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Abstract 18 

Circulating tumor DNA detection using Next-Generation Sequencing (NGS) data of plasma DNA is 19 

promising for cancer identification and characterization. However, the tumor signal in the blood is 20 

often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling 21 

of Sequencing-errors) for estimating error rates of individual read positions. Using DREAMS, we 22 

developed statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc). 23 

For evaluation, we generated deep targeted NGS data of matching tumor and plasma DNA from 85 24 

colorectal cancer patients. The DREAMS approach performed better than state-of-the-art methods 25 

for variant calling and cancer detection. 26 

Background 27 

Degraded DNA fragments are released into the blood through apoptosis, necrosis and active 28 

secretion from a range of cell types and can be detected as circulating free DNA (cfDNA)[1]. Solid 29 

tumors also shed DNA into the bloodstream and cfDNA of cancer origin is called circulating tumor 30 

DNA (ctDNA)[2]. The ctDNA level in blood is reported to be positively associated with tumor 31 

burden[3, 4]. As the half-life of cfDNA is less than an hour, ctDNA measurements can be considered 32 

real-time assessments of tumor burden and studies have shown that ctDNA can be more sensitive 33 

than radiological imaging[5-7]. This makes ctDNA measurements a promising approach for detecting 34 

relapse in patients who have undergone curative surgery[6-10]. Other proposed applications include 35 

diagnosis and intervention planning, tracking therapeutic response, monitoring the development of 36 

treatment resistance, and ultimately early detection of cancer in screening programs[8, 11]. Since 37 

obtaining liquid biopsies, such as plasma from blood samples, is both cost-effective and minimally 38 

invasive, techniques for efficient ctDNA detection holds great promise for targeted treatment in 39 

precision medicine.  40 
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In clinical contexts with low tumor burden, e.g. detection of minimal residual disease after curative-41 

intended surgery and early detection of recurrence, the ctDNA constitute only a minor fraction of 42 

the cfDNA, often less than 0.1%. Hence, the error rate of current sequencing methods is in the same 43 

order of magnitude as the tumor signal[12], making it challenging to accurately distinguish errors 44 

from true mutations in ctDNA applications. Errors can arise in several steps between the initial 45 

shedding of cfDNA and the final generation of next-generation sequencing (NGS) reads (Figure 1). 46 

DNA fragments may be damaged e.g. by deamination or oxidation[13, 14], during PCR amplification 47 

of the sequencing library[13], and during sequencing from PCR amplification and/or sequencing 48 

artefacts.{{Ma, 2019 #25}} For deep sequencing, some of the PCR and sequencing errors can be 49 

rectified using unique molecular identifiers (UMIs). With the use of UMIs, each DNA fragment is 50 

labeled with a unique “barcode” prior to PCR amplification, such that replicates of the same 51 

fragment can be grouped together. Errors can then be eliminated by comparing the replicates within 52 

a group, as errors from PCR amplification and sequencing are likely to be present in only a minority 53 

of reads. However, some errors, such as DNA damage introduced prior to UMI labeling remains and 54 

continue to challenge the discrimination of true low frequency mutational signal from these errors.  55 

Several methods for detecting low frequency variants using NGS data have been developed. Most of 56 

these establish a model for the expected frequency of errors and then assess the mutational signal 57 

with a statistical test. They differ greatly in the required data prerequisites, how the errors are 58 

modelled and handled, and the final assessment of the mutational signal. 59 

Mutect2[15] and Shearwater[16] are examples of general somatic variant callers applicable for most 60 

NGS data. Mutect2 realigns reads in regions with mutational signal and then calculates a log-odds for 61 

the existence of the alternative allele using a statistical model in which the error rates are derived 62 

from the PHRED scores. Shearwater is developed specifically for low-frequency somatic variant 63 

detection for sub-clonal tumor mutations. It builds a position-specific error model based on the 64 

observed rate of read alignment mismatches across a set of training samples. A mutation is called if 65 
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the observed signal exceeds what is expected from the error model. Additionally, this method can 66 

incorporate prior knowledge about the probability of the mutations of interest.  67 

Other methods, including MRDetect[17], INVAR [18]and iDES[12], have been specifically tailored to 68 

detect ctDNA in NGS data. These methods build on the idea of aggregating the signal across multiple 69 

mutations to classify a sample as ctDNA positive or negative, as opposed to calling each individual 70 

mutation. For this purpose, a patient specific catalogue of mutations is generated from a matched 71 

tumor sample. However, the enhanced performance of these methods come at the expense of 72 

general applicability as they assume the presence of curated data from known ctDNA fragments or 73 

specialized lab protocols.  74 

Here we develop a generally applicable ctDNA detection method based on a detailed background 75 

error model of individual read positions. This approach aims to capture general read-level error 76 

behavior and thus be applicable even for genomic regions where training data is not available. Data 77 

from reads known to come from ctDNA is not needed, and all data outside known mutated 78 

positions, or from independent normal samples can be used as training data. However, training data 79 

that was obtained similarly to the test data will provide the most precise model. Thus, severe 80 

changes in laboratory protocols should optimally be accompanied by re-training of the model. Some 81 

features such as the read position[19], proximity to fragment ends[14], UMI group size[12], GC-82 

content[20] and trinucleotide context[21] have been shown to affect the probability of errors at 83 

individual read positions. By modelling their effect, the error rate of individual read positions may be 84 

predicted. Thereby, a read alignment mismatch, i.e. a non-reference base, with a low predicted error 85 

rate can provide more mutational evidence than a mismatch with a high error rate.  This allows for 86 

improved cfDNA error modelling, which is key to develop accurate ctDNA applications. 87 

In the following, we demonstrate how cfDNA errors can be modelled accurately using a neural 88 

network, by combining read level features with information about the sequencing context. For this 89 

we developed DREAMS (Deep Read-level Modelling of Sequencing-errors) that incorporates both 90 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.509150doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509150
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

read-level and local sequence-context features for positional error rate estimation. Based on 91 

DREAMS, we developed a method for variant calling (DREAMS-vc) to accurately call individual cancer 92 

mutations in cfDNA data. The method was generalized for cancer calling in DREAMS-cc that 93 

aggregates the signal across a catalogue of mutations for accurate estimation of the tumor fraction 94 

and sensitive determination of the overall cancer status. To evaluate the performance of DREAMS, 95 

we performed deep-targeted sequencing of pre- and post-operative cfDNA samples from 85 stage I-96 

II colorectal cancer (CRC) patients and compared to state-of-the art methods Mutect2[15] and 97 

Shearwater[16]. 98 

Results 99 

Plasma cfDNA was extracted from pre-operative (Pre-OP) and post-operative (Post-OP) blood draws 100 

of 85 stage I-II CRC patients (Table 1) undergoing curative surgery. In addition, two stage III CRC 101 

patients were used in the model training. A biopsy from the resected tumor and paired peripheral 102 

blood cells was sequenced to generate a patient-specific mutational catalogue. Post-OP samples 103 

were collected 2-4 weeks after surgical removal of the primary tumor (Figure 2). Each cfDNA sample 104 

was sequenced using a custom hybrid-capture panel, designed to capture 41 exonic regions, 105 

spanning 15.413 bp, frequently mutated in CRC (Supplementary section 1 and Supplementary table 106 

1). After UMI collapse the median of the average depths with corresponding interquartile range 107 

(IQR) of samples were for Pre-OP; 3307 (IQR: 3560), Post-OP; 7143 (IQR: 8844), buffycoat; 1850 (IQR: 108 

1468), and tumor samples; 2132 (IQR: 2145), no samples had an average read depth below 100. All 109 

samples have been mapped and processed through the same pipeline (Supplementary section 1).  110 

 111 

 112 

 113 

 114 
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 115 

 116 

 Table 1: Clinical characteristics 

Characteristic Count or Median 

(percent or range)  

Patients 85 (100%) 

Gender  

  Male 53 (62%) 

  Female 32 (38%) 

Age [years] 71 (49-87) 

Tumor location  

  Right colon 23 (27%) 

  Left colon 26 (31%) 

  Rectum 36 (42%) 

Pathological T-stage  

  pT1 15 (18%) 

  pT2 25 (29%) 

  pT3 41 (48%) 

  pT4 4 (4.7%) 

UICC stage  

  I 40 (47%) 

  II 45 (53%) 

 117 

We first identified features that are known or expected to affect the error rate (Figure 3a). In 118 

general, they can be split into two types: local sequence-context features and read-level features. 119 

The local sequence-context features capture the genomic sequence context, including the 120 

trinucleotide context, information about the sequence complexity (Shannon entropy of nucleotide 121 

frequency), and GC contents in an 11 bp window around the position of interest (Methods). 122 
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The read-level features capture the structural composition of the read, UMI characteristics and 123 

sequencing information. The structural composition includes the strand a read aligns to (forward or 124 

reverse), the number of insertions and deletions in the read, and the total size of the underlying 125 

fragment. In the read pre-processing, UMIs were used to generate consensus reads with lowered 126 

error rates (Supplementary section 2). For each consensus read, we extracted the UMI-group size, 127 

the number of reads disagreeing with the consensus at the position, and the overall number of 128 

mismatches outside the position of interest. As sequencing related features, we included the base 129 

position in the read (read position) and whether the read is the first to be sequenced from the read-130 

pair. The read quality (PHRED score) was not included, as it had the same high value for all positions 131 

in the UMI-collapsed consensus reads. 132 

We evaluated the individual features association with the error rate by analyzing the total set of 133 

read alignment mismatches (n=707,562) across all Post-OP samples (Figure 3b-d), after excluding 134 

mutations and variants found in matching tumor and germline samples. The mismatches were 135 

compared to an equal number of randomly sampled matches, to estimate the error rate for each 136 

feature across its values (Supplementary section 3). 137 

Since fragment lengths of cfDNA are influenced by nucleosome binding patterns, the fragment 138 

length distribution have peaks at around 162 bp (mono-nucleosomal) and 340 bp (di-139 

nucleosomal)[22]. The error rate tended to be minimized in fragments of these lengths (Figure 3b). 140 

As expected, we observed a lower error rate in consensus reads formed by larger UMI groups[12] 141 

(Figure 3c). 142 

The error distribution for the read position showed an increased error rate in the beginning of the 143 

reads (Figure 3d).  We also observed a clear difference in error distribution along the read between 144 

the first and second read of the pair. The 12 different nucleotide alterations showed widely different 145 

error rates (Figure 3e), which is expected as error-induced mismatches are not equally likely, and the 146 
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rate further differed between the two strands. However, strand symmetric alterations were 147 

generally similar, apart from the mismatches C�T/G�A and C�A/G�T.  148 

Overall, we saw variation in the error rate for all the presented features (the remaining are shown in 149 

Supplementary section 3). Thus, for a given genomic position, different reads may have different 150 

error rates due to differences in read-level features. In the following, we present how this variation 151 

can be captured and used to potentially improve detection of ctDNA. 152 

Neural network model and feature selection  153 

To predict the error rate at a given read position, we used a neural network model with the input 154 

features described above (Methods). The predictive ability of individual features was evaluated 155 

using a “leave-one-covariate-out” (LOCO) scheme[23] (Supplementary section 4). In short, we 156 

evaluated the performance of a full model containing all features (baseline) and then the relative 157 

performances of restricted models where each feature had been left out one by one. We used the 158 

latter to measure and rank the importance of each feature (Figure 4a). When leaving out the 159 

trinucleotide context, the reference base was provided instead to assess only the importance of the 160 

two neighboring nucleotides.  161 

We found the most informative feature for modelling the error rate to be the strand (Figure 4a). The 162 

second and thirds most informative features were whether the read is the first in a pair and the read 163 

position. The trinucleotide context was fourth, indicating that there is a difference in error rate for 164 

different contexts, as found by others[18]. The fragment length and the UMI group size also 165 

contribute significantly to the model. The remaining features showed little to no effect on the model 166 

performance.  167 

An optimal subset of informative features was chosen using a stepwise procedure where features 168 

were excluded in order of importance (Methods). The set of features chosen was the smallest model 169 

that did not perform significantly worse than the full model (Supplementary section 4). The four 170 
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least important features could be removed without any significant negative effect on the 171 

performance (Figure 4b). Of the remaining ten features, eight were read-level features, namely the 172 

features describing the UMI group, the number of errors in the UMI group, the number of deletions 173 

in the read, the number of other errors in the read, the fragment length, read position, strand, and if 174 

the read was first in pair. This showed that read-level features do contribute to accurate modelling 175 

of the error rate.  176 

The numerical and categorical variables are processed differently in the neural network prior to the 177 

hidden layers (Figure 4c). The numerical features are batch normalized, the categorical features are 178 

one-hot encoded, and the tri-nucleotide context is embedded in three dimensions to handle the 179 

large number of possible contexts (Methods). 180 

 Predictive performance in clinical data 181 

To validate the utilization of the DREAMS error model, we applied it in calling tumor variants 182 

(DREAMS-vc) and cancer (DREAMS-cc) (Methods). We assessed the performance using five repeats 183 

of 2-fold cross-validation (5x2 CV) (Figure 5a). The model was trained on the Post-OP samples, and 184 

Pre-OP samples were used for method validation. The split was done on patient level to ensure that 185 

a model is not trained and tested on data from the same patient. This analysis was repeated with 186 

five different randomized splits to control for split induced variation. 187 

The performance of calling tumor mutations in the plasma samples was assessed by looking at the 188 

area under Receiver Operating Characteristic curves (AUC). The performance of DREAMS-vc was 189 

compared to state-of-the-art algorithms Mutect2 and Shearwater. Only positions with at least one 190 

observed mismatch were included in the performance calculations (Figure 5b). Positions without 191 

signal was called negative by any method, making them redundant for performance comparisons.  192 

Using DREAMS-vc, we aimed to call the tumor mutations of each patient from their respective 193 

mutation catalogue. As negative controls, we attempted to call cross-patient mutations, by 194 
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searching for the mutations found in other patients. Additionally, a validation set of 500 randomly 195 

generated alterations within the covered sequencing panel was used as negative controls. Evaluating 196 

across the combined negative set of both cross-patient mutations and validation alterations and 197 

cancer stages, DREAMS-vc performs significantly better than both Shearwater and Mutect2 (Figure 198 

5b). Additionally, the performance was assessed separately for stage I and stage II CRC patients. This 199 

showed that superior performance of DREAMS-vc is predominantly due to the stage II CRC patients 200 

(Figure 5b).  As expected, all models perform better on later stage patient samples as these are 201 

expected to have a higher mutational signal in the cfDNA due to a higher tumor burden.  202 

All methods perform similarly on stage I patients, however DREAMS-vc has marginally better 203 

performance. Performance evaluations for each of the separate negative sets showed that DREAMS 204 

performs better than Mutect2 with the cross-patient negative set and better than Shearwater with 205 

the validation set as the negative set. The variation in performance of DREAMS-vc across splits and 206 

folds is lower than for Mutect2 and Shearwater, which indicates that its variant calling is more stable 207 

across patients and mutation types.  208 

By maintaining the false positive rate at 5% for the alterations with signal in the validation set for 209 

each model, we get comparable thresholds for the three confidence measures: p-values, Bayes 210 

factor and TLOD for DREAMS-vc, Shearwater, and Mutect2, respectively. This allows for a 211 

comparison of the sensitivity of the models at a pre-determined specificity of 95%. The model could 212 

then be assessed across an alteration catalogue of 191 true positive mutations from the mutation 213 

catalogue and 1290 cross-patient negative calls based on the mutation catalogue of the other 214 

patients. Out of the alteration catalogue, 88 true mutations and 1100 cross-patient negative calls 215 

had a signal for the alteration. 216 

Using this threshold DREAMS-vc called 83% of the tumor mutations with signal, while Shearwater 217 

and Mutect2 called 75% and 72.7%, respectively (Table 2). F1 and G-mean scores were calculated to 218 

assess the performance of the models by using the cross-patient mutations as negative controls. G-219 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.509150doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509150
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

mean is the geometric mean of sensitivity and specificity, and F1 is the harmonic mean of precision 220 

and sensitivity. For G-mean, DREAMS-vc performed better than Shearwater and Mutect2, however 221 

the F1 score of Shearwater was very similar to DREAMS-vc, due to lower false-positive rate of 222 

shearwater (Table 2). Considering all mutations observed in the tumors, including those without 223 

signal in plasma, we found that about 38.2% could be recalled in Pre-OP liquid biopsy samples.  224 

 225 

 226 

Table 2 Full alteration catalog
a 

Catalogue alterations with signal
b 

 Sensitivity Specificity Sensitivity Specificity F1 G-mean 

DREAMS-vc 0.382 0.998 0.830 0.957 0.702 0.891 

Shearwater 0.346 0.998 0.750 0.971 0.710 0.853 

Mutect2 0.336 0.997 0.727 0.933 0.566 0.831 

 227 

a 
Full alteration catalogue consisting of n=191 true positive mutations, and n=1290 potential cross-patient 228 

negative calls. 229 

b 
Catalogue of alterations with signal consisting of n=88 true positive mutations, and n=1100 potential cross-230 

patient negative calls. 231 

By setting the threshold based on a 5% false positive rate in the cross-patient mutation set, the 232 

validation mutation set can be used as negative controls. The true positives are still the same 191 233 

mutations of which 88 has a signal for the alteration. The negatives are the 500 validation positions 234 

multiplied with the 87 tested samples, giving a total of 43,500 possible alterations of which 1,350 235 

had a signal. With this set we obtained an 83% true positive rate, compared to 77.3% for Shearwater 236 

and 68.2% for Mutect2 (Table 3). DREAMS-vc scored highest in both F1 and G-mean scores. Here, 237 

DREAMS-vc performed distinctly better than Shearwater, while Mutect2 had a more comparable F1 238 

score. 239 

Table 3 Full alteration cataloga Catalogue alterations with signalb 
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 Sensitivity Specificity Sensitivity Specificity F1 G-mean 

DREAMS-vc 0.382 0.998 0.830 0.944 0.616 0.885 

Shearwater 0.356 0.997 0.773 0.911 0.493 0.839 

Mutect2 0.314 0.999 0.682 0.962 0.603 0.810 

 240 

a 
Whole catalogue consisting of n=191 true positive mutations, and n=43500 potential validation set calls. 241 

b 
Catalogue of positions with signal consisting of n=88 true positive mutations, and n=1350 potential validation 242 

calls. 243 

A common measure used to predict the presence of ctDNA is the estimated tumor fraction in 244 

plasma. DREAMS-cc combines the mutational evidence across the mutation catalogue, to estimate 245 

the tumor fraction with an accompanying p-value for the presence of cancer (Methods). We aimed 246 

to detect cancer in the Pre-OP samples, since cancer is present and should, in theory, be detectable 247 

given enough ctDNA is present in the blood. As a negative control, we attempted to detect cancer in 248 

each Pre-OP sample (Tested Sample) with the mutation catalogue from all other patients (Candidate 249 

patient) (Figure 6a). In case of shared mutations between the mutation catalogues, these were 250 

eliminated to prevent false positives. As a benchmark, we constructed a cancer call score using the 251 

product of the individual Bayes factors across the mutation catalogue from Shearwater, resulting in 252 

a similar tendency (Figure 6b). The performance of calling cancer can be assessed by treating the 253 

cross-patient mutation catalogues as expected negatives and calculate an AUC score. Performance 254 

was compared using the 5x2 cross validation setup as above (Figure 5a). The AUC was very similar 255 

between DREAMS-cc and Shearwater with respect to calling cancer, however DREAMS-cc showed a 256 

slightly increased performance (p = 0.0343, one tailed t-test). As for variant calling, we only included 257 

the samples with mutational signal to showcase and compare the performance of the different 258 

methods in discriminating tumor from error signal.  259 

For the patients with stage I and II CRC, we found tumor supporting reads in 47.5% (19/40) and 73% 260 

(33/45) of the Pre-OP samples, respectively. We called cancer in 34% of the stage I CRC patients, 261 

corresponding to 74% (14/19) of the patients with a mutational signal. We called cancer in 73% of 262 
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the stage II CRC patients, corresponding to 94% (31/33) of the patients with signal. These results 263 

were obtained whilst still limiting the false positive rate to 5 % in cross-patient cancer calls with a 264 

non-zero mutational signal.  265 

Detailed analysis of the false positive cancer calls reveals that most are due to a specific KRAS G12V 266 

variant: chr12:25245350 C>A. This variant is common in colon cancer, and it is therefore not 267 

surprising to find in the patients [24]. However, the mutation was not found in the patient’s 268 

corresponding tumor or buffycoat samples. A possible explanation for this is that the mutation is not 269 

detected in the tumor biopsy due to sub-clonality [25] or that there is an underlying germline signal 270 

that was not caught in the buffycoat.  271 

Discussion 272 

We have developed DREAMS, as a new approach for modelling the error rates in sequencing data 273 

that incorporates information from both the local sequence context and read-level information. 274 

DREAMS is intended for settings that rely on accurate error identification and quantification. We 275 

applied the error model for low-frequency ctDNA variant calling (DREAMS-vc) and cancer detection 276 

(DREAMS-cc).  277 

The error rate was found to vary depending on several of the proposed read-level features. 278 

Surprisingly, fragment size was found to be correlated with the error rate, with the smallest error-279 

rates being observed for fragment sizes corresponding to the mono-nucleosomal and di-280 

nucleosomal lengths (Figure 3b). Fragments that deviate from these in length may have been 281 

degraded in the blood for a longer time and thereby accumulated more errors. Fragments of ctDNA 282 

are generally shorter and error rates are generally highest in short fragments, which shows the 283 

importance of accurate error modelling[26, 27]. The error rate was also found to vary with the 284 

strand, and symmetric mismatches occurred at different rates (Figure 3e). The G>T/C>A asymmetry 285 

can be explained by the hybridization capture protocol only targeting one strand and thus only 286 

capturing oxidative damage of that strand[14]. A similar mechanism might explain the C>T/G>A 287 
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asymmetry in the case of cytosine deamination. The error rate varied with the position in the read 288 

and was especially increased in the beginning of reads (Figure 3d). This may be because ends of 289 

fragments are prone to damage[14] and in thermodynamic equilibrium with being single stranded. 290 

The error rate also varied depending on whether the read was the first or second in the pair (Figure 291 

3d). Besides being intermitted by a PCR amplification step, the reads differ in composition and 292 

length of adapters sequenced prior to the insert, which might cause this difference.  293 

Training a background error model using DREAMS does not require known mutation sites in reads, 294 

as it only models the errors found in aligned reads (BAM-files). These can originate from normal 295 

samples or mutation filtered cancer samples, as in this study. Since error patterns are highly 296 

dependent on laboratory procedures, the same protocol should be used for training samples and 297 

subsequent testing samples. Training across multiple samples gathered over time, is expected to 298 

learn the error patterns that are general across samples and batches. Conversely, if the amount of 299 

data in a single sample is large, the error model can be trained on the sample itself, which 300 

potentially yields a highly specific model that accounts for sample specific error patterns. The model 301 

is built to be position agnostic and can therefore be used to predict error rates for positions for 302 

which no training data is available. Furthermore, it is fit for both deep sequencing of panels and 303 

shallow sequencing of whole genomes.  304 

The error model has been implemented using a neural network, allowing the feature set to be 305 

tailored to capture the relevant information of a specific setting. Analysis of the feature importance 306 

revealed that several of the proposed read-level features are useful in predicting the error rate in 307 

sequencing data (Figure 4a). Most features presented in this paper are general to NGS data, 308 

however not all sequencing protocols use UMI based error correction, rendering UMI related 309 

features redundant. In particular, UMI cannot be exploited for shallow whole-genome sequencing as 310 

read groups cannot be formed. In such cases error rates would be increased, making accurate error 311 

modelling as performed by DREAMS even more important. 312 
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Compared to simpler methods, the presented approach is more computationally demanding, due to 313 

training of the neural network model and the use of complex data extracted from BAM-files. A 314 

neural network is a simple and flexible approach for bridging the gap between a complex set of 315 

contexts and read level features and the error rate of a given read position but might not be the 316 

most efficient solution. The model can be trained on a regular laptop within a few hours, which 317 

should only be done once, when the training dataset is defined. Using the trained model and the 318 

statistical modules adds no significant computation time for calling mutations and cancer in the 319 

current setting. However, very large mutation catalogues are expected to increase the computation 320 

time for DREAMS-cc. 321 

DREAMS was built to exploit read-level features under the assumption that these affect the error 322 

rate in sequencing data. Thus, the power of this approach increases with the variability in the error 323 

rate explained by read level features. Thereby, less emphasize is put on mismatches that are likely 324 

errors, and more confidence in the potential tumor signal from other mismatches. Conversely, if 325 

read level features are not improving error prediction, the performance is expected to be similar to 326 

methods working with simpler summary data. Although DREAMS use information about the local 327 

sequence-context, strong regional effects on the error rate are not expected to be captured by the 328 

model. 329 

In all performance comparisons DREAMS-vc performed better or equal to the other methods in 330 

calling tumor mutations. This indicates that read-position level features can improve performance in 331 

separating error from mutational signal. Similarly for cancer detection, DREAMS-cc performed equal 332 

to calls based on Shearwater. Cancer was detected in most (73%) of stage II CRC cancer patients and 333 

a third (34%) of stage I patients.  334 

There are false positive cancer and mutation calls, some of which could potentially be explained by 335 

clonal hematopoiesis of indeterminate potential (CHIP) or an unexpected error signal. To reduce the 336 

signal from CHIP, we have excluded positions with significant presence of non-reference nucleotides, 337 
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found in the germline samples, however, a low signal might still be present. Remaining false positive 338 

calls might be due to regional effects or sample specific artifacts. Many of the false positive mutation 339 

calls in the Pre-OP samples were found to be a mutation leading to the KRAS G12V variant, and it 340 

could therefore potentially be explained by a sub-clonal variant that was not identified in the tumor 341 

sample or a germline signal of clonal hematopoiesis of indeterminate potential (CHIP) that was not 342 

identified in the buffycoat samples. 343 

Sensitive variant calling in liquid biopsies can provide non-invasive insight into tumor genetics, which 344 

can potentially enable personalized treatment of patients and be a cost-effective approach for 345 

cancer screening. DREAMS-cc integrates evidence across a mutation catalogue to increase sensitivity 346 

in cancer detection. Cancer detection is expected to get more sensitive as the number of mutations 347 

in the catalogue rises. A potential application of DREAMS-cc could be tumor agnostic cancer 348 

detection based on a catalogue of commonly known tumor variants. 349 

The approach presented in this paper does not utilize tumor specific signals such as the fragment 350 

size distribution, fragmentation patterns, mutational signatures, expression information, etc. 351 

However, together with the error characterizing properties of DREAMS-cc, this could potentially 352 

refine the cancer calls. Addition of regional properties and positional information could potentially 353 

further increase sensitivity. In this paper, we focus on the single nucleotide variants in the tumor, 354 

but the model could be extended to be able to look for indels. The underlying ideas in DREAMS are 355 

not restricted to variant calling and could be used in other tasks of sequencing data analysis such as 356 

advanced error filtering. 357 

Conclusion 358 

We have presented the DREAMS error rate model and demonstrated the importance of using read-359 

level features for modelling the errors in NGS data. The model was validated in a tumor informed 360 

setting, using DREAMS-vc for variant calling and DREAMS-cc for cancer detection in patients with 361 

CRC. DREAMS-vc allowed accurate detection of mutation signal in plasma samples extracted prior to 362 
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curative intended surgery with an improved performance compared to state-of-the-art methods. 363 

This highlights the importance of including read-level information in modelling the background error 364 

rate. Furthermore, DREAMS-cc demonstrated the ability to combine signal from multiple mutations 365 

known from the tumor biopsy for improved cancer detection. DREAMS-cc was able to call cancer in 366 

73 % of Pre-OP samples from CRC stage II patients, and 34 % of CRC stage I patients. Potential future 367 

applications of DREAMS include analysis of WGS data and tumor agnostic cancer detection. The 368 

approach presented with DREAMS is generally applicable across NGS applications that need accurate 369 

handling and quantifications of errors, and the presented algorithms (DREAMS-vc and DREAMS-cc) 370 

are only examples of how to exploit this. The specific application presented in this paper is 371 

implemented as a user-friendly R package [https://github.com/JakobSkouPedersenLab/dreams]. 372 
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Methods 408 

Error rate prediction using read level information 409 

In this study we present a method called DREAMS (Deep Read-level Modelling of Sequencing-errors) 410 

for estimating the error rate at each read position using features of the individual read and the 411 

genomic context of the position. In practice, this is achieved by predicting the probability of 412 

observing each allele given the describing features of a position in a read and considering the 413 

probabilities of observing the alternative alleles as the error rates. The read specific features can 414 

include information such as the read position, the strand of the mapped read, the length of the 415 

fragment, and UMI-group size. The read position refers to the cycle number at which the position 416 

was sequenced starting with the first nucleotide of the fragment, thus disregarding cycles used for 417 

reading primers, adapters, unaligned ends etc. Context specific features contain information about 418 

the genomic sequence surrounding the position, including the neighboring bases (tri-nucleotide 419 

context), the complexity, and GC-content. The local complexity is calculated as the Shannon entropy 420 

for both single nucleotides and pairs. Similarly, the local GC content is calculated as the fraction of C 421 

and G nucleotides. In principle, any feature that can be thought to affect the error rate of a read 422 

position can be added to improve the error rate prediction. Another possible feature would be the 423 

positional read quality score given by the sequencing machine. However, the estimated quality for 424 

the collapsed consensus reads were all capped at the same high value and thus excluded as they do 425 

not include any information for further modelling.  426 

Data 427 

Data for a read position can be extracted from a read mapping (BAM-file) with sequencing data from 428 

a next generation sequencing experiment. The training data for the model consists of a set of read 429 

positions from multiple samples, for which the observed allele is denoted together with the relevant 430 

features. This means that the training data includes both matches, where read positions where the 431 

observed allele is equal to the reference allele and mismatches where the observed and reference 432 
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allele differ. Mismatches that correspond to known single nucleotide polymorphisms found in the 433 

germline samples are excluded from the training. Assuming that the training samples are non-434 

cancerous means that all remaining mismatches in the dataset can be assumed to be errors that 435 

have occurred on a molecular level in the body or lab, or during sequencing of the sample.  436 

The mismatches are extracted from the BAM-file using the mismatched positions annotated in the 437 

MD-tag. The equivalent genomic position is found, and the 11- and 3-mer context is extracted from 438 

the reference genome and used for calculation of local sequence-context features. The UMI errors 439 

and UMI count are extracted from the cE and cD tags generated by the 440 

CallMolecularConsensusReads from fgbio used for calling UMI consensus reads. Information about 441 

the insertions and deletions is extracted from the cigar tag. The fragment size is the insert-size 442 

(isize), and the read position is the position in the read sequence from the 5’-end of the read. Strand 443 

and first in pair are extracted from BAM flag where this information is encoded in a bitwise fashion. 444 

The model assumes that the input data for both training and testing is based on readings of unique 445 

fragments, so each position in a fragment is only represented in one read. This can be assured using 446 

unique molecular identifiers (UMIs) and by trimming overlapping read positions in the read pairs.  447 

As training on every single read position in every single read is very demanding and inefficient, we 448 

employ a methodology akin to importance sampling where we extract all the mismatches from the 449 

data and randomly sample a subset of the non-mismatches. To account for this skew induced by 450 

down-sampling one category of the training data a rescaling scheme inspired by[28] is used on the 451 

predicted error rates. The method outlined in Supplementary section 5. 452 

Neural network model 453 

Structure of the neural network 454 

To predict the error rate at a given read position we use a multilayer perceptron (MLP) which is a 455 

simple neural network setup with multiple fully connected layers. The neural network allows us to 456 
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use the features without prior knowledge of how they interact amongst each other or how they 457 

affect the error rate. The neural network is trained using a set of read positions where the features 458 

describing the read positions are used as inputs and the observed allele as output.  459 

For a given read position the possible observed outcomes are the alleles A, T, C or G. Interpreting 460 

this as a random event, the observed allele can be seen as an outcome from a four-dimensional 461 

multinomial distribution with one trial. Let ���  represents the observed allele in read � at position � 462 

and ��� be the set of observed features for that read position. For a non-mutated, homozygote 463 

position the observed allele should predominantly be the reference allele, and any observations of 464 

non-reference alleles, would be considered errors. In this situation ����� � �	���
 would be close to 465 

1 if � was the reference allele for read position ��, �
, and ����� � �	���
, � � ��, �, �� would be 466 

the error rates for the remaining three alleles. Given a set of observations ����� , ���
����

�
 it is then 467 

possible to write the log-likelihood function for the observed data: 468 

� ������ , ���
��,�� 

� �log ������ � ���	���
�
�,�

 

� � log ������ � �	���
�
�,�:����	

� � log ������ � �	���
�
�,�:����


� 

� log ������ � �	���
�
�,�:�����

� � log ������ � �	���
�
�,�:�����

 

The problem now becomes how to estimate the distribution �����	���
 above. To do this, start by 469 

defining the probability functions via the SoftMax function: 470 

����� � �	���
 �
 
������

∑  
�������
����	,
,�,��

 

, where "�����
 is a predictor function for the allele � using the observed information ��� . As an 471 

example, for classic multinomial logistic regression a linear predictor function is chosen such that 472 
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"����
 � #� $ �� , where #� is a vector of feature specific weights that can be found by maximizing 473 

the log-likelihood function. To get a more flexible model, a neural network is chosen, since this can 474 

approximate any arbitrary predictor function well including arbitrary interactions between input 475 

features. To do this ����� � �	���
 can be interpreted as the output from a neural network model 476 

where SoftMax is used as the last activation function and "�����
 is the output from the last hidden 477 

layer. To train such a model inspiration is drawn from likelihood theory and the negative log-478 

likelihood function is chosen as the loss function to minimize.  479 

Architecture 480 

The neural network model allows for high flexibility in the choice of features and requires very 481 

limited prior knowledge about the effect of the features on the error rate. The neural network was 482 

selected to be a MLP with an input layer, three hidden layers and an output layer. The dimension of 483 

the input layer depends on the selected input features, the hidden layers have a configuration of 484 

128, 64, and 32 nodes with a ReLu activation function, and the output layer contains 4 nodes with 485 

SoftMax activation, as explained above, corresponding to probability of observing each of the 4 486 

alleles. The configuration of hidden layers can be varied, depending on the input data and the 487 

available computational resources. The models were training using the Keras library (2.3.0) in R, 488 

which is an interface that builds in Tensorflow (2.6.0) [29].  489 

Feature handling / embedding 490 

The features are split into numeric, categorical, and embedded variables and handled accordingly. 491 

Categorical features are one-hot encoded, and the numeric features are batch normalized. The 492 

trinucleotide context can be seen as the three distinct features: reference allele and the two 493 

neighboring bases. These can be handled as categorical features with individual one-hot encoded 4-494 

dimensional inputs using 12 (3x4) input nodes in total. Alternatively, a 64-dimensional (4x4x4) one-495 

hot encoded input of the entire trinucleotide context (TNC) can be used.  We will employ another 496 

alternative that takes the 64-dimensional feature in the input layer and embeds it into a continuous 497 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.509150doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509150
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

3-dimensional vector before including it in the model alongside the remaining input features. 498 

Thereby, the model can learn the relationship between the contexts, and cluster contexts that have 499 

a similar effect on the error rate close together and vice versa.  500 

Assessing cancer status across a catalogue of multiple mutation candidates 501 

Based on the neural network error model developed above, it can now be assumed that the 502 

individual error rates for a given position in each read is known. In this section the error rates will be 503 

exploited to develop a statistical framework for estimating the tumor fraction in a sample based on a 504 

catalogue of candidate mutations. This framework can ignore some mutation candidates if these are 505 

not found in the sample, for example due to relatively low allelic frequency due to sub-clonality in 506 

the tumor or due to little tumor in the circulation. Reduction in the candidate mutations allows for a 507 

comprehensive mutation catalogue to be used, where mutation candidates with limited evidence 508 

may be excluded. The subset of candidate mutations is selected statistically by finding mutations 509 

with a consistently high mutational signal, and the tumor fraction is estimated based on these 510 

candidates. This subset of mutations is then used in a statistical procedure for testing if the observed 511 

mutational signal exceeds what we would expect if no mutated DNA were present, making it 512 

possible to determine the cancer status of a patient based on the sample. 513 

The statistical model 514 

Start by introducing %� as a variable that controls the presence of a given mutation on the site �, such 515 

that %� � 1 represent the case where the site is mutated, and %� � 0 when it is not. Furthermore 516 

let: 517 

%�~) *+,����*
 

Thus, given a catalogue of possible mutations, * is the probability that each of them is present in the 518 

sample. For site � let - be the germline reference allele and . the alternative allele of interest. 519 

Furthermore, it is assumed that the germline site is homozygote, such that any signal from non-520 

reference alleles must be due to errors or mutational signal from a tumor. To model the molecular 521 
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composition of the fragments covering site � let /�� � �-,.� be the true error-free nucleotide of the 522 

�’th fragment. If the �’th mutation is not present in the sample (%� � 0), we are sure that the true 523 

nucleotide of the fragment is the reference and thus the following distribution holds: 524 

��/�� � -|%� � 0
 � 1, ��/�� � .|%� � 0
 � 0 

To model the mutational DNA present in the sample let " 1 0 denote the tumor fraction. This is the 525 

fraction of the DNA in the blood that originates from tumor cells. Assuming that the mutation of 526 

interest is (sufficiently) clonal in the tumor, i.e. half of the DNA in the tumor has this mutation, the 527 

probability of a given fragment having the mutation is " 2⁄ . Using this the following distribution for 528 

/��  can be assumed when the mutation is present in the sample (%� � 1): 529 

��/�� � -|%� � 1
 � 1 4 "
2 , ��/�� � .|%� � 1
 � "

2 

To model the errors that occur in NGS data let ���  be the observed nucleotide in fragment � at 530 

position �. Assume that the distribution of ���  depends only on the corresponding true nucleotide 531 

/�� , in the sense that the event ��� 5 /��  corresponds to the observation being an error. This 532 

distribution is exactly what the neural network model described above aims to approximate using 533 

the observed features ��� . To simplify notation the dependence of ���  on ���  will be omitted from 534 

notation in the following. Note that observations ���  outside �-,.� will have little information 535 

about the true nucleotide /��. Furthermore, since the error rates generally are low, the difference 536 

between including interactions between all four possible alleles and only the two allele of interest is 537 

negligible. Thus, to simplify the following calculations, we assume that ��� � �-,.�. In practice this 538 

means that all fragments, �6, for which ���� 7 �-,.� are eliminated from the analysis. Using this 539 

assumption, we define the probability of observing the alternative allele in a reference allele 540 

position as the following error rate:  541 

 ����� � ����� � .	/�� � -, ��� � �-,.�
 � ����� � .|/�� � -

����� � -|/�� � -
 � ����� � .|/�� � -
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Conversely, for a fragment that stems from a tumor cell and contains the mutated allele we define: 542 

 ����� � ����� � -|/�� � .

����� � -|/�� � .
� ����� � .|/�� � .
 

Estimating the tumor fraction and mutation presence 543 

In this section we will develop a procedure for estimating the tumor fraction (") and mutation 544 

presence probability (*). For this, let � � �1,… ,9� be the index of a catalogue of 9 candidate 545 

mutations, :� the corresponding number of covering reads and ;����
����,...,��
<
����,...,��

 all the 546 

observed alleles. First, we write the likelihood function for " and *: 547 

= �", *>�����
�����,...,��,����,...,��
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Getting a maximum likelihood estimate (MLE) of " and * by optimizing this expression analytically is 548 

not tractable. However, by seeing /��  and %�  as latent variables, estimates can be found by 549 
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employing an EM-algorithm, which will be developed in a Supplementary section 6. For now, 550 

assume that "F and *̂ are a MLEs of " and * respectively. 551 

To test if a sample has a significant content of mutational DNA, we focus on the parameter in the 552 

model. By representing the hypothesis of a negative sample as a tumor fraction of 0 and no 553 

mutations present (H�: ", * � 0 ) and a positive sample as a positive tumor fraction and some 554 

mutations present �H	: " 1 0, * J �

�
�, a likelihood ratio test can be used to test for significance. 555 

Note that * J �

�
 in H	 corresponds to at least one mutation being present in the sample. The LR-test 556 

statistic for this test is: 557 

K � 42log
= �0,0>�����
����

� �
= �"F, *̂>�����
����

� �
 

Since there are 2 free parameters in the model, it can be assumed that K is approximately L��2
-558 

distributed, and a p-value can be obtained as follows: 559 

M��� � 1 4 N���� �K
 

Using this statistical model for cancer calling on top of the error rate predictions from DREAMS we 560 

refer to as the DREAMS-cc.  561 

Calling individual mutations 562 

In the special case where the number of mutations in the catalogue is 9 � 1, the algorithm outlined 563 

above can be thought of as a regular variant caller. In this case the concept of some mutations not 564 

being present in the sample is unnecessary, as the presence of the single mutations of interest can 565 

be governed solely by the tumor fraction ". The algorithm above is easily modified to handle this by 566 

assuming that * � 1, and using one degree of freedom for the L�-distribution in the significance 567 

test. The equations in the EM-algorithm can also be simplified by making this assumption. We refer 568 

to the variant caller will be referred to as DREAMS-vc. 569 
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Figure legends 570 

Figure 1:  571 

Error generation in Next Generation Sequencing data. Normal cells (grey) and tumor cells (blue) shed 572 

DNA into the bloodstream. The tumor DNA (blue) contains a tumor mutation (yellow). The 573 

circulating free DNA in the blood becomes damaged both in vivo and in vitro (green triangle). Errors 574 

can be introduced at each PCR duplication during amplification (red circle). Further errors are 575 

accumulated during sequencing and mapping (purple square). The final data contains mapped reads, 576 

where some mismatches are errors, and others are mutation from tumor cells.  577 

Figure 2:  578 

The data collection setup for tumor-informed relapse detection in colon cancer patients. After the 579 

patient is diagnosed with colorectal cancer a liquid biopsy is extracted prior to curative surgery (Pre-580 

OP). A biopsy is taken from the tumor. Following surgery liquid biopsies (Post-OP) can be collected to 581 

monitor relapse. All collected samples are sequenced using Next-Generation Sequencing.  582 

Figure 3: 583 

a) Examples of local sequence-context features and read-level features extracted from a read for a 584 

single position of interest in a read mapping. Centered at the position of interest, the trinucleotide 585 

context is extracted, and the surrounding 11 bp region is used for calculating the regional features, 586 

including GC content and K-mer complexity. The read pairs contain a forward and reverse read that 587 

are enumerated as either the first or second of the pair according to the order of sequencing. Two 588 

read pairs are used for illustration of the read-centric features in the panels on the right. The UMI 589 

groups are shown to indicate the variation in the number of reads used for the consensus reads. The 590 

read position and fragment size are shown for the consensus reads. b-e) Variation in observed error 591 

rate for selected features based on their observed distribution: b) Fragment size, c) UMI group size, 592 

d) Read position and the variation between the first and second read in a pair. e) Error type for each 593 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.509150doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509150
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

strand (forward and reverse). For each feature the 95% confidence interval is indicated by the 594 

shaded areas or error bars. See Supplementary section 3 for how the error rates and confidence 595 

intervals are calculated and similar plots of the remaining features. 596 

Figure 4: 597 

a) Features are individually removed one-by-one from the full model containing all features to 598 

measure the decrease in validation error. The most important feature is then defined as the one that 599 

decreases the validation error the most, and vice versa. The grey points show the mean decrease in 600 

validation error for each fold of a 5-fold cross validation. The average of these is used to rank the 601 

features by importance, indicated by the black points. b) Based on the importance ranking, the 602 

features are cumulatively removed one-by-one to from a full model. If the decrease in validation 603 

error compared to the full model is significant, the feature should not be removed from the model. A 604 

feature is only kept if removing it worsen the performance in all folds of the 5-fold cross validation. 605 

c) Structure of the neural network. The neural network uses three different types of input features: 606 

numeric, categorical, and embedded. The input features are processed differently in each group. The 607 

input features are then parsed through three hidden layers of decreasing width. The output contains 608 

4 nodes representing the probability of observing each of the four based (A, T, C, G) at the given 609 

read position.  610 

Figure 5: 611 

a) Illustration of 5x2-cross-validation procedure for the estimation of performance. The patients are 612 

first split into two approximately equally sized folds. The neural network model is trained on the 613 

Post-OP data of fold 1 and validated by testing the models on the Pre-OP samples of the other fold 614 

(Test B).  This is then repeated by swapping the data in fold 1 and 2. The whole process is repeated 5 615 

times. b) Performance of variant calling using DREAMS-vc compared to state-of-the-art tools 616 

Shearwater and Mutect2. The AUC is estimated based on the different negative sets: The cross-617 

patient calls, 500 random validation alterations and these sets combined (All). The AUC is also 618 
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estimated for the full group of patients (All), and the patients with stage I and stage II CRC, 619 

individually (ns: p≥0.05, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001). 620 

Figure 6: 621 

Prediction of cancer using DREAMS-cc (a) and Shearwater (b). For each patient’s LB-sample (y-axis) 622 

the mutation catalogue (x-axis) for every candidate patient is used for calling cancer. The patients 623 

are stratified into patients with stage I and stage II CRC, respectively. The diagonal is showing the 624 

result of using a patient’s own mutation catalogue for cancer calling and constitutes the expected 625 

positives. The off diagonal is the cross-patient results, for which the mutation catalogue is filtered 626 

with the patient’s tumour and germline variants prior to cancer calling, and thus these are expected 627 

to be negative. The colour scheme is chosen based on the matched quantiles from the p-value and 628 

combined Bayes factors from DREAMS-cc (a) and Shearwater, respectively. The cancer predictions 629 

show the results from one split in the 5x2 CV. c) AUC performance of DREAMS-cc and shearwater 630 

with respect to calling cancer.  631 
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