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Abstract

Dorso-lateral prefrontal cortex (dIPFC) in primates plays a key role in the acquisition and
execution of flexible, goal-directed behaviors. Recordings in monkey dIPFC have revealed
possible neural correlates of the underlying cognitive processes like attention, planning, or
decision-making, both at the single-neuron and population levels. Integrating these
observations into a coherent picture of dIPFC function is challenging, as these studies typically
focused on neural activity in relation to a few, specific events within a single, fully learned
behavioral task. Here we obtain a more comprehensive description of dIPFC activity from a large
dataset of population recordings in monkeys across a variety of behavioral contexts. We
characterized neural activity in relation to saccades that monkeys made freely, or at different
stages of training in multiple tasks involving instructed saccades, perceptual discriminations,
and reward-based decisions. Across all contexts, we observed reliable and strong modulations
of neural activity in relation to a retrospective representation of the most recent saccadic
movement. Prospective, planning-like activity was instead limited to task-related, delayed
saccades that were directly eligible for a reward. The link between prospective and retrospective
representations was highly structured, potentially reflecting a hard-wired feature of saccade
responses in these areas. Only prospective representations were modulated by the recent
behavioral history, but neither representations were modulated by learning occurring over days,
despite obvious concurrent behavioral changes. Dorso-lateral PFC thus combines tightly linked
flexible and rigid representations, with a dominant contribution from retrospective signals
maintaining the memory of past actions.

Introduction

Dorso-lateral prefrontal cortex (dIPFC) in primates is thought to play a key role in goal-
directed behavior by flexibly maintaining and integrating signals required to select
contextually-relevant actions, through processes like working memory, attention, and the
context-dependent accumulation of sensory evidence'’. This view of dIPFC function has
been shaped in particular by studies in primates engaged in saccade-based tasks, many of
which focused on characterizing responses preceding an action®'°. A large literature on pre-
saccadic responses revealed neural dynamics that is strongly context-dependent®'", can
support abstract representations’'>'¢, and reflects representations of task variables that are
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randomly mixed at the level of single neurons’"’, consistent with a primary role of dIPFC in
the prospective control of flexible decisions.

Prominent task-related activity, however, has often been reported also during" and
following saccades®'''®2%, One widely reported signal is post-saccadic activity, which in
several areas of dIPFC is intermingled with pre-saccadic and movement related
activity®''®'°_ The proposed functions of post-saccadic activity mostly differ from those of
pre-saccadic activity, and include the retrospective monitoring of behavioral context?'#/%9,
terminating cognitive processes that select contextually-relevant actions®, updating
retinotopic maps to ensure visual stability'®?°3! or alternatively, the preparation for future
actions''. Currently, a systematic comparison of the prevalence and properties of pre- and
post-saccadic activity across contexts, stages of learning, and neurons is lacking, and
consequently the primary function of dIPFC remains a matter of debate.

Here, we compared neural population recordings obtained with chronically implanted
electrode arrays in dIPFC of macaques®** across a variety of behavioral contexts. Such array
recordings arguably provide a more unbiased view onto the signals represented by a neural
population compared to past single-neuron recordings. Monkeys were engaged in several
classic, saccade-based, motor and decision-making tasks, which however differed in a
critical aspect from past studies®''. Operant saccades were not only preceded, but also
followed, by a delay period that was randomized from trial-to-trial®®, simplifying a direct
comparison between the prevalence and properties of pre-saccadic and post-saccadic
representations. To establish the role of behavioral context on the inferred dIPFC
representations, we compared neural population responses across tasks, across different
stages of learning, and between trained and freely chosen saccades.

We find that dIPFC can represent saccade direction from the time of planning, through
movement, until the resulting outcome and beyond. Notably, the dominant signal across
tasks, saccade types, and learning is post-saccadic activity, suggesting a key role of dIPFCin
retrospective computations. Our findings are organized in three sections. First, we show
that post-saccadic activity overall is stronger than, and distinct from, pre-saccadic activity
(Fig. 1-4). Like pre-saccadic activity, post-saccadic activity is persistent and inherently tuned
to the direction of the saccade, but it represents the past rather than the future
action®'181921-28 nlike pre-saccadic activity, post-saccadic activity appears to occur in
relation to every saccade, albeit with some modulation due to the behavioral context.
Second, we show that some components of the identified saccadic representations have
tightly linked pre- and post-saccadic dynamics at the single neuron and population level
(Fig. 5-6), consistent with a “hard-wired” feature of the underlying circuits. Third, we study
how the representations of saccade direction are shaped by learning on short**
(consecutive trials) and long time-scales® (days and months) in an associative-learning
task***(Fig. 7-8). Only pre-saccadic representations are influenced by recent trial history,
and both pre- and post-saccadic representations show little or no modulation on the longer
time-scales associated with large changes in behavior. Overall, these findings imply that
rigid, structured representations are a key component of dIPFC computations, with a
dominant contribution from post-saccadic signals maintaining the memory of past actions.
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Figure 1. Instructed-saccade task and behavior
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Figure 1 Instructed-saccade task and behavior. a. Subjects performed a visually-guided, delayed-saccade task. A trial was
initiated by a saccade to the fixation point after which monkeys were required to maintain fixation (“central-fixation”). After a
randomized delay a saccade target was presented in the periphery (in total 33 unique positions per experiment for monkey T
and 24 for monkey V and C, Supp. Fig. 1c). Here we show 36 unique positions, pooled across all experiments of monkey T and
highlight a direction (3 positions) that was not presented in a particular experiment. See Methods for a full description of how
targets were shown in each experiment. When the fixation point disappeared (a second randomized delay), monkeys were
required to execute a saccade to the target. After the saccade, monkeys were again required to maintain fixation, this time on
the target, for the duration of a final random interval (“target-fixation”). b. Top: Eye-trajectories for three types of saccades:
start saccades (to the fixation point) that initiate the trial; rewarded saccades (to the visual target); and end saccades (from
the visual target) with no task constraints. Eye trajectories are sorted by saccade direction. The direction of start and end
saccades is discretized into classes that match the experimentally-set directions of the rewarded-saccade in the corresponding
session. c. Distribution of saccade-direction for the three different saccade types pooled over all sessions and radii. In approx.
45% of trials, the monkey was already at fixation point when the new trial started, thus there are fewer start saccades than end
saccades. Moreover, we only analyze start and end saccades with amplitudes similar to the experimentally-set amplitudes of
the rewarded saccade, i.e. between 4 and 16 deg.

81 Results

82 Behavioral task and neural recordings (Fig. 1)

83  We first consider recordings from three monkeys that were engaged in a visually-guided,
84  instructed-saccade task, requiring them to perform a sequence of saccades and fixations on
85  each trial to obtain a reward (Fig. 1a). We analyzed neural activity and eye movements for
86 alltrial epochs (Fig. 1a) and different types of saccades, i.e. the instructed and freely initiated
87 saccades occurring before, during, and after each trial (Fig. 1b). We refer to the initial
88 saccade to the fixation point as the “start saccade”, the saccade to the target as the
89  “rewarded saccade”, and the first saccade away from the target after reward delivery as the
90 “end saccade”. Figure 1c shows the distribution of saccade directions for the different
91 saccade types pooled over all experiments and radii (Monkey T). The start saccade is
92 followed by the “central-fixation”, i.e. the initial fixation on the fixation point lasting for a
93 randomized interval (1.3-2s) and preceding the “rewarded saccade”. Crucially, the rewarded
94  saccade is followed by the “target-fixation” lasting for a randomized interval (0.8-1.5s), i.e.
95 thefixation on the target until it disappears (Suppl. Fig. 1b). The inclusion of this prolonged
96 target-fixation is a key difference from instructed-saccade tasks used in past studies®!" 181936
97  * and greatly simplifies the interpretation of post-saccadic neural activity.

98  Neural activity was recorded with 96-channel Utah-arrays implanted in pre-arcuate cortex,
99 aregion of dorso-lateral PFC close to, and possibly including, the most rostral part of the
100 frontal eye fields* (Supp. Fig. 1a). Monkey T and V had the array placed in the concavity of
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Figure 2. Tuned post-saccadic activity follows every saccade
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Figure 2 Tuned post-saccadic activity follows every saccade. a. Time-specific decoding of the direction of the rewarded
saccade at times aligned to target onset, saccade onset and reward. At each time (horizontal axis), a separate multi-class
decoder (Linear Discriminant decoder) is trained to predict the direction of the rewarded saccade based on the population
response. The vertical axis shows 10-fold cross-validated decoding performance. Decoders are trained and tested on 11 classes
(all directions of rewarded-saccades during one session) meaning that chance performance is 9%. The lower panel displays the
averaged eye velocity, showing stable fixation prior and post-saccade execution. The blue line indicates decoding accuracy of a
single decoder, trained at 500ms post-saccade, and evaluated at many times post-reward. Post-reward there are no constraints
on the monkeys' eye-movements, so here we only show trials where monkeys happen to fixate for longer intervals prior to the
next trial. b. Cross-validated decoding accuracy when applying the decoders identified for the rewarded saccade (a.) to
responses aligned to the start (left panel) and end (right panel) saccade. Decoding accuracies are averaged across all sessions
and error bars indicate s.e.m. across sessions (n=9).

101  the arcuate sulcus in the left hemisphere, while monkey C had it placed in the right
102  hemisphere, above the principal sulcus®?. We show results from monkey T and monkey V in
103  the main text. We show results from monkey C in the supplementary figures to highlight
104  similarities and differences from the other monkeys, which may be due to a different array
105 placement. During the duration of an experiment, monkeys were head-fixed.

106 Tuned post-saccadic activity follows every saccade (Fig. 2)

107  We begin our analysis by quantifying the representation of saccade direction in single-trial
108 population responses using cross-validated multi-class decoders*'~* (Fig. 2). We decoded
109 the direction of the rewarded saccade from population spike counts at particular times
110 relative to the target onset, the saccade onset and reward delivery.

111 Cross-validated decoding accuracy varies over time—it rises after the target is presented
112  (Fig.2a, left), peaks after the end of the saccade, persists throughout the target-fixation, and
113 s still high at and after reward delivery (up to 2s after saccade onset). Decoding accuracy
114  late during central-fixation and target-fixation is comparable (Fig. 2a, right; Suppl. Fig. 3b, g
115  other monkeys; Suppl. Fig. 2e other decoders). Throughout the central-fixation period, the
116  execution of the rewarded-saccade, and the target-fixation period, decoding errors almost
117  exclusively reflect read-out directions that are immediately adjacent to the true direction
118  (Suppl. Fig. 2a top row). Decoding accuracy remains high well beyond the time of the
119  saccade, an observation unlikely to be accounted for by transient inputs from motor or
120  sensory areas. Like pre-saccadic activity, post-saccadic activity may thus be a form of
121  persistent, internally generated activity®'"*°.

122 Saccade direction can be robustly read out from the population also after the start and end
123 saccades (Fig. 2b, duration of start saccade = 30+-30ms; duration of end saccade = 140+-
124  80ms; Suppl. Fig. 2a, bottom row, and 2b for a finer comparison; Suppl. Fig. 3¢, h other
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125  monkeys). Critically, Figure 2b shows the accuracy of decoders that were trained only on
126  activity around the rewarded saccade, meaning that the same decoders have high accuracy
127  for all three saccades and implying that the population encoding of saccadic activity is
128 largely preserved across different types of saccades. This finding is consistent with
129  representations of saccades in retinotopic coordinates (see also below, Fig. 3d).

130  Neural population activity in pre-arcuate cortex thus appears to encode the direction of a
131  saccade from long before it occurs (for the rewarded-saccade) to long after it was
132 completed (for all saccade types). However, the interpretation of post-saccadic activity as a
133 representation of the direction of the immediately preceding saccade is complicated by a
134  feature of the task we analyzed, which is common to many similar tasks. Specifically, the
135  direction of the rewarded saccade is both highly correlated with the direction of the saccade
136  that follows it (the end saccade, which often brings gaze back to the fixation point; Fig. 3a,
137  left panel: monkey T; Suppl. Fig 3a, f middle panel: monkeys V and C) and perfectly
138  correlated with the location of the post-saccadic fixation, i.e. the target location. Unless
139 these correlations are accounted for, it remains unclear whether post-saccadic activity is
140  best explained as representing the direction of the previous saccade, the direction of the
141  next saccade, or the location of the post-saccadic fixation.

142 Interestingly, recordings in monkey C reveal strong post-saccadic activity but little pre-
143 saccadic activity (Suppl. Fig. 3g, h; from a more anterior location in dIPFC than in monkeys
144  Tand V), suggesting that pre- and post-saccadic activity amount to fundamentally distinct
145  signals. Below we reach the same conclusion by analyzing datasets tailored to disambiguate
146  between different possible explanations of post-saccadic representations in monkey T and
147 V, for which both pre- and post-saccadic activity occur in the recordings (Fig. 3).

148  Post-saccadic activity is not pre-saccadic activity for the next saccade (Fig. 3a-c)

149  Two observations indicate that post-saccadic activity is unlikely to represent a plan of the
150 next saccade. First, Figure 2b implies that the end saccade (unlike the rewarded saccade,
151  Fig.2a)is preceded by only very weak predictive activity, which occurs immediately prior to
152 its execution. Second, we studied if predictive activity for the end saccade contributes to
153  the strong post-saccadic activity immediately following the rewarded saccade. To this end,
154  we applied a pre-saccadic decoder (defined 150 to 50ms before the rewarded saccade) to
155  activity following the rewarded saccade, and assessed whether the decoder-read out is
156  predictive of the direction of the end saccade.

157  Notably, we take several steps to ensure that the decoder read-out does not simply reflect
158 the correlations between the directions of the rewarded and end saccades. For one, we
159  evaluated the accuracy of the read-outs separately for single directions of the rewarded
160  saccade (rewarded saccades to three contralateral directions are followed by end saccades
161 in many directions and thus suited to test the decoder; Fig. 3a, dashed rectangle). For
162  another, we created a balanced test set by sampling an equal number of trials from each
163  end-saccade direction (Fig. 3a, bottom-right).

164  With this unbiased approach, we find that through-out much of the target-fixation period
165 apre-saccadic decoder (blue vertical line, Fig. 3b) cannot be used to predict the direction of
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Figure 3. Nature of representations
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Figure 3 Nature of representations. a-c Modulations of post-saccadic activity due to future actions. Each panel shows
histogram of consecutive saccades, expressed as the distribution of directions for the end saccade (columns) conditioned on
the direction of the rewarded saccade (rows). For each row, the sum of columns equals 1. Different settings are shown. Left
panel: synthetic data for an unbalanced set where all end saccades are directed to the fixation point. Right panel: behavior
of monkey T. Bottom panel: a balanced dataset obtained by resampling trials with rewarded saccades towards 0°, 30°, and
60° to obtain a uniform representation of end saccade directions. b. We apply a decoder trained on responses prior to
rewarded saccade (blue area) to activity after the rewarded saccade separately for the three conditions in the balanced
dataset. The resulting read-out is not predictive of the direction of the end saccade (bottom three curves). In contrast, on the
same set of trials, the direction of the rewarded saccade can be decoded with high accuracy when using the time-specific
decoders from Fig. 2a (top three curves). c. Summary plot. The pre-saccadic activity of the end saccade is much weaker both
compared to the post-saccadic activity of the rewarded saccade prior to reward (compare squares and crosses along the
horizontal axis) and to the pre-saccadic activity of the rewarded saccade (squares are above the unit line). (n=9)

d-e Non-retinotopic modulations of saccade-related activity. d. Recordings from a random-dots task that included trials
from two “shifted” workspace, whereby the location of the fixation point in a given workspace was shifted either along the
horizontal midline (cold colormap) or along the vertical line (warm colormap). For both horizontal and vertical shifts in
workspace, SVM decoders of choice-direction achieve comparable, high performance for all gaze locations, including
locations corresponding to the end point of saccades with opposite directions (horizontal shift: light-blue curves vs. other cold
colors; vertical shift: orange curves vs. other warm colors). Monkey V has sessions only from the horizontal “shifted”
workspace. e. Summary plot of saccade and gaze modulation at single-unit level. We modeled the activity of each unit with
a regression model including linear and non-linear terms for direction and gaze. Saccade direction modulates a larger portion
of variance compared to gaze. (n=4, 2 per each shift). Across all panels, error bars indicate s.e.m. across sessions.

166  the end saccade (solid lines in Fig. 3b, close to chance; colors correspond to the three
167 rewarded saccade directions in the balanced dataset). During the same period, on the other
168 hand, time-specific decoders (from Fig. 2a) do predict the direction of the preceding
169 rewarded saccade well-above chance (dashed lines in Fig. 3b, and Fig. 2a).

170  We obtained similar results in both monkey T and V (Fig. 3¢). Inmediately before the onset
171  of the end saccade, predictive activity for the direction of the upcoming end saccade (Fig.
172 3¢, horizontal axis, squares) was weak compared to the representation of the direction of
173  the preceding rewarded saccade (Fig. 3¢, horizontal axis, crosses). Together, the above
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174  observations imply that post-saccadic activity, consistently in all monkeys, does not
175  represent the plan of a future action.

176  Post-saccadic activity does not encode the momentary gaze location (Fig. 3d)

177  Two observations indicate that momentary gaze location®*=*>*-2 js also unlikely to be the
178  main contributor to post-saccadic activity. A firstindication is given by the finding that post-
179  saccadic decoders trained on the rewarded saccade can also decode the directions of the
180 start and end saccades (Fig. 2b, times following saccade onset). Unlike for the rewarded
181 saccade, for these saccades, the correlation between saccade direction and post-saccadic
182  gaze location is reduced or absent. All start saccades, in particular, end on the central
183 fixation point, meaning that the post-saccadic gaze location is identical across all trials. Yet,
184  the direction of the preceding saccade can be decoded with high performance also
185 following start saccades (Fig. 2b, left).

186  We find further evidence that post-saccadic does not primarily represent gaze location in a
187  separate behavioral task, for which we partially decoupled the direction of the rewarded
188 saccade and post-saccadic gaze-location. Each experiment included trials from two
189  “shifted” workspaces, whereby the location of the fixation point in a given workspace was
190  shifted either to the left or right from the horizontal midline, or above or below the
191  horizontal midline (Fig. 3d). As a result, one of the choice targets in this task (Fig. 3d, light-
192  blue and orange target) was reached with saccades having very different metrics across
193  workspaces.

194  Even when post-saccadic gaze location is controlled in this way, the direction of the
195 rewarded saccade can be decoded with high accuracy throughout the central-fixation,
196 movement, and target-fixation periods (right panel in Fig. 3d for monkey T and V). In
197  particular, decoding accuracy is high even on trials that all shared the same post-saccadic
198 gaze location (Fig. 3d, light-blue and orange) and similar to the accuracy on trials where
199  direction and gaze-location covaried (Fig. 3d, other colors). This observation alone implies
200 the existence of a strong representation of saccade direction that is independent of any
201  concurrent representation of gaze location. We further quantified the influence of saccade
202  direction and gaze location at unit-level with a linear regression model, whereby each unit’s
203  activity is captured as a combination of these two factors. Overall, the previous saccade
204  direction explained a substantially larger fraction of the variance in activity than gaze
205 location? (Fig. 3e).

206  The above findings also make it unlikely that post-saccadic activity represents a gaze-
207 dependent visual input. In fact, selectivity to visual inputs is unrelated to post-saccadic
208  selectivity at the unit-level (Suppl. Fig. 7c). The most parsimonious interpretation of post-
209  saccadic activity is that it represents a retrospective signal, a short-term “memory” of the
210  preceding saccade. The strength and time-course of this action memory appears to vary
211  across saccades, as decoding accuracy differs between different types of saccades (Fig. 2a
212 and 2b; Suppl. Fig. 3b, c and g, h). These differences may imply that post-saccadic activity is
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Figure 4. Different tasks, same patterns of activity
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Figure 4 Different tasks, same patterns of activity. Decoding the direction of the rewarded-saccade across different tasks
using a binary SVM decoder. a. Same-day recordings with common choice targets for reward-based decisions (green),
perceptual decisions (purple) and instructed saccades (black). b. We decoded choice-direction using a binary SVM on a
balanced set across the three tasks. The decoders achieve high accuracy, similarly across all tasks on responses aligned to
saccade onset and feedback, but differentiate largely on responses aligned to the appearance of the relevant visual stimulus.
Decoders are trained and tested on trials where behavior performance is matched across the three tasks (rewarded trials
with high motion coherence in random-dots task and “post-win” trials in the associative task). c. We identify decoders for
choice-direction for each task (task-specific decoders). Time-course of decoding accuracy is identical to the time-course of the
common decoders in b. d. We apply task-specific decoders to activity at different times and different tasks. Specifically, we
evaluate decoders specific to the instructed saccades from activity from through-out the trial, to perceptual decisions (middle
panel) and reward-based decision (right panel). This analysis further reveals that task-specific decoders are, in fact, common
across tasks. Specifically, middle and right panel resemble left panel, where training and testing are both on activity from
instructed saccades. Decoding accuracies are averaged across sessions and error bars indicate s.e.m. across sessions (n=12).
Analogous figure for monkey V (Suppl. Fig. 4). e. Summary decoding accuracy for both monkeys at 400ms post target/stimulus
onset. Empty markers indicate averaged decoding accuracy when choice labels were shuffled. Decoding accuracies of choice
exceed chance levels (50% or empty markers) both for across-task and for task-specific decoders.

213  modulated by contextual influences, like the temporally discounted reward-expectation>?
214  associated with each saccade.

215 Prospective and retrospective representations have different task-selectivity (Fig. 4)
216  We further studied context-dependent modulations by comparing the activity of the
217  rewarded saccade across three tasks placing different demands on the activity bridging
218  stimuli to actions and rewards (Fig. 4 for monkey T, Suppl. Fig. 4 for monkey V): instructed
219  saccades (as Fig. 1, but with only 2 target locations), perceptual decisions (as in Fig. 3d, but
220 for a single workspace) and reward-based decisions (discussed in detail in the last section
221  of the results). The latter task required monkeys to track which of two colored targets was
222  rewarded at a given time, meaning that choice on a given trial depended on the choice and
223 outcome on the previous trial**>*>¢,
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Figure 5. Saccade-related activity in prefrontal units
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Figure 5 Saccade-related activity in prefrontal units. a. Condition-averaged responses of individual units. Example responses
for units with high goodness-of-fit (r-squared) before (al), immediately after (a2) and long after the saccade (a3) are
averaged and colored according to the direction of the rewarded-saccade (target eccentricity is ignored). Some units show
substantial modulation both before and after the saccade (units #1 and #4). Black dashed line indicates event onset. Grey area
in legend of “target dir.” indicates the direction that was not present for this experiment. b. Three example fits of the model of
direction selectivity to condition-averaged responses with different selectivity levels: from left (highly selective - high r-squared)
to right (not selective - r-squared = 0). Model fitting was done through cross-validation. c. Time-dependent (top row) and cross-
temporal (bottom row) selectivity for the rewarded saccade. Top row: Percentage of selective units (r-squared > 0) on responses
aligned to target onset (left) and rewarded saccade onset (right). Bottom row: Colored curves show the percentage of units that
are selective both at a reference time (circles on top, color indicates trial epoch - purple, black and green for post-target, pre-
saccade and post-saccade, respectively) and at other times in the trial (horizontal axis). For each curve, the lines connecting the
corresponding reference time and the two immediately adjacent times (dashed) are mostly omitted. Percentage of selective
units is normalized with respect to the percentage of selective units at the reference time, i.e. 70% indicates that 70 percent of
the units that are selective at reference time t; are also selective at a different time t;. Circles indicate significant cross-temporal
selectivity. Chance level is computed for each time-pair by constructing a null distribution from 1000 permutation tests, where
we shuffle the order of units at the two times and compute the overlapping percentage of selective units. Cross-temporal
selectivity is considered significant if it exceeds the 95th percentile of this null distribution.

224  We obtained recordings from all three tasks on the same day, whereby the location of the
225  choice targets was fixed across tasks. We analyzed activity starting from the onset of the
226  visual stimulus that guided the monkeys’ choices, i.e. the target onset in instructed saccades
227  and reward-based decisions, and the onset of the random-dots in the perceptual decisions
228  (Fig. 4b, Suppl. Fig. 4b). To study potential contextual modulations of the underlying
229  representations, we estimated and compared choice-decoders that were common across
230 tasks with decoders that were task-specific.
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231  Early choice-predictive activity along common decoders was strongly modulated by task-
232 context (Fig.4b, Suppl. Fig. 4b). Predictive activity developed quickly for instructed saccades
233 (black), more slowly for reward-based decisions (green), and slowest for perceptual
234 decisions (purple). We observed these differences even though here we only analyzed trials
235 that were matched for average performance across tasks (e.g. only high-coherency motion
236 trials in the perceptual decisions). In contrast to the strong task-dependency at trial onset,
237  choice-related activity around and following saccade onset was not or only weakly
238  modulated by task-context.

239  These differences in decoding accuracy at trial onset are observed also when using task-
240  specific decoders (Fig. 4c, Suppl. Fig. 4c). The observed task-dependency thus reflects true
241  differences in the strength of the corresponding pre-saccadic representations, as opposed
242 to simply reflecting a “sub-optimal” decoder that captures patterns of activity that are
243  common across tasks, but may not be optimal for some individual tasks. This conclusion is
244  also supported by directly comparing the temporal dynamics of the task-specific
245  decoders”'7324157-39 (Fig. 4d, Suppl. Fig. 4d). Specifically, we applied the decoders from one
246  task, trained at any given time in the trial, to activity recorded at all times either in the same
247  task (Fig. 4d left) or in a different task (Fig. 4d, middle and right). This analysis revealed that
248  early choice related activity is largely explained by a single, stable component that is similar
249  across tasks, but emerges later in the perceptual and reward-based decisions (Fig. 4d
250 middle and right vs. left; compare to Supp. Fig. 4d). Later peri- and post-saccadic activity
251 instead undergoes essentially identical dynamics in all tasks (Fig. 4d). Consistently in both
252 monkeys (Fig. 4e), choice representations thus transition between the same patterns of
253 activity in all tasks, albeit with somewhat different speeds (Fig. 4b).

254  Prospective and retrospective signals are mixed in individual units (Fig. 5)

255 Having established that dIPFC populations maintain prospective and retrospective
256  representations of saccade direction, we asked how these representations are organized at
257  the unit-level. In particular, prospective and retrospective signals could be maintained by
258  separate populations of neurons, or could be mixed within a single population. To address
259  this question, we focus on the instructed-saccade task shown in Fig. 1. An examination of
260  example units shows substantial variability across the population in the temporal dynamics
261  of saccade-modulated activity®'"193¢-39¢ (Fig. 5a), with some units selective prior to saccade
262  (units #2 and #5), after the saccade (units #7 and #9) or both before and after the saccade
263 (units #1 and #4).

264  To quantify the strength and dynamics of directional selectivity in individual units, at any
265 given time in the trial we fitted a bell-shaped function to the activity averaged by target
266  direction, while ignoring target eccentricity (Fig. 5b). We considered a unit to be direction
267  selective at a particular time if the cross-validated r-squared value of the corresponding fit
268  was higher than 0, i.e. the model describes the direction-averaged responses better than a
269  constant. For selective units, we then defined the preferred direction as the corresponding
270  model parameter (the peak location of the fitted tuning curve).
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Figure 6. The relation between pre and post-saccadic activity
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Figure 6 The relation between pre and post-saccadic activity. a. Selectivity dynamics of units with cross-temporal tuning.
Plot shows a histogram of angular difference between the pre-saccadic and post-saccadic preferred directions units that are
selective at both times. We construct a null-distribution by shuffling the order of units and thus assuming no relation between a
unit's preferred direction at pre and post-saccadic times. The shaded area marks the 5" and 95" percentile of this null-
distribution over 1000 random repetitions. The distribution of angular differences is binned in 30 degrees bins. At +50ms, the
post-saccadic and pre-saccadic preferred directions tend to match (peak of distribution at 15°- [0: 30] degrees, “stable”), but at
+150ms the preferred directions have mostly flipped (peak of distribution at 165°-[150: 180] degrees, “flip”). b. Time-dependent
histograms of decoding errors of a pre-saccadic decoder (trained on responses from -150ms to -50ms prior to rewarded saccade,
Linear Discriminant decoder) when applied onto post-saccadic responses of the rewarded saccade (top), start saccade (middle)
and end saccade (bottom). Each histogram (vertical axis) is normalized with a uniform distribution, where the uniform
distribution is estimated by computing the angular difference between two random draws of N angular discrete values
matching the target locations, 1000 times. The y-axis shows the empirical distribution divided by the mean of the estimated
uniform distribution. Dashed black line indicates saccade onset. c. Summary plot illustrating the distribution of decoding errors
of a pre-saccadic decoder applied to pre-saccadic responses (black line, responses from -150ms to -50ms prior to rewarded
saccade) and post-saccadic responses (colored lines, responses from 250ms to 350ms post rewarded, start and end saccades).
Decoding errors are shown only for saccades directed towards the contralateral hemifield, because of their strong pre-saccadic
activity (Suppl. Fig. 2d for monkey T, Suppl. Fig 3b for monkey V). For each monkey, we use the decoder with the highest decoding
accuracy for the direction of rewarded saccade (See Suppl. Fig. 2e formonkey T and Suppl. Fig. 3e formonkey V), but results were
quantitively similar across other decoders. All figures contain results averaged over sessions. (n = 9 formonkey Tand n = 10 for
monkey V). Error bars indicate s.e.m. across sessions.

271  Wefind that a substantial fraction of units encodes direction at any given time in the trial in
272 all monkeys (Fig. 5¢, top for monkey T and V, Supp. Fig. 7b for monkey C). The fraction of
273  selective units varies throughout the trial, largely mimicking the time-course of the
274  population-level decoders (Fig. 2; Supp. Fig. 3b, g for monkey V and C). To compare the
275  strength of tuning in individual units across time, we defined a “cross-temporal selectivity”
276  measure (Fig. 5¢, bottom row), which quantifies the percentage of units that are direction
277  selective at a given reference time (small circles on top and curve of the corresponding
278  color) as well as at a different comparison time (horizontal axis).

279  The cross-temporal selectivity is broadly consistent with mixed selectivity>®. A substantial
280 fraction of units that are selective after the saccade are also selective before the saccade or
281  rightafter target onset (about 50% and 25% in monkeys T and V, Fig. 5¢, green curves; circles
282 indicate significant cross-temporal selectivity). Similarly, many units that are selective after
283  the target onset or before the rewarded saccade are selective also long after the saccade
284  (Fig. 5¢, purple curves).
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285  Signal mixing within units is not random (Fig. 6)

286  The relation between prospective and retrospective representations in individual units is
287  highly structured. In units showing both pre- and post-saccadic tuning (Supp. Fig. 7a), we
288 computed the angular difference between the preferred direction estimated immediately
289  before saccade onset (-100ms) and two times following the end of the saccade (+50ms and
290  +150 after saccade onset). In monkeys T and V, more units than expected by chance show
291  an angular difference close to 180 deg, implying that the preferred direction tends to “flip”
292  between pre- and post-saccadic activity (Fig. 6a).

293  The flip in preferred direction is also prominently reflected in the inferred population
294  decoders. Applying a pre-saccadic decoder trained during the central-fixation to the activity
295 in the post-saccadic epoch results in a pattern of read-out errors strongly biased towards
296 the direction opposite to the true saccade direction (Fig. 6b, upper row, pre-saccadic
297  decoder; decoding error = 180°). The bias is strongest shortly after completion of the
298 rewarded saccade, but persists throughout even the longest target-fixations (Suppl. Fig. 2¢).

299  Similar read-out errors are observed when applying the same pre-saccadic decoder to the
300 post-saccadic activity of both the start saccade and end saccade (Fig. 6b, middle and
301  bottom rows). Crucially, the prominent regularities in the metrics of saccades that follow
302 therewarded saccade (Suppl. Fig. 6 for monkey T; end saccades tend to be opposite to the
303 rewarded saccade; Suppl. Fig. 3a for monkey V) are largely absent for the start and end
304  saccades (Suppl. Fig. 6, left and right) implying that the inferred structure between pre and
305 post-saccadic selectivity is not simply a consequence of these regularities in the behavior.

306 Overall, the relation of pre-saccadic and post-saccadic responses is far from random (Fig. 6¢,
307 summary for monkey T and V), but rather reveals a highly structured way for the neural
308 population to transition from representing the plan of an action to representing its memory.
309 These structured representations stand in contrast to the findings of prior studies showing
310 that many abstract variables are randomly mixed across units”', implying potentially
311  different encoding strategies for spatial and abstract variables.

312  An associative learning task (Fig. 7)

313  We studied how the identified neural representations change though-out learning in an
314  associative learning task*, a kind of task that was previously shown to rely on an intact pre-
315 arcuate gyrus®'. Monkeys were engaged in a two-alternative, forced-choice task that
316 required them to track which of two targets (red or green) was being rewarded at any given
317 time (Fig. 7a). Because the timing of switches in rewarded color was unpredictable, the
318 optimal strategy is “win-stay, lose-switch”*>¢: if a given color was rewarded (“win”), the
319  monkey should choose the same color again on the next trial (“stay”). Instead, after a choice
320 that was not rewarded (“lose”) the monkey should switch to the other color (“switch”).
321  Monkeys’ performance gradually improved over the course of many weeks of exposure to
322  thistask (Fig. 7b).

323 Achieving optimal performance in this task requires both fast and slow learning®. On the

324  fast time-scale of trials, monkeys must update their beliefs about what color and location
325  will be rewarded on the current trial based on the actions and outcomes on the preceding
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Figure 7. Learning task (behavior)
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Figure 7 An associative task and behavior performance. a. Subjects performed an associative task that had the same trial
structure as the instructed saccade task, namely a central-fixation period of random duration between targets appearance, and
the saccade (choice-saccade) towards one of them; followed by a target-fixation period of random duration requiring monkeys
to fixate the chosen target until feedback. On any given trial, the reward contingencies depend on the outcome and the chosen
color of the previous trial. The mapping between color and location is random from trial-to-trial. b.Behavior performance varies
substantially on trials following a rule-switch. This implies that the monkeys' behavior after errors changes through-out learning.
In contrast, the behavior after rewards is almost constant. c. Behavioral models describing the strategies the monkeys use to
harvest rewards. 'Win-stay - lose-switch' behavior is modeled with logistic regression using either the relevant history (choice-
color) or the irrelevant history (choice-location). Figure shows the estimated probability that the monkeys will either choose the
same choice-color/choice-location as in the previous trial following rewarded trials (win-stay, horizontal axis) or switch
following error trials (lose-switch, vertical axis). From the estimated probabilities we subtract the simulated probabilities of a
random strategy. Thus, for an optimal agent (black cartoon) AP for location is 0 and for color is 0.5. d. Simulated color-choices
using the model of previous relevant history explain well behavior around rule-switches, both early and late in training.

326 trials. On the slow times-scales of days and weeks, monkeys must infer the task rules and
327 learn a strategy to optimally harvest rewards. We characterized fast learning with logistic
328 regression models fit to the behavior in a single session, and then studied how the
329 corresponding strategies are shaped by slow learning across sessions (Fig. 7c). We
330 separately modeled the influence of the (task relevant) target color and the (task irrelevant)
331 target location on the monkeys’ choices (Fig. 7c, circles and squares) and their interaction
332 with previous outcome (win or lose, x- and y-axes).

333  In both monkeys, slow learning primarily involved changes in how monkeys reacted to
334  unrewarded trials (Fig. 7c, y-axis). Monkeys learned to consistently switch colors after a lose
335 trial (Fig. 7c, circles; AP(lose-switch) gradually approaches 0.5). Notably, monkeys
336 consistently stayed on the rewarded color already during the very first session on this task
337  (Fig. 7¢, AP(win-stay) close to 0.5). Likewise, monkeys’ choices were more strongly affected
338 by the irrelevant target location after lose trials compared to win trials (Fig. 7c, squares;
339 larger differences from 0 along y- compared to x-axis). Notably, in monkey T learning also
340 involved overcoming an initial (incorrect) spatial strategy (Fig. 7c left, squares: AP(lose-
341  switch) gradually approaches 0.5). In both monkeys, the inferred stay and switch
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Figure 8. Choice-representations during learning
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Figure 8 Choice-representations during learning. a. Decoding accuracy of saccade direction through-out the trial. Decoders
are trained only on post-win trials, i.e. trials following rewarded trials, and evaluated on (1) post-lose trials, i.e. trials following
unrewarded trials, and (2) on a held-out set of post-win trials. We resample trials to have the same train and test set size
across training days. Choice-related activity is substantially modulated by the outcome of the previous trial at targets onset,
but not at times relative to saccade onset. Decoding accuracy is averaged over all sessions and error bars indicate s.e.m.
(n=36 for monkey T and n=21 for monkey V). b. Decoding accuracy of post-lose trials split for early and late training days.
Early sessions are considered the first half and late sessions the second half. Dots on the bottom indicate p-value < 0.05 as
estimated from a partial correlation that correlates training half (1 for early and 2 for late) and decoding accuracy of each
session. We use partial correlation to control for any effects that radius (continuous values) and target configuration (one-
hot encoding) might have on decoding accuracy. c. Same as b. but for post-win trials.

342  probabilities were sufficient to explain the dynamics of performance after a change in the
343 rewarded color, implying that fast learning primarily relies on information from the
344  immediately preceding trial.

345 Neural changes across fast and slow learning (Fig. 8)

346  We studied how choice representations relate to both fast and slow learning by comparing
347 decoding accuracy for the direction of the choice saccade (choice location) across trials
348 differing in the outcome of the immediately preceding trials (Fig. 8a; fast learning) and
349  across early and late sessions (Fig. 8b; slow learning). Despite its task relevance, choice color
350 was only weakly represented in the recorded areas (Suppl. Fig. 9).

351 The recorded choice-representations were modulated by trial-history, albeit only in pre-
352  saccadic activity. Post-lose trials had weaker choice predictive activity compared to post-
353  win trials up until saccade execution. After the saccade, choice-related activity instead was
354  equally strong across both trial types. The observed history-dependence of pre-saccadic
355  activity seems consistent with the above finding that slow learning primarily involves
356 adjustments to the strategy following lose trials (Fig. 7c) and may reflect low confidence,
357 frequent changes of mind®, or a slowing down of neural responses after negative
358 feedback®®.

359  Notably, the monkeys’ overall task performance did not correlate with any of the features
360 of the responses we considered (Fig. 8b). Decoding accuracy on post-lose or post-win trials
361 wassimilarin early and late sessions during all trial epochs, despite the monkeys performing
362 closertooptimal on late vs early sessions (Fig. 7c). The representation of other task variables,
363 like choice color, was also unchanged throughout learning (Supp. Fig. 9b). Overall, the
364  properties of pre- and post-saccadic representations thus appeared to be largely fixed over
365 long time-scales.
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366 Discussion

367 We measured and quantified population activity in pre-arcuate cortex of macaque monkeys
368 across different tasks (instructed, perceptual discrimination and reward-based decisions),
369 different type of saccades (instructed and free) and different learning time-scales (seconds
370 and months) to obtain a comprehensive characterization of saccade-related activity in pre-
371  arcuate cortex in different contexts.

372 Properties of pre- and post-saccadic activity

373  We find that post-saccadic activity is the strongest and most consistent form of saccade-
374  related activity, both at unit-level (Fig. 5¢, top row for monkey T and V, Suppl. Fig. 7b for
375 monkey C) and at population-level (Fig. 2 for monkey T, Suppl. Fig. 3b, g for monkey V and
376 (). The direction of the rewarded saccade can be best decoded after the saccade is already
377 completed, and decoding performance remains high until the time of feedback,
378 throughout a delay period during which the gaze is fixed (Fig. 2a). This finding is notable in
379 an area of dIPFC that was previously primarily associated with pre-saccadic responses®. A
380 keyfactorin revealing the prominence of post-saccadic activity was to more closely balance
381 the duration of pre- and post-saccadic epochs in our tasks.

382  The persistence of post-saccadic activity seems at odds with the findings of some previous
383  studies, which instead reported largely transient activity®*°. These past studies, however,
384 did not include a temporal separation between the saccade and the feedback. The
385  persistent nature of post-saccadic activity might become apparent only when such a delay
386 periodisincluded in the task, since any task-relevant saccade-related information may have
387 to be maintained until feedback is provided.

388 As in more posterior areas of PFC®'"'8'° but not more anterior ones?*, post-saccadic
389  activity is intermingled with pre-saccadic and movement related activity (see Suppl.
390 Discussion on retinotopic coordinates). When pre- and post-saccadic activity co-occurs in
391 single neurons, they are tightly linked—the preferred direction typically flips by 180
392  degrees between the pre- and post-saccadic epochs for all saccades (Fig. 6). Analogous flips
393 in selectivity have been observed before in relation to saccades®'!, but may also occur in
394  other settings®*¢’%%, This structure stands in contrast with the common finding that in
395 associative areas task-related variables are often randomly mixed in the population”'7~?, As
396 discussed below, one possible function of the observed flips may be to update a
397 representation of visual space across saccades.

398 Pre- and post-saccadic activity are differently modulated by saccade type and task. Unlike
399 pre-saccadic activity'''838%° (but see’®), post-saccadic activity occurs after every saccade, but
400 is strongest and lasts the longest following “rewarded” saccades (i.e. the last saccades
401 preceding feedback and reward delivery, Fig. 2a). Weaker and more short-lived post-
402  saccadic activity follows the start saccades that initiate a trial, and the end-saccades that
403 follow the reward (Fig. 2b).

404  During learning, we find that choice representations reflect the recent trial-to-trial history,

405 but not day-by-day behavioral improvements. This was particularly surprising for trials
406 following errors, where the behavior strongly changes through-out the learning process.
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407  The fast adjustment to rule-switches in later sessions (pink lines in Fig. 8b) indicate that
408 monkeys correctly interpret errors as informative factors relevant for future decisions.
409  Nevertheless, the weak choice-representations on post-error trials are observed in late and
410 early sessions, despite an almost impeccable behavioral performance during late sessions.

411  The fact that a linear decoder was capable of reading the monkey's choice independent of
412  the task (Fig. 4b) suggests that dIPFC constitutes an advanced processing stage where
413  representations are rather rigid and resemble “domain-general”' and/or “untangled””?
414  representations. These representations did not reflect the large changes in behavior
415  occurring while monkeys learned the reward-based decisions. This task learning” could
416 instead reflect plasticity in areas upstream of dIPFC or in recurrent circuits involving both
417  cortical and subcortical areas’™.

418 Possible functions of post-saccadic activity

419 The finding that post-saccadic activity amounts to an action memory is consistent with a
420  key role of dIPFC in retrospective monitoring of behavioral context and in binding the past
421  to the present?-222427-297576 (see Suppl. Discussion for previously proposed functions). The
422  persistent representation of an action memory may be similar to the maintenance of other
423  behaviorally relevant variables in working memory (e.g.>””’). Representations of past stimuli
424 in dIPFC, however, are not limited to persistent activity, but can remain present in “activity-
425  silent” traces that reappear as activity on future trials’®. Temporary records of previous
426  actions are required by many reinforcement learning algorithms to evaluate the actions’
427  relevance with respect to rewards?®*’*%-82 (see Suppl. Discussion on choice memories?*-8
428 and eligibility traces). Neither pre- nor post-saccadic activity was modulated by slow
429 learning processes, suggesting that the underlying spatial representations are a rigid, core
430 feature of dIPFC. Such rigid representations may coexist with the flexible emergence of
431  representations of abstract task variables’*?#-%° The separation of rigid and flexible
432  representations could be computationally advantageous, as it might reduce task-
433  interference® or catastrophic forgetting®.

434  Beyond learning, post-saccadic activity could contribute to updating representations of
435  visual space in PFC and to maintaining visual stability across saccades'%%. Our own work
436  and previous studies implies that visual stimuli, salient locations, action-plans, and their
437  memories are all represented in dIPFC in maps organized in retinotopic coordinates' 9?8,
438  Any behavior requiring more than a single saccade, like the visual exploration of a scene, or
439 the execution of sequences of saccades to multiple remembered locations, requires
440 updating these retinotopic maps following each saccade, a process often referred to as
441  remapping®®*%8, Concretely, after a saccade, a retinotopic map needs to be updated by
442  shifting it along a vector that is the exact opposite of the vector of the saccade that was just
443  executed (Suppl.Fig. 10and Fig. 13 in '°). The prominent flip in direction selectivity observed
444  after each saccade could quickly®' provide such an update signal, or could reflect the
445  outcome of the update process.

446 A contribution of post-saccadic activity to updating spatial representations would imply a
447  critical role for PFC in predicting and compensating for the consequences of one’s own
448  actions?%1% Consistent with such a role, impairments in generating and incorporating
449  predictions are thought to be a defining feature of schizophrenia'® %2, which consistently
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450 involves prominent changes in prefrontal circuits'®*'® as well as an impaired ability to
451  generate long and frequent saccades in visual exploration'.

452  Conclusion

453  Pre-arcuate cortex actively maintains accurate, persistent representations of saccades
454  before, during, and after each saccadic movement. The representations of saccadic action
455 plans and saccadic action memories are expressed in the same frame of reference,
456  retinotopic coordinates, making them well-suited as a basis for reinforcement learning
457  algorithms'® and for the computations underlying visual stability across saccades®. The
458  observed, concurrent representations of saccadic action preparation, action execution, and
459  action memories support a prominent role of PFC in linking events across time. An
460 important question for future studies is how the strong and rigid spatial representations we
461  described relate to the flexible representations of more abstract behavioral variables in PFC
462  and throughout the brain?/28106.107,
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770 Supplementary discussion

771  Retinotopic coordinates

772 Both pre-saccadic' and post-saccadic representations reflect retinotopic coordinates. Like
773  other types of movements, saccades could in principle be represented in a variety of
774  alternative coordinate systems, from head-centered, to body-centered, and world-centered
775  coordinates'®'%, Like past studies in dorso-lateral prefrontal cortex'"''°, we, however, find
776  weak representations of saccades in coordinate systems other than retinotopic coordinates
777  (Fig. 3d, e). Potential candidate structures for such representations in other coordinate
778  systems involve hippocampal areas and parts of PFC closely linked to it>%'"'-"4,

779  Function of post-saccadic activity

780 The properties of post-saccadic activity in pre-arcuate cortex appear inconsistent with a
781 number of proposed hypotheses about its function. Since post-saccadic activity is not
782  predictive of the next saccade, it is unlikely to represent a plan for a future action (see also').
783 A hypothesized role in “resetting” activity in PFC, to set the stage for a new saccade plan®’,
784  seems at odds with the observation that post-saccadic activity can persist over long
785  temporal intervals. This persistence, together with a pronounced dependency on reward
786  expectation, also rules out the possibility that post-saccadic activity represents a corollary
787  discharge for saccades. Instead, post-saccadic activity might be involved in retrospective
788  monitoring the behavioral context?0-222427-297576,

789  Relation to choice sequences

790 Choice memories represented as sequences of activity in rodent prefrontal and parietal
791  cortex®%¢ have been proposed as neural correlates of eligibility traces. The post-saccadic
792  activity we report here, however, differs in some respects from previously reported choice
793  related sequences®#, First, we show that post-saccadic activity appears to follow every
794  saccade, not just saccadic movements related to a choice between learned alternatives.
795  Second, post-saccadic activity changes smoothly as saccades direction is varied along a
796  circle (Suppl.Fig.2a) and can be traced back to single-unit response fields. Third, we observe
797  post-saccadic activity during fixation periods in which task-relevant movements are
798  suppressed, effectively excluding possible explanations of this activity through movement
799  confounds'>.

800 Eligibility traces

801 Many reinforcement learning algorithms'® use eligibility traces, i.e. temporary records of
802 previous actions, to evaluate the actions’ relevance with respect to rewards?7’479-82
803  Eligibility traces of eye movements are particularly important for learning, as eye
804 movements provide a fast feedback of motor performance''®'”. Implementing such
805 algorithms in neural circuits is challenging, as learning may rely on biophysical mechanisms
806 like spike-timing dependent plasticity (STDP) that operate on much shorter times-scales
807 than the task-events relevant for behavior''®'"?, Past proposals on how to link synaptic
808 plasticity to times-scale of behavior include tagging synapses to make them eligible for
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809 future reinforcement-driven changes'®'?' or prolonging the temporal footprint of
810  STDP'™*'?3, Such mechanisms seem ill-suited to the tasks studied here, as the duration of the
811 target-fixation period separating action and outcome outlasts even the longest-
812  documented windows of adult-brain STDP'™?*. On the other hand, by actively representing
813  persistent components originating from different times in the trial in the network,
814  representations of stimuli, actions and outcomes that are separated in time might be made
815 totemporally overlap in the brain, thus allowing learning to occur through fast mechanisms
816 like STDP. Our finding that post-saccadic activity is modulated by saccade type may imply
817  that action memories, similarly to working memory of sensory information, are maintained
818 in PFCflexibly, and preferentially for those actions that are most relevant for learning. Such
819  action memories may complement or interact with alternative mechanisms that could
820 allow task-relevant signals to be maintained without persistent activity’®, such as an
821  “activity-silent” memory emerging from changes in synaptic efficacy'*>'?¢.
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Supplementary Figures

Suppl. Fig 1. Neural recordings and task parameters
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Supplementary Figure 1 Neural recordings and task parameters. a. In all three monkeys, we obtained single-unit and multi-
unit recordings from a 10x10 array implanted in pre-arcuate cortex. Black circles indicate the cortical locations of the 96
electrodes used for recordings. b. Durations of three intervals occurring in each trial. Central-fixation (target/dots/targets on
for instructed/motion-discrimination/reversal learning task): from the onset of the relevant stimulus until the offset of the
fixation point. Target-fixation: from the onset of the rewarded saccade until the reward delivery. Inter-trial: from the reward
delivery of a given trial until the onset of the fixation point on the next trial. For reversal learning task, intervals for all three
monkeys are shown. Note that the length of target-fixation interval is longer for monkey T than for monkey V and C. c. Target
configurations for the instructed-saccade task - 33 unique locations for monkey T and 24 unique locations for monkey V and
C. For monkey T, the angular difference between two neighboring targets is 30 degrees, but on each session, one direction is
missing (left panel - 210 degrees, middle panel - 120 degrees, right panel - 300 degrees). For monkey V and C, the angular
difference between two neighboring is 45 degrees. For all monkeys, the radial difference between two neighboring targets is
4 degrees. Radii values are 4, 8 and 12 degrees. Error bars indicate s.e.m. across sessions.
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Suppl. Fig 2. High-dimensional decoders

a. Decoding errors of time-specific decoders b. Decoding accuracy
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838 Supplementary Figure 2 High-dimensional decoders. a. Time-dependence of decoding errors; the distribution of angular
839 errors (vertical axis) when testing times (horizontal axis) are chosen to coincide with training times for times relative to target
840 onset (top row, left panel), to rewarded saccade onset (top row, middle panel), reward delivery (top row, right panel), end
841 saccade onset (bottom row, left panel) and start saccade onset (bottom row, right panel). b. Eye-movement trajectories (left)
842 and time-specific decoding (right) for end (top) and start saccades (bottom). Unlike for the rewarded saccades, the direction
843 of the end and start saccades is continuous. To apply the decoders trained on the rewarded saccade, we discretize this
844 continuous variable into bins whose centers match the directions of the rewarded saccade. To study how this binning affects
845 the decoding performance, we assigned saccades into two groups: saccades with directions close to the respective category
846 center (left panels, black) and saccades with directions far from this center (left panels, gray). Decoding performance for both
847 groups is similar to performance when all trials are included Fig. 2b. The lower decoding performance of end and start
848 saccades compared to rewarded saccades thus does not seem to be a consequence of the different distribution of saccade
849 directions. c. We applied a pre-saccadic decoder to activity before and after the rewarded saccade (as in Fig. 6b, top row).
850 We separated trials based on the duration of the target-fixation period (0.8s, 1s and 1.2s). The angular errors close to 180
851 degrees reflect a flip in read-out along the pre-saccadic decoder at times following the rewarded saccade. d. Decoding
852 accuracy split by saccade laterality. Contralateral saccade have higher pre-saccadic activity than post-saccadic activity, while
853 ipsilateral saccades have higher post-saccadic activity than pre-saccadic activity. e. Decoding accuracy of different decoders.
854 Results are averaged over sessions and error bars indicate s.e.m. across sessions (n=9)
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Suppl. Fig 3. Saccade representations in monkeys V and C
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Supplementary Figure 3 Saccade representations in monkeys V and C. a-d: Data for monkey V. a. Statistics of subsequent
saccades, analogous to Suppl. Fig. 4. b. Time-specific decoding of the direction of the rewarded saccade, as in Figure 2a. c.
Time-specific decoding of the direction of the start and end saccades, based on corresponding decoders trained on rewarded
saccades. Analogous to Figure 2b. d. Decoding the direction of the end saccade, based on a pre-saccadic decoder trained on
rewarded saccades. Analogous to Figure 3b. e-h: Analogous to a-d, but data from monkey C.
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Suppl. Fig 4. Different tasks, same patterns of activity (monkey V)
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Suppl. Fig 5. Hypotheses of choice-dynamics across tasks

a. Sequential activity
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Supplementary Figure 5 Hypotheses of choice-dynamics across tasks. Task-dependent temporal dynamics for two different
choice representations. In both scenarios, we consider the case where choice activity in task 2 undergoes the same dynamics
as in task 1, but its onset is delayed. a. A temporal sequence, where each pattern is active at a certain time. We apply the
same analysis as in Fig. 4d, where we train time-dependent decoders on activity from task 1 and test them on activity from
all times in task 1 (left panel) and task 2 (right panel). Training and testing on task 1 reveals a diagonal decoding matrix, with
high values on the diagonal when the training and testing time coincide, and low values off-diagonal, where training and
testing time differ. When testing the decoders on activity from task 2 (where choice activity is delayed), the decoding
accuracies are high under the diagonal, matching the one time step delay set up in the cartoon of the time-courses. b. A static
activity pattern. Training and testing on task 1 reveals a block decoding matrix, with high decoding values everywhere. Testing
on activity from task 2 reveals a block structure starting at the second time step, again corresponding to the delay set up in
the cartoon of the time-courses.
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Suppl. Fig 6. Saccade sequences in the instructed-saccade task

a. Instructed-saccade task (saccade sequences)
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879 Supplementary Figure 6 Saccade sequences in the instructed-saccade task for monkey T. Histogram of consecutive saccades,
880 expressed as the distribution of directions for the second saccade (columns) conditional on the direction of the first saccade
881 (rows), shown for the start and rewarded saccade (left); rewarded and end-saccade (middle); end and the following saccade

882 (right).
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Suppl. Fig 7. Unit direction-selectivity

a. Pre- vs. post-saccadic selectivity
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884 Supplementary Figure 7 Unit direction-selectivity a. Pre- vs post-saccadic selectivity. Pre-saccadic (-100ms, horizontal axis)

885 vs. post-saccadic selectivity (+150ms, vertical axis), quantified as the goodness-of-fit (cross-validated r-squared) of the
886 direction-tuning model at these times. Each point represents a unit. For each monkey, units from all sessions are displayed.
887 Random jitter is added to units with “no selectivity” along both the vertical and horizontal axes; to units with only “pre-
888 saccadic selectivity” along the horizontal axis; and to units with only “post-saccadic selectivity” along the vertical axis. Axes
889 are linear and interrupted between 0 and 0.2 to be able to differentiate between units with “no selectivity” and units with
890 only “pre-saccadic”or “post-saccadic” selectivity. b. Percentage of selective units computed on responses aligned to rewarded
891 saccade onset for monkey V and C. Analogous to Fig. 5c, top row (right). c. Visual vs. post-saccadic selectivity. We consider a
892 unit to have visual selectivity if it has direction-selectivity (cross-validated r-squared > 0 of the bell-shaped model in Fig. 5
893 applied to direction-averaged responses) at target onset. Here, we directly compare the visual selectivity at +100ms post
894 target onset (vertical axis) against post-saccadic selectivity at +100ms post rewarded saccade onset (horizontal axis).

895 Correlation of selectivity strength (defined as the r-squared) at these two times is for monkey T rho = 0.05, p-value = 0.2 and
896 for monkey V rho = 0.02, p-value = 0.7. d. Cross-temporal selectivity for monkey V, analogous of Fig. 5c, bottom.
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Suppl. Fig 8. Task parameters in the learning task
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Supplementary Figure 8 Task parameters in the learning task. a. The target locations during the reversal learning task can
be in one of the five target configurations. Within each target configuration, either the radius may vary (classes 1-4) or the
angular distance between the two targets (class 5). The bar plots indicate how many sessions there are for each target
configuration and radius combination (data for monkey T).
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Suppl. Fig 9. Color-representations during learning
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Supplementary Figure 9. Color-representations during learning a,b Analogous of Fig 8a,b. ¢, d Target-location effects on
choice-representations (c) and color-representations (d). The target-placement (shown in Suppl. Fig. 8a) affected the
decoding accuracy at different times of location decoders, but not of color decoders. We account for target-location (using
one-hot encoding) when correlating decoding accuracy and training day (b for color and Fig. 8b for location)
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Suppl. Fig 10. Vector subtraction hypothesis
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Supplementary Figure 10 Vector subtraction mechanism for spatially accurate saccades. Diagram suggesting how a vector
subtraction mechanism could be used to adjust sensory representations across saccades. Suppose the motor plan is to
perform two consecutive saccades to two targets, goal A and goal B. Left panel: The motor plan is constructed while the gaze
is at the bottom of the tree (red circle) and uses the retinal registration of the two targets, plan A and plan B. Right panel:
The first saccade (action A) corresponds to plan A, and is thus a consonant-vector saccade. The second saccade is, on the
other hand, a dissonant-vector saccade, because the movement vector does not correspond to the original retinal registration
plan B. The movement-vector of the second saccade (action B) is obtained by subtracting the vector of the intervening (first)
saccade from the retinal registration of the second target: action B = plan B - action A. See Fig. 13 in 1.
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saccadic movements in primate prefrontal cortex
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1 Experimental Procedures

We collected behavioral and neural data from three adult male rhesus mon-
keys: monkeys T (14 kg), V (11 kg) and C (13 kg). All surgical, behavioral,
and animal-care procedures complied with National Institutes of Health guide-
lines and were approved by the Stanford University Institutional Animal Care
and Use Committee. Prior to training, the monkeys were implanted with a
stainless-steel head holder[1] and a scleral search coil for monitoring monocular
eye position[2]. We used operant conditioning with liquid rewards to train the
monkeys to perform a visually guided, delayed-saccade task; a two-alternative,
forced-choice, motion discrimination task; and a two-alternative, forced-choice,
non-spatial associative task. During training and experimental sessions, mon-
keys sat in a primate chair with their head restrained. Visual stimuli were
presented on a cathode ray tube monitor controlled by a VSG graphics card
(Cambridge Graphics, UK), at a frame rate of 120Hz, and viewed from a dis-
tance of 57 cm. Eye movements were monitored through the scleral eye coils
(C-N-C Engineering, Seattle, WA). Behavioral control and data acquisition were
managed by a computer running the REX software environment and QNX Soft-
ware System’s (Ottawa, Canada) real-time operating system.

2 Behavioral tasks

2.1 Instructed saccade task

Monkeys were engaged in a visually-guided, delayed-saccade task, requiring
them to perform a sequence of saccades and fixations on each trial to obtain
a reward (Fig. la). A trial was initiated by a saccade to the fixation point,
and subsequently the monkey was required to maintain fixation until the off-
set of the fixation point. At 0.6-0.8s after fixation onset, a saccade target was
presented in the periphery (33 unique positions per experiment for monkey T
and 24 for monkey V and C). The fixation cue disappeared after an interval
of random duration following the target onset (0.7-1.2s) instructing the mon-
key to execute the saccade to the target. After the saccade, the monkey was
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again required to maintain fixation, this time on the target, for the duration
of another random time interval (0.8-1.5s). At the end of this interval, the
target disappeared, a reward was delivered, and the monkey was free to move
the eyes. The three randomized intervals were drawn from uniform distribution.

Note that for monkey T possible targets were placed 30 degrees apart, but only
11 out of 12 ({0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330} degrees) direc-
tions were used per experiment. Specifically, targets at 120 degrees were never
present in 5 sessions; 300 degrees never appeared in 3 sessions and 210 degrees
never appeared in one session. Each target direction could appear at one of
three eccentricities or radii ({4,8,12}). For monkey V and monkey C, each
recording session included 24 unique target locations (8 target directions placed
at 45 degrees apart and 3 possible radii - 4, 8 and 12).

For the instructed saccade task, we analyzed neural recordings obtained when
the monkeys were proficient at the task, i.e. there are no error trials and
the direction of the rewarded saccade always refers to the target location.
We analyzed a total of 9/10/10 experiments with 20,952/4751/8611 trials and
1706/2334,/2095 single and multi-units from the three arrays in monkeys T/V/C.

2.2 Perceptual decision-making task (moving-dots)

Monkeys were engaged in a two-alternative, forced-choice motion discrimination
task (Fig. 3d, e). The timing of task events was similar to the instructed saccade
task (i.e. it included the random interval of target-fixation after the choice
saccade). On each trial monkeys observed a noisy, random-dots motion stimulus
presented through a circular aperture and had to report the prevalent direction
of motion with a saccade towards one of two visual targets. Correct choices (e.g.
a saccade to the right target for predominant rightward motion) were rewarded
at the end of the target-fixation period. The strength of the motion stimulus
(motion coherence) was set pseudo-randomly on each trial. For low motion
coherences, the monkeys’ performance was close to chance level (50%), while
for high coherences it was close to perfect (not shown). In this manuscript we
only analyzed rewarded trials with high motion coherence stimulus.

2.3 Shifted workspace for the perceptual task

We used a modified version of the moving-dots task to investigate whether
post-saccadic activity of the rewarded saccade is affected by the position of
the eye (Fig. 3d). The timing of relevant task-events was analogous to that
in the instructed saccade task, and included a target-fixation-period after the
rewarded saccade (i.e. the choice saccade). Critically, each experiment in this
task included trials from two “shifted” workspaces, whereby the location of the
fixation point was shifted to the left from the midline in one workspace (relative
to head-position), and to the right in the other (Fig. 3d, “left” and “right”
workspaces). As a result, saccade direction and gaze-location of the rewarded
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saccade are somewhat decoupled—for example, the location corresponding to
the center of the monitor could either be the target of a rightward or a leftward
saccade (Fig. 3d, left vs. right workspace).

2.4 Non-spatial associative task

Monkeys were engaged in a two-alternative, forced-choice task that required
them to track which of two targets (red or green) was being rewarded at any
given time (Fig. 7a). Throughout the day, the reward contingencies switched
repeatedly between two “contexts”: in the red context, only saccades to the
red target were rewarded, and in the green context only saccades to the green
target were rewarded. Because the timing of switches in reward contingencies
was unpredictable, the optimal strategy is “win-stay-loose-switch”: if a given
color was rewarded (“win”), the monkey should choose the same color again in
the next trial (“stay”). Instead, after a choice that was not rewarded (“loose”)
the monkeys should switch to the other color (“switch”).

2.5 Same recording day for perceptual task, instructed
saccade and associative with 2 targets

On some recording days, monkey T (12 sessions) and monkey V (2 sessions)
performed three tasks sequentially: the perceptual task (random-dots), the in-
structed saccade task where one target could appear in one of two locations
and the non-spatial associative task (Fig. 4). Importantly, the target locations
across the three tasks were identical, allowing the comparison of saccade-related
activity across the different tasks.

3 Neural recordings

We recorded single and multi-unit neural signals with a chronically-implanted
10 by 10 array of electrodes (Cyberkinetics Neurotechnology Systems, Foxbor-
ough, MA; now Blackrock Microsystems). The inter-electrode spacing was 0.4
mm; electrodes were 1.5 mm long. Arrays were surgically implanted into the
pre-arcuate gyrus[3,4]. We targeted the array to a region of prefrontal cortex
between the posterior end of the principal sulcus, and the anterior bank of the
arcuate sulcus, near the rostral zone of Brodmann’s area 8 (area 8Ar) in monkeys
T and V. The arrays were implanted in the left hemisphere in both monkeys.
The exact location of the array varied slightly across the two monkeys (Suppl.
Fig. 1a), due to inter-animal variations in cortical vasculature and sulcal geom-
etry that constrained the location of the array insertion site. In monkey C the
array was placed between the superior branch of arcuate sulcus and dorsal bank
of the principal sulcus, in the right hemisphere.

Array signals were amplified with respect to a common subdural ground, fil-
tered and digitized using hardware and software from Cyberkinetics. For each
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of the 96 recording channels, ‘spikes’ from the entire duration of a recording ses-
sion were sorted and clustered offline, based on a principal component analysis
of voltage waveforms, using Plexon Offline Sorter (Plexon Inc., Dallas, Texas).
This automated process returned a set of candidate action-potential classifi-
cations for each electrode that were subject to additional quality controls, in-
cluding considerations of waveform shape, waveform reproducibility, inter-spike
interval statistics, and the overall firing rate. For clusters returned by this post-
processing, both spike-waveform and spike-timing metrics fell within previously-
reported ranges for array recordings[3].

Daily recordings yielded 100-200 single and multi-unit clusters distributed
across the array. We do not differentiate between single-unit and multi-unit
recordings, referring to both collectively as ‘units’. Therefore, we also do not
draw conclusions in this study that depend on the distinction between single
and multi-unit responses. Neural responses in the instructed saccade task were
recorded over a total of 9, 10, 10 experiments in monkeys monkey T, monkey V
and monkey C, for a total of 20,905, 4751 and 8611 trials.

4 Analysis of eye movement data

4.1 Saccade extraction

We used a non-parametric data-driven method for classifying eye fixations and
saccades that automatically adapts itself to the task statistics[5]. The method
is built on the assumption that the eye reaches higher speeds during saccades
than during fixations, and that there are fewer peaks in speed due to saccades
than due to fixations. Using these observations about the statistics of eye-
behavior, the method derives an optimum speed threshold that best separates
the speed distribution of saccades from the speed distribution of fixations and
instrumental noise.

4.2 Saccade types

We analyze neural activity related to different types of saccades, i.e. the in-
structed and freely initiated saccades occurring before, during, and after each
trial (Fig. 1b, ¢). We refer to the initial saccade to the fixation point as the
start saccade, the saccade to the target as the rewarded saccade, and the sac-
cade away from the target after reward delivery as the end saccade. The start
saccade is therefore visually-guided and non-rewarded; the rewarded saccade is
visually-guided and rewarded; and the end saccade is free and non-rewarded.
Monkeys initiate the end saccade when there is nothing on the screen. The
saccade durations are 30-+-30ms, 40+-10ms and 140+-80ms for monkey T, for
the start, rewarded and end saccades respectively.

In the instructed saccade task, in approximately 45% (monkey T) and 33%
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(monkey V) trials the monkeys were already at fixation point when the new
trial started, thus there are fewer start saccades than end saccades.

5 Analysis of neurophysiology data

Throughout the paper, we consider neural responses occurring during four dis-
tinct, largely non-overlapping trial epochs. We refer to the first randomized
time interval, following the start saccade, as the first central-fixation-period
(i.e. fixation on the fixation point, 0.6-0.8s); the second randomized interval,
preceding the rewarded saccade, as the second central-fixation-period (0.7-1.2s);
and the last randomized interval, preceding the reward, as the target-fixation-
period (i.e. fixation on the target, 0.8-1.5s). Lastly, we analyze the times around
the end saccade, whose onset is after reward delivery. Notably, the onset of the
end saccade does not coincide with the time of reward delivery on every single
trial - on some trials monkeys initiate the end-saccade immediately after reward
and on some trials monkeys continue fixating the location where the target was
present, on a few trials for intervals as long as 600ms.

5.1 Unit-specific direction selectivity
5.1.1 Pre-processing condition-averaged responses

We bin activity in 50ms non-overlapping bins and we normalize the unit re-
sponses using z-scoring:

230 ~ {1 D)
T Er e W

where 2[%" (1) and z; ¢(1) are the raw firing rate and z-scored responses, respec-
: :

tively, of unit i at time t and on trial 1, ();; and std;; indicate the mean and
standard deviation across times and trials, and & is a constant defined as the
median of the standard deviation across all units in a session. The z-scoring de-
emphasizes the contribution to the population response of units with very high
firing rates (typically multi-unit activity), while the constant term ensures that
units with very small firing rates are not over-emphasized. For the unit-level
analysis, we do not apply any other temporal smoothing to the responses.

We defined condition-averaged responses f;; . for each unit by averaging the
normalized time-varying firing rates across all trials belonging to a given condi-
tion ¢ (Fig. 5a). For the instructed saccade task, we define each condition by
the saccade direction (11 conditions for monkey T, 8 conditions for monkey V
and monkey C).

The condition-averaged responses were de-noised using Singular Vector Decom-
position (SVD). We concatenated the condition-averaged responses f;; g across
all recording sessions with the same conditions in a Nynit X (Neondition ® 1)
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matrix, where Ny, is the total number of units, Neondition is the total number
of conditions, and T is the number of bins. The left singular-vectors of this data
matrix are vectors v, of length N,,;:, indexed by a, ordered from the singular-
vector explaining the most variance to the one explaining the least. We use the
first Ng,q singular-vectors to define a de-noising matrix D of size Nypnit X Nuynit:

Nsya
D= Z vavf (2)
a=1

We used this matrix to de-noise the condition-averaged responses by projecting
them into the sub-space spanned by the first Ng,q singular-vectors:

S =Dfiro (3)

We use the de-noised condition-averaged responses Zf“t’dg to determine the unit-

specific optimal direction, i.e. the condition that elicits the highest responses.
From now on f; ;¢ will refer to the de-noised responses.

5.1.2 Bell-shaped model of direction selectivity

We estimated, for each unit, the saccade-location that elicits the highest re-

sponse at each time by fitting a descriptive function[6] to the normalized time-

varying condition-averaged responses (Fig. 5b):

(60— 00)?
205

) (4)

where 6 is the preferred saccade direction, oy determines the tuning width and
gain, determines the modulation depth of the tuning curve.

g(0) = baseliney + gain, * exp(—

We fitted the parameters of these models separately for each unit to averaged
responses grouped by saccade-direction within the epoch [0, 0.7]s after target on-
set and [-0.3, 0.5]s around saccade initiation, in 50ms non-overlapping bins. The
models are fit by minimizing the summed square error across the respective con-
ditions between the model predictions and the corresponding condition-averaged
response.

5.1.3 Goodness-of-fit

We validated the 1-D bell-shaped models by computing a coefficient of determi-
nation R? (Fig. 5b) value from the measured condition-averaged response fie,0

and the model’s reconstruction ﬁt\ 9, based on comparing the variability of the
estimation errors with the variability of the original neural responses.

Sy liro — Fioll?
> o(fito — (fir0)0)?

) (5)

7?6 = max(0, 1
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Model parameters were found from condition-averages computed on a subset of
trials (training set) and validated on condition-averages computed on a different,
non-overlapping subset of trials (testing set). All units that had a coefficient of
determination different than 0 were considered selective (Fig. 5¢, top row). A
coefficient of determination equal to 0 indicates that the condition—avera@g re-
sponse is better described by the averaged response across all conditions (f; +.6)s-

5.1.4 Cross-temporal selectivity measure

We quantified the percentage of selective units at different time-pairs (¢,,,t,)
(Fig. 5c, bottom row):

Lif r?, ,>0 and r?, ,>0
n — E Lylm Tyln, 6
(tmtn) - {O; otherwise (6)

where 1 is unit index.

To assess the significance of each n(, ¢ ), we shuffled the unit-order indepen-
dently at t,,, and t,, and re-computed the number of units that were selective at
both times. We repeated this procedure 1000 times and compared the measured
N, +,) to the 95th percentile of this distribution.

5.2 Population Decoding

For the population-level analysis, we compute binned spike counts in 100ms over-
lapping bins. Chance level of decoding analyses is computed using 11 classes
(9%) for monkey T and 8 classes (12.5%) for monkey V and monkey C. We quan-
tified the relation between single-trial normalized population responses and the
saccade direction using high-dimensional decoders suited for multi-class prob-
lems (Fig. 2 for monkey T, Suppl. Fig. 3b, g for monkey V and C). To ensure
our results do not depend on the choice of the decoder, we used several types of
decoders (Suppl. Fig. 2e for monkey T, Suppl. Fig. 3e, j for monkey V and C).
Specifically, we used MATLAB built-in classifiers: Linear discriminant analysis
(fitediscr), Naive Bayes (fitenb) and Error-correcting SVM (fitcecoc), as well as
a customized classifier (Circular-SVM).

The Circular-SVM was proposed by Graf et al.[7] and builds on the Naive Bayes
model. Knowing that the topography of the neural responses is circular, it learns
the pooling weight W, i.e. how each unit influences the classifier’s prediction,
in a model-free way, directly from the neural data. We describe the method
briefly, for more details see[7].

Discrimination between two saccade directions 61 and 5 is done using the sign
of the Support-Vector Machine (SVM) decision function:
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un7.t

y(01,02) = > wi(61,02)z; + b(61,02) ~ logLR (61, 62) (7)
=1

logLi(6;) =
L(61))
L(02))
— logL(61) — logL(6)
Nunit

Z [(Wi(61) — Wi(02)]ri + [Bi(01) — Bi(02)]
]\;:nit
wW; (91, 92)1‘1 + b(91, 92)
i=1

= log

The SVM decision function is used as a local linear approximation of the differ-
ence between the log-likelihood evaluated at two saccade directions. The entire
log-likelihood function is reconstructed by computing the cumulative sum of the
empirical log-likelihood ratios of adjacent directions:

logL (6 ZlogLR O, 1) Z Wi(0;)r; + B(6;) (8)
k=2
with log(6;) =

Some pairs of neighboring directions are better separated than others. We
modified the original version of the method such that the discriminability of a
saccade-direction would only depend on how well it is separated from its two
immediate neighboring directions, and not on how well separated are any other
two neighboring directions. To compute an unbiased log-likelihood, each angle
6; takes turn in being the reference log(6;) = 0. In this manner, we average out
the cumulated-error.

5.2.1 Decoding saccade direction of the start, rewarded and end
saccades

Rewarded saccade: We study the relationship between the population re-
sponses and the rewarded saccade direction through cross-validated high-dimensional
decoders (Fig. 2a for monkey T, Suppl. Fig. 3b, g for monkey V and C).

Start and end saccade: We apply the same decoders we identified for the
rewarded saccade to responses aligned to the start and end saccade (Fig. 2b
for monkey T, Suppl. Fig. 3c, h for monkey V and C). Training a new set
of decoders on responses aligned to the end saccade resulted on similar cross-
validated accuracies when used to read-out the end saccade (results not shown).


https://doi.org/10.1101/2022.09.26.509463
http://creativecommons.org/licenses/by-nc-nd/4.0/

5.2.2 Time-specific decoding

Decoders are trained and tested on time-specific responses using 10-fold cross-
validation.

5.2.3 Cross-temporal decoding

Decoders are tested on responses outside their training time-window (Fig. 4d).
A decoding matrix T x T contains the cross-validated decoding accuracy of
T time-specific decoders tested on T time-specific population-responses. The
diagonal of this decoding matrix is the time-specific decoding accuracy. All
decoders are cross-validated, i.e. that even though the decoders are trained
at one time and tested at another time, there is no overlap between the train
and test trials. This analysis shows how each of the time-specific mappings
generalize across responses at other times in the trial.

5.3 Post-saccadic activity is not pre-saccadic activity for
the next saccade

One possible interpretation of post-saccadic activity is that it encodes the plan-
ning of the next saccade (Fig. 3a-c). To test this hypothesis, we decoded the
direction of the end saccade from activity preceding the end saccade and from
activity during the target-fixation-period (Fig. 3b). Ruling out this hypothesis
is very challenging because the behaviour of the monkeys is biased - very often
the end saccade is back to the fixation point.

To study this, we used a pre-trained pre-saccadic decoder. Specifically, we used a
decoder trained to decode the rewarded-saccade during the pre-saccadic epoch
(t : t + At where t = —150ms and = —50ms) to decode the saccade direction
across the target-fixation and up until the onset of the end-saccade. Impor-
tantly, we use the decoder to read out the direction of the end saccade, not of
the rewarded saccade and we evaluate the accuracy of the read-outs separately
for trials from a single direction of the rewarded saccade. We focus on rewarded
saccades to the contralateral hemifield, which are followed by end saccades in
many different directions and are thus well-suited to test the decoder (rewarded
saccades towards 0, 30 and 60 degrees in Fig. 3a, left panel).

Figure 3b shows that post-saccadic activity following the rewarded saccade does
not contain preparatory activity for the end saccade, when these behavioural
correlations are ”subtracted” (see histogram of balanced conditions in Figure
3a, right panel), but does contain information about the rewarded saccade.
Importantly, the decoding accuracies are computed from the same trials in both
cases. Note that it is still possible that preparatory activity of the end saccade
would exist along another read-out, one that is different from the pre-saccadic
read-out of the rewarded saccade. Even so, this result shows that the inverted
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tuning of pre-saccadic activity after saccade execution is not a consequence of
the next saccade the monkey will perform.

5.4 Prospective and retrospective representations have dif-
ferent task-selectivity

On some recording days monkeys performed three tasks sequentially: (1) the
perceptual decision-making task, where the monkeys had to choose between two
targets based on sensory information; (2) the instructed-saccade task, where
only one peripheral target was presented on each trial; (3) the non-spatial asso-
ciative task, where monkeys had to choose between two targets based on infor-
mation from the previous trial. Targets were placed at identical locations across
the three tasks, allowing us to study how task-context modulates responses.

We analyzed responses aligned to target (one target in instructed saccade task,
two targets of different colors in the associative task and dots onset in the per-
ceptual task) and saccade onset. We identify choice-decoders that best separate
the population responses due to monkey’s choices (leftward or rightward) across
the three tasks.

Note that because trials within the three tasks are not intermingled, but come
in sequential blocks, we corrected the single-trial spike counts of any potential
population-level drift in the baseline firing rates:

Ti ttask! = Tittask! — <xi,t>task1
T ttask? = Lit task? — <xi,t>task2

Tit,taskd = Tit taskd — <:L'i,t>task3

The decoding analyses was performed on the normalized responses.

5.5 Post-saccadic activity does not encode the momentary
gaze location

We addressed the question whether post-saccadic activity is better explained
by saccade-covariates or eye-position-covariates in a modified version of the
perceptual decision-making task, in which the monkeys were presented with two
workspace configurations in a blocked design (Fig. 3d, e). The task required
the monkeys to discriminate the dominant movement of moving dots in two
“workspaces “ that were retinotopically identical, but horizontally (or vertically)
shifted along the monkey’s line of sight, such that the physical location of one
target (T1) in one block was identical to the physical location of the other target
(T2) in the other block.

10
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xi,t (k) = ﬁO,i,t +ﬂchaice,i,tChOice(k) +ﬂgaze,i,tgaze(k) +5gazeabs 7i,zﬁgazeabs (k) (9)

where x; (k) is the z-scored response of unit i at time t and on trial k, choice(k)
is the monkey’s choice on trial k (+1 for choice 1 and -1 for choice 2), gaze(k) is
the target-location on trial k (for two sessions the workspace is shifted along the
horizontal axis gaze = gazex = {—1,0,1} and gazey, = 0; and for two sessions
the workspace is shifted along the vertical axis gaze = gaze, = {—1,0,1} and
gaze, = 0, gaze,ps (k) is the absolute value of gaze(k). We introduced gaze,ps (k)
to capture a potential non-linear relation between neural responses and gaze.
We focused on three time points in the post-saccadic epoch: early (+50ms),
middle (+200ms) and late (+400ms).

Because trials within the two retinotopically-identical sessions, workspace; and
workspaces, are not intermingled, but come in sequential blocks, we corrected
the single-trial spike counts of any potential population-level drift in the baseline
firing rates:

Ti t,workspace! = Lit, workspacel — <xi,t>workspacel

T; t,workspace? = Tit workspace2 — <xi,t>workspace2

We identified the regression coefficients Benoice,i t; Bgaze,its Bgaze,,,,i,t through
10-fold cross-validation for each unit separately. We next quantified the saccade-
related and gaze-related contributions of each unit through a measure of variance
explained on the test trials:

tgazell”

Zz'i,t — Tjt,gaze
~ 2l g

var.expl; ; paze = 1 = e 10
> Goa — () P 10
where
zi;;zze(k) = BO,i,t + Bgaze,i,tgaze(k) + ﬂgazeabs,i,tgazeabs(k) (11)
Similarly, for saccade-related activity:
Zk ||‘%Z t — X4 tt:/;oice||2
.expl. o=1— : > 12
var.exp i,t,choice Z(ji,t _ <xi,t>k)2 ( )
where
xi,t,/can'ce(k> = ﬁO,i,t + ﬁchoice,i,tChOice(k) (13)

11


https://doi.org/10.1101/2022.09.26.509463
http://creativecommons.org/licenses/by-nc-nd/4.0/

6 Analysis of behavioral data in the non-spatial
associative task

We characterized fast learning with logistic regression models fit to the behavior
in a single session. We separately modeled the influence of the (task relevant)
target color and the (task irrelevant) target location on the monkeys’ choices
(Fig. 7c, circles and squares) and their interaction with previous outcome (win
or lose, x- and y-axes).

logit p (stayy) = Bo + B17k—1 (14)

where logit p (stay,) denotes the probability of choosing on trial k the same
choice (same colour for the optimal strategy and same location for the sub-
optimal) as in the previous trial k-1 and r;_; is 1 when the outcome of the
previous trial was a reward and 0 when it was not rewarded.

ifrp_1=1 t — wi
logit p (stay, ) = Bo + B, 1 Trp—1 (post — win) (15)
Bo, if r,—1 = 0 (post — lose)
Then, we compute logit p (stay,) in post-win trials:
logit p (win — stay, ) = 8o + 51 (16)
and logit p (switchy) in post-lose trials:
logit p (lose — switchy) =1 — S (17)

In Fig. 7c we subtract from these probabilities the estimated probabilities of
random behaviour and obtain AP (lose — switch) and AP (win — stay). For the
optimal model (colour), we simulate random colour-choices . Fitting the lo-
gistic regression in Eq. 14, we estimate p(win — stay®°r) = 0.5 and
p(lose — switcheelor)

random

= 0.5. Then, for the colour-model,

random

color) color)

AP (win — stay)“'°" = p(win — stay — p(win — stay (18)

random

AP (lose — switch) " = p(lose — switch®") — p(lose — switch®*)

(19)
The relation between space and color was pseudo-randomized in some sessions
and this resulting deviation from perfect randomness lead to apparent biases in
the behavior that we seek to remove. Using such relative probabilities allowed
us to compensate for any potential biases in choices due to lack of complete
randomization (e.g. because of the limited number of switches in a trial, and
the fact that timing of transitions is pseudo-randomized, rather than being
completely random). Therefore, for the location-model, we corrected the es-

timated probabilities of the monkey’s behaviour by (1) using their observed

12
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colour-choices; (2) converting the colour-choice into a location-choice, based on
the experimentally-set colour-location association of each trial; (3) estimating
p(lose — switchlocation) and p(win — stay!ocation)

random random”

7 Correlation of behavioral data and neural data
in the non-spatial associative task

We studied how slow learning shapes the neural responses by correlating time-
specific decoding accuracies with different behavioral variables. Notably, we
used partial correlation to remove modulations due to target configuration
(Suppl. Fig. 9c, d). Target configuration was included through one-hot encod-
ing. Behavioral variables we considered are: training day, first half vs second
half training day (1 for first half and 2 for second half) and the modeled prob-
abilities of the task relevant model. The results were quantitively similar. The
p-values in Fig. 8b and Suppl. Fig. 9b are for the partial correlation with first
half vs second half training day. P-value is computed as the number of shuf-
fled partial correlations that exceed the empirical partial correlation. Shuffled
partial correlations were computed by correlating behavioral variable to 1000
random permutations of decoding accuracies.
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