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Abstract  25 

Understanding the role of host genome in modulating microbiota variation is a need to shed light into 26 

the holobiont theory and overcome the current limits on the description of host-microbiota interactions 27 

at the genomic and molecular levels. However, the host genetic architecture structuring microbiota is 28 

only partly described in plants. In addition, most association genetic studies on microbiota are often 29 

carried out outside the native habitats where the host evolve and the identification of signatures of local 30 

adaptation on the candidate genes has been overlooked. To fill these gaps and dissect the genetic 31 

architecture driving adaptive plant-microbiota interactions, we adopted a Genome-Environmental-32 

Association (GEA) analysis on 141 whole-genome sequenced natural populations of Arabidopsis 33 

thaliana characterized in situ for their leaf and root bacterial communities and a large range of 34 

environmental descriptors (i.e. climate, soil and plant communities). Across 194 microbiota traits, a 35 

much higher fraction of among-population variance was explained by the host genetics than by ecology, 36 

with the plant neighborhood as the main ecological driver of microbiota variation. Importantly, the 37 

relative importance of host genetics and ecology expressed a phylogenetic signal at the family and genus 38 

level. In addition, the polygenic architecture of adaptation to bacterial communities was highly flexible 39 

between plant compartments and seasons. Relatedly, signatures of local adaptation were stronger on 40 

QTLs of the root microbiota in spring. Finally, we provide evidence that plant immunity, in particular 41 

the FLS2 gene, is a major source of adaptive genetic variation structuring bacterial assemblages in A. 42 

thaliana.43 
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1 

Introduction 44 

To cope with human population growth and current social requests, a more eco-efficient, sustainable 45 

and environmentally friendly agriculture is an urgent need (Keating et al. 2010). In the global change 46 

context, both crops and wild plant species face extreme and largely unpredictable abiotic stresses (such 47 

as heat waves) as well as an increase in the number and severity of epidemics (Bebber 2015; Desaint et 48 

al. 2021). Altogether, this calls for concrete interventions improving the potential of plants to cope with 49 

multiple abiotic and biotic stresses. 50 

The plant microbiota is defined as a set of microorganisms of a particular host compartment (i.e. 51 

rhizosphere, roots, stem, leaves, flowers etc.). Often referred to as the second host genome in the context 52 

of the holobiont/hologenome theory (Rosenberg and Zilber-Rosenberg 2018), the plant microbiota 53 

mainly originates from the soil compartment, even if a non-negligible fraction of microbes also 54 

originates from the aerial sphere (Müller et al. 2016). Plant-associated microbes are crucial for plant 55 

health because they: i) mobilize and make accessible essential nutrients (e.g. nitrogen, phosphate etc.), 56 

ii) provide resistance to abiotic stresses (such as drought), and iii) confer direct (production of 57 

antimicrobial components) or indirect (elicitation of immune defense) pathogen protection (Berendsen 58 

et al. 2012; Bulgarelli et al. 2013; Pieterse et al. 2014; Jacoby et al. 2017; Escudero-Martinez and 59 

Bulgarelli 2019; Trivedi et al. 2020; Glick and Gamalero 2021; Bai et al. 2022). The plant microbiota is 60 

therefore a promising lever to develop innovative eco-friendly agro-ecosystems (Busby et al. 2017; Toju 61 

et al. 2018; Mitter et al. 2019).  62 

While numerous studies reported the strong influence of abiotic (i.e. climate, physico-chemical 63 

agronomic properties) (Müller et al. 2016; Fitzpatrick et al. 2020) and biotic (i.e. presence of herbivores 64 

and neighboring plants) (Humphrey and Whiteman 2020; Meyer et al. 2022) factors on plant microbiota 65 

diversity and composition, there was a growing interest during the last decade to estimate the effect of 66 

plant genetics on microbiota (Bergelson, Brachi, et al. 2021). Two main approaches have been adopted 67 

to unravel the genetic and molecular plant mechanisms controlling microbiota assembly. The first and 68 

most common approach is based on the use of artificial mutations, including mutant and transgenic lines 69 

(Bergelson, Brachi, et al. 2021). By testing 218 artificial lines in 48 studies conducted on crops and wild 70 

species, several pathways affecting microbial assembly were identified and include (i) external and 71 

internal physical barriers in both the leaf (e.g. wax and cuticle) and root (e.g. suberin and lignin) 72 

compartments (Salas-González et al. 2021), (ii) Pathogen-Associated Molecular Pattern (PAMP)-73 

triggered immunity (PTI) that prevents dysbiosis by keeping commensal microbes at a low absolute 74 

abundance (Chen et al. 2020), (iii) hormonal pathways related to salicylic acid, jasmonic acid, ethylene 75 

and strigolactones (Lebeis et al. 2015), (iv) mineral nutrient homeostasis (Zhang et al. 2019), which may 76 

requires a fine coordination with physical barriers (Salas-González et al. 2021) and immunity (Castrillo 77 

et al. 2017), (v) excretion of plant secondary metabolites in rhizosphere, roots or flowers (Huang et al. 78 

2019), and (vi) symbiosis (Wang et al. 2020). 79 
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The second approach exploits natural genetic variation segregating among or within plant species 80 

(Bergelson, Brachi, et al. 2021). While the importance of host genetics in shaping natural variation on 81 

microbial communities has been a long-lasting debate (Roux and Bergelson 2016), an ever-increasing 82 

number of studies reported significant microbiota differences between closely related species or among 83 

genotypes within a given species (when grown in the same environment), with typical values for the 84 

magnitude of these differences ranging from 5% to 30% (Schlaeppi et al. 2014; Bergelson, Brachi, et al. 85 

2021). Following the detection of significant heritability estimates, seven genome-wide association 86 

studies (GWAS) using microbial community descriptors as plant traits have been performed in 87 

Arabidopsis thaliana (Horton et al. 2014; Bergelson et al. 2019; Brachi et al. 2022), maize (Walters et 88 

al. 2018), rice (Roman-Reyna et al. 2020), sorghum (Deng et al. 2021) and switchgrass (VanWallendael 89 

et al. 2022). These GWAS revealed a highly polygenic architecture, suggesting a control of natural 90 

microbiota assembly by an extensive number of Quantitative Trait Loci (QTLs) with a small effect. A 91 

similar result was recently obtained with traditional linkage mapping performed in barley (Escudero-92 

Martinez et al. 2022) and tomato (Oyserman et al. 2022). 93 

While informative, the number of genetic association studies that report signatures of local adaptation 94 

on QTLs associated with microbial communities remains scarce, not to say absent. In addition, because 95 

the relative effect of host genetics on the microbiota can highly depend on the plant habitat, in particular 96 

the inoculum source (e.g. agricultural soil) (Robertson-Albertyn et al. 2017; Hubbard et al. 2018; 97 

Fabiańska et al. 2020), setting up genetic association studies in a common garden can bring to partial 98 

conclusions on the host genetics controlling for microbiota (Oyserman et al. 2020). One approach to 99 

tackle these issues is to conduct Genome-Environment Association (GEA) analysis. With the goal of 100 

identifying genetic variants associated with ecological variation across tens to hundreds of natural 101 

populations, GEA analysis is a powerful genome scan method to identify genes potentially involved in 102 

adaptive processes (De Mita et al. 2013). The development of next-generation sequencing (NGS) 103 

technologies combined with the availability of public databases on abiotic variables, in particular 104 

climatic variables, resulted in a recent burst of GEA studies reporting in plants the identification of 105 

adaptive QTLs to abiotic variation, from a worldwide scale (Hancock et al. 2011; Lasky et al. 2015; Bay 106 

et al. 2017; López-Hernández and Cortés 2019) to a regional scale (Pluess et al. 2016; Frachon et al. 107 

2018). Although much less applied on biotic factors, a GEA analysis on plant community descriptors 108 

revealed a high degree of biotic specialization of Arabidopsis thaliana to members of its plant interaction 109 

network at the genetic level (Frachon et al. 2019). In addition, the genetic architecture of local adaptation 110 

to plant community diversity and composition was not predictable from the genetic architecture of local 111 

adaptation to the abundance of individual plant companion species (Frachon et al. 2019).  112 

In this study, by combining microbial community ecology and population genomics, we adopted a GEA 113 

approach to establish a genomic map of adaptation to bacterial communities of the leaf and root 114 

compartment of 141 whole-genome sequenced natural populations of A. thaliana located south-west of 115 

France (Bartoli et al. 2018; Frachon et al. 2018). Because plant-associated microbes rapidly change 116 
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within the host life cycle (Copeland et al. 2015; Beilsmith et al. 2021), bacterial communities were 117 

characterized in fall and spring, thereby allowing testing whether the strength of adaptation to bacterial 118 

communities differs between seasons (Bartoli et al. 2018). We also tested whether the strength of 119 

adaptation differs between microbiota and pathobiota (i.e. the ensemble of potential phytopathogens). 120 

To control for the confounding effects of the abiotic environment on microbiota and pathobiota, the 141 121 

natural populations of A. thaliana were characterized for a set of 17 biologically meaningful climate and 122 

soil variables (Frachon et al. 2018; Frachon et al. 2019). Because companion species can strongly shape 123 

the microbial communities of a focal plant species (Geremia et al. 2016; Meyer et al. 2022), we also 124 

controlled for the confounding effects of 49 plant community descriptors (Frachon et al. 2019).  125 

 126 

Results & Discussion 127 

A set of 168 natural populations of A. thaliana inhabiting contrasting ecological habitats in the south-128 

west of France were whole-genome sequenced using a Pool-Seq approach, resulting in the identification 129 

of 4,781,661 SNPs (Frachon et al. 2018). In this study, we focused on 141 of these natural populations 130 

of A. thaliana that were characterized for leaf and root bacterial communities - using a gyrB based 131 

metabarcoding approach (Bartoli et al. 2018) - and a set of six climate variables, 14 soil physico-132 

chemical variables and 49 descriptors of plant communities (supplementary table 1, Data Sets 1-8) 133 

(Frachon et al. 2018; Frachon et al. 2019). Importantly, the 141 populations strongly differed in their 134 

main germination cohort in autumn 2014 (early November vs. early December) (Bartoli et al. 2018). 135 

We therefore defined three seasonal groups, hereafter named (i) “fall” corresponding to 73 populations 136 

collected in November/December 2014, (ii) “spring (November)” corresponding to 72 populations 137 

already sampled in fall and additionally sampled in early-spring (February/March 2015), and (iii) 138 

“spring (December)” corresponding to 66 populations only sampled in early-spring (February/March 139 

2015) (table 1, supplementary table 1). 140 

For each ‘plant compartment × seasonal group’ combination, we focused for both microbiota and 141 

pathobiota (i.e. ensemble of pathogenic lineages), on descriptors of community diversity (richness and 142 

Shannon index) and community composition (approximated by the two first principal components from 143 

a simple unconstrained PCoA) (Bartoli et al. 2018), as well as the presence/absence of the most prevalent 144 

OTUs, resulting in a total of 194 descriptors of bacterial communities (table 1). To fine map QTLs 145 

associated with microbiota/pathobiota traits, we combined a Bayesian hierarchical model (BHM) 146 

explicitly accounting for the scaled covariance matrix of population allele frequencies (Ω), which makes 147 

the analyses robust to complex demographic histories (Gautier 2015), with a local score (LS) approach 148 

allowing the detection of QTLs with small effects (Bonhomme et al. 2019). The efficiency of the local 149 

score approach was demonstrated in GWAS conducted in A. thaliana, with the fine mapping down to 150 

the gene level and the functional validation of four QTLs associated with quantitative disease resistance 151 

to the bacterial pathogen Ralstonia solanacearum (Aoun et al. 2020; Demirjian et al. 2022). In addition, 152 
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the local score approach was successfully applied in a recent GWAS on leaf bacterial communities 153 

characterized on 200 Swedish accessions of A. thaliana grown in four native habitats in Sweden (Brachi 154 

et al. 2022).  155 

 156 

GEA revealed a polygenetic architecture of adaptation to bacterial communities 157 

Our Bayesian hierarchical model – local score (BHM-LS) combined approach successfully detected 158 

QTLs associated with diversity and composition of bacterial communities and the presence/absence of 159 

a particular OTU. For instance, a neat association peak was detected at the end of chromosome 5 and 160 

the beginning of chromosome 1 for variation in microbiota diversity and composition in the leaf 161 

compartment of the ‘spring (November)’ seasonal group, respectively (fig. 1A). Similarly, a neat peak 162 

of association was detected at the beginning of chromosome 3 for the presence/absence of Pseudomonas 163 

viridiflava, one of the most prevalent and abundant bacterial pathogens identified in natural populations 164 

of A. thaliana in several geographical regions (Karasov et al. 2014; Bartoli et al. 2018; Karasov et al. 165 

2018) (fig. 1A). 166 

Overall, our study revealed a highly polygenic architecture for most of the 194 descriptors of bacterial 167 

communities, with the detection of on average ~19.6 QTLs per descriptor (median = 20, min = 3, max 168 

= 38) (fig. 1B). This is in line with the polygenic architecture reported in GWAS conducted on microbial 169 

communities (Horton et al. 2014; Walters et al. 2018; Bergelson et al. 2019; Roman-Reyna et al. 2020; 170 

Deng et al. 2021; Brachi et al. 2022; VanWallendael et al. 2022). Differences in the number of QTLs 171 

among the six ‘plant compartment × seasons’ were barely significant (Generalized Linear Model, GLM, 172 

F = 2.30, P = 0.0471). No differences in the number of QTLs was found between microbiota and 173 

pathobiota traits (GLM, F = 0.50, P = 0.8063) (fig. 1B).  174 

 175 

A non-negligible fraction of QTLs of microbiota/pathobiota were associated with variation in 176 

abiotic environment and plant communities 177 

To disentangle GEA signals for a given bacterial community trait from GEA signals for abiotic variables 178 

and descriptors of plant communities, we applied BHM-LS on 69 climate variables, soil physico-179 

chemical properties and plant community descriptors (supplementary table 1, Data Set 2-7). A non-180 

negligible fraction of top SNPs associated with microbiota/pathobiota traits were common to variation 181 

in abiotic environment and plant communities, with on average ~15.7% of top SNPs associated with 182 

microbiota/pathobiota traits being common with ecological variables (median = 13.2%, min = 0%, max 183 

= 84%) (fig. 2A). We may however caution that these values certainly represent lower-bound estimates 184 

due to the undefined number of ecological variables acting on natural populations of A. thaliana.  185 

Seven out of the nine ecological variables sharing top SNPs with more than 10% of 186 

microbiota/pathobiota traits correspond to the presence/absence of companion plant species (fig. 2B), 187 

which is in line with the neighborhood effects (also known as associational effects) on microbial 188 

transmission (Worrich et al. 2019; Meyer et al. 2022), particularly well-documented for bacterial 189 
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pathogens (Parker et al. 2015; Makiola et al. 2022). For instance, a neat association peak located on 190 

chromosome 3 was common between the presence/absence of OTU6 - the Plant-Growth Promoting 191 

Bacteria (PGPB) Pseudomonas siliginis (Ramirez-Sanchez et al. 2022a) - in the root compartment in 192 

fall and the presence/absence of Cardamine hirsuta, a closely related to A. thaliana (Hay and Tsiantis 193 

2016) (fig. 3A). A neat association peak located on chromosome 1 was common between the 194 

compositions in bacterial pathogens in the leaf compartment in fall and the richness in companion plant 195 

species (fig. 3B). 196 

In agreement with the impact of precipitation and drought in the phyllosphere microbiota (Zhu et al. 197 

2022), the main climate variables sharing top SNPs with microbiota/pathobiota traits corresponds to 198 

precipitations (fig. 2A). For instance, a neat association peak located on chromosome 1 was common 199 

between the presence/absence of OTU3 in the leaf compartment in fall and precipitation in spring (fig. 200 

3C). On the other hand, manganese and calcium concentrations are the main soil physico-chemical 201 

properties sharing top SNPs with microbiota/pathobiota traits (fig. 2A). For instance, microbiota 202 

composition in the leaf compartment in the ‘spring (November)’ seasonal group and soil calcium 203 

concentration shared a neat association peak located on chromosome 5 (fig. 3D). Soil calcium 204 

concentration was found to impact bacterial community structures both in soils (Neal and Glendining 205 

2019; Tang et al. 2019) and in plants (Li et al. 2018; Mittelstrass et al. 2021), whereas soil manganese 206 

concentration was already suggested as a main driver of root microbial communities in A. thaliana at 207 

the continental scale (Thiergart et al. 2020).   208 

For each seasonal group, the percentage of common SNPs between microbiota/pathobiota and ecology 209 

was on average higher in the leaf compartment than in the root compartment (fig. 2A), albeit not 210 

significant (GLM, F = 2.06, P = 0.1526). No differences was detected between microbiota and 211 

pathobiota descriptors (GLM, F = 0.06, P = 0.8082) (fig. 2A).  212 

 213 

The relative importance of host genetics and ecology in explaining microbiota/pathobiota 214 

variation expressed a phylogenetic signal across bacterial OTUs 215 

In order to teasing apart the relative importance of host genetics and ecology in explaining 216 

microbiota/pathobiota variation, we run a multiple linear regression model on each 217 

microbiota/pathobiota trait by considering (i) all the QTLs that were specific to the 218 

microbiota/pathobiota trait under consideration (i.e. not common with ecological variables) and (ii) each 219 

ecological variable sharing QTLs with the microbiota/pathobiota trait under consideration (see Material 220 

& Methods), and (iii) a proxy considering the potential effects of demographic history of A. thaliana 221 

south-west of France, in explaining microbiota/pathobiota variation. 222 

Across the 194 microbiota/pathobiota traits, a much higher fraction of among-population variance was 223 

explained by host genetics (mean = 35.4%, median = 35.0%) than by ecology (mean = 5.2%, median = 224 

3.8%) (fig 4A, Data Set 9). In line with the polygenic architecture, the total fraction of variance explained 225 

by host genetics resulted from multiple QTLs, each explaining on average 1.99% (supplementary fig. 226 
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S1, Data Set 10). The small QTL effects detected by GEA are similar to the QTL effect sizes identified 227 

in GWAS and traditional linkage mapping studies on microbiota (Bergelson, Brachi, et al. 2021; 228 

Oyserman et al. 2022), albeit a larger range of QTL effects was identified in our study. For instance, the 229 

top SNP located on position 19,335,417bp on chromosome 2 (SNP 2_19335471), SNP 1_12691514 and 230 

SNP 5_5191015 explained a substantial fraction of the presence/absence of OTU4 (root compartment 231 

in fall), microbiota diversity (leaf compartment in spring (December)) and pathobiota composition (leaf 232 

compartment in fall), respectively (fig. 4B, 4C and 4D, Data Set 10).  233 

Amongst ecological variables, the variance in microbiota/pathobiota traits was on average more 234 

explained by plant community descriptors (mean = 3.75%) than by climate variables (mean = 0.66%) 235 

and soil physico-chemical properties (mean = 0.78%), highlighting the plant neighborhood as the main 236 

ecological driver of microbiota/pathobiota of A. thaliana populations located south-west of France. A 237 

very small fraction of microbiota/pathobiota variation was on average explained by the demographic 238 

history of A. thaliana (mean = 2.52%, median = 1.23%) (supplementary fig. 1, Data Set 9). Across the 239 

194 microbiota/pathobiota traits, a substantial fraction of variance remained unexplained (mean = 240 

56.9%, median = 56.4%) (supplementary fig. S1, Data Set 9). This unexplained variance may originate 241 

from (i) QTLs with very small effect that remains undetected due to a lack of power given the number 242 

of populations used for GEA analysis (table 1), (ii) uncharacterized explanatory ecological variables, as 243 

previously mentioned, and/or (iii) stochastic processes of dispersal and drift that can drastically alter 244 

community structure (Wagner 2021). 245 

The relative importance of host genetics, ecology and demographic history in explaining 246 

microbiota/pathobiota variation was similar between leaf and root compartments, between microbiota 247 

and pathobiota, and between the three seasonal groups (supplementary fig. 2, supplementary table 2). 248 

Importantly, the relative importance of host genetics, ecology and demographic history expressed a 249 

phylogenetic signal at the family and genus level (fig. 4E). For instance, the relative importance of host 250 

genetics (in comparison with ecology) in explaining variance in microbiota/pathobiota OTUs was 251 

significantly higher for OTUs of the Rhizobium genus than for OTUs of the Pseudomonas genus (fig. 252 

4E). A phylogenetic signal at the order level was previously observed in GWAS conducted on the 253 

rhizospheric microbiota of sorghum and the leaf microbiota of maize, with heritable microbes that 254 

phylogenetically clustered (Walters et al. 2018; Deng et al. 2021). Altogether, these results suggest that 255 

some taxonomic groups necessitate more genetic discrimination among genotypes of A. thaliana than 256 

others, thereby providing candidate bacterial taxa to be investigated for genomic signals of co-evolution 257 

with A. thaliana through, for example, free-phenotyping co-GWAS (Bartoli and Roux 2017).  258 

 259 

The genetic architecture of adaptation to bacterial communities is highly flexible between plant 260 

compartments and seasons 261 

After retrieving candidate genes located in the vicinity of the top SNPs specific to the 262 

microbiota/pathobiota trait under consideration (i.e. not common with ecological variables), we 263 
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observed a highly flexible genetic architecture between the six ‘plant compartment × seasonal group’ 264 

combinations, with 76.1% of unique candidate genes being specific to a ‘plant compartment × seasonal 265 

group’ combination (fig. 5A, Data Set 11). Most of the remaining candidate genes were either specific 266 

to the leaf compartment and common between the three seasonal groups, or specific to a given seasonal 267 

group and common between the leaf and root compartments (fig. 5A). On the other hand, very few 268 

candidate genes were specific to the root compartment and common between the three seasonal groups 269 

(fig. 5A).  270 

All GWAS performed previously on plant microbial communities were conducted on one specific plant 271 

compartment (Walters et al. 2018; Roman-Reyna et al. 2020; Deng et al. 2021; Brachi et al. 2022; 272 

VanWallendael et al. 2022), with the exception of one GWAS conducted on worldwide accessions of 273 

A. thaliana at the leaf (Horton et al. 2014) and root (Bergelson et al. 2019) levels. Similar to our results, 274 

this latter GWAS showed a small overlap between the leaf and root compartments in candidate genes 275 

associated with descriptors of bacterial and fungal communities (Bergelson et al. 2019), which is in line 276 

with the adaptive differences in microbial community diversity and composition observed among plant 277 

niches, from rhizosphere soils to plant canopies (Müller et al. 2016; Cregger et al. 2018).  278 

As illustrated with OTU5 corresponding to the PGPB Pseudomonas moraviensis (Ramirez-Sanchez et 279 

al. 2022a), we observed a strong flexibility of genetic architecture between seasons for a specific 280 

microbiota/pathobiota trait (fig. 5B). Such an observation is reminiscent of the strong genetic variation 281 

in seasonal microbial community succession observed in diverse plant species including A. thaliana 282 

(Copeland et al. 2015; Bartoli et al. 2018; Beilsmith et al. 2021; VanWallendael et al. 2022) and the 283 

dynamics of genetic architecture along the infection stages when A. thaliana accessions were challenged 284 

with the bacterial pathogen Ralstonia solanacearum (Aoun et al. 2017; Aoun et al. 2020; Demirjian et 285 

al. 2022).  286 

The identity of candidate genes strongly differs between the two seasonal groups ‘spring (November)’ 287 

and ‘spring (December)’ in both plant compartments, thereby suggesting an effect of germination timing 288 

on the interplay between host genetics and microbiota/pathobiota. While germination timing was found 289 

to influence natural selection on life-history traits in A. thaliana (Donohue 2002; Donohue et al. 2005), 290 

the effect of germinating timing on microbiota/pathobiota assemblages has been seldom reported and 291 

deserves further investigations. 292 

Beyond a highly flexible genetic architecture between plant compartments and seasons, we also 293 

observed a highly flexible genetic architecture among microbiota/pathobiota traits for each ‘plant 294 

compartment × seasonal group’ combination (supplementary fig. 3). For instance, for the pathobiota in 295 

the leaf compartment in the ‘spring (December)’ seasonal group, the identity of candidate genes strongly 296 

differs between community diversity, community composition and the presence/absence of P. syringae 297 

(supplementary fig. 4). As previously observed in GWAS and GEAS conducted on plant-plant 298 

interactions in A. thaliana (Baron et al. 2015; Frachon et al. 2019; Libourel et al. 2021), these results 299 

suggest a high degree of biotic specialization of A. thaliana to members of its bacterial interaction 300 
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network, as well as the genetic ability of A. thaliana to interact simultaneously with multiple bacterial 301 

members.  302 

Altogether, in line with the ever-changing complexity of biotic interactions observed in nature 303 

(Bergelson, Kreitman, et al. 2021), our study reinforces the need to conduct association genetic studies 304 

on diverse plant compartments and seasons to obtain a full picture of the host genetics controlling natural 305 

variation of microbiota/pathobiota. 306 

 307 

The strength of signatures of local adaptation on QTLs of microbiota/pathobiota depends on plant 308 

compartment and season 309 

By definition, GEA allows identifying genetic loci under local adaptation. However, in order to support 310 

that the loci identified by our GEA analysis have been shaped by natural selection, we additionally tested 311 

whether the top SNPs specific to microbiota/pathobiota traits were enriched in a set of SNPs subjected 312 

to adaptive spatial differentiation. To do so, we first performed for each ‘plant compartment × seasonal 313 

group’ combination a genome-wide selection scan by estimating a Bayesian measure of genetic 314 

differentiation (XtX) among the natural populations of A. thaliana. For a given SNP, XtX measures the 315 

variance of the standardized population allele frequencies, which is corrected for the genome-wide 316 

effects of confounding demographic evolutionary forces (Gautier 2015). The 0.5% upper tail of the 317 

spatial differentiation distribution displayed a significant enrichment (up to 34.2) for top SNPs of almost 318 

two-thirds of the microbiota/pathobiota traits (fig. 6A, Data Set 12). For instance, a strong signature of 319 

local adaptation was identified on SNPs located in the 5’ region of MYB15 (fig. 6B), a transcription 320 

factor involved in the coordination of microbe-hots homeostasis in A. thaliana (Ma et al. 2021). 321 

No differences in the mean fold enrichment for signatures of local adaptation was detected between 322 

microbiota and pathobiota traits (GLM, F = 0.44, P = 0.7260). However, the mean fold enrichment for 323 

signatures of local adaptation largely differed between the three seasonal groups (GLM, F = 5.06, P = 324 

0.0072), with top SNPs presenting more signatures of local adaptation in spring than in fall when 325 

considering the same set of populations, i.e. populations from the ‘fall’ and ‘spring (November)’ 326 

seasonal groups (fig. 6A). Top SNPs of the ‘spring (December)’ seasonal group presented signatures of 327 

local adaptation that were intermediate between the two other seasonal groups, suggesting that 328 

germinating timing not only affects the genetic architecture underlying microbiota/pathobiota variation 329 

but also the strength of local adaptation acting on candidate genes.  330 

In addition, the mean fold enrichment for signatures of local adaptation was significantly higher for the 331 

root compartment than for the leaf compartment (GLM, F = 6.11, P = 0.0143). Combined with the 332 

observation that the percentage of common SNPs between microbiota/pathobiota and ecology was on 333 

average higher in the leaf compartment than in the root compartment, the difference between the leaf 334 

and root compartments in the strength of local adaptation acting on candidate genes suggests a higher 335 

adaptive genetic control of the root microbiota than of the leaf microbiota.  336 

 337 
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Cross validation of our GEA approach through results obtained from previous GWAS 338 

A GEA approach suffers from the quasi-impossibility of measuring the entire set of ecological variables 339 

acting on natural populations of A. thaliana, thereby precluding the identification of all SNPs common 340 

between microbiota/pathobiota traits and ecological variables. To circumvent this issue, we therefore 341 

tested whether our list of candidate genes associated with microbiota/pathobiota traits significantly 342 

overlap with candidate genes identified in two GWAS conducted on A. thaliana in common gardens 343 

under ecologically relevant conditions. The first GWAS was conducted on 200 Swedish accessions 344 

characterized for the bacterial and fungal communities in the leaf compartment in the native habitat of 345 

four populations located in Sweden (Brachi et al. 2022). The list of 880 candidate genes located in the 346 

vicinity of the top SNPs associated with bacterial hubs in Sweden significantly overlapped with the lists 347 

of candidate genes identified by GEA for the leaf compartment, whatever the seasonal group 348 

(supplementary fig. 5A, Data Set 13). The fraction of candidate genes detected in Sweden and 349 

overlapping with the lists of candidate genes identified by GEA for the root compartment, was smaller 350 

and less significant for each seasonal group (supplementary fig. 5A). 351 

The second GWAS was conducted on 162 whole-genome sequenced accessions of A. thaliana 352 

originating from 54 out of the 141 natural populations used in our study. Those accessions were 353 

challenged in field conditions with 13 bacterial strains belonging to seven of the 12 most abundant and 354 

prevalent leaf OTUs across our natural populations in south-west of France (Ramirez-Sanchez et al., 355 

2022b). The resulting list of candidate genes showed a significant enrichment in diverse biological 356 

pathways, including cell, cell wall, development, hormone metabolism, secondary metabolism, 357 

signalling and transport, which is in line with the main enriched biological pathways identified in our 358 

study (supplementary fig. 5B, Data Set 14) and most of the main biological pathways (with the exception 359 

of symbiosis) identified by the use of artificial mutations and by previous GWAS conducted on A. 360 

thaliana (Bergelson, Brachi, et al. 2021).  361 

Altogether, the similar lists of candidate genes and biological pathways detected between diverse 362 

mapping populations and using different approaches in association genetics, indicate a cross-validation 363 

of our GEA results by GWAS conducted in ecologically relevant conditions. 364 

 365 

FLS2 as one of the main candidate genes controlling structure of bacterial communities 366 

Merging the lists of candidate genes identified in our study and in two GWAs conducted in ecologically 367 

relevant conditions in the native area of A. thaliana (Brachi et al. 2022) led to the establishment of a 368 

short list of 50 core genes associated with natural variation of microbiota traits (Data Set 15). Of 369 

particular interest is the gene FLAGELLIN-SENSITIVE 2 (FLS2) overlapping with 39 top SNPs in our 370 

study (Data Set 11). FLS2 encodes for a leucine-rich repeat receptor-like kinase first identified in the 371 

perception of the bacterial elicitor flagellin (Gómez-Gómez and Boller 2000) and then confirmed as key 372 

in microbe-associated molecular patterns (MAMP)-triggered immunity (MTI) (Stringlis and Pieterse 373 

2021). Although FLS2 detects flagellin from both pathogenic and beneficial bacteria by the 22-amino-374 
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acid N-terminal epitope flg22 (Stringlis et al. 2018), FLS2 was never proposed as a candidate gene in 375 

GWAS of response to bacterial pathogens (https://aragwas.1001genomes.org/#/gene/AT5G46330), 376 

despite the identification of more than 100 amino acid changes in FLS2 among >1,000 worldwide 377 

accessions (Bai et al. 2022). Genetic variation at FLS2 might have evolved to detect the substantial 378 

diversity of flg22 encoded by commensal bacteria (Colaianni et al. 2021; Bai et al. 2022). Accordingly, 379 

FLS2 shaped the microbiota composition of A. thaliana rhizosphere when plant were grown on an 380 

agricultural soil (Fonseca et al. 2022). Assessing the allelic diversity of both FLS2 and flg22 in our 381 

collection of 168 natural populations of A. thaliana (Frachon et al. 2018) and in our collection of >7,000 382 

bacterial strains (Ramirez-Sanchez et al. 2022a), respectively, might reveal signatures of co-adaptation. 383 

 384 

Conclusion 385 

The GEA study conducted here on microbiota/pathobiota traits and on an unprecedented number of 386 

ecological variables, is complementary to GWAS carried out previously on A. thaliana. In particular, 387 

we investigated (i) the level of flexibility of the genetic architecture between seasons and between in 388 

situ germination timings, (ii) the relative importance of host genetics and ecology in explaining 389 

microbiota/pathobiota variation, (iii) the identity of the ecological variables acting as putative selective 390 

agents on microbiota/pathobiota traits, and (iv) the variation between plant compartments and seasonal 391 

groups, in the strength of local adaptation acting on candidate genes. Importantly, no differences were 392 

observed between microbiota and pathobiota traits, thereby suggesting a similar adaptive genetic control 393 

of A. thaliana towards its pathogenic and non-pathogenic members, including members with already 394 

described beneficial effects (Ramirez-Sanchez et al. 2022).  395 

The next avenue is then to apply our approach on fungal communities that have not been characterized 396 

on our set of natural populations yet. Establishing a genomic map of local adaptation to fungal 397 

communities might allow testing whether the genetic bases largely differ between bacterial and fungal 398 

communities, as previously documented in the two GWAS on A. thaliana (Horton et al. 2014; Bergelson 399 

et al. 2019; Brachi et al. 2022). It might also help to identify the adaptive genetic bases of common 400 

interactions among OTUs, including mutualism, antagonism, aggression and altruism, within and across 401 

kingdoms (He et al. 2021). 402 

 403 

Materials and Methods 404 

Descriptors of bacterial communities in leaves and roots 405 

The bacterial communities of 1,903 leaf and root samples collected in fall and spring 2015 across 163 406 

out of 168 natural populations of A. thaliana located south-west of France (Frachon et al. 2018), were 407 

characterized with a gyrB-based metabarcoding approach, leading to the identification of 278,833 OTUs 408 

(Bartoli et al. 2018). The deeper taxonomic resolution conferred by the gyrB gene allows distinguishing 409 

OTUs belonging to the pathobiota from OTUs belonging to the microbiota (Bartoli et al. 2018).  410 
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In this study, we considered 141 natural populations of A. thaliana for which a set of six climate 411 

variables, 14 soil physico-chemical variables and 49 descriptors of plant communities were available 412 

(see below), thereby resulting in 73, 73, 69, 72, 66 and 66 populations for the ‘fall – leaf’, ‘fall – root’, 413 

‘spring (November) – leaf’, ‘spring (November) – root’, ‘spring (December) – leaf’ and ‘spring 414 

(December) – root’ combinations, respectively (table 1). 415 

For each sample of A. thaliana collected in the 141 populations, we estimated the relative abundance 416 

(N° of reads per OTU / N° of total reads) of each of the 278,333 OTUs. For each ‘plant compartment × 417 

seasonal group’ combination, we then averaged for each OTU the corresponding relative abundances 418 

per population. For each OTU, populations with a mean relative abundance above and below (or equal 419 

to) 0.5% were scored as 1 (presence of the OTU) and 0 (absence of the OTU), respectively. In this study, 420 

for the purpose of statistical power in GEA analysis, we only kept OTUs present in more than seven 421 

populations, resulting in 34 OTUs, 15 OTUs, 32 OTUs, 21 OTUs, 34 OTUs and 13 OTUs investigated 422 

for GEA analysis for the ‘fall – leaf’, ‘fall – root’, ‘spring (November) – leaf’, ‘spring (November) – 423 

root’, ‘spring (December) – leaf’ and ‘spring (December) – root’ combinations, respectively (table 1). 424 

Similarly, for each ‘plant compartment × seasonal group’ combination, we averaged for both the 425 

microbiota and the pathobiota, estimates of community richness and Shannon index previously obtained 426 

in (Bartoli et al. 2018), as well as estimates of community composition using the coordinates of the 427 

samples on the two first axes of a principal coordinate analysis (PCoA) run on a Hellinger distance 428 

matrix based on the relative abundances of the 6,627 most abundant OTUs (Data Set 1) (Bartoli et al. 429 

2018). 430 

 431 

Abiotic descriptors and descriptors of plant communities 432 

A set of six climate variables, 14 soil physico-chemical properties and 49 descriptors of plant 433 

communities were available for 141 out of the 168 natural populations of A. thaliana located south-west 434 

of France (Data Sets 2-8). The climate variables corresponds to two variables related to temperature and 435 

four variables related to precipitation (Frachon et al. 2018). The 14 soil physico-chemical variables 436 

describe the main soil agronomic properties related to plant growth (Brachi et al. 2013; Frachon et al. 437 

2019). The 49 descriptors of plant communities correspond to (i) estimates of richness and Shannon 438 

index (ii) estimates of community composition using the coordinates of the populations on the three first 439 

axes of a PCoA run on a Bray-Curtis dissimilarity matrix based on the relative abundance of the 44 most 440 

prevalent plant species and (iii) the presence/absence of the 44 most prevalent plant species, with the 441 

exception of A. thaliana for which estimates of the absolute abundance were kept (Frachon et al. 2019). 442 

In this study, for the purpose of statistical power in GEA analysis, we only kept companion plant species 443 

present in more than seven populations, resulting in 30, 29, 30, 31, 33 and 33 plant species investigated 444 

for GEA analysis for the ‘fall – leaf’, ‘fall – root’, ‘spring (November) – leaf’, ‘spring (November) – 445 

root’, ‘spring (December) – leaf’ and ‘spring (December) – root’ combinations, respectively (Data Sets 446 

2-7). 447 
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Genomic characterization and data filtering 448 

As previously described in (Frachon et al. 2018), a representative picture of within-population genetic 449 

variation across the genome was previously obtained for the 168 populations located south-west of 450 

France, using a Pool-Seq approach based on the individual DNA extraction of ~16 plants per population 451 

(min = 5 plants, max = 16 plants, mean = 15.32 plants, median = 16 plants). After bioinformatics analysis 452 

using the reference genome Col-0, the allele read count matrix (for both the reference and alternate 453 

alleles) was composed by 4,781,661 SNPs across the 168 populations (Frachon et al. 2018). 454 

Following Frachon et al. (2018), for each ‘plant compartment × seasonal group’ combination, the matrix 455 

of population allele frequencies was trimmed according to five successive criteria : (i) removing SNPs 456 

with missing values in more than two populations, (ii) in order to take into account multiple gene copies 457 

in the populations that map to a unique gene copy in the reference genome Col-0, removing SNPs with 458 

a mean relative coverage depth across the populations above 1.5 after calculating for each population 459 

the relative coverage of each SNP as the ratio of its coverage to the median coverage (computed over 460 

all the SNPs), (iii) in order to take into account indels that correspond to either genomic regions present 461 

in Col-0 but absent in the populations or genomic regions present in the populations but absent in Col-462 

0, removing SNPs with a mean relative coverage depth across the populations below 0.5, (iv) removing 463 

SNPs with a standard deviation of allele frequency across the populations below 0.004, and (v) in order 464 

to take into account bias in GEA analysis due to rare alleles (Bergelson and Roux 2010), removing SNPs 465 

with the alternative allele present in less than 10% of the populations. This SNP pruning resulted in a 466 

final number of 1,396,579 SNPs, 1,392,959 SNPs, 1,470,777 SNPs, 1,382,414 SNPs, 1,514,789 SNPs 467 

and 1,514,789 SNPs for the ‘fall – leaf’, ‘fall – root’, ‘spring (November) – leaf’, ‘spring (November) – 468 

root’, ‘spring (December) – leaf’ and ‘spring (December) – root’ combinations, respectively. 469 

 470 

Genome-Environment Association analysis 471 

For each ‘plant compartment × seasonal group’ combination, a GEA analysis was performed between 472 

the set of pruned SNPs and each trait related to microbiota, climate, soil physico-chemical properties 473 

and plant communities, resulting in a total number of 530 traits, with 97 traits, 76 traits, 95 traits, 84 474 

traits, 100 traits and 78 traits for the ‘fall – leaf’, ‘fall – root’, ‘spring (November) – leaf’, ‘spring 475 

(November) – root’, ‘spring (December) – leaf’ and ‘spring (December) – root’ combinations, 476 

respectively (supplementary table 1, Data Sets 2-7). 477 

To identify significant ‘SNP-trait’ association s for each ‘plant compartment × seasonal group’ 478 

combination, we first run a Bayesian hierarchical model (i) explicitly accounting for the scaled 479 

covariance matrix of population allele frequencies (Ω), which makes the analyses robust to complex 480 

demographic histories (ii) dealing with Pool-Seq data and (iii) implemented in the program BayPass 481 

(Gautier 209715). Following (Frachon et al. 2019), the core model was used to evaluate the association 482 

between allele frequencies across the genome and the n traits. For each SNP, we estimated a Bayesian 483 
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Factor (BFis measured in deciban units) and the associated regression coefficient (Beta_is, βi) using an 484 

Importance Sampling algorithm (Gautier 2015). The full posterior distribution of the parameters was 485 

obtained based on a Metropolis–Hastings within Gibbs Markov chain Monte Carlo (MCMC) algorithm. 486 

A MCMC chain consisted of 15 pilot runs of 500 iterations each. Then, MCMC chains were run for 487 

25,000 iterations after a 2500-iterations burn-in period. The n traits were scaled (scalecov option) so 488 

that μ = 0 and 𝜎2 = 1. Because of the use of an Importance Sampling algorithm, we repeated the analyses 489 

three times for each trait and averaged BFis and βi values across these three repeats. As previously 490 

performed in (Frachon et al. 2018), for each ‘plant compartment × seasonal group’ combination, we 491 

parallelized GEA analysis by dividing the full data set of pruned SNPs into 32 sub-data sets, each 492 

containing 3.125% of the total number of pruned SNPs taken every 32 SNPs across the genome. 493 

As a second step, in order to better characterize the genetic architecture associated with ecological 494 

variation, the GEA results were reanalyzed by applying a local score approach (Bonhomme et al. 2019), 495 

which allows detecting significant genomic segments by accumulating the statistical signals from 496 

contiguous genetic markers such as SNPs (Fariello et al. 2017). In addition, this local score approach 497 

increases the power of detecting QTLs with small effect and narrows the size of QTL genomic regions 498 

(Fariello et al. 2017; Bonhomme et al. 2019). In a given QTL region, the association signal, through the 499 

p-values, will cumulate locally due to linkage disequilibrium between SNPs, which will then increase 500 

the local score (Bonhomme et al. 2019). Following (Libourel et al. 2021), in order to apply the local 501 

score approach on the GEA results, we first ranked each SNP based on the Bayes Factor values obtained 502 

across the genome (from the highest to the lowest values) for each trait. Then, each rank was divided by 503 

the total number of SNPs to obtain a p-value associated with each SNP. The local score approach was 504 

then implemented on these p-values to fine map genomic regions associated with traits. In this study, 505 

the tuning parameter ξ was fixed at 2 expressed in –log10 scale. Significant associations between SNPs 506 

and ecological variation were identified by estimating a chromosome-wide significance threshold for 507 

each chromosome (Bonhomme et al. 2019). The SNPs underlying the QTLs identified by the combined 508 

BMH-LS approach are hereafter named top SNPs. 509 

 510 

Estimating the relative importance of host genetics and environment in explaining variation of 511 

microbiota/pathobiota traits 512 

To estimate the relative importance of (i) QTLs specific to microbiota/pathobiota traits, (ii) the 513 

demographic history of A. thaliana, and (ii) abiotic environment / plant communities in explaining 514 

variation of microbiota/pathobiota traits, we run the following multiple linear regression model under 515 

the R environment for each of the 194 microbiota/pathobiota traits: 516 

Ya,p,i…n,j...m,k = μa + population structurep + QTLi + … + QTLn + ECOLj + … + ECOLm + Ɛa,p,i…n,j...m,k  517 

Where Y is one of the 194 microbiota/pathobiota traits; μ is the overall mean; ‘population structure’ 518 

accounts for the effect of the demographic history of A. thaliana by using the coordinates of the 519 

populations on the first Principal Component axis (PCgenomic axis 1) resulting from the singular value 520 
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decomposition of the scaled covariance matrix of population allele frequencies and explaining 96.4% of 521 

the genomic variation observed among the 168 populations located south-west of France (Frachon et al. 522 

2018); ‘QTL’ accounts for the effect of host genetics by using the standardized allele frequencies (i.e. 523 

corrected for the effect of demographic history) (Gautier 2015) of the SNP with the highest BFis value 524 

for each QTL specific to the microbiota/pathobiota trait considered; ‘ECOL’ corresponds to values of 525 

ecological variables (climate variables, soil physico-chemical properties and descriptors of plant 526 

communities) for which QTLs were common to QTLs associated with microbiota/pathobiota traits; and 527 

ε is the residual term. For each microbiota/pathobiota trait, we obtained a percentage of variance 528 

explained (PVEs) by each model term (Data Set 10) and PVEs were then summed according to four 529 

categories, i.e. demographic history, host genetics specific to microbiota/pathobiota, ecology (including 530 

abiotic environment and plant communities) and residuals (Data Set 9). 531 

To test whether the relative PVE by these four categories differs among OTUs at the order, family and 532 

genus taxonomic levels, we first averaged the PVE among OTUs belonging to a specific order, family 533 

or genus (only order, family or genus with at least four OTUs were considered). At each taxonomic 534 

level, we then applied a Chi-squared test on each pairwise comparison among OTUs. A Bonferroni 535 

correction was applied to control for multiple testing. A similar approach was applied to test whether 536 

the relative PVE by these four categories differs between leaves and roots, between microbiota and 537 

pathobiota and among the six seasonal groups. 538 

 539 

Identification of candidate genes associated with microbiota and pathobiota descriptors and 540 

associated enriched biological pathways 541 

Based on a custom script (Libourel et al. 2021), we retrieved all candidate genes underlying QTLs by 542 

selecting all genes inside the QTL regions as well as the first gene upstream and the first gene 543 

downstream of these QTL regions (Data Set 11). The TAIR 10 database (https://www.arabidopsis.org/) 544 

was used as our reference. The number of candidate genes that were either specific to a single ‘plant 545 

compartment × seasonal group’ combination (single microbiota/pathobiota descriptor), or common 546 

between several ‘plant compartment × seasonal group’ combinations (several microbiota/pathobiota 547 

descriptors), were illustrated by UpSet plots using the UpSetR package in R (Conway et al. 2017). 548 

To identify biological pathways significantly over-represented (P < 0.01) in each of the six  ‘plant 549 

compartment × seasonal group’ combinations, each of the six lists of unique candidate genes were 550 

submitted to the classification superviewer tool on the university of Toronto website 551 

(http://bar.utoronto.ca/ntools/cgibin/ntools_classification_superviewer.cgi) using the MAPMAN 552 

classification (Provart and Zhu, 2003) (Data Set 14). 553 

 554 

Enrichment in signatures of local adaptation 555 

For supporting signals of local adaptation identified by GEA analysis, we first performed for each ‘plant 556 

compartment × seasonal group’ combination, a genome-wide selection scan by estimating the XtX 557 
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measure of spatial genetic differentiation among the populations. For a given SNP, XtX is a measure of 558 

the variance of the standardized population allele frequencies, which results from a rescaling based on 559 

the covariance matrix of population allele frequencies (Gautier 2015). Such rescaling allows for a robust 560 

identification of highly differentiated SNPs by correcting for the genome-wide effects of confounding 561 

demographic evolutionary forces, such as genetic drift and gene flow (Gautier 2015). For each of the 562 

194 microbiota/pathobiota traits, we tested whether top SNPs present signatures of local adaptation by 563 

following the methodology described in (Brachi et al. 2015). More precisely, we tested whether the top 564 

SNPs were over-represented in the extreme upper tail of the XtX distribution using the formula:  565 

FEXtX =
𝑛𝑎 𝑛⁄

𝑁𝑎 𝑁⁄
 566 

With n being the number of SNPs in the upper tail of the XtX distribution. In our case, we used a 567 

threshold of 0.5%.  na is the number of top SNPs that were also in the upper tail of the XtX distribution. 568 

N is the total number of SNPs tested genome-wide and Na is the total number of top SNPs. Statistical 569 

significance of enrichment was assessed by running 10,000 null circular permutations based on the 570 

methodology described in (Hancock et al. 2011). 571 

 572 

Overlap with candidate genes obtained from GWAS 573 

Based on a GWAS performed on the leaf bacterial communities of 200 Swedish A. thaliana accessions 574 

grown in the native habitats of four natural populations of A. thaliana in Sweden (Brachi et al. 2022), 575 

we retrieved a list of 880 unique candidate genes underlying 209 QTLs, by selecting all genes inside the 576 

QTL regions as well as the first gene upstream and the first gene downstream of these QTL regions. 577 

To test whether the list of unique candidate genes obtained for each ‘plant compartment × seasonal 578 

group’ combination significantly overlaps with the list of 880 candidate genes, we first estimated the 579 

percentage of the 800 candidate genes that were in common with the list of n candidate genes identified 580 

in this study. To estimate the level of significance, we then created a null distribution by randomly 581 

sampling 10,000 times, n genes across the entire set of 27,206 genes present across the five 582 

chromosomes of A. thaliana. 583 

 584 

Acknowledgments and funding information 585 

This project has received funding from the European Research Council (ERC) under the European 586 

Union’s Horizon 2020 research and innovation programme (grant agreement No 951444 –587 

PATHOCOM). 588 

 589 

Author contributions 590 

F.R., L.F. and C.B. planned and designed the research.  F.R. performed the statistical analyses and the 591 

genome-environment analysis. F.R. wrote the manuscript, with contributions from L.F. and C.B.592 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.26.509609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 
 

References 593 

Aoun N, Desaint H, Boyrie L, Bonhomme M, Deslandes L, Berthomé R, Roux F. 2020. A complex 594 
network of additive and epistatic quantitative trait loci underlies natural variation of Arabidopsis 595 
thaliana quantitative disease resistance to Ralstonia solanacearum under heat stress. Mol. Plant Pathol. 596 
21:1405–1420. 597 

Aoun N, Tauleigne L, Lonjon F, Deslandes L, Vailleau F, Roux F, Berthomé R. 2017. Quantitative 598 
Disease Resistance under Elevated Temperature: Genetic Basis of New Resistance Mechanisms to 599 
Ralstonia solanacearum. Front. Plant Sci. 8:1387. 600 

Bai B, Liu W, Qiu X, Zhang Jie, Zhang Jingying, Bai Y. 2022. The root microbiome: Community 601 
assembly and its contributions to plant fitness. J. Integr. Plant Biol. 64:230–243. 602 

Baron E, Richirt J, Villoutreix R, Amsellem L, Roux F. 2015. The genetics of intra- and interspecific 603 
competitive response and effect in a local population of an annual plant species.Bennett A, editor. 604 
Funct. Ecol. 29:1361–1370. 605 

Bartoli C, Frachon L, Barret M, Rigal M, Huard-Chauveau C, Mayjonade B, Zanchetta C, Bouchez O, 606 
Roby D, Carrère S, et al. 2018. In situ relationships between microbiota and potential pathobiota in 607 
Arabidopsis thaliana. ISME J. 12:2024–2038. 608 

Bartoli C, Roux F. 2017. Genome-Wide Association Studies In Plant Pathosystems: Toward an 609 
Ecological Genomics Approach. Front. Plant Sci. 8:763. 610 

Bay RA, Rose N, Barrett R, Bernatchez L, Ghalambor CK, Lasky JR, Brem RB, Palumbi SR, Ralph P. 611 
2017. Predicting Responses to Contemporary Environmental Change Using Evolutionary Response 612 
Architectures. Am. Nat. 189:463–473. 613 

Bebber DP. 2015. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 614 
53:335–356. 615 

Beilsmith K, Perisin M, Bergelson J. 2021. Natural bacterial assemblages in Arabidopsis thaliana tissues 616 
become more distinguishable and diverse during host development. MBio [Internet] 12. Available 617 
from: http://dx.doi.org/10.1128/mBio.02723-20 618 

Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant health. 619 
Trends Plant Sci. 17:478–486. 620 

Bergelson J, Brachi B, Roux F, Vailleau F. 2021. Assessing the potential to harness the microbiome 621 
through plant genetics. Curr. Opin. Biotechnol. 70:167–173. 622 

Bergelson J, Kreitman M, Petrov DA, Sanchez A, Tikhonov M. 2021. Functional biology in its natural 623 
context: A search for emergent simplicity. Elife [Internet] 10. Available from: 624 
http://dx.doi.org/10.7554/eLife.67646 625 

Bergelson J, Mittelstrass J, Horton MW. 2019. Characterizing both bacteria and fungi improves 626 
understanding of the Arabidopsis root microbiome. Sci. Rep. 9:24. 627 

Bergelson J, Roux F. 2010. Towards identifying genes underlying ecologically relevant traits in 628 
Arabidopsis thaliana. Nat. Rev. Genet. 11:867–879. 629 

Bonhomme M, Fariello MI, Navier H, Hajri A, Badis Y, Miteul H, Samac DA, Dumas B, Baranger A, 630 
Jacquet C, et al. 2019. A local score approach improves GWAS resolution and detects minor QTL: 631 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.26.509609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

application to Medicago truncatula quantitative disease resistance to multiple Aphanomyces euteiches 632 
isolates. Heredity (Edinb.) 123:517–531. 633 

Brachi B, Filiault D, Whitehurst H, Darme P, Le Gars P, Le Mentec M, Morton TC, Kerdaffrec E, 634 
Rabanal F, Anastasio A, et al. 2022. Plant genetic effects on microbial hubs impact host fitness in 635 
repeated field trials. Proc. Natl. Acad. Sci. U. S. A. 119:e2201285119. 636 

Brachi B, Meyer CG, Villoutreix R, Platt A, Morton TC, Roux F, Bergelson J. 2015. Coselected genes 637 
determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis 638 
thaliana. Proc. Natl. Acad. Sci. U. S. A. 112:4032–4037. 639 

Brachi B, Villoutreix R, Faure N, Hautekèete N, Piquot Y, Pauwels M, Roby D, Cuguen J, Bergelson J, 640 
Roux F. 2013. Investigation of the geographical scale of adaptive phenological variation and its 641 
underlying genetics in Arabidopsis thaliana. Mol. Ecol. 22:4222–4240. 642 

Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. 2013. Structure and 643 
functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807–838. 644 

Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, 645 
Dangl JL. 2017. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS 646 
Biol. 15:e2001793. 647 

Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, Finkel OM, Breakfield 648 
NW, Mieczkowski P, Jones CD, et al. 2017. Root microbiota drive direct integration of phosphate 649 
stress and immunity. Nature 543:513–518. 650 

Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L, Paasch BC, Ma L, Kremer J, Cheng Y, et al. 651 
2020. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580:653–657. 652 

Colaianni NR, Parys K, Lee H-S, Conway JM, Kim NH, Edelbacher N, Mucyn TS, Madalinski M, Law 653 
TF, Jones CD, et al. 2021. A complex immune response to flagellin epitope variation in commensal 654 
communities. Cell Host Microbe 29:635-649.e9. 655 

Conway JR, Lex A, Gehlenborg N. 2017. UpSetR: an R package for the visualization of intersecting 656 
sets and their properties. Bioinformatics 33:2938–2940. 657 

Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS. 2015. Seasonal community succession 658 
of the phyllosphere microbiome. Mol. Plant. Microbe. Interact. 28:274–285. 659 

Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, Schadt CW. 2018. The 660 
Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 661 
[Internet] 6. Available from: http://dx.doi.org/10.1186/s40168-018-0413-8 662 

De Mita S, Thuillet A-C, Gay L, Ahmadi N, Manel S, Ronfort J, Vigouroux Y. 2013. Detecting selection 663 
along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and 664 
selfing populations. Mol. Ecol. 22:1383–1399. 665 

Demirjian C, Razavi N, Desaint H, Lonjon F, Genin S, Roux F, Berthomé R, Vailleau F. 2022. Study 666 
of natural diversity in response to a key pathogenicity regulator of Ralstonia solanacearum reveals 667 
new susceptibility genes in Arabidopsis thaliana. Mol. Plant Pathol. 23:321–338. 668 

Deng S, Caddell DF, Xu G, Dahlen L, Washington L, Yang J, Coleman-Derr D. 2021. Genome wide 669 
association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 670 
15:3181–3194. 671 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.26.509609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 
 

Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthomé R. 2021. Fight hard or die trying: when 672 
plants face pathogens under heat stress. New Phytol. 229:712–734. 673 

Donohue K. 2002. Germination timing influences natural selection on life-history characters in 674 
Arabidopsis thaliana. Ecology 83:1006. 675 

Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J. 2005. Niche construction 676 
through germination cueing: life-history responses to timing of germination in Arabidopsis thaliana. 677 
Evolution 59:771–785. 678 

Escudero-Martinez C, Bulgarelli D. 2019. Tracing the evolutionary routes of plant-microbiota 679 
interactions. Curr. Opin. Microbiol. 49:34–40. 680 

Escudero-Martinez C, Coulter M, Alegria Terrazas R, Foito A, Kapadia R, Pietrangelo L, Maver M, 681 
Sharma R, Aprile A, Morris J, et al. 2022. Identifying plant genes shaping microbiota composition in 682 
the barley rhizosphere. Nat. Commun. 13:3443. 683 

Fabiańska I, Pesch L, Koebke E, Gerlach N, Bucher M. 2020. Neighboring plants divergently modulate 684 
effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal 685 
microbiota. PLoS One 15:e0232633. 686 

Fariello MI, Boitard S, Mercier S, Robelin D, Faraut T, Arnould C, Recoquillay J, Bouchez O, Salin G, 687 
Dehais P, et al. 2017. Accounting for linkage disequilibrium in genome scans for selection without 688 
individual genotypes: The local score approach. Mol. Ecol. 26:3700–3714. 689 

Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. 690 
2020. The plant microbiome: From ecology to reductionism and beyond. Annu. Rev. Microbiol. 691 
74:81–100. 692 

Fonseca JP, Lakshmanan V, Boschiero C, Mysore KS. 2022. The pattern recognition receptor FLS2 can 693 
shape the Arabidopsis rhizosphere microbiome β-diversity but not EFR1 and CERK1. Plants 11:1323. 694 

Frachon L, Bartoli C, Carrère S, Bouchez O, Chaubet A, Gautier M, Roby D, Roux F. 2018. A Genomic 695 
Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale. Front. Plant Sci. 696 
9:967. 697 

Frachon L, Mayjonade B, Bartoli C, Hautekèete N-C, Roux F. 2019. Adaptation to Plant Communities 698 
across the Genome of Arabidopsis thaliana. Mol. Biol. Evol. 36:1442–1456. 699 

Gautier M. 2015. Genome-Wide Scan for Adaptive Divergence and Association with Population-700 
Specific Covariates. Genetics 201:1555–1579. 701 

Geremia RA, Pușcaș M, Zinger L, Bonneville J-M, Choler P. 2016. Contrasting microbial 702 
biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands. 703 
New Phytol. 209:1196–1207. 704 

Glick BR, Gamalero E. 2021. Recent developments in the study of plant microbiomes. Microorganisms 705 
9:1533. 706 

Gómez-Gómez L, Boller T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the 707 
bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:1003–1011. 708 

Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, 709 
Bergelson J. 2011. Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83–86. 710 

Hay A, Tsiantis M. 2016. Cardamine hirsuta: a comparative view. Curr. Opin. Genet. Dev. 39:1–7. 711 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.26.509609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 
 

He X, Zhang Q, Li B, Jin Y, Jiang L, Wu R. 2021. Network mapping of root-microbe interactions in 712 
Arabidopsis thaliana. NPJ Biofilms Microbiomes 7:72. 713 

Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, Vetter MM, 714 
Vilhjálmsson BJ, Nordborg M, Gordon JI, et al. 2014. Genome-wide association study of Arabidopsis 715 
thaliana leaf microbial community. Nat. Commun. 5:5320. 716 

Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, Qu B, Goossens A, Nützmann H-W, Bai Y, Osbourn A. 717 
2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 718 
364:eaau6389. 719 

Hubbard CJ, Brock MT, van Diepen LT, Maignien L, Ewers BE, Weinig C. 2018. The plant circadian 720 
clock influences rhizosphere community structure and function. ISME J. 12:400–410. 721 

Humphrey PT, Whiteman NK. 2020. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. 722 
Evol. 4:221–229. 723 

Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. 2017. The role of soil microorganisms in 724 
plant mineral nutrition-current knowledge and future directions. Front. Plant Sci. 8:1617. 725 

Karasov TL, Almario J, Friedemann C, Ding W, Giolai M, Heavens D, Kersten S, Lundberg DS, 726 
Neumann M, Regalado J, et al. 2018. Arabidopsis thaliana and Pseudomonas Pathogens Exhibit Stable 727 
Associations over Evolutionary Timescales. Cell Host Microbe 24:168-179.e4. 728 

Karasov TL, Kniskern JM, Gao L, DeYoung BJ, Ding J, Dubiella U, Lastra RO, Nallu S, Roux F, Innes 729 
RW, et al. 2014. The long-term maintenance of a resistance polymorphism through diffuse 730 
interactions. Nature 512:436–440. 731 

Keating BA, Carberry PS, Bindraban PS, Asseng S, Meinke H, Dixon J. 2010. Eco-efficient agriculture: 732 
Concepts, challenges, and opportunities. Crop Sci. 50:S-109-S-119. 733 

Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, Juenger TE, Hyma K, Acharya 734 
C, Mitchell SE, et al. 2015. Genome-environment associations in sorghum landraces predict adaptive 735 
traits. Sci Adv 1:e1400218. 736 

Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del 737 
Rio T, Jones CD, Tringe SG, et al. 2015. PLANT MICROBIOME. Salicylic acid modulates 738 
colonization of the root microbiome by specific bacterial taxa. Science 349:860–864. 739 

Li F, Zhang X, Gong J, Liu L, Yi Y. 2018. Specialized core bacteria associate with plants adapted to 740 
adverse environment with high calcium contents. PLoS One 13:e0194080. 741 

Libourel C, Baron E, Lenglet J, Amsellem L, Roby D, Roux F. 2021. The genomic architecture of 742 
competitive response of Arabidopsis thaliana is highly flexible among plurispecific neighborhoods. 743 
Front. Plant Sci. 12:741122. 744 

López-Hernández F, Cortés AJ. 2019. Last-generation genome-environment associations reveal the 745 
genetic basis of heat tolerance in common bean (Phaseolus vulgaris L.). Front. Genet. 10:954. 746 

Ma K-W, Niu Y, Jia Y, Ordon J, Copeland C, Emonet A, Geldner N, Guan R, Stolze SC, Nakagami H, 747 
et al. 2021. Coordination of microbe-host homeostasis by crosstalk with plant innate immunity. Nat. 748 
Plants 7:814–825. 749 

Makiola A, Holdaway RJ, Wood JR, Orwin KH, Glare TR, Dickie IA. 2022. Environmental and plant 750 
community drivers of plant pathogen composition and richness. New Phytol. 233:496–504. 751 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.26.509609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 
 

Meyer KM, Porch R, Muscettola IE, Vasconcelos ALS, Sherman JK, Metcalf CJE, Lindow SE, Koskella 752 
B. 2022. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere 753 
microbiome. ISME J. [Internet]. Available from: http://dx.doi.org/10.1038/s41396-021-01184-6 754 

Mittelstrass J, Sperone FG, Horton MW. 2021. Using transects to disentangle the environmental drivers 755 
of plant-microbiome assembly. Plant Cell Environ. 44:3515–3525. 756 

Mitter B, Brader G, Pfaffenbichler N, Sessitsch A. 2019. Next generation microbiome applications for 757 
crop production - limitations and the need of knowledge-based solutions. Curr. Opin. Microbiol. 758 
49:59–65. 759 

Müller DB, Vogel C, Bai Y, Vorholt JA. 2016. The Plant Microbiota: Systems-Level Insights and 760 
Perspectives. Annual Review of Genetics [Internet] 50:211–234. Available from: 761 
http://dx.doi.org/10.1146/annurev-genet-120215-034952 762 

Neal AL, Glendining MJ. 2019. Calcium exerts a strong influence upon phosphohydrolase gene 763 
abundance and phylogenetic diversity in soil. Soil Biol. Biochem. 139:107613. 764 

Oyserman BO, Cordovez V, Flores SS, Leite MFA, Nijveen H, Medema MH, Raaijmakers JM. 2020. 765 
Extracting the GEMs: Genotype, environment, and microbiome interactions shaping host phenotypes. 766 
Front. Microbiol. 11:574053. 767 

Oyserman BO, Flores SS, Griffioen T, Pan X, van der Wijk E, Pronk L, Lokhorst W, Nurfikari A, 768 
Paulson JN, Movassagh M, et al. 2022. Disentangling the genetic basis of rhizosphere microbiome 769 
assembly in tomato. Nat. Commun. 13:3228. 770 

Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R, Magarey R, Suiter K, Gilbert GS. 2015. 771 
Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520:542–772 
544. 773 

Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. 2014. 774 
Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–375. 775 

Pluess AR, Frank A, Heiri C, Lalagüe H, Vendramin GG, Oddou-Muratorio S. 2016. Genome-776 
environment association study suggests local adaptation to climate at the regional scale in Fagus 777 
sylvatica. New Phytol. 210:589–601. 778 

Ramirez-Sanchez D, Gibelin-Viala C, Mayjonade B, Duflos R, Belmonte E, Pailler V, Bartoli C, Carrere 779 
S, Vailleau F, Roux F, et al. 2022. Investigating genetic diversity within the most abundant and 780 
prevalent non-pathogenic leaf-associated bacteria interacting with Arabidopsis thaliana in natural 781 
habitats. bioRxiv [Internet]. Available from: http://dx.doi.org/10.1101/2022.07.05.498547 782 

Robertson-Albertyn S, Alegria Terrazas R, Balbirnie K, Blank M, Janiak A, Szarejko I, Chmielewska 783 
B, Karcz J, Morris J, Hedley PE, et al. 2017. Root hair mutations displace the barley rhizosphere 784 
Microbiota. Front. Plant Sci. 8:1094. 785 

Roman-Reyna V, Pinili D, Borja FN, Quibod IL, Groen SC, Alexandrov N, Mauleon R, Oliva R. 2020. 786 
Characterization of the leaf microbiome from whole-genome sequencing data of the 3000 rice 787 
genomes project. Rice (N. Y.) 13:72. 788 

Rosenberg E, Zilber-Rosenberg I. 2018. The hologenome concept of evolution after 10 years. 789 
Microbiome [Internet] 6. Available from: http://dx.doi.org/10.1186/s40168-018-0457-9 790 

Roux F, Bergelson J. 2016. The Genetics Underlying Natural Variation in the Biotic Interactions of 791 
Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology. 792 
Curr. Top. Dev. Biol. 119:111–156. 793 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.26.509609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 
 

Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, Dew TP, Suresh K, Franke 794 
RB, Dangl JL, et al. 2021. Coordination between microbiota and root endodermis supports plant 795 
mineral nutrient homeostasis. Science 371:eabd0695. 796 

Schlaeppi K, Dombrowski N, Oter RG, Ver Loren van Themaat E, Schulze-Lefert P. 2014. Quantitative 797 
divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc. Natl. Acad. Sci. U. 798 
S. A. 111:585–592. 799 

Stringlis IA, Pieterse CMJ. 2021. Evolutionary “hide and seek” between bacterial flagellin and the plant 800 
immune system. Cell Host Microbe 29:548–550. 801 

Stringlis IA, Proietti S, Hickman R, Van Verk MC, Zamioudis C, Pieterse CMJ. 2018. Root 802 
transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal 803 
signatures of adaptation to mutualists. Plant J. 93:166–180. 804 

Tang J, Tang X, Qin Y, He Q, Yi Y, Ji Z. 2019. Karst rocky desertification progress: Soil calcium as a 805 
possible driving force. Sci. Total Environ. 649:1250–1259. 806 

Thiergart T, Durán P, Ellis T, Vannier N, Garrido-Oter R, Kemen E, Roux F, Alonso-Blanco C, Ågren 807 
J, Schulze-Lefert P, et al. 2020. Root microbiota assembly and adaptive differentiation among 808 
European Arabidopsis populations. Nat. Ecol. Evol. 4:122–131. 809 

Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, 810 
Onoda Y, et al. 2018. Publisher Correction: Core microbiomes for sustainable agroecosystems. Nat. 811 
Plants 4:733. 812 

Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant-microbiome interactions: from community 813 
assembly to plant health. Nat. Rev. Microbiol. 18:607–621. 814 

VanWallendael A, Benucci GMN, da Costa PB, Fraser L, Sreedasyam A, Fritschi F, Juenger TE, Lovell 815 
JT, Bonito G, Lowry DB. 2022. Host genotype controls ecological change in the leaf fungal 816 
microbiome. PLoS Biol. 20:e3001681. 817 

Wagner MR. 2021. Prioritizing host phenotype to understand microbiome heritability in plants. New 818 
Phytol. 232:502–509. 819 

Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W, González-Peña A, Peiffer J, Koren 820 
O, Shi Q, et al. 2018. Large-scale replicated field study of maize rhizosphere identifies heritable 821 
microbes. Proc. Natl. Acad. Sci. U. S. A. 115:7368–7373. 822 

Wang X, Feng H, Wang Y, Wang M, Xie X, Chang H, Wang L, Qu J, Sun K, He W, et al. 2020. 823 
Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. 824 
Mol. Plant [Internet]. Available from: http://dx.doi.org/10.1016/j.molp.2020.12.002 825 

Worrich A, Musat N, Harms H. 2019. Associational effects in the microbial neighborhood. ISME J. 826 
13:2143–2149. 827 

Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, et al. 2019. NRT1.1B 828 
is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 829 
37:676–684. 830 

Zhu Y-G, Xiong C, Wei Z, Chen Q-L, Ma B, Zhou S-Y-D, Tan J, Zhang L-M, Cui H-L, Duan G-L. 831 
2022. Impacts of global change on the phyllosphere microbiome. New Phytol. 234:1977–1986.832 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.26.509609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 
 

Figure legends 

Figure 1. The genetic architecture of microbiota/pathobiota. (A) Manhattan plots illustrating the power 

of a BMH-LS to describe the genetic architecture of microbiota/pathobiota diversity, 

microbiota/pathobiota composition and the presence/absence of a particular OTU. The x-axis indicates 

along the five chromosomes, the physical position of the 1,470,777 SNPs considered for the leaf 

compartment in the ‘spring (November)’ seasonal group. The y-axis corresponds to the values of the 

Lindley process (local score method with a tuning parameter ξ = 2). The dashed lines indicate the 

minimum and maximum of the five chromosome-wide significance thresholds. (B) Jitter plots 

illustrating the diversity in the number of QTLs among microbiota/pathobiota traits within each ‘plant 

compartment × seasonal group’ combination. 

 

Figure 2. Microbiota/pathobiota-ecology interactions at the genetic level. (A) Percentage of top SNPs 

associated with microbiota/pathobiota traits that are common to top SNPs associated with ecological 

variables (including climate variables, soil physico-chemical properties and descriptors of plant 

communities) for each ‘plant compartment × seasonal group’ combination. (B) Percentage of 

microbiota/pathobiota traits (n = 194) sharing QTLs with each ecological factor among the six ‘plant 

compartment × seasonal group’ combinations. Climate variables, soil physico-chemical properties and 

descriptors of plant communities are represented in red, blue and green, respectively. The dashed black 

line corresponds to the threshold of 19 microbiota/pathobiota traits, i.e. ~10% of the total number of 

microbiota/pathobiota traits. 

 

Figure 3. Zoom spanning four QTL regions common between microbiota/pathobiota traits and 

ecological variables. (A) Overlapping QTLs between the presence/absence of OTU6 in the root 

compartment in fall and the presence/absence of the plant species Cardamine hirsuta. (B) Overlapping 

QTLs between pathobiota composition in the leaf compartment in fall and plant community richness. 

Black and colored dots correspond to Lindley values for microbiota/pathobiota traits and ecological 

variables, respectively. The black and colored dashed lines indicate the corresponding chromosome-

wide significance threshold for microbiota/pathobiota traits and ecological variables, respectively. (C) 

Overlapping QTLs between the presence/absence of OTU3 in the leaf compartment in fall and fall 

precipitations (mean value over the 2003-2013 period). (D) Overlapping QTLs between microbiota 

composition in the leaf compartment for the ‘spring (November)’ seasonal group and soil calcium 

concentrations.  

 

Figure 4. Relative importance of host genetics and environment in explaining variation of 

microbiota/pathobiota traits. (A) Cumulative percentage of variance explained (PVE) of 

microbiota/pathobiota traits by the demographic history of A. thaliana, host genetics with QTLs specific 
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to microbiota/pathobiota traits and ecology (including climate variables, soil physico-chemical 

properties and descriptors of plant communities). Residuals correspond to the percentage of variance 

unexplained by the three other categories of variables. For each category, one dot correspond to one of 

the 194 microbiota/pathobiota traits. (B) Box-plot illustrating the relationship between the standardized 

allele frequencies (corrected for the effect of population structure) of a SNP located at position 

19,335,417 on chromosome 2 and the presence of OTU4 in the root compartment in fall. (C) 

Relationship between the standardized allele frequencies (corrected for the effect of population 

structure) of a SNP located at position 12,691,514 on chromosome 1 and Shannon index of the 

microbiota in the leaf compartment of the ‘spring (November)’ seasonal group. (D) Relationship 

between the standardized allele frequencies of a SNP located at position 5,191,015 on chromosome 5 

and pathobiota composition in the leaf compartment in fall. (E) Relative importance of PVE by 

demographic history, host genetics, ecology and residuals, among OTUs at the order, family and genus 

level. * P < 0.05, ** P < 0.001, *** P < 0.001. Red asterisks indicate significant p-values after correcting 

for multiple testing with a false discovery rate (FDR) at a nominal level of 5%. 

 

Figure 5. Flexibility of the genetic architecture between the six ‘plant compartment × seasonal group’ 

combinations. (A) An UpSet plot showing the intersections of the lists of unique candidate genes 

associated with microbiota/pathobiota variation, each list corresponding to each ‘plant compartment × 

seasonal group’ combination. The number of candidate genes that are specific to a single ‘plant 

compartment × seasonal group’ combination and common between at least two ‘plant compartment × 

seasonal group’ combinations, are represented by single blue dots and dots connected by a solid line, 

respectively. ‘fall – leaf’: number of unique candidate genes N = 1918, ‘fall – root’: N = 1052, ‘spring 

(November) – leaf’: N = 1885, ‘spring (November) – root’: N = 1156, ‘spring (December) – leaf’: N = 

1457, ‘spring (December) – root’: N = 705. (B) Manhattan plot illustrating the flexibility of genetic 

architecture associated with the presence/absence of the OTU5 in the root compartment between fall 

and spring. The x-axis indicates along the five chromosomes, the physical position of the 1,392,959 

SNPs and 1,382,414 SNPs considered for the root compartment in the ‘fall’ and ‘spring (November)’ 

seasonal groups, respectively. The y-axis correspond to the values of the Lindley process (local score 

method with a tuning parameter ξ = 2). The dashed lines indicate the minimum and maximum of the 

five chromosome-wide significance thresholds. 

 

Figure 6. Signatures of local adaptation acting on the genetics of microbiota/pathobiota variation. (A) 

Fold enrichment of the top SNPs in the 0.5% tail of the genome-wide spatial differentiation (XtX) 

distribution. Each dot corresponds to one of the 194 microbiota/pathobiota descriptors. Different upper 

letters indicate different groups according to the ‘plant compartment × seasonal group’ combination 

after a Tukey correction for multiple pairwise comparisons. (B) Manhattan plot highlighting a QTL 

associated with root microbiota composition, located in the middle of chromosome 3 and presenting a 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.26.509609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

26 
 

strong signature of local adaptation. The x-axis indicates along the five chromosomes, the physical 

position of the 1,382,414 SNPs considered for the root compartment in the ‘spring (November)’ seasonal 

group. The y-axis correspond to the values of the Lindley process (local score method with a tuning 

parameter ξ = 2). The dashed lines indicate the minimum and maximum of the five chromosome-wide 

significance thresholds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Number of bacterial community descriptors investigated with GEA analysis for each of the six 

‘plant compartment × seasonal group’ combination. Numbers in brackets for the leaf and root 

compartment correspond to the number of populations. For community composition, only PCoA axes 

exhibiting significant variation among populations were considered in this study. 

 

Category Community descriptors leaf (n = 73) root (n = 73) leaf (n = 69) root (n = 72) leaf (n = 66) root (n = 66)

microbiota richness 1 1 1 1 1 1

Shannon index 1 1 1 1 1 1

composition (PCoA axis) 2 2 2 2 2 2

presence/absence OTUs 33 15 31 21 33 131

pathobiota richness 1 1 1 1 1 1

Shannon index 1 1 1 1 1 1

composition (PCoA axis) 2 1 2 1 2 1

presence/absence OTUs 1 0 1 0 1 0

fall spring (November) spring (December)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.26.509609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 
 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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