

1 **Impact of cellular prion protein expression on disease progression and**
2 **pathology in two mouse models of Alzheimer's disease**

3

4 **Abbreviated Title:**

5 **Impact of PrP^C expression on AD mouse models**

6

7 Silvia A. Purro¹, Michael Farmer¹, Elizabeth Noble¹, Claire J. Sarell¹, Megan Powell¹, Daniel
8 Chun-Mun Yip¹, Lauren Giggins¹, Leila Zakka¹, David X. Thomas¹, Mark A. Farrow¹, Andrew
9 J. Nicoll¹, Dominic Walsh^{1,2}, John Collinge^{1*}

10

11 ¹ MRC Prion Unit at UCL, Institute of Prion diseases, Courtauld Building, 33 Cleveland
12 Street, London W1W 7FF, UK

13 ² Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases,
14 Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA

15

16

17 *Correspondence to Professor John Collinge

18 MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland
19 Street, London W1W 7FF, UK

20 Tel: +44 20 7837 4888

21 Email: jc@prion.ucl.ac.uk

22

23

24 **Abstract**

25 The aggregation of amyloid- β (A β) monomers increases their neurotoxicity, and these
26 oligomeric species are thought to be central to the pathogenesis of Alzheimer's disease.
27 Unsurprisingly for such a complex disease, current Alzheimer's disease mouse models fail to
28 fully mimic the clinical disease in humans. Moreover, results obtained in a given mouse
29 model are not always reproducible in a different model. Cellular prion protein (PrP C) is now
30 an established receptor for A β oligomers. However, different groups studying the A β -PrP C
31 interaction *in vivo* using a variety of mouse models have obtained contradictory results. Here
32 we performed a longitudinal study in two commonly used AD mouse models using a range of
33 biochemical, histological and behavioural techniques and found similar contradictory results
34 and a possible explanation for the discrepancy. We propose that these two mouse models
35 produce A β oligomers with different conformations. Therefore, binding to PrP C and the
36 subsequent activation of toxic signalling cascade will occur only when the A β oligomer
37 species with appropriate conformation are present. Hence, it is crucial to select the
38 appropriate model producing the appropriate species of A β oligomers to study specific
39 aspects of β -amyloidosis and its downstream pathways. Further conformational
40 characterisation of A β oligomers and their binding to PrP C is required to better understand
41 A β neurotoxicity.

42

43

44 **Introduction**

45 The neuropathological hallmarks of Alzheimer's disease (AD) consist of neurofibrillary
46 tangles composed of tau protein, and plaques of amyloid- β (A β), in the brain. Although
47 plaques can be toxic to nearby dendrites (Koffie et al. 2009), it has been suggested that the
48 main toxic effects are imparted by soluble A β . The A β peptide can aggregate in many
49 different arrays and these aggregates or oligomers exist in equilibrium with the monomer
50 and fibril forms (Benilova, Karran, and De Strooper 2012). Currently, many possible
51 receptors for A β have been described (Jarosz-Griffiths et al. 2015; Purro, Nicoll, and
52 Collinge 2018; Smith et al. 2019), but finding a cure, or alleviating therapies, have proven
53 elusive. Several years ago, using an unbiased screening approach, Stittmatter's group
54 identified the cellular prion protein (PrP C) as a receptor for A β oligomers with nanomolar
55 affinity and further demonstrated that its ablation rescued memory impairment, synaptic
56 dysfunction and perinatal death in the APP_{swe}-PS1 Δ E9 AD mouse model (APP-PS1) (Lauren
57 et al. 2009; Gimbel et al. 2010). Shortly after, it was reported that PrP C deletion in a different
58 AD mouse model, J20 transgenic mice, did not alter any of the parameters measured, and
59 by contrast actually accelerated premature death in these animals, questioning the role of
60 PrP C in AD (Cisse et al. 2011). Both mouse models overexpress human amyloid precursor
61 protein (APP), albeit under different promoters and harbouring different mutations. APP-PS1
62 mice express two different PrP C promoter driven transgenes expressing APP with the
63 Swedish mutation (Mullan et al. 1992) together with presenilin 1 (PS1) with an exon 9
64 deletion (Jankowsky et al. 2004; Jankowsky et al. 2002); whereas J20 mice express APP
65 with Swedish and Indiana (Murrell et al. 1991) familial AD mutations under the platelet-
66 derived growth factor subunit β (PDGF- β) promoter (Mucke et al. 2000). In the subsequent
67 years, many labs (including ours) additionally described two A β binding sites present on
68 PrP C , identified signalling pathways activated by the interaction, and demonstrated that PrP C
69 ablation, or inhibition mediated by anti-PrP C antibodies, prevents A β associated
70 synaptotoxicity *in vitro* and *in vivo*, providing therapeutic proof of principle (Freir et al. 2011;

71 Klyubin et al. 2014; Nicoll et al. 2013; Um et al. 2013; Um et al. 2012; Hu et al. 2014; Corbett
72 et al. 2020). PrP^C is now a recognised and validated receptor for A β in the AD field.
73 AD mouse models have been widely used to mostly study either A β amyloidosis or tau
74 pathology. Unfortunately, such models do not fully recapitulate neurodegeneration
75 phenotypes. This has been a huge drawback in the field for years. The first generation of AD
76 mouse models overexpress proteins such as mutated APP and/or PS1 to accelerate AD
77 phenotypes within the lifespan of the mouse. Such models differ in several ways, including
78 A β plaque burden, localisation, and deposition timing possible due to A β kinetics and level of
79 expression, leading to differences in the onset of memory impairments, synaptic dysfunction,
80 neuronal death and presence of tau tangles (Jankowsky and Zheng 2017). Therefore,
81 different pathological AD pathways may be variably present and active in different AD mouse
82 models, and the success of targeting a specific pathway may depend on the characteristics
83 of the individual model. Here, we directly compared the APP-PS1 and J20 mouse lines,
84 studied previously by different laboratories with conflicting results, to independently assess
85 the impact of PrP^C deletion on their respective phenotypes, via immunohistochemical,
86 biochemical and behavioural analyses. We found that APP-PS1 mice produce high levels of
87 A β oligomers with a conformation that binds to PrP^C, in contrast with J20 mice, which
88 produce lower levels of PrP^C-binding oligomers. It is perhaps therefore unsurprising that the
89 J20 AD phenotype is unaffected by PrP^C expression. This result suggests that the J20 line is
90 not suitable for investigating the A β -PrP^C interaction. Moreover, it further highlights the
91 diversity of A β oligomers and the necessity to study aggregate conformations, their
92 respective ability to bind to cellular receptors, and their possible function and toxicity.

93

94 **Materials and Methods**

95 *Reagents*

96 All chemicals and reagents were purchased from Sigma-Aldrich unless otherwise noted.

97 Synthetic A β ₁₋₄₂ was synthesized and purified by Dr. James I. Elliott at the ERI Amyloid

98 laboratory Oxford, CT, USA. Peptide mass and purity (>99%) were confirmed by reversed-

99 phase HPLC and electrospray/ion trap mass spectrometry.

100

101 *Mice*

102 Work with animals was performed under licence granted by the UK Home Office (PPL

103 70/9022) and conformed to University College London institutional and ARRIVE guidelines.

104 APP_{swe}-PS1 Δ E9 mice (APP-PS1, JAX MMRRC Stock# 034829; (Jankowsky et al. 2004))

105 were obtained from Professor Strittmatter's laboratory and J20 mice (Mucke et al. 2000)

106 were sourced from The Jackson Laboratory (JAX MMRRC Stock # 034836). Both lines were

107 crossed with either C57BL/6J (Charles River, Margate, UK) or PrP^C null backcrossed onto a

108 C57BL/6 background (B6.129S7-Prnp^{tm1Cwe}/Orl, EMMA Stock # 01723; (Bueler et al. 1992))

109 to generate the mouse lines required. Non-transgenic littermates from these crosses were

110 used to populate control groups. Mice were aged and culled at 3, 6 and 12 months old.

111 Groups of 8 male mice were used for biochemical and histological analysis. Mice were

112 anesthetized with isoflurane/O₂ and decapitated. Brains were removed, divided by a sagittal

113 cut with half brain frozen and the other half fixed in 10% buffered formal saline. Subsequent

114 immunohistochemical investigations were performed blind to sample provenance. For

115 behavioural experiments, 2 cohorts of 15 female and 15 male mice per group were analysed

116 at 2-3, 6-8 and 12-13 months of age. After the last tests, some brains were collected for

117 histological analysis. For Golgi staining, 3 to 5 female brains were collected whole at 12

118 months of age, see below. The genotype of each mouse was determined by PCR of ear

119 punch DNA and all mice were uniquely identified by sub-cutaneous transponders. RT-PCR

120 was used for determining J20 transgene copy number.

121

122 *Immunohistochemistry*

123 Fixed brain was paraffin wax embedded. Serial sections of 5 µm nominal thickness were
124 pre-treated by immersion in 98% formic acid for 8 mins followed by Tris-EDTA buffer for
125 antigen retrieval. All sections were stained with Hematoxylin and Eosin for morphological
126 assessment. A β deposition was visualized using 82E1B (cat n.10326, IBL) as the primary
127 antibody, using Ventana Discovery automated immunohistochemical staining machine
128 (ROCHE Burgess Hill, UK) and proprietary solutions. Visualization was accomplished with
129 diaminobenzidine staining.

130 Histological slides were digitised on a LEICA SCN400F scanner (LEICA Milton Keynes, UK)
131 at $\times 40$ magnification and 65% image compression setting during export. Slides were
132 archived and managed on LEICA Slidepath (LEICA Milton Keynes, UK). For the preparation
133 of light microscopy images, image captures were taken from Slidepath. Publication figures
134 were assembled in Adobe Photoshop.

135

136 *Digital image analysis for A β quantification*

137 Digital image analysis was performed using Definiens Developer 2.3 (Munich). Initial tissue
138 identification was performed using $\times 10$ resolution and stain detection was performed at $\times 20$
139 resolution.

140 Tissue Detection: Initial segmentation was performed to identify all tissue within the image,
141 separating the sample from background 'glass' regions for further analysis. This separation
142 was based on a grey-scale representation of brightness composed of the lowest (darkest)
143 pixel value from the three comprising colour layers (RGB colour model). A dynamic threshold
144 was calculated using the 95th centile which represents the threshold separating the 5% of
145 area with the brightest/highest intensity from the darker 95%; this was then adjusted by -10
146 (256 colour scale) to ensure accurate tissue separation – this adjustment is necessary to
147 prevent the inclusion of non-tissue regions that, although comprising unstained background,
148 have a reduced pixel value.

149 Stain Detection: Identification of brown staining is based on the transformation of the RGB
150 colour model to a HSD representation (Der Laak et al. 2000). This provides a raster image of
151 the intensity of each colour of interest (Brown and Blue). Subtraction of the blue stain from
152 the brown stain intensity at each pixel gives a third raster image, Brown+ve, with a positive
153 number where brown stain is prevalent.

154 All areas with brown staining above 0.15 au, and Brown+ve greater than 0.1, were identified
155 as *Brown Area*. This *Brown Area* was then subdivided to identify *Light Brown Area* < 0.5 au
156 <= *Dark Brown Area*.

157 Each *Dark Brown Area* was used as a seed for plaques, by growing them into any
158 connected *Light Brown Area*. Plaques were removed if they did not meet several criteria:
159 smaller than $10\mu\text{m}^2$; contained less than $1.5\mu\text{m}^2$ of *Dark Brown Area*; high stain intensity
160 (>0.5 au) and low standard deviation (<0.25 au); area less than $40\mu\text{m}^2$ with a non-elliptical
161 shape; or area greater than $40\mu\text{m}^2$ with greater than 70% *dark brown area*.

162 Tissue Selection: Brain regions were manually selected by hand and plaque and stain
163 coverage data exported per region.

164

165 *Golgi staining*

166 Brains were stained using the FD Rapid GolgiStain kit (FD NeuroTechnologies) according
167 the instructions of manufacturer. Stained brains were sliced with a cryostat at $100\mu\text{m}$
168 thickness and developed with solutions provided. After mounting using Permount (TAAB
169 laboratories, Fisher Scientific) at least 15-20 images were taken with a Leica DM2000 LED
170 microscope per animal and spines per dendrite length quantified. Three to five mice per
171 group were analysed, CA1 apical and basal spines were counted using Volocity software
172 (PerkinElmer). Between 1740 and 3960 μm of dendrites were quantified per group.

173

174 *A β preparations (ADDLs)*

175 A β -derived diffusible ligands (ADDLs) were prepared as described previously (Hu et al.
176 2014). Briefly, 20-25 mg of dry weight peptide was dissolved in 2% w/v anhydrous DMSO for

177 5 minutes and then diluted to 0.5 mg/ml in phenol red-free Ham's F12 medium without L-
178 glutamine (Caisson Labs), vortexed for 15 seconds and incubated at room temperature
179 overnight without shaking. After 24-36 h aliquots were tested for the presence of large
180 protofibrillar aggregates using size-exclusion chromatography (GE Healthcare). Fractions
181 containing less than 20% monomer, were centrifuged at 16000 g for 20 minutes at 4 °C and
182 the upper 90% of the supernatant collected, snap frozen in liquid nitrogen and stored at -
183 80°C in aliquots.

184

185 *Brain homogenates*

186 Brain samples were homogenised using a cell homogeniser PreCellys24 (Bertin) and whole
187 brain homogenates were prepared at 10% weight in volume (w/v) in PBS with protease and
188 phosphatase inhibitors (Pierce). Bradford quantification of total protein was carried out to
189 ensure similar amounts of proteins were used on the biochemical assays.

190

191 *Western blotting*

192 Brain homogenate was thawed on ice for 10 minutes, diluted to a final concentration of 2
193 mg/ml in PBS, and added to 2x SDS sample buffer. Samples were boiled for 5 minutes then
194 electrophoresed in pre-cast 4-12% NuPAGE Bis-Tris Gels (Invitrogen). Following transfer,
195 nitrocellulose membranes (Amersham GE Lifesciences) were incubated in Licor Odyssey
196 blocking buffer (#927-40000) for 1 h at RT. Membranes were washed 3 x 10 minutes in
197 PBST (PBS, 0.05 % (v/v) Tween-20), then incubated overnight at 4 °C in primary antibodies.
198 APP was labelled using 22C11 Merck Millipore #MAB348 (1:5000), GAPDH was labelled
199 using Sigma G945 (1:50,000) and PrP^C labelled using ICSM18 D-Gen (final concentration 3
200 µg/ml). After incubation in primary antibody, membranes were washed 3 x 10 minutes in
201 PBST, then incubated in secondary antibodies (Odyssey Goat anti-mouse IRDye 800CW or
202 anti-rabbit 680LT) for 1 h at RT. Membranes were then washed twice in PBST, once in PBS
203 and immunoreactive bands were detected and quantified using a Licor Odyssey imaging
204 system (Licor Biosciences).

205

206 *Immunoassay to detect PrP^C binding A β species*

207 To detect PrP^C binding A β species a plate-based DELFIA (Dissociation-enhanced lanthanide
208 fluorescent immunoassay) was used. HuPrP 23-111 was expressed and purified as
209 described previously for HuPrP 23-231 (Risse et al. 2015). Briefly, inclusion bodies were re-
210 suspended in 6M GdnHCl, β -mercaptoethanol, loaded onto a NiNTA column and refolded by
211 stepwise oxidation. Following elution and dialysis the His tag was cleaved using thrombin,
212 the protein loaded again onto a NiNTA column and eluted in 20mM Bis-Tris, 600mM
213 Imidazole, pH6.5. After dialysis in 20mM Bis-Tris, pH6.5 the protein was stored in aliquots at
214 -80 °C. Thirty microliters of 1 μ M human PrP23–111 (10 mM sodium carbonate, pH 9.6) was
215 bound to high binding 384-well white plates (Greiner #G781074) with shaking at 400 RPM
216 for 1 h at 37 °C, washed with 3 x 100 μ l of PBST (0.05% Tween-20), blocked with 100 μ l
217 Superblock (Thermo Scientific) with shaking at 400 RPM at 37 °C for 1 h and washed with 3
218 x 100 μ l of PBST. Synthetic ADDL preparations were used as standards. Thirty microlitres of
219 benzonase treated 10% brain homogenates (all normalised to the sample with the lowest
220 concentration of protein) were incubated for 1 h at 25 °C with shaking at 400 RPM and
221 washed with 3 x 100 μ l of PBST. A β oligomers were detected by 30 μ l of 0.2 mg/ml 82E1 in
222 DELFIA assay buffer (PerkinElmer) for 1 h at 25 °C with shaking at 400 RPM, washed with 3
223 x 100 μ l of PBST, then incubated for 30 min at 25 °C with shaking at 400 RPM with 9 ng/well
224 of DELFIA Eu-N1 anti-mouse antibody in DELFIA assay buffer (PerkinElmer), washed with 3
225 x 100 μ l of PBST before enhancing with 80 μ l of DELFIA Enhancement Solution
226 (PerkinElmer). Plates were scanned for time-resolved fluorescence intensity of the europium
227 probe (λ ex 320 nm, λ em 615 nm) using a PerkinElmer EnVision plate reader.

228

229 *Dot blot analysis*

230 One microliter of mouse brain homogenate (2 μ g) or synthetic ADDL preparation (5 ng) was
231 spotted directly onto dry nitrocellulose membrane (Amersham) and air dried for 1 h before
232 blocking overnight at 4 °C in 5 % (w/v) non-fat dried milk in PBST (PBS, 0.1 % (v/v) Tween-

233 20). Following three 10 min washes with PBST, membranes were incubated with OC
234 antibody (Millipore, #AB2268) (1:4000 dilution) diluted in 5 % (w/v) non-fat dried milk in
235 PBST overnight at 4 °C. Following three 10 min washes with PBST, membranes were
236 incubated with IRDye 800CW donkey anti-rabbit IgG antibody in Odyssey Blocking buffer
237 (Licor) for 1 h at RT. The membrane was then visualised using an Odyssey scanner.
238 Membranes were subsequently stripped (Restore Plus, Invitrogen) and re-blotted for the
239 loading control β-Actin.

240

241 *Multiplex Aβ peptide immunoassay*

242 Levels of Aβ peptides in the mouse brain homogenates were determined using a Multiplex
243 Aβ peptide panel (6E10) immunoassay (Meso Scale Discovery (MSD), Rockville, MD),
244 according to the manufacturer's instructions. All incubations were carried out at room
245 temperature on a plate shaker at 600 RPM. All standards and samples were diluted in PBS
246 and loaded in duplicate. Before analysis, homogenates were incubated with Guanidine-HCl
247 (6M final concentration) to disaggregate preformed Aβ aggregates. Aβ peptide levels were
248 determined using the MESO QUICKPLEX SQ 120 and analysed using the MSD Workbench
249 4.0 software.

250

251 *Oligomeric Aβ immunoassay*

252 MULTI-ARRAY® 96 well standard bind microplates (MSD) were coated with the monoclonal
253 antibody 1C22 (2 µg/ml) diluted in PBS and incubated at 4 °C overnight. Wells were blocked
254 with 5 % (w/v) Blocker A (MSD) for 1h. Synthetic ADDL preparations were used as
255 standards to generate a twelve point standard curve. All samples and standards were diluted
256 in PBS and loaded in duplicate (25 µl/well). Biotinylated 82E1 (2 µg/ml) diluted in assay
257 diluent (1% Blocker A/PBST) was used for detection. Bound biotinylated 82E1 was
258 measured using SULFO-TAG streptavidin (MSD) diluted in assay diluent. Light emitted from
259 the SULFO-TAG at the electrode surface was detected using the MESO QUICKPLEX SQ
260 120 imager. All incubations were performed at room temperature on a plate shaker at 600

261 RPM and all wash steps between incubations were performed using 150 μ l PBST, unless
262 stated otherwise. Data were analysed using the MSD Workbench 4.0 software. The limit of
263 detection (LOD) is defined as: $LOD = 2.5 \times$ standard deviation of the background. The lower
264 limit of reliable quantification (LLOQ) is defined as the lowest standard with a percentage
265 back interpolation of $100 \pm 20\%$, a percentage coefficient of variance (CV) $\leq 20\%$ and a
266 mean blank signal higher than the mean blank signal + ($9 \times$ standard deviations of the blank
267 signal). The average of three independent experiments: LLOD 14.1 ± 8.3 (pg/ml) and LLOQ
268 101.7 ± 55.5 (pg/ml).

269

270 *General animal handling*

271 Mice were handled for 10 min a day for several days and habituated to the test environment
272 prior to testing. Only group-housed mice were used. Groups of fifteen to twenty mice were
273 tested sequentially over time for each paradigm, unless otherwise stated. Mice were
274 handled, habituated, trained, and tested at the same time for each experiment.

275

276 *Working/recognition memory - Novel Object recognition*

277 This was performed as described (Bozon, Davis, and Laroche 2003). Briefly, mice were
278 tested in a dark cylindrical arena (69 cm diameter) mounted with a MAG300 lamp (DARAY)
279 and Sony Camera Color & F1.3 Lens. 0.7 Lux (Panlabs). Various plastic objects were
280 constructed from interlocking plastic building blocks and were used in all experiments. Pilot
281 studies confirmed all objects were of equal inherent interest. All testing took place in a room
282 with 20 lux lighting and constant background noise.

283 Animals were habituated to an empty arena for 10 min periods, for 3 consecutive days prior
284 to testing. On day 1 of each experiment (learning phase), two objects were placed in the
285 centre of two 15 cm diameter circles inside the arena. Each mouse was placed in the arena
286 for two periods of 10 min for exploration of the objects with an inter-trial interval of 1 min.
287 One minute later, one of the familiar objects was replaced, with a randomly selected novel
288 one, and retention was tested by placing the mice back in the arena for a 5 min session (test

289 phase). The amount of time spent exploring all objects was measured for each animal with
290 the examiner blind to genotype and time point for the animals. All objects and arena were
291 cleansed thoroughly between trials to ensure the absence of olfactory cues. Criteria for
292 exploration were automated using the Panlabs SMART 3.0 video tracking system where
293 mice had mid-point body mass within a circle of 15 cm around an object. Mice with overt
294 motor symptoms were not used. New sets of objects were used at each time point.

295

296 *Spatial Novelty Preference in the Y-Maze*

297 Based on the method by (Sanderson et al. 2011). Spatial novelty preference was assessed
298 in an enclosed Perspex Y-maze with arms of 30 × 8 × 20 cm placed into a room containing a
299 variety of extra maze cues. To promote exploratory behaviour the maze was scattered with a
300 mixture of clean and dirty sawdust (3:1) from the cages of unfamiliar mice of the same sex.
301 Mice were randomly assigned 2 arms (the “start” and the “other” arm) to which they were
302 exposed during the first phase (the exposure phase), for 5 min. Timing of the 5 min period
303 began only once the mouse had left the start arm. The mouse was then removed from the
304 maze and returned to its home cage for a 1 min interval between the exposure and test
305 phases during which the sawdust was mixed and re-distributed around the maze and the
306 divider removed. During the test phase, mice were allowed free access to all 3 arms. Mice
307 were placed at the end of the start arm and allowed to explore all 3 arms for 2 min beginning
308 once they had left the start arm. An entry into an arm was defined using the Panlabs SMART
309 3.0 video tracking system where mice had mid-point body mass inside an arm. The times
310 that mice spent in each arm were recorded automatically and a novelty preference ratio was
311 calculated for the time spent in arms [novel arm / (novel + other arm)].

312

313 *Burrowing – motivational task/innate behaviour*

314 Two hours before the start of the dark period, mice (which had not been food deprived) were
315 placed in individual plastic cages containing a plastic tube 20 cm long × 6.8 cm diameter,
316 filled with 200 g of normal food pellets as described (Cunningham et al. 2003). The weight of

317 pellets remaining in the tube after 24 hr was measured, and the percentage displaced
318 (burrowed) was calculated.

319

320 *Statistical Analysis*

321 All statistical analysis and graphs were generated using the statistical package GraphPad
322 PRISM v7 (GraphPad Software, Inc., La Jolla, USA). For multiple comparisons, graphs
323 depict median values and Kruskal-Wallis was used and corrected for multiple comparisons
324 using Dunn's multiple comparison test, except for behavioural tests where two way ANOVA
325 followed by Sidak's test was used. Statistical significance was set to $P < 0.05$.

326 **Results**

327 *A β aggregation is independent of PrP C expression*

328 APP-PS1 mice overexpress APP carrying the Swedish mutation plus PS1 with deletion of
329 exon 9 (Jankowsky et al. 2002; Jankowsky et al. 2004). In contrast, J20 mice overexpress
330 only APP with Swedish and Indiana mutations (Mucke et al. 2000). In order to assess the
331 role of PrP C in both AD mouse models, we crossed the APP-PS1 and J20 mice with a PrP C
332 knock-out (KO) mouse line. Wild-type or PrP C KO littermates generated without expressing
333 APP or PS1 transgenes were used as controls (Figure 1A). PrP C expression did not alter the
334 expression of APP, nor did the overexpression of the mutated genes APP or APP/PS1
335 induce any changes in PrP C levels (Figure 1B and 1C).

336 For the four mouse lines (APP-PS1, J20, APP-PS1 PrP C KO and J20 PrP C KO) and their
337 respective control littermates (WT and PrP C KO) we collected brain samples at 3, 6 and 12
338 months of age and, then examined A β species and aggregation using immunohistochemical
339 and biochemical techniques.

340 Deposition of A β in the brains of J20 mice is only visible after 6 months of age and plaques
341 are almost fully concentrated in the hippocampus, corpus callosum and cortex. Minimal
342 plaques appear in the cerebellum after 12 months of age. By contrast, plaques in APP-PS1
343 mice are spread over the cerebellum, olfactory bulb, hippocampus, corpus callosum,
344 cerebral cortex and other areas of the brain. APP-PS1 whole brain sagittal sections exhibit
345 twice as many plaques at 12 months than the J20 mice (APP-PS1 median: 2815 plaques,
346 J20 median: 1315 plaques, $p=0.014$) whilst brain area plaque coverage is comparable
347 between lines (APP-PS1 median: 1.16 %, J20 median: 0.88 %, $p=0.75$) (Figure 2A-C).
348 Ablation of PrP C did not alter the number, localisation or area covered by plaques in either
349 AD mouse model (Figure 3A-C), in agreement with previously published results (Gimbel et
350 al. 2010).

351 Total A β peptides in whole brain homogenates collected at 6 and 12 months were quantified
352 by immunoassay. At 12 months old, APP-PS1 mice had significantly more A β ₄₂ than J20
353 mice (for A β ₄₂ APP-PS1 median: 223 ng/mg, J20 median: 55 ng/mg, $p=0.04$), but did not

354 reach significance for the A β ₄₀ peptide (for A β ₄₀ APP-PS1 median: 113 ng/mg, J20 median:
355 16 ng/mg, p=0.14); with PrP^C having no impact on A β peptide levels in either model (Figure
356 4). The amount of A β ₄₀ and A β ₄₂ peptides in APP-PS1 mice was almost 95% lower at 6
357 months versus 12 months of age (data not shown).

358 Similarly, when the levels of A β oligomers were quantified using the 1C22 immunoassay that
359 does not recognise A β monomers, we found that APP-PS1 mice had significantly higher
360 levels than their wild-type littermates, whereas there was no detectable significant difference
361 between the J20 mice and their wild-type littermates, at 12 months of age (WT vs APP-PS1,
362 p=0.035; WT vs J20, p=0.25). PrP^C expression had no impact on the levels of 1C22-reactive
363 A β oligomers in either APP-PS1 or J20 transgenic lines (Figure 5). Together, these results
364 suggest that distinct A β conformers and/or aggregation mechanisms exist in the respective
365 transgenic lines, as the plaque burden at 12 months old is relatively similar, but levels of
366 soluble A β differ greatly.

367 Analysis of the levels of A β oligomers capable of binding PrP^C revealed no significant
368 differences between J20 mice and their respective wild type controls. In contrast, APP-PS1
369 samples contained significantly higher levels of these A β oligomers, with no differences
370 detected between mice with *Prnp* +/+ and *Prnp* -/- backgrounds (Figure 6). We then
371 characterised the conformation of the A β oligomers, using the OC antibody which
372 recognises parallel, in register fibrils (distinct from the A11 antibody, which binds to anti-
373 parallel A β structures (Kayed et al. 2007; Glabe 2008). Interestingly, only APP-PS1 mice but
374 not J20 mice, presented a significant amount of these OC-A β oligomers (WT vs APP-PS1,
375 p=0.012; WT vs J20, p=0.87) (Figure 7). It has been suggested that A β oligomers that are
376 able to bind to PrP^C have an OC conformation (Nicoll et al. 2013; Madhu and Mukhopadhyay
377 2020). Levels of OC-A β oligomers did not change after ablation of PrP^C in either mouse line
378 (Figure 7). Interestingly, only APP-PS1 mice, and not J20 mice, showed a positive and
379 significant correlation between total amount of A β oligomers and oligomers that bind to PrP^C
380 (Fig 8). This is in agreement with previous studies which showed that J20 mice produce
381 mainly A11-A β oligomers (Liu et al. 2015).

382 We tested the ability of the four mouse lines to achieve several behavioural tasks at 3, 6 and
383 12 months of age. Healthy mice nest and burrow during the night time, when they are more
384 active. All the mouse lines tested performed well at burrowing at all time points, except the
385 J20 PrP^C KO mice, which exhibited an incremented disinterest on the task as age
386 progressed when compared to the J20 mice (Figure 9). J20 PrP^C KO mice also showed an
387 impairment on the Y-maze, a (hippocampal-dependent) short-term memory test (Figure 10).
388 APP-PS1, APP-PS1 PrP^C KO, J20 mice and wild type mice performed equally well even
389 after 12 months of age.

390 On the novel object test, all mice performed well regardless of genotype showing a
391 significant decline of novelty preference over time, indicating that this task was not
392 sufficiently sensitive to discriminate between natural cognitive decline and AD related
393 cognitive impairment (not shown).

394 Lastly, brain samples collected at 12 months were analysed using Golgi staining to provide
395 an *in vivo* quantification of the dendritic spines present in the different mouse lines. Spines
396 are postsynaptic structures, and a decreased spine density underlies cognitive deficits on
397 behavioural tests (Spires-Jones and Knafo 2012). Pyramidal neurons on the CA1
398 hippocampal region presented a similar number of spines per μm when the basal dendrites
399 were examined irrespective of either AD model or PrP^C expression, with the exception of a
400 minor increase in spine density in J20 mice when compared with their wild-type littermates
401 (WT vs J20 $p=0.014$) (Figure 11A, C). Similarly, a small increase in J20 apical spines was
402 found when compared with the wild-type control (WT vs J20 $p=0.038$) and a partial reduction
403 on spine density was evident on J20 PrP^C KO when compared with J20 mice (PrP^C KO vs
404 J20 PrP^C KO, $p=0.79$; J20 vs J20 PrP^C KO, $p=0.049$) (Figure 11B, C).

405 A significant decrease in spine number was found on the apical dendrites of the APP-PS1
406 mice observed, versus wild-type controls (WT vs APP-PS1, $p=0.003$), suggestive of A β
407 oligomer toxicity in dendrites in this model (Figure 11B, C). Interestingly, the ablation of PrP^C
408 on this line rescued the spine loss on the apical dendrites, confirming that the A β -toxicity on
409 dendritic spines is PrP^C-dependent (PrP^C KO vs APP-PS1 PrP^C KO, $p=0.64$; APP-PS1 vs

410 APP-PS1 PrP^C KO, p=0.001) (Figure 11B, C). Ablation of PrP^C in this model protected the
411 spines from the soluble A β , confirming that the toxicity exercised by OC-conformational
412 oligomers is mediated by PrP^C.

413 **Discussion**

414

415 Here, using a range of biochemical, histological and behavioural techniques we directly
416 compared two different mouse models of AD: APP-PS1 and J20 mouse lines and the impact
417 of PrP^C expression on them. We identified differences in the levels and localisation of A β
418 plaques, peptides, oligomers, and PrP^C-binding species between the two lines. However,
419 PrP^C had no significant impact on these histological/biochemical parameters in either model.
420 Interestingly, PrP^C deletion rescued spine loss in the APP-PS1 mouse but induced
421 significant cognitive impairment in the J20 line, suggesting distinct interactions between A β
422 and PrP^C could take place in these two mouse models. Further studies are needed to
423 address this in more detail.

424 However, the observation that J20 mice have significantly lower quantity of A β oligomers
425 and A β PrP^C-binding species does provide a rationale for why Cisse *et al.* (Cisse *et al.* 2011)
426 did not observe the PrP^C-dependent phenotype reported in Gimbel *et al.* A biochemical
427 study using several AD mouse models to compare the proportion of A β oligomers that
428 interact with PrP^C from the total pool concluded that the amount of PrP^C-binding A β varies
429 from model to model. Unfortunately, the J20 model was not included in this study (Kostylev
430 *et al.* 2015). Soluble fibrillar oligomers (OC-type) have been associated with increased levels
431 of dementia and AD pathology (Tomic *et al.* 2009) and a study suggested that PrP^C has ~30
432 times stronger affinity to OC-positive A β oligomers in comparison to A11-positive oligomers
433 (Madhu and Mukhopadhyay 2020). All together, these results highlight the need to
434 characterise A β oligomers present in the AD mouse models and AD brain samples to
435 understand the mechanisms of A β toxicity in AD.

436 During Alzheimer's disease there is a strong correlation between cognitive decline and loss
437 of synapses. However, some AD mouse models fail to demonstrate this characteristic, with
438 no correlation observed during quantification of dendritic spines and/or levels of synaptic
439 proteins. Notwithstanding intensive efforts, the role of APP on structural spine plasticity is
440 complex and not yet fully understood (Montagna, Dorostkar, and Herms 2017). A

441 comparison of data obtained by several labs using the same Tg2576 mouse model, which
442 overexpresses APP_{Swe} under the prion promoter, highlighted that the interpretation of the
443 data is intricate and specification of age, gender, brain region and section of the dendrite
444 quantified (apical or basal) are crucial to accurately unravel APP effects on spine plasticity
445 (Jung and Herms 2012). In addition, some studies suggest that PS1 overexpression could
446 lead to an elevated number of spines (Jung et al. 2011). As such, many studies have shown
447 no changes or elevated number of spines in AD mouse models, with spatiotemporal patterns
448 sometimes showing variability within the same study (Lanz, Carter, and Merchant 2003)
449 making the results more difficult to interpret. In order to obtain an *in vivo* correlation of
450 synaptic plasticity we analysed dendritic spines in the CA1 hippocampal region. Although
451 this parameter has not been quantified previously in these mouse lines regarding the impact
452 of PrP^C expression, *in vitro* experiments incubating wild-type mouse brain slices with A β
453 oligomers indicated that A β -PrP^C binding induced loss of spines (Um et al. 2013; Um et al.
454 2012). Moreover, conditional deletion of *Prnp* after 12 and 16 months of age in APP-PS1
455 mice can reverse the behavioural deficits and recover the loss of synaptic proteins (Salazar
456 et al. 2017). In the current study, a significant loss of spines on apical dendrites was found in
457 APP-PS1 mice and was completely rescued by deletion of PrP^C. These results confirm PrP-
458 dependent A β toxicity in APP-PS1 mice. Surprisingly, the observed reduction in spines did
459 not have an impact on the performance of behavioural tasks by the APP-PS1 mice, possibly
460 due to the low difficulty of the challenges imposed. During behavioural tests, J20 PrP^C KO
461 mice performed significantly worse than the J20 mice therefore we expected a reduction of
462 dendritic spine density. However, the J20 mice showed a slight increase in the number of
463 apical and basal spines, which was partially reduced by ablation of PrP^C only on the apical
464 spines. As previously mentioned, an increase in spine density is sometimes found in AD
465 mouse models possibly as a compensation mechanism. More detailed studies on innervated
466 spine number, functional synapses and level of synaptic proteins could help to understand
467 these results.

468 It is worth noting that the three behavioural tasks used differed from those used previously to
469 show PrP^C-dependent A β -toxicity (Gimbel et al. 2010). Unfortunately, we could not
470 determine if ablation of PrP^C rescued the cognitive defects in APP-PS1 or J20 mice given
471 that the tasks were possibly too simple, without sufficient sensitivity. We anticipate more
472 challenging tests, such as the Morris water maze, would uncover the cognitive impairments
473 present in these lines.

474 AD mouse models do not completely mimic the disease, whilst showing variable phenotypes
475 between lines. Currently, the field is progressively moving towards knock-in models to avoid
476 overexpression artefacts and potential confounds due to random genomic integration of
477 transgenes. One such new knock-in model is the NL-F mouse line (Saito et al. 2014), which
478 we are currently examining to understand physiological A β -PrP^C interactions.

479 In summary, our results agree with the published data on these two mouse lines and provide
480 an explanation for previous contradictions, highlighting the need for thorough
481 characterisation of A β oligomers, their binding to diverse receptors and subsequent effects
482 on neurons. APP_{swe}-PS1 Δ E9 mice have proven to be an appropriate model to study A β -PrP^C
483 interactions since they produce A β soluble fibrillary oligomers (OC-type) that bind PrP^C, in
484 contrast to J20 mice. As there are many and diverse A β aggregates present in the brain,
485 identifying the toxic A β species in AD is paramount for selection of models that recapitulate
486 specific conformers of interest.

487

488 **Acknowledgements:** This work was funded by the UK Medical Research Council (MRC)
489 and the Leonard Wolfson Experimental Neurology Centre. We thank staff of the MRC Prion
490 Unit Biological Services facility for animal observation and care, to the Histology facility and
491 M Ellis for technical assistance. We thank T Cunningham for reading the manuscript and
492 helpful discussions.

493

494 **Conflict of interest:** J.C. is a Director and shareholder of D-Gen Limited, an academic spin-
495 out company working in the field of prion disease diagnosis, decontamination and
496 therapeutics. D-Gen supplied antibody ICSM18.

497

498

499 **References**

500 Benilova, I., E. Karan, and B. De Strooper. 2012. 'The toxic Abeta oligomer and Alzheimer's disease:
501 an emperor in need of clothes', *Nat Neurosci*, 15: 349-57.

502 Bozon, B., S Davis, and S. Laroche. 2003. 'A requirement for the immediate early gene zif268 in
503 reconsolidation of recognition memory after retrieval.', *Neuron*, 40: 695-701.

504 Bueler, H., M. Fischer, Y. Lang, H. Bluethmann, H-P. Lipp, S.J. DeArmond, S.B. Prusiner, M. Aguet, and
505 C. Weissmann. 1992. 'Normal development and behaviour of mice lacking the neuronal cell-
506 surface PrP protein', *Nature*, 356: 577-82.

507 Cisse, M., P.E. Sanchez, D.H. Kim, K. Ho, G.Q. Yu, and L. Mucke. 2011. 'Ablation of cellular prion
508 protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the
509 j20 line of human amyloid precursor protein transgenic mice', *J Neurosci*, 31: 10427-31.

510 Corbett, G. T., Z. Wang, W. Hong, M. Colom-Cadena, J. Rose, M. Liao, A. Asfaw, T. C. Hall, L. Ding, A.
511 DeSousa, M. P. Frosch, J. Collinge, D. A. Harris, M. S. Perkinton, T. L. Spires-Jones, T. L.
512 Young-Pearse, A. Billinton, and D. M. Walsh. 2020. 'PrP is a central player in toxicity
513 mediated by soluble aggregates of neurodegeneration-causing proteins', *Acta Neuropathol*,
514 139: 503-26.

515 Cunningham, C., R. Deacon, H. Wells, D. Boche, S. Waters, C.P. Diniz, H. Scott, J.N. Rawlins, and V.H.
516 Perry. 2003. 'Synaptic changes characterize early behavioural signs in the ME7 model of
517 murine prion disease', *Eur. J Neurosci*, 17: 2147-55.

518 Der Laak, J.A., M.M. Pahlplatz, A.G. Hanselaar, and P.C. de Wilde. 2000. 'Hue-saturation-density
519 (HSD) model for stain recognition in digital images from transmitted light microscopy',
520 *Cytometry*, 39: 275-84.

521 Freir, D.B., A.J. Nicoll, I. Klyubin, S. Panico, J.M. Mc Donald, E. Risse, E.A. Asante, M.A. Farrow, R.B.
522 Sessions, H.R. Saibil, A.R. Clarke, M.J. Rowan, D.M. Walsh, and J. Collinge. 2011. 'Interaction
523 between prion protein and toxic amyloid beta assemblies can be therapeutically targeted at
524 multiple sites', *Nat Commun*, 2: 336.

525 Gimbel, D.A., H.B. Nygaard, E.E. Coffey, E.C. Gunther, J. Lauren, Z.A. Gimbel, and S.M. Strittmatter.
526 2010. 'Memory Impairment in Transgenic Alzheimer Mice Requires Cellular Prion Protein',
527 *Journal of Neuroscience*, 30: 6367-74.

528 Glabe, C.G. 2008. 'Structural Classification of Toxic Amyloid Oligomers', *Journal of Biological
529 Chemistry*, 283: 29639-43.

530 Hu, N.W., A.J. Nicoll, D. Zhang, A.J. Mably, T. O'Malley, S.A. Purro, C. Terry, J. Collinge, D.M. Walsh,
531 and M.J. Rowan. 2014. 'mGlu5 receptors and cellular prion protein mediate amyloid- β -
532 facilitated synaptic long-term depression in vivo', *Nat Commun*, 5: 3374.

533 Jankowsky, J. L., and H. Zheng. 2017. 'Practical considerations for choosing a mouse model of
534 Alzheimer's disease', *Mol Neurodegener*, 12: 89.

535 Jankowsky, J.L., D.J. Fadale, J. Anderson, G.M. Xu, V. Gonzales, N.A. Jenkins, N.G. Copeland, M.K. Lee,
536 L.H. Younkin, S.L. Wagner, S.G. Younkin, and D.R. Borchelt. 2004. 'Mutant presenilins
537 specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for
538 augmentation of a 42-specific gamma secretase', *Human Molecular Genetics*, 13: 159-70.

539 Jankowsky, J.L., A. Savonenko, G. Schilling, J. Wang, G. Xu, and D.R. Borchelt. 2002. 'Transgenic
540 mouse models of neurodegenerative disease: opportunities for therapeutic development',
541 *Curr. Neurol. Neurosci. Rep*, 2: 457-64.

542 Jarosz-Griffiths, H.H., E. Noble, J.V. Rushworth, and N.M. Hooper. 2015. 'Amyloid-beta receptors: the
543 good, the bad and the prion protein', *J Biol chem*, 291: 3174-83.

544 Jung, C.K., M. Fuhrmann, K. Honarnejad, F. Van Leuven, and J. Herms. 2011. 'Role of Presenilin1 in
545 Structural Plasticity of Cortical Dendritic Spines in vivo', *J Neurochem*, 119: 1064-73.

546 Jung, C.K., and J. Herms. 2012. 'Role of APP for dendritic spine formation and stability', *Exp Brain Res*,
547 217: 463-70.

548 Kayed, R., E. Head, F. Sarsoza, T. Saing, C.W. Cotman, M. Necula, L. Margol, J. Wu, L. Breydo, J.L.
549 Thompson, S. Rasool, T. Gurlo, P. Butler, and C.G. Glabe. 2007. 'Fibril specific, conformation

550 dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar
551 oligomers that is absent in prefibrillar oligomers', *Molecular Neurodegeneration*, 2.
552 Klyubin, I., A.J. Nicoll, A. Khalili-Shirazi, M. Farmer, S. Canning, A. Mably, J. Linehan, A. Brown, M.
553 Wakeling, S. Brandner, D.M. Walsh, M.J. Rowan, and J. Collinge. 2014. 'Peripheral
554 Administration of a Humanized Anti-PrP Antibody Blocks Alzheimer's Disease Abeta
555 Synaptotoxicity', *J Neurosci*, 34: 6140-45.
556 Koffie, R.M., M. Meyer-Luehmann, T. Hashimoto, K.W. Adams, M.L. Mielke, M. Garcia-Alloza, K.D.
557 Micheva, S.J. Smith, M.L. Kim, V.M. Lee, B.T. Hyman, and T.L. Spires-Jones. 2009. 'Oligomeric
558 amyloid beta associates with postsynaptic densities and correlates with excitatory synapse
559 loss near senile plaques', *Proc Natl Acad Sci U S A*, 106: 4012-17.
560 Kostylev, M.A., A.C. Kaufman, H.B. Nygaard, P. Patel, L.T. Haas, E.C. Gunther, A. Vortmeyer, and S.M.
561 Strittmatter. 2015. 'Prion-Protein-Interacting Amyloid-beta Oligomers of High Molecular
562 Weight are Tightly Correlated with Memory Impairment in Multiple Alzheimer Mouse
563 Models', *J Biol. Chem*, 290: 17415-38.
564 Lanz, T.A., D.B. Carter, and K.M. Merchant. 2003. 'Dendritic spine loss in the hippocampus of young
565 PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype', *Neurobiol Dis*, 13: 246-
566 53.
567 Lauren, J., D.A. Gimbel, H.B. Nygaard, J.W. Gilbert, and S.M. Strittmatter. 2009. 'Cellular prion
568 protein mediates impairment of synaptic plasticity by amyloid-beta oligomers', *Nature*, 457:
569 1128-32.
570 Liu, P., M.N. Reed, L.A. Kotilinek, M.K. Grant, C.L. Forster, W. Qiang, S.L. Shapiro, J.H. Reichl, A.C.
571 Chiang, J.L. Jankowsky, C.M. Wilmot, J.P. Cleary, K.R. Zahs, and K.H. Ashe. 2015. 'Quaternary
572 Structure Defines a Large Class of Amyloid-beta Oligomers Neutralized by Sequestration',
573 *Cell Rep*, 11: 1760-71.
574 Madhu, P., and S. Mukhopadhyay. 2020. 'Preferential Recruitment of Conformationally Distinct
575 Amyloid-beta Oligomers by the Intrinsically Disordered Region of the Human Prion Protein',
576 *ACS Chem Neurosci*, 11: 86-98.
577 Montagna, E., M.M. Dorostkar, and J. Herms. 2017. 'The Role of APP in Structural Spine Plasticity',
578 *Front Mol Neurosci*, 10: 136.
579 Mucke, L., E. Masliah, G.Q. Yu, M. Mallory, E.M. Rockenstein, G. Tatsuno, K. Hu, D. Kholodenko, K.
580 Johnson-Wood, and L. McConlogue. 2000. 'High-level neuronal expression of abeta 1-42 in
581 wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque
582 formation', *J Neurosci*, 20: 4050-58.
583 Mullan, M., F. Crawford, K. Axelman, H. Houlden, L. Lilius, B. Winblad, and L. Lannfelt. 1992. 'A
584 pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of
585 beta-amyloid', *Nat Genet*, 1: 345-7.
586 Murrell, J., M. Farlow, B. Ghetti, and M. D. Benson. 1991. 'A mutation in the amyloid precursor
587 protein associated with hereditary Alzheimer's disease', *Science*, 254: 97-9.
588 Nicoll, A.J., S. Panico, D.B. Freir, D. Wright, C. Terry, E. Risse, C.E. Herron, T. O'Malley, J.D.
589 Wadsworth, M.A. Farrow, D.M. Walsh, H.R. Saibil, and J. Collinge. 2013. 'Amyloid-beta
590 nanotubes are associated with prion protein-dependent synaptotoxicity', *Nat Commun*, 4:
591 2416.
592 Purro, S. A., A. J. Nicoll, and J. Collinge. 2018. 'Prion Protein as a Toxic Acceptor of Amyloid-beta
593 Oligomers', *Biol Psychiatry*, 83: 358-68.
594 Risse, E., A.J. Nicoll, W.A. Taylor, D. Wright, M. Badoni, X. Yang, M.A. Farrow, and J. Collinge. 2015.
595 'Identification of a compound which disrupts binding of amyloid-beta to the prion protein
596 using a novel fluorescence-based assay', *J Biol chem*, 290: 17020-28.
597 Saito, T., Y. Matsuba, N. Mihira, J. Takano, P. Nilsson, S. Itohara, N. Iwata, and T.C. Saito. 2014.
598 'Single App knock-in mouse models of Alzheimer's disease', *Nat Neurosci*, 17: 661-63.

599 Salazar, S.V., C. Gallardo, A.C. Kaufman, C.S. Herber, L.T. Haas, S. Robinson, J.C. Manson, M.K. Lee,
600 and S.M. Strittmatter. 2017. 'Conditional Deletion of Prnp Rescues Behavioral and Synaptic
601 Deficits after Disease Onset in Transgenic Alzheimer's Disease', *J Neurosci*.

602 Sanderson, D.J., E. Hindley, E. Smeaton, N. Denny, A. Taylor, C. Barkus, R. Sprengel, P.H. Seeburg, and
603 D.M. Bannerman. 2011. 'Deletion of the GluA1 AMPA receptor subunit impairs recency-
604 dependent object recognition memory', *Learn. Mem.*, 18: 181-90.

605 Smith, L. M., M. A. Kostylev, S. Lee, and S. M. Strittmatter. 2019. 'Systematic and standardized
606 comparison of reported amyloid-beta receptors for sufficiency, affinity, and Alzheimer's
607 disease relevance', *J Biol Chem*, 294: 6042-53.

608 Spires-Jones, T., and S. Knafo. 2012. 'Spines, plasticity, and cognition in Alzheimer's model mice',
609 *Neural Plast*, 2012: 319836.

610 Tomic, J.L., A. Pensalfini, E. Head, and C.G. Glabe. 2009. 'Soluble fibrillar oligomer levels are elevated
611 in Alzheimer's disease brain and correlate with cognitive dysfunction', *Neurobiol Dis*, 35:
612 352-58.

613 Um, J.W., A.C. Kaufman, M. Kostylev, J.K. Heiss, M. Stagi, H. Takahashi, M.E. Kerrisk, A. Vortmeyer, T.
614 Wisniewski, A.J. Koleske, E.C. Gunther, H.B. Nygaard, and S.M. Strittmatter. 2013.
615 'Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to
616 cellular prion protein', *Neuron*, 79: 887-902.

617 Um, J.W., H.B. Nygaard, J.K. Heiss, M.A. Kostylev, M. Stagi, A. Vortmeyer, T. Wisniewski, E.C.
618 Gunther, and S.M. Strittmatter. 2012. 'Alzheimer amyloid-beta oligomer bound to
619 postsynaptic prion protein activates Fyn to impair neurons', *Nat Neurosci*, 15: 1227-35.

620

621

622 **Figures and figure legends:**

623

624 Figure 1. Knockout of PrP^c does not affect total APP levels in wild type or AD-model

625 **mice. A)** Total brain homogenate from 12-month old mice across 8 genotypes were

626 analysed via western blot. APP was labelled using the N-terminal monoclonal antibody

627 22C11, and PrP^C labelled using ICSM18. Homogenate from a single sample was loaded on

628 every gel analysed ($n = 5$) and used to normalise protein quantifications between gels.

629 Values reported are the ratio of APP/GAPDH within each sample. **B)** Quantification of APP

630 expression levels determined by western blot. J20 mice showed significantly higher total

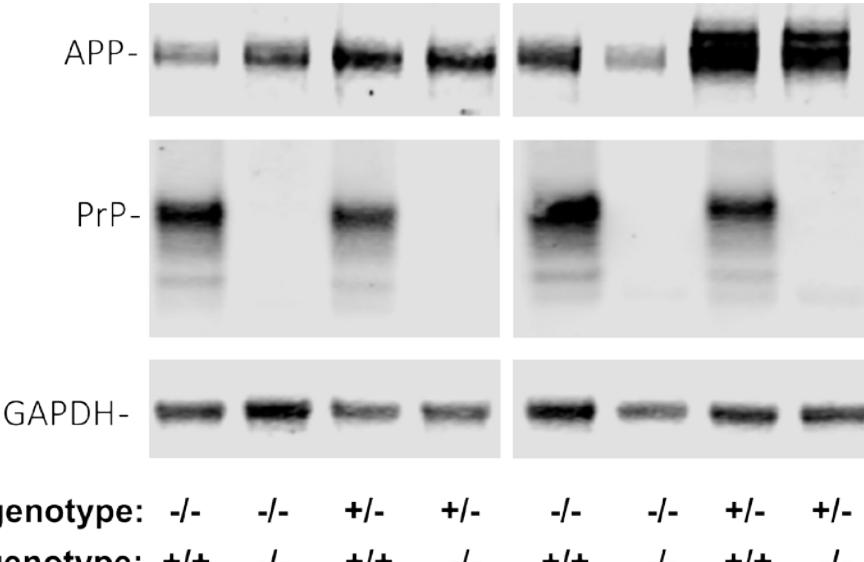
631 APP expression than APP-PS1 mice irrespective of PrP^C status (APP-PS1 vs J20, p=0.024),

632 however no significant differences were observed between the PrP^C +/+ and -/- variants of

633 any APP genotype. **C)** Quantification of PrP^c expression levels determined by western blot.

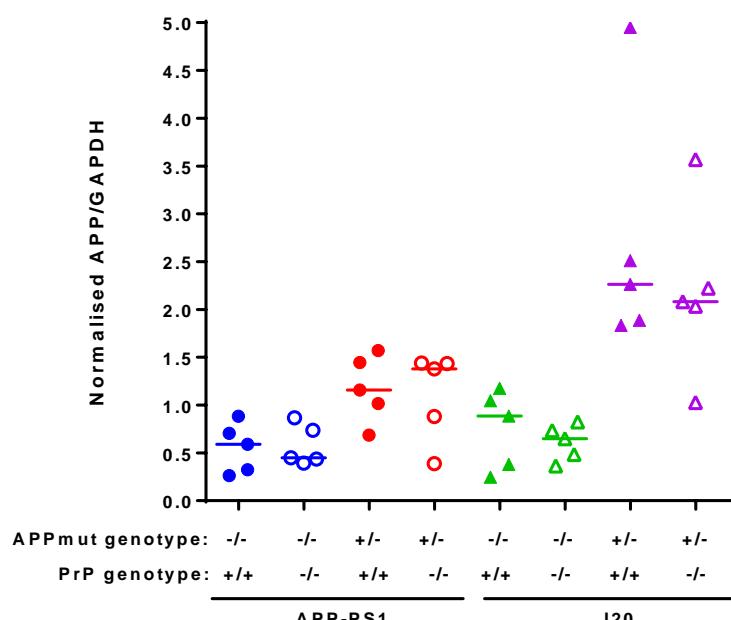
634 No significant differences in PrP^C expression were observed between APP genotypes.

635 Deletion of PrP^C resulted in a significant difference on PrP^C expression levels for all the lines

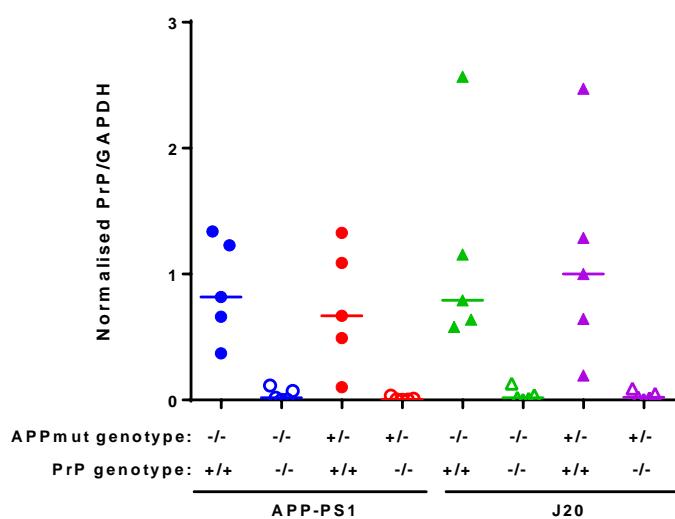

636 used in this study, when compared to their respective controls (WT vs PrP^C KO, $p=0.036$;

637 APP-PS1 vs APP-PS1 PrP^C KO, p=0.019; WT vs PrP^C KO, p=0.019; J20 vs J20 PrP^C KO,

638 p=0.026).


639 A)

639

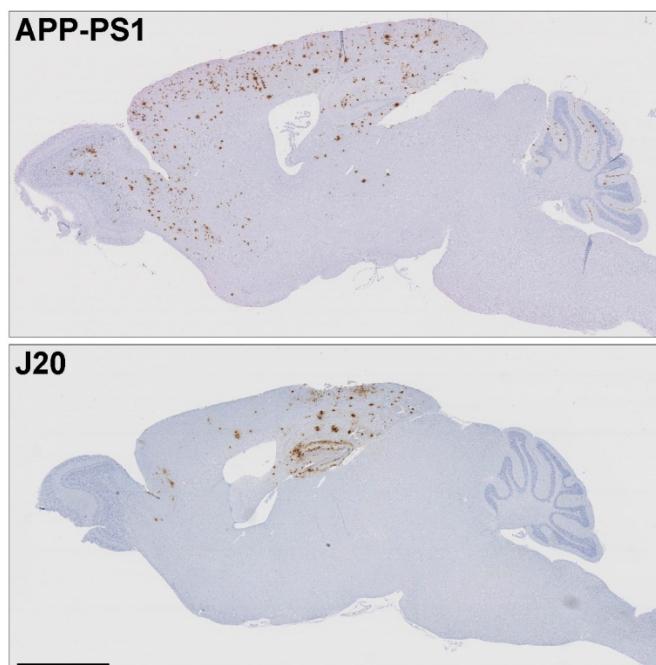

640

641 B)

642

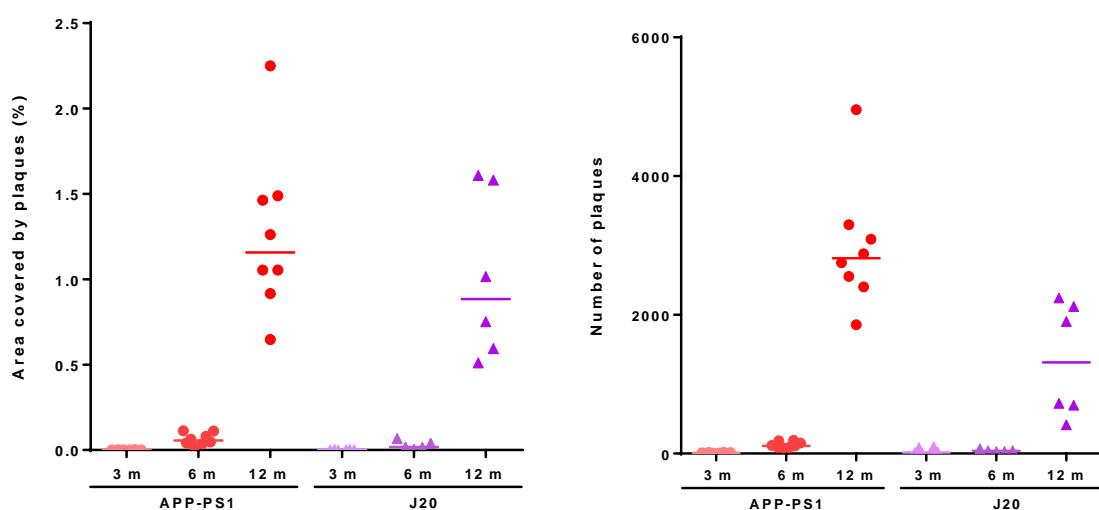
643 C)

644

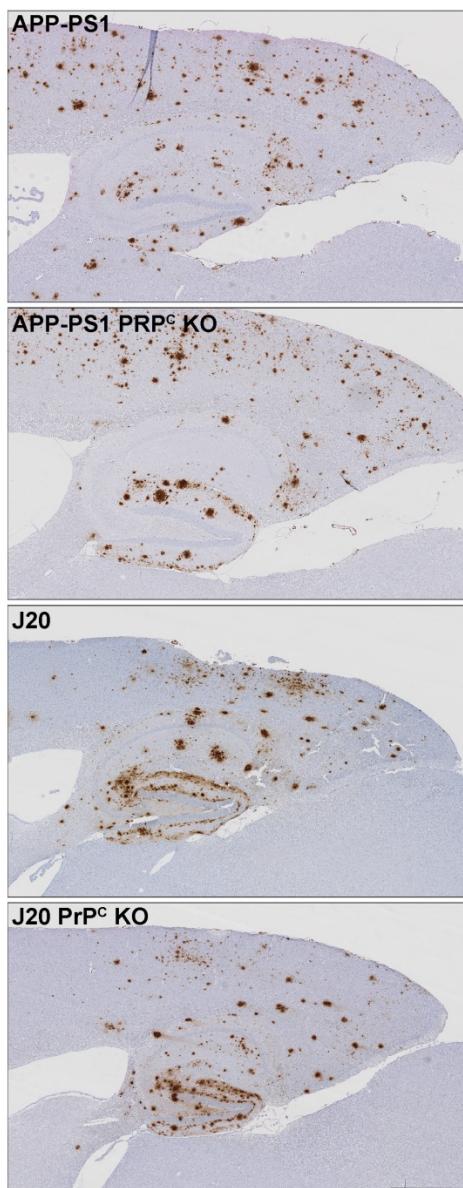

645

646

647

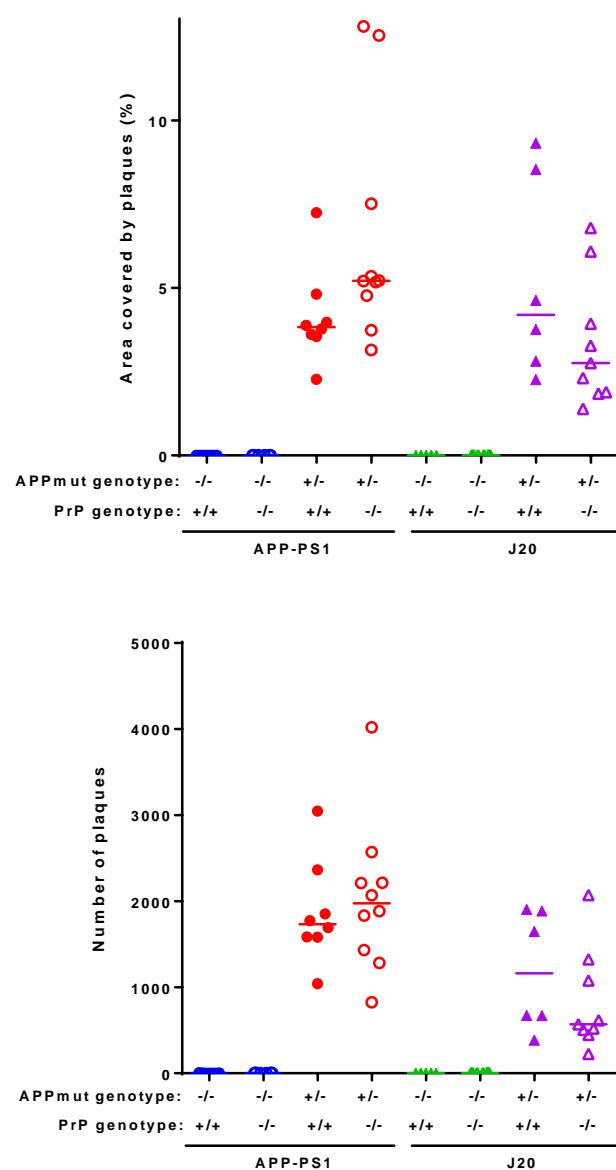

648 **Figure 2. Progressive brain deposition of A β plaques in APP-PS1 and J20 mice. A)**
649 Representative images of APP-PS1 and J20 12-month old mice stained with 82E1b anti-A β
650 antibody. **B)** Quantification of A β plaques area during aging. **C)** Quantification of A β plaques
651 number. APP-PS1 mice exhibited a higher number of plaques at 12 months of age (APP-
652 PS1 vs J20, $p=0.014$). Scale bar: 2 mm.

653



654

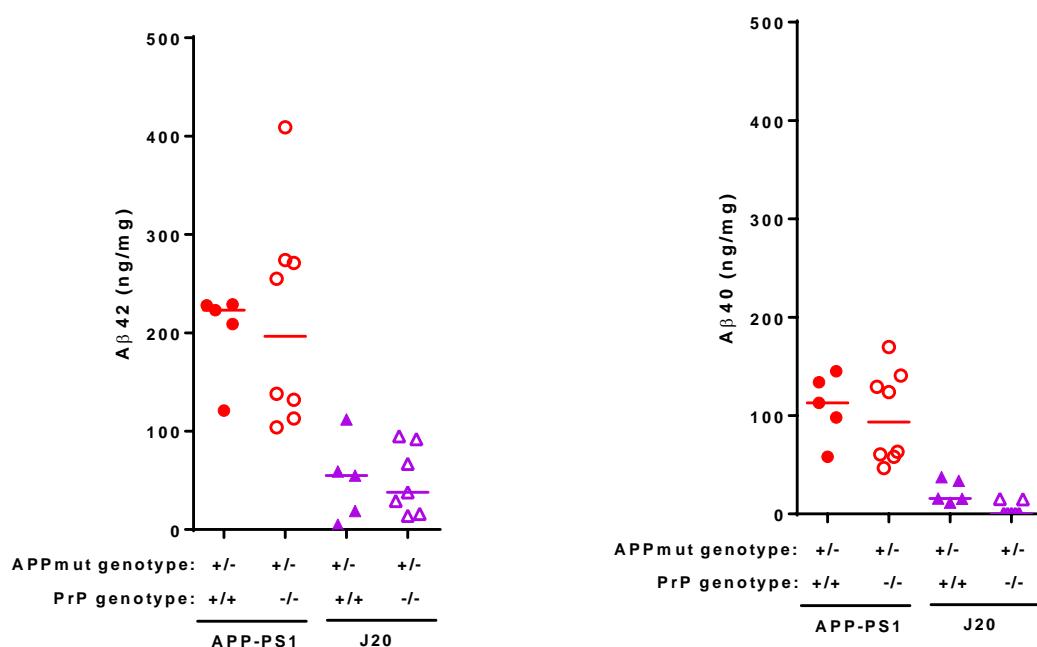
655


656 **Figure 3. Deposition of A β plaques in APP-PS1 and J20 mice is independent of PrP C**
657 **A)** Representative images showing hippocampus, cortex and corpus callosum
658 at 12 months of age of the four mouse lines studied. **B)** Quantification of the area covered by
659 plaques on the above mentioned areas. For all the APP mutant lines there was a significant
660 difference in area covered when compared to their respective controls (WT vs APP-PS1,
661 p=0.02; PrP C KO vs APP-PS1 PrP C KO, p=0.0005; WT vs J20, p=0.0006; PrP C KO vs J20
662 PrP C KO, p=0.037) and, similar amounts when compared APP mutant lines to their
663 respective ablated PrP C line (APP-PS1vs APP-PS1 PrP C KO, p=0.75; J20 vs J20 PrP C KO,
664 p>0.99). **C)** Quantification of the number of plaques on the above mentioned areas.
665 Transgenic mice exhibited a higher number of plaques compared to their respective wild-
666 type littermates (WT vs APP-PS1, p=0.005; PrP C KO vs APP-PS1 PrP C KO, p=0.002; WT vs
667 J20, p=0.0008; PrP C KO vs J20 PrP C KO, p=0.031) and no significant difference when
668 compared to their respective ablated PrP C line (APP-PS1vs APP-PS1 PrP C KO, p>0.99; J20
669 vs J20 PrP C KO, p>0.99). Scale bar: 700 μ m.

670

671

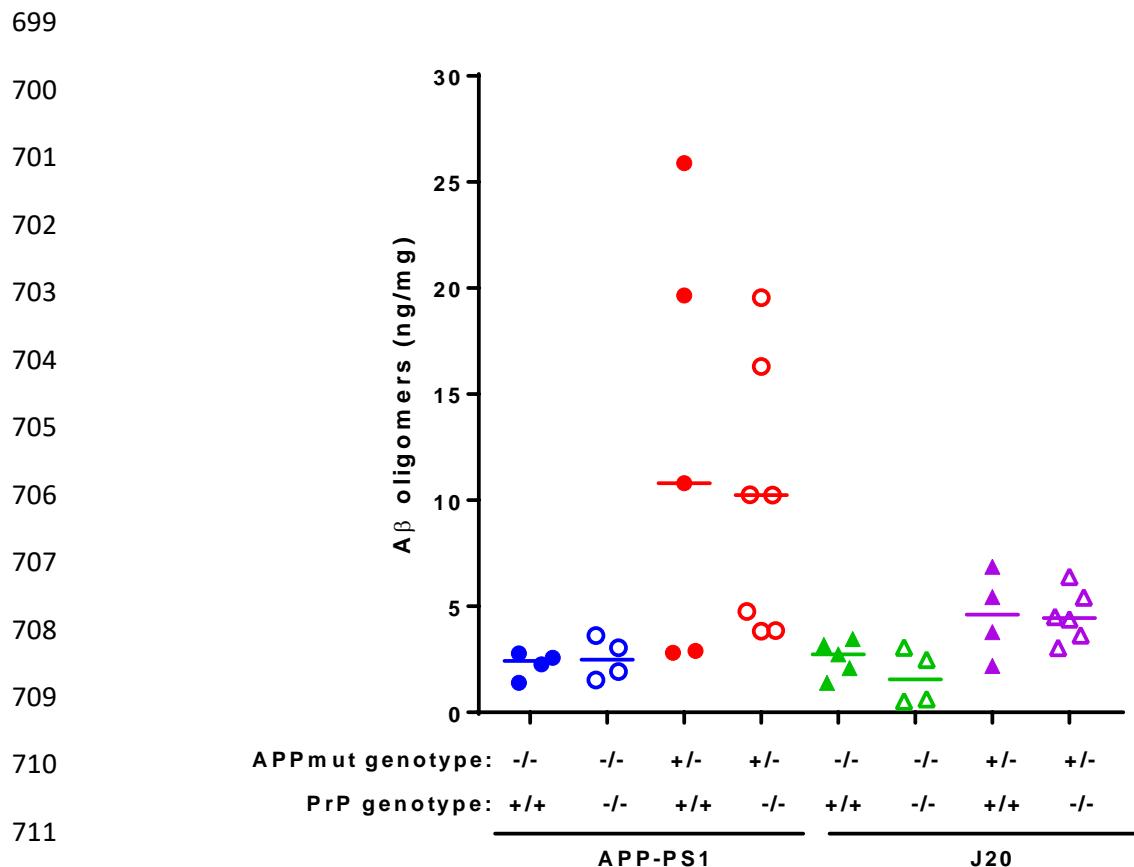
672



673 **Figure 4. Immunoassays demonstrate that total A β peptide levels in APP-PS1 and J20**
674 **mouse brain are independent of PrP C expression.** Total brain homogenates from mice at
675 12 months of age were analysed by multiplex A β peptide panel (6E10) immunoassay from
676 MSD. **A)** APP-PS1 expressing or not PrP C presented higher levels of A β ₄₂ than J20 samples
677 (APP-PS1 vs J20, p=0.04; APP-PS1 PrP C KO vs J20 PrP C KO, p=0.004). **B)** Quantification
678 of A β ₄₀ levels revealed no changes due to ablation of PrP C in any of the mouse lines. Levels
679 of A β ₄₀ were not significantly different between APP-PS1 and J20 mice (APP-PS1 vs J20,
680 p=0.14).

681

682


683

693

694

695 Figure 5. Quantification of A β oligomers present in APP-PS1 and J20 mouse brain do
696 not change with PrP C expression. Total brain homogenates were assayed using 1C22
697 anti-A β oligomer antibody (WT vs APP-PS1, p=0.035; APP-PS1 vs APP-PS1 PrP C KO,
698 p>0.99; WT vs J20, p=0.25; J20 vs J20 PrP C KO, p>0.99).

713 **Figure 6. A β oligomers that bind to PrP C are present in APP-PS1 at higher levels than**
714 **in J20 mouse brain, but do not change with PrP C expression.** Total brain homogenates
715 were analysed by DELFIA immunoassay to detect PrP C -binding A β species (APP-PS1 vs
716 J20, p=0.037; WT vs APP-PS1, p=0.009; APP-PS1 vs APP-PS1 PrP C KO, p>0.99; WT vs
717 J20, p=0.12; J20 vs J20 PrP C KO, p>0.99).

718

719

720

721

722

723

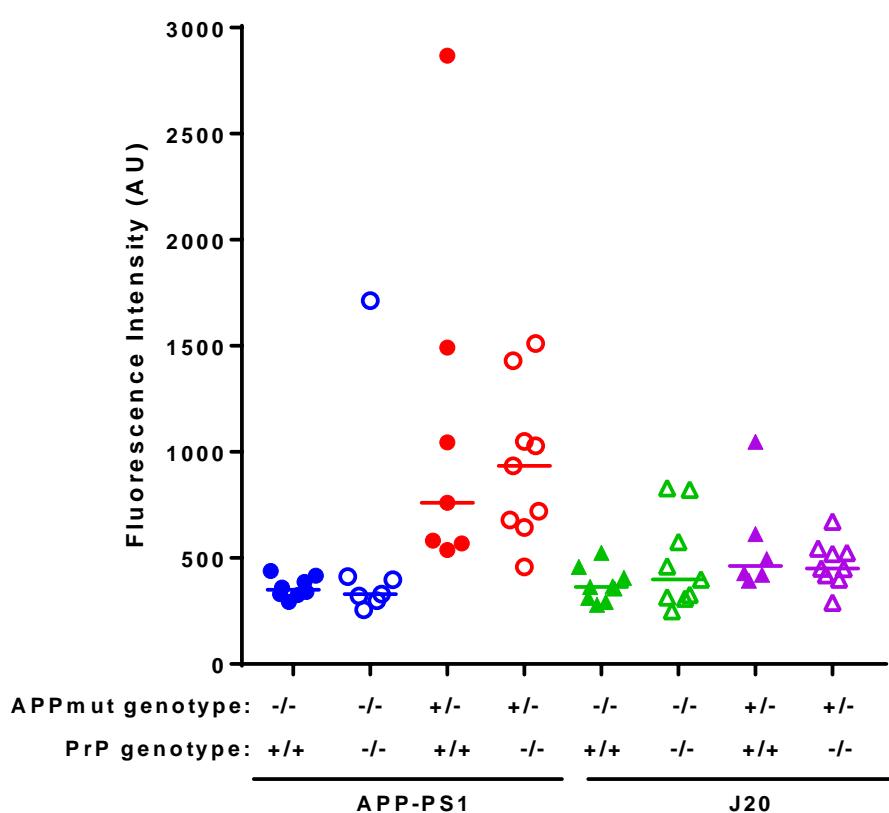
724

725

726

727

728


729

730

731

732

733

734 Figure 7. **A β oligomers present in APP-PS1 and J20 mouse brain have different**
735 **conformations, independent of PrP^C expression.** Total brain homogenates were
736 quantified by dotblot using OC antibody (WT vs APP-PS1, $p=0.012$; APP-PS1 vs APP-PS1
737 PrP^C KO, $p>0.99$; WT vs J20, $p=0.87$; J20 vs J20 PrP^C KO, $p>0.99$).

738

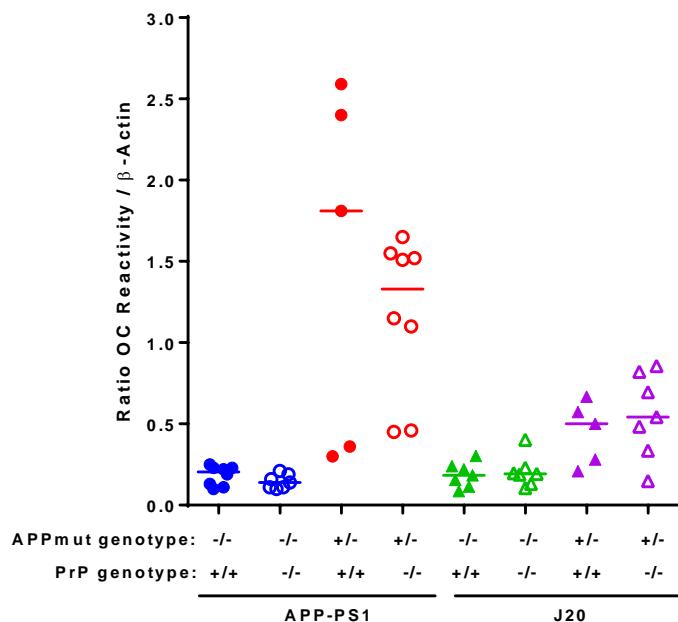
739

740

741

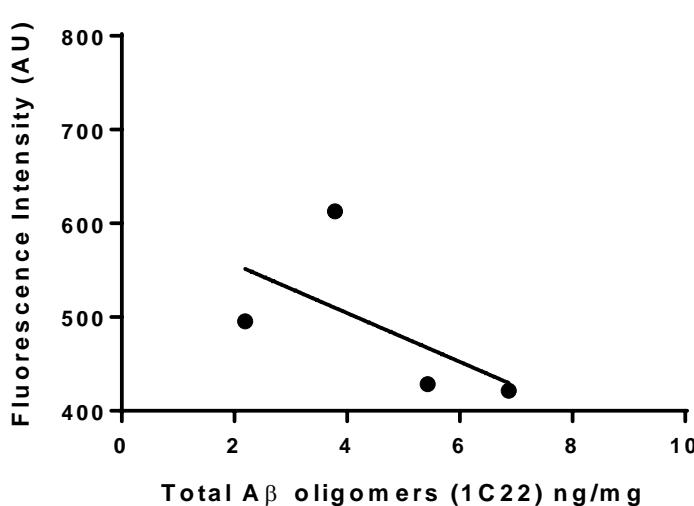
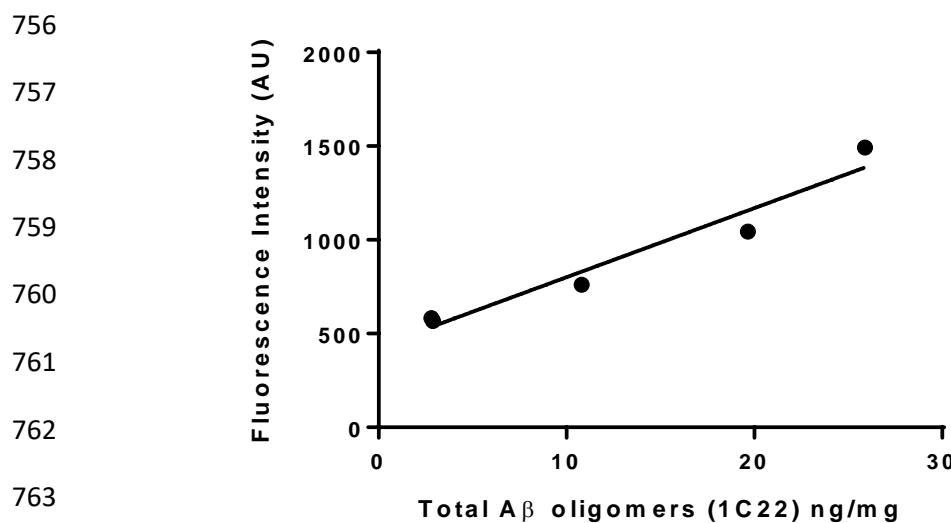
742

743

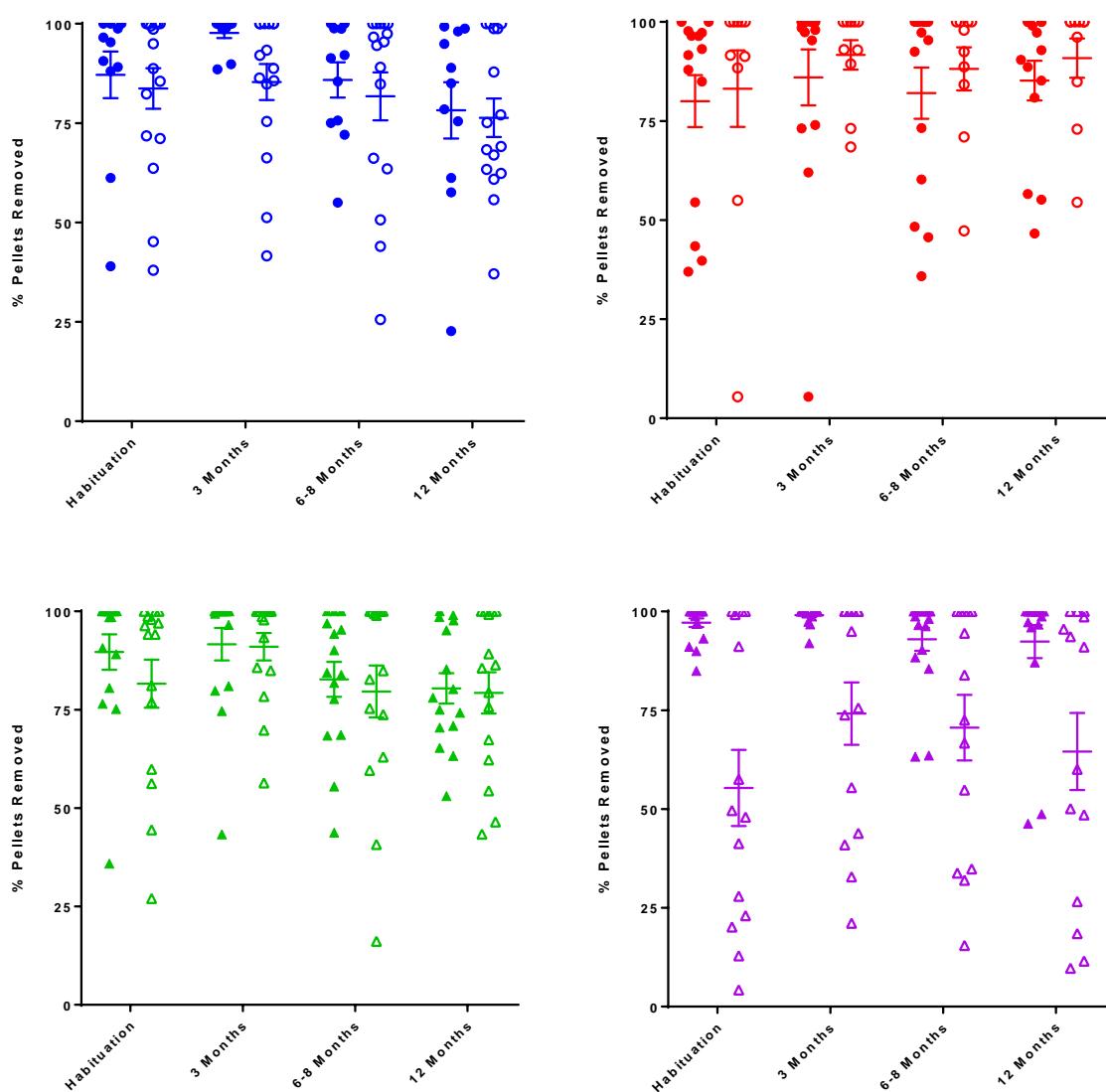

744

745

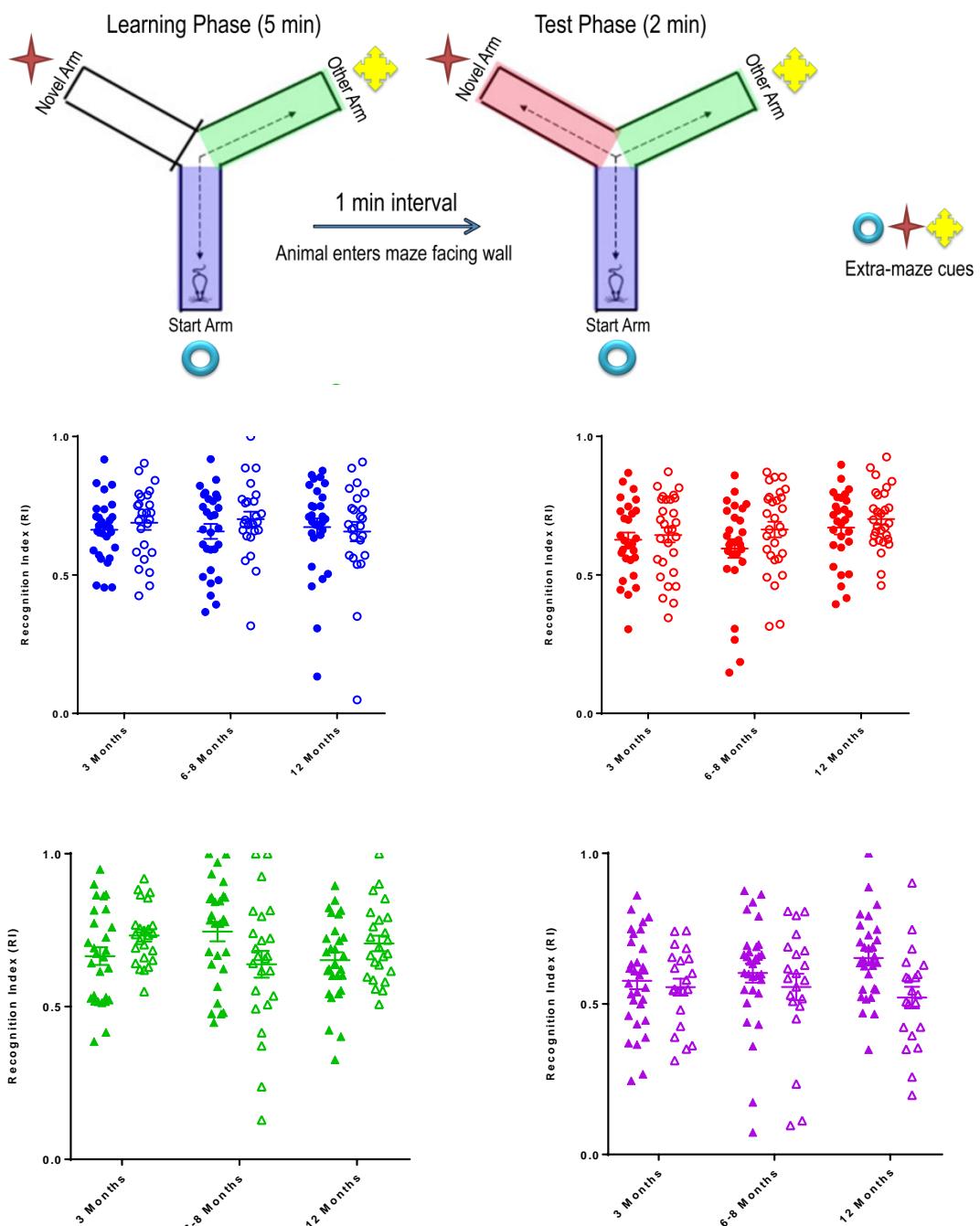
746



747

748

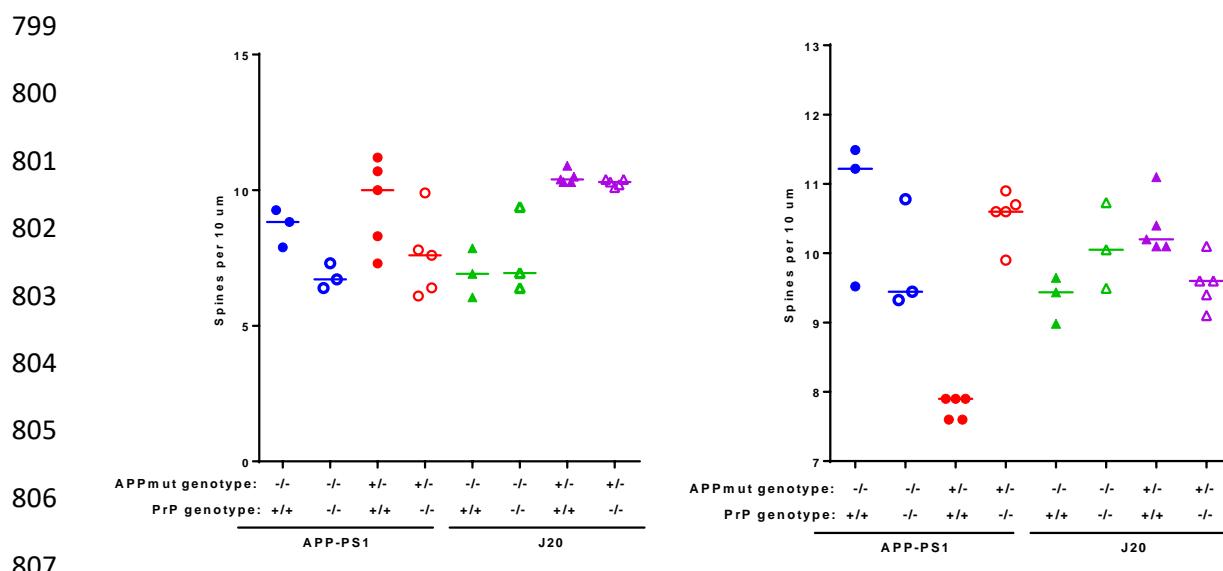

750

751 **Figure 8. Positive correlation of A β oligomers that bind PrP C with total amount of A β
752 oligomers in APP-PS1, but not in J20 mice. A)** Data from figures 5 and 6 showed a
753 positive correlation for APP-PS1 brain samples (Pearson $r=0.973$, $p=0.0052$). **B)** No
754 correlation was found for values obtained using J20 brain samples (Pearson $r=-0.593$,
755 $p=0.407$).

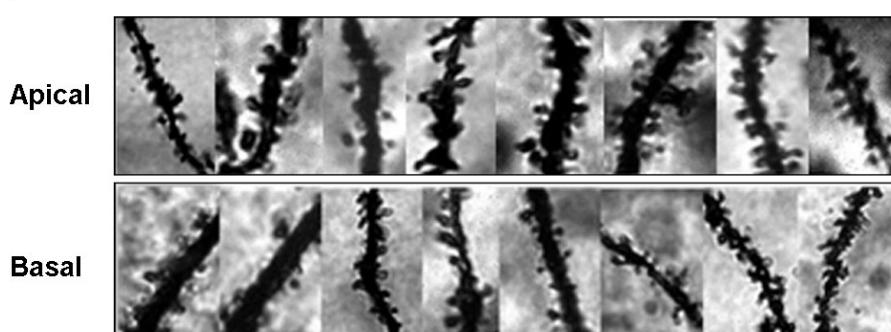


765 **Figure 9. Ablation of PrP^C reduces burrowing activity in J20 mice after 3 months of**
766 **age, but not in APP-PS1 model.** Graph shows burrowing activity for **A)** WT and PrP^C KO
767 mice (APP-PS1 littermates, blue), **B)** APP-PS1 and APP-PS1 PrP^C KO mice (red), **C)** WT
768 and PrP^C KO (J20 littermates, green) and **D)** J20 and J20 PrP^C KO mice (purple) during the
769 habituation phase and at 3, 6 and 12 months old. Significant differences were only found
770 when comparing J20 to J20 PrP^C KO mice (at 3 months old: p=0.018; at 6 months old:
771 p=0.04; at 12 months old: p=0.006). Data were analysed by two way ANOVA followed by
772 Sidak's post-hoc tests.

773



774 **Figure 10. Lack of PrP^C affects performance of J20 mice in the Y-maze, but not that of**
775 **APP-PS1 mice. A)** Diagram depicts the Y-maze showing the geographical cues and
776 methods for the test. Graph shows a novelty preference ratio obtained from mice **A)** WT and
777 PrP^C KO mice (APP-PS1 littermates, blue), **B)** APP-PS1 and APP-PS1 PrP^C KO mice (red),
778 **C)** WT and PrP^C KO (J20 littermates, green) and **D)** J20 and J20 PrP^C KO mice (purple) at 3,
779 6 and 12 months old when tested in the Y-maze mice. Significant differences were found
780 when comparing J20 vs J20 PrP^C KO mice at 12 months old ($p=0.013$). Data were analysed
781 by two way ANOVA followed by Sidak's post-hoc tests.


790 Figure 11. Effect of PrP^C expression on structural plasticity in both AD mouse models.

791 **A)** Quantification of CA1 basal spines using Golgi staining (WT vs APP-PS1, $p>0.99$; PrP^C
792 KO vs APP-PS1 PrP^C KO, $p>0.99$; WT vs J20 $p=0.014$; PrP^C KO vs J20 PrP^C KO, $p=0.22$;
793 APP-PS1 vs APP-PS1 PrP^C KO, $p=0.19$; J20 vs J20 PrP^C KO, $p>0.99$). **B)** Quantification of
794 CA1 apical spines using Golgi staining confirms that A β -induced spine loss is PrP-
795 dependent on APP-PS1 model (WT vs APP-PS1, $p=0.003$; PrP^C KO vs APP-PS1 PrP^C KO,
796 $p=0.64$; WT vs J20 $p=0.038$; PrP^C KO vs J20 PrP^C KO, $p=0.79$; APP-PS1 vs APP-PS1 PrP^C
797 KO, $p=0.001$; J20 vs J20 PrP^C KO, $p=0.049$). **C)** Representative images of CA1 apical and
798 basal dendritic spines of each group quantified.

808 APPmut genotype: -/- -/- +/ -/+ -/- -/- +/ -/+

PrP genotype: +/+ -/- +/ +/ -/- +/ +/ -/-

