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Progressive multiple sclerosis (MS) is driven by demyelination, neuroaxonal
loss, and mitochondrial damage occurring behind a closed blood-brain barrier
(BBB)."? Patients with progressive MS typically fail to respond to available
immunomodulatory drugs that reduce relapses in early disease.? This
indicates a dire need to identify non-canonical therapeutic avenues to limit
neurodegeneration and promote protection and repair.> Here, we have

employed high-resolution multiomic profiling to characterise the biochemical
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and metabolic adaptations underpinning MS pathology, as these have been
incompletely described but critically, may be amenable to BBB-permeable
drug targeting. Using synchrotron radiation (SR)- and focal plane array (FPA)-
based Fourier transform infrared microspectroscopy (UFTIR), we spatially
mapped the biochemical features present in human progressive MS and
control post-mortem brain and rare spinal cord tissue. By employing single-
nuclear RNA sequencing (snRNA-seq), 10x Genomics Visium spatial
transcriptomics and spatial proteomics to resolve their cellular context, we
found that these biochemical features provide a uniquely and highly disease-
specific barcode for distinct pathological niches within the tissue.
Characterisation of the metabolic processes underpinning these niches
revealed an associated re-organisation of the astrocytic landscape in the grey

and white matter, with implications for the treatment of progressive MS.

FTIR microspectroscopy is emerging as a label-free and non-destructive technology
for the high-resolution spatial mapping of biochemical signatures present within
biological samples,*® but has never been applied to the analysis of CNS tissue from
MS patients. We employed SR-uFTIR utilizing the Diamond Light Source MIRIAM
beamline with a 0.964 cm™ spectral and a 5x5 um? spatial resolution, to obtain 2,061
spectra from 10 uym-thick brain and spinal cord sections from our secondary
progressive MS (SPMS) patient cohort (Fig. 1). By exciting the tissue with incident
light within the infrared wavelength range, sample absorbance characteristics were
captured as different vibrational modes corresponding to specific functional groups
present in lipids, proteins, nucleic acids, and carbohydrates (Fig. 2a). The spectra

were obtained from areas within each tissue section that were characterised as
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lesional and normal-appearing white matter (NAWM) through histological staining,
and the variance in the data generated was explored through dimensionality
reduction. We found that the highest proportion (60.12%) of the observed variance
(principal component (PC) 1) was predominantly driven by the absorbances detected
in the 2,800-3,000 cm™' wavenumber region (Fig. 2b). Absorbance peaks within this
region correspond to the presence of lipids (Fig. 2a), and spectra derived from the
WM lesion areas showed a significantly lower infrared light absorbance than NAWM
spectra (Fig. 2c), consistent with the demyelinating nature of MS pathology.’ PC2,
which explained 8.37% of the variance in the data, was driven by absorbances
detected in the 2,800-3,000 cm™ and also in the 1,500-1,700 cm™' regions (Fig. 2b);
the latter contains peaks corresponding to the amide groups found in proteins (Fig.
2a). In contrast to the lipid-associated spectral peaks, the absorbance of the amide
peaks was significantly higher in the WM lesion compared to the NAWM spectra
(Fig. 2c). Notably, in addition to providing information on overall protein content, the
shape of the amide peaks enables inference of protein secondary structure motifs,
such that the relative proportion of a-helices, f-sheets and g-turns can be
estimated.® Alterations in the proportions of these protein secondary structure
features can be indicative of proteinopathy: in Alzheimer’s disease -sheet content is
elevated in amyloid beta plaques’ and in Parkinson’s disease increased -sheet
content has been detected in neurons of the substantia nigra.? Interestingly, we
found significantly higher percentages of f-sheets and f-turns and a lower
percentage of a-helices in the WM lesions relative to the NAWM (Fig. 2¢). This
provides direct evidence of altered protein folding in SPMS lesions, and suggests
that deviation from protein homeostasis is a pathophysiological mechanism common

to diseases with a neurodegenerative component, regardless of their etiology.
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Although the PC analysis of the SR-uFTIR data demonstrated that the top PCs could
distinguish subsets of spectra from the WM lesion and NAWM areas, it also revealed
additional substructure in the data (Fig. 2b). Therefore, in order to better resolve the
biochemical heterogeneity of the patient tissue, we employed FPA-uFTIR with a
globar source to scan more continuous areas, spanning demyelinated and non-
demyelinated WM as well as grey matter (GM) areas, and to profile CNS tissue from
controls (Fig. 1). We obtained a total of 229,376 spectra with a 1.928 cm™* spectral
and a 5x5 ym? spatial resolution. Implementing an unsupervised dimensionality
reduction approach,®'° we identified seven spectral clusters, five of which (termed
Les1-Les5) were almost exclusively derived from SPMS tissue, collectively
comprising <0.5% of the control spectra (Fig. 2d). The other two clusters
corresponded to healthy WM and GM spectra and were detected in both the control
and case tissue. Inspection of the spectral cluster features showed that each had a
unique biochemical fingerprint characterized by variation in the lipid and protein
content, protein secondary structure and the carbonyl ester content (1,700-1,760 cm-
' region), which can be used to derive a metric of lipid oxidation!" (Fig. 2e, Supp.
Fig. 1). Oxidized lipids have been previously reported to be present in MS lesions,'?
and we observed that SPMS-specific clusters with high lipid oxidation also had a
high g-sheet and g-turn content, and this was most prominent in the GM (Les4).
Notably, whilst under physiological conditions protein folding requires redox
processes, under conditions of excessive oxidation proteins can become

carbonylated resulting in alterations to their conformation and even aggregation.’
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To ascertain how the biochemomic fingerprint of the different FPA-uFTIR clusters
related to the underlying cellular architecture of the tissue, we performed mass
spectrometry-based spatial proteomics on 89 samples of 316x316 um? resolution
from consecutive/near-consecutive 10 um tissue sections (Fig. 1). Spatially aligning
the FPA-uFTIR clusters and proteomics data histologically, we first sought to confirm
the relationship between FPA-uFTIR cluster lipid content and the expression of
myelin basic protein (MBP), which is characteristically lost in MS in demyelination.
As anticipated we found that MBP expression was highest in tissue samples that
corresponded to the healthy WM spectral cluster, and in fact cluster lipid content was
highly positively correlated with MBP level (r=0.982, P=2.573x103; Supp. Fig. 2a),
despite the lipid content being inversely correlated with the overall protein content
(r=-0.919, P=3.432x103; Supp. Fig. 2b). Next, we performed unsupervised
clustering of the spatial proteomics data. This revealed that the FPA-uFTIR clusters
largely segregated with the proteomics clusters (Supp. Fig. 2c). For example,
SPMS-specific cluster Les1 predominantly co-segregated with proteomics cluster 2
which was enriched for proteins corresponding to oligodendrocytes (e.g. MBP,
PLP1), and to a lesser extent astrocytes (e.g. GFAP, AQP4, HEPACAM, C3) and
immune cells (e.g. IGHG1); cluster Les2 was more associated with astrocyte and
immune proteins in proteomics cluster 4; and clusters Les4 and Les5 were verified
as GM given their association with neuronal proteins (e.g. SYN1, CAMK2B) in
proteomics cluster 2. To further confirm these findings spatially at the RNA level
(Fig. 2f), we generated the first higher resolution spatial transcriptomic data of SPMS
postmortem tissue by using the 10x Genomics Visium platform in conjunction with
Cell2location-based deconvolution (Fig. 1). The deconvolution was performed by

leveraging a brain snRNA-seq atlas of 71,078 nuclei derived from the integration of
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our multiplexed 3’ snRNA-seq data with data from two previously published MS
studies'15 (Supp. Fig. 3). Aligning the FPA-UFTIR spectral cluster maps with the
Visium data confirmed concordance between the biochemomic, proteomic and
transcriptomic data, demonstrating that the different cellular niches present in SPMS
lesional and peri-lesional areas can be uniquely distinguished by their biomolecular

profiles.

Given that signatures of altered protein folding and oxidation contributed to the
definition of the SPMS-specific spectral clusters, we next assessed whether we
could find support for this at the RNA level. Performing weighted gene correlation
network analysis (WGCNA) on the integrated snRNA-seq data to identify clusters of
interconnected genes (modules), we found one SPMS-associated module
(‘paleturquoise’) in the oligodendrocytes (Supp. Fig. 4a), and three in the neurons
(‘orange’, ‘salmon’ and ‘turquoise’), as well as a disease anti-correlated module
(‘grey60’) in the latter cellular compartment (Supp. Fig. 4b; all P.4<0.05). Pathway
analysis demonstrated that of these, the oligodendrocyte ‘paleturquoise’ and the
neuronal ‘turquoise’ modules were both enriched for pathways associated with
aberrant protein folding and pathways indicative of other neurodegenerative
diseases (Fig. 3a,b). Notably, cell-cell interaction analysis revealed LRP1- and APP-
related ligand-receptor pairs amongst those interactions specific to SPMS,
predominantly in the neuronal cell types and the oligodendrocytes (Supp. Fig. 5).
LRP1 and APP have been linked to the clearance of protein aggregates and are
implicated in Alzheimer’s disease and Parkinson’s disease.'® The oligodendrocyte
‘paleturquoise’ and neuronal ‘turquoise’ modules were also enriched for pathways

associated with oxidative stress, but this was especially prominent for the neurons,
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where pathways relating to mitochondrial function, the citrate (TCA) cycle, aging and
neuron death were additionally enriched (Fig. 3a,b). Scoring and mapping the
presence of these pathways within the spatial transcriptomic data showed that whilst
control brain and spinal cord tissue had no or minimal enrichment regardless of the
cell types present in the sections, SPMS tissue was enriched for aberrant protein
folding-related pathways in niches corresponding to oligodendrocytes (particularly
adjacent to astrocyte-rich lesions) and neurons (Fig. 3c). In keeping with the FPA-
MFTIR analysis and the WGCNA, oxidative pathways prominently localized to the
SPMS GM (Fig. 3c). To confirm that the increased neuronal oxidation was linked to
metabolic alterations in these cells, we performed a metabolic flux analysis. We
found that consistent with the WGCNA pathway enrichment analysis, flux in the TCA
cycle, which is a highly conserved process central to cellular energy production in
the cell and which is also highly oxidative, was upregulated in SPMS neurons
relative to controls (Fig. 3d). In addition, lipid biosynthesis, which serves as a source
of acetyl-CoA that is the input for the TCA cycle, was significantly upregulated in
SPMS neurons, indicating metabolic dysregulation as a driver for neuronal oxidative
stress (Fig. 3d), and ultimately leading to a loss of CUX2" neuronal cell subsets

(Fig. 3e), that are selectively vulnerable.'®

Neurons, as well as oligodendrocyte progenitor cells, represent the energetic
Achilles’ heel of the GM: they are simultaneously energetically demanding and have
limited anti-oxidant capacity, instead relying on the metabolic support and anti-
oxidant capacity of astrocytes.!” For example, expression of the transcription factor
NRF2, encoded by NFE2L2, in astrocytes upregulates a neuroprotective, anti-

oxidant gene program that is repressed in an astrocytic population enriched in
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experimental autoimmune encephalomyelitis and multiple sclerosis.' Thus, we next
assessed the frequency (Fig. 3e) and relative spatial localization of astrocyte
subsets (Fig. 4a) in the SPMS cases and controls. We observed a significant
increase (Pag=0.0108) in the proportion of a CD44" S100BP°s FOSP°s astrocyte
population with a low expression NFE2L2 (Fig 3e, Fig. 4b). This astrocyte subset
was observed in WM lesions (Fig. 3d), and strongly colocalized with
oligodendrocytes, immune cells and endothelia/stroma in SPMS; colocalization with
CUX2" and RORB" neurons was reduced in cases compared to controls, which may
partly be related to the disease-associated decrease in the former cell type.
Intriguingly, the CD44'°"/"es gstrocytes also showed a striking change in spatial
colocalization is SPMS compared to controls, despite no significant difference in their
abundance. In controls these cells typically colocalize with excitatory neuronal
subsets, endothelia/stroma, microglia, oligodendrocytes and other astrocytes, but in
SPMS the colocalization with CUX2" neurons, endothelia/stroma and
oligodendrocytes was largely lost (Fig. 4a). Notably, the CD44'°¥/ned gstrocyte
population includes the CD44"9 MERTK" MEGF 10" cell subset which was found to
have the highest NFE2L2 expression compared to other astrocytes in both the cases
and controls (Fig. 4b). Specifically visualizing the spatial mapping of this cell subset
showed a diffuse presence of these cells in the GM and WM in controls, but a
prominent localization to WM lesions and a striking absence in oxidatively stressed
GM (Fig. 4c). These data suggest that a loss of NFE2L2" astrocytes from the GM
may contribute to neuronal pathology, and that maintenance of the homeostatic
astrocyte localization within the GM may be central to preventing further

neurodegeneration.
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In this study, we provide a high-resolution, multiomic spatial map of SPMS patient
and control brain and spinal cord tissue. We observe an unparalleled capacity of the
biochemome, as assayed through pFTIR, to distinguish disease-specific,
pathological cellular niches. We find that these niches are underpinned by aberrant
protein folding, oxidative stress and metabolic dysfunction, and a concomitant
alteration in the astrocytic architecture across the WM and GM, that may be
particularly critical for neurons and that may have important therapeutic implications.
For example, our findings may be consistent with the observed capacity of
siponimod to reduce risk of disability progression in SPMS, given its impact on
blocking astrocyte activity and reducing astrogliosis.’® Conversely, whilst the NRF2-
activating drug dimethyl fumarate is approved for relapsing-remitting MS,?° trialling in
progressive disease has not been efficacious,?' perhaps due to a need for a
restoration of the GM astrocytic architecture in order for the NRF2 activation to exert

its protective effect on the neuronal compartment.
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Methods

Human donor tissue
Postmortem fresh-frozen human brain and spinal cord samples were obtained from
the UK Multiple Sclerosis & Parkinson’s Disease Tissue Bank at Imperial College

London, under the Multicentre Research Ethics Committee approval (reference
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number 08/MREQ9/31+5). Samples had a mean RIN value of 6.95 and were initially
characterised with haematoxylin and Oil-Red-O staining. Briefly, 10 um tissue
sections were fixed in 10% formalin, slides were washed and dipped three times into
60% triethyl phosphate solution. Slides were immersed in Oil-Red-O solution for 15
min. Excess dye was washed by dipping slides three times in 60% triethyl phosphate
and washed in water. Samples were then counterstained with haematoxylin for 5 min
and subsequently washed in water for 5 min, air dried, mounted with 50% glycerol

and imaged in an Aperio S2 slide scanner with 20X magnification.

MFTIR sample preparation

Ten um-thick tissue sections were placed on calcium fluoride infrared (IR) optical
windows (Crystran). They were then fixed using 4% paraformaldehyde (PFA) at
room temperature for 10 min and washed 3 times with water to ensure removal of

any remaining PFA. Samples were then air-dried and stored at room temperature.

SR-pFTIR

Data collection was performed at the MIRIAM B22 beamline at Diamond Light
Source (Didcot, UK). Image data were collected at 36X magnification on a Hyperion
3000 microscope with a 15x15 ym? aperture and 5 ym scanning area overlap with
neighboring collection areas for optimal spectral quality and to maximize resolution.
Data were collected with a spectral resolution of one data point per 0.964 cm'. Each
sample area was scanned 64 times. A clean tissue-free area was also selected and

scanned 64 times as a background reference.

FPA-uFTIR
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Data collection was performed at the same location as for the SR-uFTIR. Image data
were collected at 20X on a Hyperion 3000 microscope. Spectroscopy data were
collected using a Bruker Vertex 80V Fourier Transform IR Interferometer with a
focal-plane array (FPA) detector (64x64, 40 um pixel size, for near- and mid-IR) with
2x2 binning, and a spectral resolution capturing one data point per 1.928 cm-'.
Maximum absorbance was kept below 1.0. A clean tissue-free area of the slide was
selected for background measurements and scanned 64 times. The total area
scanned for each brain sample was 398,881.3 um?, where 16,384 spectra were
captured (spatial resolution = 24.34 ym? per spectrum). Scanned spinal cord areas
varied between 0.5-2.5 times this area, depending on features of interest in the

sample.

Pre-processing and clustering of spectral data

Following data collection, pre-processing was performed including atmospheric
compensation and baseline correction (SR-uFTIR - rubberband correction; FPA-
MFTIR — concave rubberband correction, 3 iterations with 32 baseline points;) on
OPUS (v. 7.4). The data were then exported for analysis in our custom-built Python
package Photizo."® The 2,250-2,400 cm™' region which is associated with
atmospheric CO2, was excluded from analysis. Outlier spectra with lipid peak and
protein peak simultaneously below 1/4 of the maximum peak were filtered. Baseline
variation is a feature associated with scattering, thus all spectra with a variation in
baseline superior to 5 times the average baseline variation were also filtered. Prior to
filtration, visual inspection of microscopy images confirmed these regions
corresponded to areas that did not contain tissue. Following filtration, each spectrum

was normalised by dividing it by the norm of that sample. Preliminary analysis of
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spectral quality included dimensionality reduction with principal component analysis
(PCA). Eigenspectra as well as averaged spectra per sample were visualized to
confirm peak position in relation to previously reported spectral features of this
sample type. Integration of the area below a band of interest was used as a robust
measure of the biomolecular component of interest. The protein secondary structure
composition of a-helices, f-sheets, g-turns and random coils was quantified by

UFTIR as previously described?®:

a — helix (%) = —148.10 + 0.98 * A16%* + 1.49 x A1588 4 0.66 * A1546
[ — sheet (%) = 35.53 + 0.56 x A157 + 0.60 x A162°
B —turn(%) = —14.25 + 0.36 * A1%78 + 0.85 x A1501

random (%) = —40.65 + 1.08 * A1523 + 0.62 x A167°

Lipid oxidation was estimated by normalising the carbonyl ester band by the total
lipid content, as previously reported.! For statistical comparisons of protein
composition and pseudo-quantitative results from integration, a linear mixed model
was used to control for scanning batch, sample effects, and spectrum inter-
dependence. Features such as sex, age, cause of death and time from death to
freezing did not correlate with the changes observed. All statistical comparisons
were performed using Levene test for variance homogeneity, followed by the

Games-Howell test.

Spectral clustering
In order to classify tissue spectral features, we used uniform manifold approximation

and projection (UMAP)? to cluster the spectra. Community detection was performed


https://doi.org/10.1101/2022.09.26.509462
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.26.509462; this version posted September 27, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

with the Leiden algorithm.?? Spectra for each cluster were averaged for identification
of cluster-distinguishing features. Cluster classification was then spatially visualized

in order to correlate these results with histology.

Spatial proteomics

Samples were sectioned for proteomic analysis onto 1.0 PEN membrane slides
(Zeiss, #415190-9041- 000). These were stained with H&E staining according
previously reported spatial proteomics methods.?? In short, samples were fixed in
70% denatured alcohol, rehydrated in water and stained with haematoxylin. Tissue
was subsequently washed in distilled water and stained with bluing buffer followed
by another wash. Finally, the samples were stained with eosin, washed a final time
and dehydrated in increasing concentrations of denatured alcohol. All samples were

stored in the -80°C until next processing step.

Using a Zeiss RoboPalm LCM system, a total area of 100,000 ym? was processed in
each tube; microdissection was performed in 9 subareas (each area being
approximately 11,111 ym?), since laser catapulting of tissue is more effective and
precise with smaller tissue sections. For each tube, all 9 subareas were captured in
200 pl PCR tube caps with 20 ul of radioimmunoprecipitation assay (RIPA) buffer.
The number and location of captured areas was determined based on uFTIR and
Visium data; 89 samples were captured in total. Following collection, the samples
were frozen immediately on dry ice and stored at -80°C for <3 days until proteomic

preparation.
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The sample processing for spatial proteomics was performed as previously
reported.?3 Briefly, the RIPA buffer containing the microdissected samples was
thawed for 30 minutes followed by centrifugation. To ensure maximum protein
capture, the caps were rinsed, followed by a second centrifugation. Benzonase was
added and left to incubate at room temperature for 30 minutes, followed by
dithithreitol (DTT) at a final concentration of 5mM was added and tubes were
incubated for 30 minutes. lodoacetamide (IAA) at a final of concentration 20 mM was
added and incubated for 30 minutes. Sera-Mag-A and Sera-Mag-B Bead mix was
added and mixed, followed by acetonitrile (ACN; 70% final concentration), tubes
were gently tap mixed and incubated for 18 minutes at room temperature for protein
to bind to beads. Samples were placed on magnets for 2 minutes and supernatant
was discarded. Samples were rinsed twice with 70% ethanol for 30 seconds on
magnet. Beads were rinsed with 180 yl 100% ACN for 15 seconds on the magnet. A
solution of trypsin in 50 mM ammonium bicarbonate was added and beads were
resuspended. Samples were digested overnight at 37°C. Following digestion,
samples were bath sonicated and 180 pl of ACN was added and tap mixed. This
was incubated for 18 minutes off the magnet and for 2 minutes on the magnet. All
supernatant was discarded and resuspended in 5pl of 2% ACN, incubated on
magnet for 5 minutes and carefully transferred to vials containing 1% formic acid.

Finally, samples were stored at -20°C prior to mass spectrometry.

Mass spectrometry data pre-processing and clustering
MaxQuant pre-processed mass spectrometry data were received and downstream
analysis was performed in R 3.6.2 using Bioconductor DEP package. Initial filtration

steps filtered both samples and proteins: samples with <20% of proteins present
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were excluded; proteins represented in <65% of samples were excluded. The 65%
threshold was determined based on plotting the number of samples each protein
was represented in versus. the mean intensity of that protein across samples.
Following filtration, the data were log transformed and median-centered. Random
forest was used for imputation. Hierarchical clustering was performed to categorise
samples. In order to ensure reliability and minimize random effects from the
imputation processes and hierarchical clustering, imputation and clustering were
performed iteratively 100 times, with cluster classification being recorded for each
sample was recorded for each iteration. Our assessment determined that cluster
classification was reliable, with most samples clustering in the same group in 97-
100% of iterations. Cluster number cutoffs were assessed (brain k=4, SC k=5) to
partition the major detected clusters. Following this, differential expression of
proteins was calculated in a pair-wise fashion for each cluster, with proteins with log
fold change >1 and p<0.05 being considered statistically significant. Differentially

expressed proteins (DEPs) were used for heatmap cluster visualization.

snRNAseq nuclear isolation and nuclear hashing

Nuclei were isolated with PURE Prep Nuclei Isolation Kit (Sigma-aldrich), using the
manufacturer’'s recommended protocol for nuclear isolation by sucrose gradient.
RNAse inhibitors (4 U/ul reaction) were added to all solutions prior to each step.
Multiplexing was performed by washing and hashing nuclei from each sample with
one of six unique TotalSeq™-A anti-nuclear pore complex antibodies (BioLegend).
Two multiplexed sequencing batches were then sequenced by the Oxford Genomics

Centre (Wellcome Centre for Human Genetics, University of Oxford).
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Pre-processing, demultiplexing and clustering of shRNA-seq data

Data were aligned with CellRanger v3.1.0 using the GRCh38 genome as reference
and demultiplexed with a combination of antibody demultiplexing (DemuxEM?*) and
genetic demultiplexing based on reference SNPs (Vireo?® and Freemuxlet??), for
which a reference from the 1,000 Genomes Project was prepared with Cell[SNP?’ for
Vireo and Dsc-pileup to prepare input for Freemuxlet. Cell demultiplexing
classification required two or more of these demultiplexing methods to provide the
same classification for a cell to be carried forward in analysis. Based on records of
antibodies paired with each patient sample, demuxEM results were used to match

genetically demultiplexed samples back to patient clinical data.

Two publicly available datasets were then integrated into our analysis.''®> Sample
quality control, batch correction and clustering were performed, with filtering to
exclude nuclei with <200 genes, >10% mitochondrial content, <700 total UMI counts,
and with a doublet score>0.25. Genes present in less than 3 nuclei were excluded.
Following pre-clustering, nuclei with at least two of the following features were further
excluded: low total UMI counts, lack of distinguishing markers, large contributions
from mitochondrial genes, high expression levels of markers from multiple major cell
type groups simultaneously and higher doublet scores than average. This resulted in
a total of 71,078 nuclei. Harmony?8, BBKNN and Scanorama?® were compared as
integration methods using local inverse Simpson index (LISI) score and by visual
inspection of UMAPs. Harmony-corrected data was used for downstream analysis.
100 PCs were used for UMAP dimensionality reduction and community detection
was performed with the Leiden algorithm. Major cell groups were selected based on

major cell type markers and subclustered further.
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Differential abundance analysis

Cluster counts were converted to centered log-ratios (CLRs) using the ALDEx2 R
package. The median CLR for each cluster-sample combination was used for PCA
which was performed using prcomp (R version 3.6.2) with default parameters.
ANOVA was then used to identify confounding features contributing to top principal
components; the study from which each snRNAseq data set was generated was
identified as a contributing factor, and was therefore controlled for in the composition
model as a covariate (‘meta_experiment’). Cell counts (prefiltered using the same
criteria as for the PCA) were modelled using the gimQLFit function from edgeR with
disease status and meta_experiment included as covariates. Differential abundance
testing was performed using the quasi-likelihood F-test, and p-values were corrected
using the Benjamini-Hochberg adjustment. Unlike our study and the Schirmer data
set’, the Jakel study' only sampled white matter areas and therefore was not
included in this analysis to avoiding tissue site-associated confounding. A false

discovery rate cutoff (FDR)<0.1 was used.

Weighted gene correlation network analysis (WGCNA)
Pseudobulked snRNA-seq data were batch corrected using ComBat®® and then the
cornet package was used for WGCNA3'. All presented p-values were adjusted using

the Benjamini-Hochberg correction.

Cell-cell interaction analysis
Cell-cell interaction analysis was performed using the Network Analysis Toolkit for

Multicellular Interactions (NATMI)3? with the Irc2p database as reference, employing
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the default parameters, with communication networks having edges filtered for

specificity >0.1. [18]

Metabolic single cell flux estimation analysis (scFEA)

In order to estimate accumulation/depletion of metabolites and metabolic module flux
we used filtered and normalized gene expression. The analysis of all single nuclei
was performed jointly using single cell flux estimation analysis (sScFEA)33. Metabolite
estimation was compared for cases and controls within each major cell type cluster.
Supermodules were estimated by the sum of relevant modules within a given
supermodule. Statistical comparisons were performed with variance homogeneity
testing (Levene’s test). Having identified that across metabolites and cells certain
comparisons had homogeneous variance and others not, a non-parametric test
(Games-Howell) was used across all comparisons in order to maintain a
standardised approach which did not assume equal variance. P-values were

adjusted using the Benjamini-Hochberg correction.

Visium spatial transcriptomics

In order to obtain sections with a 6mm x 6mm area containable within the active area
of the Visium slides, the tissue samples were scored using a custom blade made by
the Old Road Campus Research Building workshop (University of Oxford). CNS
samples were sectioned with 10 um thickness. Sections were placed in the active
area of the slide and stored at -80°C for <5 days until use. We performed the
manufacturer’s gene expression protocol (protocol version CG000239 Rev A).

Briefly, we stained samples with H&E and imaged on a Zeiss RoboPalm Laser
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Capture Microdissection system at 10X magnification. This was followed by tissue
permeabilization (18 min, determined with the Visium Tissue Optimisation Kit,
protocol CG000238 Rev A). Reverse transcription was performed using a Thermo
Fisher Scientific Applied Biosystems Verity thermocycler, followed by second strand
synthesis and cDNA denaturation in 0.08 M solution of potassium hydroxide. The
solution from each well was harvested and transferred into 5 ul Tris-HCI (1M, pH
7.0). PCR optimal cycle number was determined using a QuantStudio system, where
1 ul of each sample was amplified using KAPA SYBR FAST qPCR Master Mix with
low ROX. The number of cycles at 25% of the RFU plateau for each sample was
determined and ranged from 17 to 20 cycles. This cycle number was then used for
PCR amplification of the remaining sample volume. Samples were then stored at -

20°C and until further processing and sequencing at the Oxford Genomics Centre.

Visium spatial transcriptomics image tiling and pre-processing

Histological images collected on the Zeiss RoboPalm LCM system were tiled using
FIJI package of Imaged version 1.0.0-rc-69/1.52p; white balance correction was
performed using a macro written by Vytas Bindokas; Oct 2006, Univ. of Chicago with
modifications by Patrice Mascalchi. The images were then loaded and aligned in
relation to fiducial frames for spatial gene expression mapping using Loupe Browser.
Visium data were aligned using SpaceRanger and filtered based on total gene

counts (brain: >500; spinal cord: >500, <15,000).

Visium spatial transcriptomics deconvolution and co-localization networks
Data deconvolution was performed using cell2location34. Co-localisation networks

were estimated using deconvoluted data normalised per spot, where the top 6 cells
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per spot were considered to co-localize in that spot. This was estimated for all spots
and recorded in the form of an adjacency matrix which was then normalized and
plotted using the Python library networkx. Importance of cell types in the matrix was

estimated using the PageRank algorithm?3°.
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Figure 1. A high-resolution, spatial multi-omic atlas of progressive MS.

Spatial biochemomic, proteomic and transcriptomic workflow for the analysis of a total of

samples from 18 MS patients and 19 non-MS/non-neurodegenerative disease controls.
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Figure 3. snRNA-seq and spatial transcriptomic analysis of neurodegenerative pathways.

a, Pathway enrichment analysis of weighted gene correlation network analysis (WGCNA) modules from oligodendrocyte/
oligodendrocyte progenitor cell (OPC) snRNA-seq. b, Pathway enrichment analysis of WGCNA modules from neuronal
snRNA-seq. ¢, Representative images of spatial transcriptomic mapping of aberrant protein folding and oxidative stress
pathways. d, Comparison of neuronal snRNA-seq metabolic fluxes in SPMS cases and controls. e, Differential abundance

analysis of integrated snRNA-seq data.
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Supplementary Figure 1. FPA-uFTIR spectral cluster features.

Mean spectra of the FPA-uFTIR clusters in the lipid, carbonyl ester, olefinic, and protein regions (a-e respectively). Violin plots
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Supplementary Figure 2. The relationship between pFTIR clusters and proteomics.

a, Pearson correlation of the lipid absorbance (detected by FPA-uFTIR) and the myelin basic protein (MBP, detected
by spatial proteomics) for the spectral clusters aligned with the spatial proteomics areas. b, Pearson correlation of the
lipid and protein absorbances (detected by FPA-uFTIR) for the spectral clusters. ¢, Heatmap of the proteomics sample
clusters and the distribution of the aligned FPA-uFTIR spectral clusters.
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Supplementary Figure 3. An integrated brain snRNA-seq atlas comprising 71,078 nuclei.

a, Relative distribution of integrated nuclei by study and disease status. UMAPs and key marker dot plots for OGs/OPCs,
astrocytes, neurons, endothelia/stroma and immune cells (b-f). The legend for the percentage of cells expressing marker

genes shown in b applies to all dot plots in the figures. Bars to the right of dot plots indicate the number of nuclei in each cluster.
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Supplementary Figure 4. snRNA-seq weighted gene correlation network analysis (WGCNA) module-trait relationships.
a, Oligodendrocyte/oligodendrocyte progenitor cell (OPC) WGCNA module-trait relationships. b, Neuronal WGCNA module-trait

relationships.
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Supplementary Figure 5. MS-specific cell-cell interactions derived from snRNA-seq data.
a, MS-specific snRNA-seq ligand-recepor pairs. b, MS-specific snRNA-seq ligand expression by cell type. ¢, MS-specific
snRNA-seq receptor expression by cell type.
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