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Abstract

Understanding the role of host genome in modulating microbiota variation is a need to shed light into
the holobiont theory and overcome the current limits on the description of host-microbiota interactions
at the genomic and molecular levels. However, the host genetic architecture structuring microbiota is
only partly described in plants. In addition, most association genetic studies on microbiota are often
carried out outside the native habitats where the host evolve and the identification of signatures of local
adaptation on the candidate genes has been overlooked. To fill these gaps and dissect the genetic
architecture driving adaptive plant-microbiota interactions, we adopted a Genome-Environmental-
Association (GEA) analysis on 141 whole-genome sequenced natural populations of Arabidopsis
thaliana characterized in situ for their leaf and root bacterial communities and a large range of
environmental descriptors (i.e. climate, soil and plant communities). Across 194 microbiota traits, a
much higher fraction of among-population variance was explained by the host genetics than by ecology,
with the plant neighborhood as the main ecological driver of microbiota variation. Importantly, the
relative importance of host genetics and ecology expressed a phylogenetic signal at the family and genus
level. In addition, the polygenic architecture of adaptation to bacterial communities was highly flexible
between plant compartments and seasons. Relatedly, signatures of local adaptation were stronger on
QTLs of the root microbiota in spring. Finally, we provide evidence that plant immunity, in particular
the FLS2 gene, is a major source of adaptive genetic variation structuring bacterial assemblages in A.
thaliana.
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Introduction

To cope with human population growth and current social requests, a more eco-efficient, sustainable
and environmentally friendly agriculture is an urgent need (Keating et al. 2010). In the global change
context, both crops and wild plant species face extreme and largely unpredictable abiotic stresses (such
as heat waves) as well as an increase in the number and severity of epidemics (Bebber 2015; Desaint et
al. 2021). Altogether, this calls for concrete interventions improving the potential of plants to cope with
multiple abiotic and biotic stresses.

The plant microbiota is defined as a set of microorganisms of a particular host compartment (i.e.
rhizosphere, roots, stem, leaves, flowers etc.). Often referred to as the second host genome in the context
of the holobiont/hologenome theory (Rosenberg and Zilber-Rosenberg 2018), the plant microbiota
mainly originates from the soil compartment, even if a non-negligible fraction of microbes also
originates from the aerial sphere (Mdller et al. 2016). Plant-associated microbes are crucial for plant
health because they: i) mobilize and make accessible essential nutrients (e.g. nitrogen, phosphate etc.),
ii) provide resistance to abiotic stresses (such as drought), and iii) confer direct (production of
antimicrobial components) or indirect (elicitation of immune defense) pathogen protection (Berendsen
et al. 2012; Bulgarelli et al. 2013; Pieterse et al. 2014; Jacoby et al. 2017; Escudero-Martinez and
Bulgarelli 2019; Trivedi et al. 2020; Glick and Gamalero 2021; Bai et al. 2022). The plant microbiota is
therefore a promising lever to develop innovative eco-friendly agro-ecosystems (Busby et al. 2017; Toju
et al. 2018; Mitter et al. 2019).

While numerous studies reported the strong influence of abiotic (i.e. climate, physico-chemical
agronomic properties) (Mdller et al. 2016; Fitzpatrick et al. 2020) and biotic (i.e. presence of herbivores
and neighboring plants) (Humphrey and Whiteman 2020; Meyer et al. 2022) factors on plant microbiota
diversity and composition, there was a growing interest during the last decade to estimate the effect of
plant genetics on microbiota (Bergelson, Brachi, et al. 2021). Two main approaches have been adopted
to unravel the genetic and molecular plant mechanisms controlling microbiota assembly. The first and
most common approach is based on the use of artificial mutations, including mutant and transgenic lines
(Bergelson, Brachi, et al. 2021). By testing 218 artificial lines in 48 studies conducted on crops and wild
species, several pathways affecting microbial assembly were identified and include (i) external and
internal physical barriers in both the leaf (e.g. wax and cuticle) and root (e.g. suberin and lignin)
compartments (Salas-Gonzélez et al. 2021), (ii) Pathogen-Associated Molecular Pattern (PAMP)-
triggered immunity (PTI) that prevents dysbiosis by keeping commensal microbes at a low absolute
abundance (Chen et al. 2020), (iii) hormonal pathways related to salicylic acid, jasmonic acid, ethylene
and strigolactones (Lebeis et al. 2015), (iv) mineral nutrient homeostasis (Zhang et al. 2019), which may
requires a fine coordination with physical barriers (Salas-Gonzalez et al. 2021) and immunity (Castrillo
et al. 2017), (v) excretion of plant secondary metabolites in rhizosphere, roots or flowers (Huang et al.
2019), and (vi) symbiosis (Wang et al. 2020).
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80  The second approach exploits natural genetic variation segregating among or within plant species
81  (Bergelson, Brachi, et al. 2021). While the importance of host genetics in shaping natural variation on
82  microbial communities has been a long-lasting debate (Roux and Bergelson 2016), an ever-increasing
83  number of studies reported significant microbiota differences between closely related species or among
84  genotypes within a given species (when grown in the same environment), with typical values for the
85  magnitude of these differences ranging from 5% to 30% (Schlaeppi et al. 2014; Bergelson, Brachi, et al.
86  2021). Following the detection of significant heritability estimates, seven genome-wide association
87  studies (GWAS) using microbial community descriptors as plant traits have been performed in
88  Arabidopsis thaliana (Horton et al. 2014; Bergelson et al. 2019; Brachi et al. 2022), maize (Walters et
89  al. 2018), rice (Roman-Reyna et al. 2020), sorghum (Deng et al. 2021) and switchgrass (VanWallendael
90 et al. 2022). These GWAS revealed a highly polygenic architecture, suggesting a control of natural
91  microbiota assembly by an extensive number of Quantitative Trait Loci (QTLs) with a small effect. A
92  similar result was recently obtained with traditional linkage mapping performed in barley (Escudero-
93  Martinez et al. 2022) and tomato (Oyserman et al. 2022).
94  While informative, the number of genetic association studies that report signatures of local adaptation
95  on QTLs associated with microbial communities remains scarce, not to say absent. In addition, because
96 the relative effect of host genetics on the microbiota can highly depend on the plant habitat, in particular
97  the inoculum source (e.g. agricultural soil) (Robertson-Albertyn et al. 2017; Hubbard et al. 2018;
98  Fabianska et al. 2020), setting up genetic association studies in a common garden can bring to partial
99  conclusions on the host genetics controlling for microbiota (Oyserman et al. 2020). One approach to
100  tackle these issues is to conduct Genome-Environment Association (GEA) analysis. With the goal of
101  identifying genetic variants associated with ecological variation across tens to hundreds of natural
102  populations, GEA analysis is a powerful genome scan method to identify genes potentially involved in
103  adaptive processes (De Mita et al. 2013). The development of next-generation sequencing (NGS)
104  technologies combined with the availability of public databases on abiotic variables, in particular
105  climatic variables, resulted in a recent burst of GEA studies reporting in plants the identification of
106  adaptive QTLs to abiotic variation, from a worldwide scale (Hancock et al. 2011; Lasky et al. 2015; Bay
107  etal. 2017; Lépez-Hernandez and Cortés 2019) to a regional scale (Pluess et al. 2016; Frachon et al.
108  2018). Although much less applied on biotic factors, a GEA analysis on plant community descriptors
109 revealed a high degree of biotic specialization of Arabidopsis thaliana to members of its plant interaction
110  network at the genetic level (Frachon et al. 2019). In addition, the genetic architecture of local adaptation
111 to plant community diversity and composition was not predictable from the genetic architecture of local
112 adaptation to the abundance of individual plant companion species (Frachon et al. 2019).
113 In this study, by combining microbial community ecology and population genomics, we adopted a GEA
114  approach to establish a genomic map of adaptation to bacterial communities of the leaf and root
115  compartment of 141 whole-genome sequenced natural populations of A. thaliana located south-west of

116  France (Bartoli et al. 2018; Frachon et al. 2018). Because plant-associated microbes rapidly change
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117  within the host life cycle (Copeland et al. 2015; Beilsmith et al. 2021), bacterial communities were
118  characterized in fall and spring, thereby allowing testing whether the strength of adaptation to bacterial
119  communities differs between seasons (Bartoli et al. 2018). We also tested whether the strength of
120  adaptation differs between microbiota and pathobiota (i.e. the ensemble of potential phytopathogens).
121 To control for the confounding effects of the abiotic environment on microbiota and pathobiota, the 141
122 natural populations of A. thaliana were characterized for a set of 17 biologically meaningful climate and
123 soil variables (Frachon et al. 2018; Frachon et al. 2019). Because companion species can strongly shape
124  the microbial communities of a focal plant species (Geremia et al. 2016; Meyer et al. 2022), we also
125  controlled for the confounding effects of 49 plant community descriptors (Frachon et al. 2019).

126

127 Results & Discussion

128 A set of 168 natural populations of A. thaliana inhabiting contrasting ecological habitats in the south-
129  west of France were whole-genome sequenced using a Pool-Seq approach, resulting in the identification
130 0of 4,781,661 SNPs (Frachon et al. 2018). In this study, we focused on 141 of these natural populations
131  of A. thaliana that were characterized for leaf and root bacterial communities - using a gyrB based
132 metabarcoding approach (Bartoli et al. 2018) - and a set of six climate variables, 14 soil physico-
133 chemical variables and 49 descriptors of plant communities (supplementary table 1, Data Sets 1-8)
134 (Frachon et al. 2018; Frachon et al. 2019). Importantly, the 141 populations strongly differed in their
135  main germination cohort in autumn 2014 (early November vs. early December) (Bartoli et al. 2018).
136  We therefore defined three seasonal groups, hereafter named (i) “fall” corresponding to 73 populations
137  collected in November/December 2014, (ii) “spring (November)” corresponding to 72 populations
138  already sampled in fall and additionally sampled in early-spring (February/March 2015), and (iii)
139  “spring (December)” corresponding to 66 populations only sampled in early-spring (February/March
140  2015) (table 1, supplementary table 1).

141  For each ‘plant compartment x seasonal group’ combination, we focused for both microbiota and
142  pathobiota (i.e. ensemble of pathogenic lineages), on descriptors of community diversity (richness and
143 Shannon index) and community composition (approximated by the two first principal components from
144  asimple unconstrained PCoA) (Bartoli et al. 2018), as well as the presence/absence of the most prevalent
145  OTUs, resulting in a total of 194 descriptors of bacterial communities (table 1). To fine map QTLs
146  associated with microbiota/pathobiota traits, we combined a Bayesian hierarchical model (BHM)
147  explicitly accounting for the scaled covariance matrix of population allele frequencies (£2), which makes
148  the analyses robust to complex demographic histories (Gautier 2015), with a local score (LS) approach
149  allowing the detection of QTLs with small effects (Bonhomme et al. 2019). The efficiency of the local
150  score approach was demonstrated in GWAS conducted in A. thaliana, with the fine mapping down to
151  the gene level and the functional validation of four QTLs associated with quantitative disease resistance

152  to the bacterial pathogen Ralstonia solanacearum (Aoun et al. 2020; Demirjian et al. 2022). In addition,
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153  the local score approach was successfully applied in a recent GWAS on leaf bacterial communities
154  characterized on 200 Swedish accessions of A. thaliana grown in four native habitats in Sweden (Brachi
155  etal. 2022).

156

157  GEA revealed a polygenetic architecture of adaptation to bacterial communities

158  Our Bayesian hierarchical model — local score (BHM-LS) combined approach successfully detected
159  QTLs associated with diversity and composition of bacterial communities and the presence/absence of
160 a particular OTU. For instance, a neat association peak was detected at the end of chromosome 5 and
161  the beginning of chromosome 1 for variation in microbiota diversity and composition in the leaf
162  compartment of the ‘spring (November)’ seasonal group, respectively (fig. 1A). Similarly, a neat peak
163  of association was detected at the beginning of chromosome 3 for the presence/absence of Pseudomonas
164  viridiflava, one of the most prevalent and abundant bacterial pathogens identified in natural populations
165  of A. thaliana in several geographical regions (Karasov et al. 2014; Bartoli et al. 2018; Karasov et al.
166  2018) (fig. 1A).

167  Owverall, our study revealed a highly polygenic architecture for most of the 194 descriptors of bacterial
168  communities, with the detection of on average ~19.6 QTLs per descriptor (median = 20, min = 3, max
169  =38)(fig. 1B). This is in line with the polygenic architecture reported in GWAS conducted on microbial
170  communities (Horton et al. 2014; Walters et al. 2018; Bergelson et al. 2019; Roman-Reyna et al. 2020;
171  Deng et al. 2021; Brachi et al. 2022; VanWallendael et al. 2022). Differences in the number of QTLs
172 among the six ‘plant compartment x seasons’ were barely significant (Generalized Linear Model, GLM,
173 F = 2.30, P = 0.0471). No differences in the number of QTLs was found between microbiota and
174  pathobiota traits (GLM, F = 0.50, P = 0.8063) (fig. 1B).

175

176 A non-negligible fraction of QTLs of microbiota/pathobiota were associated with variation in
177  abiotic environment and plant communities

178  Todisentangle GEA signals for a given bacterial community trait from GEA signals for abiotic variables
179  and descriptors of plant communities, we applied BHM-LS on 69 climate variables, soil physico-
180  chemical properties and plant community descriptors (supplementary table 1, Data Set 2-7). A non-
181  negligible fraction of top SNPs associated with microbiota/pathobiota traits were common to variation
182  in abiotic environment and plant communities, with on average ~15.7% of top SNPs associated with
183  microbiota/pathobiota traits being common with ecological variables (median = 13.2%, min = 0%, max
184  =84%) (fig. 2A). We may however caution that these values certainly represent lower-bound estimates
185  due to the undefined number of ecological variables acting on natural populations of A. thaliana.

186  Seven out of the nine ecological variables sharing top SNPs with more than 10% of
187  microbiota/pathobiota traits correspond to the presence/absence of companion plant species (fig. 2B),
188  which is in line with the neighborhood effects (also known as associational effects) on microbial

189  transmission (Worrich et al. 2019; Meyer et al. 2022), particularly well-documented for bacterial
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190  pathogens (Parker et al. 2015; Makiola et al. 2022). For instance, a neat association peak located on
191  chromosome 3 was common between the presence/absence of OTUG - the Plant-Growth Promoting
192  Bacteria (PGPB) Pseudomonas siliginis (Ramirez-Sanchez et al. 2022a) - in the root compartment in
193  fall and the presence/absence of Cardamine hirsuta, a closely related to A. thaliana (Hay and Tsiantis
194  2016) (fig. 3A). A neat association peak located on chromosome 1 was common between the
195  compositions in bacterial pathogens in the leaf compartment in fall and the richness in companion plant
196  species (fig. 3B).

197  In agreement with the impact of precipitation and drought in the phyllosphere microbiota (Zhu et al.
198  2022), the main climate variables sharing top SNPs with microbiota/pathobiota traits corresponds to
199  precipitations (fig. 2A). For instance, a neat association peak located on chromosome 1 was common
200  between the presence/absence of OTU3 in the leaf compartment in fall and precipitation in spring (fig.
201  3C). On the other hand, manganese and calcium concentrations are the main soil physico-chemical
202  properties sharing top SNPs with microbiota/pathobiota traits (fig. 2A). For instance, microbiota
203  composition in the leaf compartment in the ‘spring (November)’ seasonal group and soil calcium
204  concentration shared a neat association peak located on chromosome 5 (fig. 3D). Soil calcium
205  concentration was found to impact bacterial community structures both in soils (Neal and Glendining
206  2019; Tang et al. 2019) and in plants (Li et al. 2018; Mittelstrass et al. 2021), whereas soil manganese
207  concentration was already suggested as a main driver of root microbial communities in A. thaliana at
208  the continental scale (Thiergart et al. 2020).

209  For each seasonal group, the percentage of common SNPs between microbiota/pathobiota and ecology
210  was on average higher in the leaf compartment than in the root compartment (fig. 2A), albeit not
211 significant (GLM, F = 2.06, P = 0.1526). No differences was detected between microbiota and
212 pathobiota descriptors (GLM, F = 0.06, P = 0.8082) (fig. 2A).

213

214  The relative importance of host genetics and ecology in explaining microbiota/pathobiota
215  variation expressed a phylogenetic signal across bacterial OTUs

216  In order to teasing apart the relative importance of host genetics and ecology in explaining
217  microbiota/pathobiota variation, we run a multiple linear regression model on each
218  microbiota/pathobiota trait by considering (i) all the QTLs that were specific to the
219  microbiota/pathobiota trait under consideration (i.e. not common with ecological variables) and (ii) each
220  ecological variable sharing QTLs with the microbiota/pathobiota trait under consideration (see Material
221 & Methods), and (iii) a proxy considering the potential effects of demographic history of A. thaliana
222 south-west of France, in explaining microbiota/pathobiota variation.

223 Across the 194 microbiota/pathobiota traits, a much higher fraction of among-population variance was
224 explained by host genetics (mean = 35.4%, median = 35.0%) than by ecology (mean = 5.2%, median =
225  3.8%) (fig 4A, Data Set 9). In line with the polygenic architecture, the total fraction of variance explained

226 Dby host genetics resulted from multiple QTLs, each explaining on average 1.99% (supplementary fig.
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227  S1, Data Set 10). The small QTL effects detected by GEA are similar to the QTL effect sizes identified
228 in GWAS and traditional linkage mapping studies on microbiota (Bergelson, Brachi, et al. 2021;
229  Oyserman et al. 2022), albeit a larger range of QTL effects was identified in our study. For instance, the
230  top SNP located on position 19,335,417bp on chromosome 2 (SNP 2_19335471), SNP 1_12691514 and
231  SNP 55191015 explained a substantial fraction of the presence/absence of OTU4 (root compartment
232 infall), microbiota diversity (leaf compartment in spring (December)) and pathobiota composition (leaf
233 compartment in fall), respectively (fig. 4B, 4C and 4D, Data Set 10).

234 Amongst ecological variables, the variance in microbiota/pathobiota traits was on average more
235  explained by plant community descriptors (mean = 3.75%) than by climate variables (mean = 0.66%)
236 and soil physico-chemical properties (mean = 0.78%), highlighting the plant neighborhood as the main
237  ecological driver of microbiota/pathobiota of A. thaliana populations located south-west of France. A
238  very small fraction of microbiota/pathobiota variation was on average explained by the demographic
239  history of A. thaliana (mean = 2.52%, median = 1.23%) (supplementary fig. 1, Data Set 9). Across the
240 194 microbiota/pathobiota traits, a substantial fraction of variance remained unexplained (mean =
241  56.9%, median = 56.4%) (supplementary fig. S1, Data Set 9). This unexplained variance may originate
242 from (i) QTLs with very small effect that remains undetected due to a lack of power given the number
243  of populations used for GEA analysis (table 1), (ii) uncharacterized explanatory ecological variables, as
244 previously mentioned, and/or (iii) stochastic processes of dispersal and drift that can drastically alter
245  community structure (Wagner 2021).

246 The relative importance of host genetics, ecology and demographic history in explaining
247  microbiota/pathobiota variation was similar between leaf and root compartments, between microbiota
248  and pathobiota, and between the three seasonal groups (supplementary fig. 2, supplementary table 2).
249  Importantly, the relative importance of host genetics, ecology and demographic history expressed a
250  phylogenetic signal at the family and genus level (fig. 4E). For instance, the relative importance of host
251  genetics (in comparison with ecology) in explaining variance in microbiota/pathobiota OTUs was
252 significantly higher for OTUs of the Rhizobium genus than for OTUs of the Pseudomonas genus (fig.
253  4E). A phylogenetic signal at the order level was previously observed in GWAS conducted on the
254 rhizospheric microbiota of sorghum and the leaf microbiota of maize, with heritable microbes that
255  phylogenetically clustered (Walters et al. 2018; Deng et al. 2021). Altogether, these results suggest that
256  some taxonomic groups necessitate more genetic discrimination among genotypes of A. thaliana than
257  others, thereby providing candidate bacterial taxa to be investigated for genomic signals of co-evolution
258  with A. thaliana through, for example, free-phenotyping co-GWAS (Bartoli and Roux 2017).

259

260  The genetic architecture of adaptation to bacterial communities is highly flexible between plant
261  compartments and seasons

262  After retrieving candidate genes located in the vicinity of the top SNPs specific to the

263  microbiota/pathobiota trait under consideration (i.e. not common with ecological variables), we
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264  observed a highly flexible genetic architecture between the six ‘plant compartment X seasonal group’
265  combinations, with 76.1% of unique candidate genes being specific to a ‘plant compartment x seasonal
266  group’ combination (fig. 5A, Data Set 11). Most of the remaining candidate genes were either specific
267  to the leaf compartment and common between the three seasonal groups, or specific to a given seasonal
268  group and common between the leaf and root compartments (fig. 5A). On the other hand, very few
269  candidate genes were specific to the root compartment and common between the three seasonal groups
270 (fig. BA).

271 All GWAS performed previously on plant microbial communities were conducted on one specific plant
272 compartment (Walters et al. 2018; Roman-Reyna et al. 2020; Deng et al. 2021; Brachi et al. 2022;
273 VanWallendael et al. 2022), with the exception of one GWAS conducted on worldwide accessions of
274 A.thaliana at the leaf (Horton et al. 2014) and root (Bergelson et al. 2019) levels. Similar to our results,
275  this latter GWAS showed a small overlap between the leaf and root compartments in candidate genes
276  associated with descriptors of bacterial and fungal communities (Bergelson et al. 2019), which is in line
277  with the adaptive differences in microbial community diversity and composition observed among plant
278  niches, from rhizosphere soils to plant canopies (Mller et al. 2016; Cregger et al. 2018).

279  As illustrated with OTUS corresponding to the PGPB Pseudomonas moraviensis (Ramirez-Sanchez et
280 al. 2022a), we observed a strong flexibility of genetic architecture between seasons for a specific
281  microbiota/pathobiota trait (fig. 5B). Such an observation is reminiscent of the strong genetic variation
282  in seasonal microbial community succession observed in diverse plant species including A. thaliana
283  (Copeland et al. 2015; Bartoli et al. 2018; Beilsmith et al. 2021; VanWallendael et al. 2022) and the
284  dynamics of genetic architecture along the infection stages when A. thaliana accessions were challenged
285  with the bacterial pathogen Ralstonia solanacearum (Aoun et al. 2017; Aoun et al. 2020; Demirjian et
286  al. 2022).

287  The identity of candidate genes strongly differs between the two seasonal groups ‘spring (November)’
288  and ‘spring (December)’ in both plant compartments, thereby suggesting an effect of germination timing
289  on the interplay between host genetics and microbiota/pathobiota. While germination timing was found
290 toinfluence natural selection on life-history traits in A. thaliana (Donohue 2002; Donohue et al. 2005),
291  the effect of germinating timing on microbiota/pathobiota assemblages has been seldom reported and
292  deserves further investigations.

293  Beyond a highly flexible genetic architecture between plant compartments and seasons, we also
294  observed a highly flexible genetic architecture among microbiota/pathobiota traits for each ‘plant
295  compartment x seasonal group’ combination (supplementary fig. 3). For instance, for the pathobiota in
296  theleaf compartment in the ‘spring (December)’ seasonal group, the identity of candidate genes strongly
297  differs between community diversity, community composition and the presence/absence of P. syringae
298  (supplementary fig. 4). As previously observed in GWAS and GEAS conducted on plant-plant
299 interactions in A. thaliana (Baron et al. 2015; Frachon et al. 2019; Libourel et al. 2021), these results

300 suggest a high degree of biotic specialization of A. thaliana to members of its bacterial interaction
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301  network, as well as the genetic ability of A. thaliana to interact simultaneously with multiple bacterial
302  members.

303  Altogether, in line with the ever-changing complexity of biotic interactions observed in nature
304  (Bergelson, Kreitman, et al. 2021), our study reinforces the need to conduct association genetic studies
305  ondiverse plant compartments and seasons to obtain a full picture of the host genetics controlling natural
306  variation of microbiota/pathobiota.

307

308  The strength of signatures of local adaptation on QTLs of microbiota/pathobiota depends on plant
309 compartment and season

310 By definition, GEA allows identifying genetic loci under local adaptation. However, in order to support
311  thatthe loci identified by our GEA analysis have been shaped by natural selection, we additionally tested
312  whether the top SNPs specific to microbiota/pathobiota traits were enriched in a set of SNPs subjected
313  to adaptive spatial differentiation. To do so, we first performed for each ‘plant compartment x seasonal
314  group’ combination a genome-wide selection scan by estimating a Bayesian measure of genetic
315  differentiation (XtX) among the natural populations of A. thaliana. For a given SNP, XtX measures the
316  variance of the standardized population allele frequencies, which is corrected for the genome-wide
317  effects of confounding demographic evolutionary forces (Gautier 2015). The 0.5% upper tail of the
318  spatial differentiation distribution displayed a significant enrichment (up to 34.2) for top SNPs of almost
319  two-thirds of the microbiota/pathobiota traits (fig. 6A, Data Set 12). For instance, a strong signature of
320 local adaptation was identified on SNPs located in the 5 region of MYB15 (fig. 6B), a transcription
321  factor involved in the coordination of microbe-hots homeostasis in A. thaliana (Ma et al. 2021).

322 No differences in the mean fold enrichment for signatures of local adaptation was detected between
323  microbiota and pathobiota traits (GLM, F = 0.44, P = 0.7260). However, the mean fold enrichment for
324  signatures of local adaptation largely differed between the three seasonal groups (GLM, F =5.06, P =
325 0.0072), with top SNPs presenting more signatures of local adaptation in spring than in fall when
326  considering the same set of populations, i.e. populations from the ‘fall’ and ‘spring (November)’
327  seasonal groups (fig. 6A). Top SNPs of the ‘spring (December)’ seasonal group presented signatures of
328 local adaptation that were intermediate between the two other seasonal groups, suggesting that
329  germinating timing not only affects the genetic architecture underlying microbiota/pathobiota variation
330  butalso the strength of local adaptation acting on candidate genes.

331 Inaddition, the mean fold enrichment for signatures of local adaptation was significantly higher for the
332 root compartment than for the leaf compartment (GLM, F = 6.11, P = 0.0143). Combined with the
333  observation that the percentage of common SNPs between microbiota/pathobiota and ecology was on
334  average higher in the leaf compartment than in the root compartment, the difference between the leaf
335 and root compartments in the strength of local adaptation acting on candidate genes suggests a higher
336  adaptive genetic control of the root microbiota than of the leaf microbiota.

337
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338  Cross validation of our GEA approach through results obtained from previous GWAS

339 A GEA approach suffers from the quasi-impossibility of measuring the entire set of ecological variables
340  acting on natural populations of A. thaliana, thereby precluding the identification of all SNPs common
341  between microbiota/pathobiota traits and ecological variables. To circumvent this issue, we therefore
342  tested whether our list of candidate genes associated with microbiota/pathobiota traits significantly
343  overlap with candidate genes identified in two GWAS conducted on A. thaliana in common gardens
344  under ecologically relevant conditions. The first GWAS was conducted on 200 Swedish accessions
345  characterized for the bacterial and fungal communities in the leaf compartment in the native habitat of
346  four populations located in Sweden (Brachi et al. 2022). The list of 880 candidate genes located in the
347  vicinity of the top SNPs associated with bacterial hubs in Sweden significantly overlapped with the lists
348 of candidate genes identified by GEA for the leaf compartment, whatever the seasonal group
349  (supplementary fig. 5A, Data Set 13). The fraction of candidate genes detected in Sweden and
350  overlapping with the lists of candidate genes identified by GEA for the root compartment, was smaller
351  and less significant for each seasonal group (supplementary fig. 5A).

352  The second GWAS was conducted on 162 whole-genome sequenced accessions of A. thaliana
353  originating from 54 out of the 141 natural populations used in our study. Those accessions were
354  challenged in field conditions with 13 bacterial strains belonging to seven of the 12 most abundant and
355  prevalent leaf OTUs across our natural populations in south-west of France (Ramirez-Sanchez et al.,
356  2022b). The resulting list of candidate genes showed a significant enrichment in diverse biological
357  pathways, including cell, cell wall, development, hormone metabolism, secondary metabolism,
358  signalling and transport, which is in line with the main enriched biological pathways identified in our
359  study (supplementary fig. 5B, Data Set 14) and most of the main biological pathways (with the exception
360 of symbiosis) identified by the use of artificial mutations and by previous GWAS conducted on A.
361 thaliana (Bergelson, Brachi, et al. 2021).

362  Altogether, the similar lists of candidate genes and biological pathways detected between diverse
363  mapping populations and using different approaches in association genetics, indicate a cross-validation
364  of our GEA results by GWAS conducted in ecologically relevant conditions.

365

366  FLS2 as one of the main candidate genes controlling structure of bacterial communities

367  Merging the lists of candidate genes identified in our study and in two GWAs conducted in ecologically
368  relevant conditions in the native area of A. thaliana (Brachi et al. 2022) led to the establishment of a
369  short list of 50 core genes associated with natural variation of microbiota traits (Data Set 15). Of
370  particular interest is the gene FLAGELLIN-SENSITIVE 2 (FLS2) overlapping with 39 top SNPs in our
371  study (Data Set 11). FLS2 encodes for a leucine-rich repeat receptor-like kinase first identified in the
372 perception of the bacterial elicitor flagellin (Gomez-Gomez and Boller 2000) and then confirmed as key
373 in microbe-associated molecular patterns (MAMP)-triggered immunity (MTI) (Stringlis and Pieterse
374  2021). Although FLS2 detects flagellin from both pathogenic and beneficial bacteria by the 22-amino-
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375  acid N-terminal epitope flg22 (Stringlis et al. 2018), FLS2 was never proposed as a candidate gene in
376  GWAS of response to bacterial pathogens (https://aragwas.1001genomes.org/#/gene/AT5G46330),
377  despite the identification of more than 100 amino acid changes in FLS2 among >1,000 worldwide
378  accessions (Bai et al. 2022). Genetic variation at FLS2 might have evolved to detect the substantial
379  diversity of flg22 encoded by commensal bacteria (Colaianni et al. 2021; Bai et al. 2022). Accordingly,
380  FLS2 shaped the microbiota composition of A. thaliana rhizosphere when plant were grown on an
381  agricultural soil (Fonseca et al. 2022). Assessing the allelic diversity of both FLS2 and flg22 in our
382  collection of 168 natural populations of A. thaliana (Frachon et al. 2018) and in our collection of >7,000
383  bacterial strains (Ramirez-Sanchez et al. 2022a), respectively, might reveal signatures of co-adaptation.
384

385  Conclusion

386  The GEA study conducted here on microbiota/pathobiota traits and on an unprecedented number of
387  ecological variables, is complementary to GWAS carried out previously on A. thaliana. In particular,
388  we investigated (i) the level of flexibility of the genetic architecture between seasons and between in
389  situ germination timings, (ii) the relative importance of host genetics and ecology in explaining
390  microbiota/pathobiota variation, (iii) the identity of the ecological variables acting as putative selective
391  agents on microbiota/pathobiota traits, and (iv) the variation between plant compartments and seasonal
392  groups, in the strength of local adaptation acting on candidate genes. Importantly, no differences were
393  observed between microbiota and pathobiota traits, thereby suggesting a similar adaptive genetic control
394  of A. thaliana towards its pathogenic and non-pathogenic members, including members with already
395  described beneficial effects (Ramirez-Sanchez et al. 2022).

396  The next avenue is then to apply our approach on fungal communities that have not been characterized
397 on our set of natural populations yet. Establishing a genomic map of local adaptation to fungal
398  communities might allow testing whether the genetic bases largely differ between bacterial and fungal
399  communities, as previously documented in the two GWAS on A. thaliana (Horton et al. 2014; Bergelson
400 et al. 2019; Brachi et al. 2022). It might also help to identify the adaptive genetic bases of common
401  interactions among OTUs, including mutualism, antagonism, aggression and altruism, within and across
402  kingdoms (He et al. 2021).

403

404 Materials and Methods

405  Descriptors of bacterial communities in leaves and roots

406  The bacterial communities of 1,903 leaf and root samples collected in fall and spring 2015 across 163
407  out of 168 natural populations of A. thaliana located south-west of France (Frachon et al. 2018), were
408  characterized with a gyrB-based metabarcoding approach, leading to the identification of 278,833 OTUs
409  (Bartoli et al. 2018). The deeper taxonomic resolution conferred by the gyrB gene allows distinguishing
410  OTUs belonging to the pathobiota from OTUs belonging to the microbiota (Bartoli et al. 2018).
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411  In this study, we considered 141 natural populations of A. thaliana for which a set of six climate
412  variables, 14 soil physico-chemical variables and 49 descriptors of plant communities were available
413 (see below), thereby resulting in 73, 73, 69, 72, 66 and 66 populations for the ‘fall — leaf’, ‘fall — root’,
414  ‘spring (November) — leaf’, ‘spring (November) — root’, ‘spring (December) — leaf’ and ‘spring
415  (December) — root’ combinations, respectively (table 1).

416  For each sample of A. thaliana collected in the 141 populations, we estimated the relative abundance
417  (N° of reads per OTU / N° of total reads) of each of the 278,333 OTUs. For each ‘plant compartment X
418  seasonal group’ combination, we then averaged for each OTU the corresponding relative abundances
419  per population. For each OTU, populations with a mean relative abundance above and below (or equal
420  to) 0.5% were scored as 1 (presence of the OTU) and 0 (absence of the OTU), respectively. In this study,
421  for the purpose of statistical power in GEA analysis, we only kept OTUs present in more than seven
422 populations, resulting in 34 OTUs, 15 OTUs, 32 OTUs, 21 OTUs, 34 OTUs and 13 OTUs investigated
423  for GEA analysis for the ‘fall — leaf’, ‘fall — root’, ‘spring (November) — leaf’, ‘spring (November) —
424 root’, ‘spring (December) — leaf” and ‘spring (December) — root” combinations, respectively (table 1).
425  Similarly, for each ‘plant compartment x seasonal group’ combination, we averaged for both the
426  microbiota and the pathobiota, estimates of community richness and Shannon index previously obtained
427  in (Bartoli et al. 2018), as well as estimates of community composition using the coordinates of the
428  samples on the two first axes of a principal coordinate analysis (PCoA) run on a Hellinger distance
429  matrix based on the relative abundances of the 6,627 most abundant OTUs (Data Set 1) (Bartoli et al.
430  2018).

431

432  Abiotic descriptors and descriptors of plant communities

433 A set of six climate variables, 14 soil physico-chemical properties and 49 descriptors of plant
434  communities were available for 141 out of the 168 natural populations of A. thaliana located south-west
435  of France (Data Sets 2-8). The climate variables corresponds to two variables related to temperature and
436  four variables related to precipitation (Frachon et al. 2018). The 14 soil physico-chemical variables
437  describe the main soil agronomic properties related to plant growth (Brachi et al. 2013; Frachon et al.
438  2019). The 49 descriptors of plant communities correspond to (i) estimates of richness and Shannon
439  index (ii) estimates of community composition using the coordinates of the populations on the three first
440  axesof a PCoA run on a Bray-Curtis dissimilarity matrix based on the relative abundance of the 44 most
441  prevalent plant species and (iii) the presence/absence of the 44 most prevalent plant species, with the
442  exception of A. thaliana for which estimates of the absolute abundance were kept (Frachon et al. 2019).
443  Inthis study, for the purpose of statistical power in GEA analysis, we only kept companion plant species
444  present in more than seven populations, resulting in 30, 29, 30, 31, 33 and 33 plant species investigated
445  for GEA analysis for the ‘fall — leaf’, ‘fall — root’, ‘spring (November) — leaf’, ‘spring (November) —
446  root’, ‘spring (December) — leaf” and ‘spring (December) — root” combinations, respectively (Data Sets

447  2-7).
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448  Genomic characterization and data filtering

449  As previously described in (Frachon et al. 2018), a representative picture of within-population genetic
450  variation across the genome was previously obtained for the 168 populations located south-west of
451  France, using a Pool-Seq approach based on the individual DNA extraction of ~16 plants per population
452  (min =5 plants, max = 16 plants, mean = 15.32 plants, median = 16 plants). After bioinformatics analysis
453  using the reference genome Col-0, the allele read count matrix (for both the reference and alternate
454  alleles) was composed by 4,781,661 SNPs across the 168 populations (Frachon et al. 2018).

455  Following Frachon et al. (2018), for each ‘plant compartment X seasonal group’ combination, the matrix
456  of population allele frequencies was trimmed according to five successive criteria : (i) removing SNPs
457  with missing values in more than two populations, (ii) in order to take into account multiple gene copies
458 in the populations that map to a unique gene copy in the reference genome Col-0, removing SNPs with
459  a mean relative coverage depth across the populations above 1.5 after calculating for each population
460  the relative coverage of each SNP as the ratio of its coverage to the median coverage (computed over
461  all the SNPs), (iii) in order to take into account indels that correspond to either genomic regions present
462  in Col-0 but absent in the populations or genomic regions present in the populations but absent in Col-
463 0, removing SNPs with a mean relative coverage depth across the populations below 0.5, (iv) removing
464  SNPs with a standard deviation of allele frequency across the populations below 0.004, and (v) in order
465  totake into account bias in GEA analysis due to rare alleles (Bergelson and Roux 2010), removing SNPs
466  with the alternative allele present in less than 10% of the populations. This SNP pruning resulted in a
467  final number of 1,396,579 SNPs, 1,392,959 SNPs, 1,470,777 SNPs, 1,382,414 SNPs, 1,514,789 SNPs
468  and 1,514,789 SNPs for the ‘fall — leaf”, “fall — root’, ‘spring (November) — leaf’, ‘spring (November) —
469  root’, ‘spring (December) — leaf” and ‘spring (December) — root’ combinations, respectively.

470

471  Genome-Environment Association analysis

472  For each ‘plant compartment X seasonal group’ combination, 8 GEA analysis was performed between
473  the set of pruned SNPs and each trait related to microbiota, climate, soil physico-chemical properties
474  and plant communities, resulting in a total number of 530 traits, with 97 traits, 76 traits, 95 traits, 84
475  traits, 100 traits and 78 traits for the ‘fall — leaf’, ‘fall — root’, ‘spring (November) — leaf’, ‘spring
476  (November) — root’, ‘spring (December) — leaf” and ‘spring (December) — root’ combinations,

477  respectively (supplementary table 1, Data Sets 2-7).

478  To identify significant ‘SNP-trait’ association s for each ‘plant compartment X seasonal group’
479  combination, we first run a Bayesian hierarchical model (i) explicitly accounting for the scaled
480  covariance matrix of population allele frequencies (€2), which makes the analyses robust to complex
481  demographic histories (ii) dealing with Pool-Seq data and (iii) implemented in the program BayPass
482  (Gautier 209715). Following (Frachon et al. 2019), the core model was used to evaluate the association

483  between allele frequencies across the genome and the n traits. For each SNP, we estimated a Bayesian
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484  Factor (BFis measured in deciban units) and the associated regression coefficient (Beta_is, i) using an
485  Importance Sampling algorithm (Gautier 2015). The full posterior distribution of the parameters was
486  obtained based on a Metropolis—Hastings within Gibbs Markov chain Monte Carlo (MCMC) algorithm.
487 A MCMC chain consisted of 15 pilot runs of 500 iterations each. Then, MCMC chains were run for
488 25,000 iterations after a 2500-iterations burn-in period. The n traits were scaled (scalecov option) so
489  that u=0and o2 = 1. Because of the use of an Importance Sampling algorithm, we repeated the analyses
490 three times for each trait and averaged BFis and fi values across these three repeats. As previously
491  performed in (Frachon et al. 2018), for each ‘plant compartment X seasonal group’ combination, we
492  parallelized GEA analysis by dividing the full data set of pruned SNPs into 32 sub-data sets, each
493  containing 3.125% of the total number of pruned SNPs taken every 32 SNPs across the genome.

494  As a second step, in order to better characterize the genetic architecture associated with ecological
495  variation, the GEA results were reanalyzed by applying a local score approach (Bonhomme et al. 2019),
496  which allows detecting significant genomic segments by accumulating the statistical signals from
497  contiguous genetic markers such as SNPs (Fariello et al. 2017). In addition, this local score approach
498  increases the power of detecting QTLs with small effect and narrows the size of QTL genomic regions
499  (Farielloetal. 2017; Bonhomme et al. 2019). In a given QTL region, the association signal, through the
500  p-values, will cumulate locally due to linkage disequilibrium between SNPs, which will then increase
501 the local score (Bonhomme et al. 2019). Following (Libourel et al. 2021), in order to apply the local
502  score approach on the GEA results, we first ranked each SNP based on the Bayes Factor values obtained
503  across the genome (from the highest to the lowest values) for each trait. Then, each rank was divided by
504 the total number of SNPs to obtain a p-value associated with each SNP. The local score approach was
505 then implemented on these p-values to fine map genomic regions associated with traits. In this study,
506 the tuning parameter £ was fixed at 2 expressed in —logie scale. Significant associations between SNPs
507 and ecological variation were identified by estimating a chromosome-wide significance threshold for
508 each chromosome (Bonhomme et al. 2019). The SNPs underlying the QTLs identified by the combined
509 BMH-LS approach are hereafter named top SNPs.

510

511  Estimating the relative importance of host genetics and environment in explaining variation of
512  microbiota/pathobiota traits

513  To estimate the relative importance of (i) QTLs specific to microbiota/pathobiota traits, (ii) the
514  demographic history of A. thaliana, and (ii) abiotic environment / plant communities in explaining
515  variation of microbiota/pathobiota traits, we run the following multiple linear regression model under
516  the R environment for each of the 194 microbiota/pathobiota traits:

517  Yapi.nj.mk = [a + population structure, + QTLi + ... + QTL, + ECOL; + ... + ECOLm + €api.. nj.mxk
518  Where Y is one of the 194 microbiota/pathobiota traits; « is the overall mean; ‘population structure’
519  accounts for the effect of the demographic history of A. thaliana by using the coordinates of the

520  populations on the first Principal Component axis (PCgenomic axis 1) resulting from the singular value
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521  decomposition of the scaled covariance matrix of population allele frequencies and explaining 96.4% of
522 the genomic variation observed among the 168 populations located south-west of France (Frachon et al.
523  2018); ‘QTL’ accounts for the effect of host genetics by using the standardized allele frequencies (i.e.
524  corrected for the effect of demographic history) (Gautier 2015) of the SNP with the highest BFis value
525  for each QTL specific to the microbiota/pathobiota trait considered; ‘ECOL’ corresponds to values of
526  ecological variables (climate variables, soil physico-chemical properties and descriptors of plant
527  communities) for which QTLs were common to QTLs associated with microbiota/pathobiota traits; and
528 ¢ is the residual term. For each microbiota/pathobiota trait, we obtained a percentage of variance
529  explained (PVEs) by each model term (Data Set 10) and PVEs were then summed according to four
530 categories, i.e. demographic history, host genetics specific to microbiota/pathobiota, ecology (including
531  abiotic environment and plant communities) and residuals (Data Set 9).

532  To test whether the relative PVE by these four categories differs among OTUs at the order, family and
533  genus taxonomic levels, we first averaged the PVE among OTUs belonging to a specific order, family
534  or genus (only order, family or genus with at least four OTUs were considered). At each taxonomic
535  level, we then applied a Chi-squared test on each pairwise comparison among OTUs. A Bonferroni
536  correction was applied to control for multiple testing. A similar approach was applied to test whether
537 the relative PVE by these four categories differs between leaves and roots, between microbiota and
538  pathobiota and among the six seasonal groups.

539

540 Identification of candidate genes associated with microbiota and pathobiota descriptors and
541  associated enriched biological pathways

542  Based on a custom script (Libourel et al. 2021), we retrieved all candidate genes underlying QTLs by
543  selecting all genes inside the QTL regions as well as the first gene upstream and the first gene
544  downstream of these QTL regions (Data Set 11). The TAIR 10 database (https://www.arabidopsis.org/)
545  was used as our reference. The number of candidate genes that were either specific to a single ‘plant
546  compartment x seasonal group’ combination (Single microbiota/pathobiota descriptor), or common
547  Dbetween several ‘plant compartment X seasonal group’ combinations (several microbiota/pathobiota
548  descriptors), were illustrated by UpSet plots using the UpSetR package in R (Conway et al. 2017).

549  To identify biological pathways significantly over-represented (P < 0.01) in each of the six ‘plant
550  compartment X seasonal group’ combinations, each of the six lists of unique candidate genes were
551  submitted to the classification superviewer tool on the university of Toronto website
552  (http://bar.utoronto.ca/ntools/cgibin/ntools_classification_superviewer.cgi) using the MAPMAN
553  classification (Provart and Zhu, 2003) (Data Set 14).

554

555  Enrichment in signatures of local adaptation

556  For supporting signals of local adaptation identified by GEA analysis, we first performed for each ‘plant

557  compartment X seasonal group’ combination, a genome-wide selection scan by estimating the XtX
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558  measure of spatial genetic differentiation among the populations. For a given SNP, XtX is a measure of
559 the variance of the standardized population allele frequencies, which results from a rescaling based on
560 the covariance matrix of population allele frequencies (Gautier 2015). Such rescaling allows for a robust
561 identification of highly differentiated SNPs by correcting for the genome-wide effects of confounding
562  demographic evolutionary forces, such as genetic drift and gene flow (Gautier 2015). For each of the
563 194 microbiota/pathobiota traits, we tested whether top SNPs present signatures of local adaptation by
564  following the methodology described in (Brachi et al. 2015). More precisely, we tested whether the top
565  SNPs were over-represented in the extreme upper tail of the XtX distribution using the formula:

ng/n

566 FExx = NN

567  With n being the number of SNPs in the upper tail of the XtX distribution. In our case, we used a
568 threshold of 0.5%. na is the number of top SNPs that were also in the upper tail of the XtX distribution.
569 N is the total number of SNPs tested genome-wide and Na is the total number of top SNPs. Statistical
570  significance of enrichment was assessed by running 10,000 null circular permutations based on the
571  methodology described in (Hancock et al. 2011).

572

573  Overlap with candidate genes obtained from GWAS

574  Based on a GWAS performed on the leaf bacterial communities of 200 Swedish A. thaliana accessions
575  grown in the native habitats of four natural populations of A. thaliana in Sweden (Brachi et al. 2022),
576  we retrieved a list of 880 unique candidate genes underlying 209 QTLs, by selecting all genes inside the
577  QTL regions as well as the first gene upstream and the first gene downstream of these QTL regions.
578  To test whether the list of unique candidate genes obtained for each ‘plant compartment x seasonal
579  group’ combination significantly overlaps with the list of 880 candidate genes, we first estimated the
580  percentage of the 800 candidate genes that were in common with the list of n candidate genes identified
581 in this study. To estimate the level of significance, we then created a null distribution by randomly
582  sampling 10,000 times, n genes across the entire set of 27,206 genes present across the five

583 chromosomes of A. thaliana.
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Figure legends

Figure 1. The genetic architecture of microbiota/pathobiota. (A) Manhattan plots illustrating the power
of a BMH-LS to describe the genetic architecture of microbiota/pathobiota diversity,
microbiota/pathobiota composition and the presence/absence of a particular OTU. The x-axis indicates
along the five chromosomes, the physical position of the 1,470,777 SNPs considered for the leaf
compartment in the ‘spring (November)’ seasonal group. The y-axis corresponds to the values of the
Lindley process (local score method with a tuning parameter § = 2). The dashed lines indicate the
minimum and maximum of the five chromosome-wide significance thresholds. (B) Jitter plots
illustrating the diversity in the number of QTLs among microbiota/pathobiota traits within each ‘plant

compartment x seasonal group’ combination.

Figure 2. Microbiota/pathobiota-ecology interactions at the genetic level. (A) Percentage of top SNPs
associated with microbiota/pathobiota traits that are common to top SNPs associated with ecological
variables (including climate variables, soil physico-chemical properties and descriptors of plant
communities) for each ‘plant compartment X seasonal group’ combination. (B) Percentage of
microbiota/pathobiota traits (n = 194) sharing QTLs with each ecological factor among the six ‘plant
compartment x seasonal group’ combinations. Climate variables, soil physico-chemical properties and
descriptors of plant communities are represented in red, blue and green, respectively. The dashed black
line corresponds to the threshold of 19 microbiota/pathobiota traits, i.e. ~10% of the total number of
microbiota/pathobiota traits.

Figure 3. Zoom spanning four QTL regions common between microbiota/pathobiota traits and
ecological variables. (A) Overlapping QTLs between the presence/absence of OTU6 in the root
compartment in fall and the presence/absence of the plant species Cardamine hirsuta. (B) Overlapping
QTLs between pathobiota composition in the leaf compartment in fall and plant community richness.
Black and colored dots correspond to Lindley values for microbiota/pathobiota traits and ecological
variables, respectively. The black and colored dashed lines indicate the corresponding chromosome-
wide significance threshold for microbiota/pathobiota traits and ecological variables, respectively. (C)
Overlapping QTLs between the presence/absence of OTUS3 in the leaf compartment in fall and fall
precipitations (mean value over the 2003-2013 period). (D) Overlapping QTLs between microbiota
composition in the leaf compartment for the ‘spring (November)’ seasonal group and soil calcium

concentrations.

Figure 4. Relative importance of host genetics and environment in explaining variation of
microbiota/pathobiota traits. (A) Cumulative percentage of variance explained (PVE) of

microbiota/pathobiota traits by the demographic history of A. thaliana, host genetics with QTLs specific

24


https://doi.org/10.1101/2022.09.26.509609
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.26.509609; this version posted September 26, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

to microbiota/pathobiota traits and ecology (including climate variables, soil physico-chemical
properties and descriptors of plant communities). Residuals correspond to the percentage of variance
unexplained by the three other categories of variables. For each category, one dot correspond to one of
the 194 microbiota/pathobiota traits. (B) Box-plot illustrating the relationship between the standardized
allele frequencies (corrected for the effect of population structure) of a SNP located at position
19,335,417 on chromosome 2 and the presence of OTU4 in the root compartment in fall. (C)
Relationship between the standardized allele frequencies (corrected for the effect of population
structure) of a SNP located at position 12,691,514 on chromosome 1 and Shannon index of the
microbiota in the leaf compartment of the ‘spring (November)’ seasonal group. (D) Relationship
between the standardized allele frequencies of a SNP located at position 5,191,015 on chromosome 5
and pathobiota composition in the leaf compartment in fall. (E) Relative importance of PVE by
demographic history, host genetics, ecology and residuals, among OTUs at the order, family and genus
level. * P <0.05, ** P <0.001, *** P < 0.001. Red asterisks indicate significant p-values after correcting

for multiple testing with a false discovery rate (FDR) at a nominal level of 5%.

Figure 5. Flexibility of the genetic architecture between the six ‘plant compartment x seasonal group’
combinations. (A) An UpSet plot showing the intersections of the lists of unique candidate genes
associated with microbiota/pathobiota variation, each list corresponding to each ‘plant compartment x
seasonal group’ combination. The number of candidate genes that are specific to a single ‘plant
compartment x seasonal group’ combination and common between at least two ‘plant compartment X
seasonal group’ combinations, are represented by single blue dots and dots connected by a solid line,
respectively. “fall — leaf’: number of unique candidate genes N = 1918, ‘fall — root’: N = 1052, ‘spring
(November) — leaf”: N = 1885, “spring (November) — root’: N = 1156, ‘spring (December) — leaf’: N =
1457, ‘spring (December) — root’: N = 705. (B) Manhattan plot illustrating the flexibility of genetic
architecture associated with the presence/absence of the OTUS in the root compartment between fall
and spring. The x-axis indicates along the five chromosomes, the physical position of the 1,392,959
SNPs and 1,382,414 SNPs considered for the root compartment in the ‘fall” and ‘spring (November)’
seasonal groups, respectively. The y-axis correspond to the values of the Lindley process (local score
method with a tuning parameter § = 2). The dashed lines indicate the minimum and maximum of the

five chromosome-wide significance thresholds.

Figure 6. Signatures of local adaptation acting on the genetics of microbiota/pathobiota variation. (A)
Fold enrichment of the top SNPs in the 0.5% tail of the genome-wide spatial differentiation (XtX)
distribution. Each dot corresponds to one of the 194 microbiota/pathobiota descriptors. Different upper
letters indicate different groups according to the ‘plant compartment X seasonal group’ combination
after a Tukey correction for multiple pairwise comparisons. (B) Manhattan plot highlighting a QTL

associated with root microbiota composition, located in the middle of chromosome 3 and presenting a
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strong signature of local adaptation. The x-axis indicates along the five chromosomes, the physical
position of the 1,382,414 SNPs considered for the root compartment in the ‘spring (November)’ seasonal
group. The y-axis correspond to the values of the Lindley process (local score method with a tuning
parameter & = 2). The dashed lines indicate the minimum and maximum of the five chromosome-wide

significance thresholds.

Table 1. Number of bacterial community descriptors investigated with GEA analysis for each of the six
‘plant compartment X seasonal group’ combination. Numbers in brackets for the leaf and root
compartment correspond to the number of populations. For community composition, only PCoA axes

exhibiting significant variation among populations were considered in this study.

fall spring (November) spring (December)

Category Community descriptors leaf (n=73) root(n=73) leaf(n=69) root(n=72) leaf(n=66) root(n=66)

microbiota  richness 1 1 1 1 1 1
Shannon index 1 1 1 1 1 1
composition (PCoA axis) 2 2 2 2 2 2
presence/absence OTUs 33 15 31 21 33 13

pathobiota richness
Shannon index
composition (PCoA axis)
presence/absence OTUs

N R R
O R K, K
N N N
(= I N
[ N =
[ I N
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