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Progressive multiple sclerosis (MS) is driven by demyelination, neuroaxonal 

loss, and mitochondrial damage occurring behind a closed blood-brain barrier 

(BBB).1,2 Patients with progressive MS typically fail to respond to available 

immunomodulatory drugs that reduce relapses in early disease.2 This 

indicates a dire need to identify non-canonical therapeutic avenues to limit 

neurodegeneration and promote protection and repair.3 Here, we have 

employed high-resolution multiomic profiling to characterise the biochemical 
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and metabolic adaptations underpinning MS pathology, as these have been 

incompletely described but critically, may be amenable to BBB-permeable 

drug targeting. Using synchrotron radiation (SR)- and focal plane array (FPA)-

based Fourier transform infrared microspectroscopy (µFTIR), we spatially 

mapped the biochemical features present in human progressive MS and 

control post-mortem brain and rare spinal cord tissue. By employing single-

nuclear RNA sequencing (snRNA-seq), 10x Genomics Visium spatial 

transcriptomics and spatial proteomics to resolve their cellular context, we 

found that these biochemical features provide a uniquely and highly disease-

specific barcode for distinct pathological niches within the tissue. 

Characterisation of the metabolic processes underpinning these niches 

revealed an associated re-organisation of the astrocytic landscape in the grey 

and white matter, with implications for the treatment of progressive MS. 

 

FTIR microspectroscopy is emerging as a label-free and non-destructive technology 

for the high-resolution spatial mapping of biochemical signatures present within 

biological samples,4,5 but has never been applied to the analysis of CNS tissue from 

MS patients. We employed SR-µFTIR utilizing the Diamond Light Source MIRIAM 

beamline with a 0.964 cm-1 spectral and a 5x5 µm2 spatial resolution, to obtain 2,061 

spectra from 10 µm-thick brain and spinal cord sections from our secondary 

progressive MS (SPMS) patient cohort (Fig. 1). By exciting the tissue with incident 

light within the infrared wavelength range, sample absorbance characteristics were 

captured as different vibrational modes corresponding to specific functional groups 

present in lipids, proteins, nucleic acids, and carbohydrates (Fig. 2a). The spectra 

were obtained from areas within each tissue section that were characterised as 
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lesional and normal-appearing white matter (NAWM) through histological staining, 

and the variance in the data generated was explored through dimensionality 

reduction. We found that the highest proportion (60.12%) of the observed variance 

(principal component (PC) 1) was predominantly driven by the absorbances detected 

in the 2,800-3,000 cm-1 wavenumber region (Fig. 2b). Absorbance peaks within this 

region correspond to the presence of lipids (Fig. 2a), and spectra derived from the 

WM lesion areas showed a significantly lower infrared light absorbance than NAWM 

spectra (Fig. 2c), consistent with the demyelinating nature of MS pathology.1 PC2, 

which explained 8.37% of the variance in the data, was driven by absorbances 

detected in the 2,800-3,000 cm-1 and also in the 1,500-1,700 cm-1 regions (Fig. 2b); 

the latter contains peaks corresponding to the amide groups found in proteins (Fig. 

2a). In contrast to the lipid-associated spectral peaks, the absorbance of the amide 

peaks was significantly higher in the WM lesion compared to the NAWM spectra 

(Fig. 2c). Notably, in addition to providing information on overall protein content, the 

shape of the amide peaks enables inference of protein secondary structure motifs, 

such that the relative proportion of !-helices, "-sheets and "-turns can be 

estimated.6 Alterations in the proportions of these protein secondary structure 

features can be indicative of proteinopathy: in Alzheimer’s disease	"-sheet content is 

elevated in amyloid beta plaques7 and in Parkinson’s disease increased "-sheet 

content has been detected in neurons of the substantia nigra.8 Interestingly, we 

found significantly higher percentages of "-sheets and "-turns and a lower 

percentage of !-helices in the WM lesions relative to the NAWM (Fig. 2c). This 

provides direct evidence of altered protein folding in SPMS lesions, and suggests 

that deviation from protein homeostasis is a pathophysiological mechanism common 

to diseases with a neurodegenerative component, regardless of their etiology. 
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Although the PC analysis of the SR-µFTIR data demonstrated that the top PCs could 

distinguish subsets of spectra from the WM lesion and NAWM areas, it also revealed 

additional substructure in the data (Fig. 2b). Therefore, in order to better resolve the 

biochemical heterogeneity of the patient tissue, we employed FPA-µFTIR with a 

globar source to scan more continuous areas, spanning demyelinated and non-

demyelinated WM as well as grey matter (GM) areas, and to profile CNS tissue from 

controls (Fig. 1). We obtained a total of 229,376 spectra with a 1.928 cm-1 spectral 

and a 5x5 µm2 spatial resolution. Implementing an unsupervised dimensionality 

reduction approach,9,10 we identified seven spectral clusters, five of which (termed 

Les1-Les5) were almost exclusively derived from SPMS tissue, collectively 

comprising <0.5% of the control spectra (Fig. 2d). The other two clusters 

corresponded to healthy WM and GM spectra and were detected in both the control 

and case tissue. Inspection of the spectral cluster features showed that each had a 

unique biochemical fingerprint characterized by variation in the lipid and protein 

content, protein secondary structure and the carbonyl ester content (1,700-1,760 cm-

1 region), which can be used to derive a metric of lipid oxidation11 (Fig. 2e, Supp. 

Fig. 1). Oxidized lipids have been previously reported to be present in MS lesions,12 

and we observed that SPMS-specific clusters with high lipid oxidation also had a 

high "-sheet and "-turn content, and this was most prominent in the GM (Les4). 

Notably, whilst under physiological conditions protein folding requires redox 

processes, under conditions of excessive oxidation proteins can become 

carbonylated resulting in alterations to their conformation and even aggregation.13 
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To ascertain how the biochemomic fingerprint of the different FPA-µFTIR clusters 

related to the underlying cellular architecture of the tissue, we performed mass 

spectrometry-based spatial proteomics on 89 samples of 316x316 µm2 resolution 

from consecutive/near-consecutive 10 µm tissue sections (Fig. 1). Spatially aligning 

the FPA-µFTIR clusters and proteomics data histologically, we first sought to confirm 

the relationship between FPA-µFTIR cluster lipid content and the expression of 

myelin basic protein (MBP), which is characteristically lost in MS in demyelination. 

As anticipated we found that MBP expression was highest in tissue samples that 

corresponded to the healthy WM spectral cluster, and in fact cluster lipid content was 

highly positively correlated with MBP level (r=0.982, P=2.573x10-3; Supp. Fig. 2a), 

despite the lipid content being inversely correlated with the overall protein content 

(r=-0.919, P=3.432x10-3; Supp. Fig. 2b). Next, we performed unsupervised 

clustering of the spatial proteomics data. This revealed that the FPA-µFTIR clusters 

largely segregated with the proteomics clusters (Supp. Fig. 2c). For example, 

SPMS-specific cluster Les1 predominantly co-segregated with proteomics cluster 2 

which was enriched for proteins corresponding to oligodendrocytes (e.g. MBP, 

PLP1), and to a lesser extent astrocytes (e.g. GFAP, AQP4, HEPACAM, C3) and 

immune cells (e.g. IGHG1); cluster Les2 was more associated with astrocyte and 

immune proteins in proteomics cluster 4; and clusters Les4 and Les5 were verified 

as GM given their association with neuronal proteins (e.g. SYN1, CAMK2B) in 

proteomics cluster 2. To further confirm these findings spatially at the RNA level 

(Fig. 2f), we generated the first higher resolution spatial transcriptomic data of SPMS 

postmortem tissue by using the 10x Genomics Visium platform in conjunction with 

Cell2location-based deconvolution (Fig. 1). The deconvolution was performed by 

leveraging a brain snRNA-seq atlas of 71,078 nuclei derived from the integration of 
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our multiplexed 3’ snRNA-seq data with data from two previously published MS 

studies14,15 (Supp. Fig. 3). Aligning the FPA-µFTIR spectral cluster maps with the 

Visium data confirmed concordance between the biochemomic, proteomic and 

transcriptomic data, demonstrating that the different cellular niches present in SPMS 

lesional and peri-lesional areas can be uniquely distinguished by their biomolecular 

profiles.    

 

Given that signatures of altered protein folding and oxidation contributed to the 

definition of the SPMS-specific spectral clusters, we next assessed whether we 

could find support for this at the RNA level. Performing weighted gene correlation 

network analysis (WGCNA) on the integrated snRNA-seq data to identify clusters of 

interconnected genes (modules), we found one SPMS-associated module 

(‘paleturquoise’) in the oligodendrocytes (Supp. Fig. 4a), and three in the neurons 

(‘orange’, ‘salmon’ and ‘turquoise’), as well as a disease anti-correlated module 

(‘grey60’) in the latter cellular compartment (Supp. Fig. 4b; all Padj<0.05). Pathway 

analysis demonstrated that of these, the oligodendrocyte ‘paleturquoise’ and the 

neuronal ‘turquoise’ modules were both enriched for pathways associated with 

aberrant protein folding and pathways indicative of other neurodegenerative 

diseases (Fig. 3a,b). Notably, cell-cell interaction analysis revealed LRP1- and APP-

related ligand-receptor pairs amongst those interactions specific to SPMS, 

predominantly in the neuronal cell types and the oligodendrocytes (Supp. Fig. 5). 

LRP1 and APP have been linked to the clearance of protein aggregates and are 

implicated in Alzheimer’s disease and Parkinson’s disease.16 The oligodendrocyte 

‘paleturquoise’ and neuronal ‘turquoise’ modules were also enriched for pathways 

associated with oxidative stress, but this was especially prominent for the neurons, 
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where pathways relating to mitochondrial function, the citrate (TCA) cycle, aging and 

neuron death were additionally enriched (Fig. 3a,b). Scoring and mapping the 

presence of these pathways within the spatial transcriptomic data showed that whilst 

control brain and spinal cord tissue had no or minimal enrichment regardless of the 

cell types present in the sections, SPMS tissue was enriched for aberrant protein 

folding-related pathways in niches corresponding to oligodendrocytes (particularly 

adjacent to astrocyte-rich lesions) and neurons (Fig. 3c). In keeping with the FPA-

µFTIR analysis and the WGCNA, oxidative pathways prominently localized to the 

SPMS GM (Fig. 3c). To confirm that the increased neuronal oxidation was linked to 

metabolic alterations in these cells, we performed a metabolic flux analysis. We 

found that consistent with the WGCNA pathway enrichment analysis, flux in the TCA 

cycle, which is a highly conserved process central to cellular energy production in 

the cell and which is also highly oxidative, was upregulated in SPMS neurons 

relative to controls (Fig. 3d). In addition, lipid biosynthesis, which serves as a source 

of acetyl-CoA that is the input for the TCA cycle, was significantly upregulated in 

SPMS neurons, indicating metabolic dysregulation as a driver for neuronal oxidative 

stress (Fig. 3d), and ultimately leading to a loss of CUX2hi neuronal cell subsets 

(Fig. 3e), that are selectively vulnerable.15 

 

Neurons, as well as oligodendrocyte progenitor cells, represent the energetic 

Achilles’ heel of the GM: they are simultaneously energetically demanding and have 

limited anti-oxidant capacity, instead relying on the metabolic support and anti-

oxidant capacity of astrocytes.17 For example, expression of the transcription factor 

NRF2, encoded by NFE2L2, in astrocytes upregulates a neuroprotective, anti-

oxidant gene program that is repressed in an astrocytic population enriched in 
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experimental autoimmune encephalomyelitis and multiple sclerosis.18 Thus, we next 

assessed the frequency (Fig. 3e) and relative spatial localization of astrocyte 

subsets (Fig. 4a) in the SPMS cases and controls. We observed a significant 

increase (Padj=0.0108) in the proportion of a CD44hi S100Bpos FOSpos astrocyte 

population with a low expression NFE2L2 (Fig 3e, Fig. 4b). This astrocyte subset 

was observed in WM lesions (Fig. 3d), and strongly colocalized with 

oligodendrocytes, immune cells and endothelia/stroma in SPMS; colocalization with 

CUX2hi and RORBhi neurons was reduced in cases compared to controls, which may 

partly be related to the disease-associated decrease in the former cell type. 

Intriguingly, the CD44low/neg astrocytes also showed a striking change in spatial 

colocalization is SPMS compared to controls, despite no significant difference in their 

abundance. In controls these cells typically colocalize with excitatory neuronal 

subsets, endothelia/stroma, microglia, oligodendrocytes and other astrocytes, but in 

SPMS the colocalization with CUX2hi neurons, endothelia/stroma and 

oligodendrocytes was largely lost (Fig. 4a). Notably, the CD44low/neg astrocyte 

population includes the CD44neg MERTKhi MEGF10hi cell subset which was found to 

have the highest NFE2L2 expression compared to other astrocytes in both the cases 

and controls (Fig. 4b). Specifically visualizing the spatial mapping of this cell subset 

showed a diffuse presence of these cells in the GM and WM in controls, but a 

prominent localization to WM lesions and a striking absence in oxidatively stressed 

GM (Fig. 4c). These data suggest that a loss of NFE2L2hi astrocytes from the GM 

may contribute to neuronal pathology, and that maintenance of the homeostatic 

astrocyte localization within the GM may be central to preventing further 

neurodegeneration. 
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In this study, we provide a high-resolution, multiomic spatial map of SPMS patient 

and control brain and spinal cord tissue. We observe an unparalleled capacity of the 

biochemome, as assayed through µFTIR, to distinguish disease-specific, 

pathological cellular niches. We find that these niches are underpinned by aberrant 

protein folding, oxidative stress and metabolic dysfunction, and a concomitant 

alteration in the astrocytic architecture across the WM and GM, that may be 

particularly critical for neurons and that may have important therapeutic implications. 

For example, our findings may be consistent with the observed capacity of 

siponimod to reduce risk of disability progression in SPMS, given its impact on 

blocking astrocyte activity and reducing astrogliosis.19 Conversely, whilst the NRF2-

activating drug dimethyl fumarate is approved for relapsing-remitting MS,20 trialling in 

progressive disease has not been efficacious,21 perhaps due to a need for a 

restoration of the GM astrocytic architecture in order for the NRF2 activation to exert 

its protective effect on the neuronal compartment.  
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Methods  

 

Human donor tissue  

Postmortem fresh-frozen human brain and spinal cord samples were obtained from 

the UK Multiple Sclerosis & Parkinson’s Disease Tissue Bank at Imperial College 

London, under the Multicentre Research Ethics Committee approval (reference 
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number 08/MRE09/31+5). Samples had a mean RIN value of 6.95 and were initially 

characterised with haematoxylin and Oil-Red-O staining. Briefly, 10 µm tissue 

sections were fixed in 10% formalin, slides were washed and dipped three times into 

60% triethyl phosphate solution. Slides were immersed in Oil-Red-O solution for 15 

min. Excess dye was washed by dipping slides three times in 60% triethyl phosphate 

and washed in water. Samples were then counterstained with haematoxylin for 5 min 

and subsequently washed in water for 5 min, air dried, mounted with 50% glycerol 

and imaged in an Aperio S2 slide scanner with 20X magnification.  

  

µFTIR sample preparation  

Ten µm-thick tissue sections were placed on calcium fluoride infrared (IR) optical 

windows (Crystran). They were then fixed using 4% paraformaldehyde (PFA) at 

room temperature for 10 min and washed 3 times with water to ensure removal of 

any remaining PFA. Samples were then air-dried and stored at room temperature.  

 

SR-µFTIR  

Data collection was performed at the MIRIAM B22 beamline at Diamond Light 

Source (Didcot, UK). Image data were collected at 36X magnification on a Hyperion 

3000 microscope with a 15x15 µm2 aperture and 5 µm scanning area overlap with 

neighboring collection areas for optimal spectral quality and to maximize resolution. 

Data were collected with a spectral resolution of one data point per 0.964 cm-1. Each 

sample area was scanned 64 times. A clean tissue-free area was also selected and 

scanned 64 times as a background reference.   

 

FPA-µFTIR  
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Data collection was performed at the same location as for the SR-µFTIR. Image data 

were collected at 20X on a Hyperion 3000 microscope. Spectroscopy data were 

collected using a Bruker Vertex 80V Fourier Transform IR Interferometer with a 

focal-plane array (FPA) detector (64x64, 40 µm pixel size, for near- and mid-IR) with 

2x2 binning, and a spectral resolution capturing one data point per 1.928 cm-1. 

Maximum absorbance was kept below 1.0. A clean tissue-free area of the slide was 

selected for background measurements and scanned 64 times. The total area 

scanned for each brain sample was 398,881.3 µm2, where 16,384 spectra were 

captured (spatial resolution = 24.34 µm2 per spectrum). Scanned spinal cord areas 

varied between 0.5-2.5 times this area, depending on features of interest in the 

sample.  

  

Pre-processing and clustering of spectral data  

Following data collection, pre-processing was performed including atmospheric 

compensation and baseline correction (SR-µFTIR - rubberband correction; FPA-

µFTIR – concave rubberband correction, 3 iterations with 32 baseline points;) on 

OPUS (v. 7.4). The data were then exported for analysis in our custom-built Python 

package Photizo.10 The 2,250-2,400 cm-1 region which is associated with 

atmospheric CO2, was excluded from analysis. Outlier spectra with lipid peak and 

protein peak simultaneously below 1/4 of the maximum peak were filtered. Baseline 

variation is a feature associated with scattering, thus all spectra with a variation in 

baseline superior to 5 times the average baseline variation were also filtered. Prior to 

filtration, visual inspection of microscopy images confirmed these regions 

corresponded to areas that did not contain tissue. Following filtration, each spectrum 

was normalised by dividing it by the norm of that sample. Preliminary analysis of 
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spectral quality included dimensionality reduction with principal component analysis 

(PCA). Eigenspectra as well as averaged spectra per sample were visualized to 

confirm peak position in relation to previously reported spectral features of this 

sample type. Integration of the area below a band of interest was used as a robust 

measure of the biomolecular component of interest. The protein secondary structure 

composition of !-helices, "-sheets, "-turns and random coils was quantified by 

µFTIR as previously described6: 

 

! − ℎ&'()	(%) =	−148.10 + 0.98 ∗ 6789: + 1.49 ∗ 679;; + 0.66 ∗ 679:8  

" − =ℎ&&>	(%) = 	35.53 + 0.56 ∗ 6789A + 0.60 ∗ 678BC 

" − >DEF(%) = 	−14.25 + 0.36 ∗ 678A; + 0.85 ∗ 679H7 

EIFJKL	(%) = 	−40.65 + 1.08 ∗ 679BM + 0.62 ∗ 678AC 

 

Lipid oxidation was estimated by normalising the carbonyl ester band by the total 

lipid content, as previously reported.11 For statistical comparisons of protein 

composition and pseudo-quantitative results from integration, a linear mixed model 

was used to control for scanning batch, sample effects, and spectrum inter-

dependence. Features such as sex, age, cause of death and time from death to 

freezing did not correlate with the changes observed. All statistical comparisons 

were performed using Levene test for variance homogeneity, followed by the 

Games-Howell test.   

  

Spectral clustering  

In order to classify tissue spectral features, we used uniform manifold approximation 

and projection (UMAP)9 to cluster the spectra. Community detection was performed 
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with the Leiden algorithm.22 Spectra for each cluster were averaged for identification 

of cluster-distinguishing features. Cluster classification was then spatially visualized 

in order to correlate these results with histology.   

  

Spatial proteomics  

Samples were sectioned for proteomic analysis onto 1.0 PEN membrane slides 

(Zeiss, #415190-9041- 000). These were stained with H&E staining according 

previously reported spatial proteomics methods.23 In short, samples were fixed in 

70% denatured alcohol, rehydrated in water and stained with haematoxylin. Tissue 

was subsequently washed in distilled water and stained with bluing buffer followed 

by another wash. Finally, the samples were stained with eosin, washed a final time 

and dehydrated in increasing concentrations of denatured alcohol. All samples were 

stored in the -80°C until next processing step. 

   

Using a Zeiss RoboPalm LCM system, a total area of 100,000 µm2 was processed in 

each tube; microdissection was performed in 9 subareas (each area being 

approximately 11,111 µm2), since laser catapulting of tissue is more effective and 

precise with smaller tissue sections. For each tube, all 9 subareas were captured in 

200 µl PCR tube caps with 20 µl of radioimmunoprecipitation assay (RIPA) buffer. 

The number and location of captured areas was determined based on µFTIR and 

Visium data; 89 samples were captured in total. Following collection, the samples 

were frozen immediately on dry ice and stored at -80°C for <3 days until proteomic 

preparation.  
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The sample processing for spatial proteomics was performed as previously 

reported.23 Briefly, the RIPA buffer containing the microdissected samples was 

thawed for 30 minutes followed by centrifugation. To ensure maximum protein 

capture, the caps were rinsed, followed by a second centrifugation. Benzonase was 

added and left to incubate at room temperature for 30 minutes, followed by 

dithithreitol (DTT) at a final concentration of 5mM was added and tubes were 

incubated for 30 minutes. Iodoacetamide (IAA) at a final of concentration 20 mM was 

added and incubated for 30 minutes. Sera-Mag-A and Sera-Mag-B Bead mix was 

added and mixed, followed by acetonitrile (ACN; 70% final concentration), tubes 

were gently tap mixed and incubated for 18 minutes at room temperature for protein 

to bind to beads. Samples were placed on magnets for 2 minutes and supernatant 

was discarded. Samples were rinsed twice with 70% ethanol for 30 seconds on 

magnet. Beads were rinsed with 180 µl 100% ACN for 15 seconds on the magnet. A 

solution of trypsin in 50 mM ammonium bicarbonate was added and beads were 

resuspended. Samples were digested overnight at 37°C. Following digestion, 

samples were bath sonicated and 180 µl of ACN was added and tap mixed. This 

was incubated for 18 minutes off the magnet and for 2 minutes on the magnet. All 

supernatant was discarded and resuspended in 5µl of 2% ACN, incubated on 

magnet for 5 minutes and carefully transferred to vials containing 1% formic acid. 

Finally, samples were stored at -20°C prior to mass spectrometry.    

  

Mass spectrometry data pre-processing and clustering  

MaxQuant pre-processed mass spectrometry data were received and downstream 

analysis was performed in R 3.6.2 using Bioconductor DEP package. Initial filtration 

steps filtered both samples and proteins: samples with <20% of proteins present 
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were excluded; proteins represented in <65% of samples were excluded. The 65% 

threshold was determined based on plotting the number of samples each protein 

was represented in versus. the mean intensity of that protein across samples. 

Following filtration, the data were log transformed and median-centered. Random 

forest was used for imputation. Hierarchical clustering was performed to categorise 

samples. In order to ensure reliability and minimize random effects from the 

imputation processes and hierarchical clustering, imputation and clustering were 

performed iteratively 100 times, with cluster classification being recorded for each 

sample was recorded for each iteration. Our assessment determined that cluster 

classification was reliable, with most samples clustering in the same group in 97-

100% of iterations. Cluster number cutoffs were assessed (brain k=4, SC k=5) to 

partition the major detected clusters. Following this, differential expression of 

proteins was calculated in a pair-wise fashion for each cluster, with proteins with log 

fold change >1 and p<0.05 being considered statistically significant. Differentially 

expressed proteins (DEPs) were used for heatmap cluster visualization.  

 

snRNAseq nuclear isolation and nuclear hashing  

Nuclei were isolated with PURE Prep Nuclei Isolation Kit (Sigma-aldrich), using the 

manufacturer’s recommended protocol for nuclear isolation by sucrose gradient. 

RNAse inhibitors (4 U/μl reaction) were added to all solutions prior to each step. 

Multiplexing was performed by washing and hashing nuclei from each sample with 

one of six unique TotalSeqTM-A anti-nuclear pore complex antibodies (BioLegend). 

Two multiplexed sequencing batches were then sequenced by the Oxford Genomics 

Centre (Wellcome Centre for Human Genetics, University of Oxford).   
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Pre-processing, demultiplexing and clustering of snRNA-seq data  

Data were aligned with CellRanger v3.1.0 using the GRCh38 genome as reference 

and demultiplexed with a combination of antibody demultiplexing (DemuxEM24) and 

genetic demultiplexing based on reference SNPs (Vireo25  and Freemuxlet26), for 

which a reference from the 1,000 Genomes Project was prepared with CellSNP27 for 

Vireo and Dsc-pileup to prepare input for Freemuxlet. Cell demultiplexing 

classification required two or more of these demultiplexing methods to provide the 

same classification for a cell to be carried forward in analysis. Based on records of 

antibodies paired with each patient sample, demuxEM results were used to match 

genetically demultiplexed samples back to patient clinical data.   

 

Two publicly available datasets were then integrated into our analysis.14,15 Sample 

quality control, batch correction and clustering were performed, with filtering to 

exclude nuclei with <200 genes, >10% mitochondrial content, <700 total UMI counts, 

and with a doublet score>0.25. Genes present in less than 3 nuclei were excluded. 

Following pre-clustering, nuclei with at least two of the following features were further 

excluded: low total UMI counts, lack of distinguishing markers, large contributions 

from mitochondrial genes, high expression levels of markers from multiple major cell 

type groups simultaneously and higher doublet scores than average. This resulted in 

a total of 71,078 nuclei. Harmony28, BBKNN and Scanorama29 were compared as 

integration methods using local inverse Simpson index (LISI) score and by visual 

inspection of UMAPs. Harmony-corrected data was used for downstream analysis. 

100 PCs were used for UMAP dimensionality reduction and community detection 

was performed with the Leiden algorithm. Major cell groups were selected based on 

major cell type markers and subclustered further. 
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Differential abundance analysis 

Cluster counts were converted to centered log-ratios (CLRs) using the ALDEx2 R 

package. The median CLR for each cluster-sample combination was used for PCA 

which was performed using prcomp (R version 3.6.2) with default parameters.  

ANOVA was then used to identify confounding features contributing to top principal 

components; the study from which each snRNAseq data set was generated was 

identified as a contributing factor, and was therefore controlled for in the composition 

model as a covariate (‘meta_experiment’). Cell counts (prefiltered using the same 

criteria as for the PCA) were modelled using the glmQLFit function from edgeR with 

disease status and meta_experiment included as covariates. Differential abundance 

testing was performed using the quasi-likelihood F-test, and p-values were corrected 

using the Benjamini-Hochberg adjustment. Unlike our study and the Schirmer data 

set15, the Jäkel study14 only sampled white matter areas and therefore was not 

included in this analysis to avoiding tissue site-associated confounding. A false 

discovery rate cutoff (FDR)<0.1 was used. 

  

Weighted gene correlation network analysis (WGCNA)  

Pseudobulked snRNA-seq data were batch corrected using ComBat30 and then the 

cornet package was used for WGCNA31. All presented p-values were adjusted using 

the Benjamini-Hochberg correction.   

  

Cell-cell interaction analysis  

Cell-cell interaction analysis was performed using the Network Analysis Toolkit for 

Multicellular Interactions (NATMI)32 with the lrc2p database as reference, employing 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509462doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509462
http://creativecommons.org/licenses/by/4.0/


the default parameters, with communication networks having edges filtered for 

specificity >0.1. [18]  

  

Metabolic single cell flux estimation analysis (scFEA)  

In order to estimate accumulation/depletion of metabolites and metabolic module flux 

we used filtered and normalized gene expression. The analysis of all single nuclei 

was performed jointly using single cell flux estimation analysis (scFEA)33. Metabolite 

estimation was compared for cases and controls within each major cell type cluster. 

Supermodules were estimated by the sum of relevant modules within a given 

supermodule. Statistical comparisons were performed with variance homogeneity 

testing (Levene’s test). Having identified that across metabolites and cells certain 

comparisons had homogeneous variance and others not, a non-parametric test 

(Games-Howell) was used across all comparisons in order to maintain a 

standardised approach which did not assume equal variance. P-values were 

adjusted using the Benjamini-Hochberg correction.   

  

 

Visium spatial transcriptomics  

In order to obtain sections with a 6mm x 6mm area containable within the active area 

of the Visium slides, the tissue samples were scored using a custom blade made by 

the Old Road Campus Research Building workshop (University of Oxford). CNS 

samples were sectioned with 10 µm thickness. Sections were placed in the active 

area of the slide and stored at -80°C for <5 days until use. We performed the 

manufacturer’s gene expression protocol (protocol version CG000239 Rev A). 

Briefly, we stained samples with H&E and imaged on a Zeiss RoboPalm Laser 
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Capture Microdissection system at 10X magnification. This was followed by tissue 

permeabilization (18 min, determined with the Visium Tissue Optimisation kit, 

protocol CG000238 Rev A).  Reverse transcription was performed using a Thermo 

Fisher Scientific Applied Biosystems Verity thermocycler, followed by second strand 

synthesis and cDNA denaturation in 0.08 M solution of potassium hydroxide. The 

solution from each well was harvested and transferred into 5 µl Tris-HCl (1M, pH 

7.0). PCR optimal cycle number was determined using a QuantStudio system, where 

1 µl of each sample was amplified using KAPA SYBR FAST qPCR Master Mix with 

low ROX. The number of cycles at 25% of the RFU plateau for each sample was 

determined and ranged from 17 to 20 cycles. This cycle number was then used for 

PCR amplification of the remaining sample volume. Samples were then stored at -

20°C and until further processing and sequencing at the Oxford Genomics Centre.  

  

Visium spatial transcriptomics image tiling and pre-processing  

Histological images collected on the Zeiss RoboPalm LCM system were tiled using 

FIJI package of ImageJ version 1.0.0-rc-69/1.52p; white balance correction was 

performed using a macro written by Vytas Bindokas; Oct 2006, Univ. of Chicago with 

modifications by Patrice Mascalchi. The images were then loaded and aligned in 

relation to fiducial frames for spatial gene expression mapping using Loupe Browser. 

Visium data were aligned using SpaceRanger and filtered based on total gene 

counts (brain: >500; spinal cord: >500, <15,000).   

  

Visium spatial transcriptomics deconvolution and co-localization networks  

Data deconvolution was performed using cell2location34. Co-localisation networks 

were estimated using deconvoluted data normalised per spot, where the top 6 cells 
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per spot were considered to co-localize in that spot. This was estimated for all spots 

and recorded in the form of an adjacency matrix which was then normalized and 

plotted using the Python library networkx. Importance of cell types in the matrix was 

estimated using the PageRank algorithm35.   
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Figure 1
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Figure 1. A high-resolution, spatial multi-omic atlas of progressive MS.
Spatial biochemomic, proteomic and transcriptomic workflow for the analysis of a total of 
samples from 18 MS patients and 19 non-MS/non-neurodegenerative disease controls.
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Figure 2
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Figure 2. µFTIR analysis of progressive MS and control CNS tissue.
a, Schematic representation of the functional groups and biomolecules associated with the spectral peaks detected by
µFTIR spectroscopy. b, PCA analysis of SR-µFTIR data (2,061 spectra) collected from the analysis of SPMS lesional 
and normal-appearing white matter (NAWM) tissue. c, Comparison of the spectral features of SPMS lesional and normal-
appearing WM tissue. d, Clustering of 229,376 FPA-µFTIR spectra from cases and controls and the cluster distribution
amongst the donor groups. e, Heatmap of the key characteristics of the FPA-µFTIR spectral clusters. f, Representative
images of the spatial mapping of FPA-µFTIR spectral features and spectral and spatial transcriptomic cell clusters. 
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Figure 3
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Figure 3. snRNA-seq and spatial transcriptomic analysis of neurodegenerative pathways.
a, Pathway enrichment analysis of weighted gene correlation network analysis (WGCNA) modules from oligodendrocyte/
oligodendrocyte progenitor cell (OPC) snRNA-seq. b, Pathway enrichment analysis of WGCNA modules from neuronal 
snRNA-seq. c, Representative images of spatial transcriptomic mapping of aberrant protein folding and oxidative stress
pathways. d, Comparison of neuronal snRNA-seq metabolic fluxes in SPMS cases and controls. e, Differential abundance
analysis of integrated snRNA-seq data. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509462doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509462
http://creativecommons.org/licenses/by/4.0/


Figure 4

SSTpos IN

ID2pos IN

VIPpos IN

OPCs

Immune

PVALBpos IN

CUX2hi EN

FEZF2pos ENRORBhi

EN

OPALINhi

FRYhi OG

CD44hi

astrocytes

CD44low/neg

astrocytesEndothelia/
stroma

THEMISpos EN

Controls MS

a
Spatial transcriptomic colocalization network analysis
 

score<1
1<score<2
2<score<3

OPALINlo

SLC5A11lo

OG

OPALINlo

SLC5A11hi OG

OPALINhi

PLXDC2hi OG

VIPpos IN

SSTpos IN

ID2pos IN

OPALINhi

FRYhi OG

OPCs
Immune

PVALBpos IN

CUX2hi EN

FEZF2pos EN
CD44hi

astrocytes

CD44low/neg

astrocytes

Endothelia/
stroma

THEMISpos EN

OPALINlo

SLC5A11lo

OG

OPALINlo

SLC5A11hi OG

OPALINhi

PLXDC2hi OG

RORBhi EN

b
NFE2L2 expression across snRNA-seq astrocyte cell states

N
FE
2L
2 

ex
pr

es
si

on

CD44hi S100Bpos

FOSpos

astrocytes

CD44low HILPDAhi

CHI3L1hi

astrocytes

CD44neg MERTKhi

MEGF10hi 
astrocytes

CD44neg SLC1A2hi

NRXN1hi 
astrocytes

5

4

3

2

1

0

-1

Spatial transcriptomic mapping of MERTKhi MEGF10hi astrocytes

c

Control 3 - brain Control 2 - spinal cord

MS 4 - brain MS 2 - brain MS 5 - spinal cord

0

10

20

1 mm

MS 6 - brain

WM
GM

WM

GM

GM

Ast 
Les

OG

GM Les

GM Les

OG
Ast 
Les

Ast 
Les

WM

WM
Imm-Ast

Les

OG

GM

Score

Imm-OG-Ast Les

Region annotation

Ast Les: Astrocyte-rich lesion
GM: Grey matter
GM Les: Grey matter lesion
Imm-Ast Les: Immune cell &
astrocyte-rich lesion
Imm-OG-Ast Les: Immune cell,
oligodendrocyte & astrocyte-rich lesion
OG: Oligodendrocyte-rich lesion/peri-lesion
WM: White matter

Figure 4. Spatial transcriptomic colocalization network analysis in SPMS cases and controls.
a, Colocalization analysis of key cell types detected by deconvoluted spatial transcriptomics of SPMS and control CNS
tissue. EN, excitatory neurons, IN, inhibitory neurons, OG, oligodendrocytes, OPC, oligodendrocyte progenitor cells.
b, NFE2L2 expression across astrocyte subsets in cases and controls. c, Representative images of the spatial transcriptomic
mapping of the CD44hi MERTKhi MEGF10hi astrocytes in case and control tissue. 
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Supplementary Figure 1. FPA-µFTIR spectral cluster features. 
Mean spectra of the FPA-µFTIR clusters in the lipid, carbonyl ester, olefinic, and protein regions (a-e respectively). Violin plots
of spectra in the lipid, carbonyl ester and protein regions (f-h respectively), and of percentage of protein alpha-helices, 
beta-sheets, and beta-turns contributing to total protein folding (i-k respectively). 
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Supplementary Figure 2. The relationship between µFTIR clusters and proteomics. 
a, Pearson correlation of the lipid absorbance (detected by FPA-µFTIR) and the myelin basic protein (MBP, detected
by spatial proteomics) for the spectral clusters aligned with the spatial proteomics areas. b, Pearson correlation of the 
lipid and protein absorbances (detected by FPA-µFTIR) for the spectral clusters. c, Heatmap of the proteomics sample
clusters and the distribution of the aligned FPA-µFTIR spectral clusters. 
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Supplementary Figure 3

Supplementary Figure 3. An integrated brain snRNA-seq atlas comprising 71,078 nuclei. 
a, Relative distribution of integrated nuclei by study and disease status. UMAPs and key marker dot plots for OGs/OPCs, 
astrocytes, neurons, endothelia/stroma and immune cells (b-f). The legend for the percentage of cells expressing marker 
genes shown in b applies to all dot plots in the figures. Bars to the right of dot plots indicate the number of nuclei in each cluster. 
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snRNA-seq oligodendrocyte/OPC WGCNA module−trait relationships
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Supplementary Figure 4. snRNA-seq weighted gene correlation network analysis (WGCNA) module-trait relationships.
a, Oligodendrocyte/oligodendrocyte progenitor cell (OPC) WGCNA module-trait relationships. b, Neuronal WGCNA module-trait 
relationships.
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Supplementary Figure 5
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MS-specific snRNA-seq ligand-recepor pairs (LRPs) 
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MS-specific snRNA-seq LRPs: Sending cell types
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MS-specific snRNA-seq LRPs: Target cell types
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Supplementary Figure 5. MS-specific cell-cell interactions derived from snRNA-seq data.
a, MS-specific snRNA-seq ligand-recepor pairs. b, MS-specific snRNA-seq ligand expression by cell type. c, MS-specific 
snRNA-seq receptor expression by cell type.
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