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Abstract1

A prominent theory proposes that the temporal order of a sequence of items held in memory is reflected in ordered2

firing of neurons at different phases of theta oscillations1. We probe this theory by directly measuring single neuron3

activity (1420 neurons) and local field potentials (LFP, 921 channels) in themedial temporal lobe of 16 epilepsy patients4

performing a working memory task for temporal order. We observe theta oscillations and preferential firing of single5

neurons at theta phase during memory maintenance. We find that - depending on memory performance - phase of6

firing is related to item position within a sequence. However, in contrast to the theory, phase order did not match7

item order. To investigate underlying mechanisms, we subsequently trained recurrent neural networks (RNNs) to8

perform an analogous task. Similar to recorded neural activity, we show that RNNs generate theta oscillations during9

memory maintenance. Importantly, model neurons exhibit theta phase-dependent firing related to item position,10

where phase of firing again did not match item order. Instead, we observed a mechanistic link between phase order,11

stimulus timing and oscillation frequency - a relationship we subsequently confirmed in our neural recordings. Taken12

together, in both biological and artificial neural networks we provide validating evidence for the role of phase-of-firing13

in memory processing while at the same time challenging a long-held theory about the functional role of spiking and14

oscillations in sequence memory.15

Introduction16

How do we remember the temporal order of a sequence of events? Performing this kind of task is an integral part17

of our ability to encode, maintain and retrieve memories within their spatial and temporal context2. The medial18

temporal lobe (MTL) has been heavily implicated in memory processing at the neural level. A prominent finding is19

that neurons within MTL regions, such as the hippocampus, exhibit elevated, stimulus-specific spiking activity during20

the maintenance period of working memory tasks3–7. Another hallmark signature of neural activity within the MTL21

are oscillations in the frequency range of 2-8 Hz, commonly known as the theta-band. Theta oscillations can be22

measured from LFP or intracortical EEG/ECoG and have been ubiquitously observed in many species during memory23

processing8. Specifically, the amount of oscillatory activity, i.e. theta power, increases during memory maintenance24

and correlates with memory load and task performance9–11.25

Combined measurements of spiking and LFPs from MTL have further established an important link between the26

single neuron firing and theta oscillations: Firing of MTL neurons depends on theta phase - so called spike-phase27
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coupling - and phase of firing contains information aboutmultiple spatial locations during sequential spatial encoding28

as well as spatial memory tasks in rodents8;12–15.29

In analogy to spatial memory in rodents, it has been suggested that this so-called ’temporal code’ is also suitable to30

represent multi-item sequences during working memory of non-spatial information16. Specifically, a prominent com-31

putational model by Lisman and collegues hypothesizes that the order of items held within memory is represented32

by spiking of sequentially re-activated neurons at different phases of theta-oscillations1;17.33

Indeed, human MTL neurons show preferential firing with respect to theta phase in memory tasks18, the magni-34

tude of spike-phase coupling is predictive of subsequent memory performance19 and spiking relative to theta phase35

contains non-spatial information, namely stimulus identity20;21. However, thus far it remains unclear howmemorizing36

the sequential order of multiple items is implemented at the neural level in human MTL. In particular, it is unknown,37

whether a sequence of memorized items is associated with, first, differences in theta-related phase of firing of single38

neurons and, second, whether the order of phase-of-firing matches the item order - as hypothesized by Lisman’s39

theory1.40

Here, we sought to answer these questions by directly measuring both spiking of MTL neurons and LFPs while41

participants had tomaintain the temporal order of a sequence of items within workingmemory. We also investigated42

potential underlying neural mechanisms by training recurrent neural networks (RNNs) to perform an analogous task,43

without explicitly instructing RNNs on how to solve it. Our results show emerging theta oscillations and spike phase-44

coupling in both recorded and modeled neural activity during working memory, where phase of firing is related45

to item position within a sequence. Surprisingly, however, phase order did not match item order, in contrast to46

Lisman’s theory. Instead, our modeling suggests that phase-order could arise as a function of inter-stimulus interval47

and oscillation frequency - a relationship we subsequently confirmed in our neural recordings. Our findings thus48

validate, but also challenge a long-standing theory about the role of spiking and oscillations in memory function.49

Results50

No effect of item position on spike rate during memory51

We recorded spiking activity of 1420 units and LFPs from 921 channels in medial temporal lobe regions including the52

hippocampus (HPC), enthorinal cortex (EC), parahippocampal cortex (PHC) and amygdala (A) in 16 chronic epilepsy53

patients undergoing invasive seizure monitoring for presurgical evaluation. Patients performed a sequential multi-54

itemworking-memory task as illustrated in Fig. 1 a. After a fixation period, four randomly chosen pictures out of a set55

of 8were sequentially presented to the patients for 200ms eachwith a 400ms time difference between each stimulus56

onset. Stimulus presentation was followed by a delay period of 2500 ms (+/- 100 ms) after which a panel comprising57

four rows of possible picture sequences appeared. One of them matched the previously presented sequence, and58

patients indicated amatch by pressing the associated row number on a computer keyboard. Each patient performed59

markedly above chance but still in a range that allowed us to compare neural activity for correct vs. incorrect trials60

later on. Moreover, median reaction time (RT) showed a typical negative correlation with mean performance across61

subjects (Fig. 1 b). Thus, our behavioral results indicate that subjects understood the task well and were generally62

attentive during participation.63

While spike rates of MTL units are typically modulated by stimulus identity, little is known about whether the64

sequence position of stimuli also affects their spiking in a systematic fashion. To address this question, we first iden-65

tified 217 highly responsive units by comparing stimulus-evoked activity during encoding to a pre-stimulus baseline66

period (Wilcoxon signed-rank test across all positions, criterion of α < 10−3 for comparing stimulus vs. baseline in-67

terval, HPC:N=82, EC:N=25, PHC:N=55, A:N=55). We show a representative example for a highly stimulus-responsive68

unit that exhibited a significant rate increase for one of the eight stimuli, the so-called preferred stimulus (PS) in69

Fig. 1 c. When analyzing spiking in response to the PS at each of the four positions within the sequence (Fig. 1 d)70

stimulus-evoked activity of this unit differed significantly between item positions during encoding, with the largest71

evoked response at the end position of the sequence and no modulation of spike rate during delay or the probe72

period. When assessing spiking activity across all stimulus responsive units for the PS at each item position, however,73

we found that stimulus-evoked responses were typically largest for the first position and appeared to systematically74

decrease with increasing sequence position (Fig. 1 e). Interestingly, we observed a similar effect during the panel pre-75

sentation. Here, spiking activity was largest whenever the units’ preferred stimulus had been shown as the first within76
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the initially presented sequence, even though the visual input consisted of a 4x4 picture grid (Fig. 1 f). In contrast,77

during the delay period spike rates did not significantly differ between stimulus positions even though spiking was78

significantly elevated during the delay compared to the pre-stimulus baseline, suggesting activemaintenance-related79

activity similar to previous findings3, (Wilcoxon signed-rank-test, Z>2.7, p<0.001 for each region).80

In summary, MTL neurons show robust stimulus-specific encoding responses during visual presentation, where81

spiking decreases as stimulus position increases. These findings might be related to the so-called primacy effect82

that has been observed in serial memory paradigms for mesoscopic brain signals where stimuli shown at the first83

position within a sequence also elicit larger neural responses22, arguably due to increased allocation of attentional84

resources during encoding23. In contrast, we found no such differences during memory maintenance. Thus, even85

though participants were explicitly asked to remember the order of the encoded stimuli, this does not seem to be86

reflected in systematic spike-rate changes during memory in the MTL.87

Theta oscillations and spike-phase coupling during memory88

Previous studies have observed increases in theta oscillations, i.e., power (2-8 Hz) during working memory mainte-89

nance9;24. Thus, we first asked whether we find similar enhancements in our task. An example time- frequency spec-90

trogram recorded from the hippocampal site shown in Fig. 1 is plotted in Fig. 2 a. A clear increase in theta power91

around 2.8 Hz can be seen, starting after stimulus presentation and extending throughout the delay (median power92

baseline vs. delay, Wilcoxon signed-rank test p<0.01). We generally observed a similar effect comparing power across93

all LFP channels of stimulus responsive units between baseline and delay (Wilcoxon signed-rank test N=217, Z=3.7,94

p<0.001, see also Extended Data Fig. 1 a/b S1). Comparing single areas, the overall increase was mainly present at95

hippocampal and entorhinal sites even though each region contained a significant proportion of channels exhibiting96

elevated theta during maintenance (HPC:40%, EC:48%, PHC:20%, A:36%, Binomial test p<10−4 at α=0.01). Thus, our97

results confirm earlier findings onmemory-related power increases in theta during workingmemory and provide the98

basis for our following analyses.99

Combining single unit and LFP recordings, we next analyzed spiking as a function of theta phase. In each MTL re-100

gion, we observed a non-uniform distribution of theta phases at firing, for which preferred phase angles differed con-101

siderably across MTL regions (non-parametric multi-sample test comparing median angles between regions P=50.9,102

p<10−10). Spike-phase coupling was already present during pre-stimulus baseline but significantly increased during103

memory maintenance at the population and individual units’ level (population-based Z-score Rayleigh test for N=217104

units Z=9.7/3.2, p<0.01/p<0.05 for Delay/Baseline, respectively; for single areas: Z(HPC) = 4.32/4.1, Z(PHC)= 14.3/4.51,105

Z(AM)=10.58/3.89, Z(EC)=15.1/4.52, Delay all areas p<0.02/Baseline all p<0.04, Median comparison Rayleigh-based106

Z-Scores on individual units, Wilcoxon signed-rank test Z>9.63, p<10−10 for all regions, see also Fig. S1 c). Impor-107

tantly, the effects were also observed when correcting for spike rate differences between baseline and delay (see108

Methods Section). To assess whether spike-coupling is associated with memorizing specific stimulus information, we109

computed mean spike-phase histograms from delay activity centered at each individual unit’s preferred phase, and110

computed the concentration parameter kappa (κ), derived from van Mises fits to spike-phase histograms, to assess111

strength of spike phase-coupling (Fig. 2 e, left/right panel, respectively). We observed that modulation of spiking at112

theta phase was significantly elevated during maintenance if the PS was encoded during the sequence, even after113

controlling for spike rate differences, which indicates that memory-related enhancement of spike-phase coupling114

is stimulus-specific (Wilcoxon signed-rank test comparing median κ values based on individual unit’s van Mises fits,115

N=217, Z=8.65, p<0.001). We next asked whether the magnitude of spike-phase coupling also depends on serial116

position of stimuli. To this end, we did not observe a difference between these conditions (Fig. 2 f, Kruskal-Wallis117

test based on individual κ values, p>0.05, Chi2<3.9). Taken together, maintenance of multiple stimuli correlated with118

increased spike phase-coupling across the population as well as for individual units. Specifically, phase-of-firing distri-119

butions became less uniform as units showed more similar phase preferences during the delay. For individual units,120

increased spike-phase coupling was specific to the encoded stimulus. Interestingly, similar to our spike rate analyses,121

the magnitude of phase coupling was not systematically related to the position of the stimulus within a sequence.122

Phase-of-firing depends on sequence position123

In our next analyses, we focused on the temporal relationship between theta oscillations and spiking. We first asked124

whether the preferred phase of firing during the delay varies with item position in a sequence, as this is one of the125
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Figure 1. Experimental paradigm, behavioral performance and spike rate modulation a. Experimental design of multi-itemtemporal-order working memory task. b. Left panel: Individual mean percentage correct per session (mean percentage correct77%, SD 17,8%, for each patient compared to chance performance at 25% (red dashed line) Binomial test p<10−3), black circle:average across subjects) and median reaction times (RT) for correct (c) vs incorrect (nc) trials. Right panel: Median reaction times(RT) plotted against mean percentage correct with least-squares linear fit and s.e.m. shows negative correlation (Spearmanrank-correlation coefficient -0.69, p<10−3, median RT 4514 ms, SD 1328 ms). c. Spike waveform density plot, raster plots andPSTHs from a hippocampal unit to all stimuli shown in one session. Vertical lines correspond to stimulus onset. This unit showed asignificant rate increase to only one of the eight stimuli (PS, Wilcoxon signed-rank test p<10−8). d. Spiking activity of the same unitacross the entire trial period in response to the PS shown at four different positions within the sequence (1-Way repeatedmeasures ANOVA, F=3.05, p<0.05 during the stimulus period) e. Convolved PSTH and s.e.m. (Z-score relative to baseline) inresponse to the PS of each individual neuron, averaged across all stimulus-responsive units for the entire trial period (sequenceposition color-coded) f. Median spike rates for each stimulus position and specific trial periods. (Kruskal-Wallis non-parametricANOVA on stimulus-evoked response, Chi2=8.34, p<0.01,Probe Panel Chi2=39.5, p<10−4, Delay Chi2=2.55, p>0.05, N=217). Note:(Stimuli used in the experiments can not be displayed according to the inclusion rules of biorarxiv, and have been replaced bythumbnails generated with stable diffusion, https://huggingface.co/spaces/stabilityai/stable-diffusion).
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central model predictions by1. When analyzing spike-phase histograms, we found that single units showed differ-126

ences in preferred phase of firing depending on the sequence position of the PS (Fig. 3). To quantify this relationship,127

we computed the circular variance explained between phases at different sequence positions (Vex , see Methods). To128

assess statistical significance for each unit, we compared Vex to a null distribution derived from randomly shuffling129

position labels and performing a permutation test against shuffled Vex per unit (p<0.001, Permutation test for units130

shown in Fig. 3.131

Analyzing Vex as a function of frequency for highly stimulus selective units, we observed phase differences be-132

tween sequence positions across all investigated theta bands and different MTL regions Fig. 4 a. However, when133

we compared Vex for shuffled vs. non-shuffled position labels, we found the largest differences in the lower theta134

frequency range (2-3 Hz), in line with earlier findings investigating spike-phase coupling with respect to stimulus iden-135

tity20 (Fig. 4 b). To test whether this effect was related to task performance, we repeated the analysis separately for136

groups of correct and incorrect trials and found indeed that Vex was significantly enhanced for correct, but not incor-137

rect trials (Fig. 4 c, Permutation test non-shuffled vs. shuffled, p<0.05). Likewise, when directly comparing correct138

and incorrect trial-based estimates, Vex was significantly larger, again for lower theta frequencies (Wilcoxon rank-sum139

test p<0.05 for 2/2.4 Hz). Critically, we observed a similar effect choosing only the one theta frequency per unit-LFP140

pair for which we observed the highest oscillatory power increase from baseline to delay (Fig. 4 d, paired T-test,141

T=2.23, p<0.02 across all units). This is important, as this analysis not only accounts for variance in oscillatory peaks142

between LFP channels18 and the number of statistical comparisons when analyzing multiple frequencies, but also143

uses an independent criterion for selecting a specific theta frequency.144

In our next analyses, we tested whether sequence position can be decoded from phase of firing employing a145

support vector machine (SVM) algorithm. Fig. 4 e depicts classification performance (percent correct, PC) based on146

population activity (all units) and individual units, using shuffled position labels as a control. For individual units, av-147

erage decoding performance was significantly better than chance (25%) and the control condition (average percent148

correct PC=29.5/28.8%, Wilcoxon signed-rank test performance shuffled vs. original Z=8.09/8.45 p<10−6, for high-149

and low-selectivity units, respectively). This was also true using population activity for stimulus selective units, while150

classification performance was not different from chance using population activity from less stimulus selective units151

(Wilcoxon rank-sum test Z=8.63/0.08, p<10−6/p>0.05, for high and low selectivity population, respectively). Similarly,152
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Figure 3. Phase of firing in single neurons encodes sequence position Spike waveforms (bottom row) and spike-phasehistograms (upper rows) of single units at different item positions (color coded for sequence position, HPC-hippocampus,EC-entorhinal cortex, AM-amygdala). Mean preferred phase and circular standard deviation are shown above the histograms ineach plot.

the proportion of units showing significantly elevated decoding performance was higher amongst highly selective153

units (18.9% vs. 9%, CI95 15/24% and 6.3/11.5% , p<0.05 based on individual Permutation tests shuffled vs. original154

distribution). Comparing different MTL regions, we found that decoding performance was similarly high in hippocam-155

pal, enthorinal and parahippocampal units, but not different from chance for amygdala units (see Fig. 4 f). Taken156

together, our analyses suggest that phase of firing indeed differs depending on serial position of maintainedmemory157

items - as predicted by Lisman’s model.158

Phase-of-firing order does not correspond to item order159

A second central prediction of the model by Lisman is that phase order matches the item order within the sequence.160

Fig. 4 g-h summarize our analyses addressing this question. We first show the phase distribution across neurons for161

each stimulus position based on theta frequencies exhibiting the largest power during the delay at the respective LFP162

channel (Fig. 4 g). Here, each neuron’s phase per position was normalized by subtracting the mean phase across all163

positions. Hence, if item position matched phase order, this would result in an equivalent ordering of phases across164

neurons. However, even though phase distributions were significantly different between positions as described for165

individual units above (circular ANOVA, Watson-Williams test F=2.89, p<0.05), our analyses did not reveal an item-166

position-equivalent phase ordering. Similarly, when analyzing phase order for individual neurons using mean phase167

of firing per position, we found that approximately 15% of units exhibited the stimulus-equivalent consecutive phase168

order (circular ordering clockwise, i.e. 1,2,3,4), 18.4% of unit-channel pairs showed the reverse order (i.e. 4,3,2,1) with169

both proportions not significantly different from the expected chance probability of 1/6 for a specific order (2 <0.1,170

p>0.05, Fig. 4 h). Thus, while Lisman’s model proposes an equivalence between phase- and stimulus order during171

memory, this was not reflected in our empirical results. Finally, we assessed the phase range used to encode item172

position in memory. Fig. 4 h shows the mean phase distributions across neurons where phases are sorted based173

on the preferred phase-of-firing order of each neuron instead of the actual item position. As expected from the174

spike-phase coupling we found, the phase range representing all positions spanned a fraction of the entire cycle of175

approximately 110 deg (IQ Range: 55.6 deg). Remarkably, within this restricted range, phase differences appeared176

to be equally distributed, with similar time lags between neighboring pairs of positions when mapped onto the time177

domain (Median time shift between pairs: 21.2ms, 20.4ms and 20.6ms , Kruskal-Wallis test Chi2<0.1, p>0.05, see Fig.178
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Figure 4. Preferred phase of firing varies with sequence position a. Circular variance explained Vex between positions as afunction of frequency for units showing high stimulus selectivity (N=87, based on median split, units sorted by area). b. Average
Vex across units for non-shuffled (blue) and shuffled (gray) position labels as a function of frequency. Error bars denote s.e.m.,stars indicate significance based on Permutation test p<0.01 (**) and p<0.001 (***), N permutations = 1999). c. Averageddifference in Vex between non-shuffled and shuffled conditions for correct (blue) and incorrect (yellow) trials. d. Scatter plot of Vexper unit shown for shuffled (y-axis) vs. non-shuffled position labels (x-axis) at the theta frequency with the respective highestpower increase during the delay as well as corresponding group histogram (inset, blue dots correspond to values larger thanupper 50th percentile across all units in either group). Decoding performance based on preferred mean phase of firing duringdelay across the population of units (left) and individual units (right) predicting one out of four different stimulus positions.Performance is plotted separately for high vs. low stimulus selective units on median split, and separately for non-shuffled andshuffled position labels. f. Decoding performance for different MTL regions. g. Phase of spiking histograms and mean directionacross units shown in a. per stimulus position (color-coded). Plotted are circular differences in phase with respect to mean phaseacross all positions per unit h. Proportion of units for which phase of firing order for different positions is equivalent to item order,is reversed, or different. Red lines denote proportion of respective order expected by chance (1/6, 5/6 respectively). i. Equivalentplot as in g. except here phases are assigned a ’position’ label based on recorded phase order, not stimulus order. j. Distributionof three consecutive pairwise phase shifts in ms based on neighboring phase groups shown in g as well as median pairwise timedifferences per neighboring pair.
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4 j).On the one hand, these findings support the notion that when spiking occurs preferentially at specific phases, it179

might be more efficient in impacting neural activity in target regions and foster effective communication and neural180

plasticity25;26. On the other hand, equal phase differences provide an efficient way to maximize the representation181

of information in phase space, as in our case 4 different item positions. Taken together, our analyses firstly reveal182

position-dependent phase-of-firing differences at the single-unit level during working memory. However, while our183

results support a phase-of-firing code for representing sequential items in memory as suggested by1, we find no184

equivalence regarding the ordering of spike-phase and position. This seems difficult to reconcile with the theory,185

which clearly predicts a correspondence between phase of firing and stimulus order.186

Phase modulation in a trained recurrent neural network model187

Recurrent neural networks (RNNs) have previously been used to investigate neural computations during multiple188

cognitive tasks, including memory tasks27–31. Thus we set out using RNNs to assess potential neural mechanisms189

underlying our findings. We trained g rate-based RNNs on a task which was designed to be analogous to the one190

used during neural recordings (Fig. 5 b-h summarizes our training results, see also Methods and Fig. S2 a for details).191

In brief, four out of eight input units were sequentially activated during each trial, mimicking the presentation of192

stimuli in the experiment. This was followed by a delay and a presentation of the same four stimuli shown initially, in193

either a matching (’correct’) or non-matching (’incorrect’) order. During training the model was optimized to indicate194

matches and non-matches and training was run until 95% accuracy was reached on a validation set, containing stim-195

ulus combinations not used during the training epochs. We subsequently analyzed neural activity of the 40 trained196

networks in a similar fashion as our neural data: First, we identified units with increased firing rate during stimulus197

presentation that were also selectively responding to a specific stimulus. Over 40 models, on average 155±3.5 (mean198

± SE, N=40) out of 200 trained units exhibited stimulus-selective behavior (Wilcoxon signed-rank test, Baseline vs.199

Stimulus presentation time, p<0.001, for an example see Fig. 5 c). Next, we asked whether our models also exhibit200

oscillatory activity. We defined themodel’s LFP as the summed absolute synaptic input to all neurons32 and observed201

oscillatory power within our trained networks at a range of frequencies typically peaking between 0.4 and 2 Hz, with202

an increase in power during delay as compared to baseline (Wilcoxon rank-sum test p<0.01; Fig. S2 b). In order to203

promote comparability between our oscillating networks and recorded data we further added a novel regularization204

term to manipulate the oscillation frequency, and chose several frequencies matching the observed theta frequency205

peaks in our neural recordings (see Methods for details).206

To analyze spike-phase coupling, we created spike-phase histograms by binning normalized firing rates of the207

upper 50th percentile of stimulus selective units during the delay, with respect to the phase of a sine wave with fre-208

quency matching the frequency with highest power in the models’ LFP spectra (Fig. 5 d). Similar to our experimental209

data, the firing rate of these units was coupled to oscillation phase and preferred phase of firing differed between210

sequence positions (Fig. 5 e). We quantified this effect by computing the circular variance explainedVex between item211

positions for the upper 50th percentile of stimulus selective units. We typically observed a significant increase in Vex212

as compared to shuffled position labels during the delay for models regularized in a range of different frequencies213

(Fig. 5 f). For the majority of these units (71.88%), phase order did not match item order within the sequence, similar214

to our neural recordings.215

Our results demonstrate qualitative similarities between neural data and model activity and show that order-216

dependent (but not order-preserving) phases arise in a neural network trained to solve a sequential memory task.217

Can our models also help us understand how these non-ordered phase-relationships come about? We noticed in218

our models that phase of stimulus selective units was systematically reset by the onset of their preferred stimulus,219

and then remained at this stimulus-induced phase during the delay period (see also Fig. 5 c). In that case, the phase220

of such a unit, relative to an ongoing reference oscillation is determined by the timing of the stimulus with respect221

to the reference oscillation. When successive stimuli are shown, the phase differences between units coding for222

successive stimuli will then depend on the length of the inter-stimulus interval (ISI) relative to the cycle-duration of223

the ongoing reference oscillation (Fig. 5 g, Fig. S2 c). In line with this hypothesis, we observed that different phase224

orders emerged in our models as a function of oscillation frequency (Fig. 5 h; SE in Fig. S2 d). Finally, we also found225

this relationship in our empirical data: For each stimulus selective unit, we obtained the order of phase-of-firing at226

the theta frequency for which it exhibited the strongest phase differences between item positions (based on Vex ).227

Subsequently, we quantified how many of these units exhibited a phase order as predicted by the frequency of the228
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Figure 5. Phase-dependent firing in trained recurrent neural networks varies with item position a. Schematic of the modelproposed by Lisman & Idiart1. A stimulus-selective neuron spikes at different, consecutive theta phases in response to each of the4 serial positions of a memory item (color-coded). b. RNN schematic showing example trial. Each colored line corresponds to aninput unit activated with a stimulus, at different positions. c. Raster plots (spikes sampled from rate activity) and mean firing rate(colored lines) of a stimulus-selective model neuron shows a clear evoked response at each stimulus position, as well as oscillatoryactivity during delay. d. Time-frequency spectrum of trained RNN activity shows a power peak in the theta-range. e. Examples ofphase-histograms of recurrent units during delay show different peaks of activity related to stimulus position. f. Circular varianceexplained (Vex ) between stimulus positions is significantly elevated at tuned oscillation frequency (color-coded) in comparison toshuffled position labels. g. Schematic displaying proposed stimulus-induced phase reset and resulting phase order. A stimulusresets the phase of neurons to the same value, irrespective of the stimulus position within the sequence (colored lines), while thereference oscillation (black) is unaffected. As — depending on the oscillation frequency — the presentation of multiple stimuligiven a specific inter-stimulus intervals (ISI) cannot always be contained within one oscillatory cycle, phase reset leads to a specificphase order as a function of the timing of the stimuli with respect to the reference oscillation. h. Proportion of matching positionorder based on phase of firing of RNN model showing a dependence on tuning frequency (x-axis) compatible with the predictionbased on the relationship between stimulus onset differences and oscillation frequency, color coding as in f.

theta oscillation and the ISI used during the experiment (see Fig. S2 c for the predictions). For a significant proportion229

of units we were indeed able to predict the phase order correctly (25,2%, N=87, permutation test using shuffled labels230

between frequency and ordering, p<0.05, also see Fig. S2 e). Taken together, our analyses link the phase order to231

the ratio between cycle-duration of the oscillation and the ISI for both model and recorded neurons.232

Discussion233

How is the temporal order of a sequence of items reflected in neural activity during a working memory task? In234

our study, we tested a long-standing theory1 on the role of spiking and theta oscillations using single unit and LFP235

recordings in humanMTL recordings as well as recurrent neural network modeling. We observed that spike rates did236

not vary with item position during memory maintenance. Instead, neurons exhibited robust spike-phase coupling237

in theta frequencies, where preferred phase of firing differed between item positions but did not reflect item order.238

Importantly, this effect depended onwhether the sequence of stimuli was correctly remembered or not, emphasizing239

the behavioral relevance of our findings. Many of our empirical results were supported by observations of RNN-based240

neural activity after training in an analogous task. This included strong stimulus selectivity during encoding, emerging241

oscillations, oscillatory phase coupling during memory maintenance and importantly, phase differences related to242

item position, where phase-of-firing order again did not match item order of the sequence.243

Taken together, our findings corroborate one important prediction of Lisman’s model - namely that the serial po-244

sition of memory items is encoded in phase of firing. Thus, in case of memorizing the order of multiple items, theta245

oscillations could indeed provide a temporal frame of reference for relating the ’what’ to the ’when’ as has been sug-246

gested previously13. Similarly, theta cycles could serve as a ’separator’ between sequential memory items to facilitate247

read-out by downstream regions and thus serve both efficient encoding and routing of information within working248

memory19;20;26;33;34. However, in contrast to another prediction made by the Lisman model, our analyses did not249
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show that the order of stimuli corresponds to phase-of-firing order for either recorded or modeled neurons. These250

observations might contradict two previous investigations on multi-item working memory35;36. Both studies used os-251

cillatory activity in the gamma band in response to visual stimuli (50-100Hz, ’gamma-bursts’) from iEEG / MEG signals252

respectively, to assess gamma phase ordering with respect to theta oscillations and observed corresponding item253

and phase order. However, neither study explicitly required subjects to memorize temporal order nor measured sin-254

gle unit activity. The latter is particularly important, since linking spiking of individual neurons to gamma band activity255

is challenging and depends on many factors including intrinsic neural network properties37–39. Specifically, whether256

gamma bursts indeed reflect select responses to different visual stimuli, such as those we have demonstrated for257

spiking of individual neurons in MTL, remains unresolved. Our findings might provoke the question of why sequence258

position would be represented by phase-of-firing if the order of phase does not correspond to stimulus order? It has259

been argued MTL activity is not stringently dependent on the concept of physical space or time but rather represents260

events relative to each other, such as in our case stimuli at their respective position13. This scheme still applies to261

our findings. That is, if there is an arbitrary—yet consistent—spike-phase relationship per neuron between different262

positions, then relational coding, as in reading out position of stimulus A (by neuron X responding to stimulus A) vs.263

position of stimulus B (as in neuron Y encoding stimulus B) would still be possible at the population level.264

Indeed, our oscillating RNNs couldmaintain sequential information inworkingmemorywhile having ’non-ordered’265

phases of firing. Moreover, we derived and tested a hypothesis on how phase order might arise based on model266

observations, providing a possible mechanistic explanation for our results. Stimulus-induced phase reset in MTL267

neurons has been reported previously, in particular in association with increased theta synchronization40–46. In com-268

parison to previous work which had demonstrated maintenance of mnemonic information in point, line and plane269

attractors47–50, we thus show emergent oscillatory dynamics during working memory (in line with recent work51) and270

provide a novel and alternative codingmechanismwithin artificial neural networks. An interesting question for future271

studies will be to investigate whether and how different dynamical coding schemes are related to each other, under272

which experimental conditions and manipulations either one arises and how they relate to different neural mecha-273

nisms during memory processing. Our modeling framework makes it possible to further study oscillatory network274

dynamics at a mechanistic level during memory processes and emphasize the general importance of RNN-based275

modeling in systems-level neuroscience research.276

Ultimately, for both recorded and modeled neural activity, our observations indicate a temporal code for non-277

spatial sequential information within memory in analogy to previous reports on spike-phase coding of place fields278

during spatial navigation and memory in rodents13. Thus, our observations point to a more general role of temporal279

coding based on oscillations within the medial temporal lobe.280
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Materials and Methods287

Participants288

16 patients (9 female, 7 male, median age = 42/45 years, respectively) with chronic, intractable epilepsy were im-289

planted with depth electrodes to undergo seizure monitoring for presurgical evaluation. All subjects gave their writ-290

ten, informed consent to participate in the experiments. Subjects performedeither 224 trials or 112 trials (one subject)291

of a modified Sternberg task as described below.292

Ethics statement293

The study was approved by the Medical Institutional Review Board of the University of Bonn (accession number294

095/10 for single-unit recordings in humans in general and 249/11 for the current paradigm in particular) and adhered295

to the guidelines of the Declaration of Helsinki.296
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Paradigm297

The paradigm was a multi-item sequential memory paradigm (modified Sternberg paradigm) as illustrated in Fig. 1298

a. On each trial, a fixation cross appeared for 1000 ms. This was followed by a temporal sequence of four different299

stimuli that were chosen randomly on every trial out of a set of eight stimuli in total. Pictures were chosen based300

on a pre-screening run one to four hours before this experiment (see52). Pictures contained mostly natural images301

depicting photographs of people, places or objects. Within the sequence each stimuluswas presented for 200mswith302

an inter-stimulus interval of 200 ms. The presentation of the forth stimulus was followed by a delay period showing303

a blank black screen. The delay period ranged between 2400 and 2600 ms (Median=2500 ms, IQR = 100 ms). Finally,304

a stimulus panel simultaneously showing four possible stimulus sequences was shown on the screen, one of which305

matched the one previously shown (Chance level = 0.25). Subjects were instructed to press a key number indicating306

the row of the matching sequence. Each of the 8 different stimuli used was presented equally often at each of the307

four temporal positions. On each trial the sequence was randomized, such that subjects did not know the upcoming308

sequence on any given trial. In total patients completed 224 (112 for one subject) trials. Each stimulus was shown309

within the sequence on half of the trials (112 out of 224 trials) and not part of the the sequence of images on the other310

half of the trials. Thus, we showed 112 (56 for one subject) trial unique sequences from a possible set of 1680 (8!/4!)311

within each experiment, where each imagewas shown an equal number of times at each positionwithin the sequence312

(N=28 trials * 4 positions). The matching sequence in the probe display was shown counterbalanced in each row of313

the panel (i.e. each row approximately 25 percent). Within the probe sequences, images were counterbalanced in a314

way that the task could not successfully be solved (i.e. max. avg. 50 % correct) when simply remembering the first,315

the last or the first two stimuli within the sequence.316

Recording technique317

Recording techniques presented here have been described in detail in previous studies (see for example53). In brief,318

we recorded the raw voltage traces from nine microwires (8 high-impedance recording electrodes, 1 low-impedance319

reference; AdTech, Racine, WI) protruding from the shaft of depth electrodes recorded with a sampling rate of 32 kHz.320

Signals were amplified and recorded using a Neuralynx ATLAS system (Bozeman, MT) and referenced against one of321

the low-impedance reference electrodes.322

Data Analysis323

All data analysis was performed using custom-written functions as well as the CircStatsToolbox written for Matlab324

Version R2014b as well as pycircstats - Toolbox written for Python54.325

Behavioral analysis. For each trial we obtained the keyboard response (i.e. sequence number 1-4) of the subjects326

and quantified the proportion of correct responses (PC) as the number of trials for which the subjects’ response327

matched the previously shown sequence. Reaction times were computed as difference in time between probe onset328

and subjects’ key press.329

Spike analyses. Throughout the manuscript, we use the terms ’neuron’, ’unit’ and ’cell’ equivalently to describe330

recorded responses of presumedneuronal spiking. Weuse spiking equivalently to firing, in order to describe neuronal331

activity of single neurons. Model units describe the output activity of the artificial RNN units. Whenever multiple332

comparisons were performed, p values were corrected using the Simes procedure55.333

Spike sorting was performed semi-manually using Waveclus 2.0 and Combinato56;57. Based on thorough manual334

visual inspection of waveforms we removed unit recordings that were contaminated by artefacts or were temporally335

unstable over the course of the recording time, which resulted in a selection of 1420 units from 921 unique LFP336

channels in medial temporal lobe regions (hippocampus HPC, N=564/376, 40%, enthorinal cortex EC, N=251/161,337

18%, parahippocampal cortex PHC, N=213/138, 15% and amygdala A, N=392/246, 28%, units / channels, respectively).338

Identification of responsive and selective units. In order to assess whether a unit significantly responded to a339

stimulus, we compared spiking activity during pre-stimulus baseline to the stimulus period, where baseline activity340

was defined as the average spiking activity within a 500mswindowprior to the onset of the first stimulus and stimulus341

related activity was defined as activity following a stimulus. Spikeswere binned intowindows using a bin size of 100ms342

with 50ms overlap starting at 100ms until 800ms post- stimulus onset. Using a one-tailed Wilcoxon signed-rank test343

we comparedmedian spike rate within each bin vs. baseline across all trials in which a particular stimulus was shown344

irrespective of stimulus position (N=112*4). Associated P-values were computed for each window and corrected for345
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multiple comparisons using the Simes procedure55, N=13 time windows). A unit was defined as responsive if there346

was a significant increase in spike rate relative to baseline (p<0.001) for at least one window within the range of 250-347

600ms post stimulus onset for hippocampal, entorhinal and amygdala units or 170-550ms post-stimulus onset for348

parahippocampal units, taking known ? ? and observed regional differences in stimulus response latency into account.349

This procedure resulted in N=217 highly stimulus-responsive units (N=82 hippocampal units, N=55 amygdala units,350

N=55 parahippocampal units, N=25 entorhinal units).351

Latency of stimulus evoked response. To assess stimulus response latencies, we computed average spike rate352

(Hz) in consecutive 20 ms windows with 10 ms overlap and compared the activity in each time window with baseline353

activity as decribed above. The latency of the response was then defined as the time bin for which there had been354

three consecutive prior bins with an associated significant increase (p<0.001) in spiking activity. The resulting median355

latencies were 222 ms for hippocampal units, 258 ms for entorhinal units, 190 ms for parahippocampal units and356

240 ms for amygdala units, (IQRs: H:128 ms, EC:171 ms, PHC:90 ms, A:141 ms).357

Stimulus selectivity. For each unit, we defined the stimulus eliciting the largest firing rate increase relative to base-358

line (based on the minimal p-value) as the ’preferred stimulus’ (PS). Since units sometimes responded to multiple359

stimuli, we also assessed how selective their responses were to a particular stimulus out of all 8 stimuli shown. We360

computed the normalized difference in spiking (Hedges’ g, equivalent to Z-score scale,58 by first subtracting themean361

evoked spiking activity to the stimulus eliciting the second largest response from activity to the PS and dividing by362

the pooled standard deviation across trials containing both stimuli. Window sizes used for obtaining stimulus-related363

activity were the same as described above. Based on this selectivity metric, we grouped units into a "high" vs. "low"364

selectivity group based onwhether individual selectivity indices were larger or smaller than the 50th percentile across365

all units (median split). By comparing activity during trials in which the PS was shown within the sequence (half of366

the trials) to trials in which it was not, we were able to track stimulus-specific effects in neural activity during the367

maintenance period. Using the selectivity metric further allowed us to test stimulus specificity for more or less selec-368

tive neurons. For the unit shown in Fig. 1 a the associated Hedges’ g was 1.01, indicating that the response to the369

preferred stimulus was about 1SD larger than to the stimulus with the second highest response. The selectivity index370

of this unit fell within the upper 25th percentile of the distribution across the population (see also Fig. S1 d).371

To estimate single unit activity across the trial period, we binned spikes with a resolution of 1 ms and obtained372

instantaneous firing rates by convolving the spike trains with an Gaussian kernel (SD = 25 ms) per trial. We trans-373

formed instantaneous firing rates into Z-Scores by normalizing to the mean activity and standard deviation during374

the 500ms baseline period. To compare spiking between different trial windows, Z-Scores were averaged during the375

visual response window (see above), the delay period (1500ms window prior to probe onset) and after the probe376

onset (200-500ms).377

LFP analysis and spike phase coupling. Spectral analyses were similar to a previous report33. In brief, we ob-378

tained the time-frequency decomposition of the downsampled (1000 Hz) LFP signal using complex Morlet wavelets379

(c=7 wavelet oscillations) and extracted the instantaneous amplitude and analytical phase as a function of time and380

frequency by convolving the raw real-valued time series x(t) with the complex Morlet wavelet w(t, f0) to obtain the381

complex output signal y(t, f0), also denoted as the analytic signal, where f0 denotes the desired center frequency of382

the wavelet function. The center frequencies f0 to obtain power spectra as shown in Fig. 2 were created by exponen-383

tial spacing of 100 frequencies between f=2x with x = 6/8,...,54/8 resulting in a range of frequencies approximately384

between 1.5 and 108 Hz. Oscillatory power change during the delay was assessed by transforming the raw power385

spectra to Z-score scale relative to baseline power by subtracting the mean power during baseline (500 ms window386

preceding the first stimulus) and dividing by the standard deviation during baseline across trials from each individual387

trial before averaging across all trials (see Fig. 2a). Delay spectra as shown in Fig. 2b were obtained by averaging388

across 1500 ms prior to probe onset (equal to spiking activity window). For the spike-phase analyses, we specifically389

focused on theta frequencies. As the exact frequency range associated with ’theta’ differs among studies, and dif-390

ferent frequencies within the theta range might even be associated with inter-species differences59 we obtained the391

phase of the analytic signal over a wide range of frequencies starting with 1.5, 1.75, 2.03, 2.37, 2.8, 3.2, 3.7, 4.4, 5.1, 5.9,392

6.9 and 8 Hz. We analyzed simultaneously recorded spiking and LFP at the same microwire from 217 channel-unit393

pairs, where 185 LFP recordings were paired with one unit recorded at the same electrode and 32 LFP recordings394

were paired with more than 1 unit (27 channels with 2 unit pairings, 5 channels with 3 unit pairings). To achieve395

higher statistical robustness from larger spike counts and to be able to estimate spiking at lower theta frequencies,396
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we subsequently selected units for which average firing rates were above 2 Hz within the delay period (85%) and used397

a baseline period of 1000ms and a delay period of 2000ms for comparisons (choosing the last 2s before panel onset398

and leaving a minimum of 500ms interval post-stimulus offset). For each of the units we obtained spike phase his-399

tograms throughout the time periods by binning spiking at theta phase into equally spaced phase bins with a width400

of pi/16. To account for non-uniformity of phases not associated with spiking, average spike-phase counts were nor-401

malized per bin by the number of occurrence of each particular phase bin during the considered trial window. We402

subsequently quantified the preferred phase angle (mean direction µ) as well as the magnitude of spike phase cou-403

pling (concentration parameter κ) by fitting von Mises density functions to the spike distribution across phase bins.404

This procedure was repeated across all trials during which the PS was shown vs. not (NPS trials) and separately for405

trials with different stimulus positions of the PS within the sequence (1-4). We applied the Rayleigh test for circular406

uniformity to the distribution of the mean preferred phase angles across all neurons within each region and used407

Rayleigh’s Z score as a test statistic to compare uniformity of spiking between different regions. To compare mean408

preferred phase angle between regions, we estimated the population phase angle by averaging across mean phases409

of all neurons within each region.410

Comparisons of spike-phase-coupling magnitude (i.e. κ) can be confounded by differences in spike rates between411

compared conditions. Indeed, weobserved small, yet significant differences in spike rates betweenbaseline anddelay412

activity across all units (median spike rate inHz baseline / delay 2.8/3.6, IQR 4.7 / 5.5, Wilcoxon signed-rank test Z-Value413

8.06, p<10−5) as well as within different regions (Median spike rate in Hz Baseline/Delay HPC: 4.25/4.67, EC: 1.81/1.98,414

PHC: 2.82/3.32, AM: 2.60/2.83, IQR HPC: 7.46/7.13, EC: 3.59/5.49, PHC: 4.46/5.47, AM: 3.24/3.84; all units Wilcoxon415

signed-rank test Z=8.09, p<10−15, for individual regions: HPC:Z=4.6152, EC:Z=2.29, PHC:Z=4.3726, AM:Z=4.3401, all416

p<0.02). To assess whether differences in spike-phase coupling could have resulted from the observed spike rate417

differences, we performed the following control analyses: We first computed the average spike rate (in Hz) for base-418

line and delay (see above) and subsequently split units into the upper and lower 50th percentile based on spike rate419

differences. As expected, for units in the lower 50% group, we found no significant difference in spike rates between420

windows (’Glptile’, N=36/11/33/27 for HPC, EC, PHC and AM, p>0.05 based on Wilcoxon signed-rank test). Comparing421

median κ values between baseline and delay for this group (’Glptile’), we still observed significantly increased spike-422

phase coupling during delay (Z>5.15, p<10−6). In a second control analysis, we ranked units based on their difference423

in spiking activity between both windows and consecutively excluded units until we no longer observed a significant424

difference in spike rate (’Gexcl’, N=51/20/48/39 for different regions, Wilcoxon signed-rank test p>0.05). Again for this425

group (’Gexcl’) we observed significantly larger median κ during delay compared to baseline (Wilcoxon signed-rank426

test, Z>8.69, p<10−16). We performed the same analyses controlling for differences in delay-related spiking between427

PS vs. NPS trials (Wilcoxon signed-rank test based onmedian spike rates during delay: N=217, Z=5.66, p<10−7) and still428

observed a significant increase in spike-phase coupling between these two conditions (Wilcoxon signed-rank compar-429

ison median κ in ’Glptile’ N=108, Z=6.55, ’Gexcl’ N=7.89, p<10−10). Finally, we also tested median κ values between the430

low vs. high selectivity groups of units after eliminating spike rate differences using the same procedure as described431

above (Median spike rate low vs. high, 4.52/3.6 Hz (qqq fm: isn’t this high vs. low?), Wilcoxon rank-sum test Z=-2.77,432

p<0.01). While we initially observed that high-selectivity neurons exhibit slight albeit significantly stronger spike phase433

coupling than the low-selectivity group (Wilcoxon rank-sum test comparing median κ Values Z=2.13, p<0.04), this ef-434

fect was abolished after correcting for spike rate differences between the two groups (Wilcoxon rank-sum p>0.05,435

Z=1.86).436

Analysis of phase of spiking at different stimulus positions. To analyze whether preferred phase of firing during437

the delay differed from stimulus positions during encoding, we obtained trial-based estimates of the mean preferred438

phase of spiking during the delay for each neuron during trials showing the preferred stimulus of that unit within the439

sequence. We subsequently computed the circular variance explained between different experimental conditions (in440

our case stimulus positions 1-4) by quantifying the ratio of variance within conditions relative to the variance across441

conditions. We defined circular variance within condition, i.e. position, by V w
j = 1 −

∣∣∣ 1
Nj

∑Nj

k=1 e
iθk

∣∣∣ where Nj is the442

number of trials in condition j , the index k runs across all trials of condition j , and θk is the mean phase of spiking in443

trial k . We subsequently calculated the mean variance within conditions as V w = 1
N

∑4
j=1 NjV

w
j where N is the total444

number of trials and Nj the number of trials within condition j . While there were typically 28 trials in each condition,445

an unequal number of trials could potentially arise from the fact that trials during which no spikes were detected did446

not contribute to the mean phase estimate (on average 10% of trials across neurons). We further defined circular447
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variance across all conditions by V a = 1−
∣∣∣ 1
N

∑N
k e iθk

∣∣∣where k runs across allN trials. We finally computed the circular448

variance explained per neuron as follows: Vex = 1− Vw

V a .449

For non-parametric statistical comparisons we also obtained a random distribution of Vex by shuffling trial labels450

N=1999 times between different conditions based on random permutations. We repeated this procedure for every451

unit using all trials, and separately for correct and incorrect trials (including the respective shuffle-based random452

distribution to account for trial count differences between these two conditions). For each permutation run, we also453

obtained an estimate for the proportion of units showing a significantly larger Vex compared to their shuffled distribu-454

tion. A unit was defined as significant if the true Vex exceeded the shuffled Vex estimates in at least 95% of the cases455

(p<0.05) for at least two frequencies. To obtain confidence intervals on proportion estimates, we created surrogate456

distributions of units using a bootstrap procedure (with replacement, as implemented by bootstrp in Matlab 2014b,457

N=1999) comparing the units’ Vex and respective shuffled distributions for each drawn sample (see Supplementary458

Fig. S1e).459

Phase order estimation As described above, we obtained the mean phase per neuron for each stimulus position460

of the PS during the delay. To estimate phase order, we first subtracted the mean phase across positions from each461

position’s phase, thereby anchoring all phases relative to 0 deg phase (see also Fig. 4g). We subsequently sorted462

phases counter-clockwise in an ascending order and obtained the stimulus position index for the sorted phases463

accordingly. A phase orderwas defined as equivalent to position order if the relative ordering along the circlematched464

the stimulus order (expected by chance in 1/6 of cases), and reverse if the reverse stimulus order was matched465

(likewise expected in 1/6 cases).466

Decoding analysis. To test whether stimulus position can also be decoded from phase of spiking, we used a support467

vector machine (SVM) algorithm as implemented in Matlab 2014b. Here, phase of spiking (mean phase per trial468

per neuron at stimulus position of the individual units’ PS) served as the predictor matrix to predict one of four469

possible binary class labels (i.e. stimulus position) in a multi-class classification (chance performance 25%). The470

learning algorithm used a rbf kernel and a one vs. one encoding scheme for the predictor matrix. We randomly471

partitioned the data into a training and test set for cross validation using a holdout proportion of 0.15 (training on472

85% of the data, testing on 15%) N=101 times. Decoding performance was defined as the proportion of correctly473

assigned class labels (i.e. position indices) on the test data set after training. To perform statistical comparisons,474

we repeated the decoding procedure after shuffling true class labels across trials, i.e. randomly assigning position475

indices to trial phases in order to create a randomdistribution of prediction performance. We obtained the associated476

p value for the comparison between true vs. shuffled labels by the number of cases for which the true performance477

was lower than the shuffled performance. For population-based decoding, we created a pseudo-population of units478

by pooling all units across all sessions and subjects and taking the phase of spiking at all theta frequencies (see479

above) into account. Decoding performance was separately assessed for groups of units with high vs. low stimulus480

selectivity, and also per brain region. In addition, we quantified decoding performance of single units using the same481

approach and compared median performance between true vs. shuffled label runs across all units, separately for482

the high vs. low selectivity group. To estimate the effect size of position decoding between regions, we calculated483

the difference between true performance in standard deviation units (Hedges g, as described above) and obtained484

confidence intervals based on bootstrapping with N=1999 repetitions.485
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Recurrent Network Model486

Code availability. All code for training and analyzing the RNN models is available at https://github.com/mackelab/487

sequence-memory.488

Model definition. Our models consists of a recurrent network of N firing-rate units:489

τ ẋτ ẋτ ẋ(t) = −xxx(t) + JJJϕ(xxx) + IIIUUU(t) +
√

2τττσ2
nξξξ (1)

where τττ ∈ RN is a vector of time constants, xxx ∈ RN denotes the current of each unit, ϕ is the (non-linear) activation490

function and JJJ ∈ RN×N is the recurrent weight matrix specifying the connectivity between units in the network, III ∈491

RNin×N the input weight matrix specifying the connectivity from stimulus input to recurrent units, andUUU(t) ∈ RNin the492

time-varying stimulus input. ξξξ denotes N Gaussian noise processes with zero mean and unit variance, representing493

intrinsic network noise scaled by σ2
n . An overview of all parameters can be seen in Table S1.494

We implemented biophysical constraints on the weight matrix JJJ in line with previous work30: We allowed neurons495

to have either only excitatory or only inhibitory outgoing connections (Dale’s law). To achieve this, we initialized a496

matrix JoptJoptJopt with samples drawn from a half-normal distribution Y = |X |, such that X is a zero-centered normal497

distribution with variance g2

N
. The matrix JJJ is then computed as the dot product of JoptJoptJopt with a diagonal matrix DDD498

where the first N(1 − pinh) elements in DDD were set to a positive number, and the last Npinh elements were set to499

a negative number. Here pinh denotes the fraction of inhibitory neurons. We choose elements in DDD such that the500

expectation of the recurrent input to neurons stays 030;60, and the average of the variance of the excitatory and501

inhibitory populations is g2

N
. Mathematically, this results in the bulk of the eigenspectrum of JJJ lieing in a circle on the502

complex plane with radius g 60. The resulting dynamics are then given by a sharp transition from stable to chaotic503

dynamics at g = 1 as N → ∞61. For finite networks (as used in our study), instead of a sharp transition, there is an504

intermediate region where one finds limit cycles. During training, we optimize JoptJoptJopt , and compute JJJ as |JoptJoptJopt |+DDD; we505

rectify the elements in the JoptJoptJopt by applying the ReLU function to ensure that the excitatory-inhibitory constraint is506

fulfilled.507

Task. We adapted the task performed by the human participants such that it could be readily performed by an RNN,508

keeping the information that had to be maintained during the delay period (four stimuli and their order) identical.509

The input to the network at a particular time step, UUU(t), was always 0, except during the stimuli and probe periods.510

During these periods four out of eight stimuli were activated sequentially for 0.2 s by setting the corresponding entry511

in the vector UUU(t) to 1. The activated stimuli were randomly chosen (without replacement) with equal probability512

every trial. After a delay period, the same four stimuli as during the stimulus period were shown, but now either in a513

different order (randomly drawn) or in the same order, with equal probability.514

Training procedure. During training we simulated equation 1, using the Euler method with step size△T . Giving us515

at time step t516

xxx t = (1−ααα)xxx t−1 +ααα(JJJϕ(xxx t−1) + IIIUUU t) +
√

2ααασ2
nN (0, 1) (2)

with ααα = △T
τττ
. The network’s output is described by a linear readout of the firing rates yt =WWWϕ(xxx t) withWWW ∈ R1×N .517

To keep model time constants within a biologically plausible range [τmin, τmax ], we applied a nonlinear projection518

map62. We chose τττ to be519

τττ = σ(τoptτoptτopt)(τmax − τmin) + τmin (3)
. We initialized τoptτoptτopt with samples drawn from N (0, 1) and optimized this during training. With σ being the logistic520

function, τ approaches τmax as τopt → ∞ and τmin as τopt → −∞.521

In order for the network to perform the task, it had to determine whether the order of the initial sequence of522

stimuli matched the sequence presented after the delay period. We defined a scalar ŷt that was either 1 (match) or523

−1 (non-match) during the decision period.524

We defined the loss of a single trial as follows:525

L =
1

Nm

T∑
t=1

mt(yt − ŷt)
2 +

nreg∑
i=1

λiregi , (4)
where mt is 1 during the decision period, otherwise 0, and Nm denotes the number of non-zero mt . regi denotes526

additional regularization terms applied with weight λi . We applied an L2 penalty on the rates to prevent implausible527
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saturation of the activation function regFR = 1
NT

∑T
t=1

∑N
i=1 ϕ(x

i
t )

2 (29) and additional regularization to control the528

model’s oscillation frequency (equation 6).529

We optimized parameters of the network by minimizing equation 4 using gradient descent. We calculated the530

average gradient at a particular time step over a subset (batch) of trials using back-propagation through time (BPTT),531

with the Adam63 optimizer in tensor flow64 with default settings (first and second order moment equal to 0.9 and532

0.999, respectively).533

Training with BPTT notoriously suffers from exploding and decaying gradient65. In order to avoid the former we534

used gradient clipping. If the norm of the gradient |g | = | δL
δW

| was larger than some maximum gmax , we multiplied g535

with gmax/|g |. To avoid vanishing gradients we employed curriculum learning and first train on a short delay (0.2s).536

Sweeps over multiple models were realized used the Weights & Biases toolbox66.537

Computing local field potentials in RNNs. Local field potentials (LFPs) as recorded from the brain are generated538

from currents of neurons embedded in a three-dimensional space, where the exact arrangement of neurons hugely539

influences the recorded signal. Neurons in our model, however, are completely agnostic to physical space.32 com-540

pared various LFP proxies for standard leaky-integrate-and-fire (LIF) networks, and found that a specific linear com-541

bination of the LIF synaptic currents provides an accurate LFP proxy. However, the authors also suggested a simpler542

proxy that is plainly the (absolute) summed AMPA and GABA currents. Given that our units have even less detail then543

the LIF neurons, we calculated the LFP in line with this, by taking the summed absolute synaptic input as LFP:544

LFPt =
N∑
i=1

N∑
j=1

|J ij |ϕ(x j
t ) (5)

To systematically analyze the effect of oscillation frequency on the representations used by our model we developed545

a new loss term to promote a LFP with a peak at a specified frequency during training. This allows one to shift546

the natural oscillation frequency of the model to a specific frequency. We applied this regularization to all models547

described in the main text.548

For every training iteration we computed the LFP. To make the loss term amplitude invariant we first normalized549

the LFP: LFP∗
t = LFPt−µLFP√

2σ2
LFP

. We then took the norm of the Fourier component at a specified frequency:550

regosc = −|| 1
T

T∑
s=1

LFP∗
t exp−i2πfoscs|| (6)

where s is the time associated with time step t in seconds, T is the trial duration, and fosc the regularisation frequency551

in Hz. We selected frequencies congruent with the range of frequencies found in our experimental data, and trained552

10 models for each frequency (1.5, 2.04, 2.75, 3.73 Hz), 70% (28/40) of which exhibited peak oscillations at target553

frequency after training (mean delay LFP power at the target frequency, pre training: 0.13 ± 0.022, post training:554

0.68± 0.048, mean ± SE, N=28).555

Model analysis. Analysis of the model was performed in Python using the pycircstat package67 as well as custom-556

written code. For the subsequent analysis we first generated 224 unique stimulus combinationsmatching the number557

of trials in the experiment. Half were randomly assigned to bematch trials (the later four stimuli are presented in the558

same order as the initial stimuli) and the other half were assigned to be non-match trials (the order in which the initial559

and post-delay stimuli were presented differed). We repeated the analysis performed on the experimental data with560

the following adaptions to account for the model having a continuous firing rate instead of discrete spikes: To find561

stimulus-selective neurons, we used mean firing rates and counted activity starting with stimulus onset as stimulus-562

triggered activity. To create analogues to spike phase histograms, we binned continuous firing ratewith respect to the563

phase of a reference oscillation, making sure that our bin size never exceeded our simulation time step. The reference564

consisted of a sine wave with frequency corresponding to highest power in the model’s LFP spectrum. Units in our565

model used tanh, with range (-1,1) as activation function, due to desirable properties with regards to propagation of566

gradients during training. During analysis the firing rates where first mapped to (0,1), using a linear projection map.567
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Supplementary Information

Table S1. Parameters used to train the RNNs
Key Value
N 200

Nin 8

ϕ() tanh()

g 1.5

pinh 0.2

σn 0.05

τmin 20

τmax 120

optimize III ,JoptJoptJopt ,WWW ,τoptτoptτoptbatch size 128

learning rate 5 exp−5

λFR 1 exp−5

λLFP 1 exp−1
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Figure S1. a. Normalized difference in oscillatory LFP power between baseline and delay (Z-score), showing significantly increasedpower in the theta band (including lower frequencies) and significant reduction in the gamma frequency band (60-110 Hz) duringthe delay (Wilcoxon Signed Rank Test, p<0.01, N=185 unique LFP channels, based on visually responsive units) b. Same plot as in a.split by region. Mainly, significant theta power increases can be found HPC and EC across all channels (Wilcoxon signed-rank testp<10−5/p<0.001, respectively) whereas amygdala and parahippocampal cortex showed increases as well as decreases in thetapower (p>0.05). Interestingly, sign. gamma decreases during the delay can be found in PHC. c. Non-uniformity of theta-relatedphase of firing as indicated by Rayleigh’s Z-Score separately estimated from baseline and delay activity per region. In all MTLregions investigated, we find significantly enhanced spike phase coupling during delay compared to baseline (N, stats, all trialsused, irrespective of PS/NPS). d. Spike phase histograms (upper panels) and van Mises fits (lower panels) estimated from thetaband spiking activity during delay separately plotted for trials containing the PS vs. not during the stimulus sequence and neuronswith high (blue) vs. low (gray) stimulus selectivity. Shaded areas correspond to SEM across units. Although the spike modulationseems to be larger for the high selectivity group of units, estimates based on individual concentration parameters κ were notsignificantly different after correcting for spike rate differences. e. Histograms showing the distribution of proportions of unitsshowing significant differences in phase of firing between stimulus positions based on Vex - Permutation tests per region.Histograms are shown for all units (upper panel) and again for units exhibiting high stimulus selectivity (lower panel). f. Proportionof units shown per region showing significantly elevated Vex when compared to shuffled trials based on Permutation tests(criterion p<0.01). Among highly stimulus selective units, the highest proportions were found in hippocampus and entorhinalcortex. g. Same data as in f. for stimulus-selective units, per theta frequency and region.
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Figure S2. a. Mean (+ SE) training duration of models per regularization frequency. We noticed a frequency dependent effect oftraining on convergence rate in line with existing work68. b. Mean power during baseline and delay for 24 models demonstratetrained models oscillate, when trained without oscillatory regularization (12 with and 12 without Dale’s law, g=1, other parametersas in table S1). The increase in power during delay when compared to baseline is significant (Wilcoxon rank-sum test with N=24,p<0.01). To accurately detect the lower frequencies we first extended the baseline and delay period to 10s before calculatingpower. c. The predicted phase order depending on oscillation frequency and inter-stimulus interval, based on the simplifiedmodel (Fig. 5 g. Boundaries between the different phase orders at solutions of exp(ip2πfsisi ) = 1, where p ∈ {1, 2, 3} denotesstimulus position, f is oscillation frequency at stimulus onset in Hz and sisi is the interval between successive stimulus onsets in s

d. Mean (+SE) proportion of phase order exhibited by models per regularization frequency. Which phase order occurred mostfrequently for the three lower frequencies is in line with the prediction of our simplified model (red bars). e. Permutation analysis.We shuffle local field potential frequencies between recorded units and calculate the amount of phase orders predicted correctly.25,2% of units exhibited the predicted phase order, significantly more than expected by chance (N=87, permutation test usingshuffled labels between frequency / ordering, p<0.05)

23 of 23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.509370doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.25.509370
http://creativecommons.org/licenses/by-nc/4.0/

	Abstract
	Introduction
	Results
	No effect of item position on spike rate during memory
	Theta oscillations and spike-phase coupling during memory
	Phase-of-firing depends on sequence position
	Phase-of-firing order does not correspond to item order
	Phase modulation in a trained recurrent neural network model

	Discussion
	Acknowledgements
	Materials and Methods
	Participants
	Ethics statement
	Paradigm
	Recording technique
	Data Analysis
	Recurrent Network Model

	Author contributions
	Supplementary Information

