

1 Recombination rate variation shapes genomic variability of phylogeographic structure in a
2 widespread North American songbird (Aves: *Certhia americana*)

3

4 Joseph D. Manthey^{1*}, Garth M. Spellman²

5

6 ¹Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA.

7 ²Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA.

8 *Corresponding author: jdmanthey@gmail.com

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 **Running head:** Recombination rate variation shapes phylogeographic structure variation

27 **ABSTRACT**

28

29 The nonrandom distribution of chromosomal characteristics and functional elements—genomic
30 architecture—impacts the relative strengths and impacts of population genetic processes across
31 the genome. Due to this relationship, genomic architecture has the potential to shape variation
32 in population genetic structure across the genome. Population genetic structure has been
33 shown to vary across the genome in a variety of taxa, but this body of work has largely focused
34 on pairwise population genomic comparisons between closely related taxa. Here, we used
35 whole genome sequencing of seven phylogeographically structured populations of a North
36 American songbird, the Brown Creeper (*Certhia americana*), to determine the impacts of
37 genomic architecture on phylogeographic structure variation across the genome. Using multiple
38 methods to infer phylogeographic structure—ordination, clustering, and phylogenetic methods—
39 we found that recombination rate variation explained a large proportion of phylogeographic
40 structure variation. Genomic regions with low recombination showed phylogeographic structure
41 consistent with the genome-wide pattern. In regions with high recombination, we found strong
42 phylogeographic structure, but with discordant patterns relative to the genome-wide pattern. In
43 regions with high recombination rate, we found that populations with small effective population
44 sizes evolve relatively more rapidly than larger populations, leading to discordant signatures of
45 phylogeographic structure. These results suggest that the interplay between recombination rate
46 variation and effective population sizes shape the relative impacts of linked selection and
47 genetic drift in different parts of the genome. Overall, the combined interactions of population
48 genetic processes, genomic architecture, and effective population sizes shape patterns of
49 variability in phylogeographic structure across the genome of the Brown Creeper.

50

51 **Keywords:** phylogeography, population genomics, genetic architecture, demography

52

53 **INTRODUCTION**

54

55 The formation of population structure is implicit in the speciation process (Allmon, 1992; Mayr et
56 al., 1963). Speciation is a continuum; early differentiating populations may have few genomic
57 regions with evidence for genetic differentiation or barriers to gene flow (Ellegren et al., 2012;
58 Nosil and Feder, 2012; Toews et al., 2016; Wu, 2001) while later in the speciation process two
59 diverging populations may exhibit strong genetic differentiation across their entire genomes
60 (Nosil and Feder, 2012; Ravinet et al., 2018; Wu, 2001). Across the genome, variation in local
61 evolutionary history is shaped by the relative strengths of the population genomic processes of
62 natural selection, gene flow, and genetic drift. For example, population genetic structure may
63 differ in genomic regions with strong natural selection or differential patterns of gene flow
64 relative to the rest of the genome (Louis et al., 2020; Whiting et al., 2021).

65 Variable impacts of selection, drift, and gene flow across the genome may be partially
66 attributed to genomic architecture—the nonrandom distribution of chromosomal characteristics
67 and functional elements (Koonin, 2009)—whereby variation in gene content, recombination
68 rates, or other genomic characteristics impact the relative effects of population genomic
69 processes. For example, we expect that genomic regions with lower recombination rates will be
70 relatively depleted of genetic diversity and genetic differentiation will accumulate faster, due to
71 relatively increased effects of linked selection (Cruickshank and Hahn, 2014; Haenel et al.,
72 2018; Hey and Kliman, 2002; Nachman and Payseur, 2012). Indeed, speciation and population
73 genomic studies have often found a negative relationship between recombination rates and
74 genetic differentiation across the genome (Kulathinal et al., 2008; Manthey et al., 2021; Roesti
75 et al., 2013; Stankowski et al., 2019; Vijay et al., 2016).

76 If genomic architecture impacts population genomic patterns within populations and
77 between pairs of taxa, we may naturally extend this idea to phylogeographic patterns in taxa
78 with multiple lineages at different stages of evolutionary distinctiveness. As such, we may

79 predict that estimates of phylogeographic structure will vary across the genome and be shaped
80 by several factors and their interactions: (1) population size variation of differentiating
81 populations shaping relative strengths of selection and drift, (2) time since divergence began,
82 (3) genomic architecture, and (4) quantity of interpopulation gene flow. Exemplar taxa to better
83 understand the impacts of genomic architecture on population genetic structure are species (or
84 species complexes) with multiple lineages on distinct evolutionary trajectories, populations with
85 different effective sizes, and genomes exhibiting heterogeneous genomic architecture.

86 The Brown Creeper (*Certhia americana*) is an excellent study organism to understand
87 the impacts of genomic architecture on phylogeographic structure; its genome is highly
88 heterogeneous in both structure and content, and it has seven distinct phylogeographic lineages
89 (Manthey et al., 2011a; Manthey et al., 2015). The genome of the Brown Creeper, as like other
90 birds, has chromosomes that (1) span two orders of magnitude in size, (2) vary in their gene
91 and repetitive element content, and (3) exhibit local effective recombination rates that can vary
92 by an order of magnitude or more (Dutoit et al., 2017; Ellegren, 2010; Kapusta and Suh, 2017;
93 Kawakami et al., 2014; Manthey et al., 2021). Additionally, the Brown Creeper has strong
94 phylogeographic structure, with two main lineages that have been diverging around one million
95 years (Fig. 1A), multiple phylogeographically structured clades within each of these two main
96 lineages, and populations with different effective sizes (Manthey et al., 2011a, b; Manthey et al.,
97 2015, 2021).

98 Using the Brown Creeper as our study taxon, we used whole-genome sequencing data
99 to assess how genome architecture influences phylogeographic structure; we used
100 phylogenetic, ordination, and population genetic clustering methods to characterize
101 phylogeographic structure across the genome. Our aims here were twofold. First, we looked to
102 decipher how genomic architecture and effective population sizes shape phylogeographic
103 structure variation across the genome. Second, because phylogeographic structure may be

104 estimated in many ways, we wanted to identify whether phylogeographic signal variation was
105 consistent using different methodologies.

106 Based on previous population genomic research, we hypothesized that genomic regions
107 with low recombination rates will have faster lineage sorting. Based on this hypothesis, we
108 would predict that phylogeographic estimates consistent with the species or population level
109 evolutionary history of the group will be concentrated in genomic regions with low
110 recombination. Additionally, we may predict a couple alternative patterns in high recombination
111 regions. We may identify mixed or weak phylogeographic structure in high recombination
112 regions. Alternatively, we may identify strong, but divergent patterns of phylogeographic
113 structure in high recombination regions linked with varied molecular evolutionary rates among
114 sampled populations. We may also predict an interaction between recombination rate and
115 population sizes; whereby, relatively smaller populations will undergo faster molecular evolution
116 in genomic regions characterized by stabilizing selection, such as in gene-dense, high
117 recombination genomic regions.

118

119 MATERIALS AND METHODS

120

121 ***Study organism, sampling, and sequencing.*** The Brown Creeper is a songbird found in
122 forested regions of the Americas; it has a widespread distribution ranging from Honduras in the
123 south to Alaska in the north (Fig. 1A) (Poulin et al., 2020). The Brown Creeper is aptly named; it
124 creeps up trees in search of its largely invertebrate diet and has dark coloration on its back and
125 sides (Fig. 1A inset) that makes for excellent camouflage on trees with dark bark. In previous
126 work using tens to thousands of genetic markers, we have identified phylogeographic structure
127 in the Brown Creeper, with up to seven distinct lineages (Manthey et al., 2011a, b; Manthey et
128 al., 2015). Here, we aimed to obtain population genomic sequencing data for seven populations
129 with three individuals sampled per population (Fig 1, Table S1). We downloaded previously

130 published sequencing data from two of these populations and one outgroup sample of *C.*
131 *familiaris* (Table S1) (Manthey et al., 2021). For the other five populations, we obtained
132 representative tissue samples from natural history museums and extracted genomic DNA using
133 QIAGEN DNeasy blood and tissue kits following manufacturer guidelines. DNA from extractions
134 was used to create standard Illumina sequencing libraries, followed by sequencing on an
135 Illumina NovaSeq6000 at the Texas Tech University Center for Biotechnology and Genomics
136 with the goal of obtaining ~15-30x coverage per individual.

137

138 **Reference genome and genomic architecture.** For the reference genome, we used the
139 chromosome-scale *Certhia americana* genome we assembled for a prior study (NCBI assembly
140 ASM1869719v1; Manthey et al. 2021). From data reported in this previous study (Manthey et al.
141 2021), we summarized mean effective recombination rates for each of the two main Brown
142 Creeper lineages, transposable element (TE) and gene density, and GC content across the
143 genome in 50kbp and 100 kbp non-overlapping sliding windows (Fig. 2). We used the mean
144 effective recombination rates of the two lineages because they were highly correlated ($r =$
145 0.829-0.861 across different correlation metrics; all $p << 0.001$), and we can assume relatively
146 conserved recombination rates over short evolutionary time frames (Singhal et al., 2015).
147 Briefly, these estimates were initially obtained with the following methods: effective
148 recombination rate was estimated using LDhat (McVean and Auton, 2007), TEs were annotated
149 with RepeatMasker v4.08 (Smit et al., 2015), and gene content was annotated with MAKER
150 v2.31.10 (Cantarel et al., 2008).

151

152 **Sequencing data filtering and genotyping.** We used the program bbduk (Bushnell, 2014) to
153 quality filter raw sequencing data. We then use BWA v0.7.17 (Li and Durbin, 2009) to align
154 filtered reads to the *Certhia americana* reference genome. Next, we used samtools v1.4.1 (Li et
155 al., 2009) to convert the BWA output SAM file to BAM format, followed by using the Genome

156 Analysis Toolkit (GATK) v4.1.0.0 (McKenna et al., 2010) to clean, sort, add read groups to, and
157 remove duplicates from BAM files. We used the samtools ‘depth’ command to measure
158 sequencing coverage across the reference genome for each individual (Fig. S1, Table S1).

159 We then used GATK in three steps to genotype all individuals: we used the
160 ‘HaplotypeCaller’ function to call preliminary genotypes for each individual, built a database for
161 all samples using the ‘GenomicsDBImport’ function, and lastly used the ‘GenotypeGVCFs’
162 function to group genotype all individuals together for both variant and invariant sites. We
163 filtered the genotype data using VCFtools v0.1.14 (Danecek et al., 2011) with the following
164 restrictions: (1) minimum site quality of 20, (2) minimum genotype quality of 20, (3) minimum
165 depth of coverage of 6, (4) maximum mean depth of coverage of 50, and (5) removal of indels.
166 For downstream analyses, we used various settings for (1) amount of missing data allowed, (2)
167 whether the outgroup was included, (3) inclusion or exclusion of invariant sites, and (4) thinning
168 between sites (see Table 1 for exact dataset characteristics used for all seven datasets used for
169 analyses). Although it has been suggested that variation in minor allele frequency (MAF) filtering
170 may impact estimates of genetic structure (Linck and Battey, 2019), we did not filter for a
171 minimum MAF because we previously showed that changing MAF did not significantly impact
172 pairwise F_{ST} calculations in *C. americana* (Manthey et al., 2021).

173

174 **Phylogenomics.** We estimated “gene trees” in non-overlapping windows (window size 50 kbp
175 and 100 kbp; datasets C and D in Table 1) using RaxML v8.2.12 (Stamatakis, 2014) with the
176 GTRCAT model of sequence evolution. For a window to be included, we required a minimum of
177 10 kbp in the alignment following filtering. This resulted in 19,639 phylogenies for the 50 kbp
178 sliding windows and 9846 phylogenies for the 100 kbp sliding windows. We summarized the
179 best-supported trees using the sumtrees.py script, part of the DendroPy Python package
180 (Sukumaran and Holder, 2010). Lastly, we used ASTRAL III v 5.6.3 (Zhang et al., 2018) to

181 calculate a species tree from all gene trees, using quartet frequencies as a measure of local
182 support (Sayyari and Mirarab, 2016).

183 For each gene tree, we estimated the genealogical sorting index (GSI) (Cummings et al.,
184 2008) for (1) each of the seven populations, and (2) each of the two main lineages (i.e., north
185 and south shaded blue and red, respectively, in Fig. 1). The GSI statistic uses rooted gene trees
186 to quantify lineage sorting; the GSI quantifies exclusive ancestry of individuals in labelled groups
187 by dividing the minimum number of nodes to produce monophyly for a defined group divided by
188 the observed number of nodes necessary to connect all individuals of a group in a phylogeny.
189 The maximum GSI value is one and occurs when a defined group is monophyletic. We
190 calculated the GSI statistic for each sampled population and for each of the two main lineages
191 (Fig. 1). We expect that each sampled population will show evidence of phylogenetic clustering,
192 regardless of position in the genome. As such, GSI at the population level may have little
193 variation tied to genomic architecture. In contrast, which populations group with which other
194 populations are likely to be influenced by rates of lineage sorting and are therefore likely
195 influenced by genomic architecture. As such, we may expect GSI measures at the lineage level
196 (i.e., two main clades) to be impacted by genomic architecture.

197 To obtain a relative rate of molecular evolution for each population per genomic window,
198 we calculated root-to-tip distances (RTD) in our phylogenies. For each individual across every
199 gene tree, we calculated the RTD using the R package ape (Paradis et al., 2004). As a
200 summary of these RTDs, we calculated the mean RTD per population relative to the maximum
201 RTD value for each gene tree (i.e., this relative statistic's range = 0 – 1). We then measured the
202 relationships between harmonic mean effective population sizes (mean per population) and
203 relative RTD in regions with low recombination and high recombination, as well as the shift in
204 values between high and low recombination regions. We also estimated relationships between
205 these characteristics while accounting for the evolutionary relationships of the samples using

206 phylogenetic independent contrasts (PICs) calculated in the R package ape (Paradis et al.,
207 2004).

208

209 **Genetic structure.** We estimated genetic structure using the program ADMIXTURE v1.3.0
210 (Alexander et al., 2009). Here, we used genome-wide SNPs thinned to either a minimum of 50
211 kbp or 100 kbp distance between SNPs (datasets A and B in Table 1). We ran ADMIXTURE
212 with an assumed number of genetic clusters equal to two or seven (i.e., $k = 2$ and $k = 7$) based
213 on our knowledge of phylogeographic structure in this species from previous studies (Manthey
214 et al., 2011a, b; Manthey et al., 2015). To assess how genetic structure estimation varied across
215 the genome, we also ran ADMIXTURE for SNP datasets in non-overlapping sliding windows of
216 50 kbp and 100 kbp (datasets E and F in Table 1). We compared the genome-wide
217 ADMIXTURE results to those in each window by summing the differences in group membership
218 for each individual. In other words, this deviation value ranges from zero to nearly one, where a
219 value of zero is identical group assignment for all individuals with the same admixture
220 coefficients for each genetic cluster, and higher values indicate more dissimilar matrices.

221 We also estimated variation in genetic structure across the genome using LOSTSTRUCT
222 (Li and Ralph, 2019). This method runs in three steps: (1) reducing the dimensionality of the
223 data using principal component analysis (PCA) for each genomic window, (2) find distances
224 between PCA maps, and (3) using multidimensional scaling (MDS) to display variation in PCA-
225 based genetic structure across the genome. We used LOSTSTRUCT in sliding windows of 50 kbp
226 and 100 kbp (datasets E and F in Table 1). We used variation in MDS axis one (hereafter
227 MDS1) to describe variation in these PCA-based estimates of genetic structure across the
228 genome.

229 We expect that genomic regions with low recombination will exhibit strong
230 phylogeographic structure similar to genome-wide patterns (e.g., Fig. 1). In contrast, we expect
231 that genomic regions with high recombination will either exhibit little genetic structure or

232 alternative patterns of genetic structure. As such, we expect that variation in ADMIXTURE and
233 PCA results will covary with genomic architecture.

234

235 **Genetic diversity.** Across 50 kbp and 100 kbp sliding windows (datasets C and D in Table 1),
236 we measured observed heterozygosity per individual as a measure of genetic diversity.

237

238 **Population genomic correlations.** We used the R package Hmisc (Harrell and Dupont, 2020)
239 to estimate both Pearson and Spearman correlation coefficients between population genomic
240 summary statistics and characteristics of genomic architecture in sliding windows. We used the
241 R package corrplot (Wei et al., 2017) to visualize correlations between all summary statistics.
242 Lastly, we used variance partitioning, implemented in the R package vegan (Oksanen et al.,
243 2007), to assess the proportion of variance in phylogeographic structure estimates explained by
244 genomic architecture.

245

246 **Population demographic history.** We used the program MSMC2 v1.1.0 (Schiffels and Durbin,
247 2014) to estimate demographic history for each individual. For use in MSMC, we masked
248 regions of the genome not genotyped due to low coverage or low genotype quality scores.
249 Additionally, we did not include the sex chromosomes in demography calculations. We ran
250 MSMC for each individual allowing up to 20 iterations (default setting) and used up to 23
251 inferred distinct time segments because this setting worked well to reduce spurious or
252 inconsistent results in other songbirds that we have studied (Manthey et al., 2022). We
253 performed 10 bootstraps for each demography estimate, using 1 Mbp bootstrapped segments of
254 the genome, to assess how demographic signal varies when subsetting parts of the genome.
255 Because the output of MSMC is interpreted relative to assumed mutation rates and generation
256 times, we used the Brown Creeper genome mutation rate estimate of 2.506×10^{-9} substitutions
257 per site per year (Manthey et al., 2021). Because there are no published estimates of Brown

258 Creeper generation times, we used a proxy generation time of double the age of sexual maturity
259 (Nadachowska-Brzyska et al., 2015) using maturity estimates from the Animal Aging and
260 Longevity Database (age of maturity = one year) (Tacutu et al., 2017). With the MSMC
261 demographic model output, we estimated the harmonic mean population sizes for each
262 population by using the mean MSMC population size estimates for each individual in 1000-year
263 discrete time intervals over the past 200 kya.

264

265 **Code availability.** All computer code used for analyses and figure creation (applicable for some
266 figures) for this project is available here: github.com/jdmanthey/certhia_phylogeography. We
267 used the following R packages for figure creation and file manipulation that were not cited in
268 other parts of the methods section: Biostrings (Pagès et al., 2017), ggplot2 (Wickham, 2011),
269 palettetown (Lucas, 2016), phytools (Revell, 2012), and RcolorBrewer (Neuwirth, 2014).

270

271 RESULTS

272

273 **Genome-wide phylogeographic structure and demography.** We used genomic sequencing
274 data from 21 ingroup individuals sequenced at ~18-29x genomic coverage to estimate genome-
275 wide patterns of phylogeographic structure. We corroborated previous genetic work (that used
276 few to thousands of genetic markers) by identifying hierarchical and strong phylogeographic
277 structure among sampled populations (Manthey et al., 2011a, b; Manthey et al., 2015). The
278 deepest phylogenomic split separates northern from southern populations and there is
279 additional support for distinctiveness of each of the regionally sampled populations (Fig. 1C).
280 Genome-wide ADMIXTURE results were consistent across different thinning strategies (i.e., 50
281 kbp and 100 kbp thinning; only 50 kbp results plotted) and showed patterns of genetic structure
282 that aligned well with the species tree (Fig. 1C). Demographic history estimates for each
283 individual were consistent within populations, but each population exhibited a distinct

284 demographic history (Fig. 1D). In the Pacific and Central American localities, population sizes
285 have fluctuated somewhat, but generally stay below an N_E of 200,000 over the past 100 ky (Fig.
286 1D). The Sierra Madre Oriental population showed evidence for a sharp decline in N_E over the
287 past 50 ky, shifting from an $N_E \sim 200,000$ at about 50 kya to an $N_E \sim 10,000$ in the past ten kya
288 (Fig. 1D). The Rocky Mountains population has remained relatively stable over the past 100 ky
289 with an $N_E \sim 200,000$ (Fig. 1D). Lastly, the Eastern North America and Central Mexico
290 populations have exhibited fluctuations and much larger N_E than all other populations over the
291 past 100 ky (Fig. 1D). Harmonic mean effective population sizes over the past 200 ky ranged
292 from $\sim 85,000$ (Central America South) to $\sim 320,000$ (Central Mexico) (Fig. 1D). Harmonic mean
293 effective population size estimates over the past 200 ky are highly correlated with observed
294 heterozygosity estimates for each individual ($r = 0.962$).

295

296 **Genetic diversity.** Genetic diversity in each individual varied widely across the genome, with
297 mean observed heterozygosity values for each individual between ~ 0.00165 and 0.00463 (Fig
298 1B). Observed heterozygosity was strongly correlated across the genome in all pairwise
299 comparisons of individuals (mean $r = 0.409$, range = $0.189 - 0.853$; all $p << 0.001$). Notably, the
300 Sierra Madre Oriental, Pacific, and Central American localities had more windows with no
301 heterozygosity than the other populations (Fig. 1B).

302

303 **Phylogeographic structure variation across the genome.** We estimated phylogeographic
304 structure across the genome using PCA, ADMIXTURE, and the GSI metric from phylogenies; all
305 estimates of phylogeographic structure varied across the genome, with the outliers deviating the
306 most from genome-wide patterns clustering mostly on small chromosomes and the ends of
307 large chromosomes (Fig. 2; Fig. S2). The most extreme deviations from genome-wide
308 phylogeographic structure appear to cluster the Central Mexico population with the northern
309 lineage (Fig. S3), and in some cases also cluster the Sierra Madre Oriental population with the

310 northern lineage (Fig. S3; Fig. 3). As an example, we plot the phylogeographic structure for one
311 of these outlier windows in Fig. 3, demonstrating the clustering of the Sierra Madre Oriental and
312 Central Mexico populations with the northern lineage.

313

314 ***Correlations between phylogeographic structure estimates and genomic architecture.*** We
315 found a strong correlation between different measures of phylogeographic structure, including
316 GSI at the lineage level, MDS1 of the PCA, and ADMIXTURE deviations (all $r \geq 0.58$; $p <<<$
317 0.001; Fig. 4; Fig. S4). In contrast, GSI at the population level did not vary consistently with the
318 other metrics (all r between -0.21 and -0.03), likely because the population-level GSI usually
319 showed similar patterns across the genome (i.e., individuals generally clustered with individuals
320 sampled from the same population).

321 Phylogeographic structure patterns most different from genome-wide patterns were
322 strongly positively correlated with recombination rate, GC content, and genetic diversity (Fig. 4;
323 Fig. S4). In contrast, TE content had no or weak correlations with all other statistics that we
324 calculated (Fig. 4; Fig. S4). Correlations were consistent between 50 kbp and 100 kbp
325 estimates, with no correlations deviating more than ~0.08 when estimated with different window
326 sizes (Fig. S4).

327 Using variance partitioning, recombination rate variation most strongly explained
328 deviations in phylogeographic structure, but interactions of recombination rate, GC content,
329 CDS content, and TE content also explained some portions of the variance (Table 2). Most
330 notably, genomic architecture explained approximately 60% of the variance in both (1) the
331 MDS1 axis explaining differences in PCA-based estimates of phylogeographic structure and (2)
332 ADMIXTURE results at the lineage level with an assumed $k = 2$ (Table 2).

333 The relationship between recombination rate and phylogeographic structure is
334 exemplified when comparing the genomic windows with the highest or lowest values of
335 recombination rate; estimates of phylogeographic structure and genetic diversity have little to no

336 overlap in statistic distributions in high recombination regions versus low recombination regions
337 (Fig. 5). These patterns hold regardless of whether we are looking at autosomes or the Z
338 chromosome (Fig. 5).

339 Because the effective population sizes for each locality varied substantially (Fig. 1; Fig.
340 S5), we looked to see if there was a relationship between relative RTD and population size in
341 regions with very different recombination rates. Using both the raw measurements and PICs, we
342 found a negative association between relative rates of molecular evolution and harmonic mean
343 effective population sizes (Fig. 6; Fig. S6). Notably, there was also a strong positive association
344 between effective population sizes and shifts in relative rates of molecular evolution between
345 high and low recombination regions (Fig. 6).

346

347 **DISCUSSION**

348

349 Using whole-genome sequencing for seven populations of the Brown Creeper, we aimed to
350 decipher how genome architecture influences phylogeographic structure variation across the
351 genome. We found that recombination rate and other characteristics of the genome explain 6-
352 68% of the variance in phylogeographic structure inference using different metrics and genomic
353 sliding window sizes (Table 2).

354

355 ***Phylogeographic structure shaped by genomic architecture.***

356

357 We used genetic clustering, ordination, and phylogenetic methods to assess phylogeographic
358 structure in genomic sliding windows. We found that recombination rate variation was the
359 strongest predictor of phylogeographic structure variation across the genome (Table 2).

360 Consistent with our expectation, phylogeographic signal best representing the bifurcating
361 evolutionary history of the Brown Creeper was identified in genomic regions with relatively low

362 recombination rate; this was consistent across all methods used (Fig. 2). Notably, the genomic
363 windows with the lowest recombination rates deviated little from the genome-wide patterns (Fig.
364 5).

365 Previous work in insects, birds, and mammals has shown that phylogenomic signal
366 varies across the genome (Edelman et al., 2019; Fontaine et al., 2015; Li et al., 2019; Martin et
367 al., 2019; Thom et al., 2024). Generally, these studies have found or suggested that the
368 background species tree is best represented by phylogenomic patterns exhibited in genomic
369 regions with low recombination, and that gene flow among taxa is more prevalent in genomic
370 regions with high recombination rate (Edelman et al., 2019; Li et al., 2019; Martin et al., 2019;
371 Thom et al., 2024). Our results in the Brown Creeper echo these findings *at a shallow*
372 *evolutionary timescale*, whereby we find highest support for the genome-wide supported
373 phylogeographic relationships in genomic regions with low recombination rate (Fig. 2; Fig. S2).
374 We may interpret these patterns in the context of lineage sorting during the speciation process,
375 whereby genomic regions with low introgression exhibit quicker polymorphism fixation due to
376 relatively increased effects of linked selection and genetic drift and reduced homogenization
377 among lineages due to gene flow.

378 Genomic studies investigating intraspecific population and phylogeographic structure
379 have more commonly used PCA-based methods (e.g., LOSTSTRUCT) to investigate variation in
380 genomic structure across the genome. In two species of woodpeckers, a small portion of the
381 variance in PCA-based phylogeographic structure was found to be associated with local
382 recombination rate (Moreira et al., 2023). We found that variation in phylogeographic structure
383 across the genome of the Brown Creeper—inferred using both ordination and genetic clustering
384 methods—was strongly associated with recombination rate variation (Fig. 2; Fig. S2; Table 2).
385 We may infer that the same interactions between recombination rate variation and population
386 genomics processes shaping variance in phylogenomic signal are also shaping variance in
387 clustering- and ordination-based estimates of phylogeographic structure.

388 In contrast to generalizations about low recombination regions often reflecting a taxon's
389 background evolutionary history, in some scenarios we may expect regions of extremely low
390 recombination to greatly differ from genome-wide signatures of population genetic structure. In
391 several taxa, including sunflowers, flies, fishes, and birds, the greatest deviations from the
392 genome-wide pattern of intraspecific population structure (inferred with PCA) have been
393 identified in genomic regions with extremely low recombination rates that are often inferred to be
394 polymorphic inversions within populations or species (Hale et al., 2021; Huang et al., 2020; Li
395 and Ralph, 2019; Mérot et al., 2021; Perrier et al., 2020; Shi et al., 2021; Todesco et al., 2020;
396 Whiting et al., 2021). In these cases, if a taxon has relatively little population structure but also
397 exhibits polymorphic inversions, we may expect the biggest deviations in population genetic
398 structure from genome-wide patterns to reflect these polymorphic inversions that exhibit
399 suppressed recombination. These cases present interesting patterns to think about when
400 interpreting genomic phylogeography data. Genomic regions with low recombination may best
401 represent a taxon's evolutionary history, excepting times when these regions are associated
402 with large structural variants.

403

404 ***Interaction of recombination rate, population demography, and rate of evolution.***

405

406 While we may expect that the interactions between recombination rate and population genomics
407 processes will impact the rate of evolution across the genome, we did not simply observe little
408 phylogeographic structure in genomic regions with high recombination rates and strong
409 phylogeographic structure in genomic regions with low recombination rates. Conversely, we
410 found strong—and differing—patterns of phylogeographic structure across the genome (Fig. 1;
411 Fig. 3; Fig. S3). Because these differing patterns of phylogeographic structure generally
412 separated the Central American populations and sometimes the Sierra Madre Oriental

413 population from all others, we hypothesized that populations with relatively smaller N_E exhibit
414 relatively higher evolutionary rates in genomic regions with high recombination.

415 Using relative RTD measures as a relative rate of molecular evolution for each
416 population, we found that larger populations exhibited reduced rates of molecular evolution in
417 genomic windows with high recombination rates (Fig. 6; Fig. S6) and that shifts in relative rates
418 of molecular evolution in high versus low recombination genomic regions were positively
419 associated with effective population sizes (Fig. 6; Fig. S6). This is consistent with simulations by
420 Tigano and colleagues (2021) where the authors showed the interplay between recombination
421 rate and selection causes greater genomic variance in evolutionary rates in larger populations
422 relative to more consistent evolutionary rates across the genome in smaller populations.

423 We suspect that molecular evolution in genomic regions with high recombination rates is
424 a product of complex interactions between population demography and the relative strengths of
425 linked selection and genetic drift. In the Brown Creeper genome, recombination rate variation is
426 positively associated with gene density (Fig. 2; Fig. 4) and we may interpret gene-dense
427 genomic regions as targets for natural selection. Indeed, in a previous study in the Brown
428 Creeper (Manthey et al., 2021), we showed that the two main Brown Creeper lineages exhibited
429 relatively less neutral evolution in the gene-dense microchromosomes relative to the larger
430 macrochromosomes. In gene-dense and high recombination regions under the effects of
431 purifying selection, we may expect populations with relatively smaller N_E to accumulate
432 substitutions faster than populations with higher N_E (Lanfear et al., 2014), consistent with the
433 trends we identified here in the Brown Creeper (Fig. 6; Fig. S6).

434

435 ***Implications for future phylogeographic studies***

436

437 If phylogeographic structure varies widely across the genome, what are realistic and best-
438 practice approaches for future phylogeographic work? Are studies that use few genes or

439 reduced representation genomic datasets doomed to be wrong from the start? We expect that
440 strong phylogeographic structure will be detected even with few genetic markers. For example,
441 more than ten years ago we used 20 genetic markers obtained with Sanger sequencing to study
442 the phylogeography of the Brown Creeper (Manthey et al., 2011b) and found the same general
443 phylogeographic trends observed here with our whole-genome dataset. In contrast, any study
444 where most of the genetic markers are taken from genomic regions where the pattern differs
445 from a taxon's true evolutionary history (e.g., high recombination regions in the Brown Creeper
446 case) may run into problems inferring that true history. Additionally, in any taxa with weak
447 population genetic structure or widespread and rampant gene flow, a whole-genome method
448 may be the only approach to identify the few genomic regions differentiating taxa (e.g., Toews et
449 al., 2016). Overall, we suggest using the most amount of genetic data feasible for future
450 phylogeographic studies given sources of biological material (e.g., quality of preserved tissue)
451 and funding available, as well as investigating the patterns and potential causes of population
452 genetic structure variation across the genome when possible.

453

454 CONCLUSIONS

455

456 We used whole genome sequencing to estimate how genomic architecture shapes variation in
457 phylogeographic structure across the genome of the Brown Creeper. We found that
458 phylogeographic structure—as measured using ordination, phylogenetic, and clustering
459 methods—was strongly associated with regional genomic variation in recombination rates. In
460 low recombination regions, we recovered phylogeographic structure concordant with genome-
461 wide patterns with all three types of methods. The most divergent phylogeographic patterns
462 were in high recombination regions; populations with small effective population sizes were
463 distinct from all other populations due to relatively faster evolution than larger populations in
464 these high recombination regions. Because these high recombination regions are rich in coding

465 genes, we hypothesize that large populations have higher relative effects of purifying selection
466 in these regions, and overall slower relative molecular evolutionary rates compared to smaller
467 populations. Overall, our results show that phylogeographic structure may vary widely across
468 the genome, and that effective population sizes of sampled populations and genomic
469 architecture and their interactions will impact regional genomic variation in phylogeographic
470 structure.

471

472 **ACKNOWLEDGEMENTS**

473

474 We would like to thank the collection managers, curators, and contributors for generous tissue
475 loans for all individuals used in this study from the following museums: Burke Museum of
476 Natural History and Culture, and University of Kansas Biodiversity Institute. Sequencing was
477 supported by Texas Tech University start-up funding to JDM and a generous donation from the
478 Ferguson family to GMS and the Denver Museum of Nature and Science. Support was also
479 provided by NSF awards #1953688 to JDM and #0814841 to GMS. The High-Performance
480 Computing Center at TTU supported computational analyses.

481

482 **DATA ACCESSIBILITY**

483

484 All raw resequencing data uploaded to NCBI's SRA database under BioProject PRJNA1068991.
485 All code used for analysis on this project is available on GitHub:
486 (github.com/jdmanthey/certhia_phylogeography).

487

488

489

490

491 **AUTHOR CONTRIBUTIONS**

492

493 JDM and GMS designed the study. JDM performed laboratory and bioinformatic work and wrote
494 the first draft of the manuscript. JDM and GMS contributed to revising and improving the final
495 draft of the manuscript.

496

497 **DECLARATION OF INTEREST**

498

499 The authors declare no conflicts of interest.

500

501

502

503

504

505

506

507

508

509

510

511

512

513

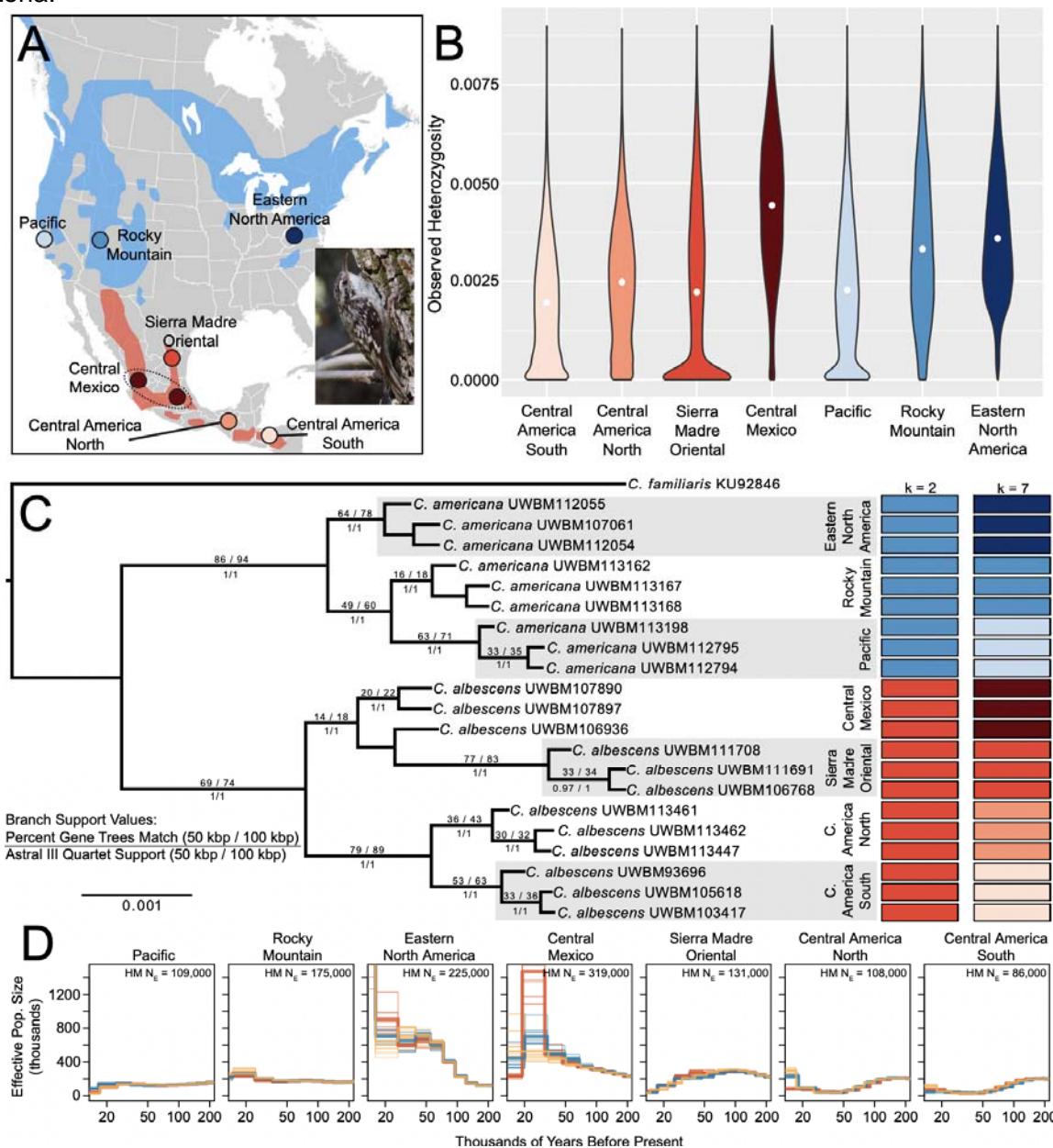
514

515

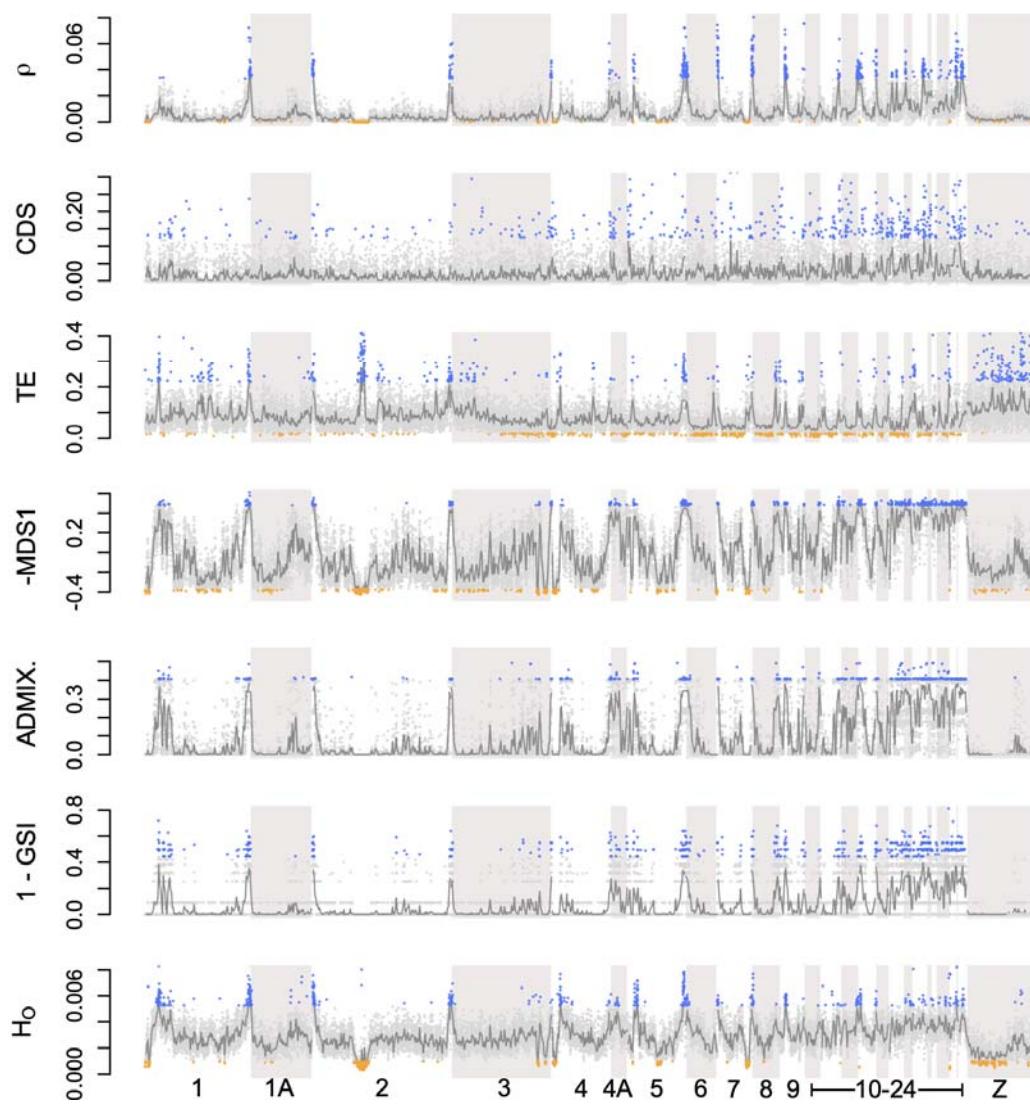
516

517 **TABLES AND FIGURES**

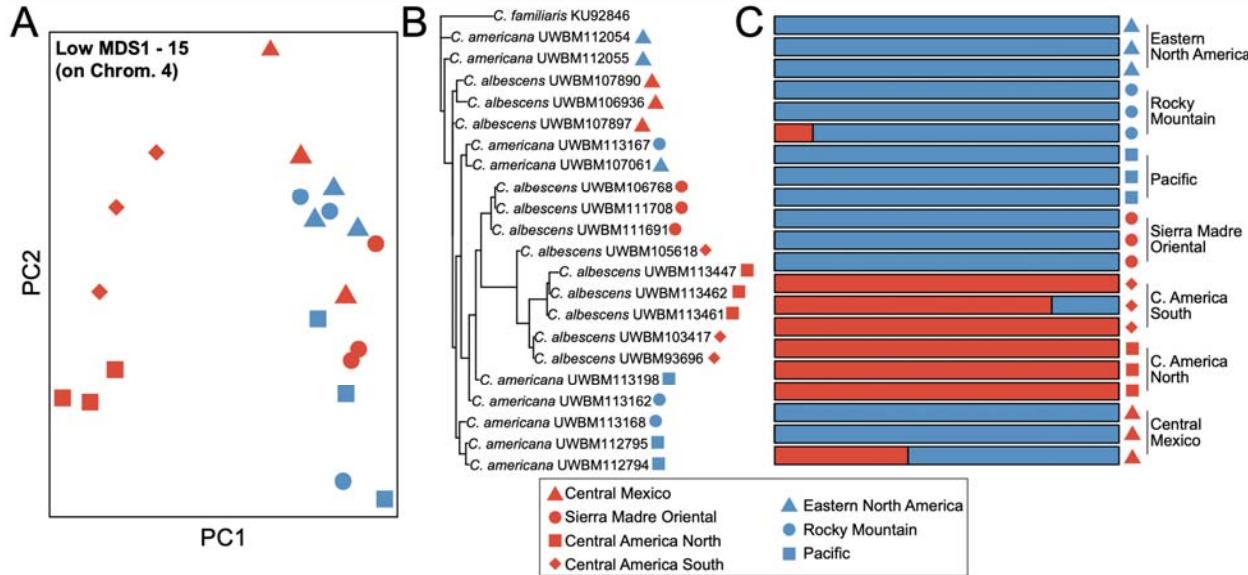
518 Figure 1. Sampling map, genetic diversity, phylogeographic structure, and demography. (A) 519 Sampling localities for this study. Colors for localities are consistent across plots. (B) Violin plots 520 of observed heterozygosity across all 50 kbp sliding windows. White circles indicate means. (C) 521 Consensus phylogeny using 19,639 gene trees from the 50 kbp windows. Support values are 522 labelled for all branches showing the highest support from all estimation methods (N = 4), 523 including consensus and ASTRAL phylogenies for both the 50 kbp and 100 kbp window 524 datasets. At tips of phylogeny are ADMIXTURE results from 19,602 genome-wide SNPs 525 (thinned every 50 kbp) for either two or seven assumed genetic clusters (k = 2 or k = 7, 526 respectively). (D) Demographic history estimated with MSMC2. Different individuals are 527 represented with differently colored lines and bootstraps are shown with thin lines. In (D), HM = 528 harmonic mean. Brown Creeper photo in (A) by JDM from the Chiricahua Mountains in southern 529 Arizona.



531 Figure 2. Genomic architecture and phylogeographic structure variation across the genome in
532 50kbp sliding windows. Gray points indicate window values and dark gray lines indicate means
533 across 20 windows (i.e., 1 Mbp windows). Blue indicates top 2.5% of outliers and orange
534 indicates bottom 2.5% of outliers for each statistic. Bottom outliers not shown for CDS, ADMIX.,
535 and GSI as these each have large proportions of values equal to zero. Abbreviations: mean
536 effective recombination rate of the two main lineages (ρ), gene content (CDS), transposable
537 element and repetitive DNA content (TE), multidimensional scaling axis one from principal
538 components analyses (-MDS1), mean genealogical sorting index for the two main *Certhia*
539 lineages (1 - GSI), ADMIXTURE deviation relative to genome-wide analysis (ADMIX.), and
540 mean genetic diversity across individuals as measured using observed heterozygosity (H_o).
541 MDS1 is plotted as negative and GSI is plotted as (1 - GSI) so that deviations from expected
542 phylogeographic structure for MDS1, GSI, and ADMIXTURE are all represented as higher
543 values.

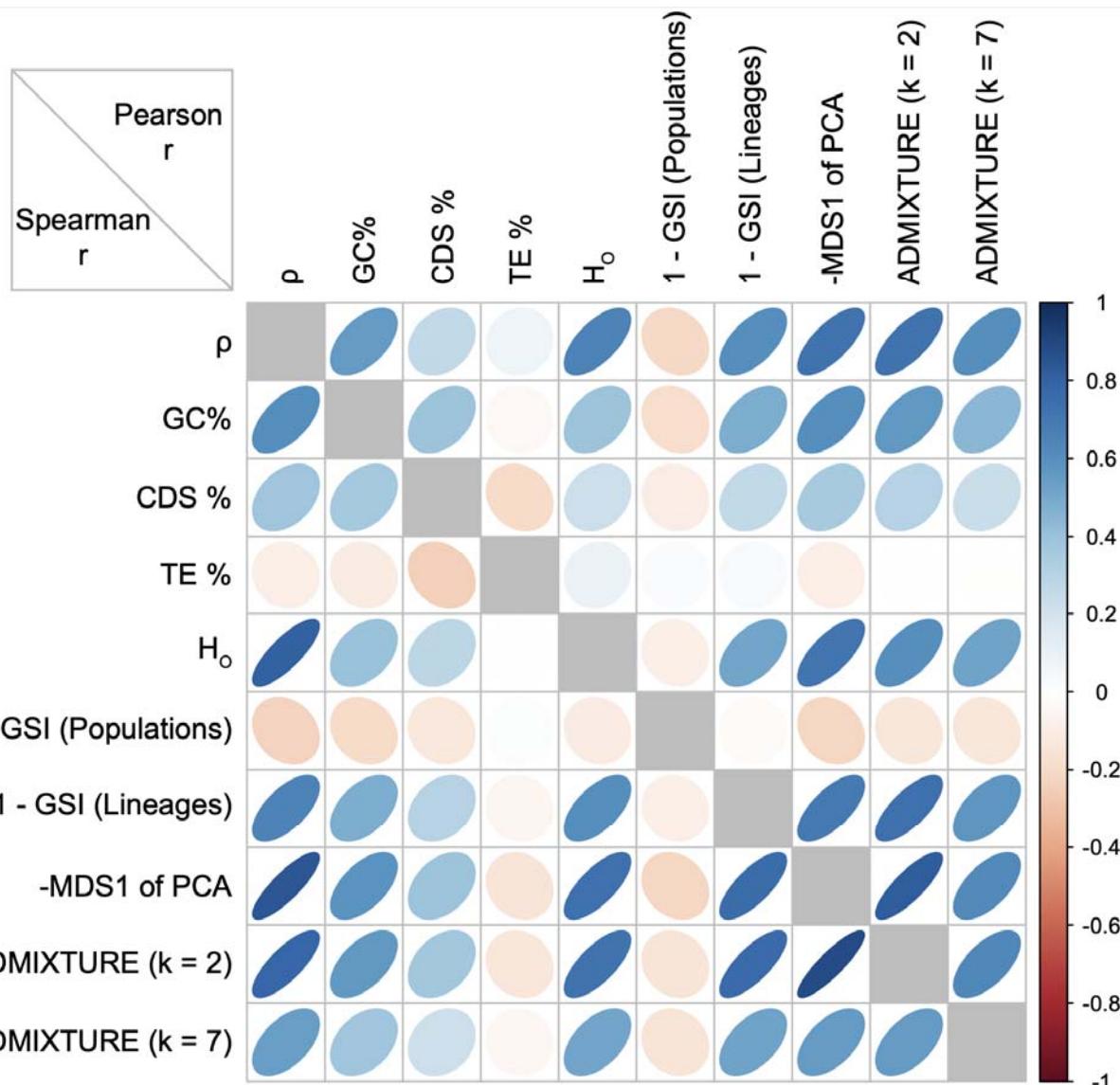


548 Figure 3. Example phylogeographic structure in a window that deviates from genome-wide
549 patterns. This window had the 15th lowest MDS1 value of all windows from the principal
550 components analysis (PCA) across the genome. (A) PCA, (B) RAxML phylogeny, and (C)
551 ADMIXTURE results for a window on chromosome 4.



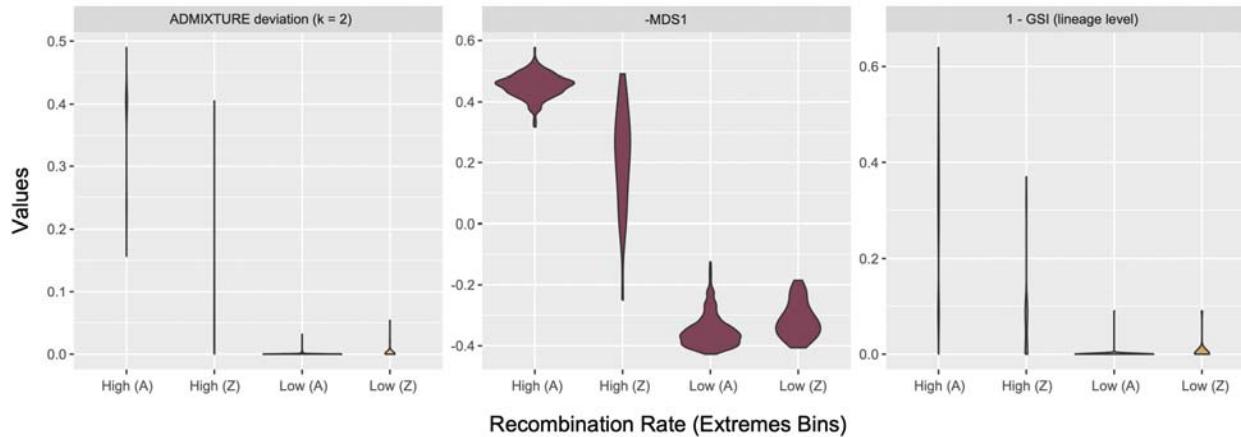
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

572 Figure 4. Correlation plot of genomic architecture, genomic diversity, and phylogeographic
573 structure for 50 kbp windowed statistics. Pearson's and Spearman's r coefficients are plotted
574 above and below the diagonal, respectively. Abbreviations shown in plot: mean effective
575 recombination rate of the two main lineages (ρ); GC content (GC%); gene content (CDS%);
576 transposable element content (TE%); mean observed heterozygosity (H_o); genealogical sorting
577 index at the population [1 - GSI (Pop.)] and lineage [1 - GSI (Lin.)] levels; negative
578 multidimensional scaling axis one from principal components analyses (-MDS1); ADMIXTURE
579 deviation relative to genome-wide analysis for two [ADMIX. ($k = 2$)] or seven [ADMIX. ($k = 7$)]
580 assumed genetic clusters.
581



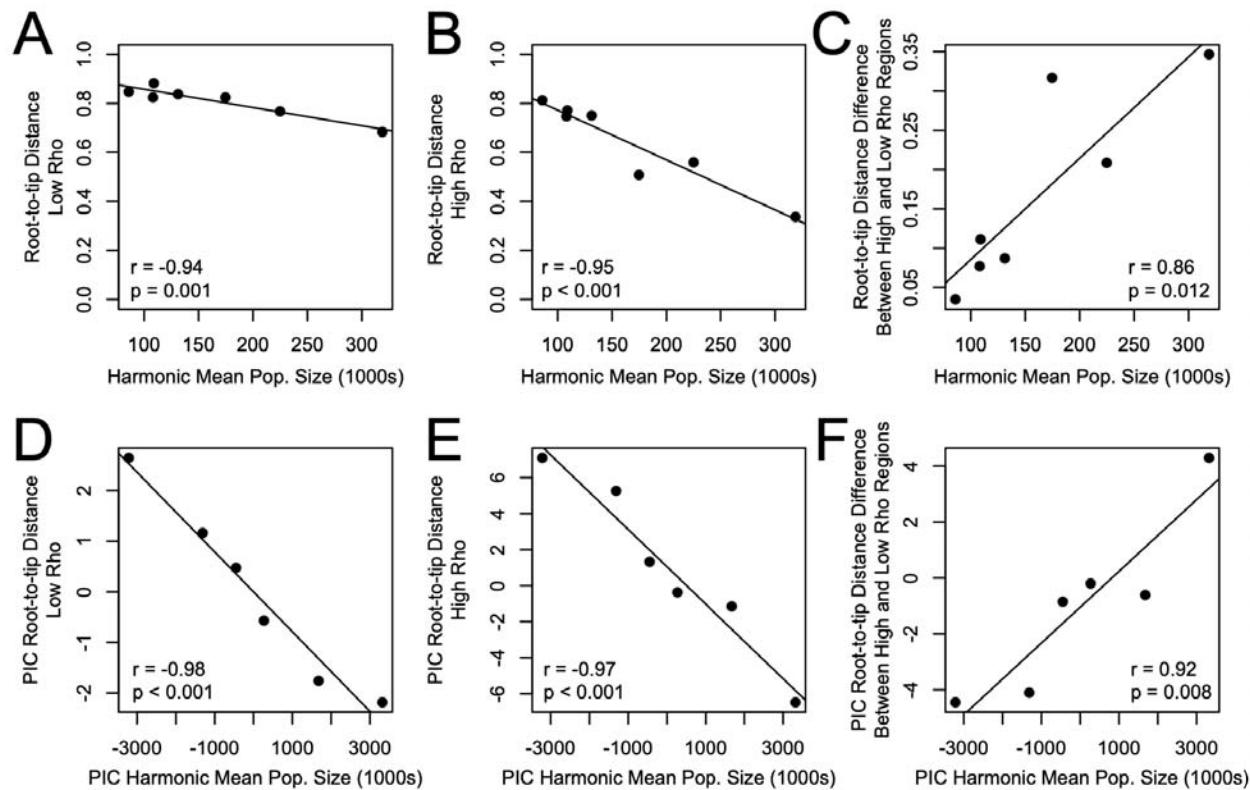
582
583
584
585
586

587 Figure 5. Violin plots of phylogeographic structure variation in genomic regions with very high or
588 low recombination rates, separated for autosomal (A) and Z-linked (Z) genomic regions. 50 kbp
589 windows with the highest or lowest 2.5% of recombination rate values are included. Higher
590 values for ADMIXTURE deviations, 1 - GSI, and -MDS1 indicate values deviating relatively
591 more from the genome-wide patterns of phylogeographic structure.
592



593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

613 Figure 6. Relationship between effective population sizes and rate of evolution (measured by
614 relative root-to-tip distance for each population) in genomic regions that vary in recombination
615 rate. Extreme low and high recombination (rho) regions represent the quintiles of the genome
616 with the lowest or highest recombination rates (i.e., highest 20% and lowest 20% of windows).
617 Results for raw data are shown in (A-C) and for phylogenetic independent contrasts (PIC) in (D-
618 F). The right panels in each row (C + F) show the shift in relative rates of evolution between
619 high and low recombination genomic regions.



620
621
622
623
624
625
626
627
628
629
630

631 Table 1. Different datasets used in this study and their characteristics. For inclusion, all datasets
 632 required sites to have a minimum quality score of 20, minimum of 20 genotype quality, a
 633 minimum depth per individual for a site to be called of 6, and a max mean depth across
 634 individuals of 50.

Set	Missing Allowed	OG ¹	Window size	# Windows	Min. Sep. per SNP ²	# SNPs	# Sites	Analyses
A	0%		-	-	50 kbp	19,602	19,602	Genome-wide ADMIXTURE
B	0%		-	-	100 kbp	9,838	9,838	Genome-wide ADMIXTURE
C	20%	X	50 kbp	19,713	-	35,463,408	890,335,872	RAxML, GSI, H ₀
D	20%	X	100 kbp	9,862	-	35,463,408	890,335,872	RaxML, GSI, H ₀
E	0%		-	-	-	21,657,220	21,657,220	LOSTRUCT
F	0%		50 kbp	19,697	-	21,657,220	21,657,220	ADMIXTURE per window
G	0%		100 kbp	9,860	-	21,657,220	21,657,220	ADMIXTURE per window
H	0%		-	-	-	*	*	MSMC2

¹OG = outgroup included

²Min. Sep. per SNP = minimum separation between SNPs (i.e., thinning)

*SNPs and sites not labeled for MSMC2 analyses because these values varied per individual. For each individual, no missing data was allowed for that particular individual's MSMC2 demographic analyses input files. The MSMC2 dataset did not include the Z chromosome.

635

636

637

638 Table 2. Variance partitioning where the explanatory variables are characteristics of genomic
 639 architecture and response variables are different measures of population genetic structure.
 640 Values indicative of variance proportion explained by each explanatory variable or their
 641 interactions.

50 kbp windows							
Measure of Genetic Structure		ρ	CDS	TE	GC	Interactions	Total
MDS1		0.23	0.00	0.01	0.04	0.33	0.61
GSI (Lineages)		0.16	0.00	0.00	0.02	0.22	0.40
GSI (Populations)		0.02	0.00	0.00	0.01	0.03	0.06
ADMIXTURE (k = 2)		0.24	0.00	0.00	0.03	0.30	0.57
ADMIXTURE (k = 7)		0.19	0.00	0.00	0.01	0.18	0.38
100 kbp windows							
Measure of Genetic Structure		ρ	CDS	TE	GC	Interactions	Total
MDS1		0.22	0.01	0.01	0.03	0.41	0.68
GSI (Lineages)		0.16	0.00	0.00	0.01	0.23	0.40
GSI (Populations)		0.02	0.00	0.00	0.01	0.05	0.08
ADMIXTURE (k = 2)		0.25	0.00	0.00	0.02	0.35	0.62
ADMIXTURE (k = 7)		0.20	0.00	0.00	0.01	0.22	0.43

642

643

644

645 **SUPPLEMENTAL TABLES AND FIGURES**

646

647 Table S1. Sampling metadata and characteristics of sequencing amount and coverage when
648 aligned to the reference genome. Samples from Utah, Morelos, Jalisco, and the outgroup were
649 retrieved from the NCBI SRA and originally sequenced for a previous study by Manthey and
650 colleagues (2021).

Museum #	Lineage	Locality	Lat.	Long.	Raw bp	Filtered bp	Coverage
UWBM103417	South	Copan, HN	14.866	-89.050	40,501,485,458	34,714,897,849	22.79
UWBM105618	South	Copan, HN	14.866	-89.050	30,149,924,172	26,420,616,801	18.55
UWBM93696	South	Copan, HN	14.866	-89.050	40,591,948,048	36,089,400,965	26.06
UWBM113447	South	Chiapas, MX	16.691	-92.606	37,741,499,908	33,063,229,986	23.32
UWBM113461	South	Chiapas, MX	16.691	-92.606	32,696,721,580	27,488,157,228	18.51
UWBM113462	South	Chiapas, MX	16.691	-92.606	48,519,014,074	42,841,474,607	27.09
UWBM106936	South	Morelos, MX	19.0873	-99.194	40,136,994,108	35,563,542,819	26.35
UWBM107890	South	Jalisco, MX	21.882	-103.865	43,601,103,228	38,563,138,625	26.14
UWBM107897	South	Jalisco, MX	21.882	-103.865	30,536,607,690	27,038,872,945	18.55
UWBM106768	South	Nuevo Leon, MX	24.872	-100.224	42,330,853,397	37,109,282,807	27.62
UWBM111691	South	Nuevo Leon, MX	24.872	-100.224	41,523,724,956	36,804,470,356	26.21
UWBM111708	South	Nuevo Leon, MX	24.872	-100.224	43,392,483,440	36,820,385,840	27.04
UWBM113198	North	California, US	36.245	-121.700	40,117,812,880	35,379,027,102	26.26
UWBM112794	North	California, US	36.245	-121.553	37,692,762,846	33,128,089,974	23.33
UWBM112795	North	California, US	36.245	-121.553	44,376,620,806	38,809,177,747	28.71
UWBM113162	North	Utah, US	37.317	-113.455	40,934,172,636	36,217,919,293	26.25
UWBM113168	North	Utah, US	37.317	-113.455	39,295,062,200	34,925,676,137	25.72
UWBM113167	North	Utah, US	37.377	-113.467	42,535,860,138	37,425,027,332	27.55
UWBM107061	North	West Virginia, US	38.289	-79.937	43,886,484,470	38,699,509,454	28.65
UWBM112055	North	West Virginia, US	38.289	-79.937	47,972,794,224	40,458,960,409	29.36
UWBM112054	North	West Virginia, US	38.641	-79.838	39,431,412,482	34,774,499,050	25.96
KU92846	Outgroup	England			21,417,629,506	19,195,682,239	13.58

651

652

653

654

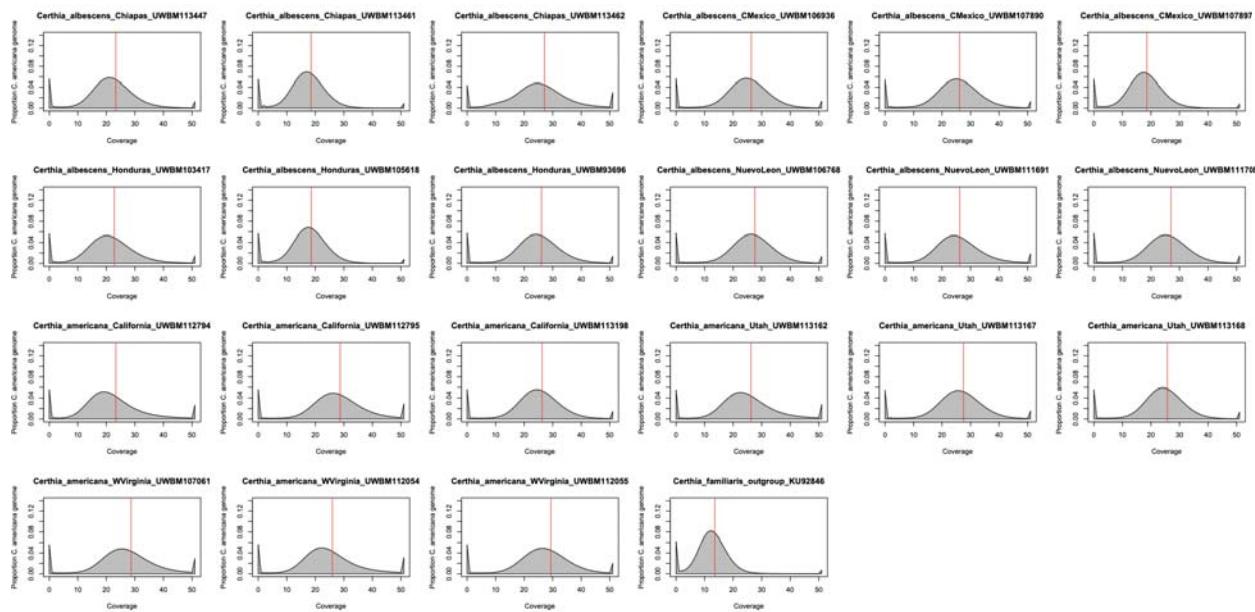
655

656

657

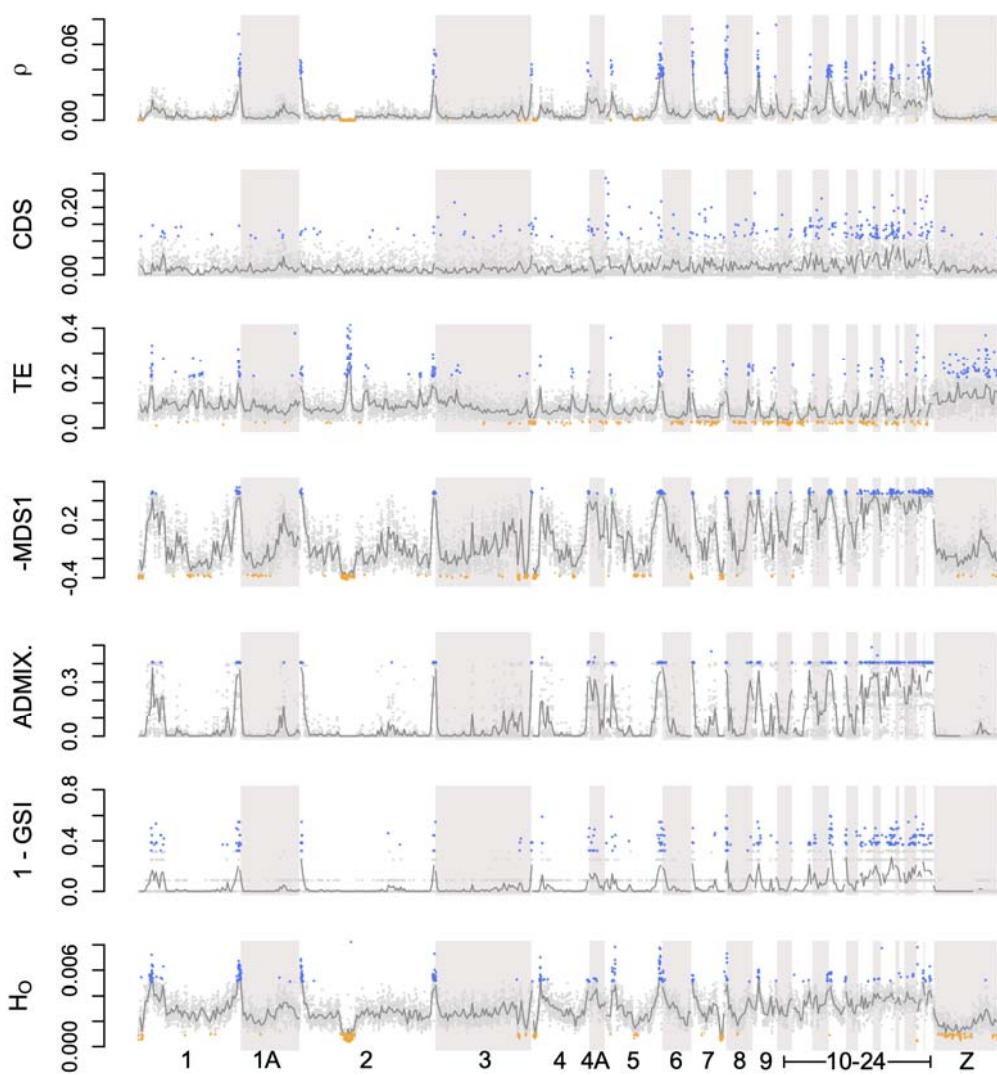
658

659 Figure S1. Sequencing coverage aligned to the reference genome for each individual. The
660 vertical red lines indicate the mean coverage per individual.

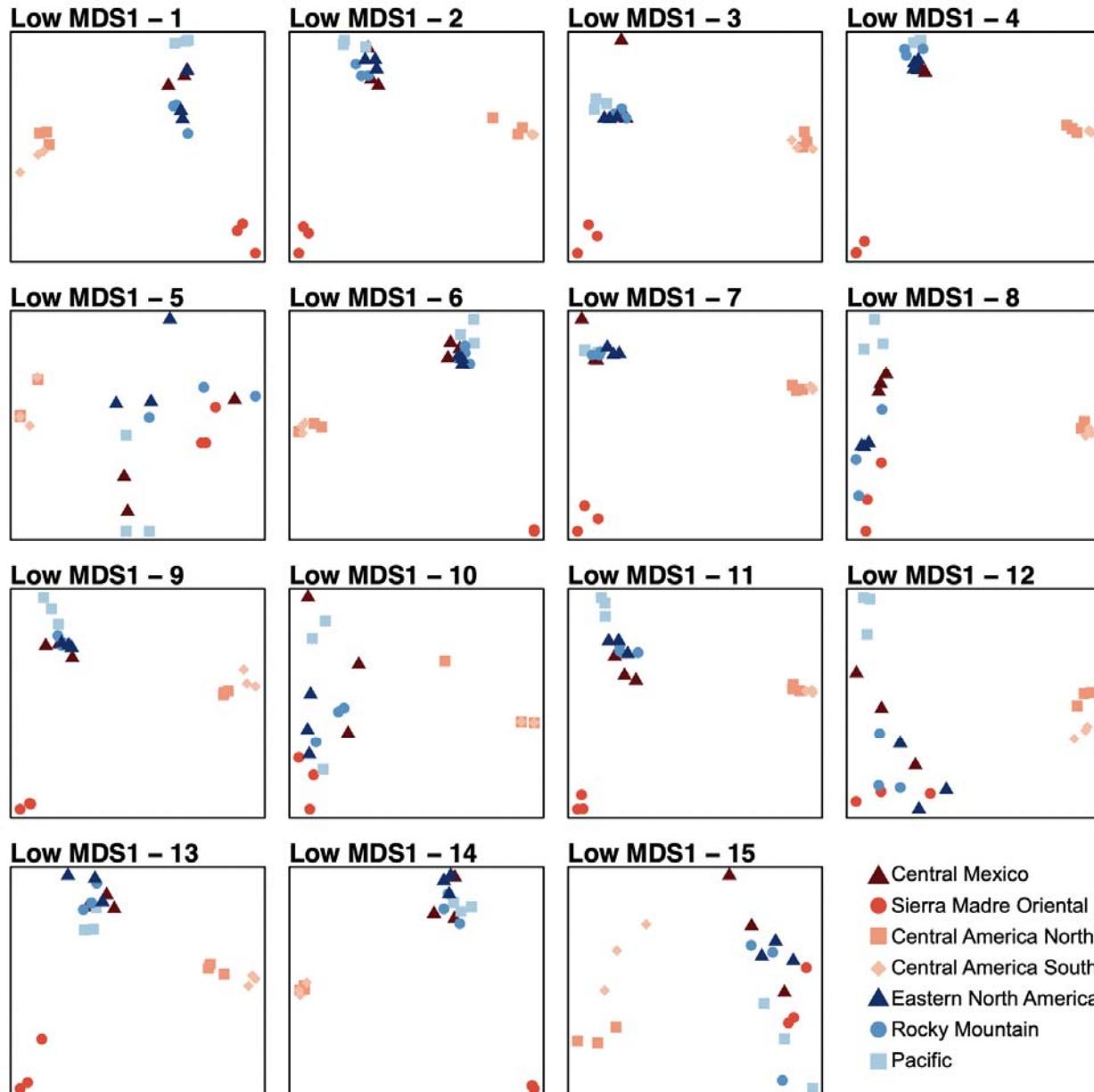


661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

682 Figure S2. Genomic architecture and phylogeographic structure variation across the genome in
683 100kbp sliding windows. Gray points indicate window values and dark gray lines indicate means
684 across ten windows (i.e., 1 Mbp windows). Blue indicates top 2.5% of outliers and orange
685 indicates bottom 2.5% of outliers for each statistic. Bottom outliers not shown for CDS, ADMIX.,
686 and GSI as these each have large proportions of values equal to zero. Abbreviations: mean
687 effective recombination rate of the two main lineages (ρ), gene content (CDS), transposable
688 element and repetitive DNA content (TE), multidimensional scaling axis one from principal
689 components analyses (-MDS1), mean genealogical sorting index for the two main *Certhia*
690 lineages (1 - GSI), ADMIXTURE deviation relative to genome-wide analysis (ADMIX.), and
691 mean genetic diversity across individuals as measured using observed heterozygosity (H_o).
692 MDS1 is plotted as negative and GSI is plotted as (1 - GSI) so that deviations from expected
693 phylogeographic structure for MDS1, GSI, and ADMIXTURE are all represented as higher
694 values.

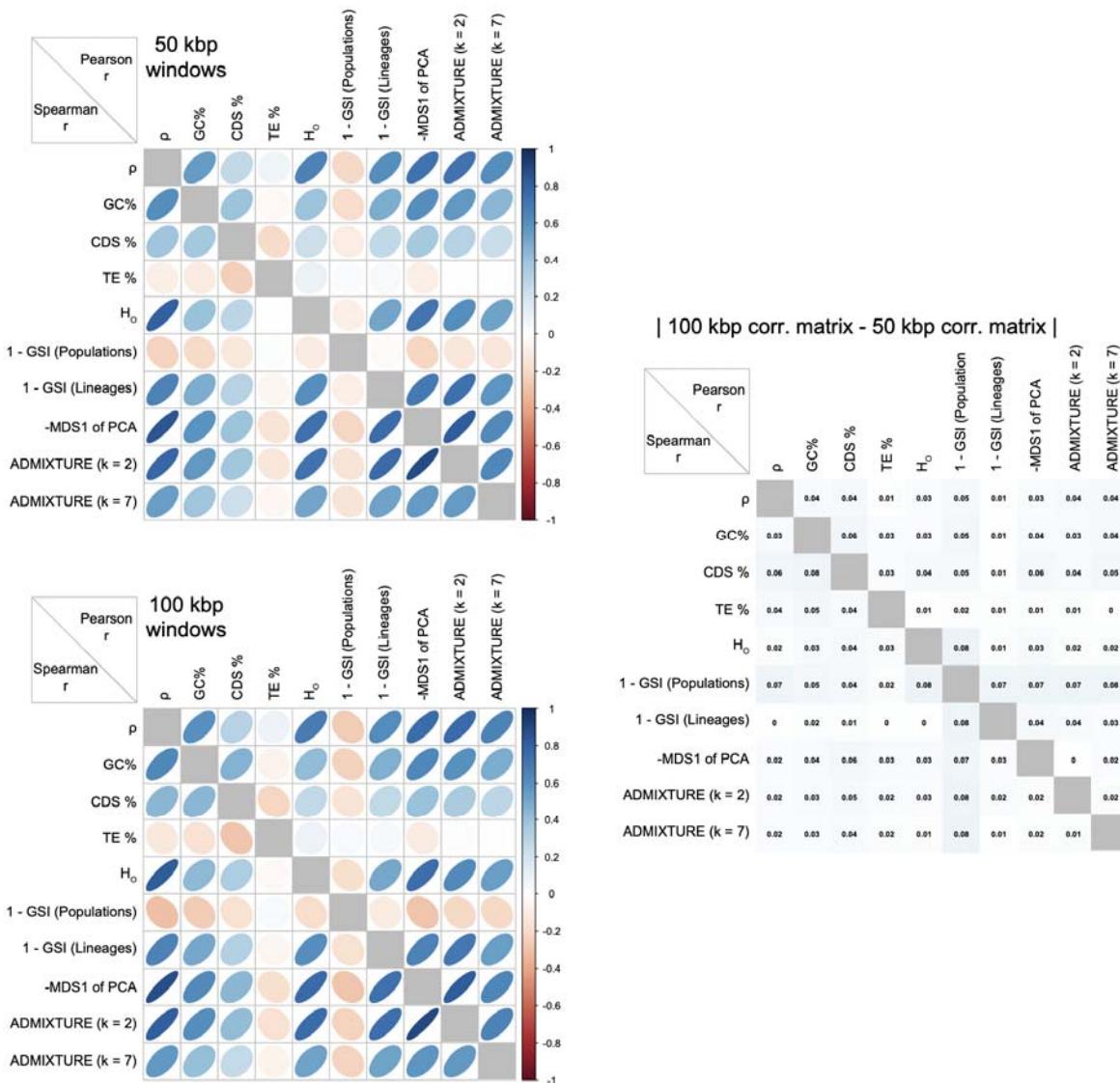


696 Figure S3. The 15 most extreme outlier principal components analysis (PCA) windows identified
697 from those windows with low MDS dimension one values.



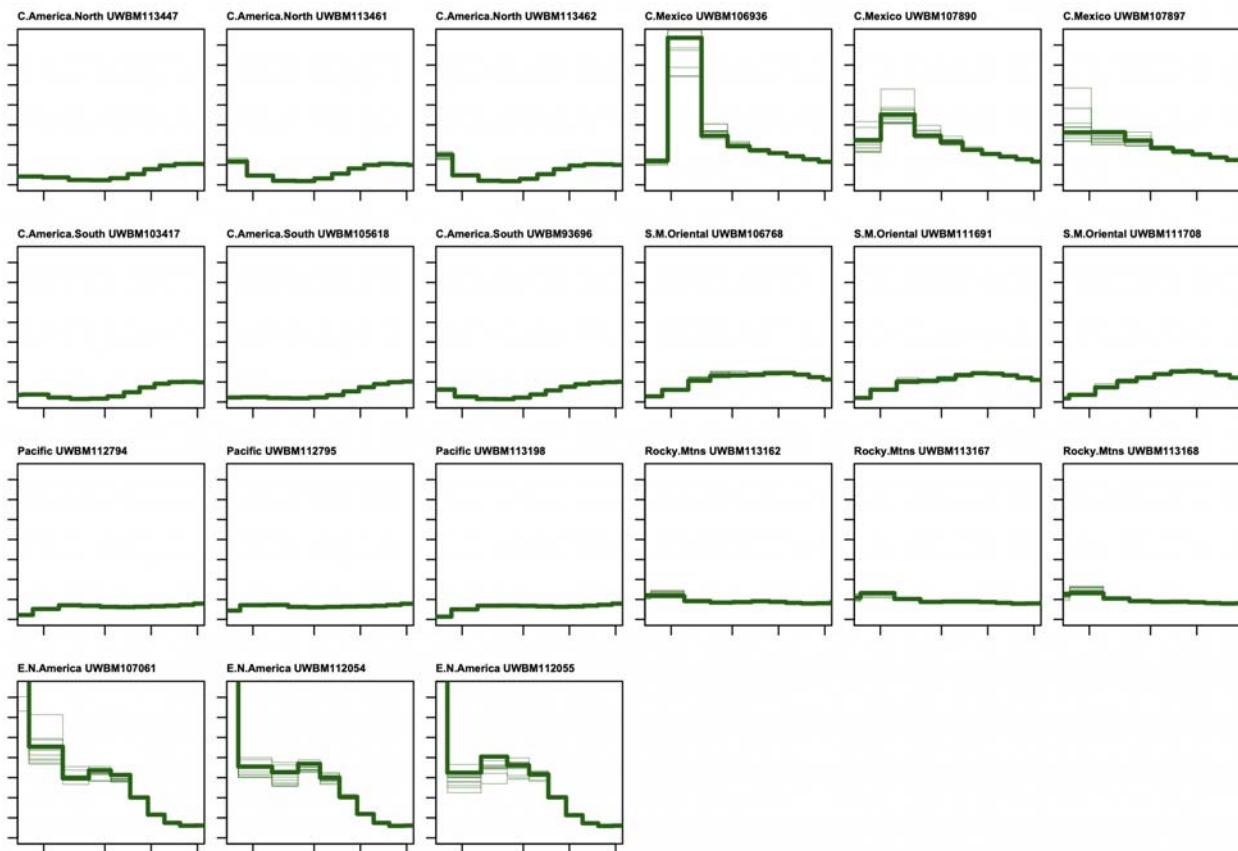
698
699
700
701
702
703
704
705

706 Figure S4. Correlation plot of genomic architecture, genomic diversity, and phylogeographic
 707 structure for (A) 50 kbp and (B) 100 kbp windowed statistics. Pearson's and Spearman's r
 708 coefficients are plotted above and below the diagonal, respectively. In (C), the absolute value
 709 difference between correlations in 50 kbp and 100 kbp windows. Abbreviations shown in plot:
 710 mean effective recombination rate of the two main lineages (ρ); GC content (GC%); gene
 711 content (CDS%); transposable element content (TE%); mean observed heterozygosity (H_o);
 712 genealogical sorting index at the population [1 - GSI (Pop.)] and lineage [1 - GSI (Lin.)] levels;
 713 negative multidimensional scaling axis one from principal components analyses (-MDS1);
 714 ADMIXTURE deviation relative to genome-wide analysis for two [ADMX. (k = 2)] or seven
 715 [ADMX. (k = 7)] assumed genetic clusters.

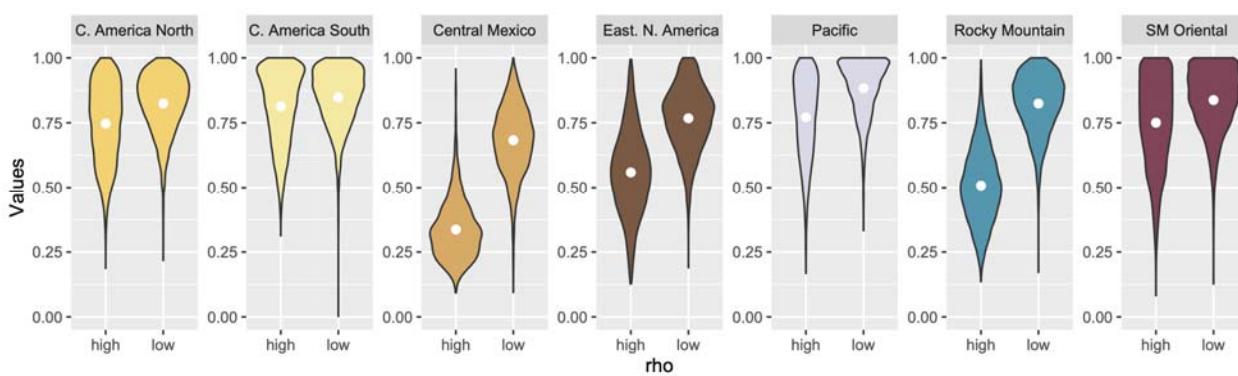


716

717 Figure S5. Demographic history estimated with MSMC2 for each individual. Thick lines indicate
718 the whole genome estimate and thin lines indicate results from ten bootstrap replicates. Sample
719 numbers correspond with those reported in Table S1.



720
721
722
723 Figure S6. Violin plots of evolutionary rates (as measured by relative root-to-tip distances) for
724 each population in the upper and lower genomic quintiles of high or low recombination (rho)
725 values.



726
727

728 **LITERATURE CITED**

729

730 Alexander, D.H., Novembre, J., Lange, K., 2009. Fast model-based estimation of ancestry in
731 unrelated individuals. *Genome Res.* 19, 1655-1664.

732 Allmon, W.D., 1992. A causal analysis of stages in allopatric speciation. *Oxford Surveys in*
733 *Evolutionary Biology* 8, 219-219.

734 Bushnell, B., 2014. BBMap: A Fast, Accurate, Splice-Aware Aligner. Ernest Orlando Lawrence
735 Berkeley National Laboratory, Berkeley, CA (US).

736 Cantarel, B.L., Korf, I., Robb, S.M., Parra, G., Ross, E., Moore, B., Holt, C., Alvarado, A.S.,
737 Yandell, M., 2008. MAKER: an easy-to-use annotation pipeline designed for emerging
738 model organism genomes. *Genome Res.* 18, 188-196.

739 Cruickshank, T.E., Hahn, M.W., 2014. Reanalysis suggests that genomic islands of speciation
740 are due to reduced diversity, not reduced gene flow. *Mol. Ecol.* 23, 3133-3157.

741 Cummings, M.P., Neel, M.C., Shaw, K.L., 2008. A genealogical approach to quantifying lineage
742 divergence. *Evolution* 62, 2411-2422.

743 Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E.,
744 Lunter, G., Marth, G.T., Sherry, S.T., 2011. The variant call format and VCFtools.
745 *Bioinformatics* 27, 2156-2158.

746 Dutoit, L., Burri, R., Nater, A., Mugal, C.F., Ellegren, H., 2017. Genomic distribution and
747 estimation of nucleotide diversity in natural populations: perspectives from the collared
748 flycatcher (*Ficedula albicollis*) genome. *Mol. Ecol. Res.* 17, 586-597.

749 Edelman, N.B., Frandsen, P.B., Miyagi, M., Clavijo, B., Davey, J., Dikow, R.B., García-
750 Accinelli, G., Van Belleghem, S.M., Patterson, N., Neafsey, D.E., 2019. Genomic
751 architecture and introgression shape a butterfly radiation. *Science* 366, 594-599.

752 Ellegren, H., 2010. Evolutionary stasis: the stable chromosomes of birds. *Trends Ecol. Evol.* 25,
753 283-291.

754 Ellegren, H., Smeds, L., Burri, R., Olason, P.I., Backström, N., Kawakami, T., Künstner, A.,
755 Mäkinen, H., Nadachowska-Brzyska, K., Qvarnström, A., 2012. The genomic landscape
756 of species divergence in *Ficedula* flycatchers. *Nature* 491, 756.

757 Fontaine, M.C., Pease, J.B., Steele, A., Waterhouse, R.M., Neafsey, D.E., Sharakhov, I.V., Jiang,
758 X., Hall, A.B., Catteruccia, F., Kakani, E., 2015. Extensive introgression in a malaria
759 vector species complex revealed by phylogenomics. *Science* 347, 1258524.

760 Haenel, Q., Laurentino, T.G., Roesti, M., Berner, D., 2018. Meta-analysis of
761 chromosome-scale crossover rate variation in eukaryotes and its significance to
762 evolutionary genomics. *Mol. Ecol.* 27, 2477-2497.

763 Hale, M.C., Campbell, M.A., McKinney, G.J., 2021. A candidate chromosome inversion in
764 Arctic charr (*Salvelinus alpinus*) identified by population genetic analysis techniques. *G3*
765 11, jkab267.

766 Harrell, F.E., Dupont, C., 2020. Hmisc: Harrell Miscellaneous. R, R.

767 Hey, J., Kliman, R.M., 2002. Interactions between natural selection, recombination and gene
768 density in the genes of *Drosophila*. *Genetics* 160, 595-608.

769 Huang, K., Andrew, R.L., Owens, G.L., Ostevik, K.L., Rieseberg, L.H., 2020. Multiple
770 chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype.
771 *Mol. Ecol.* 29, 2535-2549.

772 Kapusta, A., Suh, A., 2017. Evolution of bird genomes—a transposon's eye view. *Ann. N. Y. Acad. Sci.* 1389, 164-185.

773 Kawakami, T., Smeds, L., Backström, N., Husby, A., Qvarnström, A., Mugal, C.F., Olason, P., Ellegren, H., 2014. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. *Mol. Ecol.* 23, 4035-4058.

774 Koonin, E.V., 2009. Evolution of genome architecture. *The International Journal of Biochemistry & Cell Biology* 41, 298-306.

775 Kulathinal, R.J., Bennett, S.M., Fitzpatrick, C.L., Noor, M.A., 2008. Fine-scale mapping of recombination rate in *Drosophila* refines its correlation to diversity and divergence. *Proc. Natl. Acad. Sci. USA* 105, 10051-10056.

776 Lanfear, R., Kokko, H., Eyre-Walker, A., 2014. Population size and the rate of evolution. *Trends Ecol. Evol.* 29, 33-41.

777 Li, G., Figueiró, H.V., Eizirik, E., Murphy, W.J., 2019. Recombination-aware phylogenomics reveals the structured genomic landscape of hybridizing cat species. *Mol. Biol. Evol.* 36, 2111-2126.

778 Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25, 1754-1760.

779 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 2009. The sequence alignment/map format and SAMtools. *Bioinformatics* 25, 2078-2079.

780 Li, H., Ralph, P., 2019. Local PCA shows how the effect of population structure differs along the genome. *Genetics* 211, 289-304.

781 Linck, E., Battey, C., 2019. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. *Mol. Ecol. Res.* 19, 639-647.

782 Louis, M., Galimberti, M., Archer, F., Berrow, S., Brownlow, A., Fallon, R., Nykänen, M., O'brien, J., Robertson, K.M., Rosel, P.E., 2020. Selection on ancestral genetic variation fuels parallel ecotype formation in bottlenose dolphins. hal-03020428.

783 Lucas, T., 2016. palettetown: Use Pokemon Inspired Colour Palettes. R package version 0.1.1. <https://CRAN.R-project.org/package=palettetown>.

784 Manthey, J.D., Bourgeois, Y., Meheretu, Y., Boissinot, S., 2022. Varied diversification patterns and distinct demographic trajectories in Ethiopian montane forest bird (Aves: Passeriformes) populations separated by the Great Rift Valley. doi: 10.1111/mec.16417. *Mol. Ecol.*

785 Manthey, J.D., Klicka, J., Spellman, G.M., 2011a. Cryptic diversity in a widespread North American songbird: phylogeography of the Brown Creeper (*Certhia americana*). *Mol. Phylogen. Evol.* 58, 502-512.

786 Manthey, J.D., Klicka, J., Spellman, G.M., 2011b. Isolation-driven divergence: speciation in a widespread North American songbird (Aves: Certhiidae). *Mol. Ecol.* 20, 4371-4384.

787 Manthey, J.D., Klicka, J., Spellman, G.M., 2015. Chromosomal patterns of diversity and differentiation in creepers: a next-gen phylogeographic investigation of *Certhia americana*. *Heredity* 115, 165-172.

788 Manthey, J.D., Klicka, J., Spellman, G.M., 2021. The genomic signature of allopatric speciation in a songbird is shaped by genome architecture (Aves: *Certhia americana*). *Genome Biol. Evol.* 13, evab120.

817 Martin, S.H., Davey, J.W., Salazar, C., Jiggins, C.D., 2019. Recombination rate variation shapes
818 barriers to introgression across butterfly genomes. *PLoS Biol.* 17, e2006288.

819 Mayr, E., Mayr, E., Mayr, E., Mayr, E., 1963. *Animal species and evolution*. Belknap Press of
820 Harvard University Press Cambridge, Massachusetts.

821 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella,
822 K., Altshuler, D., Gabriel, S., Daly, M., 2010. The Genome Analysis Toolkit: a
823 MapReduce framework for analyzing next-generation DNA sequencing data. *Genome*
824 *Res.* 20, 1297-1303.

825 McVean, G., Auton, A., 2007. LDhat 2.1: A package for the population genetic analysis of
826 recombination. Department of Statistics, Oxford, OX1 3TG, UK.

827 Mérot, C., Berdan, E.L., Cayuela, H., Djambazian, H., Ferchaud, A.-L., Laporte, M.,
828 Normandeau, E., Ragoussis, J., Wellenreuther, M., Bernatchez, L., 2021. Locally
829 adaptive inversions modulate genetic variation at different geographic scales in a
830 seaweed fly. *Mol. Biol. Evol.* 38, 3953-3971.

831 Moreira, L.R., Klicka, J., Smith, B.T., 2023. Demography and linked selection interact to shape
832 the genomic landscape of codistributed woodpeckers during the Ice Age. *Mol. Ecol.*,
833 DOI: 10.1111/mec.16841.

834 Nachman, M.W., Payseur, B.A., 2012. Recombination rate variation and speciation: theoretical
835 predictions and empirical results from rabbits and mice. *Philosophical Transactions of the*
836 *Royal Society B: Biological Sciences* 367, 409-421.

837 Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G., Ellegren, H., 2015. Temporal dynamics
838 of avian populations during Pleistocene revealed by whole-genome sequences. *Curr.*
839 *Biol.* 25, 1375-1380.

840 Neuwirth, E., 2014. RColorBrewer: ColorBrewer Palettes. R package version 1.1-2.
841 <https://CRAN.R-project.org/package=RColorBrewer>.

842 Nosil, P., Feder, J.L., 2012. Genomic divergence during speciation: causes and consequences.
843 *Philosophical Transactions of the Royal Society of London B: Biological Sciences* 367,
844 332-342.

845 Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Stevens, M.H.H., Oksanen, M.J., Suggests, M.,
846 2007. The vegan package. *Community Ecology Package* 10, 631-637.

847 Pagès, H., Aboyoun, P., Gentleman, R., DebRoy, S., 2017. Biostrings: Efficient manipulation of
848 biological strings. R Package Version 2.0.

849 Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R
850 language. *Bioinformatics* 20, 289-290.

851 Perrier, C., Rougemont, Q., Charmantier, A., 2020. Demographic history and genomics of local
852 adaptation in blue tit populations. *Evolutionary Applications* 13, 1145-1165.

853 Poulin, J., D'Astous, É., Villard, M., Hejl, S., Newlon, K., McFadzen, M., Young, J., Ghalambor,
854 C., 2020. Brown Creeper (*Certhia americana*), version 1.0. In *Birds of the World*. . In:
855 Poole, A. (Ed.). Cornell Lab of Ornithology, Ithaca, NY, USA.
856 <https://doi.org/10.2173/bow.brncre.01>.

857 Ravinet, M., Yoshida, K., Shigenobu, S., Toyoda, A., Fujiyama, A., Kitano, J., 2018. The
858 genomic landscape at a late stage of stickleback speciation: High genomic divergence
859 interspersed by small localized regions of introgression. *PLoS Genet.* 14, e1007358.

860 Revell, L.J., 2012. phytools: an R package for phylogenetic comparative biology (and other
861 things). *Methods Ecol. Evol.* 3, 217-223.

862 Roesti, M., Moser, D., Berner, D., 2013. Recombination in the threespine stickleback genome—
863 patterns and consequences. *Mol. Ecol.* 22, 3014-3027.

864 Sayyari, E., Mirarab, S., 2016. Fast coalescent-based computation of local branch support from
865 quartet frequencies. *Mol. Biol. Evol.* 33, 1654-1668.

866 Schiffels, S., Durbin, R., 2014. Inferring human population size and separation history from
867 multiple genome sequences. *Nat. Genet.* 46, 919.

868 Shi, Y., Bouska, K.L., McKinney, G.J., Dokai, W., Bartels, A., McPhee, M.V., Larson, W.A.,
869 2021. Gene flow influences the genomic architecture of local adaptation in six riverine
870 fish species. *BioRxiv*, DOI: <https://doi.org/10.1101/2021.1105.1118.444736>.

871 Singhal, S., Leffler, E.M., Sannareddy, K., Turner, I., Venn, O., Hooper, D.M., Strand, A.I., Li,
872 Q., Raney, B., Balakrishnan, C.N., Griffith, S.C., McVean, G., Przeworski, M., 2015.
873 Stable recombination hotspots in birds. *Science* 350, 928-932.

874 Smit, A., Hubley, R., Green, P., 2015. RepeatMasker Open-4.0. 2013–2015. Institute for
875 Systems Biology. <http://repeatmasker.org>.

876 Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
877 large phylogenies. *Bioinformatics* 30, 1312-1313.

878 Stankowski, S., Chase, M.A., Fuiten, A.M., Rodrigues, M.F., Ralph, P.L., Streisfeld, M.A.,
879 2019. Widespread selection and gene flow shape the genomic landscape during a
880 radiation of monkeyflowers. *PLoS Biol.* 17, e3000391.

881 Sukumaran, J., Holder, M.T., 2010. DendroPy: a Python library for phylogenetic computing.
882 *Bioinformatics* 26, 1569-1571.

883 Tacutu, R., Thornton, D., Johnson, E., Budovsky, A., Barardo, D., Craig, T., Diana, E.,
884 Lehmann, G., Toren, D., Wang, J., 2017. Human Ageing Genomic Resources: new and
885 updated databases. *Nucleic Acids Res.* 46, D1083-D1090.

886 Thom, G., Moreira, L.R., Batista, R., Gehara, M., Aleixo, A., Smith, B.T., 2024. Genomic
887 architecture predicts tree topology, population structuring, and demographic history in
888 Amazonian birds. *Genome Biol. Evol.*, evae002.

889 Tigano, A., Khan, R., Omer, A.D., Weisz, D., Dudchenko, O., Multani, A.S., Pathak, S.,
890 Behringer, R.R., Aiden, E.L., Fisher, H., 2021. Chromosome size affects sequence
891 divergence between species through the interplay of recombination and selection.
892 *bioRxiv*.

893 Todesco, M., Owens, G.L., Bercovich, N., Légaré, J.-S., Soudi, S., Burge, D.O., Huang, K.,
894 Ostevik, K.L., Drummond, E., Imerovski, I., 2020. Massive haplotypes underlie ecotypic
895 differentiation in sunflowers. *Nature* 584, 602-607.

896 Toews, D.P., Taylor, S.A., Vallender, R., Brelsford, A., Butcher, B.G., Messer, P.W., Lovette,
897 I.J., 2016. Plumage genes and little else distinguish the genomes of hybridizing warblers.
898 *Curr. Biol.* 26, 2313-2318.

899 Vijay, N., Bossu, C.M., Poelstra, J.W., Weissensteiner, M.H., Suh, A., Kryukov, A.P., Wolf,
900 J.B., 2016. Evolution of heterogeneous genome differentiation across multiple contact
901 zones in a crow species complex. *Nat. Comm.* 7, 1-10.

902 Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., Zemla, J., 2017. Package ‘corrplot’. *Statistician*
903 56, e24.

904 Whiting, J.R., Paris, J.R., van der Zee, M.J., Parsons, P.J., Weigel, D., Fraser, B.A., 2021.
905 Drainage-structuring of ancestral variation and a common functional pathway shape
906 limited genomic convergence in natural high-and low-predation guppies. *PLoS Genet.*
907 17, e1009566.

908 Wickham, H., 2011. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3, 180-
909 185.
910 Wu, C.I., 2001. The genic view of the process of speciation. J. Evol. Biol. 14, 851-865.
911 Zhang, C., Rabiee, M., Sayyari, E., Mirarab, S., 2018. ASTRAL-III: polynomial time species
912 tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153.
913