps between the initial
46 shedding of cfDNA and the final generation of next-generation sequencing (NGS) reads (**Figure 1**).
47 DNA fragments may be damaged e.g. by deamination or oxidation[[13](#), [14](#)], during PCR amplification
48 of the sequencing library[[13](#)], and during sequencing from PCR amplification and/or sequencing
49 artefacts.{[{Ma, 2019 #25}}](#)} For deep sequencing, some of the PCR and sequencing errors can be
50 rectified using unique molecular identifiers (UMIs). With the use of UMIs, each DNA fragment is
51 labeled with a unique “barcode” prior to PCR amplification, such that replicates of the same
52 fragment can be grouped together. Errors can then be eliminated by comparing the replicates within
53 a group, as errors from PCR amplification and sequencing are likely to be present in only a minority
54 of reads. However, some errors, such as DNA damage introduced prior to UMI labeling remains and
55 continue to challenge the discrimination of true low frequency mutational signal from these errors.

56 Several methods for detecting low frequency variants using NGS data have been developed. Most of
57 these establish a model for the expected frequency of errors and then assess the mutational signal
58 with a statistical test. They differ greatly in the required data prerequisites, how the errors are
59 modelled and handled, and the final assessment of the mutational signal.

60 Mutect2[[15](#)] and Shearwater[[16](#)] are examples of general somatic variant callers applicable for most
61 NGS data. Mutect2 realigns reads in regions with mutational signal and then calculates a log-odds for
62 the existence of the alternative allele using a statistical model in which the error rates are derived
63 from the PHRED scores. Shearwater is developed specifically for low-frequency somatic variant
64 detection for sub-clonal tumor mutations. It builds a position-specific error model based on the
65 observed rate of read alignment mismatches across a set of training samples. A mutation is called if

66 the observed signal exceeds what is expected from the error model. Additionally, this method can
67 incorporate prior knowledge about the probability of the mutations of interest.

68 Other methods, including MRDetect[17], INVAR [18]and iDES[12], have been specifically tailored to
69 detect ctDNA in NGS data. These methods build on the idea of aggregating the signal across multiple
70 mutations to classify a sample as ctDNA positive or negative, as opposed to calling each individual
71 mutation. For this purpose, a patient specific catalogue of mutations is generated from a matched
72 tumor sample. However, the enhanced performance of these methods come at the expense of
73 general applicability as they assume the presence of curated data from known ctDNA fragments or
74 specialized lab protocols.

75 Here we develop a generally applicable ctDNA detection method based on a detailed background
76 error model of individual read positions. This approach aims to capture general read-level error
77 behavior and thus be applicable even for genomic regions where training data is not available. Data
78 from reads known to come from ctDNA is not needed, and all data outside known mutated
79 positions, or from independent normal samples can be used as training data. However, training data
80 that was obtained similarly to the test data will provide the most precise model. Thus, severe
81 changes in laboratory protocols should optimally be accompanied by re-training of the model. Some
82 features such as the read position[19], proximity to fragment ends[14], UMI group size[12], GC-
83 content[20] and trinucleotide context[21] have been shown to affect the probability of errors at
84 individual read positions. By modelling their effect, the error rate of individual read positions may be
85 predicted. Thereby, a read alignment mismatch, i.e. a non-reference base, with a low predicted error
86 rate can provide more mutational evidence than a mismatch with a high error rate. This allows for
87 improved cfDNA error modelling, which is key to develop accurate ctDNA applications.

88 In the following, we demonstrate how cfDNA errors can be modelled accurately using a neural
89 network, by combining read level features with information about the sequencing context. For this
90 we developed DREAMS (Deep Read-level Modelling of Sequencing-errors) that incorporates both

91 read-level and local sequence-context features for positional error rate estimation. Based on
92 DREAMS, we developed a method for variant calling (DREAMS-vc) to accurately call individual cancer
93 mutations in cfDNA data. The method was generalized for cancer calling in DREAMS-cc that
94 aggregates the signal across a catalogue of mutations for accurate estimation of the tumor fraction
95 and sensitive determination of the overall cancer status. To evaluate the performance of DREAMS,
96 we performed deep-targeted sequencing of pre- and post-operative cfDNA samples from 85 stage I-
97 II colorectal cancer (CRC) patients and compared to state-of-the art methods Mutect2[15] and
98 Shearwater[16].

99 **Results**

100 Plasma cfDNA was extracted from pre-operative (Pre-OP) and post-operative (Post-OP) blood draws
101 of 85 stage I-II CRC patients (**Table 1**) undergoing curative surgery. In addition, two stage III CRC
102 patients were used in the model training. A biopsy from the resected tumor and paired peripheral
103 blood cells was sequenced to generate a patient-specific mutational catalogue. Post-OP samples
104 were collected 2-4 weeks after surgical removal of the primary tumor (**Figure 2**). Each cfDNA sample
105 was sequenced using a custom hybrid-capture panel, designed to capture 41 exonic regions,
106 spanning 15.413 bp, frequently mutated in CRC (**Supplementary section 1** and **Supplementary table**
107 **1**). After UMI collapse the median of the average depths with corresponding interquartile range
108 (IQR) of samples were for Pre-OP; 3307 (IQR: 3560), Post-OP; 7143 (IQR: 8844), buffycoat; 1850 (IQR:
109 1468), and tumor samples; 2132 (IQR: 2145), no samples had an average read depth below 100. All
110 samples have been mapped and processed through the same pipeline (**Supplementary section 1**).

111

112

113

114

115

116

Table 1: Clinical characteristics

Characteristic	Count or Median (percent or range)
Patients	85 (100%)
Gender	
<i>Male</i>	53 (62%)
<i>Female</i>	32 (38%)
Age [years]	71 (49-87)
Tumor location	
<i>Right colon</i>	23 (27%)
<i>Left colon</i>	26 (31%)
<i>Rectum</i>	36 (42%)
Pathological T-stage	
<i>pT1</i>	15 (18%)
<i>pT2</i>	25 (29%)
<i>pT3</i>	41 (48%)
<i>pT4</i>	4 (4.7%)
UICC stage	
<i>I</i>	40 (47%)
<i>II</i>	45 (53%)

117

118 We first identified features that are known or expected to affect the error rate (**Figure 3a**). In
119 general, they can be split into two types: local sequence-context features and read-level features.
120 The local sequence-context features capture the genomic sequence context, including the
121 trinucleotide context, information about the sequence complexity (Shannon entropy of nucleotide
122 frequency), and GC contents in an 11 bp window around the position of interest (**Methods**).

123 The read-level features capture the structural composition of the read, UMI characteristics and
124 sequencing information. The structural composition includes the strand a read aligns to (forward or
125 reverse), the number of insertions and deletions in the read, and the total size of the underlying
126 fragment. In the read pre-processing, UMIs were used to generate consensus reads with lowered
127 error rates (**Supplementary section 2**). For each consensus read, we extracted the UMI-group size,
128 the number of reads disagreeing with the consensus at the position, and the overall number of
129 mismatches outside the position of interest. As sequencing related features, we included the base
130 position in the read (read position) and whether the read is the first to be sequenced from the read-
131 pair. The read quality (PHRED score) was not included, as it had the same high value for all positions
132 in the UMI-collapsed consensus reads.

133 We evaluated the individual features association with the error rate by analyzing the total set of
134 read alignment mismatches (n=707,562) across all Post-OP samples (**Figure 3b-d**), after excluding
135 mutations and variants found in matching tumor and germline samples. The mismatches were
136 compared to an equal number of randomly sampled matches, to estimate the error rate for each
137 feature across its values (**Supplementary section 3**).

138 Since fragment lengths of cfDNA are influenced by nucleosome binding patterns, the fragment
139 length distribution have peaks at around 162 bp (mono-nucleosomal) and 340 bp (di-
140 nucleosomal)[[22](#)]. The error rate tended to be minimized in fragments of these lengths (**Figure 3b**).
141 As expected, we observed a lower error rate in consensus reads formed by larger UMI groups[[12](#)]
142 (**Figure 3c**).

143 The error distribution for the read position showed an increased error rate in the beginning of the
144 reads (**Figure 3d**). We also observed a clear difference in error distribution along the read between
145 the first and second read of the pair. The 12 different nucleotide alterations showed widely different
146 error rates (**Figure 3e**), which is expected as error-induced mismatches are not equally likely, and the

147 rate further differed between the two strands. However, strand symmetric alterations were
148 generally similar, apart from the mismatches C→T/G→A and C→A/G→T.

149 Overall, we saw variation in the error rate for all the presented features (the remaining are shown in
150 **Supplementary section 3**). Thus, for a given genomic position, different reads may have different
151 error rates due to differences in read-level features. In the following, we present how this variation
152 can be captured and used to potentially improve detection of ctDNA.

153 **Neural network model and feature selection**

154 To predict the error rate at a given read position, we used a neural network model with the input
155 features described above (**Methods**). The predictive ability of individual features was evaluated
156 using a “leave-one-covariate-out” (LOCO) scheme[23] (**Supplementary section 4**). In short, we
157 evaluated the performance of a full model containing all features (baseline) and then the relative
158 performances of restricted models where each feature had been left out one by one. We used the
159 latter to measure and rank the importance of each feature (**Figure 4a**). When leaving out the
160 trinucleotide context, the reference base was provided instead to assess only the importance of the
161 two neighboring nucleotides.

162 We found the most informative feature for modelling the error rate to be the strand (**Figure 4a**). The
163 second and thirds most informative features were whether the read is the first in a pair and the read
164 position. The trinucleotide context was fourth, indicating that there is a difference in error rate for
165 different contexts, as found by others[18]. The fragment length and the UMI group size also
166 contribute significantly to the model. The remaining features showed little to no effect on the model
167 performance.

168 An optimal subset of informative features was chosen using a stepwise procedure where features
169 were excluded in order of importance (**Methods**). The set of features chosen was the smallest model
170 that did not perform significantly worse than the full model (**Supplementary section 4**). The four

171 least important features could be removed without any significant negative effect on the
172 performance (**Figure 4b**). Of the remaining ten features, eight were read-level features, namely the
173 features describing the UMI group, the number of errors in the UMI group, the number of deletions
174 in the read, the number of other errors in the read, the fragment length, read position, strand, and if
175 the read was first in pair. This showed that read-level features do contribute to accurate modelling
176 of the error rate.

177 The numerical and categorical variables are processed differently in the neural network prior to the
178 hidden layers (**Figure 4c**). The numerical features are batch normalized, the categorical features are
179 one-hot encoded, and the tri-nucleotide context is embedded in three dimensions to handle the
180 large number of possible contexts (**Methods**).

181 **Predictive performance in clinical data**

182 To validate the utilization of the DREAMS error model, we applied it in calling tumor variants
183 (DREAMS-vc) and cancer (DREAMS-cc) (**Methods**). We assessed the performance using five repeats
184 of 2-fold cross-validation (5x2 CV) (**Figure 5a**). The model was trained on the Post-OP samples, and
185 Pre-OP samples were used for method validation. The split was done on patient level to ensure that
186 a model is not trained and tested on data from the same patient. This analysis was repeated with
187 five different randomized splits to control for split induced variation.

188 The performance of calling tumor mutations in the plasma samples was assessed by looking at the
189 area under Receiver Operating Characteristic curves (AUC). The performance of DREAMS-vc was
190 compared to state-of-the-art algorithms Mutect2 and Shearwater. Only positions with at least one
191 observed mismatch were included in the performance calculations (**Figure 5b**). Positions without
192 signal was called negative by any method, making them redundant for performance comparisons.

193 Using DREAMS-vc, we aimed to call the tumor mutations of each patient from their respective
194 mutation catalogue. As negative controls, we attempted to call cross-patient mutations, by

195 searching for the mutations found in other patients. Additionally, a validation set of 500 randomly
196 generated alterations within the covered sequencing panel was used as negative controls. Evaluating
197 across the combined negative set of both cross-patient mutations and validation alterations and
198 cancer stages, DREAMS-vc performs significantly better than both Shearwater and Mutect2 (**Figure**
199 **5b**). Additionally, the performance was assessed separately for stage I and stage II CRC patients. This
200 showed that superior performance of DREAMS-vc is predominantly due to the stage II CRC patients
201 (**Figure 5b**). As expected, all models perform better on later stage patient samples as these are
202 expected to have a higher mutational signal in the cfDNA due to a higher tumor burden.

203 All methods perform similarly on stage I patients, however DREAMS-vc has marginally better
204 performance. Performance evaluations for each of the separate negative sets showed that DREAMS
205 performs better than Mutect2 with the cross-patient negative set and better than Shearwater with
206 the validation set as the negative set. The variation in performance of DREAMS-vc across splits and
207 folds is lower than for Mutect2 and Shearwater, which indicates that its variant calling is more stable
208 across patients and mutation types.

209 By maintaining the false positive rate at 5% for the alterations with signal in the validation set for
210 each model, we get comparable thresholds for the three confidence measures: p-values, Bayes
211 factor and TLOD for DREAMS-vc, Shearwater, and Mutect2, respectively. This allows for a
212 comparison of the sensitivity of the models at a pre-determined specificity of 95%. The model could
213 then be assessed across an alteration catalogue of 191 true positive mutations from the mutation
214 catalogue and 1290 cross-patient negative calls based on the mutation catalogue of the other
215 patients. Out of the alteration catalogue, 88 true mutations and 1100 cross-patient negative calls
216 had a signal for the alteration.

217 Using this threshold DREAMS-vc called 83% of the tumor mutations with signal, while Shearwater
218 and Mutect2 called 75% and 72.7%, respectively (Table 2). F1 and G-mean scores were calculated to
219 assess the performance of the models by using the cross-patient mutations as negative controls. G-

220 mean is the geometric mean of sensitivity and specificity, and F1 is the harmonic mean of precision
221 and sensitivity. For G-mean, DREAMS-vc performed better than Shearwater and Mutect2, however
222 the F1 score of Shearwater was very similar to DREAMS-vc, due to lower false-positive rate of
223 shearwater (Table 2). Considering all mutations observed in the tumors, including those without
224 signal in plasma, we found that about 38.2% could be recalled in Pre-OP liquid biopsy samples.

225

226

Table 2	Full alteration catalog^a		Catalogue alterations with signal^b				
	Sensitivity	Specificity	Sensitivity	Specificity	F1	G-mean	
DREAMS-vc	0.382	0.998	0.830	0.957	0.702	0.891	
Shearwater	0.346	0.998	0.750	0.971	0.710	0.853	
Mutect2	0.336	0.997	0.727	0.933	0.566	0.831	

227

228 ^a Full alteration catalogue consisting of n=191 true positive mutations, and n=1290 potential cross-patient
229 negative calls.

230 ^b Catalogue of alterations with signal consisting of n=88 true positive mutations, and n=1100 potential cross-
231 patient negative calls.

232 By setting the threshold based on a 5% false positive rate in the cross-patient mutation set, the
233 validation mutation set can be used as negative controls. The true positives are still the same 191
234 mutations of which 88 has a signal for the alteration. The negatives are the 500 validation positions
235 multiplied with the 87 tested samples, giving a total of 43,500 possible alterations of which 1,350
236 had a signal. With this set we obtained an 83% true positive rate, compared to 77.3% for Shearwater
237 and 68.2% for Mutect2 (Table 3). DREAMS-vc scored highest in both F1 and G-mean scores. Here,
238 DREAMS-vc performed distinctly better than Shearwater, while Mutect2 had a more comparable F1
239 score.

Table 3	Full alteration catalog^a	Catalogue alterations with signal^b
----------------	--	--

	Sensitivity	Specificity	Sensitivity	Specificity	F1	G-mean
DREAMS-vc	0.382	0.998	0.830	0.944	0.616	0.885
Shearwater	0.356	0.997	0.773	0.911	0.493	0.839
Mutect2	0.314	0.999	0.682	0.962	0.603	0.810

240

241 ^a Whole catalogue consisting of n=191 true positive mutations, and n=43500 potential validation set calls.

242 ^b Catalogue of positions with signal consisting of n=88 true positive mutations, and n=1350 potential validation

243 calls.

244 A common measure used to predict the presence of ctDNA is the estimated tumor fraction in
245 plasma. DREAMS-cc combines the mutational evidence across the mutation catalogue, to estimate
246 the tumor fraction with an accompanying p-value for the presence of cancer (**Methods**). We aimed
247 to detect cancer in the Pre-OP samples, since cancer is present and should, in theory, be detectable
248 given enough ctDNA is present in the blood. As a negative control, we attempted to detect cancer in
249 each Pre-OP sample (Tested Sample) with the mutation catalogue from all other patients (Candidate
250 patient) (**Figure 6a**). In case of shared mutations between the mutation catalogues, these were
251 eliminated to prevent false positives. As a benchmark, we constructed a cancer call score using the
252 product of the individual Bayes factors across the mutation catalogue from Shearwater, resulting in
253 a similar tendency (**Figure 6b**). The performance of calling cancer can be assessed by treating the
254 cross-patient mutation catalogues as expected negatives and calculate an AUC score. Performance
255 was compared using the 5x2 cross validation setup as above (**Figure 5a**). The AUC was very similar
256 between DREAMS-cc and Shearwater with respect to calling cancer, however DREAMS-cc showed a
257 slightly increased performance ($p = 0.0343$, one tailed t-test). As for variant calling, we only included
258 the samples with mutational signal to showcase and compare the performance of the different
259 methods in discriminating tumor from error signal.

260 For the patients with stage I and II CRC, we found tumor supporting reads in 47.5% (19/40) and 73%
261 (33/45) of the Pre-OP samples, respectively. We called cancer in 34% of the stage I CRC patients,
262 corresponding to 74% (14/19) of the patients with a mutational signal. We called cancer in 73% of

263 the stage II CRC patients, corresponding to 94% (31/33) of the patients with signal. These results
264 were obtained whilst still limiting the false positive rate to 5 % in cross-patient cancer calls with a
265 non-zero mutational signal.

266 Detailed analysis of the false positive cancer calls reveals that most are due to a specific KRAS G12V
267 variant: chr12:25245350 C>A. This variant is common in colon cancer, and it is therefore not
268 surprising to find in the patients [24]. However, the mutation was not found in the patient's
269 corresponding tumor or buffycoat samples. A possible explanation for this is that the mutation is not
270 detected in the tumor biopsy due to sub-clonality [25] or that there is an underlying germline signal
271 that was not caught in the buffycoat.

272 Discussion

273 We have developed DREAMS, as a new approach for modelling the error rates in sequencing data
274 that incorporates information from both the local sequence context and read-level information.
275 DREAMS is intended for settings that rely on accurate error identification and quantification. We
276 applied the error model for low-frequency ctDNA variant calling (DREAMS-vc) and cancer detection
277 (DREAMS-cc).

278 The error rate was found to vary depending on several of the proposed read-level features.
279 Surprisingly, fragment size was found to be correlated with the error rate, with the smallest error-
280 rates being observed for fragment sizes corresponding to the mono-nucleosomal and di-
281 nucleosomal lengths (**Figure 3b**). Fragments that deviate from these in length may have been
282 degraded in the blood for a longer time and thereby accumulated more errors. Fragments of ctDNA
283 are generally shorter and error rates are generally highest in short fragments, which shows the
284 importance of accurate error modelling [26, 27]. The error rate was also found to vary with the
285 strand, and symmetric mismatches occurred at different rates (**Figure 3e**). The G>T/C>A asymmetry
286 can be explained by the hybridization capture protocol only targeting one strand and thus only
287 capturing oxidative damage of that strand [14]. A similar mechanism might explain the C>T/G>A

288 asymmetry in the case of cytosine deamination. The error rate varied with the position in the read
289 and was especially increased in the beginning of reads (Figure 3d). This may be because ends of
290 fragments are prone to damage[14] and in thermodynamic equilibrium with being single stranded.
291 The error rate also varied depending on whether the read was the first or second in the pair (Figure
292 3d). Besides being intermittent by a PCR amplification step, the reads differ in composition and
293 length of adapters sequenced prior to the insert, which might cause this difference.

294 Training a background error model using DREAMS does not require known mutation sites in reads,
295 as it only models the errors found in aligned reads (BAM-files). These can originate from normal
296 samples or mutation filtered cancer samples, as in this study. Since error patterns are highly
297 dependent on laboratory procedures, the same protocol should be used for training samples and
298 subsequent testing samples. Training across multiple samples gathered over time, is expected to
299 learn the error patterns that are general across samples and batches. Conversely, if the amount of
300 data in a single sample is large, the error model can be trained on the sample itself, which
301 potentially yields a highly specific model that accounts for sample specific error patterns. The model
302 is built to be position agnostic and can therefore be used to predict error rates for positions for
303 which no training data is available. Furthermore, it is fit for both deep sequencing of panels and
304 shallow sequencing of whole genomes.

305 The error model has been implemented using a neural network, allowing the feature set to be
306 tailored to capture the relevant information of a specific setting. Analysis of the feature importance
307 revealed that several of the proposed read-level features are useful in predicting the error rate in
308 sequencing data (Figure 4a). Most features presented in this paper are general to NGS data,
309 however not all sequencing protocols use UMI based error correction, rendering UMI related
310 features redundant. In particular, UMI cannot be exploited for shallow whole-genome sequencing as
311 read groups cannot be formed. In such cases error rates would be increased, making accurate error
312 modelling as performed by DREAMS even more important.

313 Compared to simpler methods, the presented approach is more computationally demanding, due to
314 training of the neural network model and the use of complex data extracted from BAM-files. A
315 neural network is a simple and flexible approach for bridging the gap between a complex set of
316 contexts and read level features and the error rate of a given read position but might not be the
317 most efficient solution. The model can be trained on a regular laptop within a few hours, which
318 should only be done once, when the training dataset is defined. Using the trained model and the
319 statistical modules adds no significant computation time for calling mutations and cancer in the
320 current setting. However, very large mutation catalogues are expected to increase the computation
321 time for DREAMS-cc.

322 DREAMS was built to exploit read-level features under the assumption that these affect the error
323 rate in sequencing data. Thus, the power of this approach increases with the variability in the error
324 rate explained by read level features. Thereby, less emphasize is put on mismatches that are likely
325 errors, and more confidence in the potential tumor signal from other mismatches. Conversely, if
326 read level features are not improving error prediction, the performance is expected to be similar to
327 methods working with simpler summary data. Although DREAMS use information about the local
328 sequence-context, strong regional effects on the error rate are not expected to be captured by the
329 model.

330 In all performance comparisons DREAMS-vc performed better or equal to the other methods in
331 calling tumor mutations. This indicates that read-position level features can improve performance in
332 separating error from mutational signal. Similarly for cancer detection, DREAMS-cc performed equal
333 to calls based on Shearwater. Cancer was detected in most (73%) of stage II CRC cancer patients and
334 a third (34%) of stage I patients.

335 There are false positive cancer and mutation calls, some of which could potentially be explained by
336 clonal hematopoiesis of indeterminate potential (CHIP) or an unexpected error signal. To reduce the
337 signal from CHIP, we have excluded positions with significant presence of non-reference nucleotides,

338 found in the germline samples, however, a low signal might still be present. Remaining false positive
339 calls might be due to regional effects or sample specific artifacts. Many of the false positive mutation
340 calls in the Pre-OP samples were found to be a mutation leading to the KRAS G12V variant, and it
341 could therefore potentially be explained by a sub-clonal variant that was not identified in the tumor
342 sample or a germline signal of clonal hematopoiesis of indeterminate potential (CHIP) that was not
343 identified in the buffycoat samples.

344 Sensitive variant calling in liquid biopsies can provide non-invasive insight into tumor genetics, which
345 can potentially enable personalized treatment of patients and be a cost-effective approach for
346 cancer screening. DREAMS-cc integrates evidence across a mutation catalogue to increase sensitivity
347 in cancer detection. Cancer detection is expected to get more sensitive as the number of mutations
348 in the catalogue rises. A potential application of DREAMS-cc could be tumor agnostic cancer
349 detection based on a catalogue of commonly known tumor variants.

350 The approach presented in this paper does not utilize tumor specific signals such as the fragment
351 size distribution, fragmentation patterns, mutational signatures, expression information, etc.
352 However, together with the error characterizing properties of DREAMS-cc, this could potentially
353 refine the cancer calls. Addition of regional properties and positional information could potentially
354 further increase sensitivity. In this paper, we focus on the single nucleotide variants in the tumor,
355 but the model could be extended to be able to look for indels. The underlying ideas in DREAMS are
356 not restricted to variant calling and could be used in other tasks of sequencing data analysis such as
357 advanced error filtering.

358 Conclusion

359 We have presented the DREAMS error rate model and demonstrated the importance of using read-
360 level features for modelling the errors in NGS data. The model was validated in a tumor informed
361 setting, using DREAMS-vc for variant calling and DREAMS-cc for cancer detection in patients with
362 CRC. DREAMS-vc allowed accurate detection of mutation signal in plasma samples extracted prior to

363 curative intended surgery with an improved performance compared to state-of-the-art methods.
364 This highlights the importance of including read-level information in modelling the background error
365 rate. Furthermore, DREAMS-cc demonstrated the ability to combine signal from multiple mutations
366 known from the tumor biopsy for improved cancer detection. DREAMS-cc was able to call cancer in
367 73 % of Pre-OP samples from CRC stage II patients, and 34 % of CRC stage I patients. Potential future
368 applications of DREAMS include analysis of WGS data and tumor agnostic cancer detection. The
369 approach presented with DREAMS is generally applicable across NGS applications that need accurate
370 handling and quantifications of errors, and the presented algorithms (DREAMS-vc and DREAMS-cc)
371 are only examples of how to exploit this. The specific application presented in this paper is
372 implemented as a user-friendly R package [<https://github.com/JakobSkouPedersenLab/dreams>].

373 **Declarations**

374 **Ethics approval and consent to participate**

375 The Committees on Biomedical Research Ethics in the Central Region of Denmark have approved the
376 study (J. No. 1-10-72-3-18). The study was performed in accordance with the Declaration of Helsinki
377 and all participants provided written informed consent.

378 **Consent for publication**

379 Not applicable.

380 **Availability of data and materials**

381 Sharing of sensitive patient specific clinical information and raw sequencing data is currently not
382 possible due to ethical and GDPR regulations.

383 **Competing interests**

384 The authors declare that they have no competing interests

385 **Funding:**

386 MHR, AF, LI, JN, and CLA were funded by Aarhus University, Lundbeck Foundation (R180-2014-3998),
387 Dansk Kræftforskning Fond (FID1839672), Innovationfund Denmark (9068-00046B), Danish Cancer
388 Society (R133-A8520-00-S41, R146-A9466-16-S2, R231-A13845, R257-A14700), NEYE foundation,
389 Frimodt-Heinke Foundation, and Novo Nordisk Foundation (NNF17OC0025052). SD, MHC, and JSP
390 were funded by Aarhus University, the Independent Research Fund Denmark | Medical Sciences
391 (8021-00419B), the Danish Cancer Society (R307-A17932), and Aarhus University Research
392 Foundation (AUFF-E-2020-6-14).

393 **Author contributions:**

394 MHC, SD, CLA, and JSP conceived and designed the study. MHC and SD developed the statistical
395 methods and the software under supervision by JSP with input from MHR and CLA. MHR, AF, IL, CD,
396 JN, KAG, and LHI acquired patient samples and generated patient data, including NGS data. MHC, SD,
397 MHR, AF, CLA, and JSP analyzed and interpreted the patient data. SD and MHC wrote the article
398 under supervision of CLA and JSP with revisions and suggestions from the other authors. All authors
399 read and approved the final manuscript.

400 **Acknowledgements:**

401 We thank the participating CRC patients, and the Danish Cancer Biobank for contributing clinical
402 material. We also thank the IMPROVE study group for patient inclusion: Kåre Andersson Gotschalck
403 (Horsens Hospital), Lene Hjerrild Iversen (Aarhus University Hospital), Uffe Schou Løve (Viborg
404 hospital), Anders Husted Madsen (Herning Hospital), Ole Thorlacius-Ussing (Aalborg University
405 Hospital), Ismail Gögenur (Køge Hospital), Per Vadgaard Andersen (Odense University Hospital),
406 Jakob Lykke (Herlev Hospital), Peter Bondeven (Randers Hospital), and Nis Hallundbæk Schlesinger
407 (Bispebjerg Hospital).

408 **Methods**

409 **Error rate prediction using read level information**

410 In this study we present a method called DREAMS (**D**eep **R**ead-level **M**odelling of **S**equencing-**e**rrors)
411 for estimating the error rate at each read position using features of the individual read and the
412 genomic context of the position. In practice, this is achieved by predicting the probability of
413 observing each allele given the describing features of a position in a read and considering the
414 probabilities of observing the alternative alleles as the error rates. The read specific features can
415 include information such as the read position, the strand of the mapped read, the length of the
416 fragment, and UMI-group size. The read position refers to the cycle number at which the position
417 was sequenced starting with the first nucleotide of the fragment, thus disregarding cycles used for
418 reading primers, adapters, unaligned ends etc. Context specific features contain information about
419 the genomic sequence surrounding the position, including the neighboring bases (tri-nucleotide
420 context), the complexity, and GC-content. The local complexity is calculated as the Shannon entropy
421 for both single nucleotides and pairs. Similarly, the local GC content is calculated as the fraction of C
422 and G nucleotides. In principle, any feature that can be thought to affect the error rate of a read
423 position can be added to improve the error rate prediction. Another possible feature would be the
424 positional read quality score given by the sequencing machine. However, the estimated quality for
425 the collapsed consensus reads were all capped at the same high value and thus excluded as they do
426 not include any information for further modelling.

427 **Data**

428 Data for a read position can be extracted from a read mapping (BAM-file) with sequencing data from
429 a next generation sequencing experiment. The training data for the model consists of a set of read
430 positions from multiple samples, for which the observed allele is denoted together with the relevant
431 features. This means that the training data includes both matches, where read positions where the
432 observed allele is equal to the reference allele and mismatches where the observed and reference

433 allele differ. Mismatches that correspond to known single nucleotide polymorphisms found in the
434 germline samples are excluded from the training. Assuming that the training samples are non-
435 cancerous means that all remaining mismatches in the dataset can be assumed to be errors that
436 have occurred on a molecular level in the body or lab, or during sequencing of the sample.

437 The mismatches are extracted from the BAM-file using the mismatched positions annotated in the
438 MD-tag. The equivalent genomic position is found, and the 11- and 3-mer context is extracted from
439 the reference genome and used for calculation of local sequence-context features. The UMI errors
440 and UMI count are extracted from the cE and cD tags generated by the
441 CallMolecularConsensusReads from fgbio used for calling UMI consensus reads. Information about
442 the insertions and deletions is extracted from the cigar tag. The fragment size is the insert-size
443 (isize), and the read position is the position in the read sequence from the 5'-end of the read. Strand
444 and first in pair are extracted from BAM flag where this information is encoded in a bitwise fashion.

445 The model assumes that the input data for both training and testing is based on readings of unique
446 fragments, so each position in a fragment is only represented in one read. This can be assured using
447 unique molecular identifiers (UMIs) and by trimming overlapping read positions in the read pairs.

448 As training on every single read position in every single read is very demanding and inefficient, we
449 employ a methodology akin to importance sampling where we extract all the mismatches from the
450 data and randomly sample a subset of the non-mismatches. To account for this skew induced by
451 down-sampling one category of the training data a rescaling scheme inspired by[28] is used on the
452 predicted error rates. The method outlined in **Supplementary section 5**.

453 Neural network model

454 *Structure of the neural network*

455 To predict the error rate at a given read position we use a multilayer perceptron (MLP) which is a
456 simple neural network setup with multiple fully connected layers. The neural network allows us to

457 use the features without prior knowledge of how they interact amongst each other or how they
458 affect the error rate. The neural network is trained using a set of read positions where the features
459 describing the read positions are used as inputs and the observed allele as output.
460 For a given read position the possible observed outcomes are the alleles A, T, C or G. Interpreting
461 this as a random event, the observed allele can be seen as an outcome from a four-dimensional
462 multinomial distribution with one trial. Let X_{ij} represents the observed allele in read j at position i
463 and D_{ij} be the set of observed features for that read position. For a non-mutated, homozygote
464 position the observed allele should predominantly be the reference allele, and any observations of
465 non-reference alleles, would be considered errors. In this situation $P(X_{ij} = A | D_{ij})$ would be close to
466 1 if A was the reference allele for read position (i, j) , and $P(X_{ij} = x | D_{ij})$, $x \in \{T, C, G\}$ would be
467 the error rates for the remaining three alleles. Given a set of observations $\{(x_{ij}, D_{ij})\}_{i=1}^N$ it is then
468 possible to write the log-likelihood function for the observed data:

$$\begin{aligned} l & \left(\{(x_{ij}, D_{ij})\}_{i,j} \right) \\ &= \sum_{i,j} \log \left(P(X_{ij} = x_{ij} | D_{ij}) \right) \\ &= \sum_{i,j: x_{ij}=A} \log \left(P(X_{ij} = A | D_{ij}) \right) + \sum_{i,j: x_{ij}=T} \log \left(P(X_{ij} = T | D_{ij}) \right) + \\ & \quad \sum_{i,j: x_{ij}=C} \log \left(P(X_{ij} = C | D_{ij}) \right) + \sum_{i,j: x_{ij}=G} \log \left(P(X_{ij} = G | D_{ij}) \right) \end{aligned}$$

469 The problem now becomes how to estimate the distribution $P(X_{ij} | D_{ij})$ above. To do this, start by
470 defining the probability functions via the SoftMax function:

$$P(X_{ij} = a | D_{ij}) = \frac{e^{f_a(D_{ij})}}{\sum_{a' \in \{A,T,C,G\}} e^{f_{a'}(D_{ij})}}$$

471 , where $f_a(D_{ij})$ is a predictor function for the allele a using the observed information D_{ij} . As an
472 example, for classic multinomial logistic regression a linear predictor function is chosen such that

473 $f_a(X_i) = \beta_a \cdot X_i$, where β_a is a vector of feature specific weights that can be found by maximizing
474 the log-likelihood function. To get a more flexible model, a neural network is chosen, since this can
475 approximate any arbitrary predictor function well including arbitrary interactions between input
476 features. To do this $P(X_{ij} = a | D_{ij})$ can be interpreted as the output from a neural network model
477 where SoftMax is used as the last activation function and $f_a(D_{ij})$ is the output from the last hidden
478 layer. To train such a model inspiration is drawn from likelihood theory and the negative log-
479 likelihood function is chosen as the loss function to minimize.

480 **Architecture**

481 The neural network model allows for high flexibility in the choice of features and requires very
482 limited prior knowledge about the effect of the features on the error rate. The neural network was
483 selected to be a MLP with an input layer, three hidden layers and an output layer. The dimension of
484 the input layer depends on the selected input features, the hidden layers have a configuration of
485 128, 64, and 32 nodes with a ReLu activation function, and the output layer contains 4 nodes with
486 SoftMax activation, as explained above, corresponding to probability of observing each of the 4
487 alleles. The configuration of hidden layers can be varied, depending on the input data and the
488 available computational resources. The models were training using the Keras library (2.3.0) in R,
489 which is an interface that builds in Tensorflow (2.6.0) [29].

490 **Feature handling / embedding**

491 The features are split into numeric, categorical, and embedded variables and handled accordingly.
492 Categorical features are one-hot encoded, and the numeric features are batch normalized. The
493 trinucleotide context can be seen as the three distinct features: reference allele and the two
494 neighboring bases. These can be handled as categorical features with individual one-hot encoded 4-
495 dimensional inputs using 12 (3x4) input nodes in total. Alternatively, a 64-dimensional (4x4x4) one-
496 hot encoded input of the entire trinucleotide context (TNC) can be used. We will employ another
497 alternative that takes the 64-dimensional feature in the input layer and embeds it into a continuous

498 3-dimensional vector before including it in the model alongside the remaining input features.

499 Thereby, the model can learn the relationship between the contexts, and cluster contexts that have

500 a similar effect on the error rate close together and vice versa.

501 **Assessing cancer status across a catalogue of multiple mutation candidates**

502 Based on the neural network error model developed above, it can now be assumed that the

503 individual error rates for a given position in each read is known. In this section the error rates will be

504 exploited to develop a statistical framework for estimating the tumor fraction in a sample based on a

505 catalogue of candidate mutations. This framework can ignore some mutation candidates if these are

506 not found in the sample, for example due to relatively low allelic frequency due to sub-clonality in

507 the tumor or due to little tumor in the circulation. Reduction in the candidate mutations allows for a

508 comprehensive mutation catalogue to be used, where mutation candidates with limited evidence

509 may be excluded. The subset of candidate mutations is selected statistically by finding mutations

510 with a consistently high mutational signal, and the tumor fraction is estimated based on these

511 candidates. This subset of mutations is then used in a statistical procedure for testing if the observed

512 mutational signal exceeds what we would expect if no mutated DNA were present, making it

513 possible to determine the cancer status of a patient based on the sample.

514 **The statistical model**

515 Start by introducing Z_i as a variable that controls the presence of a given mutation on the site i , such

516 that $Z_i = 1$ represent the case where the site is mutated, and $Z_i = 0$ when it is not. Furthermore

517 let:

$$Z_i \sim \text{Bernoulli}(r)$$

518 Thus, given a catalogue of possible mutations, r is the probability that each of them is present in the

519 sample. For site i let R be the germline reference allele and M the alternative allele of interest.

520 Furthermore, it is assumed that the germline site is homozygote, such that any signal from non-

521 reference alleles must be due to errors or mutational signal from a tumor. To model the molecular

522 composition of the fragments covering site i let $Y_{ij} \in \{R, M\}$ be the true error-free nucleotide of the
523 j 'th fragment. If the i 'th mutation is not present in the sample ($Z_i = 0$), we are sure that the true
524 nucleotide of the fragment is the reference and thus the following distribution holds:

$$P(Y_{ij} = R|Z_i = 0) = 1, \quad P(Y_{ij} = M|Z_i = 0) = 0$$

525 To model the mutational DNA present in the sample let $f > 0$ denote the tumor fraction. This is the
526 fraction of the DNA in the blood that originates from tumor cells. Assuming that the mutation of
527 interest is (sufficiently) clonal in the tumor, i.e. half of the DNA in the tumor has this mutation, the
528 probability of a given fragment having the mutation is $f/2$. Using this the following distribution for
529 Y_{ij} can be assumed when the mutation is present in the sample ($Z_i = 1$):

$$P(Y_{ij} = R|Z_i = 1) = 1 - \frac{f}{2}, \quad P(Y_{ij} = M|Z_i = 1) = \frac{f}{2}$$

530 To model the errors that occur in NGS data let X_{ij} be the observed nucleotide in fragment j at
531 position i . Assume that the distribution of X_{ij} depends only on the corresponding true nucleotide
532 Y_{ij} , in the sense that the event $X_{ij} \neq Y_{ij}$ corresponds to the observation being an error. This
533 distribution is exactly what the neural network model described above aims to approximate using
534 the observed features D_{ij} . To simplify notation the dependence of X_{ij} on D_{ij} will be omitted from
535 notation in the following. Note that observations X_{ij} outside $\{R, M\}$ will have little information
536 about the true nucleotide Y_{ij} . Furthermore, since the error rates generally are low, the difference
537 between including interactions between all four possible alleles and only the two allele of interest is
538 negligible. Thus, to simplify the following calculations, we assume that $X_{ij} \in \{R, M\}$. In practice this
539 means that all fragments, j' , for which $x_{ij'} \notin \{R, M\}$ are eliminated from the analysis. Using this
540 assumption, we define the probability of observing the alternative allele in a reference allele
541 position as the following error rate:

$$e_{ij}^{R \rightarrow M} = P(X_{ij} = M|Y_{ij} = R, X_{ij} \in \{R, M\}) = \frac{P(X_{ij} = M|Y_{ij} = R)}{P(X_{ij} = R|Y_{ij} = R) + P(X_{ij} = M|Y_{ij} = R)}$$

542 Conversely, for a fragment that stems from a tumor cell and contains the mutated allele we define:

$$e_{ij}^{M \rightarrow R} = \frac{P(X_{ij} = R | Y_{ij} = M)}{P(X_{ij} = R | Y_{ij} = M) + P(X_{ij} = M | Y_{ij} = M)}$$

543 Estimating the tumor fraction and mutation presence

544 In this section we will develop a procedure for estimating the tumor fraction (f) and mutation

545 presence probability (r). For this, let $i \in \{1, \dots, K\}$ be the index of a catalogue of K candidate

546 mutations, N_i the corresponding number of covering reads and $\{(x_{ij})_{j \in \{1, \dots, N\}}\}_{i \in \{1, \dots, K\}}$ all the

547 observed alleles. First, we write the likelihood function for f and r :

$$\begin{aligned} L(f, r | \{(x_{ij})\}_{i \in \{1, \dots, K\}, j \in \{1, \dots, N\}}) \\ = \prod_{i=1}^K P(Z_i = 0) \cdot \\ \prod_{j: x_{ij} = R} [P(X_{ij} = R | Y_{ij} = R)P(Y_{ij} = R | Z_{ij} = 0) + P(X_{ij} = R | Y_{ij} = M)P(Y_{ij} = M | Z_{ij} = 0)] \cdot \\ \prod_{j: x_{ij} = M} [P(X_{ij} = M | Y_{ij} = R)P(Y_{ij} = R | Z_{ij} = 0) + P(X_{ij} = M | Y_{ij} = M)P(Y_{ij} = M | Z_{ij} = 0)] + \\ P(Z_i = 1) \cdot \\ \prod_{j: x_{ij} = R} [P(X_{ij} = R | Y_{ij} = R)P(Y_{ij} = R | Z_{ij} = 1) + P(X_{ij} = R | Y_{ij} = M)P(Y_{ij} = M | Z_{ij} = 1)] \cdot \\ \prod_{j: x_{ij} = M} [P(X_{ij} = M | Y_{ij} = R)P(Y_{ij} = R | Z_{ij} = 1) + P(X_{ij} = M | Y_{ij} = M)P(Y_{ij} = M | Z_{ij} = 1)] \\ = \prod_{i=1}^K (1 - r) \cdot \prod_{j: x_{ij} = R} (1 - e_{ij}^{R \rightarrow M}) \cdot \prod_{j: x_{ij} = M} e_{ij}^{R \rightarrow M} + \\ r \cdot \prod_{j: x_{ij} = R} \left[(1 - e_{ij}^{R \rightarrow M}) \cdot \left(1 - \frac{f}{2}\right) + e_{ij}^{M \rightarrow R} \cdot \frac{f}{2} \right] \cdot \prod_{j: x_{ij} = M} \left[e_{ij}^{R \rightarrow M} \cdot \left(1 - \frac{f}{2}\right) + (1 - e_{ij}^{M \rightarrow R}) \cdot \frac{f}{2} \right] \end{aligned}$$

548 Getting a maximum likelihood estimate (MLE) of f and r by optimizing this expression analytically is

549 not tractable. However, by seeing Y_{ij} and Z_i as latent variables, estimates can be found by

550 employing an EM-algorithm, which will be developed in a **Supplementary section 6**. For now,
551 assume that \hat{f} and \hat{r} are a MLEs of f and r respectively.

552 To test if a sample has a significant content of mutational DNA, we focus on the parameter in the
553 model. By representing the hypothesis of a negative sample as a tumor fraction of 0 and no
554 mutations present ($H_0: f, r = 0$) and a positive sample as a positive tumor fraction and some
555 mutations present ($H_A: f > 0, r \geq \frac{1}{K}$), a likelihood ratio test can be used to test for significance.

556 Note that $r \geq \frac{1}{K}$ in H_A corresponds to at least one mutation being present in the sample. The LR-test
557 statistic for this test is:

$$Q = -2 \log \frac{L(0, 0 \mid \{(x_{ij})\}_{j=1}^N)}{L(\hat{f}, \hat{r} \mid \{(x_{ij})\}_{j=1}^N)}$$

558 Since there are 2 free parameters in the model, it can be assumed that Q is approximately $\chi^2(2)$ -
559 distributed, and a p-value can be obtained as follows:

$$p_{val} = 1 - F_{\chi^2(2)}(Q)$$

560 Using this statistical model for cancer calling on top of the error rate predictions from DREAMS we
561 refer to as the DREAMS-cc.

562 Calling individual mutations

563 In the special case where the number of mutations in the catalogue is $K = 1$, the algorithm outlined
564 above can be thought of as a regular variant caller. In this case the concept of some mutations not
565 being present in the sample is unnecessary, as the presence of the single mutations of interest can
566 be governed solely by the tumor fraction f . The algorithm above is easily modified to handle this by
567 assuming that $r = 1$, and using one degree of freedom for the χ^2 -distribution in the significance
568 test. The equations in the EM-algorithm can also be simplified by making this assumption. We refer
569 to the variant caller will be referred to as DREAMS-vc.

570 **Figure legends**

571 **Figure 1:**

572 Error generation in Next Generation Sequencing data. Normal cells (grey) and tumor cells (blue) shed
573 DNA into the bloodstream. The tumor DNA (blue) contains a tumor mutation (yellow). The
574 circulating free DNA in the blood becomes damaged both *in vivo* and *in vitro* (green triangle). Errors
575 can be introduced at each PCR duplication during amplification (red circle). Further errors are
576 accumulated during sequencing and mapping (purple square). The final data contains mapped reads,
577 where some mismatches are errors, and others are mutation from tumor cells.

578 **Figure 2:**

579 The data collection setup for tumor-informed relapse detection in colon cancer patients. After the
580 patient is diagnosed with colorectal cancer a liquid biopsy is extracted prior to curative surgery (Pre-
581 OP). A biopsy is taken from the tumor. Following surgery liquid biopsies (Post-OP) can be collected to
582 monitor relapse. All collected samples are sequenced using Next-Generation Sequencing.

583 **Figure 3:**

584 a) Examples of local sequence-context features and read-level features extracted from a read for a
585 single position of interest in a read mapping. Centered at the position of interest, the trinucleotide
586 context is extracted, and the surrounding 11 bp region is used for calculating the regional features,
587 including GC content and K-mer complexity. The read pairs contain a forward and reverse read that
588 are enumerated as either the first or second of the pair according to the order of sequencing. Two
589 read pairs are used for illustration of the read-centric features in the panels on the right. The UMI
590 groups are shown to indicate the variation in the number of reads used for the consensus reads. The
591 read position and fragment size are shown for the consensus reads. b-e) Variation in observed error
592 rate for selected features based on their observed distribution: b) Fragment size, c) UMI group size,
593 d) Read position and the variation between the first and second read in a pair. e) Error type for each

594 strand (forward and reverse). For each feature the 95% confidence interval is indicated by the
595 shaded areas or error bars. See **Supplementary section 3** for how the error rates and confidence
596 intervals are calculated and similar plots of the remaining features.

597 **Figure 4:**

598 a) Features are individually removed one-by-one from the full model containing all features to
599 measure the decrease in validation error. The most important feature is then defined as the one that
600 decreases the validation error the most, and vice versa. The grey points show the mean decrease in
601 validation error for each fold of a 5-fold cross validation. The average of these is used to rank the
602 features by importance, indicated by the black points. b) Based on the importance ranking, the
603 features are cumulatively removed one-by-one from a full model. If the decrease in validation
604 error compared to the full model is significant, the feature should not be removed from the model. A
605 feature is only kept if removing it worsen the performance in all folds of the 5-fold cross validation.
606 c) Structure of the neural network. The neural network uses three different types of input features:
607 numeric, categorical, and embedded. The input features are processed differently in each group. The
608 input features are then parsed through three hidden layers of decreasing width. The output contains
609 4 nodes representing the probability of observing each of the four bases (A, T, C, G) at the given
610 read position.

611 **Figure 5:**

612 a) Illustration of 5x2-cross-validation procedure for the estimation of performance. The patients are
613 first split into two approximately equally sized folds. The neural network model is trained on the
614 Post-OP data of fold 1 and validated by testing the models on the Pre-OP samples of the other fold
615 (Test B). This is then repeated by swapping the data in fold 1 and 2. The whole process is repeated 5
616 times. b) Performance of variant calling using DREAMS-vc compared to state-of-the-art tools
617 Shearwater and Mutect2. The AUC is estimated based on the different negative sets: The cross-
618 patient calls, 500 random validation alterations and these sets combined (All). The AUC is also

619 estimated for the full group of patients (All), and the patients with stage I and stage II CRC,
620 individually (ns: $p \geq 0.05$, *: $p < 0.05$, **: $p < 0.01$, ***: $p < 0.001$, ****: $p < 0.0001$).

621 **Figure 6:**

622 Prediction of cancer using DREAMS-cc (a) and Shearwater (b). For each patient's LB-sample (y-axis)
623 the mutation catalogue (x-axis) for every candidate patient is used for calling cancer. The patients
624 are stratified into patients with stage I and stage II CRC, respectively. The diagonal is showing the
625 result of using a patient's own mutation catalogue for cancer calling and constitutes the expected
626 positives. The off diagonal is the cross-patient results, for which the mutation catalogue is filtered
627 with the patient's tumour and germline variants prior to cancer calling, and thus these are expected
628 to be negative. The colour scheme is chosen based on the matched quantiles from the p-value and
629 combined Bayes factors from DREAMS-cc (a) and Shearwater, respectively. The cancer predictions
630 show the results from one split in the 5x2 CV. c) AUC performance of DREAMS-cc and shearwater
631 with respect to calling cancer.

632 **References**

- 633 1. Hu Z, Chen H, Long Y, Li P, Gu Y: **The main sources of circulating cell-free DNA: Apoptosis, necrosis and active secretion.** *Critical Reviews in Oncology/Hematology* 2021, **157**:103166.
- 634 2. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, et al: **Detection of circulating tumor DNA in early- and late-stage human malignancies.** *Science translational medicine* 2014, **6**:224ra224-224ra224.
- 635 3. Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, Anagnostou V, Fiksel J, Cristiano S, Papp E, et al: **Direct detection of early-stage cancers using circulating tumor DNA.** *Science Translational Medicine* 2017, **9**:eaan2415.
- 636 4. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore DA, Veeriah S, Rosenthal R, et al: **Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.** *Nature* 2017, **545**:446-451.

644 5. Coakley M, Garcia-Murillas I, Turner NC: **Molecular Residual Disease and Adjuvant Trial**
645 **Design in Solid Tumors.** *Clinical Cancer Research* 2019, **25**:6026-6034.

646 6. Henriksen TV, Tarazona N, Frydendahl A, Reinert T, Gimeno-Valiente F, Carbonell-Asins JA,
647 Sharma S, Renner D, Hafez D, Roda D, et al: **Circulating Tumor DNA in Stage III Colorectal**
648 **Cancer, beyond Minimal Residual Disease Detection, toward Assessment of Adjuvant**
649 **Therapy Efficacy and Clinical Behavior of Recurrences.** *Clinical Cancer Research* 2022,
650 **28**:507-517.

651 7. Øgaard N, Reinert T, Henriksen TV, Frydendahl A, Aagaard E, Ørntoft M-BW, Larsen MØ,
652 Knudsen AR, Mortensen FV, Andersen CL: **Tumour-agnostic circulating tumour DNA analysis**
653 **for improved recurrence surveillance after resection of colorectal liver metastases: A**
654 **prospective cohort study.** *European Journal of Cancer* 2022, **163**:163-176.

655 8. Cescon DW, Bratman SV, Chan SM, Siu LL: **Circulating tumor DNA and liquid biopsy in**
656 **oncology.** *Nature Cancer* 2020, **1**:276-290.

657 9. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L,
658 Szabo SA, et al: **Circulating mutant DNA to assess tumor dynamics.** *Nature Medicine* 2008,
659 **14**:985-990.

660 10. Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, Cheang M, Osin P,
661 Nerurkar A, Kozarewa I, et al: **Mutation tracking in circulating tumor DNA predicts relapse**
662 **in early breast cancer.** *Science Translational Medicine* 2015, **7**:302ra133-302ra133.

663 11. Corcoran RB, Chabner BA: **Application of Cell-free DNA Analysis to Cancer Treatment.** *New*
664 *England Journal of Medicine* 2018, **379**:1754-1765.

665 12. Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, Stehr H, Liu CL, Bratman
666 SV, Say C, et al: **Integrated digital error suppression for improved detection of circulating**
667 **tumor DNA.** *Nature Biotechnology* 2016, **34**:547-555.

668 13. Ma X, Shao Y, Tian L, Flasch DA, Mulder HL, Edmonson MN, Liu Y, Chen X, Newman S,
669 Nakitandwe J, et al: **Analysis of error profiles in deep next-generation sequencing data.**
670 *Genome Biology* 2019, **20**.

671 14. Chen L, Liu P, Evans Thomas C, Ettwiller Laurence M: **DNA damage is a pervasive cause of**
672 **sequencing errors, directly confounding variant identification.** *Science* 2017, **355**:752-756.

673 15. Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L: **Calling Somatic SNVs and**
674 **Indels with Mutect2.** Cold Spring Harbor Laboratory; 2019.

675 16. Gerstung M, Papaemmanuil E, Campbell PJ: **Subclonal variant calling with multiple samples**
676 **and prior knowledge.** *Bioinformatics* 2014, **30**:1198-1204.

677 17. Zviran A, Schulman RC, Shah M, Hill STK, Deochand S, Khamnei CC, Maloney D, Patel K, Liao
678 W, Widman AJ, et al: **Genome-wide cell-free DNA mutational integration enables ultra-**
679 **sensitive cancer monitoring.** *Nature Medicine* 2020, **26**:1114-1124.

680 18. Wan JCM, Heider K, Gale D, Murphy S, Fisher E, Mouliere F, Ruiz-Valdepenas A, Santonja A,
681 Morris J, Chandrananda D, et al: **ctDNA monitoring using patient-specific sequencing and**
682 **integration of variant reads.** *Science Translational Medicine* 2020, **12**:eaaz8084.

683 19. Pfeiffer F, Gröber C, Blank M, Händler K, Beyer M, Schultze JL, Mayer G: **Systematic**
684 **evaluation of error rates and causes in short samples in next-generation sequencing.**
685 *Scientific Reports* 2018, **8**:10950.

686 20. Huptas C, Scherer S, Wenning M: **Optimized Illumina PCR-free library preparation for**
687 **bacterial whole genome sequencing and analysis of factors influencing de novo assembly.**
688 *BMC Research Notes* 2016, **9**:269.

689 21. Meacham F, Boffelli D, Dhahbi J, Martin DIK, Singer M, Pachter L: **Identification and**
690 **correction of systematic error in high-throughput sequence data.** *BMC Bioinformatics* 2011,
691 **12**:451.

692 22. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR: **Analysis of the Size Distributions of**
693 **Fetal and Maternal Cell-Free DNA by Paired-End Sequencing.** *Clinical Chemistry* 2010,
694 **56**:1279-1286.

695 23. Lei J, G'Sell M, Rinaldo A, Tibshirani RJ, Wasserman L: **Distribution-Free Predictive Inference**
696 **for Regression.** *Journal of the American Statistical Association* 2018, **113**:1094-1111.

697 24. Hayama T, Hashiguchi Y, Okamoto K, Okada Y, Ono K, Shimada R, Ozawa T, Toyoda T,
698 Tsuchiya T, Iinuma H, et al: **G12V and G12C mutations in the gene KRAS are associated with**
699 **a poorer prognosis in primary colorectal cancer.** *International Journal of Colorectal Disease*
700 2019, **34**:1491-1496.

701 25. Parikh A, Goyal L, Hazar-Rethinam M, Siravegna G, Blaszkowsky L, Russo M, Van Seventer E,
702 Nadres B, Shahzade H, Clark J, et al: **Systematic liquid biopsy identifies novel and**
703 **heterogeneous mechanisms of acquired resistance in gastrointestinal (GI) cancer patients.**
704 *Annals of Oncology* 2017, **28**:iii137.

705 26. Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, Jensen S, Medina JE, Hruban C,
706 White JR, et al: **Genome-wide cell-free DNA fragmentation in patients with cancer.** *Nature*
707 2019, **570**:385-389.

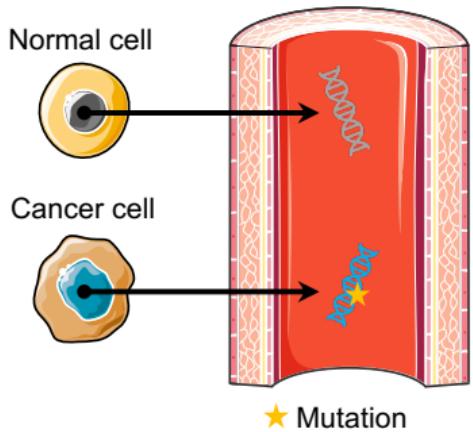
708 27. Mouliere F, Rosenfeld N: **Circulating tumor-derived DNA is shorter than somatic DNA in**
709 **plasma.** *Proceedings of the National Academy of Sciences* 2015, **112**:3178-3179.

710 28. Pozzolo AD, Caelen O, Johnson RA, Bontempi G: **Calibrating Probability with Undersampling**
711 **for Unbalanced Classification.** In: 2015. IEEE;

712 29. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin
713 M: **Tensorflow: Large-scale machine learning on heterogeneous distributed systems.** *arXiv*
714 *preprint arXiv:160304467* 2016.

715

Shedding

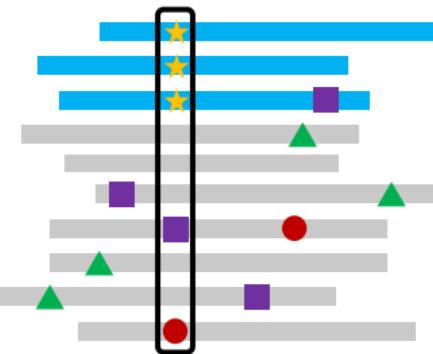


Data

Reads from tumor tissue

Reads from normal tissue

Mutated position



▲: DNA damage
(*in vivo* + *in vitro*)

●: PCR errors in amplification



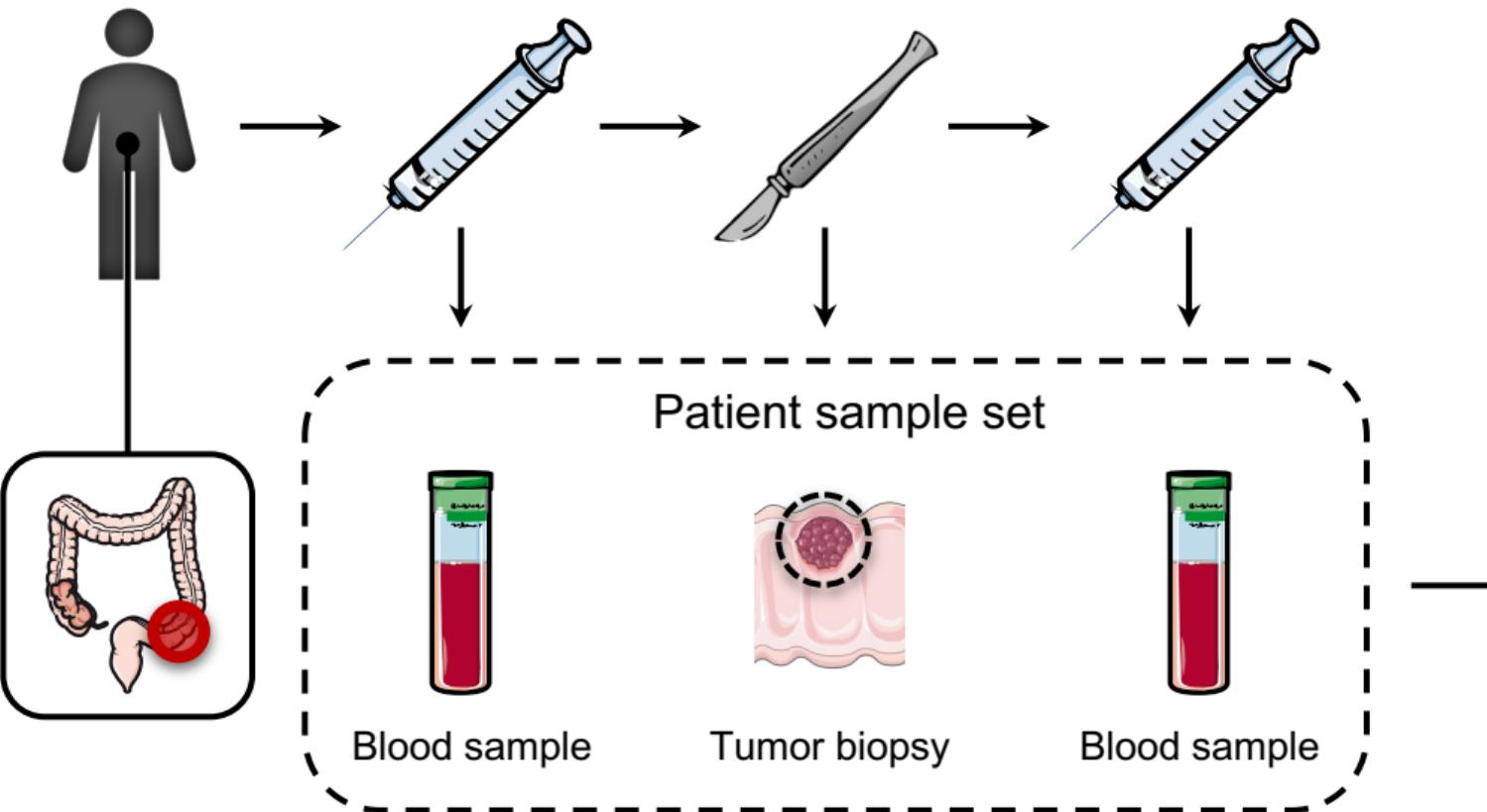
■: Read errors in sequencing

Colorectal
cancer
diagnosis

Blood sample
(Pre-OP)

Curative
surgery

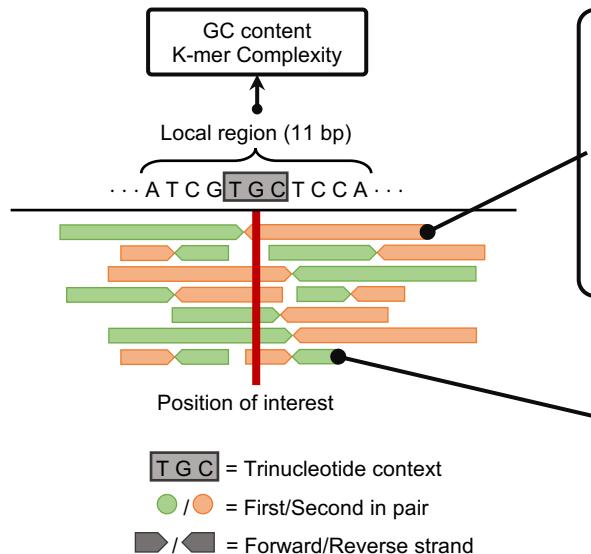
Blood sample
(Post-OP)



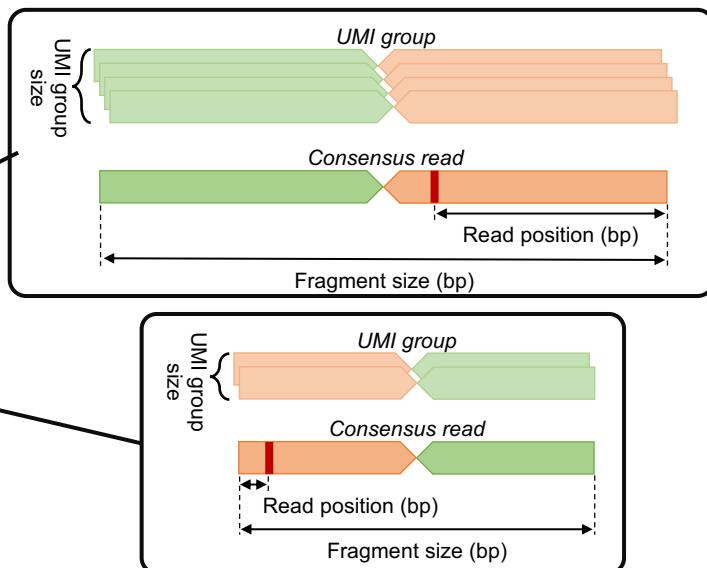
Next-Generation
Sequencing

a)

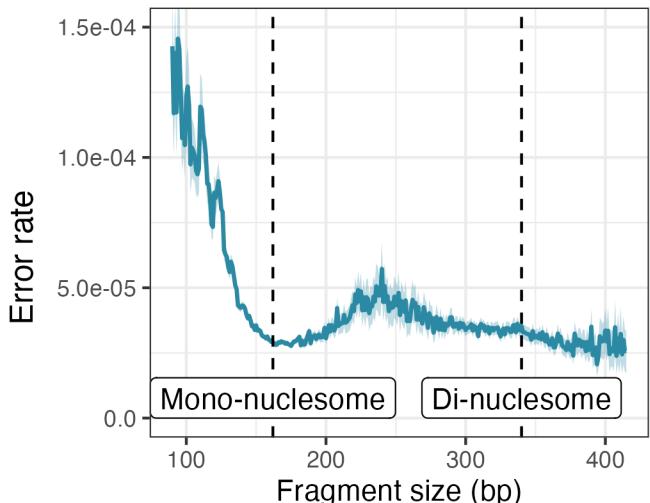
Local sequence-context features



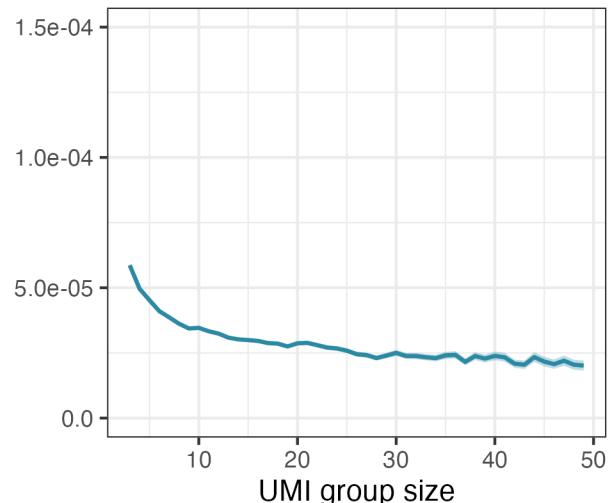
Read-level features



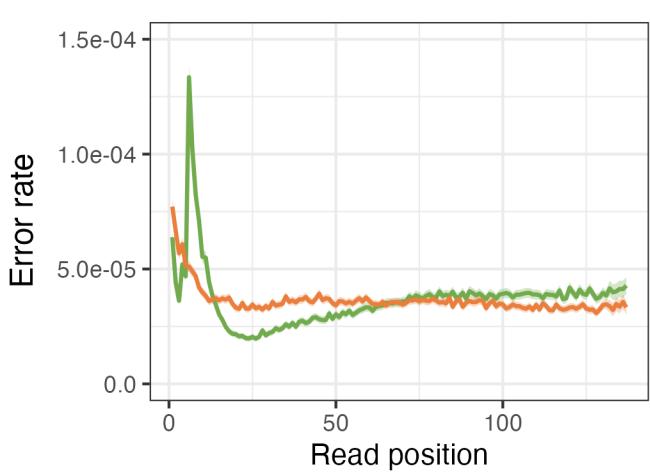
b)



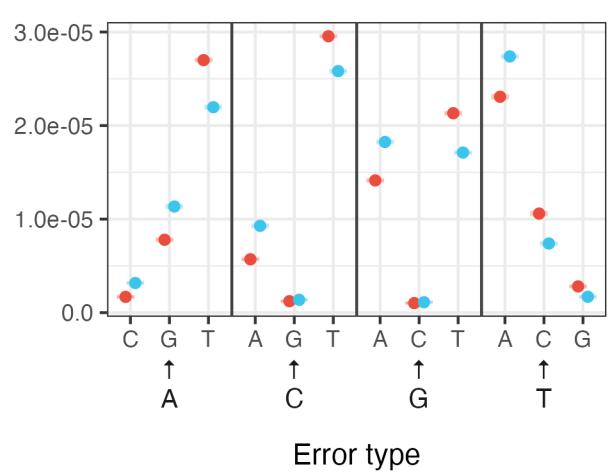
c)

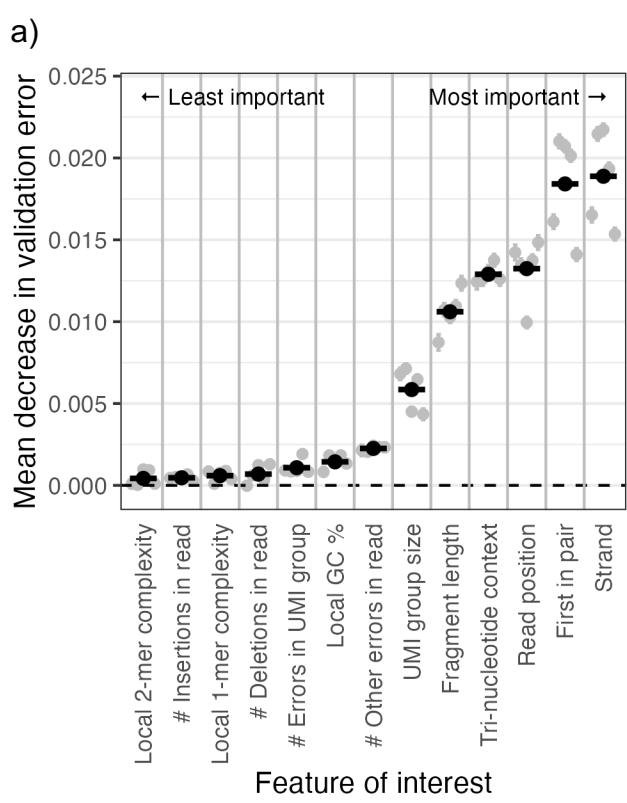
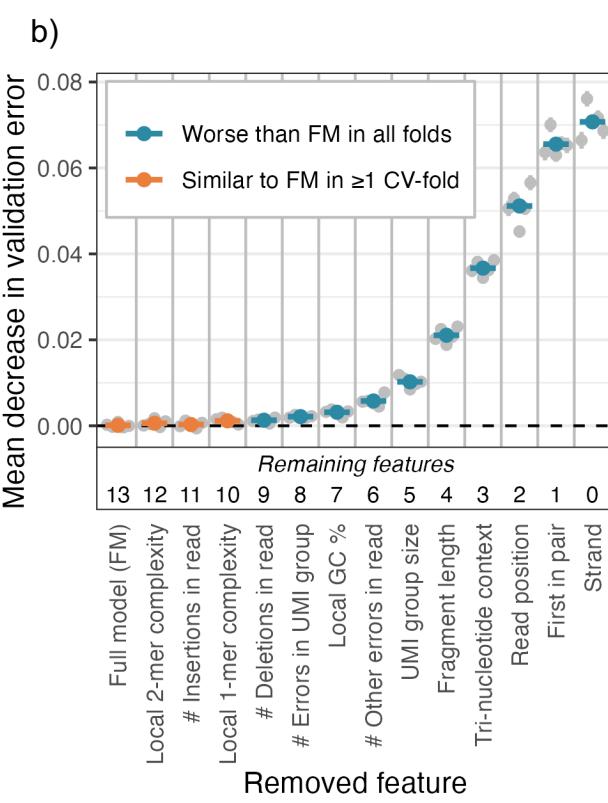
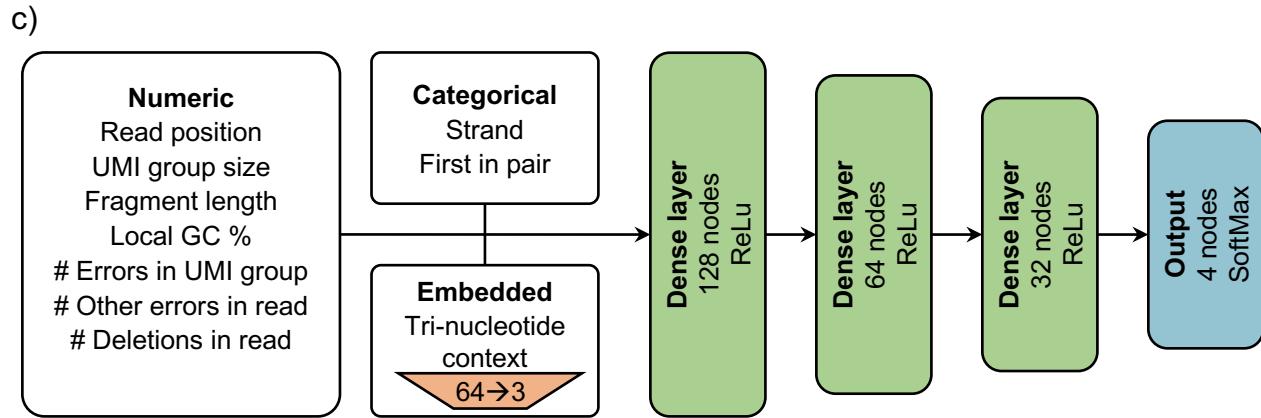


d)

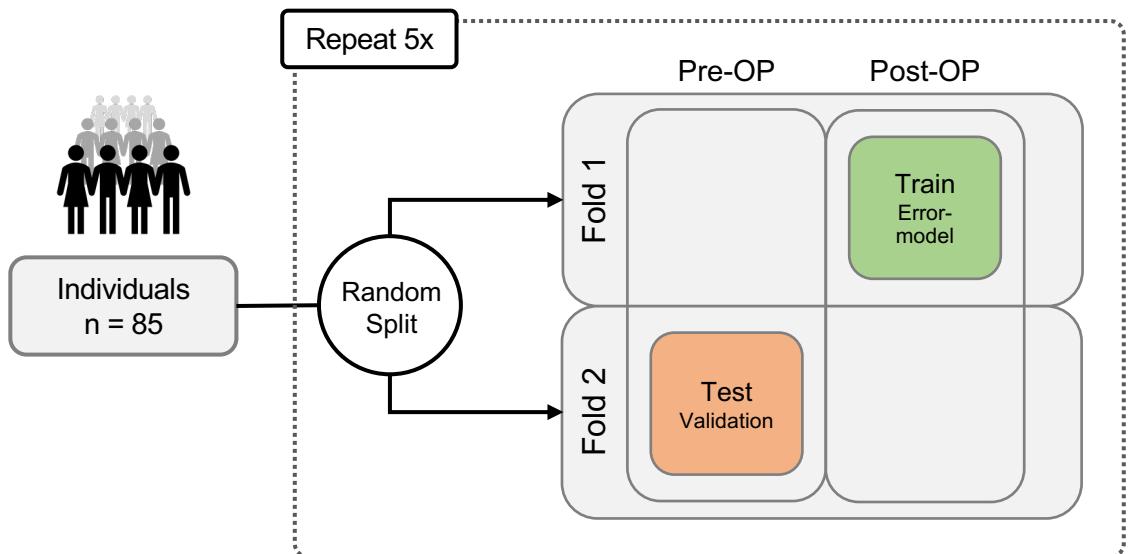


e)





a)



b)

