

1 The genetic basis for adaptation in giant sea anemones to 2 their symbiosis with anemonefish and *Symbiodiniaceae*

3
4 Agneesh Barua^{1*}, Rio Kashimoto^{1,2}, Konstantin Khalturin², Noriyuki Satoh², Vincent Laudet^{1,3}.

5 ¹ Marine Eco-Evo-Devo Unit, ² Marine Genomics Unit; Okinawa Institute of Science and
6 Technology. 1919-1 Tancha, Onna-son, 904-0495 Okinawa, Japan.

7 ³Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica,
8 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan

9 *Agneesh Barua.

10 **Email:** agneesh.barua@oist.jp, agneeshbarua@gmail.com

13 **Author Contributions:**

14 AB: Conceptualized and designed the study, performed the analysis, and wrote the paper. RK:
15 Performed the research. KK and NS: Provided analytical tools and reagents. VL: Conceptualized
16 the study and wrote the paper.

17
18 **Competing Interest Statement:** No competing interests.

19 **Classification:** Ecology and Evolution.

20 **Keywords:** Symbiosis, Molecular ecology, Evolutionary genetics, Marine biology

21

22 **Abstract**

23 Sea anemones in the order Anthozoa play an integral part in marine ecosystems by
24 providing refuge and habitat for various organisms. Despite this, much of their molecular
25 ecology remains elusive. Sea anemones can nurture numerous symbiotic relationships;
26 the most iconic being the one between giant sea anemones and anemonefish. However,
27 the genes and biological processes associated with this symbiosis in the sea anemones in
28 unknown. Additionally, it is unclear how genes can mediate interactions between sea
29 anemones, anemonefish, and symbionts from the algal family *Symbiodiniaceae*. Here we
30 compared the gene expression profiles of tentacles from several cnidarians to uncover the
31 genetic basis for adaptations in giant sea anemones to their symbiosis with anemonefish
32 and *Symbiodiniaceae*. We found that tentacle transcriptomes of cnidarians are highly
33 diverse, with closely related species having more similar expression patterns. However,
34 despite an overall high correlation between gene expression and phylogeny, the giant sea
35 anemones showed distinct expression patterns. The giant sea anemones had gene co-

36 expression clusters enriched for processes involved in nutrient exchange and metabolism.
37 These genes were not only differentially expressed, but also experienced evolutionary
38 shifts in expression in giant sea anemones. Using a phylogenetic multilevel model, we
39 found that *Symbiodiniaceae* and anemonefish significantly affect gene expression in giant
40 sea anemone tentacles. By characterizing gene expression patterns, we identify genes and
41 biological processes that provide evidence for the cross-talk between *Symbiodiniaceae*,
42 anemonefish, and giant sea anemones. Our study demonstrates how integrated biological
43 processes can lead to the evolution of a successful multi-organism interaction.

44

45

46 **Main Text**

47

48 **Introduction**

49

50 Anthozoans are a class of cnidarians that are the cornerstone of diversity in shallow and
51 deep aquatic ecosystems (1). Several key innovations like modular, colonial growth forms;
52 hard calcareous skeleton; and symbiosis with photosynthetic dinoflagellates
53 (*Symbiodiniaceae*) have led to their ecological success. Due to their position as biodiversity
54 hotspots and endangered status, coral reefs and their coral species are extensively studied
55 (2, 3). However, several ecologically important anthozoans do not form reefs or have a
56 hard calcareous skeleton, as exemplified by sea anemones (4). Sea anemones are soft-
57 bodied, primarily solitary, and exclusively marine. They have evolved several unique
58 adaptations, such as secretions that allow them to attach firmly to surfaces and venom
59 systems that aid in prey capture and protection (5, 6). The starlet sea anemone *Nematostella*
60 *vectensis* is now an established model system in Evo/Devo and has provided a treasure
61 trove of knowledge into axial patterning mechanisms, nervous system development, and
62 the evolution of fundamental bilaterian features (7). Although studies have provided deep
63 insight into the above aspects of sea anemones' biology, much of their molecular ecology
64 remains elusive.

65

66 Tentacles are the primary tissues that sea anemones use to interact with their
67 environment, with several species showing specialized tentacle morphologies (8, 9).

68 Studies of sea anemone tentacles have shed light on crucial evolutionary processes such
69 as the origins of tissue specificity and cross-tissue recruitment of gene families (10, 11).
70 Some sea anemone tentacles also house symbionts from the algal family *Symbiodiniaceae*
71 (12, 13). The importance of symbiosis with *Symbiodiniaceae* has been studied extensively
72 in corals, where photosynthetic products supplied by the symbiont assist the coral host in
73 growth, metabolisms, reproduction, and survival (14, 15). Despite the importance of
74 *Symbiodiniaceae* in corals, not all sea anemones form a symbiotic relationship with
75 dinoflagellates (e.g. *Nematostella vectensis* and *Actinia tenebrosa*). In addition to
76 *Symbiodiniaceae*, sea anemones form symbiotic relationships with other larger organisms
77 such as fish or crustaceans (16–18). The most iconic of these relationships is the mutualistic
78 symbiosis between anemonefish (*Amphiprion*; Pomacentridae) and giant sea anemone
79 (19).

80 Ten species of giant sea anemones belonging to three different clades form a close
81 mutualistic relationship with anemonefish (20–22). In this mutualistic interaction, the fish
82 are sheltered by the venomous tentacles of the host sea anemone, and the fish provide the
83 sea anemone with a source of nutrition (23, 24). Anemonefish are highly territorial and
84 protect their host anemone from predators such as butterflyfish (*Chaetodon fasciatus*),
85 thereby enhancing their survival (24, 25). Although there is a tight relationship between
86 the fish and their host anemones, much of our information about this symbiosis comes
87 from the perspective of the anemonefish, with little understanding of the molecular and
88 evolutionary adaptations in the host anemones (20, 21).

89
90 In this study, we compare transcriptomes of tentacles from giant sea anemones with
91 different species of cnidarians to uncover the genetic basis behind the unique ecology of
92 anemonefish hosting giant sea anemones. The giant sea anemone showed gene expression
93 patterns distinct from other cnidarians. Using a co-expression analysis, we identified
94 groups of upregulated genes and processes related to symbiosis with anemonefish and
95 *Symbiodiniaceae*. We identified genes that have experienced evolutionary shifts in gene
96 expression in anemonefish hosting anemone using phylogenetic comparative methods.

97 Lastly, we tested for the effect of the relationship with anemonefish and *Symbiodiniaceae*
98 on tentacle gene expression and found evidence of a potential adaptive effect. Our study
99 identified important genes and biological processes involved in the multi-organism
100 interactions between anemonefish, *Symbiodiniaceae*, and sea anemones and describes how
101 the evolution of these genes and processes contributed to the formation of a successful
102 multi-organism symbiotic relationship.

103

104

105 **Results**

106 Anthozoans have similar tentacle gene expression patterns

107 To identify gene expression patterns of anthozoan tentacles, we analyzed publicly
108 available RNA-seq data and generated data for this study (Table S1). Our sampled taxa
109 comprised fourteen anthozoans, and as outgroup taxa, we included jellyfish (four
110 scyphozoans, one cubozoa) and *Hydra* (hydrozoa) (Fig 1A). We included these taxa
111 because they had publicly available data for tentacle gene expression. Along with gene
112 expression data from tentacles, we also included data from tissues such as mesenteries,
113 body column, and nematosomes. Most of our sampled taxa do not have a reference
114 genome; therefore, we assembled *de novo* transcriptomes of all taxa for consistency. Mean
115 BUSCO completeness was 82%, with jellyfish libraries having the lowest values (Table
116 S2). The jellyfish libraries were of relatively poorer quality than the other taxa. Jellyfish
117 tentacles are also highly heterogeneous in their gene expression, and the lower BUSCO
118 values were not entirely unexpected (26). Our expression matrix comprised 1486
119 orthologs expressed across all tissues in all our sampled taxa.

120 The variation in library quality could affect the ultimate gene count, which will affect the
121 transcripts per million (TPM) quantification of gene expression. To make gene expression
122 more comparable between incomplete references and organisms with varying gene
123 counts, we used a modified metric called transcripts per million 10K (TPM10K) described

124 in Munro *et al.* (27). TPM10K normalizes TPM to account for different sequencing depths
125 and gene counts between species (see methods for details) (27).

126 We first checked for correlation (spearman rank correlation) between gene expression
127 levels in our samples. Overall, gene expression within anthozoans was more similar than
128 between anthozoans and non-anthozoans (Fig 1B, and Fig S1, S2, S3). However, there were
129 some exceptions to this. For instance, *Galaxea fascicularis* (gafu) and *Nematostella vectensis*
130 (neva) had expression patterns that were not similar to other anthozoans (Fig 1B). The
131 highest correlations were between the giant sea anemones of the *Heteractis*, *Stichodactyla*,
132 *Macroactyla* and *Entacmaea* genera. Three interesting patterns emerged within these giant
133 sea anemones. First, gene expression of *Macroactyla doreensis* (mado) was more similar to
134 expression patterns in *Heteractis* than in *Stichodactyla*. Second, *Heteractis magnifica* (hemag)
135 had expression patterns more similar to *Stichodactyla* than other *Heteractis* species. Lastly,
136 the giant sea anemone *Heterodactyla hemprichii* showed a comparatively lower correlation
137 with the other giant sea anemone.

138 Next, we performed a principal component analysis (PCA) to explore gene expression
139 patterns between different lineages and tissues (Fig 1C). Since anthozoans show
140 expression patterns very different from non-anthozoans, we discuss the results of PCA
141 using only anthozoans. The PCA with all cnidarian samples is included in the
142 supplementary information (Fig S4). The first two components partition the data based
143 on tissues. This suggested that generally, tentacles have an expression pattern distinct
144 from other tissues in sea anemones. However, non-tentacle tissues of *Galaxea fascicularis*
145 and *Heterodactyla hemprichii* cluster together with tentacles, suggesting that the expression
146 of these tissues is similar to that of tentacles.

147 The comparative transcriptome analyses showed that anthozoan tentacles have similar
148 gene expression patterns and are distinct from non-tentacle tissues. Additionally, tentacle
149 gene expressions of giant sea anemones, especially those hosting anemone fish, were
150 highly correlated. The similarity of closely related lineages suggests a strong phylogenetic
151 component to tentacle gene expression.

152

153 Giant sea anemone tentacles evolved convergent gene expression patterns

154 The high similarity in gene expression between closely related taxa suggests a strong
155 phylogenetic component. To better understand the relationship between gene expression
156 and evolutionary history, we compared sequence-based-phylogenetic distances with
157 expression distances between all species pairs. To obtain the phylogenetic distances, we
158 constructed a phylogenetic tree using one-to-one single-copy orthologs and estimated
159 expression distances using 1-Spearman coefficients (pairwise). Mantel test between
160 phylogenetic distance and expression distance matrices showed that they were
161 significantly correlated ($R = 0.651$, p-value = 0.001) (Fig 2A). To get an idea of the
162 magnitude of expression change with an increase in the phylogenetic distance, we fit a
163 simple linear model to the distance data, which estimated a slope of 3.081 (adjusted $R^2 =$
164 0.62, p-value < 0.0001) (Fig 2A). These results suggest that closely related taxa tend to have
165 similar tentacle gene expression patterns, with expression variation increasing with
166 increased phylogenetic distance.

167 The high slope of the linear model (which can be interpreted as high evolutionary rates
168 (28)) suggested that lineages may have evolved highly divergent tentacle gene expression
169 patterns. We compared the species' tree with the tentacle gene expression tree to
170 determine whether gene expression patterns deviated from their expected evolutionary
171 trajectory (Fig 2B). We constructed the expression tree using the 1-Spearman coefficient
172 distances, while the species tree was constructed using a multisequence alignment of 1:1
173 single-copy orthologs using IQ-TREE 2 (29). The species tree had high bootstrap support
174 and was consistent with previously estimated cnidarian phylogenies and an updated
175 phylogeny of giant sea anemones (20–22, 30, 31). At a higher level, the species and
176 expression trees were consistent; there was a clear separation of anthozoan and non-
177 anthozoan lineages in both trees, *Nematostella vectensis* and *Galaxea fascicularis* formed
178 divergent lineages (to giant and other sea anemones) in both the species and expression
179 trees, and sea anemones *Actinia tenebrosa*, *Anthopleura dowii*, and *Oulactis* sp were grouped
180 with giant sea anemones. Despite the overall consistency, there were several key
181 differences between the species and expression trees when looking at internal branches.

182 In the species tree, the different species of giant sea anemones formed separate lineages,
183 consistent with previous results (20–22). However, instead of distinct lineages in the
184 expression tree, they form a single large clade (Fig 2B). This suggests evolutionary forces
185 have caused giant sea anemone tentacles to evolve convergent gene expression
186 phenotypes.

187

188 Genes upregulated in giant sea anemone tentacles are involved in the metabolism and
189 biosynthesis of organic compounds

190 To get a sense of the biological underpinnings in giant sea anemone tentacles, we
191 identified genes and processes that were differentially regulated. We performed
192 differential gene expression (DGE) analysis using pairwise comparisons of *Heteractis*,
193 *Stichodactyla*, *Macrodactyla*, and *Entacmaea* with *Actinia tenebrosa*, *Galaxea fascicularis*,
194 *Nematostella vectensis*, and *Oulactis* sp. We identified several differentially expressed genes
195 in the giant sea anemones. In total, 222 orthologous genes were upregulated in all giant
196 sea anemones, while 240 orthologous genes were downregulated (Table S3 and Table S4).
197 To determine the functional implications of these orthologs, we estimated co-expression
198 clusters using the R package *coseq* (32). Among the upregulated genes, 222 were grouped
199 into two clusters (cluster up-1 = 46 genes, cluster up-2 = 176 genes). 240 downregulated
200 genes were also grouped into two clusters (cluster down-1 = 202 genes, cluster down-2 =
201 38). Genes were included in clusters based on *Maximum a Posteriori* scores, a Bayesian
202 optimized parameter search approach for estimating joint probability distributions (33).
203 The genes in cluster up-1 have expression patterns varying between samples (both within
204 and between species). For example, genes in cluster up-1 tend to have an overall higher
205 expression in *Entacmaea quadricolor*, while in *Heteractis magnifica* they tend to have a
206 generally lower expression (boxplot in Fig 3A). In contrast, genes in cluster up-2 have a
207 more uniform expression pattern between samples and species. The correlation plot for
208 cluster up-2 shows patterns similar to the correlation plot in Fig 1; where closely related
209 species have higher expression similarity, *Heteractis magnifica* has expression patterns

210 similar to *Stichodactyla* than *Heteractis*, and *Macroductyla doreensis* has expression patterns
211 similar to *Heteractis* than *Stichodactyla*. Interestingly, it appears that *Macroductyla doreensis*
212 genes in cluster up-2 have an inverse relationship with *Stichodactyla* in cluster up-2 (grey
213 tiles in correlation plot). This inverse relationship was also observed between *Heteractis*
214 *magnifica* confirming that *Heteractis magnifica* has expression properties more similar to
215 *Stichodactyla*. The variability in correlations in cluster up-1 could be due to noise generated
216 by using a few gene samples. We estimated correlations using a random assortment of 47
217 genes to check if this was the case. A random set of 47 genes showed less noisy correlation
218 patterns (Fig S5), suggesting that the 47 genes in cluster 1 are highly variable due to
219 biological factors and not sampling bias.

220 We annotated the genes from the upregulated clusters using Gene Ontology (GO) terms
221 and performed an enrichment analysis to identify biological processes overrepresented in
222 the two clusters. GO term enrichment showed that both clusters were overrepresented
223 with terms related to biosynthesis and metabolic processes. Fig 3B shows the top 20 GO
224 terms based on ontology size (for the complete list, see Table S5) . In addition to the terms
225 in Fig 3B, which represent general biological processes, several GO terms provided insight
226 into more specific roles played by genes from these clusters. For example, cluster up-1
227 was enriched for the GO term GO:0044419: *biological process involved in interspecies*
228 *interaction between organisms* (Table S5). The ontology neighborhood of this GO term was
229 populated with terms that described symbiotic interactions and relationships with other
230 organisms (34). Cluster up-2 was enriched for terms related to developmental processes
231 such as GO:0007417- central nervous system development, GO:0060322- head
232 development, and GO:0042461- photoreceptor development (Table S5). These
233 fundamental biological processes might explain the more uniform gene expression
234 patterns in cluster up-2 compared to cluster up-1.

235 The two clusters of downregulated genes showed similar overall trends to the
236 upregulated clusters (Fig S6). Cluster down-1 replicated the lineage-specific expression
237 pattern observed in cluster up-2 of the upregulated genes (Fig S6). In contrast, cluster
238 down-2 of the downregulated genes was similar in expression variation to cluster up-1 of

239 the upregulated genes. GO term enrichment of the downregulated clusters showed that
240 they both comprised genes mainly involved in metabolic and catabolic processes (Fig S6
241 and Table S7, Table S8). Cluster down-1 also contained genes involved in fundamental
242 processes like organelle organization and development, mirroring the expression pattern
243 in cluster up-2 of the upregulated genes. The highly variable clusters of the upregulated
244 and downregulated genes were enriched for different processes. The highly variable
245 upregulated cluster (up-1) was enriched for processes related to biosynthesis. In contrast,
246 the highly variable downregulated cluster (down-2) was enriched for catabolic processes.
247 The differential gene expression and co-expression analyses provided evidence for crucial
248 functional differences between giant sea anemones and other anthozoans. The giant sea
249 anemones have higher expression of genes related to the metabolism and biosynthesis of
250 nitrogenous compounds, phosphate-containing compounds, and other essential
251 biomolecules (Fig 3B). These processes are highly relevant for symbiotic relationships
252 between organisms where the exchange of nutrients occurs. The symbiotic relationship of
253 giant sea anemones with anemonefish and *Symbiodiniaceae* could have influenced gene
254 expression in the tentacles and contributed to the evolution of their unique gene
255 expression profiles.

256

257 Gene expression divergence and the relationship between anemonefish and
258 *Symbiodiniaceae*

259 Giant sea anemones have a complex symbiotic relationship with *Symbiodiniaceae* and
260 anemonefish. These symbiotic relationships could have influenced the evolution of gene
261 expression patterns in giant sea anemones. We carried out a phylogenetic analysis of
262 variance (phy-ANOVA) to determine whether genes in species hosting anemonefish have
263 experienced evolutionary shifts in expression compared to non-hosting species. We also
264 used a phylogenetic multilevel model (PGMM), to checked for the combined effect of
265 hosting anemonefish and *Symbiodiniaceae* on gene expression.

266 We carried out the phy-ANOVA using the Expression Variance and Evolution (EVE)
267 model developed by Rohlfs and Nielsen which aims to identify genes with high
268 expression divergence as a result of adaptation in candidate species (35). We ran the EVE
269 model using the clusters of upregulated and downregulated orthologs obtained from the
270 co-expression analysis and branches leading to *Macroductyla*, *Heteractis*, *Stichodactyla*, and
271 *Entacmaea* as the test branches (Fig 4A). The EVE model found significant evidence (p-
272 value < 0.05) of gene expression shifts in 99 upregulated genes and 9 downregulated genes
273 (Table S5 and S6). To improve specificity, we focused on the ten genes with the highest
274 magnitude of theta shift (labelled genes in Fig 4B top panel). Amongst the ten genes with
275 the highest magnitude of theta shift, all of them were upregulated. These ten genes
276 regulated biosynthetic and metabolic processes (Table S9).

277 We fit a PGMM using gene expression data from the ten genes with the highest gene
278 expression shifts. The PGMM can estimate the effects of symbiosis with anemonefish and
279 symbiosis with *Symbiodiniaceae* on gene expression evolution. To determine whether an
280 anemone had symbiosis with *Symbiodiniaceae*, we checked for the abundance of
281 *Symbiodiniaceae* reads in the assembled transcriptomes of our sampled cnidarians using a
282 pseudoalignment approach (see methods). The bar plots adjacent to the phylogeny (Fig
283 4A) show the average number of reads that were pseudoaligned with *Symbiodiniaceae*
284 reads. Our approach captured known trends in *Symbiodiniaceae* distribution, with the
285 giant sea anemones, *Anthopluera*, and the coral *Galaxea fascicularis* having the highest
286 abundance of *Symbiodiniaceae* (36–38). Although a few reads mapped to sea anemones
287 like *Actinia tenebrosa*, *Nematostella vectensis*, and jellyfishes, these were negligible and likely
288 represented highly conserved transcripts. For our analysis, we classified organisms with
289 these low abundant reads as not possessing *Symbiodiniaceae*. The modelling was done
290 under a Bayesian framework using the *brms* R package (39). Mean expression levels of the
291 ten genes were fit as multivariate response variables with the presence/absence of
292 anemonefish and *Symbiodiniaceae* fit as the group-level effects (random effects in the
293 terminology of mixed models). Phylogenetic relationships were modelled as a group-level
294 effect to account for the non-independence between species. The parameter estimates for

295 each effect (phylogeny, anemonefish, and *Symbiodiniaceae*) were low and with wide
296 confidence intervals (95%-CI); however, the lower end of the CI did not overlap zero
297 (Table S10), suggesting that all three parameters affected gene expression. The low effect
298 sizes were likely due to low power as our sampling only included two lineages with
299 *Symbiodiniaceae* and without anemonefish. Expanding the dataset to include more species
300 of non-anemonefish hosting anemones possessing *Symbiodiniaceae* would provide better
301 estimates and help tease out the relative effects of *Symbiodiniaceae* and anemonefish on
302 gene expression variation. However, despite our limited dataset we still get evidence of a
303 significant effect.

304 The EVE model and PGMM analysis showed that several genes in giant sea anemones
305 had altered their expression throughout their evolutionary history, with symbiotic
306 relationships with anemonefish and *Symbiodiniaceae* having a non-zero effect on gene
307 expression evolution. The role of these genes can provide clues as to how specific
308 biological processes can mediate interactions between organisms in a multi-organism
309 symbiotic relationship.

310

311
312 **Discussion**
313

314 We identified genes and biological processes relevant to multi-organism symbiosis and
315 show how they experienced specific evolutionary trends in giant sea anemone lineages.
316 In this section, we discuss how these genes and processes help mediate the symbiotic
317 relationships between the anemones, anemonefish, and *Symbiodiniaceae*. We conclude by
318 describing how the multi-organism interaction can promote the growth and ecological
319 success of all the species involved.

320

321 The role of gene co-expression clusters in multi-organism symbiosis and evolution of gene
322 expression in giant sea anemone tentacles.

323 Understanding the evolution of specific gene families and biological processes can
324 provide insights into how anthozoans adapt to different ecological challenges (6, 40). We
325 identified gene co-expression clusters in giant sea anemones primarily involved in the
326 metabolism and biosynthesis of organic compounds. The heightened activity of these
327 processes is the hallmark of the cnidarian-dinoflagellate symbiosis.

328 Studies using nanoscale secondary ion mass spectrometry and stable isotope labelling
329 showed nutrient uptake and translocation at the organismal and cellular scales between
330 host and symbiont (41). Using giant sea anemone (*H. crispata*) and mass spectroscopy, Verde
331 *et al.* demonstrated a direct transfer of nitrogen and carbon-containing products from the
332 host anemone to the endosymbiotic zooxanthellae and anemonefish (42). Nutrient
333 exchange can also occur in the reverse direction between anemonefish to host anemone
334 and endosymbiotic zooxanthellae (43). These studies reveal an active nutrient exchange
335 between anemonefish, their host anemone, and *Symbiodiniaceae* (36). The gene and
336 processes upregulated in the co-expression analysis likely mediate this nutrient exchange
337 and help in the metabolism of biomolecules.

338 Genes exhibiting expression level variance between species can harbor adaptive
339 variations that affect expression levels or could just be responding to environmental cues
340 (35). We believe the gene expression variation observed in co-expression cluster up-1 is
341 likely in response to genetic and environmental factors specific to each individual. In other
342 words, the external environment can influence the expression of specific genes leading to
343 differences in metabolic and biosynthetic processes in giant sea anemones tentacles. For
344 instance, symbiont activity in *Anthopleura* is susceptible to external food availability,
345 shifting the balance between heterotrophic and autotrophic lifestyles (44). Sea anemones
346 absorb more ammonia during the daytime than at night, indicating that ammonia uptake
347 is driven by the photosynthetic activity of *Symbiodiniaceae* (45). Furthermore, the presence
348 of anemonefish also influences nitrogen uptake; anemonefish consume zooplankton
349 during the day, following which they promptly excrete, providing the sea anemone and
350 photosynthetically active *Symbiodiniaceae* with a rich source of nitrogen that they rapidly
351 absorb (45). Therefore, differences in environmental conditions between species (and even

352 individuals) of sea anemones will influence the activity of metabolic and biosynthetic
353 processes in tentacles, leading to wide variation in gene expression.

354

355 From the EVE analysis, we identified several genes that show evidence for divergent gene
356 expression in giant sea anemones. These genes were primarily involved in regulating
357 metabolic and biosynthetic processes and developmental functions. While it is difficult to
358 ascribe a specific function to a gene without molecular assays, we can still understand the
359 role they potentially play by looking at how those genes work in other organisms. Here
360 we discuss the roles of a few important ones. The list of genes and their annotations can
361 be found in Table 1 and (Table S11).

362 One of the genes with high expression divergence encodes Yes-associated protein (YAP),
363 a transcriptional coactivator of the Hippo pathway involved in cell differentiation,
364 stemness, and cell proliferation (46). The Hippo pathway is exceptionally conserved in
365 metazoans and regulates cell growth and proliferation in a highly dynamic manner (46,
366 47). Several upstream signals like cell-cell contact, cell polarity, and soluble factors
367 (hormones and growth factors) determine the activity of YAP and the Hippo pathway
368 (46). Two basic modes of signaling are highly relevant in the context of giant sea anemones
369 and their symbioses; the mechanical strain on cells and energy stress. Mechanical strain
370 can cause stretching of cells which has been shown to increase the translocation of YAP
371 into the nucleus resulting in increased cell proliferation (48). While in their host anemones,
372 anemonefish routinely exhibit behaviors such as fanning and rapid fin strokes that cause
373 turbulent water flow (49). The turbulence can lead to alternate periods of stretching and
374 relief of mechanical strain in the cells of the giant sea anemone tentacles which could
375 increase the activity of YAP, thereby promoting growth. Like other pathways involved in
376 organ growth and tissue homeostasis, cellular stress can also perturb the Hippo
377 pathway. There is a strong connection between glucose-mediated cellular metabolic
378 status and the Hippo pathway, where glucose deprivation robustly inhibits YAP activity
379 (46, 50). Glucose is a major metabolite transferred between *Symbiodiniaceae* and their
380 cnidarian hosts, providing for much of the host's total energy needs. (51, 52). Therefore,

381 the symbiosis with *Symbiodiniaceae* ensures high glucose levels, which keeps YAP activity
382 high, enhancing the growth potential of giant sea anemones.

383 The importance of YAP and the Hippo signaling pathway was well illustrated in a recent
384 study in *Hydra* (53). The researchers showed that the Hippo pathway regulates axis
385 formation and morphogenesis in hydra, with YAP having a critical role in increasing cell
386 proliferation, especially in the tentacles (53). The Hippo pathway and expression of YAP
387 had important implications for the evolution and origin of axis formation in Metazoans
388 (53). Similarly, the heightened activity of YAP and the Hippo pathway, along with the
389 positive feedback effect of anemonefish and *Symbiodiniaceae*, might have enabled giant sea
390 anemones to evolve their large size.

391 Another transcription modifier showing divergent gene expression in giant sea anemones
392 was a member of the Kruppel-like factors (KLFs). KLFs are zinc finger proteins that can
393 bind to regulatory elements on the DNA to either activate or repress transcription (54). In
394 recent years, KLFs have emerged as a major metabolic regulator where they
395 transcriptionally control critical processes in metabolism, nutrient uptake, and tissue
396 utilization of macromolecules like carbohydrates, lipids, and amino acids (55). Another
397 essential function of KLFs is their ability to respond to periods of nutrient stress and
398 excess, thereby acting as a molecular switch, shifting metabolism between periods of
399 nutrient storage and nutrient utilization (55). This strong association of KLFs with the
400 cell's metabolic state makes them ideal regulators for nutrient exchange between giant sea
401 anemone tentacles and *Symbiodiniaceae*.

402 While KLF and YAP have potentially beneficial functions for multispecies interaction,
403 several genes have functions suited to the general growth and development of the giant
404 sea anemone. For instance, scaffold attachment factor B1 (SAFB1) is a large multi-
405 functional protein involved in many cellular processes. Some of the major functions of
406 SAFB1 are RNA processing and modulating cell growth (56). Experiments in mice showed
407 that SAFB1 is essential for maintaining germinal tissue, suggesting an important role in
408 reproduction (57). Succinate dehydrogenase B (SDHB) is upregulated in giant sea
409 anemone tentacles indicating increased cellular respiration in these tissues.

410 Transcriptional regulator ERG plays a major role in endothelial cell survival and interacts
411 directly with YAP and the Hippo signaling pathway, influencing cell proliferation (58).

412

413 The giant sea anemones have an evolutionarily divergent expression pattern for genes
414 involved in cell proliferation, metabolism regulation, and animal organ development. A
415 shift in the expression of genes facilitating growth might be a specific evolutionary
416 property of giant sea anemones, explaining how they can grow to their large sizes.
417 Although our results suggest that the presence of anemonefish and *Symbiodiniaceae* affect
418 gene expression evolution of certain groups of genes in giant sea anemone tentacles, we
419 cannot conclusively determine how multi-organism symbiosis led to the evolution of
420 specific gene expression patterns; viz our study cannot determine the mechanisms by
421 which an ancestral gene expression pattern was co-opted to enable the multi-organism
422 symbiosis. The divergent gene expression patterns in giant sea anemone tentacles could
423 also be due to alternate developmental regimes. While our study cannot conclusively
424 determine whether this lineage-specific gene expression regime is a direct consequence of
425 the evolution of the multi-organism symbiosis, the adaptive benefits of the symbiosis in
426 promoting the growth and survival of giant sea anemones (and, in turn, their evolution)
427 are clear.

428

429 The evolution of multispecies interaction promotes growth and survival

430 There is a strong link between the presence of anemonefish and nutrient utilization in sea
431 anemone and their *Symbiodiniaceae*, suggesting that the symbiosis with anemonefish can
432 have several adaptive advantages for both organisms (19, 24). The *Symbiodiniaceae*
433 abundance in *Entacmaea quadricolor* that were reared with anemonefish was more than
434 twice that in anemones without (36, 59). Nitrogen uptake by sea anemones with
435 anemonefish was substantially lower than those without anemonefish, implying that
436 *Symbiodiniaceae* in sea anemones hosting anemonefish were nitrogen sufficient (59).
437 During periods of food scarcity, the sea anemone may not be able to meet the nitrogen

438 demands of *Symbiodiniaceae*, thereby compromising their growth (60). Anemonefish
439 provide an additional source of nitrogen that reduces the *Symbiodiniaceae*'s dependency
440 on the host anemone feeding, thereby allowing even starved anemones to maintain high
441 densities of *Symbiodiniaceae* (61).

442 In a long-term experiment, Holbrook and Schmitt observed that sea anemones with
443 anemonefish grew more than three times as fast and were two-thirds bigger in size than
444 anemones without anemonefish (62). The presence of anemonefish also enhanced
445 reproductive activity in sea anemones, with hosting anemones asexually reproducing
446 twice as fast as non-hosting anemones (62). Anemonefish can also enhance the growth of
447 sea anemone and *Symbiodiniaceae* through increased oxygenation. Anemonefish exhibit
448 several behaviors like rapid fin strokes and wiggling deeper into the anemone tentacles
449 which improves water flow, thereby improving oxygen uptake by sea anemones,
450 especially during periods of low photosynthetic activity at night (49).

451 These experimental results show that anemonefish are a vital nutrient source that can
452 regulate metabolic processes in both *Symbiodiniaceae* and sea anemone; thus aligning with
453 our observations of metabolic genes as being key targets in the evolution of symbiosis.

454 Conclusion

455 We showed that in the tentacles of giant sea anemones, specific genes experienced
456 divergent evolutionary shifts in expression. These expression shifts have clear benefits for
457 the multispecies interaction between anemonefish and *Symbiodiniaceae* and could have
458 evolved due to their symbiosis with anemonefish and *Symbiodiniaceae*. Using the insight
459 gained from this study, we can propose a model by which the multi-organism symbiosis
460 helps giant sea anemone attain their large sizes.

461 Juvenile sea anemones acquire *Symbiodiniaceae* from their environment. The nutrient
462 exchange with *Symbiodiniaceae* promotes growth, allowing the anemone to reach sizes
463 large enough to host anemonefish. Once anemonefish start occupying sea anemones, a
464 tripartite relationship begins between anemonefish, sea anemone, and *Symbiodiniaceae*.
465 The feeding and grooming behavior of anemonefish provide extra nutrients to sea

466 anemone and *Symbiodiniaceae* increasing their metabolic output. Additionally,
467 anemonefish protect their host anemones from predators like butterflyfish, ensuring that
468 the giant sea anemones can grow to their large sizes.

469 Although the host anemones diversified before the origin of the symbiotic relationship
470 with anemonefish, there is still a general effect of this relationship on tentacle gene
471 expression in the host anemones. Furthermore, because of its early origin, the symbiosis
472 with *Symbiodiniaceae* likely influenced gene expression in giant sea anemones longer than
473 anemonefish. Disentangling the individual effects of anemonefish and *Symbiodiniaceae* on
474 giant sea anemone gene expression will need targeted experiments. Using the functionally
475 and evolutionarily important genes discovered in this study as candidates, future studies
476 can help uncover specific mechanisms through which anemonefish and *Symbiodiniaceae*
477 influenced the evolution of one of the most iconic symbioses in the animal kingdom.

478

479

480

481 **Materials and Methods**

482

483 All code and supporting information can be found at

484 https://github.com/agneshbarua/Anemone_tentacle_gene_exp. Data generated in this
485 study has been deposited in National Center for Biotechnology Information (NCBI)
486 Sequence Read Archive (SRA) database under the BioProject PRJNA877849.

487 Comparative transcriptomics

488 Expression data for giant sea anemone tentacles were collected from dissected tentacles
489 of wild specimens found throughout southern Japan. Details about sampling locations,
490 RNA extraction, and sequencing can be found in (22). All other data were obtained from
491 the NCBI SRA database. Table S1 summarizes the species information and details of SRA
492 id and bioproject.

493 SRA files were downloaded from NCBI using *prefetch* and *fasterq-dump* function of
494 sratoolkit v2.10 (<https://github.com/ncbi/sra-tools/wiki>), followed by quality check using

495 fastqc (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). All sequenced
496 reads were processed using Trimmomatic v0.39 (66) to remove low-quality reads and
497 Illumina adapters. Reads were assembled using Trinity, with redundant transcripts
498 removed using a CD-HIT-EST cut-off of 95% (67). The initial assemblies contained
499 transcripts from both cnidarians and *Symbiodiniaceae*. To remove these *Symbiodiniaceae*
500 transcripts, we first calculated GC content for each transcript and separated the transcripts
501 based on a GC content cut-off. Dinoflagellates and cnidarians have drastically different
502 GC content (e.g. cnidarian ~40% while *Symbiodiniaceae* <55%) (22); therefore, we used a GC
503 content below 60% to filter out all cnidarian specific transcripts. Next, we created a BLAST
504 dinoflagellate database with sequences from *Symbiodinium* (former clade A), *Breviolum*
505 (former clade B) and *Cladocopium* (former clade C) and screened transcripts against this
506 database using a BLASTN filter of 1e-20. The giant sea anemones had the highest number
507 of hits to the dinoflagellate database, with hits primarily to *Cladocopium* (former clade C).
508 This combined approach allowed us to separate the transcriptomes of cnidarians and any
509 symbionts they might harbor.

510 After removing symbiont transcripts, corresponding proteins were predicted for each
511 transcriptome using Transdecoder v5.5.0
512 (<https://github.com/TransDecoder/TransDecoder>). Only transcripts encoding an open
513 reading frame of ≥ 100 were considered. Redundancy in sets of predicted proteins was
514 further reduced by using a CD-HIT similarity cut-off of 95%. Lastly, since transcriptomes
515 assembled by trinity represented all splice variants and thus multiple protein isoforms, we
516 selected only the longest isoform as the representative isoform. The final list of predicted
517 proteins matched previous estimates from other studies; for example, Putnam *et. al.*
518 estimated *Nematostella vectensis* to contain ~27,000 protein-coding genes, similar to our
519 estimation of 26,698 protein-coding genes (68). The current gene set *Actinia tenebrosa* has
520 ~20,000 protein-coding genes, similar to our estimation of 21,197
521 (<https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/6105/>). BUSCO v4.1.2 was used to
522 check the completeness of the final using the final list of protein-coding genes (Table S2).

523 Quantification of libraries was done using kallisto v0.46.1 (69). Transcripts corresponding
524 to the final list of protein-coding genes were used to create the kallisto index file. The final
525 list of protein-coding genes were used as input for OrthoFinder v2.5.2 (OF) (70), with an
526 MCL inflation parameter of 1.7 (higher stringency). OF assigned 87.2% of genes into 37,612
527 orthogroups, where 2496 orthogroups have sequences with all species present (Table S12).
528 Using a custom R script we obtained a list of 1465 one-to-one orthologs expressed across
529 all tissues in all taxa Table S13.

530 We used a new metric for quantifying RNA-seq reads called TPM10K (27). As the number
531 of genes in a species varies, the transcript per million (TPM) values are not directly
532 comparable (since the mean of libraries in TPM is $10^6/n$; where n = number of genes in
533 reference). In a species with a higher degree of transcriptome completeness (i.e. higher
534 number of genes n) all the genes would have a lower expression value. The TPM10K
535 normalization accounts for this by multiplying the TPM value of a transcript by the
536 number of genes in the reference assembly and dividing by an arbitrary number (in this
537 case 10^4) to reduce the magnitude of expression value (27):

$$538 \text{TPM10K}_i = \text{TPM}_i \times n/10^4 ; i = \text{number of mapped reads to gene } i.$$

539 Principal component analysis (PCA) was performed using the `plotPCA` function in
540 *DESeq2*. Since we are comparing expression data from homologous tissues of multiple
541 species from multiple studies, it is vital to remove their respective batch effects (71). To
542 remove these batch effects and identify any existing patterns in expression between
543 tissues and species, we used an empirical Bayes method implemented via the `ComBat`
544 function in *sva* R package (72). This approach has been successfully implemented in
545 previous studies (28, 73, 74).

546 Analysis of phylogeny vs expression tree

547 Species phylogeny was constructed using 314 single-copy-orthologs estimated by OF.
548 Multiple sequence alignment was done using MAFFT v7.3 (75). Phylogeny was
549 constructed using IQTREE2 v2.1 (76) and ultrafast bootstrap was used to estimate node
550 significance (77). Several amino acid models were tested using ModelFinder (within

551 IQTREE), which determined JTT+F+R5 to be the best model based on Bayesian
552 Information Criteria (BIC) (78). The tree was rooted at the Medusozoa and Anthozoa split
553 using the reroot function in the R package *Phytools* (79).

554 Expression trees were constructed using mean tentacle gene expression from all samples
555 species. The R package *ape* was used to construct a Neighbor-Joining expression tree based
556 on 1-Spearman rank correlation distance. Branching patterns were assessed with
557 bootstrap analysis using 1000 replicates.

558 To determine the relationship between expression distances and phylogenetic distances
559 we first estimated pairwise distances between the pairs of tips from the phylogenetic tree
560 and expression tree using the *cophenetic.phylo* function in the R package *ape* (80). Next,
561 using these pairwise distance matrices, we performed a Mantel test using the R package
562 *vegan* (81). The expression distance rates were calculated based on the slope of a linear
563 regression between pairwise expression distances and phylogenetic distances.

564 Co-expression and functional annotation

565 To get a sense of the biological underpinnings of the unique expression pattern of giant
566 sea anemone tentacles, we first identified differentially expressed genes. Using the R
567 package *edgeR*, we performed pairwise comparisons of *Heteractis*, *Stichodactyla*,
568 *Macroactyla*, and *Entacmaea* with *Actinia tenebrosa*, *Galaxea fascicularis*, *Nematostella*
569 *vectensis*, and *Oulactis* sp. The comparisons were done one-to-one for each species of giant
570 sea anemone and the rest, i.e. *Heteractis crispa* x *Actinia tenebrosa*, *Heteractis crispa* x *Galaxea*
571 *fascicularis*, *Heteractis crispa* x *Nematostella vectensis*, *Heteractis crispa* x *Oulactis* sp, etc. Raw
572 counts obtained from kallisto were converted to trimmed mean M values (TMM) for the
573 DGE analysis. A complete list of differentially expressed genes can be found in Table S14.
574 We next identified genes that were consistently upregulated and downregulated in all
575 comparisons. Orthologs of all these genes in anemonefish hosting giant sea anemone were
576 used as input to determine clusters of co-expressed genes using the R package *coseq* (82).
577 *Coseq* performs clustering analysis of RNA-seq data using transformed profiles of raw
578 counts. Based on the recommendation in the *coseq* vignette

579 (<https://www.bioconductor.org/packages/devel/bioc/vignettes/coseq/inst/doc/coseq.html>
580), we implemented a Gaussian mixture model with arcsine transformation for its higher
581 robustness. The clustering program was ran for a 100,000 iterations. *Coseq* includes genes
582 into clusters using *Maximum a Posteriori* scores, a Bayesian optimized parameter search
583 approach for estimating joint probability distributions.

584 Gene Ontology annotations were retrieved for each reference transcriptome using the
585 PANNZER2 web server (83). We performed GO term enrichment using GOstas, GO.db,
586 and GSEABase R packages (84–86). We modified the annotations to fit the format of the
587 mentioned packages. A hypergeometric test with a false discovery rate (FDR) cut-off of
588 0.05 was used to consider a GO term as enriched.

589 Phylogenetic ANOVA and Phylogenetic Multilevel Model

590 We carried out a phylogenetic analysis of variance (phy-ANOVA) using the Expression
591 Variance and Evolution model developed by Rohlfs and Nielsen (35). The model describes
592 phylogenetic expression level evolution between species and expression level variance
593 within species. This approach can test for lineage-specific expression shifts in specific
594 lineages (35). The test can be considered a phylogenetic analogy to tests for genetic drift
595 via ratios of between and within species (population) variance. Expression data for
596 orthologs in both up and down clusters and the species phylogeny were used to run the
597 analysis.

598 The top ten orthologs that experienced the highest shifts in their expression throughout
599 evolution (evolutionary divergent gene expression) were used for analysis using a
600 phylogenetic multilevel model (PGMM). The PGMM was implemented using the *brms* R
601 package (39). The rationale of the PGMM is similar to that of independent contrasts
602 implemented through phylogenetic least squares, where the relationship between species
603 is modelled to estimate the effect of evolutionary relationships on character evolution (87).
604 In PGMM, the relationship between species is fit as a ‘group level’ effect (random effect
605 in the terminology of mixed models). The relationship between species is fit using a
606 phylogenetic covariance matrix (88). In our approach, we ran an intercept only model

607 where the mean of the response variable (gene expression of ten genes) is conditioned
608 across group level effects of phylogeny, presence of anemonefish, and presence of
609 *Symbiodiniaceae*. In other words, we estimate whether differences in gene expression
610 between species are influenced by the presence of anemonefish and *Symbiodiniaceae* while
611 accounting for the evolutionary relationships of the different cnidarian species.

612 We used a pseudoalignment approach to determine the *Symbiodiniaceae* content in our
613 species. Using transcriptomes of C1 clade such as *Symbiodinium aenigmaticum*,
614 *Symbiodinium minutum*, *Symbiodinium pseudominutum*, *Symbiodinium psygomophilum*, and
615 clade C1 associated *Symbiodinium* from *Siderastrea siderea*, (see Table S15 for links to files)
616 we build a composite *Symbiodiniaceae* transcriptome that we used an input to build a
617 kallisto index. We then used this index to quantify reads matching to *Symbiodiniaceae* in
618 the SRA fastq files (not the *de novo* assembled transcriptomes). We then estimated the total
619 number of reads pseudoaligned to the composite *Symbiodiniaceae* transcriptome (Fig S7).
620 In our modelling approach, we used the quantification of *Symbiodiniaceae* composition to
621 help us classify cnidarian species as having or not having *Symbiodiniaceae*.

622 We used the *get_prior* function in the *brms* package to get standard priors and fit the model
623 as a 'gaussian' distribution of the response variable. The model was run for 5000 iterations
624 with an initial burin of 3000. The effective sample size from the posterior was high and
625 convergence of the MCMC was judged using the *Rhat* value, where an *Rhat* value
626 considerable greater than 1 (i.e., > 1.1) indicated chains have not converged . The *Rhat*
627 values of our estimates ranged from 1.0 to 1.01, indicating convergence of chains.

628 The top 10 genes were annotated using a combination using of blastp and Uniprot. We
629 used the one-to-one orthologs of the top 10 genes in *Nematostella vectensis* as query
630 sequences for blastp and selected maximum 5 sequences that had an e-value lower than
631 1e-10. Using the blastp output, we obtained annotations from UniProt. Only 'reviewed'
632 annotations were kept. The final annotations are available in Table S11.

Acknowledgments

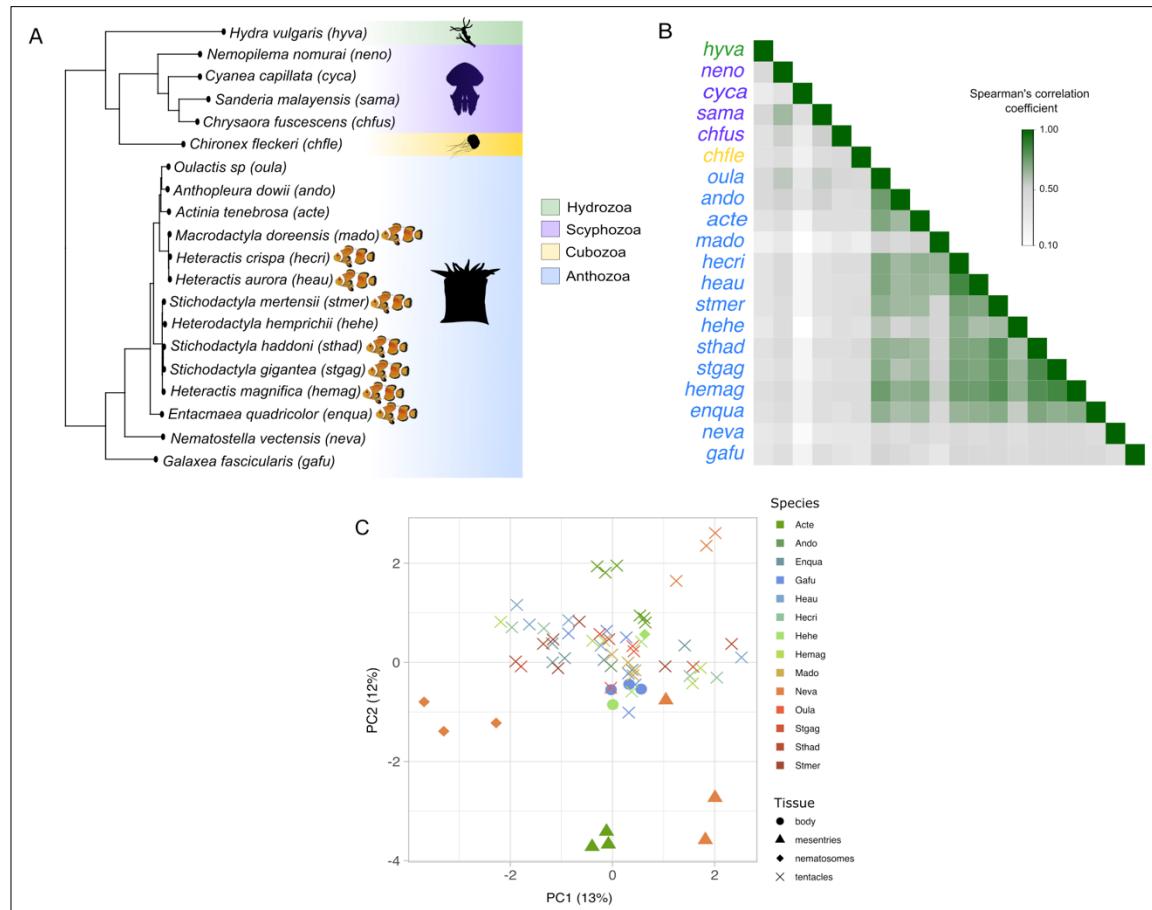
The authors would like to thank the OIST Sequencing Center (SQC) for their support during sequencing of the samples.

References

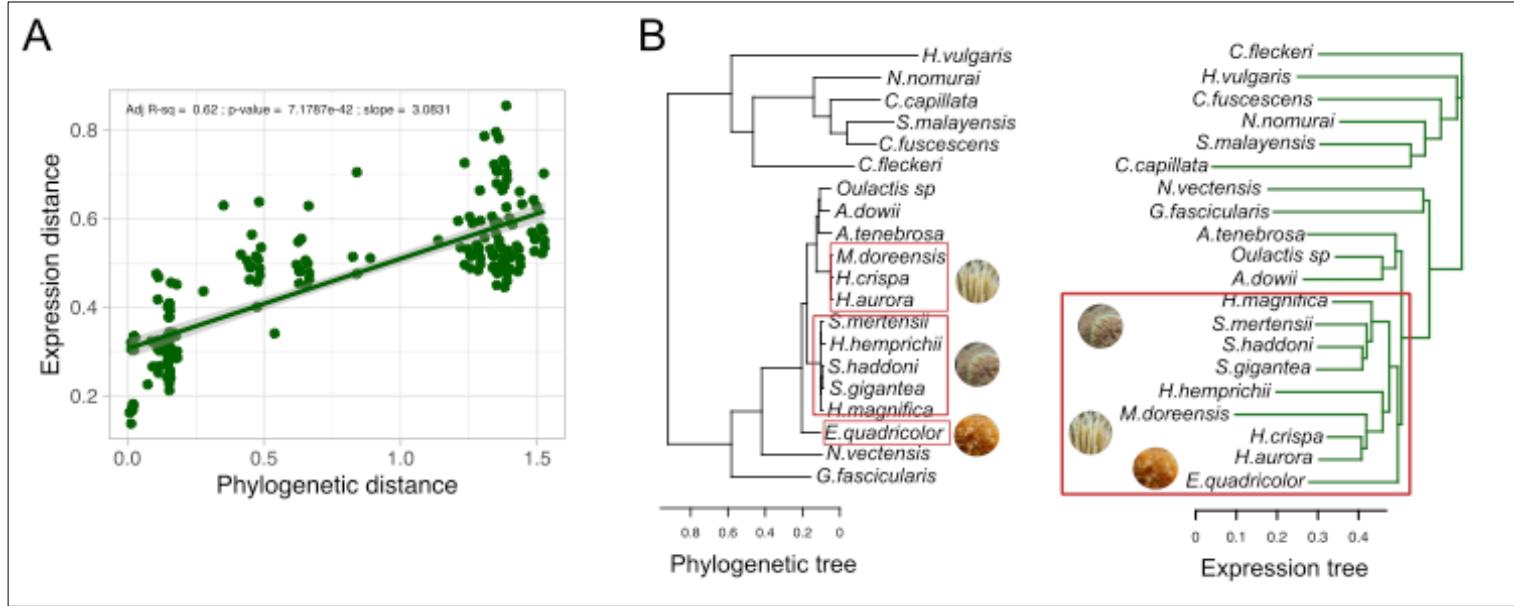
1. M. Daly, *et al.*, The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. *years after Linnaeus. In Linnaeus Tercentenary: Progress in Invertebrate Taxonomy*, Z.-Q. Zhang and W. A. Shear, editors. *Zootaxa* **127**, 182 (2007).
2. G. P. Jones, M. I. McCormick, M. Srinivasan, J. V. Eagle, Coral decline threatens fish biodiversity in marine reserves. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 8251–8253 (2004).
3. K. E. Carpenter, *et al.*, One-third of reef-building corals face elevated extinction risk from climate change and local impacts. *Science* **321**, 560–563 (2008).
4. C. S. McFadden, *et al.*, Phylogenomics, Origin, and Diversification of Anthozoans (Phylum Cnidaria). *Syst. Biol.* **70**, 635–647 (2021).
5. B. Madio, G. F. King, E. A. B. Undheim, Sea Anemone Toxins: A Structural Overview. *Mar. Drugs* **17** (2019).
6. J. L. Clarke, P. A. Davey, N. Aldred, Sea anemones (*Exaiptasia pallida*) use a secreted adhesive and complex pedal disc morphology for surface attachment. *BMC Zoology* **5**, 1–13 (2020).
7. M. J. Layden, F. Rentzsch, E. Röttinger, The rise of the starlet sea anemone *Nematostella vectensis* as a model system to investigate development and regeneration. *Wiley Interdiscip. Rev. Dev. Biol.* **5**, 408–428 (2016).
8. J. M. Shick, J. Malcolm Shick, A Functional Biology of Sea Anemones (1991) <https://doi.org/10.1007/978-94-011-3080-6>.
9. M. Daly, The anatomy, terminology, and homology of acrorhagi and pseudoacrorhagi in sea anemones. *Zool. Verh.*, 89–102 (2003).
10. J. M. Surm, *et al.*, A process of convergent amplification and tissue-specific expression dominates the evolution of toxin and toxin-like genes in sea anemones. *Mol. Ecol.* **28**, 2272–2289 (2019).

11. M. Y. Sachkova, *et al.*, Toxin-like neuropeptides in the sea anemone *Nematostella* unravel recruitment from the nervous system to venom. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 27481–27492 (2020).
12. T. A. Garrett, J. L. Schmeitzel, J. A. Klein, J. J. Hwang, J. A. Schwarz, Comparative lipid profiling of the cnidarian *Aiptasia pallida* and its dinoflagellate symbiont. *PLoS One* **8**, e57975 (2013).
13. B. Pasaribu, *et al.*, Morphological Variability and Distinct Protein Profiles of Cultured and Endosymbiotic Symbiodinium cells Isolated from *Exaiptasia pulchella*. *Sci. Rep.* **5**, 15353 (2015).
14. L. Muscatine, *et al.*, The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. *Proceedings of the Royal Society of London. B. Biological Sciences* **236**, 311–324 (1989).
15. P. S. Davies, Effect of daylight variations on the energy budgets of shallow-water corals. *Mar. Biol.* **108**, 137–144 (1991).
16. Wittmann, Two new species of Heteromysini (Mysida, Mysidae) from the Island of Madeira (NE Atlantic), with notes on sea anemone and hermit crab commensalisms in the *Crustaceana*.
17. M. Daly, D. G. Fautin, *Anthopleura mariscali*, a new species of sea anemone (Cnidaria: Anthozoa: Actiniaria) from the Gal pagos Islands. *Zootaxa* **416**, 1 (2004).
18. A. Mercier, J.-F. Hamel, Nature and role of newly described symbiotic associations between a sea anemone and gastropods at bathyal depths in the NW Atlantic. *J. Exp. Mar. Bio. Ecol.* **358**, 57–69 (2008).
19. V. Laudet, T. Ravasi, *Evolution, Development and Ecology of Anemonefishes: Model Organisms for Marine Science* (Taylor & Francis Group, 2022)
<https://doi.org/10.1201/9781003125365>.
20. B. M. Titus, *et al.*, Phylogenetic relationships among the clownfish-hosting sea anemones. *Mol. Phylogenet. Evol.* **139**, 106526 (2019).
21. H.-T. T. Nguyen, B. T. Dang, H. Glenner, A. J. Geffen, Cophylogenetic analysis of the relationship between anemonefish *Amphiprion* (Perciformes: Pomacentridae) and their symbiotic host anemones (Anthozoa: Actiniaria). *Mar. Biol. Res.* **16**, 117–133 (2020).
22. R. Kashimoto, *et al.*, Transcriptomes of Giant Sea Anemones from Okinawa as a Tool for Understanding Their Phylogeny and Symbiotic Relationships with Anemonefish. *Zoological Science* **39** (2022).

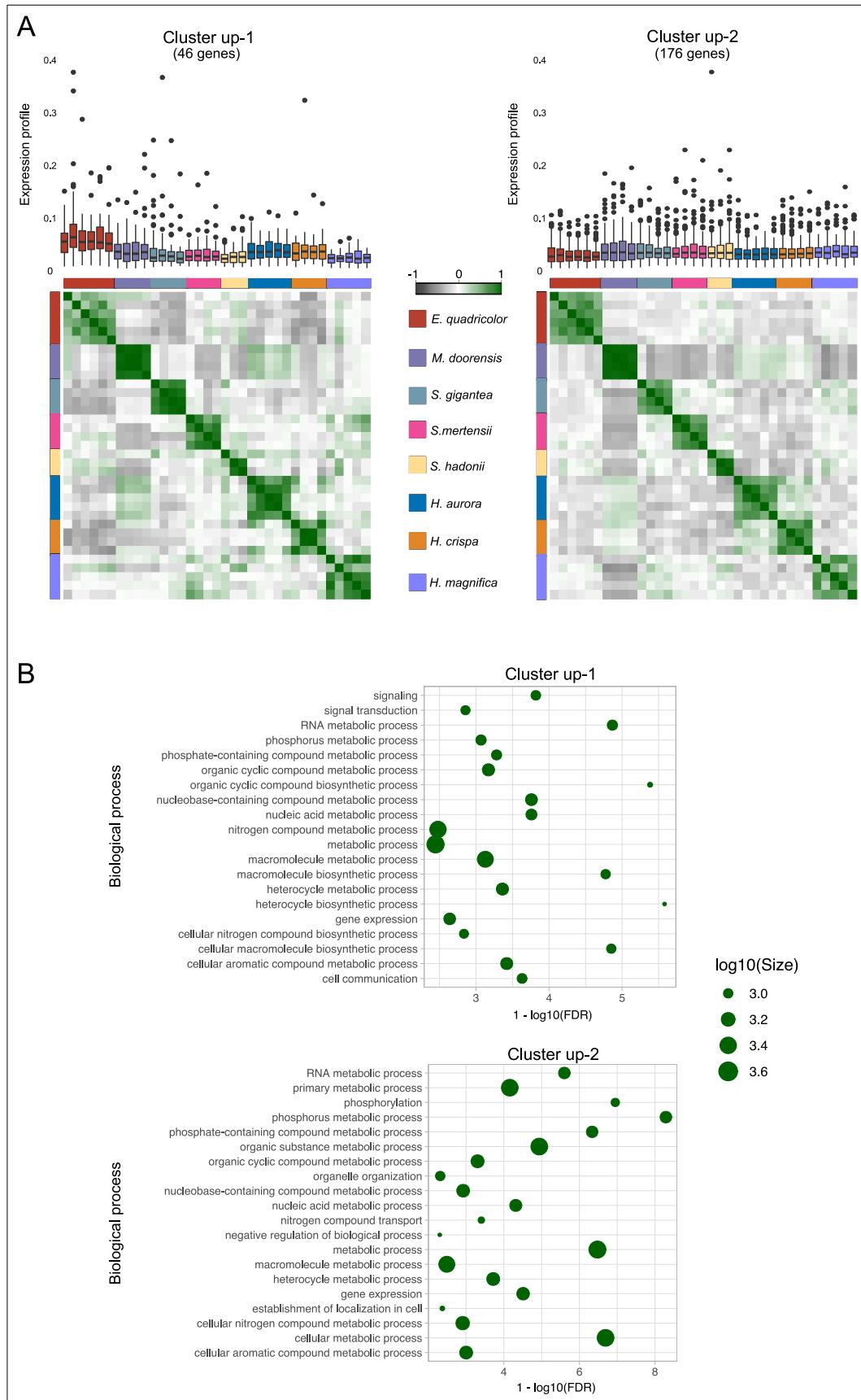
23. R. N. Mariscal, D. G. Fautin, G. R. Allen, Field Guide to Anemonefishes and Their Host Sea Anemones. *Copeia* **1993**, 899 (1993).
24. K. B. da Silva, K. B. da Silva, A. Nedosyko, Sea Anemones and Anemonefish: A Match Made in Heaven. *The Cnidaria, Past, Present and Future*, 425–438 (2016).
25. D. G. Fautin, The anemone fish symbiosis: what is known and what is not. *Symbiosis*. **10**, 23–46 (1991).
26. A. Fujiki, S. Hou, A. Nakamoto, G. Kumano, Branching pattern and morphogenesis of medusa tentacles in the jellyfish *Cladonema pacificum* (Hydrozoa, Cnidaria). *Zoological Lett* **5**, 12 (2019).
27. C. Munro, F. Zapata, M. Howison, S. Siebert, C. W. Dunn, Evolution of Gene Expression across Species and Specialized Zoids in Siphonophora. *Mol. Biol. Evol.* **39** (2022).
28. G. Zancolli, M. Reijnders, R. M. Waterhouse, M. Robinson-Rechavi, Convergent evolution of venom gland transcriptomes across Metazoa. *Proc. Natl. Acad. Sci. U. S. A.* **119** (2022).
29. B. Q. Minh, *et al.*, IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. *Mol. Biol. Evol.* **37**, 1530–1534 (2020).
30. M. Daly, *et al.*, Anthopleura and the phylogeny of Actinoidea (Cnidaria: Anthozoa: Actiniaria). *Org. Divers. Evol.* **17**, 545–564 (2017).
31. E. Kayal, *et al.*, Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. *BMC Evol. Biol.* **18**, 1–18 (2018).
32. A. Rau, C. Maugis-Rabusseau, Transformation and model choice for RNA-seq co-expression analysis. *Brief. Bioinform.* **19**, 425–436 (2018).
33. A. Rau, C. Maugis-Rabusseau, M.-L. Martin-Magniette, G. Celeux, Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. *Bioinformatics* **31**, 1420–1427 (2015).
34. Gene Ontology Consortium, The Gene Ontology resource: enriching a GOld mine. *Nucleic Acids Res.* **49**, D325–D334 (2021).
35. R. V. Rohlf, R. Nielsen, Phylogenetic ANOVA: The Expression Variance and Evolution Model for Quantitative Trait Evolution. *Syst. Biol.* **64**, 695–708 (2015).
36. D. Porat, N. E. Chadwick-Furman, Effects of anemonefish on giant sea anemones: Ammonium uptake, zooxanthella content and tissue regeneration. *Mar. Freshw. Behav. Physiol.* **38**, 43–51 (2005).


37. J. C. Macrander, J. L. Dimond, B. L. Bingham, A. M. Reitzel, Transcriptome sequencing and characterization of *Symbiodinium muscatinei* and *Elliptochloris marina*, symbionts found within the aggregating sea anemone *Anthopleura elegantissima*. *Mar. Genomics* **37**, 82–91 (2018).
38. P. H. Wepfer, Y. Nakajima, F. K. C. Hui, S. Mitarai, E. P. Economo, Metacommunity ecology of Symbiodiniaceae hosted by the coral *Galaxea fascicularis*. *Mar. Ecol. Prog. Ser.* **633**, 71–87 (2020).
39. P.-C. Bürkner, brms: An R Package for Bayesian Multilevel Models Using Stan. *J. Stat. Softw.* **80**, 1–28 (2017).
40. S. G. Gornik, *et al.*, Photoreceptor Diversification Accompanies the Evolution of Anthozoa. *Mol. Biol. Evol.* **38**, 1744–1760 (2021).
41. N. Rädecker, *et al.*, Using *Aiptasia* as a Model to Study Metabolic Interactions in Cnidarian-Symbiodinium Symbioses. *Front. Physiol.* **9**, 214 (2018).
42. E. Alan Verde, A. Cleveland, R. W. Lee, Nutritional exchange in a tropical tripartite symbiosis II: direct evidence for the transfer of nutrients from host anemone and zooxanthellae to anemonefish. *Mar. Biol.* **162**, 2409–2429 (2015).
43. A. Cleveland, E. Alan Verde, R. W. Lee, Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. *Marine Biology* **158**, 589–602 (2011).
44. S. A. Bedgood, S. E. Mastroni, M. E. S. Bracken, Flexibility of nutritional strategies within a mutualism: food availability affects algal symbiont productivity in two congeneric sea anemone species. *Proc. Biol. Sci.* **287**, 20201860 (2020).
45. M. Roopin, R. P. Henry, N. E. Chadwick, Nutrient transfer in a marine mutualism: patterns of ammonia excretion by anemonefish and uptake by giant sea anemones. *Mar. Biol.* **154**, 547–556 (2008).
46. S. Ma, Z. Meng, R. Chen, K.-L. Guan, The Hippo Pathway: Biology and Pathophysiology. *Annu. Rev. Biochem.* **88**, 577–604 (2019).
47. A. Sebé-Pedrós, Y. Zheng, I. Ruiz-Trillo, D. Pan, Premetazoan origin of the hippo signaling pathway. *Cell Rep.* **1**, 13–20 (2012).
48. M. Aragona, *et al.*, A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. *Cell* **154**, 1047–1059 (2013).
49. J. T. Szczebak, R. P. Henry, F. A. Al-Horani, N. E. Chadwick, Anemonefish oxygenate their anemone hosts at night. *J. Exp. Biol.* **216**, 1350–1350 (2013).

50. J.-S. Mo, *et al.*, Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. *Nat. Cell Biol.* **17**, 500–510 (2015).
51. L. F. Whitehead, A. E. Douglas, Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. *J. Exp. Biol.* **206**, 3149–3157 (2003).
52. M. S. Burriesci, T. K. Raab, J. R. Pringle, Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. *J. Exp. Biol.* **215**, 3467–3477 (2012).
53. M. Brooun, *et al.*, The Hippo pathway regulates axis formation and morphogenesis in *Hydra*. *Proceedings of the National Academy of Sciences* **119**, e2203257119 (2022).
54. N. M. Pollak, M. Hoffman, I. J. Goldberg, K. Drosatos, Krüppel-like factors: Crippling and un-crippling metabolic pathways. *JACC Basic Transl Sci* **3**, 132–156 (2018).
55. P. N. Hsieh, L. Fan, D. R. Sweet, M. K. Jain, The Krüppel-Like Factors and Control of Energy Homeostasis. *Endocr. Rev.* **40**, 137–152 (2019).
56. J. P. Garee, S. Oesterreich, SAFB1's multiple functions in biological control-lots still to be done! *J. Cell. Biochem.* **109**, 312–319 (2010).
57. M. Ivanova, *et al.*, Scaffold attachment factor B1 functions in development, growth, and reproduction. *Mol. Cell. Biol.* **25**, 2995–3006 (2005).
58. L. T. Nguyen, *et al.*, ERG Activates the YAP1 Transcriptional Program and Induces the Development of Age-Related Prostate Tumors. *Cancer Cell* **27**, 797–808 (2015).
59. M. Roopin, N. E. Chadwick, Benefits to host sea anemones from ammonia contributions of resident anemonefish. *J. Exp. Mar. Bio. Ecol.* **370**, 27–34 (2009).
60. O. Rahav, Z. Dubinsky, Y. Achituv, P. G. Falkowski, D. C. Smith, Ammonium metabolism in the zooxanthellate coral, *stylophora pistillata*. *Proceedings of the Royal Society of London. B. Biological Sciences* **236**, 325–337 (1989).
61. O. Hoegh-Guldberg, G. J. Smith, Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals *Seriatopora hystrix* and *Stylophora pistillata*. *Mar. Ecol. Prog. Ser.* **57**, 173–186 (1989).
62. S. J. Holbrook, R. J. Schmitt, Growth, reproduction and survival of a tropical sea anemone (Actiniaria): benefits of hosting anemonefish. *Coral Reefs* **24**, 67–73 (2005).
63. A. Scott, A. S. Hoey, Severe consequences for anemonefishes and their host sea anemones during the 2016 bleaching event at Lizard Island, Great Barrier Reef. *Coral Reefs* **36**, 873–873 (2017).


64. R. Beldade, A. Blandin, R. O'Donnell, S. C. Mills, Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction. *Nat. Commun.* **8**, 716 (2017).
65. S. H. Pryor, *et al.*, Anemonefish facilitate bleaching recovery in a host sea anemone. *Sci. Rep.* **10**, 18586 (2020).
66. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).
67. W. Li, A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* **22**, 1658–1659 (2006).
68. N. H. Putnam, *et al.*, Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. *Science* **317**, 86–94 (2007).
69. N. L. Bray, H. Pimentel, P. Melsted, L. Pachter, Near-optimal probabilistic RNA-seq quantification. *Nat. Biotechnol.* **34**, 525–527 (2016).
70. D. M. Emms, S. Kelly, OrthoFinder: phylogenetic orthology inference for comparative genomics. *Genome Biol.* **20**, 238 (2019).
71. Y. Gilad, O. Mizrahi-Man, A reanalysis of mouse ENCODE comparative gene expression data. *F1000Res.* **4**, 121 (2015).
72. J. T. Leek, W. E. Johnson, H. S. Parker, A. E. Jaffe, J. D. Storey, The sva package for removing batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics* **28**, 882–883 (2012).
73. B. Qiu, *et al.*, Towards reconstructing the ancestral brain gene-network regulating caste differentiation in ants. *Nat Ecol Evol* **2**, 1782–1791 (2018).
74. A. Barua, A. S. Mikheyev, An ancient, conserved gene regulatory network led to the rise of oral venom systems. *Proc. Natl. Acad. Sci. U. S. A.* **118** (2021).
75. K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).
76. L.-T. Nguyen, H. A. Schmidt, A. von Haeseler, B. Q. Minh, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* **32**, 268–274 (2015).
77. D. T. Hoang, O. Chernomor, A. von Haeseler, B. Q. Minh, L. S. Vinh, UFBoot2: Improving the Ultrafast Bootstrap Approximation. *Mol. Biol. Evol.* **35**, 518–522 (2018).

78. S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler, L. S. Jermiin, ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* **14**, 587–589 (2017).
79. L. J. Revell, phytools: an R package for phylogenetic comparative biology (and other things). *Methods Ecol. Evol.* **3**, 217–223 (2012).
80. E. Paradis, K. Schliep, ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics* **35**, 526–528 (2019).
81. Ter Braak and James Weedon, vegan: Community Ecology Package. R package version 2.6-2 (2022) (August 2022).
82. A. Godichon-Baggioni, C. Maugis-Rabusseau, A. Rau, Clustering transformed compositional data using K-means, with applications in gene expression and bicycle sharing system data. *J. Appl. Stat.* **46**, 47–65 (2019).
83. P. Törönen, A. Medlar, L. Holm, PANNZER2: a rapid functional annotation web server. *Nucleic Acids Res.* **46**, W84–W88 (2018).
84. S. Falcon, R. Gentleman, Using GOstats to test gene lists for GO term association. *Bioinformatics* **23**, 257–258 (2007).
85. M. Carlson, GO.db: A set of annotation maps describing the entire Gene Ontology (2019) (August 2022).
86. Morgan M Falcon S Gentleman, GSEABase: Gene set enrichment data structures and methods. R package version 1.58.0 (2022) (August 2022).
87. J. Felsenstein, Phylogenies and the Comparative Method. *Am. Nat.* **125**, 1–15 (1985).
88. J. D. Hadfield, S. Nakagawa, General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. *J. Evol. Biol.* **23**, 494–508 (2010).


Figures and Tables

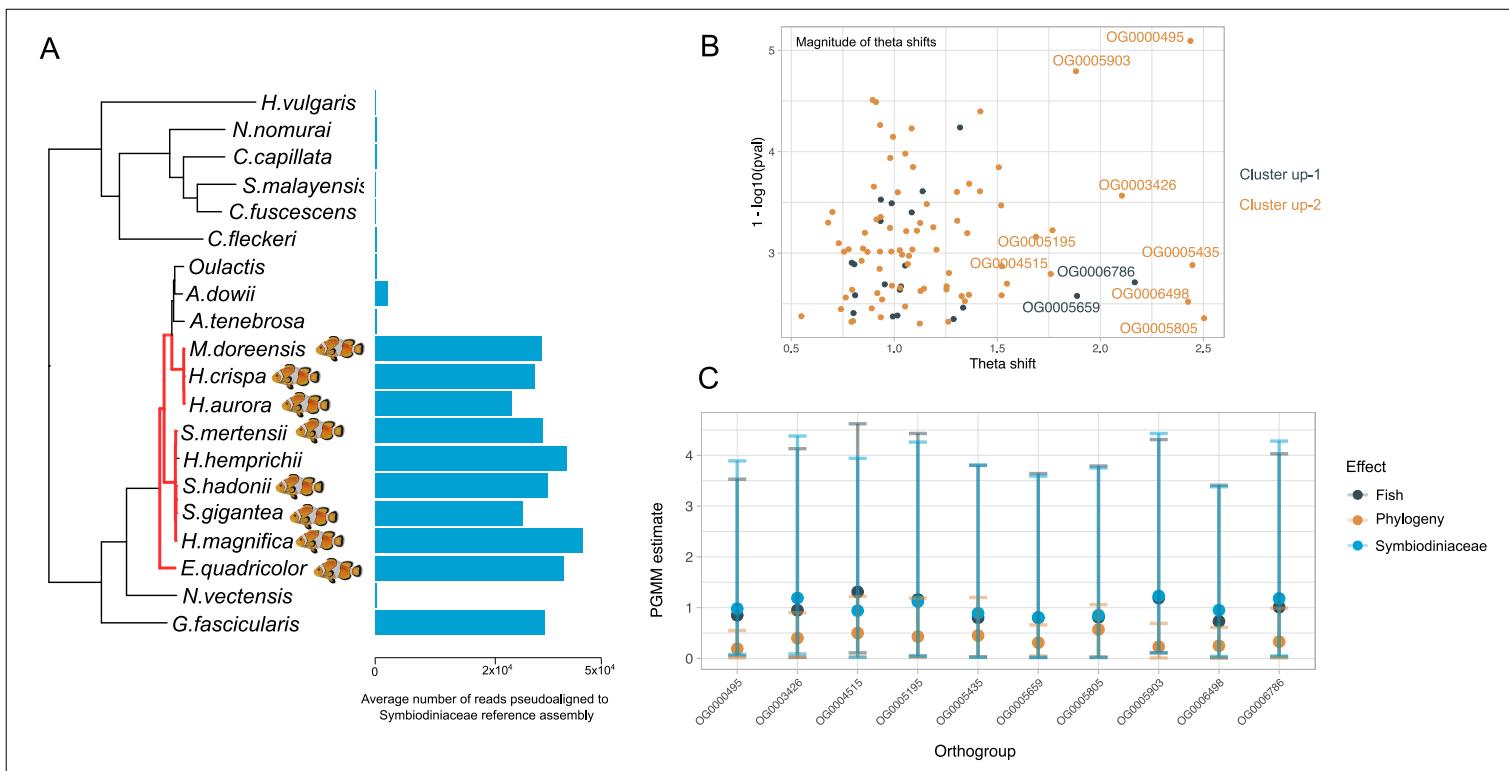

Figure 1. Tentacle gene expression is similar between closely related species. (A) Phylogeny of samples used in this study with species hosting anemonefish indicated. (B) Spearman correlations in tentacle gene expression between different cnidarians species. (C) Clustering of samples on the first two principal components showed a clear separation based on tissue. However, different tissues of *Heterodactyla* and *Galaxea* cluster with tentacles, suggesting that the gene expression in these tissues is similar to tentacles.

Figure 2. Although there is an overall consensus between expression and phylogeny, giant sea anemones have converged on a distinct tentacle gene expression pattern. (A) There is a significant positive relationship ($R^2 = 0.62$) between phylogenetic distance and expression distance (1-Spearman coefficient) implying that expression divergence increases with phylogenetic distance. (B) There is an overall consensus between the phylogenetic tree and neighbor joining tree of expression distance. However, the giant sea anemones, which form phylogenetically separate clades, form a single monophyletic clade when looking at their expression (red boxes); suggesting a likely convergence of expression patterns. Images from top to bottom in phylogenetic tree: *H. crispata*, *S. gigantea*, *E. quadricolor*.

Figure 3. Groups of co-expressed genes that are upregulated in giant sea anemone are involved in processes relating to metabolism and biosynthesis of organic compounds, reflecting their functional relationship with *Symbiodiniaceae*. (A) Expression profiles show how expression of each co-expression cluster varies across different species of giant sea anemone. The boxplots represent mean expression profiles (with upper and lower quartiles) of cluster genes in each sample. The dots outside the bars indicate outliers. Despite many outliers, expression profiles are consistent across samples within species. Individuals of the same species have a high correlation in gene expression for cluster up-2 (correlation plots). For cluster up-1, there is higher inter-species variation. For instance, different species of *Stichodactyla* and *Heteractis* have a relatively higher correlation for genes in cluster up-2 than in cluster up-1. Gene expression for cluster up-2 appears to be more lineage-specific, while gene expression for cluster up-1 is more varied. (B) Both clusters up-1 and up-2 are enriched for GO terms related to metabolisms and biosynthesis of organic compounds (only the top 20 are shown). Size of circles represents number of genes associated with the specific GO terms. Horizontal axis represents increasing significance of the association. *Symbiodiniaceae* are key in mediating the processes in both clusters and could be responsible for the species-specific expression pattern.

Figure 4. *Symbiodiniaceae* and anemone fish have influenced gene expression evolution in the tentacles of giant sea anemone. (A) Using the EVE model we tested whether lineages of giant sea anemone hosting anemone fish experienced significant shifts in gene expression evolution. Test branches are labelled red. Although *Heterodactyla hemprichii* is nested within the giant sea anemones, they do not host anemone fish, thus it was not included as test branch. The bar plots with the phylogeny show the average number of pseudoaligned reads to a composite *Symbiodiniaceae* reference transcriptome (see methods). These measurements were used to classify anemones as possessing or not possessing *Symbiodiniaceae*, which were used in the PGMM. (B) The panel shows genes that experienced significant shifts (EVE model theta shifts) in gene expression throughout evolution. The top 10 genes (labelled) were used to fit a PGMM to estimate the effect of phylogeny, *Symbiodiniaceae*, and anemone fish on tentacle gene expression. (C) The lower panel shows the estimates of the PGMM. Although the effect sizes are low and confidence intervals are wide, they do not overlap zero implying that the presence of anemone fish and *Symbiodiniaceae* have an effect on gene expression evolution in tentacles of the giant sea anemone.

Table 1. Top 10 genes with the highest rate shifts identified from the EVE analysis.

Orthogroup	Gene	Protein	Function
OG0000495	USP24	Ubiquitin carboxyl-terminal hydrolase 24	ubiquitin-dependent protein catabolic process [GO:0006511]
OG0005805	TOM1L2	TOM1-like protein 2	negative regulation of mitotic nuclear division [GO:0045839];
OG0005435	SLTM	SAFB-like transcription modulator	regulation of mRNA processing [GO:0050684]
OG0006498	RPS6KA2	Ribosomal protein S6 kinase alpha-2	cellular response to carbohydrate stimulus [GO:0071322]
OG0005659	USP6NL	USP6 N-terminal-like protein	plasma membrane to endosome transport [GO:0048227]
OG0006786	ERG	Transcriptional regulator ERG	cell differentiation [GO:0030154]
OG0006786	FLI1	Friend leukemia integration 1 transcription factor	animal organ morphogenesis [GO:0009887]
OG0005903	YAP1	Yes-associated protein 1	hippo signaling [GO:0035329]
OG0005195	KLF5	Krueppel-like factor 5	positive regulation of transcription by RNA polymerase II [GO:0045944]
OG0004515	SDHB	Succinate dehydrogenase B	aerobic respiration [GO:0009060]
OG0003426	TOB1	Protein Tob1 (Transducer of erbB-2 1)	negative regulation of BMP signaling pathway [GO:0030514]