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Abstract 9 

Dorso-lateral prefrontal cortex (dlPFC) in primates plays a key role in the acquisition and 10 
execution of flexible, goal-directed behaviors. Recordings in monkey dlPFC have revealed 11 
possible neural correlates of the underlying cognitive processes like attention, planning, or 12 
decision-making, both at the single-neuron and population levels. Integrating these 13 
observations into a coherent picture of dlPFC function is challenging, as these studies typically 14 
focused on neural activity in relation to a few, specific events within a single, fully learned 15 
behavioral task. Here we obtain a more comprehensive description of dlPFC activity from a large 16 
dataset of population recordings in monkeys across a variety of behavioral contexts. We 17 
characterized neural activity in relation to saccades that monkeys made freely, or at different 18 
stages of training in multiple tasks involving instructed saccades, perceptual discriminations, 19 
and reward-based decisions. Across all contexts, we observed reliable and strong modulations 20 
of neural activity in relation to a retrospective representation of the most recent saccadic 21 
movement. Prospective, planning-like activity was instead limited to task-related, delayed 22 
saccades that were directly eligible for a reward. The link between prospective and retrospective 23 
representations was highly structured, potentially reflecting a hard-wired feature of saccade 24 
responses in these areas. Only prospective representations were modulated by the recent 25 
behavioral history, but neither representations were modulated by learning occurring over days, 26 
despite obvious concurrent behavioral changes. Dorso-lateral PFC thus combines tightly linked 27 
flexible and rigid representations, with a dominant contribution from retrospective signals 28 
maintaining the memory of past actions. 29 

Introduction 30 

Dorso-lateral prefrontal cortex (dlPFC) in primates is thought to play a key role in goal-31 
directed behavior by flexibly maintaining and integrating signals required to select 32 
contextually-relevant actions, through processes like working memory, attention, and the 33 
context-dependent accumulation of sensory evidence1–7. This view of dlPFC function has 34 
been shaped in particular by studies in primates engaged in saccade-based tasks, many of 35 
which focused on characterizing responses preceding an action8–10. A large literature on pre-36 
saccadic responses revealed neural dynamics that is strongly context-dependent9,11, can 37 
support abstract representations7,12–16, and reflects representations of task variables that are 38 
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randomly mixed at the level of single neurons7,17, consistent with a primary role of dlPFC in 39 
the prospective control of flexible decisions.  40 

Prominent task-related activity, however, has often been reported also during11 and 41 
following saccades8,11,18–28. One widely reported signal is post-saccadic activity, which in 42 
several areas of dlPFC is intermingled with pre-saccadic and movement related 43 
activity8,11,18,19. The proposed functions of post-saccadic activity mostly differ from those of 44 
pre-saccadic activity, and include the retrospective monitoring of behavioral context20,21,27,29, 45 
terminating cognitive processes that select contextually-relevant actions30, updating 46 
retinotopic maps to ensure visual stability19,26,31 or alternatively, the preparation for future 47 
actions11. Currently, a systematic comparison of the prevalence and properties of pre- and 48 
post-saccadic activity across contexts, stages of learning, and neurons is lacking, and 49 
consequently the primary function of dlPFC remains a matter of debate.  50 

Here, we compared neural population recordings obtained with chronically implanted 51 
electrode arrays in dlPFC of macaques32,33 across a variety of behavioral contexts. Such array 52 
recordings arguably provide a more unbiased view onto the signals represented by a neural 53 
population compared to past single-neuron recordings. Monkeys were engaged in several 54 
classic, saccade-based, motor and decision-making tasks, which however differed in a 55 
critical aspect from past studies9,11. Operant saccades were not only preceded, but also 56 
followed, by a delay period that was randomized from trial-to-trial20, simplifying a direct 57 
comparison between the prevalence and properties of pre-saccadic and post-saccadic 58 
representations. To establish the role of behavioral context on the inferred dlPFC 59 
representations, we compared neural population responses across tasks, across different 60 
stages of learning, and between trained and freely chosen saccades. 61 

We find that dlPFC can represent saccade direction from the time of planning, through 62 
movement, until the resulting outcome and beyond. Notably, the dominant signal across 63 
tasks, saccade types, and learning is post-saccadic activity, suggesting a key role of dlPFC in 64 
retrospective computations. Our findings are organized in three sections. First, we show 65 
that post-saccadic activity overall is stronger than, and distinct from, pre-saccadic activity 66 
(Fig. 1-4). Like pre-saccadic activity, post-saccadic activity is persistent and inherently tuned 67 
to the direction of the saccade, but it represents the past rather than the future 68 
action8,11,18,19,21–28. Unlike pre-saccadic activity, post-saccadic activity appears to occur in 69 
relation to every saccade, albeit with some modulation due to the behavioral context. 70 
Second, we show that some components of the identified saccadic representations have 71 
tightly linked pre- and post-saccadic dynamics at the single neuron and population level 72 
(Fig. 5-6), consistent with a “hard-wired” feature of the underlying circuits. Third, we study 73 
how the representations of saccade direction are shaped by learning on short34 74 
(consecutive trials) and long time-scales35 (days and months) in an associative-learning 75 
task24,34(Fig. 7-8). Only pre-saccadic representations are influenced by recent trial history, 76 
and both pre- and post-saccadic representations show little or no modulation on the longer 77 
time-scales associated with large changes in behavior. Overall, these findings imply that 78 
rigid, structured representations are a key component of dlPFC computations, with a 79 
dominant contribution from post-saccadic signals maintaining the memory of past actions. 80 
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Results 81 

Behavioral task and neural recordings (Fig. 1) 82 

We first consider recordings from three monkeys that were engaged in a visually-guided, 83 
instructed-saccade task, requiring them to perform a sequence of saccades and fixations on 84 
each trial to obtain a reward (Fig. 1a). We analyzed neural activity and eye movements for 85 
all trial epochs (Fig. 1a) and different types of saccades, i.e. the instructed and freely initiated 86 
saccades occurring before, during, and after each trial (Fig. 1b). We refer to the initial 87 
saccade to the fixation point as the “start saccade”, the saccade to the target as the 88 
“rewarded saccade”, and the first saccade away from the target after reward delivery as the 89 
“end saccade”. Figure 1c shows the distribution of saccade directions for the different 90 
saccade types pooled over all experiments and radii (Monkey T). The start saccade is 91 
followed by the “central-fixation”, i.e. the initial fixation on the fixation point lasting for a 92 
randomized interval (1.3-2s) and preceding the “rewarded saccade”. Crucially, the rewarded 93 
saccade is followed by the “target-fixation” lasting for a randomized interval (0.8-1.5s), i.e. 94 
the fixation on the target until it disappears (Suppl. Fig. 1b). The inclusion of this prolonged 95 
target-fixation is a key difference from instructed-saccade tasks used in past studies8,11,18,19,36–96 
39 and greatly simplifies the interpretation of post-saccadic neural activity. 97 

Neural activity was recorded with 96-channel Utah-arrays implanted in pre-arcuate cortex, 98 
a region of dorso-lateral PFC close to, and possibly including, the most rostral part of the 99 
frontal eye fields40 (Supp. Fig. 1a). Monkey T and V had the array placed in the concavity of 100 

Figure 1 Instructed-saccade task and behavior. a. Subjects performed a visually-guided, delayed-saccade task. A trial was 
initiated by a saccade to the fixation point after which monkeys were required to maintain fixation (“central-fixation”). After a 
randomized delay a saccade target was presented in the periphery (in total 33 unique positions per experiment for monkey T 
and 24 for monkey V and C, Supp. Fig. 1c). Here we show 36 unique positions, pooled across all experiments of monkey T and 
highlight a direction (3 positions) that was not presented in a particular experiment. See Methods for a full description of how 
targets were shown in each experiment. When the fixation point disappeared (a second randomized delay), monkeys were  
required to execute a saccade to the target. After the saccade, monkeys were again required to maintain fixation, this time on 
the target, for the duration of a final random interval (“target-fixation”). b. Top: Eye-trajectories for three types of saccades: 
start saccades (to the fixation point) that initiate the trial; rewarded saccades (to the visual target); and end saccades (from 
the visual target) with no task constraints. Eye trajectories are sorted by saccade direction. The direction of start and end 
saccades is discretized into classes that match the experimentally-set directions of the rewarded-saccade in the corresponding 
session. c. Distribution of saccade-direction for the three different saccade types pooled over all sessions and radii. In approx. 
45% of trials, the monkey was already at fixation point when the new trial started, thus there are fewer start saccades than end 
saccades. Moreover, we only analyze start and end saccades with amplitudes similar to the experimentally-set amplitudes of 
the rewarded saccade, i.e. between 4 and 16 deg. 
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the arcuate sulcus in the left hemisphere, while monkey C had it placed in the right 101 
hemisphere, above the principal sulcus33. We show results from monkey T and monkey V in  102 
the main text. We show results from monkey C in the supplementary figures to highlight 103 
similarities and differences from the other monkeys, which may be due to a different array 104 
placement. During the duration of an experiment, monkeys were head-fixed.  105 

Tuned post-saccadic activity follows every saccade (Fig. 2) 106 

We begin our analysis by quantifying the representation of saccade direction in single-trial 107 
population responses using cross-validated multi-class decoders41–46 (Fig. 2). We decoded 108 
the direction of the rewarded saccade from population spike counts at particular times 109 
relative to the target onset, the saccade onset and reward delivery.  110 

Cross-validated decoding accuracy varies over time—it rises after the target is presented 111 
(Fig. 2a, left), peaks after the end of the saccade, persists throughout the target-fixation, and 112 
is still high at and after reward delivery (up to 2s after saccade onset). Decoding accuracy 113 
late during central-fixation and target-fixation is comparable (Fig. 2a, right; Suppl. Fig. 3b, g 114 
other monkeys; Suppl. Fig. 2e other decoders). Throughout the central-fixation period, the 115 
execution of the rewarded-saccade, and the target-fixation period, decoding errors almost 116 
exclusively reflect read-out directions that are immediately adjacent to the true direction 117 
(Suppl. Fig. 2a top row). Decoding accuracy remains high well beyond the time of the 118 
saccade, an observation unlikely to be accounted for by transient inputs from motor or 119 
sensory areas. Like pre-saccadic activity, post-saccadic activity may thus be a form of 120 
persistent, internally generated activity8,11,39. 121 

Saccade direction can be robustly read out from the population also after the start and end 122 
saccades (Fig. 2b, duration of start saccade = 30+-30ms; duration of end saccade = 140+-123 
80ms; Suppl. Fig. 2a, bottom row, and 2b for a finer comparison; Suppl. Fig. 3c, h other 124 

Figure 2 Tuned post-saccadic activity follows every saccade. a. Time-specific decoding of the direction of the rewarded 
saccade at times aligned to target onset, saccade onset and reward. At each time (horizontal axis), a separate multi-class 
decoder (Linear Discriminant decoder) is trained to predict the direction of the rewarded saccade based on the population 
response. The vertical axis shows 10-fold cross-validated decoding performance. Decoders are trained and tested on 11 classes 
(all directions of rewarded-saccades during one session) meaning that chance performance is 9%. The lower panel displays the 
averaged eye velocity, showing stable fixation prior and post-saccade execution. The blue line indicates decoding accuracy of a 
single decoder, trained at 500ms post-saccade, and evaluated at many times post-reward. Post-reward there are no constraints 
on the monkeys' eye-movements, so here we only show trials where monkeys happen to fixate for longer intervals prior to the 
next trial. b. Cross-validated decoding accuracy when applying the decoders identified for the rewarded saccade (a.) to 
responses aligned to the start (left panel) and end (right panel) saccade. Decoding accuracies are averaged across all sessions 
and error bars indicate s.e.m. across sessions (n=9). 
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monkeys). Critically, Figure 2b shows the accuracy of decoders that were trained only on 125 
activity around the rewarded saccade, meaning that the same decoders have high accuracy 126 
for all three saccades and implying that the population encoding of saccadic activity is 127 
largely preserved across different types of saccades. This finding is consistent with 128 
representations of saccades in retinotopic coordinates (see also below, Fig. 3d).  129 

Neural population activity in pre-arcuate cortex thus appears to encode the direction of a 130 
saccade from long before it occurs (for the rewarded-saccade) to long after it was 131 
completed (for all saccade types). However, the interpretation of post-saccadic activity as a 132 
representation of the direction of the immediately preceding saccade is complicated by a 133 
feature of the task we analyzed, which is common to many similar tasks. Specifically, the 134 
direction of the rewarded saccade is both highly correlated with the direction of the saccade 135 
that follows it (the end saccade, which often brings gaze back to the fixation point; Fig. 3a, 136 
left panel: monkey T; Suppl. Fig 3a, f middle panel: monkeys V and C) and perfectly 137 
correlated with the location of the post-saccadic fixation, i.e. the target location. Unless 138 
these correlations are accounted for, it remains unclear whether post-saccadic activity is 139 
best explained as representing the direction of the previous saccade, the direction of the 140 
next saccade, or the location of the post-saccadic fixation.  141 

Interestingly, recordings in monkey C reveal strong post-saccadic activity but little pre-142 
saccadic activity (Suppl. Fig. 3g, h; from a more anterior location in dlPFC than in monkeys 143 
T and V), suggesting that pre- and post-saccadic activity amount to fundamentally distinct 144 
signals. Below we reach the same conclusion by analyzing datasets tailored to disambiguate 145 
between different possible explanations of post-saccadic representations in monkey T and 146 
V, for which both pre- and post-saccadic activity occur in the recordings (Fig. 3).  147 

Post-saccadic activity is not pre-saccadic activity for the next saccade (Fig. 3a-c) 148 

Two observations indicate that post-saccadic activity is unlikely to represent a plan of the 149 
next saccade. First, Figure 2b implies that the end saccade (unlike the rewarded saccade, 150 
Fig. 2a) is preceded by only very weak predictive activity, which occurs immediately prior to 151 
its execution. Second, we studied if predictive activity for the end saccade contributes to 152 
the strong post-saccadic activity immediately following the rewarded saccade. To this end, 153 
we applied a pre-saccadic decoder (defined 150 to 50ms before the rewarded saccade) to 154 
activity following the rewarded saccade, and assessed whether the decoder-read out is 155 
predictive of the direction of the end saccade. 156 

Notably, we take several steps to ensure that the decoder read-out does not simply reflect 157 
the correlations between the directions of the rewarded and end saccades. For one, we 158 
evaluated the accuracy of the read-outs separately for single directions of the rewarded 159 
saccade (rewarded saccades to three contralateral directions are followed by end saccades 160 
in many directions and thus suited to test the decoder; Fig. 3a, dashed rectangle). For 161 
another, we created a balanced test set by sampling an equal number of trials from each 162 
end-saccade direction (Fig. 3a, bottom-right).  163 

With this unbiased approach, we find that through-out much of the target-fixation period 164 
a pre-saccadic decoder (blue vertical line, Fig. 3b) cannot be used to predict the direction of 165 
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the end saccade (solid lines in Fig. 3b, close to chance; colors correspond to the three 166 
rewarded saccade directions in the balanced dataset). During the same period, on the other 167 
hand, time-specific decoders (from Fig. 2a) do predict the direction of the preceding 168 
rewarded saccade well-above chance (dashed lines in Fig. 3b, and Fig. 2a).  169 

We obtained similar results in both monkey T and V (Fig. 3c). Immediately before the onset 170 
of the end saccade, predictive activity for the direction of the upcoming end saccade (Fig. 171 
3c, horizontal axis, squares) was weak compared to the representation of the direction of 172 
the preceding rewarded saccade (Fig. 3c, horizontal axis, crosses). Together, the above 173 

Figure 3 Nature of representations. a-c Modulations of post-saccadic activity due to future actions. Each panel shows 
histogram of consecutive saccades, expressed as the distribution of directions for the end saccade (columns) conditioned on 
the direction of the rewarded saccade (rows). For each row, the sum of columns equals 1. Different settings are shown. Left 
panel: synthetic data for an unbalanced set where all end saccades are directed to the fixation point. Right panel: behavior 
of monkey T. Bottom panel: a balanced dataset obtained by resampling trials with rewarded saccades towards 0°, 30°, and 
60° to obtain a uniform representation of end saccade directions. b. We apply a decoder trained on responses prior to 
rewarded saccade (blue area) to activity after the rewarded saccade separately for the three conditions in the balanced 
dataset. The resulting read-out is not predictive of the direction of the end saccade (bottom three curves). In contrast, on the 
same set of trials, the direction of the rewarded saccade can be decoded with high accuracy when using the time-specific 
decoders from Fig. 2a (top three curves). c. Summary plot. The pre-saccadic activity of the end saccade is much weaker both 
compared to the post-saccadic activity of the rewarded saccade prior to reward (compare squares and crosses along the 
horizontal axis) and to the pre-saccadic activity of the rewarded saccade (squares are above the unit line). (n=9)  

d-e Non-retinotopic modulations of saccade-related activity. d. Recordings from a random-dots task that included trials 
from two “shifted” workspace, whereby the location of the fixation point in a given workspace was shifted either along the 
horizontal midline (cold colormap) or along the vertical line (warm colormap). For both horizontal and vertical shifts in 
workspace, SVM decoders of choice-direction achieve comparable, high performance for all gaze locations, including 
locations corresponding to the end point of saccades with opposite directions (horizontal shift: light-blue curves vs. other cold 
colors; vertical shift: orange curves vs. other warm colors). Monkey V has sessions only from the horizontal “shifted“ 
workspace. e. Summary plot of saccade and gaze modulation at single-unit level. We modeled the activity of each unit with 
a regression model including linear and non-linear terms for direction and gaze. Saccade direction modulates a larger portion 
of variance compared to gaze. (n=4, 2 per each shift). Across all panels, error bars indicate s.e.m. across sessions. 
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observations imply that post-saccadic activity, consistently in all monkeys, does not 174 
represent the plan of a future action.  175 

Post-saccadic activity does not encode the momentary gaze location (Fig. 3d) 176 

Two observations indicate that momentary gaze location43–45,47–52 is also unlikely to be the 177 
main contributor to post-saccadic activity. A first indication is given by the finding that post-178 
saccadic decoders trained on the rewarded saccade can also decode the directions of the 179 
start and end saccades (Fig. 2b, times following saccade onset). Unlike for the rewarded 180 
saccade, for these saccades, the correlation between saccade direction and post-saccadic 181 
gaze location is reduced or absent. All start saccades, in particular, end on the central 182 
fixation point, meaning that the post-saccadic gaze location is identical across all trials. Yet, 183 
the direction of the preceding saccade can be decoded with high performance also 184 
following start saccades (Fig. 2b, left).  185 

We find further evidence that post-saccadic does not primarily represent gaze location in a 186 
separate behavioral task, for which we partially decoupled the direction of the rewarded 187 
saccade and post-saccadic gaze-location. Each experiment included trials from two 188 
“shifted” workspaces, whereby the location of the fixation point in a given workspace was 189 
shifted either to the left or right from the horizontal midline, or above or below the 190 
horizontal midline (Fig. 3d). As a result, one of the choice targets in this task (Fig. 3d, light-191 
blue and orange target) was reached with saccades having very different metrics across 192 
workspaces.  193 

Even when post-saccadic gaze location is controlled in this way, the direction of the 194 
rewarded saccade can be decoded with high accuracy throughout the central-fixation, 195 
movement, and target-fixation periods (right panel in Fig. 3d for monkey T and V). In 196 
particular, decoding accuracy is high even on trials that all shared the same post-saccadic 197 
gaze location (Fig. 3d, light-blue and orange) and similar to the accuracy on trials where 198 
direction and gaze-location covaried (Fig. 3d, other colors). This observation alone implies 199 
the existence of a strong representation of saccade direction that is independent of any 200 
concurrent representation of gaze location. We further quantified the influence of saccade 201 
direction and gaze location at unit-level with a linear regression model, whereby each unit’s 202 
activity is captured as a combination of these two factors. Overall, the previous saccade 203 
direction explained a substantially larger fraction of the variance in activity than gaze 204 
location29 (Fig. 3e). 205 

The above findings also make it unlikely that post-saccadic activity represents a gaze-206 
dependent visual input. In fact, selectivity to visual inputs is unrelated to post-saccadic 207 
selectivity at the unit-level (Suppl. Fig. 7c). The most parsimonious interpretation of post-208 
saccadic activity is that it represents a retrospective signal, a short-term “memory” of the 209 
preceding saccade. The strength and time-course of this action memory appears to vary 210 
across saccades, as decoding accuracy differs between different types of saccades (Fig. 2a 211 
and 2b; Suppl. Fig. 3b, c and g, h). These differences may imply that post-saccadic activity is 212 
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modulated by contextual influences, like the temporally discounted reward-expectation53 213 
associated with each saccade.  214 

Prospective and retrospective representations have different task-selectivity (Fig. 4) 215 

We further studied context-dependent modulations by comparing the activity of the 216 
rewarded saccade across three tasks placing different demands on the activity bridging 217 
stimuli to actions and rewards (Fig. 4 for monkey T, Suppl. Fig. 4 for monkey V): instructed 218 
saccades (as Fig. 1, but with only 2 target locations), perceptual decisions (as in Fig. 3d, but 219 
for a single workspace) and reward-based decisions (discussed in detail in the last section 220 
of the results). The latter task required monkeys to track which of two colored targets was 221 
rewarded at a given time, meaning that choice on a given trial depended on the choice and 222 
outcome on the previous trial24,54–56. 223 

Figure 4 Different tasks, same patterns of activity. Decoding the direction of the rewarded-saccade across different tasks 
using a binary SVM decoder. a. Same-day recordings with common choice targets for reward-based decisions (green), 
perceptual decisions (purple) and instructed saccades (black). b. We decoded choice-direction using a binary SVM on a 
balanced set across the three tasks. The decoders achieve high accuracy, similarly across all tasks on responses aligned to 
saccade onset and feedback, but differentiate largely on responses aligned to the appearance of the relevant visual stimulus. 
Decoders are trained and tested on trials where behavior performance is matched across the three tasks (rewarded trials 
with high motion coherence in random-dots task and “post-win” trials in the associative task). c. We identify decoders for 
choice-direction for each task (task-specific decoders). Time-course of decoding accuracy is identical to the time-course of the 
common decoders in b. d. We apply task-specific decoders to activity at different times and different tasks. Specifically, we 
evaluate decoders specific to the instructed saccades from activity from through-out the trial, to perceptual decisions (middle 
panel) and reward-based decision (right panel). This analysis further reveals that task-specific decoders are, in fact, common 
across tasks. Specifically, middle and right panel resemble left panel, where training and testing are both on activity from 
instructed saccades. Decoding accuracies are averaged across sessions and error bars indicate s.e.m. across sessions (n=12). 
Analogous figure for monkey V (Suppl. Fig. 4). e. Summary decoding accuracy for both monkeys at 400ms post target/stimulus 
onset. Empty markers indicate averaged decoding accuracy when choice labels were shuffled. Decoding accuracies of choice 
exceed chance levels (50% or empty markers) both for across-task and for task-specific decoders. 
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We obtained recordings from all three tasks on the same day, whereby the location of the 224 
choice targets was fixed across tasks. We analyzed activity starting from the onset of the 225 
visual stimulus that guided the monkeys’ choices, i.e. the target onset in instructed saccades 226 
and reward-based decisions, and the onset of the random-dots in the perceptual decisions 227 
(Fig. 4b, Suppl. Fig. 4b). To study potential contextual modulations of the underlying 228 
representations, we estimated and compared choice-decoders that were common across 229 
tasks with decoders that were task-specific. 230 

Figure 5 Saccade-related activity in prefrontal units. a. Condition-averaged responses of individual units. Example responses 
for units with high goodness-of-fit (r-squared) before (a1), immediately after (a2) and long after the saccade (a3) are 
averaged and colored according to the direction of the rewarded-saccade (target eccentricity is ignored). Some units show 
substantial modulation both before and after the saccade (units #1 and #4). Black dashed line indicates event onset. Grey area 
in legend of “target dir.“  indicates the direction that was not present for this experiment.  b. Three example fits of the model of 
direction selectivity to condition-averaged responses with different selectivity levels: from left (highly selective - high r-squared) 
to right (not selective - r-squared = 0). Model fitting was done through cross-validation. c. Time-dependent (top row) and cross-
temporal (bottom row) selectivity for the rewarded saccade. Top row: Percentage of selective units (r-squared > 0) on responses 
aligned to target onset (left) and rewarded saccade onset (right). Bottom row: Colored curves show the percentage of units that 
are selective both at a reference time (circles on top, color indicates trial epoch - purple, black and green for post-target, pre-
saccade and post-saccade, respectively) and at other times in the trial (horizontal axis). For each curve, the lines connecting the 
corresponding reference time and the two immediately adjacent times (dashed) are mostly omitted. Percentage of selective 
units is normalized with respect to the percentage of selective units at the reference time, i.e. 70% indicates that 70 percent of 
the units that are selective at reference time ti  are also selective at a different time tj. Circles indicate significant cross-temporal 
selectivity. Chance level is computed for each time-pair by constructing a null distribution from 1000 permutation tests, where 
we shuffle the order of units at the two times and compute the overlapping percentage of selective units. Cross-temporal 
selectivity is considered significant if it exceeds the 95th percentile of this null distribution.  
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Early choice-predictive activity along common decoders was strongly modulated by task-231 
context (Fig. 4b, Suppl. Fig. 4b). Predictive activity developed quickly for instructed saccades 232 
(black), more slowly for reward-based decisions (green), and slowest for perceptual 233 
decisions (purple). We observed these differences even though here we only analyzed trials 234 
that were matched for average performance across tasks (e.g. only high-coherency motion 235 
trials in the perceptual decisions). In contrast to the strong task-dependency at trial onset, 236 
choice-related activity around and following saccade onset was not or only weakly 237 
modulated by task-context. 238 

These differences in decoding accuracy at trial onset are observed also when using task-239 
specific decoders (Fig. 4c, Suppl. Fig. 4c). The observed task-dependency thus reflects true 240 
differences in the strength of the corresponding pre-saccadic representations, as opposed 241 
to simply reflecting a “sub-optimal” decoder that captures patterns of activity that are 242 
common across tasks, but may not be optimal for some individual tasks. This conclusion is 243 
also supported by directly comparing the temporal dynamics of the task-specific 244 
decoders7,17,32,41,57–59 (Fig. 4d, Suppl. Fig. 4d). Specifically, we applied the decoders from one 245 
task, trained at any given time in the trial, to activity recorded at all times either in the same 246 
task (Fig. 4d left) or in a different task (Fig. 4d, middle and right). This analysis revealed that 247 
early choice related activity is largely explained by a single, stable component that is similar 248 
across tasks, but emerges later in the perceptual and reward-based decisions (Fig. 4d 249 
middle and right vs. left; compare to Supp. Fig. 4d). Later peri- and post-saccadic activity 250 
instead undergoes essentially identical dynamics in all tasks (Fig. 4d). Consistently in both 251 
monkeys (Fig. 4e), choice representations thus transition between the same patterns of 252 
activity in all tasks, albeit with somewhat different speeds (Fig. 4b). 253 

Prospective and retrospective signals are mixed in individual units (Fig. 5) 254 

Having established that dlPFC populations maintain prospective and retrospective 255 
representations of saccade direction, we asked how these representations are organized at 256 
the unit-level. In particular, prospective and retrospective signals could be maintained by 257 
separate populations of neurons, or could be mixed within a single population. To address 258 
this question, we focus on the instructed-saccade task shown in Fig. 1. An examination of 259 
example units shows substantial variability across the population in the temporal dynamics 260 
of saccade-modulated activity8,11,19,36–39,60 (Fig. 5a), with some units selective prior to saccade 261 
(units #2 and #5), after the saccade (units #7 and #9) or both before and after the saccade 262 
(units #1 and #4).  263 

To quantify the strength and dynamics of directional selectivity in individual units, at any 264 
given time in the trial we fitted a bell-shaped function to the activity averaged by target 265 
direction11, while ignoring target eccentricity (Fig. 5b). We considered a unit to be direction 266 
selective at a particular time if the cross-validated r-squared value of the corresponding fit 267 
was higher than 0, i.e. the model describes the direction-averaged responses better than a 268 
constant. For selective units, we then defined the preferred direction as the corresponding 269 
model parameter (the peak location of the fitted tuning curve).  270 
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We find that a substantial fraction of units encodes direction at any given time in the trial in 271 
all monkeys (Fig. 5c, top for monkey T and V, Supp. Fig. 7b for monkey C). The fraction of 272 
selective units varies throughout the trial, largely mimicking the time-course of the 273 
population-level decoders (Fig. 2; Supp. Fig. 3b, g for monkey V and C). To compare the 274 
strength of tuning in individual units across time, we defined a “cross-temporal selectivity” 275 
measure (Fig. 5c, bottom row), which quantifies the percentage of units that are direction 276 
selective at a given reference time (small circles on top and curve of the corresponding 277 
color) as well as at a different comparison time (horizontal axis).  278 

The cross-temporal selectivity is broadly consistent with mixed selectivity59. A substantial 279 
fraction of units that are selective after the saccade are also selective before the saccade or 280 
right after target onset (about 50% and 25% in monkeys T and V, Fig. 5c, green curves; circles 281 
indicate significant cross-temporal selectivity). Similarly, many units that are selective after 282 
the target onset or before the rewarded saccade are selective also long after the saccade 283 
(Fig. 5c, purple curves). 284 

Figure 6 The relation between pre and post-saccadic activity. a. Selectivity dynamics of units with cross-temporal tuning. 
Plot shows a histogram of angular difference between the pre-saccadic and post-saccadic preferred directions units that are 
selective at both times. We construct a null-distribution by shuffling the order of units and thus assuming no relation between a 
unit's preferred direction at pre and post-saccadic times. The shaded area marks the 5th and 95th percentile of this null-
distribution over 1000 random repetitions. The distribution of angular differences is binned in 30 degrees bins. At +50ms, the 
post-saccadic and pre-saccadic preferred directions tend to match (peak of distribution at 15° - [0: 30] degrees, “stable”), but at 
+150ms the preferred directions have mostly flipped (peak of distribution at 165° - [150: 180] degrees, “flip”). b. Time-dependent 
histograms of decoding errors of a pre-saccadic decoder (trained on responses from -150ms to -50ms prior to rewarded saccade, 
Linear Discriminant decoder)  when applied onto post-saccadic responses of the rewarded saccade (top), start saccade (middle) 
and end saccade (bottom). Each histogram (vertical axis) is normalized with a uniform distribution, where the uniform 
distribution is estimated by computing the angular difference between two random draws of N angular discrete values 
matching the target locations, 1000 times. The y-axis shows the empirical distribution divided by the mean of the estimated 
uniform distribution. Dashed black line indicates saccade onset. c. Summary plot illustrating the distribution of decoding errors 
of a pre-saccadic decoder applied to pre-saccadic responses (black line, responses from -150ms to -50ms prior to rewarded 
saccade) and post-saccadic responses (colored lines, responses from 250ms to 350ms post rewarded, start and end saccades). 
Decoding errors are shown only for saccades directed towards the contralateral hemifield, because of their strong pre-saccadic 
activity (Suppl. Fig. 2d for monkey T, Suppl. Fig 3b for monkey V). For each monkey, we use the decoder with the highest decoding 
accuracy for the direction of rewarded saccade (See Suppl. Fig. 2e for monkey T and Suppl. Fig. 3e for monkey V), but results were 
quantitively similar across other decoders. All figures contain results averaged over sessions. (n = 9 for monkey T and n = 10 for 
monkey V). Error bars indicate s.e.m. across sessions. 
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Signal mixing within units is not random (Fig. 6) 285 

The relation between prospective and retrospective representations in individual units is 286 
highly structured. In units showing both pre- and post-saccadic tuning (Supp. Fig. 7a), we 287 
computed the angular difference between the preferred direction estimated immediately 288 
before saccade onset (-100ms) and two times following the end of the saccade (+50ms and 289 
+150 after saccade onset). In monkeys T and V, more units than expected by chance show 290 
an angular difference close to 180 deg, implying that the preferred direction tends to “flip” 291 
between pre- and post-saccadic activity (Fig. 6a).  292 

The flip in preferred direction is also prominently reflected in the inferred population 293 
decoders. Applying a pre-saccadic decoder trained during the central-fixation to the activity 294 
in the post-saccadic epoch results in a pattern of read-out errors strongly biased towards 295 
the direction opposite to the true saccade direction (Fig. 6b, upper row, pre-saccadic 296 
decoder; decoding error = 180°). The bias is strongest shortly after completion of the 297 
rewarded saccade, but persists throughout even the longest target-fixations (Suppl. Fig. 2c).  298 

Similar read-out errors are observed when applying the same pre-saccadic decoder to the 299 
post-saccadic activity of both the start saccade and end saccade (Fig. 6b, middle and 300 
bottom rows). Crucially, the prominent regularities in the metrics of saccades that follow 301 
the rewarded saccade (Suppl. Fig. 6 for monkey T; end saccades tend to be opposite to the 302 
rewarded saccade; Suppl. Fig. 3a for monkey V) are largely absent for the start and end 303 
saccades (Suppl. Fig. 6, left and right) implying that the inferred structure between pre and 304 
post-saccadic selectivity is not simply a consequence of these regularities in the behavior.  305 

Overall, the relation of pre-saccadic and post-saccadic responses is far from random (Fig. 6c, 306 
summary for monkey T and V), but rather reveals a highly structured way for the neural 307 
population to transition from representing the plan of an action to representing its memory. 308 
These structured representations stand in contrast to the findings of prior studies showing 309 
that many abstract variables are randomly mixed across units7,17, implying potentially 310 
different encoding strategies for spatial and abstract variables. 311 

An associative learning task (Fig. 7) 312 

We studied how the identified neural representations change though-out learning in an 313 
associative learning task24, a kind of task that was previously shown to rely on an intact pre-314 
arcuate gyrus61. Monkeys were engaged in a two-alternative, forced-choice task that 315 
required them to track which of two targets (red or green) was being rewarded at any given 316 
time (Fig. 7a). Because the timing of switches in rewarded color was unpredictable, the 317 
optimal strategy is “win-stay, lose-switch”54–56: if a given color was rewarded (“win”), the 318 
monkey should choose the same color again on the next trial (“stay”). Instead, after a choice 319 
that was not rewarded (“lose”) the monkey should switch to the other color (“switch”). 320 
Monkeys’ performance gradually improved over the course of many weeks of exposure to 321 
this task (Fig. 7b).  322 

Achieving optimal performance in this task requires both fast and slow learning62. On the 323 
fast time-scale of trials, monkeys must update their beliefs about what color and location 324 
will be rewarded on the current trial based on the actions and outcomes on the preceding 325 
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trials. On the slow times-scales of days and weeks, monkeys must infer the task rules and 326 
learn a strategy to optimally harvest rewards. We characterized fast learning with logistic 327 
regression models fit to the behavior in a single session, and then studied how the 328 
corresponding strategies are shaped by slow learning across sessions (Fig. 7c). We 329 
separately modeled the influence of the (task relevant) target color and the (task irrelevant) 330 
target location on the monkeys’ choices (Fig. 7c, circles and squares) and their interaction 331 
with previous outcome (win or lose, x- and y-axes).  332 

In both monkeys, slow learning primarily involved changes in how monkeys reacted to 333 
unrewarded trials (Fig. 7c, y-axis). Monkeys learned to consistently switch colors after a lose 334 
trial (Fig. 7c, circles; DP(lose-switch) gradually approaches 0.5). Notably, monkeys 335 
consistently stayed on the rewarded color already during the very first session on this task 336 
(Fig. 7c, DP(win-stay) close to 0.5). Likewise, monkeys’ choices were more strongly affected 337 
by the irrelevant target location after lose trials compared to win trials (Fig. 7c, squares; 338 
larger differences from 0 along y- compared to x-axis). Notably, in monkey T learning also 339 
involved overcoming an initial (incorrect) spatial strategy (Fig. 7c left, squares: DP(lose-340 
switch) gradually approaches 0.5). In both monkeys, the inferred stay and switch 341 

Figure 7 An associative task and behavior performance. a. Subjects performed an associative task that had the same trial 
structure as the instructed saccade task, namely a central-fixation period of random duration between targets appearance, and 
the saccade (choice-saccade) towards one of them; followed by a target-fixation period of random duration requiring monkeys 
to fixate the chosen target until feedback. On any given trial, the reward contingencies depend on the outcome and the chosen 
color of the previous trial. The mapping between color and location is random from trial-to-trial. b.Behavior performance varies 
substantially on trials following a rule-switch. This implies that the monkeys' behavior after errors changes through-out learning. 
In contrast, the behavior after rewards is almost constant. c. Behavioral models describing the strategies the monkeys use to 
harvest rewards. 'Win-stay - lose-switch' behavior is modeled with logistic regression using either the relevant history (choice-
color) or the irrelevant history (choice-location). Figure shows the estimated probability that the monkeys will either choose the 
same choice-color/choice-location as in the previous trial following rewarded trials (win-stay, horizontal axis) or switch 
following error trials (lose-switch, vertical axis). From the estimated probabilities we subtract the simulated probabilities of a 
random strategy. Thus, for an optimal agent (black cartoon) DP for location is 0 and for color is 0.5. d. Simulated color-choices 
using the model of previous relevant history explain well behavior around rule-switches, both early and late in training. 
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probabilities were sufficient to explain the dynamics of performance after a change in the 342 
rewarded color, implying that fast learning primarily relies on information from the 343 
immediately preceding trial.   344 

Neural changes across fast and slow learning (Fig. 8) 345 

We studied how choice representations relate to both fast and slow learning by comparing 346 
decoding accuracy for the direction of the choice saccade (choice location) across trials 347 
differing in the outcome of the immediately preceding trials (Fig. 8a; fast learning) and 348 
across early and late sessions (Fig. 8b; slow learning). Despite its task relevance, choice color 349 
was only weakly represented in the recorded areas (Suppl. Fig. 9). 350 

The recorded choice-representations were modulated by trial-history, albeit only in pre-351 
saccadic activity. Post-lose trials had weaker choice predictive activity compared to post-352 
win trials up until saccade execution. After the saccade, choice-related activity instead was 353 
equally strong across both trial types. The observed history-dependence of pre-saccadic 354 
activity seems consistent with the above finding that slow learning primarily involves 355 
adjustments to the strategy following lose trials (Fig. 7c) and may reflect low confidence, 356 
frequent changes of mind63, or a slowing down of neural responses after negative 357 
feedback64,65. 358 

Notably, the monkeys’ overall task performance did not correlate with any of the features 359 
of the responses we considered (Fig. 8b). Decoding accuracy on post-lose or post-win trials 360 
was similar in early and late sessions during all trial epochs, despite the monkeys performing 361 
closer to optimal on late vs early sessions (Fig. 7c). The representation of other task variables, 362 
like choice color, was also unchanged throughout learning (Supp. Fig. 9b). Overall, the 363 
properties of pre- and post-saccadic representations thus appeared to be largely fixed over 364 
long time-scales.  365 

Figure 8 Choice-representations during learning. a. Decoding accuracy of saccade direction through-out the trial. Decoders 
are trained only on post-win trials, i.e. trials following rewarded trials, and evaluated on (1) post-lose trials, i.e. trials following 
unrewarded trials, and (2) on a held-out set of post-win trials. We resample trials to have the same train and test set size 
across training days. Choice-related activity is substantially modulated by the outcome of the previous trial at targets onset, 
but not at times relative to saccade onset. Decoding accuracy is averaged over all sessions and error bars indicate s.e.m. 
(n=36 for monkey T and n=21 for monkey V). b. Decoding accuracy of post-lose trials split for early and late training days. 
Early sessions are considered the first half and late sessions the second half. Dots on the bottom indicate p-value < 0.05 as 
estimated from a partial correlation that correlates training half (1 for early and 2 for late) and decoding accuracy of each 
session. We use partial correlation to control for any effects that radius (continuous values) and target configuration (one-
hot encoding) might have on decoding accuracy. c. Same as b. but for post-win trials.  
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Discussion 366 

We measured and quantified population activity in pre-arcuate cortex of macaque monkeys 367 
across different tasks (instructed, perceptual discrimination and reward-based decisions), 368 
different type of saccades (instructed and free) and different learning time-scales (seconds 369 
and months) to obtain a comprehensive characterization of saccade-related activity in pre-370 
arcuate cortex in different contexts. 371 

Properties of pre- and post-saccadic activity  372 

We find that post-saccadic activity is the strongest and most consistent form of saccade-373 
related activity, both at unit-level (Fig. 5c, top row for monkey T and V, Suppl. Fig. 7b for 374 
monkey C) and at population-level (Fig. 2 for monkey T, Suppl. Fig. 3b, g for monkey V and 375 
C). The direction of the rewarded saccade can be best decoded after the saccade is already 376 
completed, and decoding performance remains high until the time of feedback, 377 
throughout a delay period during which the gaze is fixed (Fig. 2a). This finding is notable in 378 
an area of dlPFC that was previously primarily associated with pre-saccadic responses66. A 379 
key factor in revealing the prominence of post-saccadic activity was to more closely balance 380 
the duration of pre- and post-saccadic epochs in our tasks. 381 

The persistence of post-saccadic activity seems at odds with the findings of some previous 382 
studies, which instead reported largely transient activity8,30. These past studies, however, 383 
did not include a temporal separation between the saccade and the feedback. The 384 
persistent nature of post-saccadic activity might become apparent only when such a delay 385 
period is included in the task, since any task-relevant saccade-related information may have 386 
to be maintained until feedback is provided. 387 

As in more posterior areas of PFC8,11,18,19, but not more anterior ones27,28, post-saccadic 388 
activity is intermingled with pre-saccadic and movement related activity (see Suppl. 389 
Discussion on retinotopic coordinates). When pre- and post-saccadic activity co-occurs in 390 
single neurons, they are tightly linked—the preferred direction typically flips by 180 391 
degrees between the pre- and post-saccadic epochs for all saccades (Fig. 6). Analogous flips 392 
in selectivity have been observed before in relation to saccades8,11, but may also occur in 393 
other settings32,67,68. This structure stands in contrast with the common finding that in 394 
associative areas task-related variables are often randomly mixed in the population7,17,59. As 395 
discussed below, one possible function of the observed flips may be to update a 396 
representation of visual space across saccades. 397 

Pre- and post-saccadic activity are differently modulated by saccade type and task. Unlike 398 
pre-saccadic activity11,18,38,69 (but see70), post-saccadic activity occurs after every saccade, but 399 
is strongest and lasts the longest following “rewarded” saccades (i.e. the last saccades 400 
preceding feedback and reward delivery, Fig. 2a). Weaker and more short-lived post-401 
saccadic activity follows the start saccades that initiate a trial, and the end-saccades that 402 
follow the reward (Fig. 2b).  403 

During learning, we find that choice representations reflect the recent trial-to-trial history, 404 
but not day-by-day behavioral improvements. This was particularly surprising for trials 405 
following errors, where the behavior strongly changes through-out the learning process. 406 
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The fast adjustment to rule-switches in later sessions (pink lines in Fig. 8b) indicate that 407 
monkeys correctly interpret errors as informative factors relevant for future decisions. 408 
Nevertheless, the weak choice-representations on post-error trials are observed in late and 409 
early sessions, despite an almost impeccable behavioral performance during late sessions.  410 

The fact that a linear decoder was capable of reading the monkey's choice independent of 411 
the task (Fig. 4b) suggests that dlPFC constitutes an advanced processing stage where 412 
representations are rather rigid and resemble “domain-general”71 and/or “untangled”72 413 
representations. These representations did not reflect the large changes in behavior 414 
occurring while monkeys learned the reward-based decisions. This task learning73 could 415 
instead reflect plasticity in areas upstream of dlPFC or in recurrent circuits involving both 416 
cortical and subcortical areas74. 417 

Possible functions of post-saccadic activity 418 

The finding that post-saccadic activity amounts to an action memory is consistent with a 419 
key role of dlPFC in retrospective monitoring of behavioral context and in binding the past 420 
to the present20–22,24,27–29,75,76 (see Suppl. Discussion for previously proposed functions). The 421 
persistent representation of an action memory may be similar to the maintenance of other 422 
behaviorally relevant variables in working memory (e.g.3,7,77). Representations of past stimuli 423 
in dlPFC, however, are not limited to persistent activity, but can remain present in “activity-424 
silent“ traces that reappear as activity on future trials78. Temporary records of previous 425 
actions are required by many reinforcement learning algorithms to evaluate the actions’ 426 
relevance with respect to rewards28,74,79–82 (see Suppl. Discussion on choice memories83–86 427 
and eligibility traces). Neither pre- nor post-saccadic activity was modulated by slow 428 
learning processes, suggesting that the underlying spatial representations are a rigid, core 429 
feature of dlPFC. Such rigid representations may coexist with the flexible emergence of 430 
representations of abstract task variables7,59,87–89. The separation of rigid and flexible 431 
representations could be computationally advantageous, as it might reduce task-432 
interference90 or catastrophic forgetting90. 433 

Beyond learning, post-saccadic activity could contribute to updating representations of 434 
visual space in PFC and to maintaining visual stability across saccades19,92,93. Our own work 435 
and previous studies implies that visual stimuli, salient locations, action-plans, and their 436 
memories are all represented in dlPFC in maps organized in retinotopic coordinates11,19,38. 437 
Any behavior requiring more than a single saccade, like the visual exploration of a scene, or 438 
the execution of sequences of saccades to multiple remembered locations, requires 439 
updating these retinotopic maps following each saccade, a process often referred to as 440 
remapping26,94–98. Concretely, after a saccade, a retinotopic map needs to be updated by 441 
shifting it along a vector that is the exact opposite of the vector of the saccade that was just 442 
executed (Suppl. Fig. 10 and Fig. 13 in 19). The prominent flip in direction selectivity observed 443 
after each saccade could quickly31 provide such an update signal, or could reflect the 444 
outcome of the update process.  445 

A contribution of post-saccadic activity to updating spatial representations would imply a 446 
critical role for PFC in predicting and compensating for the consequences of one’s own 447 
actions92,93,99,100. Consistent with such a role, impairments in generating and incorporating 448 
predictions are thought to be a defining feature of schizophrenia101,102, which consistently 449 
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involves prominent changes in prefrontal circuits102,103 as well as an impaired ability to 450 
generate long and frequent saccades in visual exploration104. 451 

Conclusion 452 

Pre-arcuate cortex actively maintains accurate, persistent representations of saccades 453 
before, during, and after each saccadic movement. The representations of saccadic action 454 
plans and saccadic action memories are expressed in the same frame of reference, 455 
retinotopic coordinates, making them well-suited as a basis for reinforcement learning 456 
algorithms105 and for the computations underlying visual stability across saccades92. The 457 
observed, concurrent representations of saccadic action preparation, action execution, and 458 
action memories support a prominent role of PFC in linking events across time. An 459 
important question for future studies is how the strong and rigid spatial representations we 460 
described relate to the flexible representations of more abstract behavioral variables in PFC 461 
and throughout the brain27,28,106,107. 462 
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Supplementary discussion 770 

Retinotopic coordinates 771 

Both pre-saccadic11 and post-saccadic representations reflect retinotopic coordinates. Like 772 
other types of movements, saccades could in principle be represented in a variety of 773 
alternative coordinate systems, from head-centered, to body-centered, and world-centered 774 
coordinates108,109. Like past studies in dorso-lateral prefrontal cortex11,110, we, however, find 775 
weak representations of saccades in coordinate systems other than retinotopic coordinates 776 
(Fig. 3d, e). Potential candidate structures for such representations in other coordinate 777 
systems involve hippocampal areas and parts of PFC closely linked to it52,111–114. 778 

Function of post-saccadic activity 779 

The properties of post-saccadic activity in pre-arcuate cortex appear inconsistent with a 780 
number of proposed hypotheses about its function. Since post-saccadic activity is not 781 
predictive of the next saccade, it is unlikely to represent a plan for a future action (see also11). 782 
A hypothesized role in “resetting” activity in PFC, to set the stage for a new saccade plan30, 783 
seems at odds with the observation that post-saccadic activity can persist over long 784 
temporal intervals. This persistence, together with a pronounced dependency on reward 785 
expectation, also rules out the possibility that post-saccadic activity represents a corollary 786 
discharge for saccades. Instead, post-saccadic activity might be involved in retrospective 787 
monitoring the behavioral context20–22,24,27–29,75,76. 788 

Relation to choice sequences 789 

Choice memories represented as sequences of activity in rodent prefrontal and parietal 790 
cortex83–86 have been proposed as neural correlates of eligibility traces. The post-saccadic 791 
activity we report here, however, differs in some respects from previously reported choice 792 
related sequences83–86. First, we show that post-saccadic activity appears to follow every 793 
saccade, not just saccadic movements related to a choice between learned alternatives. 794 
Second, post-saccadic activity changes smoothly as saccades direction is varied along a 795 
circle (Suppl. Fig. 2a) and can be traced back to single-unit response fields. Third, we observe 796 
post-saccadic activity during fixation periods in which task-relevant movements are 797 
suppressed, effectively excluding possible explanations of this activity through movement 798 
confounds115. 799 

Eligibility traces 800 

Many reinforcement learning algorithms105 use eligibility traces, i.e. temporary records of 801 
previous actions, to evaluate the actions’ relevance with respect to rewards28,74,79–82. 802 
Eligibility traces of eye movements are particularly important for learning, as eye 803 
movements provide a fast feedback of motor performance116,117. Implementing such 804 
algorithms in neural circuits is challenging, as learning may rely on biophysical mechanisms 805 
like spike-timing dependent plasticity (STDP) that operate on much shorter times-scales 806 
than the task-events relevant for behavior118,119. Past proposals on how to link synaptic 807 
plasticity to times-scale of behavior include tagging synapses to make them eligible for 808 
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future reinforcement-driven changes120,121 or prolonging the temporal footprint of 809 
STDP122,123. Such mechanisms seem ill-suited to the tasks studied here, as the duration of the 810 
target-fixation period separating action and outcome outlasts even the longest-811 
documented windows of adult-brain STDP124. On the other hand, by actively representing 812 
persistent components originating from different times in the trial in the network, 813 
representations of stimuli, actions and outcomes that are separated in time might be made 814 
to temporally overlap in the brain, thus allowing learning to occur through fast mechanisms 815 
like STDP. Our finding that post-saccadic activity is modulated by saccade type may imply 816 
that action memories, similarly to working memory of sensory information, are maintained 817 
in PFC flexibly, and preferentially for those actions that are most relevant for learning. Such 818 
action memories may complement or interact with alternative mechanisms that could 819 
allow task-relevant signals to be maintained without persistent activity78, such as an 820 
“activity-silent” memory emerging from changes in synaptic efficacy125,126.  821 
  822 
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Supplementary Figures 823 

 824 

Supplementary Figure  1 Neural recordings and task parameters. a. In all three monkeys, we obtained single-unit and multi-825 
unit recordings from a 10x10 array implanted in pre-arcuate cortex. Black circles indicate the cortical locations of the 96 826 
electrodes used for recordings. b. Durations of three intervals occurring in each trial. Central-fixation (target/dots/targets on 827 
for instructed/motion-discrimination/reversal learning task): from the onset of the relevant stimulus until the offset of the 828 
fixation point. Target-fixation: from the onset of the rewarded saccade until the reward delivery. Inter-trial: from the reward 829 
delivery of a given trial until the onset of the fixation point on the next trial. For reversal learning task, intervals for all three 830 
monkeys are shown. Note that the length of target-fixation interval is longer for monkey T than for monkey V and C. c. Target 831 
configurations for the instructed-saccade task - 33 unique locations for monkey T and 24 unique locations for monkey V and 832 
C. For monkey T, the angular difference between two neighboring targets is 30 degrees, but on each session, one direction is 833 
missing (left panel - 210 degrees, middle panel - 120 degrees, right panel - 300 degrees). For monkey V and C, the angular 834 
difference between two neighboring is 45 degrees. For all monkeys, the radial difference between two neighboring targets is 835 
4 degrees. Radii values are 4, 8 and 12 degrees. Error bars indicate s.e.m. across sessions. 836 
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 837 

Supplementary Figure  2 High-dimensional decoders. a. Time-dependence of decoding errors; the distribution of angular 838 
errors (vertical axis) when testing times (horizontal axis) are chosen to coincide with training times for times relative to target 839 
onset (top row, left panel), to rewarded saccade onset (top row, middle panel), reward delivery (top row, right panel), end 840 
saccade onset (bottom row, left panel) and start saccade onset (bottom row, right panel). b. Eye-movement trajectories (left) 841 
and time-specific decoding (right) for end (top) and start saccades (bottom). Unlike for the rewarded saccades, the direction 842 
of the end and start saccades is continuous. To apply the decoders trained on the rewarded saccade, we discretize this 843 
continuous variable into bins whose centers match the directions of the rewarded saccade. To study how this binning affects 844 
the decoding performance, we assigned saccades into two groups: saccades with directions close to the respective category 845 
center (left panels, black) and saccades with directions far from this center (left panels, gray). Decoding performance for both 846 
groups is similar to performance when all trials are included Fig. 2b. The lower decoding performance of end and start 847 
saccades compared to rewarded saccades thus does not seem to be a consequence of the different distribution of saccade 848 
directions. c. We applied a pre-saccadic decoder to activity before and after the rewarded saccade (as in Fig. 6b, top row). 849 
We separated trials based on the duration of the target-fixation period (0.8s, 1s and 1.2s). The angular errors close to 180 850 
degrees reflect a flip in read-out along the pre-saccadic decoder at times following the rewarded saccade. d. Decoding 851 
accuracy split by saccade laterality. Contralateral saccade have higher pre-saccadic activity than post-saccadic activity, while 852 
ipsilateral saccades have higher post-saccadic activity than pre-saccadic activity. e. Decoding accuracy of different decoders. 853 
Results are averaged over sessions and error bars indicate s.e.m. across sessions (n=9) 854 
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 855 

Supplementary Figure  3 Saccade representations in monkeys V and C. a-d: Data for monkey V. a. Statistics of subsequent 856 
saccades, analogous to Suppl. Fig. 4. b. Time-specific decoding of the direction of the rewarded saccade, as in Figure 2a. c. 857 
Time-specific decoding of the direction of the start and end saccades, based on corresponding decoders trained on rewarded 858 
saccades. Analogous to Figure 2b. d. Decoding the direction of the end saccade, based on a pre-saccadic decoder trained on 859 
rewarded saccades. Analogous to Figure 3b. e-h: Analogous to a-d, but data from monkey C. 860 

  861 
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 862 

Supplementary Figure  4 Different tasks, same patterns of activity (monkey V). Analogous to Fig. 4. Error bars indicate s.e.m. 863 
across sessions. (n=2) 864 

  865 
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 866 

Supplementary Figure  5 Hypotheses of choice-dynamics across tasks. Task-dependent temporal dynamics for two different 867 
choice representations. In both scenarios, we consider the case where choice activity in task 2 undergoes the same dynamics 868 
as in task 1, but its onset is delayed. a. A temporal sequence, where each pattern is active at a certain time. We apply the 869 
same analysis as in Fig. 4d, where we train time-dependent decoders on activity from task 1 and test them on activity from 870 
all times in task 1 (left panel) and task 2 (right panel). Training and testing on task 1 reveals a diagonal decoding matrix, with 871 
high values on the diagonal when the training and testing time coincide, and low values off-diagonal, where training and 872 
testing time differ. When testing the decoders on activity from task 2 (where choice activity is delayed), the decoding 873 
accuracies are high under the diagonal, matching the one time step delay set up in the cartoon of the time-courses. b. A static 874 
activity pattern. Training and testing on task 1 reveals a block decoding matrix, with high decoding values everywhere. Testing 875 
on activity from task 2 reveals a block structure starting at the second time step, again corresponding to the delay set up in 876 
the cartoon of the time-courses.   877 
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 878 

Supplementary Figure  6 Saccade sequences in the instructed-saccade task for monkey T. Histogram of consecutive saccades, 879 
expressed as the distribution of directions for the second saccade (columns) conditional on the direction of the first saccade 880 
(rows), shown for the start and rewarded saccade (left); rewarded and end-saccade (middle); end and the following saccade 881 
(right).  882 
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 883 

Supplementary Figure  7 Unit direction-selectivity a. Pre- vs post-saccadic selectivity. Pre-saccadic (-100ms, horizontal axis) 884 
vs. post-saccadic selectivity (+150ms, vertical axis), quantified as the goodness-of-fit (cross-validated r-squared) of the 885 
direction-tuning model at these times. Each point represents a unit. For each monkey, units from all sessions are displayed. 886 
Random jitter is added to units with “no selectivity“ along both the vertical and horizontal axes; to units with only “pre-887 
saccadic selectivity“ along the horizontal axis; and to units with only “post-saccadic selectivity“ along the vertical axis. Axes 888 
are linear and interrupted between 0 and 0.2 to be able to differentiate between units with “no selectivity“ and units with 889 
only “pre-saccadic“ or “post-saccadic“ selectivity. b. Percentage of selective units computed on responses aligned to rewarded 890 
saccade onset for monkey V and C. Analogous to Fig. 5c, top row (right). c. Visual vs. post-saccadic selectivity. We consider a 891 
unit to have visual selectivity if it has direction-selectivity (cross-validated r-squared > 0 of the bell-shaped model in Fig. 5 892 
applied to direction-averaged responses) at target onset. Here, we directly compare the visual selectivity at +100ms post 893 
target onset (vertical axis) against post-saccadic selectivity at +100ms post rewarded saccade onset (horizontal axis). 894 
Correlation of selectivity strength (defined as the r-squared) at these two times is for monkey T rho = 0.05, p-value = 0.2 and 895 
for monkey V rho = 0.02, p-value = 0.7. d. Cross-temporal selectivity for monkey V, analogous of Fig. 5c, bottom.  896 
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 897 

Supplementary Figure  8 Task parameters in the learning task. a. The target locations during the reversal learning task can 898 
be in one of the five target configurations. Within each target configuration, either the radius may vary (classes 1-4) or the 899 
angular distance between the two targets (class 5). The bar plots indicate how many sessions there are for each target 900 
configuration and radius combination (data for monkey T).  901 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 20, 2024. ; https://doi.org/10.1101/2022.09.26.509463doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509463
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 37 

 902 

Supplementary Figure  9. Color-representations during learning a,b Analogous of Fig 8a,b. c, d Target-location effects on 903 
choice-representations (c) and color-representations (d). The target-placement (shown in Suppl. Fig. 8a) affected the 904 
decoding accuracy at different times of location decoders, but not of color decoders. We account for target-location (using 905 
one-hot encoding) when correlating decoding accuracy and training day (b for color and Fig. 8b for location)  906 
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 907 

Supplementary Figure  10 Vector subtraction mechanism for spatially accurate saccades. Diagram suggesting how a vector 908 
subtraction mechanism could be used to adjust sensory representations across saccades. Suppose the motor plan is to 909 
perform two consecutive saccades to two targets, goal A and goal B. Left panel: The motor plan is constructed while the gaze 910 
is at the bottom of the tree (red circle) and uses the retinal registration of the two targets, plan A and plan B. Right panel: 911 
The first saccade (action A) corresponds to plan A, and is thus a consonant-vector saccade. The second saccade is, on the 912 
other hand, a dissonant-vector saccade, because the movement vector does not correspond to the original retinal registration 913 
plan B. The movement-vector of the second saccade (action B) is obtained by subtracting the vector of the intervening (first) 914 
saccade from the retinal registration of the second target: action B = plan B - action A. See Fig. 13 in 19.  915 
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Prospective and retrospective representations of
saccadic movements in primate prefrontal cortex

Ioana Calangiu, Sepp Kollmorgen, John Reppas, Valerio Mante

July 27, 2024

1 Experimental Procedures

We collected behavioral and neural data from three adult male rhesus mon-
keys: monkeys T (14 kg), V (11 kg) and C (13 kg). All surgical, behavioral,
and animal-care procedures complied with National Institutes of Health guide-
lines and were approved by the Stanford University Institutional Animal Care
and Use Committee. Prior to training, the monkeys were implanted with a
stainless-steel head holder[1] and a scleral search coil for monitoring monocular
eye position[2]. We used operant conditioning with liquid rewards to train the
monkeys to perform a visually guided, delayed-saccade task; a two-alternative,
forced-choice, motion discrimination task; and a two-alternative, forced-choice,
non-spatial associative task. During training and experimental sessions, mon-
keys sat in a primate chair with their head restrained. Visual stimuli were
presented on a cathode ray tube monitor controlled by a VSG graphics card
(Cambridge Graphics, UK), at a frame rate of 120Hz, and viewed from a dis-
tance of 57 cm. Eye movements were monitored through the scleral eye coils
(C-N-C Engineering, Seattle, WA). Behavioral control and data acquisition were
managed by a computer running the REX software environment and QNX Soft-
ware System’s (Ottawa, Canada) real-time operating system.

2 Behavioral tasks

2.1 Instructed saccade task

Monkeys were engaged in a visually-guided, delayed-saccade task, requiring
them to perform a sequence of saccades and fixations on each trial to obtain
a reward (Fig. 1a). A trial was initiated by a saccade to the fixation point,
and subsequently the monkey was required to maintain fixation until the o↵-
set of the fixation point. At 0.6-0.8s after fixation onset, a saccade target was
presented in the periphery (33 unique positions per experiment for monkey T
and 24 for monkey V and C). The fixation cue disappeared after an interval
of random duration following the target onset (0.7-1.2s) instructing the mon-
key to execute the saccade to the target. After the saccade, the monkey was
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again required to maintain fixation, this time on the target, for the duration
of another random time interval (0.8-1.5s). At the end of this interval, the
target disappeared, a reward was delivered, and the monkey was free to move
the eyes. The three randomized intervals were drawn from uniform distribution.

Note that for monkey T possible targets were placed 30 degrees apart, but only
11 out of 12 ({0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330} degrees) direc-
tions were used per experiment. Specifically, targets at 120 degrees were never
present in 5 sessions; 300 degrees never appeared in 3 sessions and 210 degrees
never appeared in one session. Each target direction could appear at one of
three eccentricities or radii ({4, 8, 12}). For monkey V and monkey C, each
recording session included 24 unique target locations (8 target directions placed
at 45 degrees apart and 3 possible radii - 4, 8 and 12).

For the instructed saccade task, we analyzed neural recordings obtained when
the monkeys were proficient at the task, i.e. there are no error trials and
the direction of the rewarded saccade always refers to the target location.
We analyzed a total of 9/10/10 experiments with 20,952/4751/8611 trials and
1706/2334/2095 single and multi-units from the three arrays in monkeys T/V/C.

2.2 Perceptual decision-making task (moving-dots)

Monkeys were engaged in a two-alternative, forced-choice motion discrimination
task (Fig. 3d, e). The timing of task events was similar to the instructed saccade
task (i.e. it included the random interval of target-fixation after the choice
saccade). On each trial monkeys observed a noisy, random-dots motion stimulus
presented through a circular aperture and had to report the prevalent direction
of motion with a saccade towards one of two visual targets. Correct choices (e.g.
a saccade to the right target for predominant rightward motion) were rewarded
at the end of the target-fixation period. The strength of the motion stimulus
(motion coherence) was set pseudo-randomly on each trial. For low motion
coherences, the monkeys’ performance was close to chance level (50%), while
for high coherences it was close to perfect (not shown). In this manuscript we
only analyzed rewarded trials with high motion coherence stimulus.

2.3 Shifted workspace for the perceptual task

We used a modified version of the moving-dots task to investigate whether
post-saccadic activity of the rewarded saccade is a↵ected by the position of
the eye (Fig. 3d). The timing of relevant task-events was analogous to that
in the instructed saccade task, and included a target-fixation-period after the
rewarded saccade (i.e. the choice saccade). Critically, each experiment in this
task included trials from two “shifted” workspaces, whereby the location of the
fixation point was shifted to the left from the midline in one workspace (relative
to head-position), and to the right in the other (Fig. 3d, “left” and “right”
workspaces). As a result, saccade direction and gaze-location of the rewarded

2
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saccade are somewhat decoupled—for example, the location corresponding to
the center of the monitor could either be the target of a rightward or a leftward
saccade (Fig. 3d, left vs. right workspace).

2.4 Non-spatial associative task

Monkeys were engaged in a two-alternative, forced-choice task that required
them to track which of two targets (red or green) was being rewarded at any
given time (Fig. 7a). Throughout the day, the reward contingencies switched
repeatedly between two “contexts”: in the red context, only saccades to the
red target were rewarded, and in the green context only saccades to the green
target were rewarded. Because the timing of switches in reward contingencies
was unpredictable, the optimal strategy is “win-stay-loose-switch”: if a given
color was rewarded (“win”), the monkey should choose the same color again in
the next trial (“stay”). Instead, after a choice that was not rewarded (“loose”)
the monkeys should switch to the other color (“switch”).

2.5 Same recording day for perceptual task, instructed
saccade and associative with 2 targets

On some recording days, monkey T (12 sessions) and monkey V (2 sessions)
performed three tasks sequentially: the perceptual task (random-dots), the in-
structed saccade task where one target could appear in one of two locations
and the non-spatial associative task (Fig. 4). Importantly, the target locations
across the three tasks were identical, allowing the comparison of saccade-related
activity across the di↵erent tasks.

3 Neural recordings

We recorded single and multi-unit neural signals with a chronically-implanted
10 by 10 array of electrodes (Cyberkinetics Neurotechnology Systems, Foxbor-
ough, MA; now Blackrock Microsystems). The inter-electrode spacing was 0.4
mm; electrodes were 1.5 mm long. Arrays were surgically implanted into the
pre-arcuate gyrus[3,4]. We targeted the array to a region of prefrontal cortex
between the posterior end of the principal sulcus, and the anterior bank of the
arcuate sulcus, near the rostral zone of Brodmann’s area 8 (area 8Ar) in monkeys
T and V. The arrays were implanted in the left hemisphere in both monkeys.
The exact location of the array varied slightly across the two monkeys (Suppl.
Fig. 1a), due to inter-animal variations in cortical vasculature and sulcal geom-
etry that constrained the location of the array insertion site. In monkey C the
array was placed between the superior branch of arcuate sulcus and dorsal bank
of the principal sulcus, in the right hemisphere.

Array signals were amplified with respect to a common subdural ground, fil-
tered and digitized using hardware and software from Cyberkinetics. For each
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of the 96 recording channels, ‘spikes’ from the entire duration of a recording ses-
sion were sorted and clustered o✏ine, based on a principal component analysis
of voltage waveforms, using Plexon O✏ine Sorter (Plexon Inc., Dallas, Texas).
This automated process returned a set of candidate action-potential classifi-
cations for each electrode that were subject to additional quality controls, in-
cluding considerations of waveform shape, waveform reproducibility, inter-spike
interval statistics, and the overall firing rate. For clusters returned by this post-
processing, both spike-waveform and spike-timing metrics fell within previously-
reported ranges for array recordings[3].

Daily recordings yielded 100-200 single and multi-unit clusters distributed
across the array. We do not di↵erentiate between single-unit and multi-unit
recordings, referring to both collectively as ‘units’. Therefore, we also do not
draw conclusions in this study that depend on the distinction between single
and multi-unit responses. Neural responses in the instructed saccade task were
recorded over a total of 9, 10, 10 experiments in monkeys monkey T, monkey V
and monkey C, for a total of 20,905, 4751 and 8611 trials.

4 Analysis of eye movement data

4.1 Saccade extraction

We used a non-parametric data-driven method for classifying eye fixations and
saccades that automatically adapts itself to the task statistics[5]. The method
is built on the assumption that the eye reaches higher speeds during saccades
than during fixations, and that there are fewer peaks in speed due to saccades
than due to fixations. Using these observations about the statistics of eye-
behavior, the method derives an optimum speed threshold that best separates
the speed distribution of saccades from the speed distribution of fixations and
instrumental noise.

4.2 Saccade types

We analyze neural activity related to di↵erent types of saccades, i.e. the in-
structed and freely initiated saccades occurring before, during, and after each
trial (Fig. 1b, c). We refer to the initial saccade to the fixation point as the
start saccade, the saccade to the target as the rewarded saccade, and the sac-
cade away from the target after reward delivery as the end saccade. The start
saccade is therefore visually-guided and non-rewarded; the rewarded saccade is
visually-guided and rewarded; and the end saccade is free and non-rewarded.
Monkeys initiate the end saccade when there is nothing on the screen. The
saccade durations are 30+-30ms, 40+-10ms and 140+-80ms for monkey T, for
the start, rewarded and end saccades respectively.

In the instructed saccade task, in approximately 45% (monkey T) and 33%
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(monkey V) trials the monkeys were already at fixation point when the new
trial started, thus there are fewer start saccades than end saccades.

5 Analysis of neurophysiology data

Throughout the paper, we consider neural responses occurring during four dis-
tinct, largely non-overlapping trial epochs. We refer to the first randomized
time interval, following the start saccade, as the first central-fixation-period
(i.e. fixation on the fixation point, 0.6-0.8s); the second randomized interval,
preceding the rewarded saccade, as the second central-fixation-period (0.7-1.2s);
and the last randomized interval, preceding the reward, as the target-fixation-
period (i.e. fixation on the target, 0.8-1.5s). Lastly, we analyze the times around
the end saccade, whose onset is after reward delivery. Notably, the onset of the
end saccade does not coincide with the time of reward delivery on every single
trial - on some trials monkeys initiate the end-saccade immediately after reward
and on some trials monkeys continue fixating the location where the target was
present, on a few trials for intervals as long as 600ms.

5.1 Unit-specific direction selectivity

5.1.1 Pre-processing condition-averaged responses

We bin activity in 50ms non-overlapping bins and we normalize the unit re-
sponses using z-scoring:

zi,t(l) =
zrawi,t (l)� hzrawi,t (l)it,l
std(zrawi,t (l))t,l + �̄

(1)

where zrawi,t (l) and zi,t(l) are the raw firing rate and z-scored responses, respec-
tively, of unit i at time t and on trial l, hit,l and stdt,l indicate the mean and
standard deviation across times and trials, and �̄ is a constant defined as the
median of the standard deviation across all units in a session. The z-scoring de-
emphasizes the contribution to the population response of units with very high
firing rates (typically multi-unit activity), while the constant term ensures that
units with very small firing rates are not over-emphasized. For the unit-level
analysis, we do not apply any other temporal smoothing to the responses.

We defined condition-averaged responses fi,t,c for each unit by averaging the
normalized time-varying firing rates across all trials belonging to a given condi-
tion c (Fig. 5a). For the instructed saccade task, we define each condition by
the saccade direction (11 conditions for monkey T, 8 conditions for monkey V
and monkey C).

The condition-averaged responses were de-noised using Singular Vector Decom-
position (SVD). We concatenated the condition-averaged responses fi,t,✓ across
all recording sessions with the same conditions in a Nunit ⇥ (Ncondition • T )
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matrix, where Nunit is the total number of units, Ncondition is the total number
of conditions, and T is the number of bins. The left singular-vectors of this data
matrix are vectors va of length Nunit, indexed by a, ordered from the singular-
vector explaining the most variance to the one explaining the least. We use the
first Nsvd singular-vectors to define a de-noising matrix D of size Nunit⇥ Nunit:

D =
NsvdX

a=1

vav
T
a (2)

We used this matrix to de-noise the condition-averaged responses by projecting
them into the sub-space spanned by the first Nsvd singular-vectors:

fsvd
i,t,✓ = Dfi,t,✓ (3)

We use the de-noised condition-averaged responses fsvd
i,t,✓ to determine the unit-

specific optimal direction, i.e. the condition that elicits the highest responses.
From now on fi,t,✓ will refer to the de-noised responses.

5.1.2 Bell-shaped model of direction selectivity

We estimated, for each unit, the saccade-location that elicits the highest re-
sponse at each time by fitting a descriptive function[6] to the normalized time-
varying condition-averaged responses (Fig. 5b):

g(✓) = baseline✓ + gain✓ ⇤ exp(�
(✓ � ✓0)2

2�2
✓

) (4)

where ✓0 is the preferred saccade direction, �✓ determines the tuning width and
gain✓ determines the modulation depth of the tuning curve.

We fitted the parameters of these models separately for each unit to averaged
responses grouped by saccade-direction within the epoch [0, 0.7]s after target on-
set and [-0.3, 0.5]s around saccade initiation, in 50ms non-overlapping bins. The
models are fit by minimizing the summed square error across the respective con-
ditions between the model predictions and the corresponding condition-averaged
response.

5.1.3 Goodness-of-fit

We validated the 1-D bell-shaped models by computing a coe�cient of determi-
nation R2 (Fig. 5b) value from the measured condition-averaged response fi,t,✓
and the model’s reconstruction dfi,t,✓, based on comparing the variability of the
estimation errors with the variability of the original neural responses.

r2i,t,✓ = max(0, 1�
P

✓ kfi,t,✓ � dfi,t,✓k2
P

✓(fi,t,✓ � h dfi,t,✓i✓)2
) (5)
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Model parameters were found from condition-averages computed on a subset of
trials (training set) and validated on condition-averages computed on a di↵erent,
non-overlapping subset of trials (testing set). All units that had a coe�cient of
determination di↵erent than 0 were considered selective (Fig. 5c, top row). A
coe�cient of determination equal to 0 indicates that the condition-averaged re-
sponse is better described by the averaged response across all conditions h dfi,t,✓i✓.

5.1.4 Cross-temporal selectivity measure

We quantified the percentage of selective units at di↵erent time-pairs (tm, tn)
(Fig. 5c, bottom row):

n(tm,tn) =
X

k

(
1; if r2i,tm,✓ > 0 and r2i,tn,✓ > 0

0; otherwise
(6)

where i is unit index.

To assess the significance of each n(tm,tn), we shu✏ed the unit-order indepen-
dently at tm and tn and re-computed the number of units that were selective at
both times. We repeated this procedure 1000 times and compared the measured
n(tm,tn) to the 95th percentile of this distribution.

5.2 Population Decoding

For the population-level analysis, we compute binned spike counts in 100ms over-
lapping bins. Chance level of decoding analyses is computed using 11 classes
(9%) for monkey T and 8 classes (12.5%) for monkey V and monkey C. We quan-
tified the relation between single-trial normalized population responses and the
saccade direction using high-dimensional decoders suited for multi-class prob-
lems (Fig. 2 for monkey T, Suppl. Fig. 3b, g for monkey V and C). To ensure
our results do not depend on the choice of the decoder, we used several types of
decoders (Suppl. Fig. 2e for monkey T, Suppl. Fig. 3e, j for monkey V and C).
Specifically, we used MATLAB built-in classifiers: Linear discriminant analysis
(fitcdiscr), Naive Bayes (fitcnb) and Error-correcting SVM (fitcecoc), as well as
a customized classifier (Circular-SVM).

The Circular-SVM was proposed by Graf et al.[7] and builds on the Näıve Bayes
model. Knowing that the topography of the neural responses is circular, it learns
the pooling weight W, i.e. how each unit influences the classifier’s prediction,
in a model-free way, directly from the neural data. We describe the method
briefly, for more details see[7].

Discrimination between two saccade directions ✓1 and ✓2 is done using the sign
of the Support-Vector Machine (SVM) decision function:
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y(✓1, ✓2) =
NunitX

i=1

wi(✓1, ✓2)xi + b(✓1, ✓2) ⇡ logLR(✓1, ✓2) (7)

logL(✓j) =

= log
L(✓1))

L(✓2))

= logL(✓1)� logL(✓2)

=
NunitX

i=1

[Wi(✓1)�Wi(✓2)]ri + [Bi(✓1)�Bi(✓2)]

=
NunitX

i=1

wi(✓1, ✓2)xi + b(✓1, ✓2)

The SVM decision function is used as a local linear approximation of the di↵er-
ence between the log-likelihood evaluated at two saccade directions. The entire
log-likelihood function is reconstructed by computing the cumulative sum of the
empirical log-likelihood ratios of adjacent directions:

logL(✓j) =
jX

k=2

logLR(✓k, ✓k�1) =
NunitX

i

Wi(✓j)rj +B(✓j) (8)

with log(✓1) = 0.

Some pairs of neighboring directions are better separated than others. We
modified the original version of the method such that the discriminability of a
saccade-direction would only depend on how well it is separated from its two
immediate neighboring directions, and not on how well separated are any other
two neighboring directions. To compute an unbiased log-likelihood, each angle
✓j takes turn in being the reference log(✓j) = 0. In this manner, we average out
the cumulated-error.

5.2.1 Decoding saccade direction of the start, rewarded and end
saccades

Rewarded saccade: We study the relationship between the population re-
sponses and the rewarded saccade direction through cross-validated high-dimensional
decoders (Fig. 2a for monkey T, Suppl. Fig. 3b, g for monkey V and C).

Start and end saccade: We apply the same decoders we identified for the
rewarded saccade to responses aligned to the start and end saccade (Fig. 2b
for monkey T, Suppl. Fig. 3c, h for monkey V and C). Training a new set
of decoders on responses aligned to the end saccade resulted on similar cross-
validated accuracies when used to read-out the end saccade (results not shown).
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5.2.2 Time-specific decoding

Decoders are trained and tested on time-specific responses using 10-fold cross-
validation.

5.2.3 Cross-temporal decoding

Decoders are tested on responses outside their training time-window (Fig. 4d).
A decoding matrix T ⇥ T contains the cross-validated decoding accuracy of
T time-specific decoders tested on T time-specific population-responses. The
diagonal of this decoding matrix is the time-specific decoding accuracy. All
decoders are cross-validated, i.e. that even though the decoders are trained
at one time and tested at another time, there is no overlap between the train
and test trials. This analysis shows how each of the time-specific mappings
generalize across responses at other times in the trial.

5.3 Post-saccadic activity is not pre-saccadic activity for
the next saccade

One possible interpretation of post-saccadic activity is that it encodes the plan-
ning of the next saccade (Fig. 3a-c). To test this hypothesis, we decoded the
direction of the end saccade from activity preceding the end saccade and from
activity during the target-fixation-period (Fig. 3b). Ruling out this hypothesis
is very challenging because the behaviour of the monkeys is biased - very often
the end saccade is back to the fixation point.

To study this, we used a pre-trained pre-saccadic decoder. Specifically, we used a
decoder trained to decode the rewarded-saccade during the pre-saccadic epoch
(t : t +�t where t = �150ms and = �50ms) to decode the saccade direction
across the target-fixation and up until the onset of the end-saccade. Impor-
tantly, we use the decoder to read out the direction of the end saccade, not of
the rewarded saccade and we evaluate the accuracy of the read-outs separately
for trials from a single direction of the rewarded saccade. We focus on rewarded
saccades to the contralateral hemifield, which are followed by end saccades in
many di↵erent directions and are thus well-suited to test the decoder (rewarded
saccades towards 0, 30 and 60 degrees in Fig. 3a, left panel).

Figure 3b shows that post-saccadic activity following the rewarded saccade does
not contain preparatory activity for the end saccade, when these behavioural
correlations are ”subtracted” (see histogram of balanced conditions in Figure
3a, right panel), but does contain information about the rewarded saccade.
Importantly, the decoding accuracies are computed from the same trials in both
cases. Note that it is still possible that preparatory activity of the end saccade
would exist along another read-out, one that is di↵erent from the pre-saccadic
read-out of the rewarded saccade. Even so, this result shows that the inverted

9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 20, 2024. ; https://doi.org/10.1101/2022.09.26.509463doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509463
http://creativecommons.org/licenses/by-nc-nd/4.0/


tuning of pre-saccadic activity after saccade execution is not a consequence of
the next saccade the monkey will perform.

5.4 Prospective and retrospective representations have dif-
ferent task-selectivity

On some recording days monkeys performed three tasks sequentially: (1) the
perceptual decision-making task, where the monkeys had to choose between two
targets based on sensory information; (2) the instructed-saccade task, where
only one peripheral target was presented on each trial; (3) the non-spatial asso-
ciative task, where monkeys had to choose between two targets based on infor-
mation from the previous trial. Targets were placed at identical locations across
the three tasks, allowing us to study how task-context modulates responses.

We analyzed responses aligned to target (one target in instructed saccade task,
two targets of di↵erent colors in the associative task and dots onset in the per-
ceptual task) and saccade onset. We identify choice-decoders that best separate
the population responses due to monkey’s choices (leftward or rightward) across
the three tasks.

Note that because trials within the three tasks are not intermingled, but come
in sequential blocks, we corrected the single-trial spike counts of any potential
population-level drift in the baseline firing rates:

x̃i,t,task1 = xi,t,task1 � hxi,titask1

x̃i,t,task2 = xi,t,task2 � hxi,titask2

x̃i,t,task3 = xi,t,task3 � hxi,titask3

The decoding analyses was performed on the normalized responses.

5.5 Post-saccadic activity does not encode the momentary
gaze location

We addressed the question whether post-saccadic activity is better explained
by saccade-covariates or eye-position-covariates in a modified version of the
perceptual decision-making task, in which the monkeys were presented with two
workspace configurations in a blocked design (Fig. 3d, e). The task required
the monkeys to discriminate the dominant movement of moving dots in two
“workspaces“ that were retinotopically identical, but horizontally (or vertically)
shifted along the monkey’s line of sight, such that the physical location of one
target (T1) in one block was identical to the physical location of the other target
(T2) in the other block.
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xi,t(k) = �0,i,t+�choice,i,tchoice(k)+�gaze,i,tgaze(k)+�gazeabs,i,tgazeabs(k) (9)

where xi,t(k) is the z-scored response of unit i at time t and on trial k, choice(k)
is the monkey’s choice on trial k (+1 for choice 1 and -1 for choice 2), gaze(k) is
the target-location on trial k (for two sessions the workspace is shifted along the
horizontal axis gaze = gazex = {�1, 0, 1} and gazey = 0; and for two sessions
the workspace is shifted along the vertical axis gaze = gazey = {�1, 0, 1} and
gazex = 0, gazeabs(k) is the absolute value of gaze(k). We introduced gazeabs(k)
to capture a potential non-linear relation between neural responses and gaze.
We focused on three time points in the post-saccadic epoch: early (+50ms),
middle (+200ms) and late (+400ms).

Because trials within the two retinotopically-identical sessions, workspace1 and
workspace2, are not intermingled, but come in sequential blocks, we corrected
the single-trial spike counts of any potential population-level drift in the baseline
firing rates:

x̃i,t,workspace1 = xi,t,workspace1 � hxi,tiworkspace1

x̃i,t,workspace2 = xi,t,workspace2 � hxi,tiworkspace2

We identified the regression coe�cients �choice,i,t, �gaze,i,t, �gazeabs,i,t through
10-fold cross-validation for each unit separately. We next quantified the saccade-
related and gaze-related contributions of each unit through a measure of variance
explained on the test trials:

var.expli,t,gaze = 1�
P

k kx̃i,t � dxi,t,gazek2P
k(x̃i,t � hcxi,ti)2

(10)

where

dxi,t,gaze(k) = �0,i,t + �gaze,i,tgaze(k) + �gazeabs,i,tgazeabs(k) (11)

Similarly, for saccade-related activity:

var.expli,t,choice = 1�
P

k kx̃i,t � dxi,t,choicek2P
(x̃i,t � hcxi,tik)2

(12)

where

dxi,t,choice(k) = �0,i,t + �choice,i,tchoice(k) (13)
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6 Analysis of behavioral data in the non-spatial
associative task

We characterized fast learning with logistic regression models fit to the behavior
in a single session. We separately modeled the influence of the (task relevant)
target color and the (task irrelevant) target location on the monkeys’ choices
(Fig. 7c, circles and squares) and their interaction with previous outcome (win
or lose, x- and y-axes).

logit p (stayk) = �0 + �1rk�1 (14)

where logit p (stayk) denotes the probability of choosing on trial k the same
choice (same colour for the optimal strategy and same location for the sub-
optimal) as in the previous trial k-1 and rk�1 is 1 when the outcome of the
previous trial was a reward and 0 when it was not rewarded.

logit p (stayk) =

(
�0 + �1, if rk�1 = 1(post� win)

�0, if rk�1 = 0 (post� lose)
(15)

Then, we compute logit p (stayk) in post-win trials:

logit p (win� stayk) = �0 + �1 (16)

and logit p (switchk) in post-lose trials:

logit p (lose� switchk) = 1� �0 (17)

In Fig. 7c we subtract from these probabilities the estimated probabilities of
random behaviour and obtain �P(lose� switch) and �P(win� stay). For the
optimal model (colour), we simulate random colour-choices . Fitting the lo-
gistic regression in Eq. 14, we estimate p(win� staycolor)random = 0.5 and
p(lose� switchcolor)random = 0.5. Then, for the colour-model,

�P(win� stay)color = p(win� staycolor)� p(win� staycolor)random (18)

�P(lose� switch)color = p(lose� switchcolor)� p(lose� switchcolor)random
(19)

The relation between space and color was pseudo-randomized in some sessions
and this resulting deviation from perfect randomness lead to apparent biases in
the behavior that we seek to remove. Using such relative probabilities allowed
us to compensate for any potential biases in choices due to lack of complete
randomization (e.g. because of the limited number of switches in a trial, and
the fact that timing of transitions is pseudo-randomized, rather than being
completely random). Therefore, for the location-model, we corrected the es-
timated probabilities of the monkey’s behaviour by (1) using their observed
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colour-choices; (2) converting the colour-choice into a location-choice, based on
the experimentally-set colour-location association of each trial; (3) estimating
p(lose� switchlocation)random and p(win� staylocation)random.

7 Correlation of behavioral data and neural data
in the non-spatial associative task

We studied how slow learning shapes the neural responses by correlating time-
specific decoding accuracies with di↵erent behavioral variables. Notably, we
used partial correlation to remove modulations due to target configuration
(Suppl. Fig. 9c, d). Target configuration was included through one-hot encod-
ing. Behavioral variables we considered are: training day, first half vs second
half training day (1 for first half and 2 for second half) and the modeled prob-
abilities of the task relevant model. The results were quantitively similar. The
p-values in Fig. 8b and Suppl. Fig. 9b are for the partial correlation with first
half vs second half training day. P-value is computed as the number of shuf-
fled partial correlations that exceed the empirical partial correlation. Shu✏ed
partial correlations were computed by correlating behavioral variable to 1000
random permutations of decoding accuracies.
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