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ABSTRACT 27 

 28 

The nonrandom distribution of chromosomal characteristics and functional elements—genomic 29 

architecture—impacts the relative strengths and impacts of population genetic processes across 30 

the genome. Due to this relationship, genomic architecture has the potential to shape variation 31 

in population genetic structure across the genome. Population genetic structure has been 32 

shown to vary across the genome in a variety of taxa, but this body of work has largely focused 33 

on pairwise population genomic comparisons between closely related taxa. Here, we used 34 

whole genome sequencing of seven phylogeographically structured populations of a North 35 

American songbird, the Brown Creeper (Certhia americana), to determine the impacts of 36 

genomic architecture on phylogeographic structure variation across the genome.  Using multiple 37 

methods to infer phylogeographic structure—ordination, clustering, and phylogenetic methods—38 

we found that recombination rate variation explained a large proportion of phylogeographic 39 

structure variation. Genomic regions with low recombination showed phylogeographic structure 40 

consistent with the genome-wide pattern. In regions with high recombination, we found strong 41 

phylogeographic structure, but with discordant patterns relative to the genome-wide pattern. In 42 

regions with high recombination rate, we found that populations with small effective population 43 

sizes evolve relatively more rapidly than larger populations, leading to discordant signatures of 44 

phylogeographic structure. These results suggest that the interplay between recombination rate 45 

variation and effective population sizes shape the relative impacts of linked selection and 46 

genetic drift in different parts of the genome. Overall, the combined interactions of population 47 

genetic processes, genomic architecture, and effective population sizes shape patterns of 48 

variability in phylogeographic structure across the genome of the Brown Creeper. 49 

 50 

Keywords: phylogeography, population genomics, genetic architecture, demography 51 

 52 
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INTRODUCTION 53 

 54 

The formation of population structure is implicit in the speciation process (Allmon, 1992; Mayr et 55 

al., 1963). Speciation is a continuum; early differentiating populations may have few genomic 56 

regions with evidence for genetic differentiation or barriers to gene flow (Ellegren et al., 2012; 57 

Nosil and Feder, 2012; Toews et al., 2016; Wu, 2001) while later in the speciation process two 58 

diverging populations may exhibit strong genetic differentiation across their entire genomes 59 

(Nosil and Feder, 2012; Ravinet et al., 2018; Wu, 2001). Across the genome, variation in local 60 

evolutionary history is shaped by the relative strengths of the population genomic processes of 61 

natural selection, gene flow, and genetic drift. For example, population genetic structure may 62 

differ in genomic regions with strong natural selection or differential patterns of gene flow 63 

relative to the rest of the genome (Louis et al., 2020; Whiting et al., 2021). 64 

 Variable impacts of selection, drift, and gene flow across the genome may be partially 65 

attributed to genomic architecture—the nonrandom distribution of chromosomal characteristics 66 

and functional elements (Koonin, 2009)—whereby variation in gene content, recombination 67 

rates, or other genomic characteristics impact the relative effects of population genomic 68 

processes. For example, we expect that genomic regions with lower recombination rates will be 69 

relatively depleted of genetic diversity and genetic differentiation will accumulate faster, due to 70 

relatively increased effects of linked selection (Cruickshank and Hahn, 2014; Haenel et al., 71 

2018; Hey and Kliman, 2002; Nachman and Payseur, 2012). Indeed, speciation and population 72 

genomic studies have often found a negative relationship between recombination rates and 73 

genetic differentiation across the genome (Kulathinal et al., 2008; Manthey et al., 2021; Roesti 74 

et al., 2013; Stankowski et al., 2019; Vijay et al., 2016).  75 

 If genomic architecture impacts population genomic patterns within populations and 76 

between pairs of taxa, we may naturally extend this idea to phylogeographic patterns in taxa 77 

with multiple lineages at different stages of evolutionary distinctiveness. As such, we may 78 
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predict that estimates of phylogeographic structure will vary across the genome and be shaped 79 

by several factors and their interactions: (1) population size variation of differentiating 80 

populations shaping relative strengths of selection and drift, (2) time since divergence began, 81 

(3) genomic architecture, and (4) quantity of interpopulation gene flow. Exemplar taxa to better 82 

understand the impacts of genomic architecture on population genetic structure are species (or 83 

species complexes) with multiple lineages on distinct evolutionary trajectories, populations with 84 

different effective sizes, and genomes exhibiting heterogeneous genomic architecture.  85 

The Brown Creeper (Certhia americana) is an excellent study organism to understand 86 

the impacts of genomic architecture on phylogeographic structure; its genome is highly 87 

heterogeneous in both structure and content, and it has seven distinct phylogeographic lineages 88 

(Manthey et al., 2011a; Manthey et al., 2015). The genome of the Brown Creeper, as like other 89 

birds, has chromosomes that (1) span two orders of magnitude in size, (2) vary in their gene 90 

and repetitive element content, and (3) exhibit local effective recombination rates that can vary 91 

by an order of magnitude or more (Dutoit et al., 2017; Ellegren, 2010; Kapusta and Suh, 2017; 92 

Kawakami et al., 2014; Manthey et al., 2021). Additionally, the Brown Creeper has strong 93 

phylogeographic structure, with two main lineages that have been diverging around one million 94 

years (Fig. 1A), multiple phylogeographically structured clades within each of these two main 95 

lineages, and populations with different effective sizes (Manthey et al., 2011a, b; Manthey et al., 96 

2015, 2021).  97 

Using the Brown Creeper as our study taxon, we used whole-genome sequencing data 98 

to assess how genome architecture influences phylogeographic structure; we used 99 

phylogenetic, ordination, and population genetic clustering methods to characterize 100 

phylogeographic structure across the genome. Our aims here were twofold. First, we looked to 101 

decipher how genomic architecture and effective population sizes shape phylogeographic 102 

structure variation across the genome. Second, because phylogeographic structure may be 103 
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estimated in many ways, we wanted to identify whether phylogeographic signal variation was 104 

consistent using different methodologies.  105 

Based on previous population genomic research, we hypothesized that genomic regions 106 

with low recombination rates will have faster lineage sorting. Based on this hypothesis, we 107 

would predict that phylogeographic estimates consistent with the species or population level 108 

evolutionary history of the group will be concentrated in genomic regions with low 109 

recombination. Additionally, we may predict a couple alternative patterns in high recombination 110 

regions. We may identify mixed or weak phylogeographic structure in high recombination 111 

regions. Alternatively, we may identify strong, but divergent patterns of phylogeographic 112 

structure in high recombination regions linked with varied molecular evolutionary rates among 113 

sampled populations. We may also predict an interaction between recombination rate and 114 

population sizes; whereby, relatively smaller populations will undergo faster molecular evolution 115 

in genomic regions characterized by stabilizing selection, such as in gene-dense, high 116 

recombination genomic regions. 117 

 118 

MATERIALS AND METHODS 119 

 120 

Study organism, sampling, and sequencing. The Brown Creeper is a songbird found in 121 

forested regions of the Americas; it has a widespread distribution ranging from Honduras in the 122 

south to Alaska in the north (Fig. 1A) (Poulin et al., 2020). The Brown Creeper is aptly named; it 123 

creeps up trees in search of its largely invertebrate diet and has dark coloration on its back and 124 

sides (Fig. 1A inset) that makes for excellent camouflage on trees with dark bark. In previous 125 

work using tens to thousands of genetic markers, we have identified phylogeographic structure 126 

in the Brown Creeper, with up to seven distinct lineages (Manthey et al., 2011a, b; Manthey et 127 

al., 2015). Here, we aimed to obtain population genomic sequencing data for seven populations 128 

with three individuals sampled per population (Fig 1, Table S1). We downloaded previously 129 
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published sequencing data from two of these populations and one outgroup sample of C. 130 

familiaris (Table S1) (Manthey et al., 2021). For the other five populations, we obtained 131 

representative tissue samples from natural history museums and extracted genomic DNA using 132 

QIAGEN DNeasy blood and tissue kits following manufacturer guidelines. DNA from extractions 133 

was used to create standard Illumina sequencing libraries, followed by sequencing on an 134 

Illumina NovaSeq6000 at the Texas Tech University Center for Biotechnology and Genomics 135 

with the goal of obtaining ~15-30× coverage per individual.  136 

 137 

Reference genome and genomic architecture. For the reference genome, we used the 138 

chromosome-scale Certhia americana genome we assembled for a prior study (NCBI assembly 139 

ASM1869719v1; Manthey et al. 2021). From data reported in this previous study (Manthey et al. 140 

2021), we summarized mean effective recombination rates for each of the two main Brown 141 

Creeper lineages, transposable element (TE) and gene density, and GC content across the 142 

genome in 50kbp and 100 kbp non-overlapping sliding windows (Fig. 2). We used the mean 143 

effective recombination rates of the two lineages because they were highly correlated (r = 144 

0.829-0.861 across different correlation metrics; all p << 0.001), and we can assume relatively 145 

conserved recombination rates over short evolutionary time frames (Singhal et al., 2015). 146 

Briefly, these estimates were initially obtained with the following methods: effective 147 

recombination rate was estimated using LDhat (McVean and Auton, 2007), TEs were annotated 148 

with RepeatMasker v4.08 (Smit et al., 2015), and gene content was annotated with MAKER 149 

v2.31.10 (Cantarel et al., 2008).  150 

 151 

Sequencing data filtering and genotyping. We used the program bbduk (Bushnell, 2014) to 152 

quality filter raw sequencing data. We then use BWA v0.7.17 (Li and Durbin, 2009) to align 153 

filtered reads to the Certhia americana reference genome. Next, we used samtools v1.4.1 (Li et 154 

al., 2009) to convert the BWA output SAM file to BAM format, followed by using the Genome 155 
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Analysis Toolkit (GATK) v4.1.0.0 (McKenna et al., 2010) to clean, sort, add read groups to, and 156 

remove duplicates from BAM files. We used the samtools ‘depth’ command to measure 157 

sequencing coverage across the reference genome for each individual (Fig. S1, Table S1).  158 

 We then used GATK in three steps to genotype all individuals: we used the 159 

‘HaplotypeCaller’ function to call preliminary genotypes for each individual, built a database for 160 

all samples using the ‘GenomicsDBImport’ function, and lastly used the ‘GenotypeGVCFs’ 161 

function to group genotype all individuals together for both variant and invariant sites. We 162 

filtered the genotype data using VCFtools v0.1.14 (Danecek et al., 2011) with the following 163 

restrictions: (1) minimum site quality of 20, (2) minimum genotype quality of 20, (3) minimum 164 

depth of coverage of 6, (4) maximum mean depth of coverage of 50, and (5) removal of indels. 165 

For downstream analyses, we used various settings for (1) amount of missing data allowed, (2) 166 

whether the outgroup was included, (3) inclusion or exclusion of invariant sites, and (4) thinning 167 

between sites (see Table 1 for exact dataset characteristics used for all seven datasets used for 168 

analyses). Although it has been suggested that variation in minor allele frequency (MAF) filtering 169 

may impact estimates of genetic structure (Linck and Battey, 2019), we did not filter for a 170 

minimum MAF because we previously showed that changing MAF did not significantly impact 171 

pairwise FST calculations in C. americana (Manthey et al., 2021).  172 

 173 

Phylogenomics. We estimated “gene trees” in non-overlapping windows (window size 50 kbp 174 

and 100 kbp; datasets C and D in Table 1) using RaxML v8.2.12 (Stamatakis, 2014) with the 175 

GTRCAT model of sequence evolution. For a window to be included, we required a minimum of 176 

10 kbp in the alignment following filtering. This resulted in 19,639 phylogenies for the 50 kbp 177 

sliding windows and 9846 phylogenies for the 100 kbp sliding windows. We summarized the 178 

best-supported trees using the sumtrees.py script, part of the DendroPy Python package 179 

(Sukumaran and Holder, 2010). Lastly, we used ASTRAL III v 5.6.3 (Zhang et al., 2018) to 180 
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calculate a species tree from all gene trees, using quartet frequencies as a measure of local 181 

support (Sayyari and Mirarab, 2016).  182 

 For each gene tree, we estimated the genealogical sorting index (GSI) (Cummings et al., 183 

2008) for (1) each of the seven populations, and (2) each of the two main lineages (i.e., north 184 

and south shaded blue and red, respectively, in Fig. 1). The GSI statistic uses rooted gene trees 185 

to quantify lineage sorting; the GSI quantifies exclusive ancestry of individuals in labelled groups 186 

by dividing the minimum number of nodes to produce monophyly for a defined group divided by 187 

the observed number of nodes necessary to connect all individuals of a group in a phylogeny. 188 

The maximum GSI value is one and occurs when a defined group is monophyletic. We 189 

calculated the GSI statistic for each sampled population and for each of the two main lineages 190 

(Fig. 1). We expect that each sampled population will show evidence of phylogenetic clustering, 191 

regardless of position in the genome. As such, GSI at the population level may have little 192 

variation tied to genomic architecture. In contrast, which populations group with which other 193 

populations are likely to be influenced by rates of lineage sorting and are therefore likely 194 

influenced by genomic architecture. As such, we may expect GSI measures at the lineage level 195 

(i.e., two main clades) to be impacted by genomic architecture.    196 

To obtain a relative rate of molecular evolution for each population per genomic window, 197 

we calculated root-to-tip distances (RTD) in our phylogenies. For each individual across every 198 

gene tree, we calculated the RTD using the R package ape (Paradis et al., 2004). As a 199 

summary of these RTDs, we calculated the mean RTD per population relative to the maximum 200 

RTD value for each gene tree (i.e., this relative statistic’s range = 0 – 1). We then measured the 201 

relationships between harmonic mean effective population sizes (mean per population) and 202 

relative RTD in regions with low recombination and high recombination, as well as the shift in 203 

values between high and low recombination regions. We also estimated relationships between 204 

these characteristics while accounting for the evolutionary relationships of the samples using 205 
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phylogenetic independent contrasts (PICs) calculated in the R package ape (Paradis et al., 206 

2004).  207 

 208 

Genetic structure. We estimated genetic structure using the program ADMIXTURE v1.3.0 209 

(Alexander et al., 2009). Here, we used genome-wide SNPs thinned to either a minimum of 50 210 

kbp or 100 kbp distance between SNPs (datasets A and B in Table 1). We ran ADMIXTURE 211 

with an assumed number of genetic clusters equal to two or seven (i.e., k = 2 and k = 7) based 212 

on our knowledge of phylogeographic structure in this species from previous studies (Manthey 213 

et al., 2011a, b; Manthey et al., 2015). To assess how genetic structure estimation varied across 214 

the genome, we also ran ADMIXTURE for SNP datasets in non-overlapping sliding windows of 215 

50 kbp and 100 kbp (datasets E and F in Table 1). We compared the genome-wide 216 

ADMIXTURE results to those in each window by summing the differences in group membership 217 

for each individual. In other words, this deviation value ranges from zero to nearly one, where a 218 

value of zero is identical group assignment for all individuals with the same admixture 219 

coefficients for each genetic cluster, and higher values indicate more dissimilar matrices.  220 

 We also estimated variation in genetic structure across the genome using LOSTRUCT 221 

(Li and Ralph, 2019). This method runs in three steps: (1) reducing the dimensionality of the 222 

data using principal component analysis (PCA) for each genomic window, (2) find distances 223 

between PCA maps, and (3) using multidimensional scaling (MDS) to display variation in PCA-224 

based genetic structure across the genome. We used LOSTRUCT in sliding windows of 50 kbp 225 

and 100 kbp (datasets E and F in Table 1). We used variation in MDS axis one (hereafter 226 

MDS1) to describe variation in these PCA-based estimates of genetic structure across the 227 

genome.  228 

We expect that genomic regions with low recombination will exhibit strong 229 

phylogeographic structure similar to genome-wide patterns (e.g., Fig. 1). In contrast, we expect 230 

that genomic regions with high recombination will either exhibit little genetic structure or 231 
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alternative patterns of genetic structure. As such, we expect that variation in ADMIXTURE and 232 

PCA results will covary with genomic architecture.  233 

 234 

Genetic diversity. Across 50 kbp and 100 kbp sliding windows (datasets C and D in Table 1), 235 

we measured observed heterozygosity per individual as a measure of genetic diversity.  236 

  237 

Population genomic correlations. We used the R package Hmisc (Harrell and Dupont, 2020) 238 

to estimate both Pearson and Spearman correlation coefficients between population genomic 239 

summary statistics and characteristics of genomic architecture in sliding windows. We used the 240 

R package corrplot (Wei et al., 2017) to visualize correlations between all summary statistics. 241 

Lastly, we used variance partitioning, implemented in the R package vegan (Oksanen et al., 242 

2007), to assess the proportion of variance in phylogeographic structure estimates explained by 243 

genomic architecture.   244 

 245 

Population demographic history. We used the program MSMC2 v1.1.0 (Schiffels and Durbin, 246 

2014) to estimate demographic history for each individual. For use in MSMC, we masked 247 

regions of the genome not genotyped due to low coverage or low genotype quality scores. 248 

Additionally, we did not include the sex chromosomes in demography calculations. We ran 249 

MSMC for each individual allowing up to 20 iterations (default setting) and used up to 23 250 

inferred distinct time segments because this setting worked well to reduce spurious or 251 

inconsistent results in other songbirds that we have studied (Manthey et al., 2022). We 252 

performed 10 bootstraps for each demography estimate, using 1 Mbp bootstrapped segments of 253 

the genome, to assess how demographic signal varies when subsetting parts of the genome. 254 

Because the output of MSMC is interpreted relative to assumed mutation rates and generation 255 

times, we used the Brown Creeper genome mutation rate estimate of 2.506 × 10-9 substitutions 256 

per site per year (Manthey et al., 2021). Because there are no published estimates of Brown 257 
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Creeper generation times, we used a proxy generation time of double the age of sexual maturity 258 

(Nadachowska-Brzyska et al., 2015) using maturity estimates from the Animal Aging and 259 

Longevity Database (age of maturity = one year) (Tacutu et al., 2017). With the MSMC 260 

demographic model output, we estimated the harmonic mean population sizes for each 261 

population by using the mean MSMC population size estimates for each individual in 1000-year 262 

discrete time intervals over the past 200 kya.  263 

 264 

Code availability. All computer code used for analyses and figure creation (applicable for some 265 

figures) for this project is available here: github.com/jdmanthey/certhia_phylogeography. We 266 

used the following R packages for figure creation and file manipulation that were not cited in 267 

other parts of the methods section: Biostrings (Pagès et al., 2017), ggplot2 (Wickham, 2011), 268 

palettetown (Lucas, 2016), phytools (Revell, 2012), and RcolorBrewer (Neuwirth, 2014).  269 

 270 

RESULTS 271 

 272 

Genome-wide phylogeographic structure and demography. We used genomic sequencing 273 

data from 21 ingroup individuals sequenced at ~18-29× genomic coverage to estimate genome-274 

wide patterns of phylogeographic structure. We corroborated previous genetic work (that used 275 

few to thousands of genetic markers) by identifying hierarchical and strong phylogeographic 276 

structure among sampled populations (Manthey et al., 2011a, b; Manthey et al., 2015). The 277 

deepest phylogenomic split separates northern from southern populations and there is 278 

additional support for distinctiveness of each of the regionally sampled populations (Fig. 1C). 279 

Genome-wide ADMIXTURE results were consistent across different thinning strategies (i.e., 50 280 

kbp and 100 kbp thinning; only 50 kbp results plotted) and showed patterns of genetic structure 281 

that aligned well with the species tree (Fig. 1C). Demographic history estimates for each 282 

individual were consistent within populations, but each population exhibited a distinct 283 
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demographic history (Fig. 1D). In the Pacific and Central American localities, population sizes 284 

have fluctuated somewhat, but generally stay below an NE of 200,000 over the past 100 ky (Fig. 285 

1D). The Sierra Madre Oriental population showed evidence for a sharp decline in NE over the 286 

past 50 ky, shifting from an NE ~ 200,000 at about 50 kya to an NE ~ 10,000 in the past ten kya 287 

(Fig. 1D). The Rocky Mountains population has remained relatively stable over the past 100 ky 288 

with an NE ~ 200,000 (Fig. 1D). Lastly, the Eastern North America and Central Mexico 289 

populations have exhibited fluctuations and much larger NE than all other populations over the 290 

past 100 ky (Fig. 1D). Harmonic mean effective population sizes over the past 200 ky ranged 291 

from ~85,000 (Central America South) to ~320,000 (Central Mexico) (Fig. 1D). Harmonic mean 292 

effective population size estimates over the past 200 ky are highly correlated with observed 293 

heterozygosity estimates for each individual (r = 0.962).  294 

 295 

Genetic diversity. Genetic diversity in each individual varied widely across the genome, with 296 

mean observed heterozygosity values for each individual between ~0.00165 and 0.00463 (Fig 297 

1B). Observed heterozygosity was strongly correlated across the genome in all pairwise 298 

comparisons of individuals (mean r = 0.409, range = 0.189 – 0.853; all p << 0.001). Notably, the 299 

Sierra Madre Oriental, Pacific, and Central American localities had more windows with no 300 

heterozygosity than the other populations (Fig. 1B).  301 

 302 

Phylogeographic structure variation across the genome. We estimated phylogeographic 303 

structure across the genome using PCA, ADMIXTURE, and the GSI metric from phylogenies; all 304 

estimates of phylogeographic structure varied across the genome, with the outliers deviating the 305 

most from genome-wide patterns clustering mostly on small chromosomes and the ends of 306 

large chromosomes (Fig. 2; Fig. S2). The most extreme deviations from genome-wide 307 

phylogeographic structure appear to cluster the Central Mexico population with the northern 308 

lineage (Fig. S3), and in some cases also cluster the Sierra Madre Oriental population with the 309 
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northern lineage (Fig. S3; Fig. 3). As an example, we plot the phylogeographic structure for one 310 

of these outlier windows in Fig. 3, demonstrating the clustering of the Sierra Madre Oriental and 311 

Central Mexico populations with the northern lineage.  312 

 313 

Correlations between phylogeographic structure estimates and genomic architecture. We 314 

found a strong correlation between different measures of phylogeographic structure, including 315 

GSI at the lineage level, MDS1 of the PCA, and ADMIXTURE deviations (all r ≥ 0.58; p <<< 316 

0.001; Fig. 4; Fig. S4). In contrast, GSI at the population level did not vary consistently with the 317 

other metrics (all r between -0.21 and -0.03), likely because the population-level GSI usually 318 

showed similar patterns across the genome (i.e., individuals generally clustered with individuals 319 

sampled from the same population).  320 

Phylogeographic structure patterns most different from genome-wide patterns were 321 

strongly positively correlated with recombination rate, GC content, and genetic diversity (Fig. 4; 322 

Fig. S4). In contrast, TE content had no or weak correlations with all other statistics that we 323 

calculated (Fig. 4; Fig. S4). Correlations were consistent between 50 kbp and 100 kbp 324 

estimates, with no correlations deviating more than ~0.08 when estimated with different window 325 

sizes (Fig. S4).  326 

Using variance partitioning, recombination rate variation most strongly explained 327 

deviations in phylogeographic structure, but interactions of recombination rate, GC content, 328 

CDS content, and TE content also explained some portions of the variance (Table 2). Most 329 

notably, genomic architecture explained approximately 60% of the variance in both (1) the 330 

MDS1 axis explaining differences in PCA-based estimates of phylogeographic structure and (2) 331 

ADMIXTURE results at the lineage level with an assumed k = 2 (Table 2).  332 

The relationship between recombination rate and phylogeographic structure is 333 

exemplified when comparing the genomic windows with the highest or lowest values of 334 

recombination rate; estimates of phylogeographic structure and genetic diversity have little to no 335 
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overlap in statistic distributions in high recombination regions versus low recombination regions 336 

(Fig. 5). These patterns hold regardless of whether we are looking at autosomes or the Z 337 

chromosome (Fig. 5).  338 

Because the effective population sizes for each locality varied substantially (Fig. 1; Fig. 339 

S5), we looked to see if there was a relationship between relative RTD and population size in 340 

regions with very different recombination rates. Using both the raw measurements and PICs, we 341 

found a negative association between relative rates of molecular evolution and harmonic mean 342 

effective population sizes (Fig. 6; Fig. S6). Notably, there was also a strong positive association 343 

between effective population sizes and shifts in relative rates of molecular evolution between 344 

high and low recombination regions (Fig. 6).  345 

 346 

DISCUSSION 347 

 348 

Using whole-genome sequencing for seven populations of the Brown Creeper, we aimed to 349 

decipher how genome architecture influences phylogeographic structure variation across the 350 

genome. We found that recombination rate and other characteristics of the genome explain 6-351 

68% of the variance in phylogeographic structure inference using different metrics and genomic 352 

sliding window sizes (Table 2).  353 

 354 

Phylogeographic structure shaped by genomic architecture. 355 

 356 

We used genetic clustering, ordination, and phylogenetic methods to assess phylogeographic 357 

structure in genomic sliding windows. We found that recombination rate variation was the 358 

strongest predictor of phylogeographic structure variation across the genome (Table 2). 359 

Consistent with our expectation, phylogeographic signal best representing the bifurcating 360 

evolutionary history of the Brown Creeper was identified in genomic regions with relatively low 361 
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recombination rate; this was consistent across all methods used (Fig. 2). Notably, the genomic 362 

windows with the lowest recombination rates deviated little from the genome-wide patterns (Fig. 363 

5).  364 

 Previous work in insects, birds, and mammals has shown that phylogenomic signal 365 

varies across the genome (Edelman et al., 2019; Fontaine et al., 2015; Li et al., 2019; Martin et 366 

al., 2019; Thom et al., 2024). Generally, these studies have found or suggested that the 367 

background species tree is best represented by phylogenomic patterns exhibited in genomic 368 

regions with low recombination, and that gene flow among taxa is more prevalent in genomic 369 

regions with high recombination rate (Edelman et al., 2019; Li et al., 2019; Martin et al., 2019; 370 

Thom et al., 2024). Our results in the Brown Creeper echo these findings at a shallow 371 

evolutionary timescale, whereby we find highest support for the genome-wide supported 372 

phylogeographic relationships in genomic regions with low recombination rate (Fig. 2; Fig. S2). 373 

We may interpret these patterns in the context of lineage sorting during the speciation process, 374 

whereby genomic regions with low introgression exhibit quicker polymorphism fixation due to 375 

relatively increased effects of linked selection and genetic drift and reduced homogenization 376 

among lineages due to gene flow.  377 

Genomic studies investigating intraspecific population and phylogeographic structure 378 

have more commonly used PCA-based methods (e.g., LOSTRUCT) to investigate variation in 379 

genomic structure across the genome. In two species of woodpeckers, a small portion of the 380 

variance in PCA-based phylogeographic structure was found to be associated with local 381 

recombination rate (Moreira et al., 2023). We found that variation in phylogeographic structure 382 

across the genome of the Brown Creeper—inferred using both ordination and genetic clustering 383 

methods—was strongly associated with recombination rate variation (Fig. 2; Fig. S2; Table 2). 384 

We may infer that the same interactions between recombination rate variation and population 385 

genomics processes shaping variance in phylogenomic signal are also shaping variance in 386 

clustering- and ordination-based estimates of phylogeographic structure.  387 
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In contrast to generalizations about low recombination regions often reflecting a taxon’s 388 

background evolutionary history, in some scenarios we may expect regions of extremely low 389 

recombination to greatly differ from genome-wide signatures of population genetic structure. In 390 

several taxa, including sunflowers, flies, fishes, and birds, the greatest deviations from the 391 

genome-wide pattern of intraspecific population structure (inferred with PCA) have been 392 

identified in genomic regions with extremely low recombination rates that are often inferred to be 393 

polymorphic inversions within populations or species (Hale et al., 2021; Huang et al., 2020; Li 394 

and Ralph, 2019; Mérot et al., 2021; Perrier et al., 2020; Shi et al., 2021; Todesco et al., 2020; 395 

Whiting et al., 2021). In these cases, if a taxon has relatively little population structure but also 396 

exhibits polymorphic inversions, we may expect the biggest deviations in population genetic 397 

structure from genome-wide patterns to reflect these polymorphic inversions that exhibit 398 

suppressed recombination. These cases present interesting patterns to think about when 399 

interpreting genomic phylogeography data. Genomic regions with low recombination may best 400 

represent a taxon’s evolutionary history, excepting times when these regions are associated 401 

with large structural variants.   402 

 403 

Interaction of recombination rate, population demography, and rate of evolution. 404 

 405 

While we may expect that the interactions between recombination rate and population genomics 406 

processes will impact the rate of evolution across the genome, we did not simply observe little 407 

phylogeographic structure in genomic regions with high recombination rates and strong 408 

phylogeographic structure in genomic regions with low recombination rates. Conversely, we 409 

found strong—and differing—patterns of phylogeographic structure across the genome (Fig. 1; 410 

Fig. 3; Fig. S3). Because these differing patterns of phylogeographic structure generally 411 

separated the Central American populations and sometimes the Sierra Madre Oriental 412 
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population from all others, we hypothesized that populations with relatively smaller NE exhibit 413 

relatively higher evolutionary rates in genomic regions with high recombination.  414 

Using relative RTD measures as a relative rate of molecular evolution for each 415 

population, we found that larger populations exhibited reduced rates of molecular evolution in 416 

genomic windows with high recombination rates (Fig. 6; Fig. S6) and that shifts in relative rates 417 

of molecular evolution in high versus low recombination genomic regions were positively 418 

associated with effective population sizes (Fig. 6; Fig. S6). This is consistent with simulations by 419 

Tigano and colleagues (2021) where the authors showed the interplay between recombination 420 

rate and selection causes greater genomic variance in evolutionary rates in larger populations 421 

relative to more consistent evolutionary rates across the genome in smaller populations.  422 

We suspect that molecular evolution in genomic regions with high recombination rates is 423 

a product of complex interactions between population demography and the relative strengths of 424 

linked selection and genetic drift. In the Brown Creeper genome, recombination rate variation is 425 

positively associated with gene density (Fig. 2; Fig. 4) and we may interpret gene-dense 426 

genomic regions as targets for natural selection. Indeed, in a previous study in the Brown 427 

Creeper (Manthey et al., 2021), we showed that the two main Brown Creeper lineages exhibited 428 

relatively less neutral evolution in the gene-dense microchromosomes relative to the larger 429 

macrochromosomes. In gene-dense and high recombination regions under the effects of 430 

purifying selection, we may expect populations with relatively smaller NE to accumulate 431 

substitutions faster than populations with higher NE (Lanfear et al., 2014), consistent with the 432 

trends we identified here in the Brown Creeper (Fig. 6; Fig. S6).  433 

 434 

Implications for future phylogeographic studies 435 

 436 

If phylogeographic structure varies widely across the genome, what are realistic and best-437 

practice approaches for future phylogeographic work? Are studies that use few genes or 438 
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reduced representation genomic datasets doomed to be wrong from the start? We expect that 439 

strong phylogeographic structure will be detected even with few genetic markers. For example, 440 

more than ten years ago we used 20 genetic markers obtained with Sanger sequencing to study 441 

the phylogeography of the Brown Creeper (Manthey et al., 2011b) and found the same general 442 

phylogeographic trends observed here with our whole-genome dataset. In contrast, any study 443 

where most of the genetic markers are taken from genomic regions where the pattern differs 444 

from a taxon’s true evolutionary history (e.g., high recombination regions in the Brown Creeper 445 

case) may run into problems inferring that true history. Additionally, in any taxa with weak 446 

population genetic structure or widespread and rampant gene flow, a whole-genome method 447 

may be the only approach to identify the few genomic regions differentiating taxa (e.g., Toews et 448 

al., 2016). Overall, we suggest using the most amount of genetic data feasible for future 449 

phylogeographic studies given sources of biological material (e.g., quality of preserved tissue) 450 

and funding available, as well as investigating the patterns and potential causes of population 451 

genetic structure variation across the genome when possible.  452 

 453 

CONCLUSIONS 454 

 455 

We used whole genome sequencing to estimate how genomic architecture shapes variation in 456 

phylogeographic structure across the genome of the Brown Creeper. We found that 457 

phylogeographic structure—as measured using ordination, phylogenetic, and clustering 458 

methods—was strongly associated with regional genomic variation in recombination rates. In 459 

low recombination regions, we recovered phylogeographic structure concordant with genome-460 

wide patterns with all three types of methods. The most divergent phylogeographic patterns 461 

were in high recombination regions; populations with small effective population sizes were 462 

distinct from all other populations due to relatively faster evolution than larger populations in 463 

these high recombination regions. Because these high recombination regions are rich in coding 464 
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genes, we hypothesize that large populations have higher relative effects of purifying selection 465 

in these regions, and overall slower relative molecular evolutionary rates compared to smaller 466 

populations. Overall, our results show that phylogeographic structure may vary widely across 467 

the genome, and that effective population sizes of sampled populations and genomic 468 

architecture and their interactions will impact regional genomic variation in phylogeographic 469 

structure.  470 

 471 
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TABLES AND FIGURES 517 

Figure 1. Sampling map, genetic diversity, phylogeographic structure, and demography. (A) 518 
Sampling localities for this study. Colors for localities are consistent across plots. (B) Violin plots 519 
of observed heterozygosity across all 50 kbp sliding windows. White circles indicate means. (C) 520 
Consensus phylogeny using 19,639 gene trees from the 50 kbp windows. Support values are 521 
labelled for all branches showing the highest support from all estimation methods (N = 4), 522 
including consensus and ASTRAL phylogenies for both the 50 kbp and 100 kbp window 523 
datasets. At tips of phylogeny are ADMIXTURE results from 19,602 genome-wide SNPs 524 
(thinned every 50 kbp) for either two or seven assumed genetic clusters (k = 2 or k = 7, 525 
respectively). (D) Demographic history estimated with MSMC2. Different individuals are 526 
represented with differently colored lines and bootstraps are shown with thin lines. In (D), HM = 527 
harmonic mean. Brown Creeper photo in (A) by JDM from the Chiricahua Mountains in southern 528 
Arizona. 529 
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Figure 2. Genomic architecture and phylogeographic structure variation across the genome in 531 
50kbp sliding windows. Gray points indicate window values and dark gray lines indicate means 532 
across 20 windows (i.e., 1 Mbp windows). Blue indicates top 2.5% of outliers and orange 533 
indicates bottom 2.5% of outliers for each statistic. Bottom outliers not shown for CDS, ADMIX., 534 
and GSI as these each have large proportions of values equal to zero. Abbreviations: mean 535 
effective recombination rate of the two main lineages (ρ), gene content (CDS), transposable 536 
element and repetitive DNA content (TE), multidimensional scaling axis one from principal 537 
components analyses (-MDS1), mean genealogical sorting index for the two main Certhia 538 
lineages (1 - GSI), ADMIXTURE deviation relative to genome-wide analysis (ADMIX.), and 539 
mean genetic diversity across individuals as measured using observed heterozygosity (HO). 540 
MDS1 is plotted as negative and GSI is plotted as (1 - GSI) so that deviations from expected 541 
phylogeographic structure for MDS1, GSI, and ADMIXTURE are all represented as higher 542 
values.  543 

 544 
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Figure 3. Example phylogeographic structure in a window that deviates from genome-wide 548 
patterns. This window had the 15th lowest MDS1 value of all windows from the principal 549 
components analysis (PCA) across the genome. (A) PCA, (B) RAxML phylogeny, and (C) 550 
ADMIXTURE results for a window on chromosome 4.  551 
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Figure 4. Correlation plot of genomic architecture, genomic diversity, and phylogeographic 572 
structure for 50 kbp windowed statistics. Pearson’s and Spearman’s r coefficients are plotted 573 
above and below the diagonal, respectively. Abbreviations shown in plot: mean effective 574 
recombination rate of the two main lineages (ρ); GC content (GC%); gene content (CDS%); 575 
transposable element content (TE%); mean observed heterozygosity (HO); genealogical sorting 576 
index at the population [1 - GSI (Pop.)] and lineage [1 - GSI (Lin.)] levels; negative 577 
multidimensional scaling axis one from principal components analyses (-MDS1); ADMIXTURE 578 
deviation relative to genome-wide analysis for two [ADMIX. (k = 2)] or seven [ADMIX. (k = 7)] 579 
assumed genetic clusters.  580 
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Figure 5. Violin plots of phylogeographic structure variation in genomic regions with very high or 587 
low recombination rates, separated for autosomal (A) and Z-linked (Z) genomic regions. 50 kbp 588 
windows with the highest or lowest 2.5% of recombination rate values are included. Higher 589 
values for ADMIXTURE deviations, 1 - GSI, and -MDS1 indicate values deviating relatively 590 
more from the genome-wide patterns of phylogeographic structure.  591 

 592 

593 
 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

5

or 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2022.09.25.509431doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.25.509431
http://creativecommons.org/licenses/by-nc/4.0/


 

26

Figure 6. Relationship between effective population sizes and rate of evolution (measured by 613 

relative root-to-tip distance for each population) in genomic regions that vary in recombination 614 

rate. Extreme low and high recombination (rho) regions represent the quintiles of the genome 615 

with the lowest or highest recombination rates (i.e., highest 20% and lowest 20% of windows). 616 

Results for raw data are shown in (A-C) and for phylogenetic independent contrasts (PIC) in (D-617 

F). The right panels in each row (C + F) show the shift in relative rates of evolution between 618 

high and low recombination genomic regions.  619 
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Table 1. Different datasets used in this study and their characteristics. For inclusion, all datasets 631 
required sites to have a minimum quality score of 20, minimum of 20 genotype quality, a 632 
minimum depth per individual for a site to be called of 6, and a max mean depth across 633 
individuals of 50. 634 
Set Missing 

Allowed 

OG1 Window 

size 

# 

Windows 

Min. Sep. 

per SNP2 

# SNPs # Sites Analyses 

A 0%  - - 50 kbp 19,602 19,602 Genome-wide ADMIXTURE 

B 0%  - - 100 kbp 9,838 9,838 Genome-wide ADMIXTURE 

C 20% X 50 kbp 19,713 - 35,463,408 890,335,872 RAxML, GSI, HO 

D 20% X 100 kbp 9,862 - 35,463,408 890,335,872 RaxML, GSI, HO 

E 0%  - - - 21,657,220 21,657,220 LOSTRUCT 

F 0%  50 kbp 19,697 - 21,657,220 21,657,220 ADMIXTURE per window 

G 0%  100 kbp 9,860 - 21,657,220 21,657,220 ADMIXTURE per window 

H 0%  - - - * * MSMC2 
1OG = outgroup included 
2Min. Sep. per SNP = minimum separation between SNPs (i.e., thinning)  

*SNPs and sites not labeled for MSMC2 analyses because these values varied per individual. For each individual, no missing data 

was allowed for that particular individual’s MSMC2 demographic analyses input files. The MSMC2 dataset did not include the Z 

chromosome. 

 635 

 636 

 637 

Table 2. Variance partitioning where the explanatory variables are characteristics of genomic 638 
architecture and response variables are different measures of population genetic structure. 639 
Values indicative of variance proportion explained by each explanatory variable or their 640 
interactions. 641 
50 kbp windows       

Measure of Genetic Structure ρ CDS TE GC Interactions Total 

MDS1 0.23 0.00 0.01 0.04 0.33 0.61 

GSI (Lineages) 0.16 0.00 0.00 0.02 0.22 0.40 

GSI (Populations) 0.02 0.00 0.00 0.01 0.03 0.06 

ADMIXTURE (k = 2) 0.24 0.00 0.00 0.03 0.30 0.57 

ADMIXTURE (k = 7)  0.19 0.00 0.00 0.01 0.18 0.38 

       

100 kbp windows       

Measure of Genetic Structure ρ CDS TE GC Interactions Total 

MDS1 0.22 0.01 0.01 0.03 0.41 0.68 

GSI (Lineages) 0.16 0.00 0.00 0.01 0.23 0.40 

GSI (Populations) 0.02 0.00 0.00 0.01 0.05 0.08 

ADMIXTURE (k = 2) 0.25 0.00 0.00 0.02 0.35 0.62 

ADMIXTURE (k = 7)  0.20 0.00 0.00 0.01 0.22 0.43 

 642 

 643 

 644 
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SUPPLEMENTAL TABLES AND FIGURES 645 

 646 

Table S1. Sampling metadata and characteristics of sequencing amount and coverage when 647 

aligned to the reference genome. Samples from Utah, Morelos, Jalisco, and the outgroup were 648 

retrieved from the NCBI SRA and originally sequenced for a previous study by Manthey and 649 

colleagues (2021).  650 
Museum # Lineage Locality Lat. Long. Raw bp Filtered bp Coverage 

UWBM103417 South Copan, HN 14.866 -89.050 40,501,485,458 34,714,897,849 22.79 

UWBM105618 South Copan, HN 14.866 -89.050 30,149,924,172 26,420,616,801 18.55 

UWBM93696 South Copan, HN 14.866 -89.050 40,591,948,048 36,089,400,965 26.06 

UWBM113447 South Chiapas, MX 16.691 -92.606 37,741,499,908 33,063,229,986 23.32 

UWBM113461 South Chiapas, MX 16.691 -92.606 32,696,721,580 27,488,157,228 18.51 

UWBM113462 South Chiapas, MX 16.691 -92.606 48,519,014,074 42,841,474,607 27.09 

UWBM106936 South Morelos, MX 19.0873 -99.194 40,136,994,108 35,563,542,819 26.35 

UWBM107890 South Jalisco, MX 21.882 -103.865 43,601,103,228 38,563,138,625 26.14 

UWBM107897 South Jalisco, MX 21.882 -103.865 30,536,607,690 27,038,872,945 18.55 

UWBM106768 South Nuevo Leon, MX 24.872 -100.224 42,330,853,397 37,109,282,807 27.62 

UWBM111691 South Nuevo Leon, MX 24.872 -100.224 41,523,724,956 36,804,470,356 26.21 

UWBM111708 South Nuevo Leon, MX 24.872 -100.224 43,392,483,440 36,820,385,840 27.04 

UWBM113198 North California, US 36.245 -121.700 40,117,812,880 35,379,027,102 26.26 

UWBM112794 North California, US 36.245 -121.553 37,692,762,846 33,128,089,974 23.33 

UWBM112795 North California, US 36.245 -121.553 44,376,620,806 38,809,177,747 28.71 

UWBM113162 North Utah, US 37.317 -113.455 40,934,172,636 36,217,919,293 26.25 

UWBM113168 North Utah, US 37.317 -113.455 39,295,062,200 34,925,676,137 25.72 

UWBM113167 North Utah, US 37.377 -113.467 42,535,860,138 37,425,027,332 27.55 

UWBM107061 North West Virginia, US 38.289 -79.937 43,886,484,470 38,699,509,454 28.65 

UWBM112055 North West Virginia, US 38.289 -79.937 47,972,794,224 40,458,960,409 29.36 

UWBM112054 North West Virginia, US 38.641 -79.838 39,431,412,482 34,774,499,050 25.96 

KU92846 Outgroup England   21,417,629,506 19,195,682,239 13.58 
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Figure S1. Sequencing coverage aligned to the reference genome for each individual. The 659 

vertical red lines indicate the mean coverage per individual. 660 
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Figure S2. Genomic architecture and phylogeographic structure variation across the genome in 682 

100kbp sliding windows. Gray points indicate window values and dark gray lines indicate means 683 

across ten windows (i.e., 1 Mbp windows). Blue indicates top 2.5% of outliers and orange 684 

indicates bottom 2.5% of outliers for each statistic. Bottom outliers not shown for CDS, ADMIX., 685 

and GSI as these each have large proportions of values equal to zero. Abbreviations: mean 686 

effective recombination rate of the two main lineages (ρ), gene content (CDS), transposable 687 

element and repetitive DNA content (TE), multidimensional scaling axis one from principal 688 

components analyses (-MDS1), mean genealogical sorting index for the two main Certhia 689 

lineages (1 - GSI), ADMIXTURE deviation relative to genome-wide analysis (ADMIX.), and 690 

mean genetic diversity across individuals as measured using observed heterozygosity (HO). 691 

MDS1 is plotted as negative and GSI is plotted as (1 - GSI) so that deviations from expected 692 

phylogeographic structure for MDS1, GSI, and ADMIXTURE are all represented as higher 693 

values. 694 
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Figure S3. The 15 most extreme outlier principal components analysis (PCA) windows identified 696 

from those windows with low MDS dimension one values. 697 
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Figure S4. Correlation plot of genomic architecture, genomic diversity, and phylogeographic 706 

structure for (A) 50 kbp and (B) 100 kbp windowed statistics. Pearson’s and Spearman’s r 707 

coefficients are plotted above and below the diagonal, respectively. In (C), the absolute value 708 

difference between correlations in 50 kbp and 100 kbp windows. Abbreviations shown in plot: 709 

mean effective recombination rate of the two main lineages (ρ); GC content (GC%); gene 710 

content (CDS%); transposable element content (TE%); mean observed heterozygosity (HO); 711 

genealogical sorting index at the population [1 - GSI (Pop.)] and lineage [1 - GSI (Lin.)] levels; 712 

negative multidimensional scaling axis one from principal components analyses (-MDS1); 713 

ADMIXTURE deviation relative to genome-wide analysis for two [ADMIX. (k = 2)] or seven 714 

[ADMIX. (k = 7)] assumed genetic clusters. 715 
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Figure S5. Demographic history estimated with MSMC2 for each individual. Thick lines indicate 717 

the whole genome estimate and thin lines indicate results from ten bootstrap replicates. Sample 718 

numbers correspond with those reported in Table S1.  719 

720 
 721 

 722 

Figure S6. Violin plots of evolutionary rates (as measured by relative root-to-tip distances) for 723 

each population in the upper and lower genomic quintiles of high or low recombination (rho) 724 

values. 725 
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