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Abstract: 
 

Spontaneous neural activity has become increasingly linked to behavioral and cognitive 

output. A specific cognitive control mode, proactive control, uses prior information to plan and 

prepare the brain to be particularly sensitive to incoming goal-directed stimuli. Little is known 

about specific proactive mechanisms implemented via preparatory patterns of spontaneous neural 

activity, that may enable dynamically enhanced cognitive performance. In this study, humans 

implanted with intracranial electrodes performed a simple cognitive task. For each subject, pre-

trial spectral power and communicability-based features from both grey and white matter nodes 

were extracted to identify preparatory control states that were “primed to perform”. The 

anatomical structure and topology of these states across subjects demonstrated a critical role for 

white matter communicability in decoding and intrinsically controlling preparatory network 

activity. Our results provide novel insights for putative cognitive network control and may be 

studied to develop prosthetic approaches for individuals with cognitive deficits. 
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Introduction: 
 

Spontaneous neural activity, i.e. neural activity not evoked by a specific stimulus or task 

behavior, has become increasingly linked to behavioral and cognitive output1–3. Spontaneous 

neural activity dynamics have been largely studied using noninvasive neuroimaging modalities 

in relation to prior task performance. For instance, spontaneous neural activity during rest can 

encode reactivation of prior task representations for memory formation4 and during task behavior 

can encode immediately prior unconscious errors5. Studies investigating pre-stimulus or pre-trial 

spontaneous neural activity in reference to subsequent activity demonstrate both complex 

correlates of subsequent stimulus-evoked neural activity1 and cognitive behavioral output such as 

biasing subsequent perceptual inference6. In parallel, other studies have shown differences in 

long time scale spontaneous resting activity between neurotypical and cognitively disabled 

individuals, such as a decrease in gamma power in individuals with schizophrenia with poor 

cognitive performance7, and alterations in resting state regional activity patterns among Down 

syndrome patients with cognitive impairment8. Further insights into how the brain may be 

functionally organized to drive subsequent behavior can be gleaned from proactive cognitive 

control, a major subdivision of cognitive control9, whereby neural mechanisms actively maintain 

relevant information in working memory, trigger goal representations, and coordinate the 

attention, perception, and action systems in anticipation of subsequent goal-directed activity10,118. 

The mechanisms of proactive control have primarily been studied in the context of task-based 

conflict, with paradigms such as the AX-CPT12, where the proactive period is the time window 

after an initial stimulus but before the conflict cue is presented. However, proactive control is 

critical for a wide range of other cognitively demanding events including planning, learning, 

reasoning, and successful task completion13,14; as well as implicated in various neurocognitive 
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and psychiatric disease states13,14. It is less known whether or how these proactive mechanisms 

may be engaged during “preparatory” periods of cognitive activity, just prior to cognitive loading 

or task engagement, as a behavioral window when specific patterns of spontaneous neural 

activity may configure brain networks to be particularly ready for upcoming task performance. It 

is known that resting state activity and functional network architectural profiles can discriminate 

inter-individual differences in long time scale learning and cognitive output15,16. Thus we ask, are 

there patterns of spontaneous neural activity and network architecture, measured dynamically 

just prior to cognitive loading, that may drive upcoming cognitive performance? We term this 

putative interplay between spontaneous neural activity and proactive control mechanisms as 

preparatory control.  

In this study, we therefore aimed to identify within-subject and characterize across 

subjects, the dynamic, preparatory control states that were particularly “primed to perform”. 

Using network and spectral analysis techniques on neural activity recorded in 24 patients 

implanted with stereotactically-placed depth electrodes (SEEG) for epilepsy monitoring, we 

quantified brain-wide spontaneous nodal activity and graph architecture in the 500 milliseconds 

prior to task engagement (pre-trial period) as a measure of discrete, potential preparatory periods. 

We used these discretized brain states to predict performance in the upcoming trial and compared 

the trial-by-trial preparatory control state to a comparative task-engaged 500 millisecond window 

just prior to the go cue (intra-trial period). Instead of using a complex conflict discrimination 

task, we employed a simple temporal expectancy reaction time task (total of 27 task sessions 

across all patients, with 120-250 trials per session) where the pre-trial period was characterized 

by a completely blank screen without a fixation cue or any task stimulus, and an intra-trial period 

in which subjects engaged in a visually-cued instructed delay reaction time task. For each 
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recorded channel (node), we computed spectral power and graph communicability metrics for 

each frequency band (hereafter referred to as “features”) during the pre-trial and intra-trial 

periods of each trial, and then identified the nodal features that were dichotomously associated 

with good (fast) versus poor (slow) reaction time performance in the trial. For each trial, we 

defined the dynamic preparatory control state space as a concatenated vector of all selected nodal 

feature values from the pre-trial period that discriminated between good versus poor 

performance. Preparatory control states that were “primed to perform” were the combination of 

selected network feature values that preceded good task performance (see Methods). Thus, in our 

task paradigm, engagement of enhanced preparatory control mechanisms decreased reaction 

times (RT) and improved task performance, rather than increasing reaction time as seen in 

conflict-based tasks17. Temporal expectancy was utilized for this study due to literature across 

species identifying neural features predictive of RT during the task-engaged, intra-trial delay 

period (induced cognitive load)18–20. To our knowledge, our study is among the first to examine 

spontaneous neural features of an internally-driven preparatory period of a temporal expectancy 

task and compare it to the rich intra-trial period. 

Our analyses applied single trial network science techniques to SEEG recordings21 to 

characterize patterns of brain activity and connectivity-based graph architecture. These two types 

of patterns were integrated to develop a paradigm for detecting and predicting brain states22,23. 

Patterns of brain activity were characterized by computing spectral power (Pow) across the 

canonical frequency bands24–27, while patterns of graph communicability (Qexp) were 

characterized by first deriving functional connectivity networks in the same canonical bands 

using phase-locking value (PLV), and then characterizing the architecture of these functional 

networks using Qexp. There are several graph metrics that describe network and nodal topology 
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(the configuration of a system’s nodes and edges in a network)28. We were particularly interested 

in studying anatomically-derived nodal communication dynamics. Communicability measures 

the strength of both direct (shortest path) and indirect (non-shortest path) walks between network 

nodes to assess their capacity for information flow29,30 while maintaining the anatomical 

relationship of these nodes. This differs from latent state space manifolds, where anatomical 

information becomes hidden31–34.  

Notably, our characterization of network architecture chose to represent white matter 

regions as nodes (not edges) within the network. This differs from the commonplace approach of 

implementing white matter regions as edges in network constructs, since white matter pathways 

(structural connectivity) constrain functional interactions among brain regions (functional 

connectivity)35. However, since white matter acts as a functional highway for coordinating 

distributed network processes36, and growing evidence also points towards white matter being a 

source of physiologic and behaviorally relevant functional information37, we chose to implement 

white matter regions as nodes in the network construct with their own activity and architectural 

profiles. We extracted all potentially robust network features of a preparatory control state space 

on a within-subject basis, and then comparatively analyzed the topological and anatomical 

drivers of a metastable state space across subjects. Thus, our study employs a data-driven 

approach to investigate the potential role of white matter tracts, as well as grey matter regions, in 

dynamically regulating brain states that are “primed to perform”. 

 

Results: 
 
Defining the behavioral paradigm and neural activity and architectural metrics 
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We employed a temporal expectancy task (Figure 1A) in 24 human subjects implanted 

with intracranial EEG. We defined the pre-trial preparatory period as the 500ms prior to the 

presentation cue (white box), and a comparison intra-trial task-engaged period as the 500ms prior 

to the go cue (color change from white box to yellow). We defined network structure by 

assessing both traditional spectral power-based nodal activity as well as graph communicability, 

a metric quantifying the potential for frequency-specific information flow through each node of 

the network. The analyzed functional network structure was therefore assessed by calculating 

nodal power and Qexp, for each of four canonical frequency bands, averaged in the 500ms pre-

trial or intra-trial window (Figure 1B, see methods for detailed description). Each combination of 

a metric (Qexp or spectral power) and frequency band (theta/alpha, beta, low gamma, high 

gamma) was defined as a feature. Each recording channel that remained after excluding noisy 

channels and restricting channels to the ones inside brain tissue on postop imaging was 

considered individually to be a node, including white matter (see methods). Thus, a node-feature 

pair (or simply node-feature) refers to a particular feature coming from a specific node.  

 

Creating and validating a within-subject cognitive neural state decoder for the preparatory 

versus task-engaged brain 

To identify the specific node-features from each subject that differentiated good versus 

poor subsequent cognitive performance, thus contributing to a plausible low-dimensional 

cognitive neural state decoder, we employed a within-subject multiple linear regression feature 

selection paradigm as a type of demixed dimensionality reduction technique38 (Figure 1C). For 

each subject, brain-wide node-features were calculated in each pre-trial period and regressed 

against subsequent trial reaction time. Those with univariate regression coefficients that had a p-
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value of less than 0.05 were initially selected, and concatenated into a vector of preparatory 

node-features that may contribute to a low-dimensional cognitive neural state decoder for the 

pre-trial preparatory period (Figure 1C, see methods). This same methodology was repeated for 

the analyzed network structure during the intra-trial period, where univariate task-engaged node-

features were selected and concatenated to represent a plausible low-dimensional task-engaged 

cognitive neural state decoder.   

Next, we tested the capacity for the neural state decoder to predict single-trial cognitive 

performance by analyzing the z-scored value of each selected node-feature as a trial-by-trial 

network state space (Figure 2). We demonstrated this approach first in a single subject session. 

Behaviorally, task performance fluctuated dynamically across trials (Figure 2A). Using only the 

two most robust node-features to represent the pre-trial preparatory state, a distinction between 

fast and slow trials emerged (Figure 2B). When all selected node-features were included in the 

preparatory network state space, it was evident that some node-feature values were elevated prior 

to fast trials and decreased prior to slow trials, while others had an opposite pattern (Figure 2C). 

To quantify the single-trial predictive capacity of this state space, a 5-fold cross-validated SVM 

was trained and bootstrapped over 1000 iterations to assess classification accuracy for ‘fast’ 

versus ‘slow’ trials (middle third of trials and error trials excluded, see methods). Since selected 

node-features were those with a univariate relationship to RT, expectedly, classification accuracy 

in this single subject achieved a robust above-chance performance (AUC = 0.89).  Further, a 

simple null model with the same dataset but randomly shuffling “fast” versus “slow” trial labels 

led to chance performance (Figure 2D). Using the same methodology, a significant prediction 

classification was seen in a non-human primate using pre-trial dynamic brain network state 

structure to predict upcoming trial performance on the same task (Fig S1). Across all subjects, 
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SVM performance was significantly better than chance, and the subject-specific null models 

expectedly performed at chance (Figure 2E). Validation of the selected network state space SVM 

was also performed using a temporal partition instead of a 5-fold cross validation approach, 

beginning with a partition with the first 5% of data in the training set and 95% in the testing set, 

and ending with a partition with the first 85% of data in the training set and 15% in the testing 

set. This approach compared SVM performance using the selected network state space, all node 

features, and the shuffled label null. As expected, with only 5% of training data, the classifier 

performs near chance, but with increasing amounts of data, the performance asymptotically 

reaches between 0.7 and 0.8 mean AUC across subjects. Comparatively, using all node features 

only performs slightly higher than chance, and the shuffled label null performs at chance (Figure 

S2). To confirm the network state space was more related to upcoming performance rather than 

previous trial performance, the network state space was also tested as a prediction of the previous 

trial’s reaction time instead of the upcoming trial. There was above chance performance when 

classifying the previous trial’s reaction time, but there was high variability and much lower 

prediction accuracy of the selected network state space for the previous trial RT compared to the 

upcoming trial RT label (Fig S3).  Furthermore, to assess whether the number of selected 

features in the behavioral dataset was different than what would be expected from randomized 

data, two additional null model comparisons were tested. Both of these null models were created 

prior to feature selection, and then the resulting data was passed through the same regression-

based machine learning feature selection and network state space extraction pipeline. The first 

null model was created by randomly shuffling the reaction time values assigned to each trial 

before selecting features. The second null model was a random alteration to the averaged nodal 

spectral power and communicability data itself. Multiple univariate linear regression-based 
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feature selection was then performed on these null datasets and duplicated 100 times to create a 

distribution of features. The number of selected features in the behavioral dataset (n=1452) was 

significantly higher than the mean number of selected features in the distribution of either null 

model (one-sample t-test RT randomization t(99))=-36.6, p=2.4 x 10-59; Data randomization 

t(99) = -98.1, p=1.9 x 10-100) and in fact lay outside of both distributions entirely (Figure 2E). 

The RT randomization null distribution had higher variability compared to the data 

randomization null distribution, though their means were similar (Figure 2E). 

Next, the subset of selected node features coming from Qexp were separated from the 

spectral power-based features. A 5-fold cross validated SVM was now trained on each subset of 

the input data. SVM classification using Qexp nodal architecture as the input trended towards 

outperforming spectral power-based classification (p=0.12, Figure 2F). The same approach was 

used to compare classification performance using nodal Qexp as input versus simply using nodal 

connectivity strength (as measured by PLV) as input. The SVM trained on Qexp features 

significantly outperformed the SVM trained on PLV features extracted by an identical 

regression-based approach (p=0.0049, Figure 2F).  

 

Performance-related differences in preparatory and task-engaged brain network structure 

For each subject, we quantified metrics of “ranked Qexp” and “ranked power” by Z-

scoring each feature value within-session across all nodes and all trials. The Z-score therefore 

represents the relative value of a node-feature during a particular trial (Qexp or spectral power in 

the relevant frequency band for a given node), compared to the mean value of this feature across 

all nodes and all trials. We thus provide a common dimensional space to plot the ranked Qexp 

and ranked Pow of each selected node-feature for all subject sessions. Figures 3A, B plot the 
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average Z-score for each selected node-feature across subjects during slow trials against its 

average Z-score during fast trials. In this plot, color indicated the subject task session (3 subjects 

performed the task a second time resulting in 27 total sessions across 24 subjects) and size of the 

marker indicated frequency band of the feature. The y=x diagonal line indicated that a node-

feature had the same relative value for both fast and slow trials, and thus is a line of “behavioral 

equivalence” where fast and slow trials cannot be distinguished. The Euclidean distance from the 

y=x diagonal was computed as a measure of a node-feature’s average ability to distinguish ‘fast’ 

from ‘slow’ trials. By comparing the Euclidean distance of ranked node-features derived from 

pre-trial Qexp compared to power, we found that Qexp node-features had higher Euclidean 

distances (p<0.0001, Figure 3C), signifying a superior ability to distinguish fast versus slow 

trials. In contrast, a similar analysis comparing intra-trial Qexp and power node-features found 

that power node-features had higher Euclidean distances (p< 0.0001, Figure 3C). In other words, 

Qexp node-features in the pre-trial period better differentiated upcoming performance, while 

Pow node-features in the intra-trial period better differentiated upcoming performance. 

 

Intrinsic topology of preparatory and task-engaged dynamic brain network states 

We analyzed the intrinsic anatomical topology of the ranked Qexp and ranked Pow node-

features by first collapsing the frequency domain, and segregating nodes based on high versus 

low rank (Figure 3A, B). Node-features in the upper right quadrant have positive z-scored values 

for both fast and slow trials, suggesting that they intrinsically have high ranked Qexp or power 

regardless of behavioral performance. Node-features in the lower left quadrant have negative z-

scored values for both fast and slow trials, suggesting that they intrinsically low ranked Qexp or 
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power. We asked the question – what was the anatomical distribution of nodes in these two 

distinct intrinsic topological populations? 

To map nodal coordinates to known brain regions, we aggregated grey matter (GM) ROIs 

from the DKT atlas39,40 into three larger regions: (1) frontal cortex, (2) temporoparietal cortex, 

and (3) paralimbic GM. This atlas was used to segment the brain of each patient. We similarly 

aggregated white matter (WM) ROIs from the EVE atlas41 into five larger regions: (1) 

thalamocortical, (2) frontal association, (3) temporal association, (4) paralimbic, and (5) 

commissural WM. The exact ROIs that make up these gross anatomical groupings can be found 

in Supplemental Table 1. Based on these eight anatomical groupings, we assessed the anatomical 

distribution of nodes in the upper right versus lower left quadrants of Figure 3A. Surprisingly, 

we found that nodes with intrinsically high ranked Qexp (upper right quadrant) were 

predominantly from white matter, whereas nodes with intrinsically low ranked Qexp (lower left 

quadrant) were predominantly from grey matter (Chi-square test of proportion, p < 0.1e-12). In 

particular, nodes assigned to thalamocortical white matter had the most robust association with 

intrinsically high ranked Qexp (Figure 3D). By contrast, for extracted power-based nodes in the 

upper right and lower left quadrants of Figure 3B, there was no significant difference in the 

anatomical distribution of nodes with intrinsically high versus low ranked power (Chi-square test 

of proportion, p = 0.3). In the intra-trial period, the same general pattern remained present, 

however the ranked nodal Qexp of the thalamocortical WM group was reduced compared to the 

pre-trial period, and all the WM nodes had similar contribution to intrinsic Qexp (Figure 3D). In 

other words, the thalamocortical WM nodes had disproportionately high Qexp in the pre-trial 

period across all trials (fast and slow); while in the intra-trial period nodes across all the major 
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recorded WM pathways (thalamocortical, frontal association, and temporal association) had a 

similar degree of intrinsically high Qexp. 

 

Anatomical drivers of the ‘primed to perform’ dynamic brain network state 

 We then asked if there were any metastable anatomical features predicting single-trial 

performance across all subjects. We performed a rank-sum test for each feature type (either Qexp 

or power in each of the four frequency bands, for a total of 8 feature types) and each anatomic 

region (8 regions total). Thus, we adjusted the significance level to 7.8e-4 to correct for 64 

multiple comparisons. With subjects providing repeated observations for the rank-sum tests, we 

compared the distribution of regression coefficients of all selected node-features within each 

anatomic region, compared to the distribution of regression coefficients of all non-selected node-

features. Thus, this analysis indicated whether a feature type within a given anatomic region can 

be generalized as a significant positive or negative predictor of reaction time. In Qexp features 

during the pre-trial period (Figure 4A and B), there was a robust corrected significance for 

theta/alpha band Qexp in thalamocortical WM nodes as inverse predictors of RT across all 

subjects (rank-sum p < 1.5e-4), meaning higher values predicted faster RT. Similarly, beta band 

Qexp measures in paralimbic GM, frontal association WM, and temporal association WM were 

all significant inverse predictors of RT (rank-sum p < 1.6e-5, 7.8e-4, and 7.8e-4 respectively).  

Only high-gamma Qexp in frontal GM served as a positive predictor (rank-sum p < 7.8e-4), 

where higher values predicted slower RT. For power-based features, only nodes in frontal and 

temporal association WM paths achieved cross-subject significance. High-gamma power in 

frontal association WM was a significant positive predictor of RT (rank-sum p < 1.5e-4) and beta 

power in temporal association WM served as an inverse predictor of RT (rank-sum p<1.6e-5). 
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Raw data for each feature-anatomy pair in the pre-trial period is found in Supplemental Figure 4. 

In summary, metastable anatomical drivers of the pre-trial preparatory dynamic brain network 

state across subjects were primarily from low frequency Qexp, especially in white matter nodes.  

As a comparison, we performed the same analysis of region-feature pairs in the intra-trial 

task-engaged period. The results were largely the opposite of what was seen in the pre-trial 

period. There was a shift in metastable drivers from low to high frequency, a more even 

distribution across GM and WM, and predominance of power based features instead of Qexp in 

the task-engaged dynamic brain network state across subjects. Specifically, for Qexp nodal 

architecture, we found that frontal association WM in the low-gamma band, and thalamocortical 

fibers in the high-gamma band were negative predictors of RT (corrected p<0.001 and 0.05 

respectively). Meanwhile, frontal GM, paralimbic GM, and temporal association WM were 

positive predictors of RT in the high-gamma band (corrected p<0.01, 0.05, and 0.01 

respectively). However, power was a more broadly predictive metric of reaction time in the task 

engaged period across all subjects in both GM and WM regions. Theta/alpha power in the 

commissural fibers, beta power in frontal GM, frontal association WM, and temporal association 

WM, and high-gamma power in the thalamocortical fibers all served as inverse predictors of RT 

(corrected p<0.01, 0.001, 0.001, 0.01, and 0.05 respectively). In the low-gamma band, 

temporoparietal GM served as a positive predictor of RT (corrected p<0.001), while in high-

gamma temporoparietal GM, paralimbic GM, and temporoparietal WM served as positive 

predictors (corrected p<0.05, 0.05, and 0.01 respectively). Raw data for each feature-anatomy 

pair in the pre-trial period are found in Supplemental Figure S5.  

 
Discussion: 
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In this study we aim to answer two primary questions: 1) Within each subject is there a 

specific pattern of preparatory nodal activity and architecture that preferentially enables 

enhanced dynamic cognitive performance? In other words, for each subject does a dynamic 

preparatory network structure exist that is “primed to perform?”, and 2) Are there anatomical 

activity- and/or architecture-based drivers of these dynamic brain network states across subjects? 

We utilize a simple temporal expectancy task and comparatively analyze predictive dynamic 

network structure in a 500 millisecond epoch prior to the start of each trial (pre-trial) and prior to 

the go-cue (intra-trial). By beginning with a within-subject paradigm, followed by an across-

subject analysis that explores topological and anatomical properties that are metastable across 

individuals, we probe the potential network mechanisms underlying preparatory brain states. We 

perform this analysis using data from the pre-trial versus intra-trial periods to compare the role of 

preparatory cognitive control during the pre-trial period, versus mechanisms of task-engaged 

cognitive loading during the intra-trial period. While there are numerous neural signatures from 

the intra-trial delay period in a temporal expectancy task that are known to predict reaction 

time42–48, less is known about how preparatory brain states (during the pre-trial period) may be 

optimally organized to be “primed to perform.”  

We successfully developed a subject-specific dynamic brain state extraction paradigm 

that incorporates nodal measures of both neural activity (spectral power) and network 

architecture (Qexp). Deploying this approach in patients implanted with sEEG allows us to 

investigate the brain’s preparatory mechanisms for dynamic cognition with high spatiotemporal 

resolution. When compared to pre-trial PLV (a measure of connectivity strength), we find that 

pre-trial Qexp architecture provides additional insight into brain communication dynamics, 

resulting in significantly better performance of a classifier predicting trial-by-trial performance 
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across subjects (Figure 2F). By utilizing a multiple univariate regression approach for feature 

selection, we specifically create an inclusive but dimensionally reduced nodal feature set with the 

strongest relationship with reaction time. Since the spatial coverage of channels is heterogeneous 

between subjects, this type of demixed dimensionality reduction technique efficiently narrows 

down the number of node-features for each subject according to relevance, while also retaining 

enough node-features to allow for anatomic overlap across subjects. Further, the regression-

based feature selection in particular isolates features that have a dichotomous relationship with 

RT. Meaning, depending on the sign of the regression slope, a high value of the feature will 

predict either fast or slow RT, and a low value will predict the opposite. These dichotomously 

relevant features provide the most robust and efficient differentiation of RT as a within-subject 

extracted network structure. Therefore, we next ask: what, if any, are the topological and 

anatomical properties of this extracted network structure that are stable across subjects? And 

how does this metastable network structure differ between the preparatory pre-trial period 

compared to the task-engaged intra-trial period? 

In the pre-trial period, we find that the relative topological organization of Qexp features 

across subjects strongly differentiates averaged fast versus slow performance (Figure 3A & C). 

This implies that relative nodal communicability quantifies aspects of the network’s functional 

architecture that may predispose subjects to better versus worse performance. By contrast, the 

relative topology of spectral power-based features are not as robust predictors of performance 

(Figure 3B, C), implying that nodal activity patterns (as measured by spectral power) are not as 

effective in differentiating performance states in the pre-trial preparatory period. Interestingly, 

these findings are completely reversed during the intra-trial period, where nodal activity patterns 

(instead of architecture) strongly differentiate averaged performance states (Figure 3C). 
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 We next ask the question, are there intrinsic anatomical segregations that contribute to the 

topological organization of the extracted network structure? We analyze the same dataset of both 

Qexp-based and spectral power-based node-features, but instead of comparing how these inputs 

predict fast versus slow performance, we are now concerned with the relative topological 

organization of these node-features – the landscape of the network where some nodes tend to 

have higher communicability or power-based activity relative to others, regardless of changes in 

task behavior. Node-features in the upper right quadrant (quadrant 1) of Figure 3A-B have a 

positive z-scored value for fast and slow trials. This means that regardless of upcoming trial 

performance, the relative node-feature value for these particular nodes is always higher than the 

feature-specific average across all nodes and trials, within each subject. The opposite is true for 

nodes that fall within the lower left quadrant (quadrant 3). For these nodes, the relative nodal 

feature value is always lower than the feature-specific average across all nodes and trials, within 

each subject. This feature specific topology is therefore intrinsic to the node, and not evoked by 

task performance states. Since z-scores are computed within-subject, the relative topological 

position in the network is also within-subject and each node’s relative rank can then be 

concatenated across subjects. This across-subject topological framework can therefore 

distinguish between nodes that have high or low intrinsic topology in both architectural 

(communicability) and activity (power)-based feature space. This type of organization, 

particularly in intrinsic architectural feature space, may inform the controllability of cognitive 

network structure when introducing specific extrinsic perturbations, such as electrical 

stimulation, in topologically important nodes49,50.  

We then collapse our dataset along the frequency domain to focus on identifying any 

anatomical segregation that may occur with respect to high or low intrinsic nodal position in the 
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feature-specific network topology.  Based on post-operative localization, we assign each node to 

an anatomical group that consists of either frontal, temporoparietal, or paralimbic grey matter 

versus thalamocortical, frontal association, temporal association, paralimbic, and commissural 

white matter (see methods). Remarkably, in the pre-trial period there is a near complete 

dissociation that occurs between low versus high intrinsic communicability based on grey matter 

versus white matter nodal location (Figure 3D). All grey matter regions have a predominance of 

Qexp node features in quadrant 3, while nearly all white matter regions have a predominance of 

Qexp node features in quadrant 1. In particular, thalamocortical projection white matter nodes 

have the most robust distinction, followed by temporal association white matter nodes. This 

topological pattern may be present with power-based nodes but is far less robust. Interestingly, 

temporal association white matter nodes are the only anatomical grouping to have high intrinsic 

position with architectural features and low intrinsic position with power-based features (Figure 

3D). Comparatively, in the intra-trial period, the same overall dissociation remains but now 

nodes with high intrinsic position are more evenly distributed across thalamocortical projection 

fibers, frontal, and temporal association white matter regions (Figure 3D). This finding may 

reflect that the task-engaged brain is facilitating specific network communication and activations 

requiring involvement of diffuse frontal, temporal, and parietal regions as well as their 

thalamocortical connections. Further, the fact that there is a robust anatomical distinction 

between grey and white matter nodes according to their intrinsic network position, particularly 

with regard to communicability architectural features, may be explained by the fact that white 

matter acts as a structural bridge connecting large neural populations; thus, white matter likely 

plays an important role in bridging relevant behavioral networks to construct cognitive brain 

states.  
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 We then ask the question, do certain architectural or power-based features from specific 

anatomical regions have a reliable association with trial-by-trial performance across subjects? 

Surprisingly, we find in the pre-trial period, low frequency communicability in thalamocortical 

(theta-alpha), frontal association (beta), and temporal association (beta) white matter nodes 

reliably predicts trial-by-trial performance across subjects (Figure 4A). Specifically, increased 

low frequency Qexp in these extracted white matter region-features reliably precedes fast 

performance across subjects (Figure 4A). From this data driven approach, interestingly the grey 

matter regions that show significant architectural metastable representations happen to be 

paralimbic grey matter, which includes cingulate gyrus, and frontal grey matter, which includes 

precentral gyrus, two of the regions thought to have strongest association with proactive control 

states (Figure 4A). In contrast, the impact of spectral activity-based region features in the pre-

trial period is less reliable across subjects (Figure 4A). Interestingly, during the intra-trial period, 

we find almost the complete opposite (Figure 4B). We find a primary role for spectral activity-

based features, as well as a stronger role of the gamma frequency bands in reliably predicting 

trial-by-trial performance across subjects. Gamma rhythms are known to be associated 

extensively with perception, attention, and synchronizing local activity51, functions which are 

likely critical for task-dependent cognitive loading during the intra-trial period. 

A brain state that is “primed to perform,” in which network communication and neural 

activity are optimally organized prior to the start of a cognitive task to preferentially enable 

enhanced performance, relies on the precise interplay of proactive cognitive control mechanisms. 

The most well-known regions and associated networks involved in proactive control are thought 

to involve prefrontal cortex, anterior cingulate gyrus, and their respective frontoparietal and 

cingulo-insulo-opercular networks52. These networks are intimately involved with thalamic 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.509351doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.25.509351
http://creativecommons.org/licenses/by-nd/4.0/


nuclei particularly in the anterior and mediodorsal nuclear groups53. In the pre-trial period, unlike 

the intra-trial period, we find a primary anatomical driver of the “primed to perform” brain state 

to be low frequency network architecture in white matter nodes. In particular, these important 

nodes include thalamocortical white matter pathways known to be linking thalamus to critical 

hubs in the FPN and CON, as well as frontotemporal associative tracts known to be linking 

multiple critical cortical regions. Low frequency synchrony is thought to drive inter-regional 

communication51, and theta-alpha range activity has been shown to be particularly important in 

thalamocortical circuits underlying cognitive functional changes during aging54. Interestingly, in 

our own dataset, the left anterior thalamocortical projection fibers have the most significant 

contribution to selected node features relative to the sampled distribution across all 

thalamocortical white matter nodes (Table S2: Left anterior corona radiata percentage of selected 

features (44/104 = 42.3%) compared to sampled distribution across thalamocortical nodes 

(117/425 = 27.5%) chi2stat = 7.9350, df=1, p = 0.0048). 

These findings have novel implications for the role of white matter in decoding and 

modulating cognitive states. Although white matter has historically been viewed as 

neurophysiologically quiet, we find that white matter nodal communicability in the pre-trial 

period and white matter activity in the intra-trial period are important for predicting task 

performance. In particular, the finding that thalamocortical WM communicability is the region-

feature that is most robust in predicting reaction time across subjects, as well as the finding that 

thalamocortical WM nodes having the highest intrinsic topology during pre-trial periods, implies 

that white matter nodes are helpful for decoding cognitive brain states, and potentially also for 

controlling these brain states with exogenous modulation. These findings are corroborated by 

literature showing that these may have high structural relevance for cognitively disabled 
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populations; for example, studies in Down Syndrome patients have shown that structural white 

matter changes in frontoparietal and temporal association and in frontal projection fibers (such as 

those traveling through the anterior corona radiata) strongly correlate with cognitive disability in 

these patients55,56.  In our study, the importance of these white matter nodes likely stems from the 

tendency of structural connectivity (the anatomical connectome defined by white matter tracts) to 

shape functional connectivity (the statistical relationships between neurophysiologic events in 

distinct brain regions) over time35. Thus, our findings suggest that certain white matter nodes 

may be key to identifying brain states, and perhaps also to intervening on brain states. 

Our study represents a major step in understanding dynamic mechanisms of preparatory 

cognitive control, but does have several key limitations. A chief concern is inherent to our 

method of leveraging SEEG recordings in epilepsy patients. Not only do SEEG implants vary 

across patients due to unique clinical needs for targeted recordings, but patients with epilepsy 

frequently have impairments in cognition, as well as distributed abnormalities in both neural 

activity and network architecture57. While these issues affect nearly all studies using human 

intracranial recordings, they introduce higher sources of within and across-patient variability in 

our study compared to fMRI studies in healthy subjects. Other limitations include the simplicity 

of the temporal expectancy task and its study in an unnatural hospital environment, as well as the 

presence of learning across trial periods, which is known to affect network architecture. 

Our study and its limitations prompt several important directions of future research. One 

direction involves further investigation of white matter electrophysiology as a marker of 

cognitive state (and predictor of subsequent task performance), and correlating this functional 

activity with structural connectivity as assessed by personalized diffusion imaging58. Second, it 

may be important to study markers of cognitive control in natural environments by employing 
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intracranial EEG in ambulatory humans outside the hospital. With the availability of chronic 

implantable neuro-devices (such as the Neuropace RNS and Medtronic RC + S or Percept) that 

can export data to cloud platforms, such studies are becoming possible59,60. Finally, our work 

opens new directions within the field of brain computer interfaces. Future studies could aim to 

detect generalized (i.e., not task-specific) “primed to perform” brain states that predict good 

performance across a variety of cognitive tasks. Additional studies could explore the role of 

electrical stimulation as a source of network control – that is, exploring whether we can reliably 

induce network state transitions that push the brain into preferred, “primed to perform” states to 

improve cognition61. These findings would be used to improve early prototypes of closed-loop 

systems62 that detect cognitive states in real-time, prior to the start of cognitive loading, and 

provide targeted stimulation to improve dynamic cognitive output. This type of a closed-loop 

strategy could have enormous implications for patients with intellectual or cognitive disability, 

where the overarching goal is not to alter the brain substrate itself, but to preferentially enable 

functional structures in the substrate that are “primed to perform”. 

 

Methods 

Subjects and Task 

We studied 24 human subjects and one non-human primate with intracranial electrodes 

that performed the same simple temporal expectancy cognitive task. All human subjects were 

implanted with stereo-EEG as part of clinical evaluation for epilepsy surgery, and consented to 

research performed under approval of the Institutional Review Board of the University of 

Pennsylvania.  
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Each temporal expectancy trial consisted of a visual cue, a delay period of either 500 or 

1500 ms, and a signal after which each subject must press a key in response. We measured 

reaction time (RT) as the duration between the signal and the time the key was pressed. We 

eliminated any trials with RT less than zero or greater than one second. Our period of interest for 

analysis of the ‘pre-trial’ state was the 500ms window prior to the start of each trial during which 

no stimulus or task-relevant behavior was present. We also analyzed a 500 ms window within 

each trial, which we refer to as ‘intra-trial’ to validate our approach to mapping activity and 

architecture, as this period has known anatomic predictors of dynamic cognition.  

Dynamic Brain Network State Modeling 

The dynamic brain network state was modeled as the graph architecture and spectral 

activity of each node (monopolar montage for graph analysis vs. bipolar montage for spectral 

analysis) across the four canonical frequency bands. Nodes that were outside of the brain and 

nodes that had significant noise contamination were excluded from each subject’s analysis. For 

the graph architecture component of network state modeling, to preserve local phase-based 

activity the raw neural time series data from each contact was processed as a monopolar signal 

and re-referenced to the common average. A band-pass filter for theta/alpha [3-12Hz], beta [14-

30Hz], low gamma [35-55Hz], and high gamma [70-150Hz] followed by a Hilbert 

transformation was used to calculate frequency-specific instantaneous phase of the raw signal for 

each node during the time window of interest. Single-trial nodal pairwise phase-locking value 

(PLV) across this window was then calculated and used for weighted adjacency matrix (Wadj) 

construction. We performed this process for both pre-trial and intra-trial epochs. 

In order to assess nodal graph architecture incorporating shortest and non-shortest path 

statistics, pairwise communicability29,30,63–66 (Qexp) was then calculated by taking the matrix 
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exponential of the PLV-based Wadj, and the mean Qexp for each node was calculated. For the 

spectral activity component, a bipolar montage was used to create a time series representing a 

virtual centroid. Wavelet transformation was used for spectral decomposition and power was 

computed for each node and then z-scored within the same frequency bands for the same time 

window as in the graph analysis. Thus, for each graph node (monopolar contact) there was a 

mean nodal Qexp value for each of the four frequency bands, and for each power node (bipolar 

centroid), there was a mean spectral power value for each of the four frequency bands. Each 

nodal metric-frequency combination was considered a feature. We employed a demixed 

dimensionality reduction technique using linear regression to create a behaviorally-specific low-

dimensional state space that extracted and concatenated all the features with a significant 

(p<0.05) regression slope against RT67. This approach enabled a low-dimensional feature space 

with a preserved relationship between nodal anatomy and the dependent variable of interest, and 

was used to define each subject’s dynamic brain network state space. 

Quantification of Predictive Performance of Dynamic Brain Network State 

The ability for the dynamic brain network state to predict cognitive performance was 

assessed by splitting subject performance across all non-error trials (RT<0 or RT>999ms were 

considered error trials) into fastest versus slowest third of RTs. The structure of the dynamic 

brain network state on a per-trial basis was used to train a support vector machine (SVM). Five-

fold cross validation was used to assess performance prediction and this process was 

bootstrapped 1000 times to generate a receiver operating characteristic curve with 95% 

confidence intervals. Temporal partitioning instead of 5-fold cross validation was also used with 

a sliding temporal cutoff between training and test data set to further validate dynamic brain 

network state performance prediction (supplemental). We trained and tested separate classifiers 
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for pre-trial and intra-trial periods. For a null comparison, the same data was used to train the 

SVM, but the trial performance assignments (fast versus slow) were randomly shuffled. A 

second null comparison was also created by using all node features as input into the SVM instead 

of only using the low-dimensional dynamic brain network state space. Several other null 

comparisons were tested and are available in the supplemental material. 

Next, the subset of extracted node-feature pairs coming from Qexp were separated from 

the spectral power-based features. A 5-fold cross validated SVM was trained on the subset of 

extracted Qexp node-feature pairs, and compared to an SVM trained on the subset of extracted 

spectral power node-features, as well as an SVM trained on a subset of extracted PLV node-

features.  

 

Anatomical localization 

Each patient underwent a standard epilepsy imaging protocol including pre-implant MRI, 

post implant MRI & CT, and post-resection MRI. We used automated warping and labeling 

(ANTS) to register all images to the pre-implant MRI space68. Electrodes were localized and 

segmented using in-house software69, and any electrodes whose centroids fell outside the brain 

were excluded from analysis.  

We also used ANTS to perform a whole-brain automated segmentation using the DKT 

atlas70,71. Localization and segmentations were visually inspected and confirmed for accuracy by 

a board-certified neuroradiologist. Nodal anatomy was first localized grossly into grey matter 

versus white matter based on these individual native T1 segmentations. In order to balance 

increasingly granular spatial resolution with diminishing node counts, ANTS-based anatomical 

bundles were then created to consist of groups of grey matter and white matter nodes that shared 
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known anatomical or network relationships. We then registered the pre-implant MRI to a ICBM 

152 template72 in Montreal Neurological Institute (MNI) space and used MNI coordinate to 

localize structures in white matter using the JHU EVE template41 to assign WM electrode 

contacts to major fiber tracts. 

 

Anatomical analysis 

In order to assess the role of anatomy in the dynamic cognition, we probed whether 

features in certain regions consistently served to increase or decrease reaction times. To permit 

sufficient generalizability across patients, we bundled together individual GM and WM ROI to 

create larger anatomic regions which consist of (i) frontal cortex, (ii) temporoparietal cortex, (iii) 

paralimbic GM, (iv) thalamocortical fibers, (v) frontal association fibers, (vi) temporal 

association fibers, (vii) paralimbic WM, and (viii) commissural WM. We list all individual ROI 

that comprise each composite region in supplemental table 1. Metastable anatomical substates 

were identified by taking the average regression slope value for each selected node in designated 

anatomical bundles across all applicable subjects, and testing consistency of direction and 

magnitude of each anatomical bundle against the null-model of non-selected nodes using the 

Wilcoxon rank-sum test. We used Bonferroni correction to adjust our significance level for 64 

comparisons (8 features x 8 regions). 

 
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.509351doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.25.509351
http://creativecommons.org/licenses/by-nd/4.0/


References: 
 
1. Wainio-Theberge, S., Wolff, A. & Northoff, G. Dynamic relationships between 

spontaneous and evoked electrophysiological activity. Commun Biol 4, 741 (2021). 
2. Uddin, L. Q. Bring the Noise: Reconceptualizing Spontaneous Neural Activity. Trends 

Cogn Sci 24, 734–746 (2020). 
3. Ringach, D. L. Spontaneous and driven cortical activity: implications for computation. 

Curr Opin Neurobiol 19, 439–44 (2009). 
4. Liu, Y., Nour, M. M., Schuck, N. W., Behrens, T. E. J. & Dolan, R. J. Decoding cognition 

from spontaneous neural activity. Nat Rev Neurosci 23, 204–214 (2022). 
5. Cohen, M. X. Unconscious errors enhance prefrontal-occipital oscillatory synchrony. 

Front Hum Neurosci 3, (2009). 
6. Hesselmann, G., Kell, C. A., Eger, E. & Kleinschmidt, A. Spontaneous local variations in 

ongoing neural activity bias perceptual decisions. Proc Natl Acad Sci U S A 105, 10984–9 
(2008). 

7. Popova, P. et al. The impact of cognitive training on spontaneous gamma oscillations in 
schizophrenia. Psychophysiology 55, e13083 (2018). 

8. Cañete-Massé, C. et al. Altered spontaneous brain activity in Down syndrome and its 
relation with cognitive outcome. Sci Rep 12, 15410 (2022). 

9. Eisma, J., Rawls, E., Long, S., Mach, R. & Lamm, C. Frontal midline theta differentiates 
separate cognitive control strategies while still generalizing the need for cognitive control. 
Scientific Reports 2021 11:1 11, 1–14 (2021). 

10. Braver, T. S. The variable nature of cognitive control: a dual mechanisms framework. 
Trends Cogn Sci 16, 106–113 (2012). 

11. Stuphorn, V. & Emeric, E. E. Proactive and reactive control by the medial frontal cortex. 
Front Neuroeng 0, 9 (2012). 

12. Gonthier, C., Macnamara, B. N., Chow, M., Conway, A. R. A. & Braver, T. S. Inducing 
proactive control shifts in the AX-CPT. Front Psychol 7, 1822 (2016). 

13. Wang, L. et al. Neural substrates of deficient cognitive control in individuals with severe 
internet gaming disorder. Neuroimage Clin 32, (2021). 

14. Hadley, L. V., Acluche, F. & Chevalier, N. Encouraging performance monitoring 
promotes proactive control in children. Dev Sci 23, (2020). 

15. Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. 
Proceedings of the National Academy of Sciences 108, 7641–7646 (2011). 

16. Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. Learning-induced autonomy of 
sensorimotor systems. Nat Neurosci 18, 744–751 (2015). 

17. Cooper, P. S. et al. Frontal theta predicts specific cognitive control-induced behavioural 
changes beyond general reaction time slowing. Neuroimage 189, 130–140 (2019). 

18. Tsunoda, Y. & Kakei, S. Reaction time changes with the hazard rate for a behaviorally 
relevant event when monkeys perform a delayed wrist movement task. Neurosci Lett 433, 
152–157 (2008). 

19. Bueti, D., Bahrami, B., Walsh, V. & Rees, G. Encoding of Temporal Probabilities in the 
Human Brain. Journal of Neuroscience 30, 4343–4352 (2010). 

20. Wittmann, M. The inner sense of time: how the brain creates a representation of duration. 
Nat Rev Neurosci 14, 217–223 (2013). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.509351doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.25.509351
http://creativecommons.org/licenses/by-nd/4.0/


21. Buch, V. P. et al. Network Brain-Computer Interface (nBCI): An Alternative Approach 
for Cognitive Prosthetics. Front Neurosci 12, (2018). 

22. Shine, J. M. et al. Human cognition involves the dynamic integration of neural activity 
and neuromodulatory systems. Nat Neurosci 22, 289–296 (2019). 

23. Yellapantula, S., Forseth, K., Tandon, N. & Aazhang, B. Netdi: Methodology elucidating 
the role of power and dynamical brain network features that underpin word production. 
eNeuro 8, 1–17 (2021). 

24. Buzsáki, G., Logothetis, N. & Singer, W. Scaling brain size, keeping timing: evolutionary 
preservation of brain rhythms. Neuron 80, 751–764 (2013). 

25. Kahana, M. J. The Cognitive Correlates of Human Brain Oscillations. Journal of 
Neuroscience 26, 1669–1672 (2006). 

26. Ward, L. M. Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7, 
553–559 (2003). 

27. Schyns, P. G., Thut, G. & Gross, J. Cracking the Code of Oscillatory Activity. PLoS Biol 
9, e1001064 (2011). 

28. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and 
interpretations. Neuroimage 52, 1059–1069 (2010). 

29. Estrada, E. & Hatano, N. Communicability in complex networks. 
30. Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex 

brain networks. Nature Reviews Neuroscience vol. 19 17–33 Preprint at 
https://doi.org/10.1038/nrn.2017.149 (2018). 

31. Aghagolzadeh, M. & Truccolo, W. Latent state-space models for neural decoding. in 2014 
36th Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society 3033–3036 (IEEE, 2014). doi:10.1109/EMBC.2014.6944262. 

32. Shine, J. M. et al. Human cognition involves the dynamic integration of neural activity 
and neuromodulatory systems. Nat Neurosci 22, 289–296 (2019). 

33. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural 
recordings. Nat Neurosci 17, 1500–1509 (2014). 

34. Recanatesi, S. et al. Predictive learning as a network mechanism for extracting low-
dimensional latent space representations. Nat Commun 12, 1417 (2021). 

35. Betzel, R. F., Gu, S., Medaglia, J. D., Pasqualetti, F. & Bassett, D. S. Optimally 
controlling the human connectome: the role of network topology. Scientific Reports 2016 
6:1 6, 1–14 (2016). 

36. Fields, R. D. White matter in learning, cognition and psychiatric disorders. Trends 
Neurosci 31, 361–370 (2008). 

37. Ding, Z. et al. Detection of synchronous brain activity in white matter tracts at rest and 
under functional loading. Proceedings of the National Academy of Sciences 115, 595–600 
(2018). 

38. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural 
recordings. Nature Neuroscience vol. 17 1500–1509 Preprint at 
https://doi.org/10.1038/nn.3776 (2014). 

39. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral 
cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006). 

40. Klein, A. & Tourville, J. 101 labeled brain images and a consistent human cortical 
labeling protocol. Front Neurosci 6, 171 (2012). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.509351doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.25.509351
http://creativecommons.org/licenses/by-nd/4.0/


41. Oishi, K. et al. Atlas-based whole brain white matter analysis using large deformation 
diffeomorphic metric mapping: Application to normal elderly and Alzheimer’s disease 
participants. Neuroimage 46, 486–499 (2009). 

42. O’Connell, R. G. et al. Uncovering the neural signature of lapsing attention: 
Electrophysiological signals predict errors up to 20 s before they occur. Journal of 
Neuroscience 29, 8604–8611 (2009). 

43. Leon, M. I. & Shadlen, M. N. Representation of Time by Neurons in the Posterior Parietal 
Cortex of the Macaque. Neuron 38, 317–327 (2003). 

44. Mauk, M. D. & Buonomano, D. v. THE NEURAL BASIS OF TEMPORAL 
PROCESSING. Annu Rev Neurosci 27, 307–340 (2004). 

45. Janssen, P. & Shadlen, M. N. A representation of the hazard rate of elapsed time in 
macaque area LIP. Nat Neurosci 8, 234–241 (2005). 

46. Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike Synchronization and Rate 
Modulation Differentially Involved in Motor Cortical Function. Science (1979) 278, 
1950–1953 (1997). 

47. WALTER, W. G., COOPER, R., ALDRIDGE, V. J., McCALLUM, W. C. & WINTER, 
A. L. Contingent Negative Variation : An Electric Sign of Sensori-Motor Association and 
Expectancy in the Human Brain. Nature 203, 380–384 (1964). 

48. Nobre, A., Correa, A. & Coull, J. The hazards of time. Curr Opin Neurobiol 17, 465–470 
(2007). 

49. Gu, S. et al. Controllability of structural brain networks. Nat Commun 6, 1–10 (2015). 
50. Scheid, B. H. et al. Time-evolving controllability of effective connectivity networks 

during seizure progression. Proc Natl Acad Sci U S A 118, 2006436118 (2021). 
51. Kopell, N., Ermentrout, G. B., Whittington, M. A. & Traub, R. D. Gamma rhythms and 

beta rhythms have different synchronization properties. PNAS February vol. 15 (2000). 
52. Manard, M., François, S., Phillips, C., Salmon, E. & Collette, F. The neural bases of 

proactive and reactive control processes in normal aging. Behavioural brain research 320, 
504–516 (2017). 

53. Grodd, W., Kumar, V. J., Schüz, A., Lindig, T. & Scheffler, K. The anterior and medial 
thalamic nuclei and the human limbic system: tracing the structural connectivity using 
diffusion-weighted imaging. Scientific Reports 2020 10:1 10, 1–25 (2020). 

54. Cantero, J. L. et al. Functional integrity of thalamocortical circuits differentiates normal 
aging from mild cognitive impairment. Hum Brain Mapp 30, 3944 (2009). 

55. Powell, D. et al. Frontal white matter integrity in adults with Down syndrome with and 
without dementia. Neurobiol Aging 35, 1562–1569 (2014). 

56. Bazydlo, A. et al. White matter microstructure associations with episodic memory in 
adults with Down syndrome: a tract-based spatial statistics study. J Neurodev Disord 13, 
17 (2021). 

57. Kramer, M. A. & Cash, S. S. Epilepsy as a Disorder of Cortical Network Organization. 
The Neuroscientist (2012) doi:10.1177/1073858411422754. 

58. Bi, Y. et al. The white matter structural network underlying human tool use and tool 
understanding. Journal of Neuroscience 35, 6822–6835 (2015). 

59. Gilron, ee et al. Chronic wireless streaming of invasive neural recordings at home for 
circuit discovery and adaptive stimulation. doi:10.1101/2020.02.13.948349. 

60. M. Aghajan, Z. et al. Theta Oscillations in the Human Medial Temporal Lobe during 
Real-World Ambulatory Movement. Current Biology 27, 3743-3751.e3 (2017). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.509351doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.25.509351
http://creativecommons.org/licenses/by-nd/4.0/


61. Khambhati, A. N. et al. Functional control of electrophysiological network architecture 
using direct neurostimulation in humans. Network Neuroscience 3, 848–877 (2019). 

62. Basu, I. et al. Closed-loop enhancement and neural decoding of cognitive control in 
humans. Nature Biomedical Engineering 2021 1–13 (2021) doi:10.1038/s41551-021-
00804-y. 

63. Crofts, J. J. & Higham, D. J. A weighted communicability measure applied to complex 
brain networks. J R Soc Interface 6, 411–4 (2009). 

64. Andreotti, J. et al. Validation of Network Communicability Metrics for the Analysis of 
Brain Structural Networks. PLoS One 9, e115503 (2014). 

65. Gilson, M., Kouvaris, N. E., Deco, G. & Zamora-López, G. Framework based on 
communicability and flow to analyze complex network dynamics. Phys Rev E 97, 052301 
(2018). 

66. Benzi, M. & Klymko, C. Total communicability as a centrality measure. J Complex Netw 
1, 124–149 (2013). 

67. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural 
recordings. Nature Neuroscience vol. 17 1500–1509 Preprint at 
https://doi.org/10.1038/nn.3776 (2014). 

68. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image 
registration with cross-correlation: Evaluating automated labeling of elderly and 
neurodegenerative brain. Med Image Anal 12, 26–41 (2008). 

69. Azarion, A. A. et al. An open-source automated platform for three-dimensional 
visualization of subdural electrodes using CT-MRI coregistration. Epilepsia 55, 2028–
2037 (2014). 

70. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral 
cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006). 

71. Klein, A. & Tourville, J. 101 labeled brain images and a consistent human cortical 
labeling protocol. Front Neurosci 6, 171 (2012). 

72. Fonov, V. et al. Unbiased average age-appropriate atlases for pediatric studies. 
Neuroimage 54, 313–327 (2011). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.509351doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.25.509351
http://creativecommons.org/licenses/by-nd/4.0/


Display items & captions: 
 

 
 

Figure 1: Methods. (A) Temporal expectancy color change detection task. A white cue appears 
on the screen (presentation cue) in one of nine locations. After a 500ms or 1500ms delay, chosen 
at random, the white cue changes a yellow cue (go cue). Pre-trial period is defined as the 500ms 
prior to the presentation cue. Comparative intra-trial period is defined as the 500ms prior to the 
go cue. (B) Quantifying node-feature pairs as averaged nodal activity (spectral power) or 
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architecture (Qexp) from intracranial EEG during the pre-trial or intra-trial periods. (C) Feature 
selection. Using an inclusive multiple linear regression approach the complete feature set is 
reduced to all the node-feature pairs with an uncorrected regression slope p-value of less than 
0.05. 
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Figure 2: Single-trial brain state classification. (A) Representative patient example of trial-by-
trial performance. Magenta designates slowest third of correct trials and green represents fastest 
third of correct trials. Incorrect trials (RT<0ms or RT>999ms) were excluded. (B) Sample two 
node-feature space beginning to visually depict RT differentiation between fast and slow trials. 
(C) Entire extracted node-feature space (within-feature z-scored values across trials to enable 
direct comparison) plotted against sorted reaction time. X-axis proceeds from slowest to fastest 
RT trial. Y-axis proceeds from smallest to largest z-score feature value. Some node-features 
demonstrate low values during slow trials and high values during fast trials (node-features 1-29), 
while others demonstrate high z-scored value during slow trials and low values during fast trials 
(node-features 30-51).  (D) Single-trial behavioral prediction. Single-trial network state space 
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created as the combination of z-scored values of each extracted node-feature. 5-fold cross-
validated support vector machine (SVM) used to assess trial-by-trial prediction for fastest versus 
slowest third of trials. Four folds of data randomly chosen to train SVM and one fold used to test 
prediction. Receiver operating characteristic (ROC) curve demonstrates area under the curve 
(AUC) performance from 1000 iterations of the SVM test set prediction. Null model created by 
taking the same data but simply shuffling trial RT label “fast” vs. “slow” randomly. SVM trained 
on behavioral data performs well in this single subject, while the null model is near chance 
performance. (E) The distribution of AUC values for the behavioral versus the null dataset across 
all subjects (n=24). There is a significant difference between the two distributions. Two other 
types of null datasets were created, this time prior to the multiple univariate regression-based 
feature selection pipeline. RT randomization assigned RT to each trial randomly prior to single-
trial node-feature selection. Data randomization generated a random alteration to the values of 
each node-feature prior to single trial node-feature selection. Both processes were repeated 100 
times to generate a null distribution. Histograms demonstrated the number of selected node-
features in both null datasets across 100 iterations across all subjects. Blue line indicates the true 
number of selected features from the behavioral dataset (n=1452). Using both pre-regression null 
approaches, the true number of selected node-features in the behavioral data is significantly 
higher than the null distribution (one-sample t-test RT randomization t(99))=-36.6, p=2.4 x 10-59; 
Data randomization t(99) = -98.1, p=1.9 x 10-100). (F) The concatenated features were then 
segregated into Qexp versus spectral power based features. Additionally, the same regression-
based pipeline was performed using nodal phase-locking value instead of Qexp or spectral power 
as the input data. 5-fold cross-validated SVM was used to compare classifier performance for 
predicting fast versus slow upcoming trial performance. Across all subjects nodal graph 
communicability (Qexp) features had significantly higher SVM classifier performance compared 
to nodal connectivity alone (PLV) (paired Wilcoxon signrank test Zval = 2.81, p=0.0049) and 
trended towards significantly increased performance compared to nodal power features (paired 
Wilcoxon signrank test Zval = 1.56, p=0.12). 
 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.509351doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.25.509351
http://creativecommons.org/licenses/by-nd/4.0/


 
Figure 3: Performance-related and intrinsic network topology. (A) Relationship between 
ranked nodal commmunicability of extracted Qexp based node-features in the pre-trial period in 
fast versus slow trials across all subjects. Diagonal line indicates the same z-score value of the 
node-feature for fast and slow trials. Node-features on the upper side of the diagonal indicate a 
relatively higher task-evoked value for slow trials. Node-features on the lower side of the 
diagonal indicate a relatively higher task-evoked value for fast trials. Node-features in the upper 
right quadrant of the plot indicate that regardless of fast versus slow performance, the feature 
value is always higher than average (intrinsic high communicability). Node-features in the lower 
left quadrant indicate the reverse (intrinsic low communicability). (B) Ranked nodal power of 
extracted power based node-features in the pre-trial period in fast versus slow trials across all 
subjects. (C) Euclidean distance from behaviorally equivalent diagonal. For the pre-trial period, 
node-features based on nodal communicability are significantly farther from the behaviorally 
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equivalent diagonal compared to features based on nodal power (p<0.00001). For the intra-trial 
period, node-features based on nodal power are significantly farther from the behaviorally 
equivalent diagonal compared to features based on nodal communicability (p<0.0001). (D) 
Intrinsic nodal topology. During the pre-trial period, node-features based on communicability 
have high intrinsic communicability in WM, and low intrinsic communicability in GM (chi 
square test of proportion, statistic = X, p = 7.06e-13.) In particular, thalamocortical WM nodes 
demonstrate the most robust intrinsic communicability. During the intra-trial period, the pattern 
still maintains itself between GM and WM nodes; however, the relative difference between the 
WM pathways (thalamocortical versus frontal and temporal association) becomes more equal. 
This pattern is not present when defining topology using spectral power based features. 
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Figure 4: Anatomical drivers of cognitive brain network states across subjects. (A) Pre-trial 
renderings of anatomical regions from extracted node-features that have a reliable prediction 
slope for predicting single-trial performance across all subjects (i.e. region-feature pairs; Left: 
nodal architecture, Right: nodal activity). Grey matter nodes are designated as being in either 
Frontal, Temporoparietal, or Paralimbic anatomical group. White matter nodes are designated as 
being in either Thalamocortical, Frontal association, Temporal association, Paralimbic, or 
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Commissural anatomical group. Red color and intensity indicates degree of inverse relationship 
with reaction time (larger values associated with faster RT), blue color and intensity indicates 
degree of positive relationship with reaction time (larger values associated with slower RT). (B) 
Heatmap display showing all pre-trial region-feature pairs that demonstrate a significant 
relationship to single-trial performance prediction across all subjects after 64 multiple 
comparisons correction. Significance testing performed on the distribution of regression slope 
values for extracted node-features in each region against the distribution of non-selected node-
features across subjects. Single asterisk is multiple comparison corrected p<0.05, double asterisk 
is corrected p<0.01, and triple asterisk is corrected p<0.001. Color designates mean regression 
slope value for extracted nodes within each region-feature. (C) and (D) Same figures for intra-
trial period electrophysiologic data. When compared to the pre-trial period, the anatomical 
features of single-trial performance prediction from intra-trial period electrophysiologic data 
convert to being heavily driven by spectral power-based features across grey and white matter 
regions in beta and gamma ranges. Architecturally, importance is shifted from low frequency to 
high frequency features in white matter nodes.  
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