

Cell-type specific deletions of Neuroligin 2 reveal a vital role of synaptic excitation-inhibition balance

3

4 Colleen M. Longley^{1,2}, Xize Xu³, Jessica E. Messier^{2,4}, Zhao-Lin Cai^{2,4}, Jung Woo Park⁵,
5 Hongmei Chen^{2,4}, Derek L. Reznik⁴, Monika P. Jadi³, Mingshan Xue^{1,2,4,6,*}

6

⁷ ¹Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA

8 ²The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at
9 Texas Children's Hospital, Houston, Texas 77030, USA

10 ³Departments of Psychiatry and Neuroscience, Yale University, New Haven, Connecticut 06520,
11 USA

12 ⁴Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA

13 ⁵Department of Cognitive Sciences, Rice University, Houston, Texas 77005, USA

14 ⁶Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
15 77030, USA

16 *Lead Contact: mxue@bcm.edu

17

18 Abstract (150 words)

19 Synaptic excitation (E) and inhibition (I) stay relatively proportional to each other over different
20 spatiotemporal scales, orchestrating neuronal activity in the brain. This proportionality, referred
21 to as E-I balance, is thought to be critical for neuronal functions because its disruption was
22 observed in many neurological disorders. However, the causal evidence demonstrating its
23 significance is scarce. Here we show that deleting Neuroligin-2 (Nlgn2), a postsynaptic adhesion

24 molecule at inhibitory synapses, from mouse glutamatergic or GABAergic neurons reduces
25 inhibition cell-autonomously without affecting excitation, thereby disrupting E-I balance and
26 causing lethality. In contrast, deleting Nlgn2 constitutively or simultaneously from both
27 glutamatergic and GABAergic neurons results in viable mice. A neural network model shows
28 that reducing inhibition in either neuronal type is detrimental to network activity, but in both
29 types partially re-establishes E-I balance and activity. Together, our results provide evidence for
30 an essential role of E-I balance in brain functions and organism survival.

31

32 **Introduction**

33 Cortical networks rely on a precise balance between excitation (E) and inhibition (I) to ensure
34 efficient information processing (Haider and McCormick, 2009). In a single neuron, the synaptic
35 weights from E and I are co-tuned such that a cell that receives more excitation correspondingly
36 receives more inhibition as well through homeostatic plasticity (Xue, Atallah and Scanziani,
37 2014). Meanwhile, in the entire network E and I are dynamically balanced such that the mean
38 inhibition and mean excitation received by neurons is balanced across different patterns of
39 activity without directly altering synaptic weights (Ahmadian and Miller, 2019). Additionally,
40 many cortical regions, including visual cortex, operate as inhibition-stabilized networks,
41 meaning that as external excitatory input to the network increases due to sensory inputs, the
42 feedback inhibition increases as well, allowing the network to stabilize (Adesnik, 2017).

43

44 The importance of E-I balance is demonstrated by its role in the pathogenesis of many
45 neurological disorders, including Autism Spectrum Disorder (ASD) (Rubenstein and Merzenich,
46 2003). However, the causal evidence linking E-I balance and ASD is scarce. It has been shown

47 that acutely disrupting E-I balance in a wild-type mouse using optogenetics leads to the
48 development of ASD symptoms ((Yizhar *et al.*, 2011) while acutely restoring E-I balance using
49 optogenetics in a mouse model of ASD is able to alleviate ASD symptoms (Selimbeyoglu *et al.*,
50 2017). However, these are acute manipulations and they do not address the role of E-I balance
51 during development. It has been demonstrated that increasing or decreasing sensory input during
52 the critical window leads to the development of more noisy networks that are more prone to the
53 generation of seizures (Zhang, Bao and Merzenich, 2001; Chang and Merzenich, 2003),
54 suggesting that E-I balance during development might play an important role in ASD
55 pathogenesis. Additionally, recent work has suggested that the E-I imbalance observed in ASD
56 mouse models may be compensatory, rather than causative, as it serves to restore normal neural
57 activity rather than alter it (Antoine *et al.*, 2019).

58

59 There is mounting evidence that there is not only a disruption of E-I balance underlying ASD
60 pathogenesis, but more specifically, that there is a decrease in the level of inhibition driving an
61 increase in E-I ratio. The importance of inhibitory synapses in ASD is evidenced by the many
62 mouse models disrupting inhibition that display neuropsychiatric symptoms. For example, mice
63 lacking the Gabbr1 gene, which encodes for a subunit of the GABAB receptor, display
64 spontaneous seizures, hyperactivity, and memory impairment (Schuler *et al.*, 2001). It has also
65 been shown in some mouse models of human disease that many of the disease phenotypes can be
66 recapitulated by deleting the causative gene only in inhibitory cells. For example, it has been
67 shown that deletion of Mecp2, the gene that causes Rett syndrome, specifically in GABAergic
68 cells recapitulates most of the phenotypes seen in a constitutive deletion (Chao *et al.*, 2010).

69

70 In addition to the role of E-I balance and disrupted inhibition in ASD, it has also been implicated
71 in other neuropsychiatric disorders like epilepsy and schizophrenia. Patients with schizophrenia
72 display alterations in gene expression in GABAergic interneurons of the prefrontal cortex that
73 may contribute to some of the cognitive deficits associated with this disease (Akbarian *et al.*,
74 1995; Hashimoto *et al.*, 2003). Additionally, epilepsy is frequently characterized by hyper-
75 excitable cortical networks that result from a breakdown of E-I balance. (Dehghani *et al.*, 2016).
76 Thus, targeting E-I balance, and particularly GABAergic interneuron activity, is a promising
77 strategy for treating a diverse array of neurodevelopmental and psychiatric disease.

78

79 All inhibition in the cortex comes from the activity of GABAergic interneurons which form
80 hyperpolarizing synaptic contacts primarily with other local neurons (Tremblay, Lee and Rudy,
81 2016). While most of our understanding of inhibition focuses on the interaction between
82 interneurons and excitatory neurons there are also inhibitory synapses that exist between
83 different interneurons (Staiger, Freund and Zilles, 1997; Staiger *et al.*, 2004). While the
84 classification of interneuron types is complex (Ascoli *et al.*, 2008) they can be broadly sub-
85 classified into three major sub-types based on gene expression: Parvalbumin (Pv) expressing,
86 Somatostatin (Sst) expressing, and 5HT3aR expressing. The 5HT3aR population can be further
87 subclassified as vasoactive-intestinal peptide (Vip) positive and Vip negative (Rudy *et al.*, 2011).
88 Sst and Pv positive interneurons provide most of the inhibition onto excitatory pyramidal cells
89 while VIP interneurons primarily provide inhibition onto Sst interneurons, functioning to
90 disinhibit pyramidal cells (Pfeffer *et al.*, 2013; Jiang *et al.*, 2015). Despite recent work on the
91 functional impact of these disinhibitory connections (Xu *et al.*, 2019), the differential
92 contributions of these two classes of inhibitory synapses to E-I balance is not known. One way to

93 differentially manipulate these two classes of inhibitory synapses while also disrupting E-I
94 balance during development is to selectively delete key components of the inhibitory post-
95 synapse in either excitatory or inhibitory neurons.

96

97 Neuroligin 2 (NLGN2) is a post-synaptic cell adhesion molecule that is exclusively expressed at
98 inhibitory synapses (Varoqueaux, Jamain and Brose, 2004). Loss of NLGN2 disrupts inhibitory
99 synaptic activity but has no effect on excitatory synaptic activity (Chubykin *et al.*, 2007). It is
100 thought to participate in the recruitment of the GABA_A receptor to the post-synaptic site by
101 interactions with pre-synaptic neurexin, gephyrin, and others (Poulopoulos *et al.*, 2009). While
102 much is known about the cellular and behavioral effects of constitutive NLGN2 knock-out (KO)
103 (Blundell *et al.*, 2009; Gibson, Huber and Südhof, 2009; Babaev *et al.*, 2016; Seok *et al.*, 2018;
104 Cao *et al.*, 2020) relatively little is known about the cell-autonomous effects of conditional
105 NLGN2 in different cell types (Liang *et al.*, 2015; Zhang *et al.*, 2015; Zhang and Südhof, 2016).

106

107 To this end, we investigated the effect of NLGN2 at inhibitory synapses onto interneurons by
108 performing cell-type specific deletion of NLGN2 specifically in the different subtypes of
109 GABAergic interneurons. Using interneuron specific Cre lines had no effect on inhibition onto
110 interneurons but targeted viral delivery of iCre into the three classes of interneurons was able to
111 significantly reduce inhibition. Further investigation into the interneuron specific Cre lines
112 revealed that they were unable to achieve complete deletion of NLGN2 mRNA before the third
113 post-natal week while viral delivery of iCre achieved a much earlier deletion. This suggested that
114 the timing of NLGN2 deletion is critical. We further verified this by testing the effect of adult
115 deletion of NLGN2 in interneurons and pyramidal cells and confirmed that adult deletion did not

116 affect inhibition. Knowing that *Nlgn2* knock-out can reduce inhibition onto both excitatory and
117 inhibitory neurons we tested the effect on E-I balance by conditionally deleting *Nlgn2* in all
118 excitatory or all inhibitory interneurons. Much to our surprise, deletion of *Nlgn2* in excitatory
119 neurons is lethal but simultaneously deleting *Nlgn2* in inhibitory neurons as well restores
120 viability. We hypothesized that this lethality is due to severe alteration in E-I balance. We
121 investigated this hypothesis using a simple model of a cortical network and showed that
122 decreasing inhibitory inputs onto excitatory cells results in severe instability of the model but
123 simultaneously decreasing inhibitory inputs onto both excitatory and inhibitory neurons restores
124 stability. This suggests that a proper balance between inhibitory synapses onto both excitatory
125 and inhibitory neurons is critical for the survival of the animal, confirming the importance of
126 proper E-I balance. Additionally, our work suggests that using cell-type specific gene knockouts
127 to infer information about gene function may reveal unexpected findings due to the interactions
128 between different cell types.

129

130 **Results**

131 ***Nlgn2* is expressed in all three major subtypes of cortical interneurons**

132 Constitutive *Nlgn2* knock-out mice have previously been shown to have decreased inhibitory
133 synaptic input onto numerous different cell types including brainstem excitatory neurons
134 (Poulopoulos *et al.*, 2009), cortical pyramidal cells (Gibson, Huber and Südhof, 2009), and
135 hippocampal pyramidal cells (Horn *et al.*, 2017). However, the function of *Nlgn2* in cortical
136 interneurons was not known. First, we sought to determine whether *Nlgn2* is expressed in
137 cortical interneurons. To do this we performed double fluorescent *in situ* hybridization (dFISH)
138 against *Nlgn2* and either *Somatostatin* (Sst), *Parvalbumin* (Pv), or *Vasoactive intestinal peptide*

139 (Vip) to label the different classes of interneurons. We designed a DIG conjugated RNA probe
140 for *Nlgn2* that binds to exons 4-6 of the mouse *Nlgn2* mRNA. Exons 4-6 are the exons that are
141 flanked by LoxP sites and removed by Cre recombinase in the conditional knock-out *Nlgn2*
142 mouse line, so that region should not be present in Cre expressing cells (Liang *et al.*, 2015)
143 (**Supp Fig 1 A**). First, we confirmed the specificity of our *Nlgn2* probe by comparing the *Nlgn2*
144 fluorescent intensity in layer 2/3 neurons from visual cortex of WT and *Nlgn2*^{-/-} animals. We
145 found an 89.2% reduction in the average cellular *Nlgn2* fluorescence intensity in *Nlgn2*^{-/-} animals
146 indicating that our probe is specific for *Nlgn2* (**Supp Fig 1 B,C**). For Sst interneurons we found
147 that 77.7% of the cells in the WT animals had a higher *Nlgn2* fluorescence intensity than the
148 *Nlgn2*^{-/-} cells (**Supp Fig 1 D,E**). Similarly, for Vip interneurons we found that 86.9% of the cells
149 in the WT animals were higher than the *Nlgn2*^{-/-} cells (**Supp Fig 1 F,G**), and for Pv interneurons
150 we found that 93.7% of the cells in the WT animals were higher than the *Nlgn2*^{-/-} cells (**Supp Fig**
151 **1 H,I**). Together, this data confirms *Nlgn2* is expressed in all three major subtypes of cortical
152 neurons. This led us to question whether *Nlgn2* is also playing a similar role in regulating their
153 inhibition.

154
155 **Conditional *Nlgn2* knockout via interneuron specific Cre lines has no effect on inhibitory**
156 **synaptic inputs**
157 To determine the effect of loss of *Nlgn2* on cortical interneurons we first conditionally knocked
158 out *Nlgn2* in Sst interneurons by breeding *Nlgn2 floxed* mice with *Sst-ires-cre* mice. We
159 obtained acute coronal brain slices from 3-5 week old *Nlgn2*^{fl/fl}; *Sst*^{Cre/+} mice and their age- and
160 sex- matched *Nlgn2*^{+/+}; *Sst*^{Cre/+} littermates injected in visual cortex at P0-P1 with AAV9-DIO-
161 TdTomato to label the Cre+ cells. We performed whole-cell voltage clamp to record spontaneous

162 excitatory postsynaptic currents (sEPSCs) and inhibitory postsynaptic currents (sIPSCs) from
163 TdTomato+ Sst neurons in layer 5. Surprisingly, we found that the frequencies and amplitudes of
164 sEPSCs and sIPSCs in *Nlgn2^{ff};Sst^{Cre/+}* mice were not significantly different from the controls
165 (**Fig 1 A,B**). For Vip interneurons we obtained acute coronal brain slices from 3-5 week old
166 *Nlgn2^{ff};Vip^{Cre/+};Rosa26^{Ai14/+}* and *Nlgn2^{+/+};Vip^{Cre/+};Rosa26^{Ai14/+}* mice and recorded from
167 TdTomato positive neurons in layer 2/3. We only found a small decrease in sIPSC amplitude in
168 *Nlgn2^{ff};Vip^{Cre/+};Rosa26^{Ai14/+}* mice as compared to the controls (**Fig 1 C,D**). For Pv interneurons
169 we obtained acute coronal brain slices from 10-14 week old *Nlgn2^{ff};Pv^{Cre/+};Rosa26^{Ai14/+}* and
170 *Nlgn2^{+/+};Pv^{Cre/+};Rosa26^{Ai14/+}* mice and recorded from TdTomato+ neurons in layer 5. Again, we
171 found no difference in sEPSCs or sIPSCs in *Nlgn2^{+/+};Pv^{Cre/+};Rosa26^{Ai14/+}* mice (**Fig 1 E,F**).
172

173 Based on the high level of *Nlgn2* expression in cortical interneurons, we were surprised by the
174 lack of effect on inhibition following *Nlgn2* knock-out and sought to determine the efficacy of
175 the interneuron specific Cre lines at deleting *Nlgn2*. We performed dFISH against *Nlgn2* and
176 *TdTomato* on *Nlgn2^{ff};Sst^{Cre/+};Rosa26^{Ai14/+}* and *Nlgn2^{+/+};Sst^{Cre/+};Rosa26^{Ai14/+}* controls at P14 and
177 P21 to quantify the levels of *Nlgn2* in Sst interneurons in the presence of *Sst-ires-Cre*. To
178 account for the variability in *Nlgn2* fluorescence between different animals, we normalized the
179 mean fluorescence intensity in Sst cells to the average mean fluorescence intensity of all layer
180 2/3 cells in the same section. Based on our dFISH comparing *Nlgn2^{+/+}* with *Nlgn2^{-/-}* animals,
181 90% of all cells in *Nlgn2^{-/-}* animals fall below the bottom 10% of cells in the WT animals (**Supp**
182 **Fig 1**). Thus, we defined a cell as having *Nlgn2* deleted if the fluorescence intensity was within
183 the bottom 10% of cells in the control. For *Nlgn2^{ff};Sst^{Cre/+};Rosa26^{Ai14/+}* at P14 we found only
184 65.8% of the cells were deleted and at P21 89.7% of the cells were deleted (**Fig 1 G-J**),

185 indicating a delayed loss of *Nlgn2* mRNA. We then performed similar experiments using *Vip*-
186 *ires-Cre* and *Pv-ires-Cre*. For *Nlgn2^{fl/fl};Vip^{Cre/+};Rosa26^{Ai14}* at P14 we found that 55.0% of the
187 cells were deleted and at P21 77.3% of cells were deleted, again indicating a delayed deletion
188 (**Fig 1 K-N**).

189 *Pv-ires-Cre* is known to have delayed expression in cortical interneurons (Taniguchi *et al.*, 2011)
190 and our dFISH confirmed this, with no expression of the TdTomato reporter in visual cortex at
191 P14 indicating that Cre was not present (**Supp Fig 2 A**). Zhang *et al.*, 2016 used *Pv-ires-Cre* to
192 manipulate *Nlgn2* in the cerebellum and found a significant decrease in sIPSCs in Purkinje cells
193 but no change in stellate cells despite both cell types expressing Pv-Cre at P21 (Zhang and
194 Südhof, 2016). Our dFISH shows that Pv-Cre efficiently deletes *Nlgn2* from Purkinje cells at
195 P14 (**Supp Fig 2 B-D**). However, when looking at the cerebellar interneurons in the molecular
196 layer, there is clear Cre expression and *Nlgn2* deletion from the presumed basket cells in the
197 inner half of the molecular layer, but no Cre expression in the presumed stellate cells in the outer
198 half of the molecular layer (**Supp Fig 2 C**). Based on this, we hypothesized that the timing at
199 which *Nlgn2* is deleted from a given cell type might be a critical determinant in whether there is
200 an effect on inhibition.

201

202 **Early deletion of *Nlgn2* disrupts inhibition onto all three classes of cortical interneurons**

203 In an attempt to achieve earlier deletion of *Nlgn2* in interneurons, we designed a strategy using
204 virally delivery of a Flpo dependent iCre into *Nlgn2 floxed* animals that express Flpo
205 recombinase in different subsets of interneurons. First, we assessed whether this strategy was
206 able to efficiently delete *Nlgn2* by P14. We injected AAV9-FRT-FLEX-iCre-P2A-3xNLS-
207 dTomato into the visual cortex of P0-P2 *Nlgn^{fl/fl};Rosa26^{Ai14/+};Sst^{Flpo/+}* and

208 *Nlgn2*^{+/+}; *Rosa26*^{Ai14/+}; *Sst*^{Flpo/+} animals and performed dFISH against *Nlgn2* and *TdTomato* at
209 P14. The Flpo dependent iCre should be reverted to the correct orientation in Flpo+ Sst
210 interneurons, leading to expression of Cre and deletion of *Nlgn2* mRNA (**Fig 2 A**). We found
211 that 95.4% of Cre+ cells in *Nlgn2*^{ff}; *Rosa26*^{Ai14/+}; *Sst*^{Flpo/-} had deleted *Nlgn2* (**Fig 2 B,D**).
212 Similarly, for *Nlgn2*^{ff}; *Rosa26*^{Ai14/+}; *Vip*^{Flpo/-} we found that 95.0% of cells had deleted *Nlgn2* (**Fig 2**
213 **C,E**). Together, this indicates that viral delivery of iCre achieves a much earlier deletion of
214 *Nlgn2* than the interneuron specific Cre lines.

215
216 We slightly modified the viral strategy designed above to allow us to identify and record from
217 both *Nlgn2* positive cells and iCre+ *Nlgn2* knock-out cells. To do this, we combined the Flpo
218 dependent iCre virus with a Flpo dependent GFP virus, using a low titer of the Flpo dependent
219 iCre virus and a high titer of the Flpo dependent GFP virus (**Fig 2 A**). We first determined the
220 titer of AAV9-FRT-FLEX-GFP and AAV9-FRT-FLEX-iCre-P2A-3xNLS-dTomato needed to
221 express GFP in greater than 50% of Sst or Vip neurons and Cre in approximately 10-20% of Sst
222 or Vip interneurons. We estimated the density of Sst, Vip, and Pv cells in visual cortex where we
223 inject the virus by using either *Sst*^{Flpo/+}; *Rosa26*^{FSF-tdT} mice for Sst cells (**Supp Fig 3 A,D**),
224 *Vip*^{Cre/+}; *Rosa26*^{Ai14/+} mice for Vip cells (**Supp Fig 3 B,D**), or *Pv*^{tdT/+} mice for Pv cells (**Supp Fig**
225 **3 C,D**). We cut 300 μ m live sections from these mice and quantified the density number of
226 tdTomato positive interneurons. We then cut 300 μ m live sections from *Nlgn2*^{ff}; *Sst*^{Flpo/+}
227 (**Supp Fig 4 E**) or *Nlgn2*^{ff}; *Vip*^{Flpo/+} (**Supp Fig 3 F**) animals injected at P0-P2 with AAV9-
228 FRT-FLEX-iCre-P2A-3xNLS-dTomato and AAV9-FRT-FLEX-GFP. We quantified the number
229 of iCre-dTomato and GFP positive cells and estimated the percentage of Sst or Vip cells infected

230 with each virus using the average number of Sst or Vip cells/mm² we calculated (**Supp Fig 3**
231 **H,I**).

232

233 To test the effect of early *Nlgn2* deletion in Sst interneurons we cut acute slices from 2-6 week
234 old *Nlgn2*^{fl/fl}; *Sst*^{Flpo/+} animals injected in visual cortex at P0-P2 with AAV9-FRT-FLEX-iCre-
235 P2A-3xNLS-dTomato and AAV9-FRT-FLEX-GFP and recorded sEPSCs and sIPSCs from
236 control and iCre+ Sst neurons in layer 5 (**Fig 2 F**). We observed no change in sEPSCs but a
237 60.6% reduction in sIPSC frequency and 22.2% reduction in sIPSC amplitude (**Fig 2 G**). We
238 verified that decreased inhibition was not due to the presence of virus alone, by performing
239 similar experiments on *Nlgn2*^{+/+}; *Sst*^{Flpo/+} animals and found no difference in sEPSCs or sIPSCs
240 (**Supp Fig 4 A,B**) We next wanted to test whether early *Nlgn2* deletion in Sst interneurons has
241 any effect on evoked inhibition. To do this we used Flpo dependent iCre and Flpo dependent
242 GFP to target the Sst interneurons. We then designed a virus that uses the Pv-specific S5E2
243 enhancer (Vormstein-Schneider *et al.*, 2020) to drive expression of channelrhodopsin (ChR2)
244 specifically in Pv interneurons (**Fig 2H**). We then simultaneously recorded from a control and
245 *Nlgn2* knock-out Sst interneuron and shined blue light to activate ChR2 and compared the
246 amplitude of the evoked IPSC (**Fig 2 I**). We found that the amplitude of evoked IPSC in *Nlgn2*
247 knock-out Sst interneurons was significantly reduced compared to control Sst interneurons (**Fig 2**
248 **J**) The majority of the Sst cells displayed a small inward photocurrent (mean=70 pA) however
249 this current was much smaller than the evoked IPSC and was present in both control and *Nlgn2*
250 knock-out cells. We hypothesize that this is likely due to a low level of non-specific ChR2
251 expression, however, this photocurrent was much smaller than the evoked IPSC and was present
252 in both control and *Nlgn2* knock-out cells so it does not affect the interpretation of the data.

253 To test the effect of early *Nlgn2* deletion in Vip neurons, we injected AAV9-FRT-FLEX-iCre-
254 P2A-3xNLS-dTomato and AAV9-FRT-FLEX-GFP into *Nlgn2^{ff};Vip^{Flpo/+}* animals at P0-P2 and
255 recorded sEPSCs and sIPSCs from layer 2/3 Vip neurons (**Fig 2 K**). We observed no change in
256 sEPSCs but a 47.9% reduction in sIPSC frequency and 25.1% reduction in sIPSC amplitude (**Fig**
257 **2 L**). We verified that decreased inhibition was not due to the presence of virus alone, by
258 performing similar experiments on *Nlgn2^{+/+};Vip^{Flpo/+}* animals and found no difference in sEPSCs
259 or sIPSCs (**Supp Fig 3 C,D**).

260
261 We then tested whether using viral delivery of Flpo dependent iCre into *Nlgn2^{ff};Pv^{Flpo/+}* animals
262 had any effect. We injected AAV9-FRT-FLEX-iCre-P2A-3xNLS-dTomato and AAV9-FRT-
263 FLEX-GFP into visual cortex of P0-P2 *Nlgn2^{ff};Pv^{Flpo/+}* animals, and saw no effect on sEPSCS or
264 sIPSCs (**Supp Fig 5 A,B**). As discussed above (**Supp Fig 2**) Pv mediated gene expression does
265 not come on until P21, so we hypothesize that the lack of effect on inhibition observed with this
266 experiment is due to the delayed deletion of *Nlgn2*. To test this hypothesis, we modified the
267 experimental strategy to achieve an earlier deletion of *Nlgn2* in Pv interneurons. We used
268 *Nlgn2^{ff};Vgat^{Flpo/+};Pv^{TdT/+}* which express Flpo recombinase in all GABAergic interneurons and
269 TdT in all Pv interneurons. We then injected a very low titer of AAV9-FRT-FLEX-iCre-
270 P2A-3xNLS-mNeonGreen into these animals to express Cre and delete *Nlgn2* from 10-20% of
271 all interneurons. We estimated the percentage of Pv interneurons expressing iCre by quantifying
272 the number of TdT+ mNeonGreen+ cells and comparing that to the total number of TdT+ cells
273 (**Supp Fig 3 G,I**). Since Pv interneurons in these mice express TdT we were able to
274 identify TdT+ control Pv interneurons and TdT+/mNeonGreen double positive *Nlgn2*
275 knock-out Pv interneurons (**Fig 2A**). We cut acute slices from 5-7 week old

276 *Nlgn2^{ff};Vgat^{Flpo/+};Pv-TdT^{+/−}* animals injected at P0-P2 with AAV9-FRT-FLEX-iCre-P2A-
277 3xNLS-mNeonGreen and recorded sEPSCs and sIPSCs from Pv neurons in layer 5 (**Fig 2 M**).
278 We found no change in sEPSCs but a 40.00% reduction in sIPSC frequency and a 24.5%
279 reduction in sIPSC amplitude (**Fig 2 N**). The difference between interneuron specific Cre line
280 mediated deletion and viral iCre mediated deletion strongly suggests that early deletion of Nlgn2
281 is required to see effects on inhibition.

282

283 **Adult deletion of *Nlgn2* in cortical interneurons has no effect on inhibition**

284 To confirm the timing-dependence of Nlgn2 knock-out in interneurons we modified the above
285 experiment, changing only the age at which the injections were performed. Liang et al. used
286 *Nlgn2 floxed* mice and injected Cre into adult animals. They showed that 2-3 weeks after
287 injection, Nlgn2 protein is gone, indicating that adult deletion is capable of removing protein
288 (Liang *et al.*, 2015). We chose to wait six weeks after injection to ensure that all Nlgn2 would be
289 deleted. We cut acute slices from 10 week old *Nlgn2^{ff};Sst^{Flpo/+}* animals that were injected in
290 visual cortex at P30 with AAV9-FRT-FLEX-iCre-P2A-3xNLS-dTomato and FRT-FLEX-GFP
291 and recorded sEPSCs and sIPSCs from control and iCre+ layer 5 Sst neurons, and found no
292 change in either sEPSCs or sIPSCs. (**Fig 3 A,B**). For Vip neurons we performed a similar
293 experiment, recording from layer 2/3 Vip neurons, and again found no change in sEPSCs or
294 sIPSCs (**Fig 3 C,D**). To confirm that the lack of change in inhibition was due to the change in
295 injection timing and not the older age of the animals, we cut acute slices from 10 week old
296 *Nlgn2^{ff};Sst^{Flpo/+}* animals that were injected at P1 (instead of P30) and found a 60.8% reduction in
297 sIPSC frequency and a trend towards reduced sIPSC amplitude (**Supp Fig 8 A,B**). Based on the

298 timing-dependence of conditional *Nlgn2* deletion phenotypes in interneurons, we next asked if
299 the same thing is true in pyramidal cells.

300

301 **Early deletion of *Nlgn2* in pyramidal cells reduces inhibition but adult deletion has no
302 effect**

303 We next wanted to test how the effect of sparse deletion of *Nlgn2* in pyramidal cells is affected
304 by the age at which deletion is performed. To sparsely manipulate *Nlgn2* in pyramidal cells we
305 modified the viral delivery of iCre by utilizing a CaMKIIa promoter to drive expression of iCre
306 and dTomato in pyramidal cells. We delivered a low titer of this virus such that only about 5% of
307 all pyramidal cells were labeled. We drove ChR2 expression in either Pv or Sst interneurons to
308 test the effect of *Nlgn2* deletion on evoked IPSCs from both cell types. To do this, we utilized a
309 virus expressing Flpo dependent ChR2 and injected into animals expressing either *Pv-IRES-Flpo*
310 or *Sst-IRES-Flpo*. (Fig 3E). We first wanted to confirm that our viral strategy can efficiently
311 delete *Nlgn2* mRNA at a young age. We performed P0-P2 injection of AAV9-CaMKIIa-iCre-
312 P2A-3xNLS-dTomato into *Nlgn2^{ff};Rosa26^{Ai14/+}* and *Nlgn2^{+/+};Rosa26^{Ai14/+}* animals and
313 performed dFISH against *Nlgn2* and *tdTomato* at P18-P21 (Supp Fig 6 A). We found that 95.9%
314 of TdTomato positive cells in *Nlgn2^{ff};Rosa26^{Ai14/+}* animals had *Nlgn2* deleted (Supp Fig 6 B,C).
315 We then cut acute slices from 3-4 week old *Nlgn2^{ff};Sst^{Flpo/+}* or *Nlgn2^{ff};Pv^{Flpo/+}* animals injected
316 in visual cortex at P1 with AAV9-CaMKIIa-iCre-P2A-3xNLS-dTomato and AAV9-fDIO-ChR2.
317 We recorded sEPSCs and sIPSCs as well as ChR2 evoked IPSCs from control and iCre+
318 pyramidal neurons in layer 2/3 (Fig 3 E). There was no change in sEPSCs and a 15.3% reduction
319 in sIPSC frequency and 24.3% reduction in sIPSC amplitude (Supp Fig 6 D,E). Sst and Pv
320 evoked IPSCs were significantly smaller in iCre+ pyramidal cells when compared to nearby WT

321 pyramidal cells (**Fig 3 F-H**). We confirmed that these effects were due to *Nlgn2* deletion and not
322 just the presence of virus by performing the same experiments on *Nlgn2*^{+/+}; *Sst*^{Flpo/+} or
323 *Nlgn2*^{+/+}; *Pv*^{Flpo/+} animals. We found no difference in the frequency or amplitude sEPSCs or
324 sIPSCs between control and iCre+ pyramidal cells (**Supp Fig 6 F,G**). Additionally, we saw no
325 change in the amplitude of Pv (**Supp Fig 6 H,J**) or Sst (**Supp Fig 6 I,J**) evoked IPSCs between
326 control and iCre+ cells.

327

328 A previous study tested the effect of *Nlgn2* knock-out on Sst and Pv evoked inputs onto
329 pyramidal cells using *Nlgn2*^{-/-} animals. They demonstrated that *Nlgn2*^{-/-} animals showed a
330 decrease in the amplitude of Pv evoked inputs but no change in the amplitude of Sst evoked
331 inputs compared to *Nlgn2*^{+/+} animals (Gibson, Huber and Südhof, 2009). Interestingly, our
332 sparse deletion of *Nlgn2* showed a decrease in both Sst and Pv evoked synaptic input. Gibson et
333 al. recorded unitary IPSCs by directly stimulating a layer 2/3 Sst interneuron and recording from
334 a nearby pyramidal cell. In our study, ChR2 activation of Sst cells activates a much larger
335 population of cells across all cortical layers. To test whether this might account for the difference
336 between our results we designed a strategy to record unitary IPSCs from Sst interneurons in our
337 sparse deletion model. We generated *Nlgn2*^{fl/fl}; *Sst*^{Flpo/+}; *Rosa26*^{FSF-TdTomato/+} animals which express
338 TdTomato in Sst cells allowing for their identification. We then injected of AAV9-CaMKIIa-
339 iCre-P2A-mNeonGreen to delete *Nlgn2* from about 5% of pyramidal cells while labeling them
340 with mNeonGreen. This allowed for simultaneous recording from an Sst cell, a control
341 pyramidal cell, and an iCre+ pyramidal. We stimulated the Sst cell multiple times to evoke six
342 consecutive action potential while recording from the control and iCre+ pyramidal cell (**Supp**
343 **Fig 6 A**). We found no change connection probability between Sst cells and pyramidal cells

344 indicating that *Nlgn2* does not affect the likelihood of synaptic connections between these cell
345 types (**Supp Fig 7 B**). However, we did find a significant decrease in the amplitude of the first
346 IPSC evoked by the chain of action potentials in iCre+ cells compared to control cells (**Supp Fig**
347 **7 C**). We then normalized the amplitude of each IPSC in the spike train for a given cell to the
348 first IPSC for that cell to compare spike train potentiation. We found no difference between
349 control and iCre+ cells (**Supp Fig 7 C**). Our finding that uIPSCs between Sst cells and *Nlgn2*
350 knock-out pyramidal cells are altered in our sparse deletion model suggests that the difference
351 between our findings and those of Gibson et al. are likely due to the method of deleting *Nlgn2*
352 (sparse cell-type specific vs global knock-out) or the cortical region tested. More follow-up
353 studies need to be performed to address these possibilities more thoroughly.

354

355 After confirming that early sparse viral deletion of *Nlgn2* in pyramidal cells decreases inhibition,
356 like our observations in interneurons, we next asked whether these effects are also dependent on
357 the timing of *Nlgn2* deletion. We performed the same experiment described above (**Fig 3 E**) but
358 modified it by changing the timing of the viral injection from P0-P2 to P30 and then waiting 6
359 weeks following viral injection. In this case, we observed no change in sEPSCs or sIPSC
360 frequency and a 14.3% decrease in sIPSC amplitude (**Supp Fig 6 K,L**) Despite the small effect
361 on sIPSC amplitude, we observed no change in Pv or Sst evoked IPSCs between control and
362 iCre+ cells (**Fig 3 I-K**). We then tested whether the small effect on sIPSC amplitude was due to
363 viral expression by performing the same experiment in *Nlgn2*^{+/+} animals. In this case we found
364 no difference in sEPSCs or sIPSCs suggesting viral expression alone does not lead to changes in
365 inhibition (**Supp Fig 6 M,N**). In this experiment, we performed our recording on animals that
366 were ~10 weeks old versus the 3–4-week-old animals we tested following P0-P2 injection. To

367 test the older age of animals did not contribute to the smaller effect on inhibition observed, we
368 performed viral injection at P0-P2 and waited until the animals were 10 weeks of age to record
369 sPSCs and Sst evoked IPSCs. We found a 32.5% reduction in sIPSC frequency and a 27.3%
370 reduction in sIPSC amplitude (**Supp Fig 8 C,D**), and a significant decrease in the amplitude of
371 Sst evoked IPSCs between WT and iCre⁺ cells (**Supp Fig 8 E,F**).

372

373 Another study conditionally deleted *Nlgn2* in the prefrontal cortex in adult animals and showed
374 that after 2-3 weeks there were behavioral changes consistent with *Nlgn2* deletion and after 6-7
375 weeks there was a significant decrease in the frequency and amplitude of sIPSCs (Liang *et al.*,
376 2015). While Liang *et al.* deleted *Nlgn2* from all neurons in the prefrontal cortex using a high
377 titer of a virus driving Cre expression with the human synapsin promoter, our study performed a
378 sparse deletion, specifically studying the cell-autonomous effects of deletion. We hypothesized
379 that this might explain the lack of effect we observed in our study. To test this, we injected a
380 high titer of AAV9-hSyn-eGFP-Cre virus into *Nlgn2^{ff}* animals to delete *Nlgn2* from all neurons
381 in the local area of our injection in visual cortex. As a control, we performed the same viral
382 injection into *Nlgn2^{+/+}* animals (**Supp Fig 8 G**). We found no difference in sEPSCs or sIPSC
383 amplitude but we observed a significant reduction in sIPSC frequency (**Supp Fig 8 H,I**). This
384 suggests that cell-autonomous deletion of *Nlgn2* from pyramidal cells has no effect on sIPSC
385 frequency while large scale deletion of *Nlgn2* disrupts the cortical network such that sIPSC
386 frequency is altered. Additional follow-up studies are needed to more specifically investigate the
387 differences between cell-autonomous *Nlgn2* deletion and more global *Nlgn2* deletion in
388 pyramidal cells.

389

390 Based on our data showing that early *Nlgn2* deletion in both excitatory and inhibitory cells
391 disrupt inhibition, we next asked how specifically disrupting inhibition onto excitatory cells or
392 onto inhibitory cells might alter E-I balance and cortical function.

393

394 **Conditional *Nlgn2* deletion in excitatory neurons is lethal but deletion in both excitatory**
395 **and inhibitory neurons simultaneously partially restores viability.**

396 To understand how inhibitory synapses onto excitatory neurons and inhibitory synapses onto
397 inhibitory neurons contribute to E-I balance we conditionally deleted *Nlgn2* in excitatory and
398 inhibitory neurons. First we attempted to breed *Nlgn2*^{fl/fl}; *Vglut2*^{Cre/+} (Vglut2-cKO) animals to
399 study how disrupting inhibitory synapses onto excitatory neurons while preserving inhibitory
400 synapses onto interneurons impacts E-I balance. To our surprise *the* behavioral impacts of
401 conditional *Nlgn2* deletion in excitatory neurons we bred *Nlgn2* floxed mice with *Vglut2*-Cre
402 mice to remove *Nlgn2* from all glutamatergic neurons. Much to our surprise, we found that
403 *Vglut2*-cKO leads to complete lethality. Based on our breeding scheme we would have expected
404 to observe 22 *Vglut2*-cKO animals however we did not observe a single one (**Fig 4 A**). We next
405 attempted to breed *Nlgn2*^{fl/fl}; *Vgat*^{Cre/+} (Vgat-cKO) animals to study how disrupting inhibitory
406 synapses onto interneurons while preserving those onto excitatory neurons impacts E-I balance.
407 Again, we found that *Vgat*-cKO displayed significant lethality. Out of 22 expected *Vgat*-cKO
408 animals, we observed 3, for a 12.6% survival (**Fig 4 B**).

409 The lethality we observed in *Vglut2*-cKO and *Vgat*-cKO animals is very surprising because
410 constitutive *Nlgn2* deletion is known to be viable (Blundell *et al.*, 2009; Gibson, Huber and
411 Südhof, 2009; Poulopoulos *et al.*, 2009). Based on our findings, we sought to determine whether
412 there might be subtle survival defects in *Nlgn2*^{-/-} animals. We analyzed our breeding data and

413 found no significant change in survival for constitutive *Nlgn2* knock-out animals. Out of 25
414 expected mutant animals we observed 18, for a 71.3% survival. This slight decrease in survival
415 was not significant (**Fig 4 C**).

416

417 To further understand why constitutive *Nlgn2* knock-out is viable and *Vglut2*-cKO and *Vgat*-
418 cKO are lethal we attempted to generate *Nlgn2*^{fl/fl}; *Vglut2*^{Cre/+}; *Vgat*^{Cre/+} (double-cKO) animals to
419 simultaneous disrupt inhibitory synapses onto excitatory and inhibitory neurons. Out of 19
420 expected double-cKO animals we observed 4, for 20.5% survival (**Fig 4 D**). The four surviving
421 animals that we observed had significantly decreased body weight at all ages compared to their
422 control littermates (**Fig 4 E**), suggesting that they might display developmental delay similar to
423 what has been shown for *Nlgn2*^{-/-} animals (Wöhr *et al.*, 2013). While the double-cKO animals
424 still displayed significant lethality, the survival was significantly better than what was observed
425 for *Vglut2*-cKO animals, suggesting that removing *Nlgn2* in inhibitory cells as well as excitatory
426 cells can somewhat restore survival. We observed a small increase in survival in double-cKO
427 animals compared to *Vgat*-cKO animals suggesting that removing *Nlgn2* in excitatory cells
428 might improve survival compared to removal in inhibitory cells alone, however more animals
429 need to be studied to confirm this finding. Interestingly double-cKO animals display much worse
430 survival compared to constitutive knock-out animals suggesting that other cell types might be
431 contributing. This will be interesting to address in future studies.

432

433 To our knowledge, there is no other gene that has been shown to have such a pronounced
434 lethality phenotype following cell-type specific deletion and no lethality at all following
435 complete loss of the gene. We hypothesize that this might be due to the manipulation of

436 inhibitory synapses onto one type of cells without affecting the others. This would suggest that
437 inhibitory synapses onto both excitatory and inhibitory cells are critical for E-I balance and
438 cortical function. Unfortunately, due to the lethality of Vglut2-cKO and Vgat-cKO animals, it is
439 not possible to investigate E-I balance in these animals experimentally. To address this question,
440 we turned to computational modeling of a simple cortical network.

441

442 **A computational model demonstrates the impact of the deletion of *Nlgn2* on network
443 dynamics.**

444 To gain insights into the impact of the deletion of *Nlgn2* and consequential altered E-I balance at
445 the network level, we developed a computational model using a canonical E-I network. This
446 model builds on a previous inhibition-stabilized network (ISN) model with a supralinear
447 response function. The model involves a single population of inhibitory cells and a population of
448 excitatory cells (Fig 4F). The state of the network is characterized by the population firing rates
449 of E cells and I cells. The nonlinearity of the transfer function enables the network to transition
450 between two different operating dynamical regimes: a non-ISN regime for weak external input
451 ($input_E$) and an ISN regime for strong feedforward drive ($input_E$), in which the paradoxical
452 effect arises. Such an input-dependent behavior empowers the model to explain various cortical
453 computations and properties, including multi-input integration and contextual modulation. In our
454 model, the effect of conditional deletion of *Nlgn2* was mimicked by weakening the strength of
455 the inhibitory connections (Fig 4F) onto specific types of cells. In this part, we focused on the
456 impact of the deletion of *Nlgn2* on the network dynamics, paradoxical effect, and their
457 dependence on the feedforward input. We approached that by numerically investigating the

458 operating dynamical regime of the network with varying levels of external input to the excitatory
459 population for four scenarios shown in Fig 4 F.

460

461 The operating dynamical regime and the emergence of paradoxical effects under varying levels
462 of external input were assessed by spectral analysis on the network connectivity at the stationary
463 state (see Methods). Note that this analysis could be done numerically only when the
464 corresponding network is stable. For the wild-type scenario (Fig G1), with increasing external
465 input, the network transitioned from a non-ISN regime to an ISN-regime. Because of the supra-
466 linearity of the response function, the threshold of input for the emergence of paradoxical effect
467 (green) was higher than that for the transition of the operating dynamical regime (magenta). Note
468 that the latter was not influenced by the inhibitory connection strength (see Methods) and
469 therefore was uniform for four explored scenarios. For scenarios of Vgat-cKO and double-cKO,
470 networks displayed qualitatively similar input-dependent behavior (Fig 4 G3, 4). The most
471 prominent effect of the deletion of Nlgn2 to the network dynamics was found in the scenario of
472 Vglut2-cKO (Fig 4 G2): although the network displayed a similar input-dependent behavior as
473 the wild-type network in a lower range of input, it lost stability (vanished red curve in Fig 4 G2)
474 after it entered ISN regime and displayed paradoxical effect with increasing input, suggesting
475 that the network might not be functioning properly. Such instability was caused by the
476 attenuation in the strength of the inhibitory connections onto excitatory cells (W_{EI}) and the
477 consequential failure for the inhibitory feedback loop within the network to balance the
478 excitation. This instability also leads to a shorter range of $input_E$ allowing ISN regime (Fig 4H).
479 Surprisingly, this instability and the induced shrinking of input range allowing ISN regime could

480 be rescued by strengthening the inhibitory feedback loop via additionally attenuating the strength
481 of the disinhibitory connection onto inhibitory cells (W_{II}), i.e., double-cKO (Fig 4 G4, H).

482

483 The paradoxical effect, in which increasing direct excitatory input to inhibitory cells leads to a
484 paradoxical decrease in their activity, arises when the network dynamics is dominated by the
485 recurrent, within-network inhibition rather than feedforward drive. It has been observed in many
486 brain regions and proposed to explain multiple cortical properties such as surround suppression.

487 Motivated by that, we addressed the question of how the deletion of Nlgn2 impacted the
488 emergence of paradoxical effects. To do that, across a range of values for the strengths of the
489 inhibitory connection onto excitatory (W_{EI}) and inhibitory cells (W_{II}), we determined the range
490 and the threshold of external input ($input_E$) giving rise to paradoxical effect. As shown in Fig 4
491 I, due to the instability caused by the attenuated inhibitory feedback loop, networks with a
492 weaker (W_{EI}) or a stronger W_{II} showed a significantly shorter range with paradoxical effect. The
493 threshold of external input for paradoxical effect increased with W_{EI} and decreases with W_{II} (Fig
494 4 J). Therefore when the external input was not strong enough, Vgat-cKO can lead to the loss of
495 paradoxical effect. Again, both the shorter range of input allowing paradoxical effect induced by
496 Vglut2-cKO and the higher threshold of input for paradoxical effect induced by Vgat-cKO could
497 be rescued by decreasing W_{EI} , W_{II} together, i.e., double-cKO. As marked in Fig 4I, J, the
498 networks investigated in Fig 4F, G for scenarios of wild-type and double-cKO show similar
499 performance.

500

501 Overall, our cortical network model suggests that decreasing one subtype of inhibition without
502 proportionally decreasing the other leads to irregularities in performance of the cortical network

503 including increased instability and altering the threshold of external input at which the network is
504 able to function as an ISNP. However, both irregularities can be rescued by double-cKO. While
505 it is difficult to recapitulate lethality in a model of a cortical network, the results reflect similar
506 trends as our observations of lethality in conditional *Nlgn2* knock-out animals. Future studies are
507 needed to understand the implications of the model predictions and their relationship to the
508 experimental data.

509

510 **Discussion**

511 E-I balance is one of the foundational concepts underlying cortical function. Whether the brain is
512 performing simple computations like processing sensory stimuli, or the more complex
513 computations required for expressing emotion, there is a proportionality between the amount of
514 excitatory and inhibitory activity. The criticality of E-I balance is further evidenced by its
515 implication in neuropsychiatric diseases, however definitive causal evidence linking E-I balance
516 and ASD is scarce. In this study, we manipulated E-I balance throughout development by
517 selectively deleting *Nlgn2* in either excitatory neurons or inhibitory neurons.

518

519 To utilize conditional *Nlgn2* knock-out as a tool to study inhibitory synapses onto interneurons
520 we first had to confirm that *Nlgn2* regulates inhibition in interneurons. To our surprise, using *Sst*-
521 *ires-Cre*, *Vip-ires-Cre*, or *Pv-ires-Cre* to selectively delete *Nlgn2* in each of the three interneuron
522 subtypes had no effect on their excitation or inhibition. This led us to investigate the efficacy of
523 these Cre lines in deleting *Nlgn2*. We demonstrated that *Sst-ires-Cre* and *Vip-ires-Cre* do not
524 adequately delete *Nlgn2* by P14 however they achieve a much more robust deletion by P21.
525 Meanwhile *Pv-ires-Cre* is not even expressed in cortical interneurons at P14. We then developed

526 a Flpo dependent viral method which achieves earlier cell-type specific of *Nlgn2* in interneurons.

527 Using this method, we showed that sparse deletion of *Nlgn2* in all three subtypes of cortical

528 interneurons reduces their inhibition without disrupting their excitation.

529

530 Based on our finding that interneuron specific Cre lines are delayed in their deletion of *Nlgn2*

531 and have no effect on inhibition, we investigated the age dependence of *Nlgn2* deletion. We

532 found that adolescent deletion of *Nlgn2* after the formation of synapses is complete does not

533 disrupt their inhibitory synaptic input. This is true for both interneurons as well as pyramidal

534 cells. This suggests that *Nlgn2* may be playing an important role in the development of inhibitory

535 synapses while it is dispensable for their maintenance. This will be interesting to investigate in

536 future studies by looking at the number of inhibitory synapses onto *Nlgn2* knock-out

537 interneurons as well as the molecular components of those synapses.

538

539 Given that *Nlgn2* regulates inhibitory synapses onto both excitatory neurons and inhibitory

540 neurons, it is a viable tool to study the contribution of the two different synaptic subtypes to E-I

541 balance. We showed that selectively reducing inhibitory synaptic input onto excitatory or

542 inhibitory neurons results in significant lethality. This lethality can be partially rescued by

543 simultaneously removing *Nlgn2* from both excitatory and inhibitory neurons and constitutive

544 *Nlgn2* knock-out mice display normal survival, although these mice do have developmental

545 delay and anxiety (Blundell *et al.*, 2009). This suggests that manipulating inhibitory synapses

546 onto either inhibitory or excitatory neurons individually causes a very severe disruption in E-I

547 balance that results in lethality while disrupting both types simultaneously causes a more mild

548 disruption of E-I balance, allowing the mice to survive. While Vgat-cKO and Vglut2-cKO mice

549 display lethality, it is possible that disrupting *Nlgn2* in excitatory or inhibitory neurons of the
550 forebrain might result in viable animals where we can more directly study the contribution of
551 these two synaptic subtypes to E-I balance.

552

553 While we were unable to experimentally test the E-I balance in the Vgat and Vglut2-cKO mouse
554 models due to their lethality, we utilized computational modeling to examine the effects of
555 selectively disrupting the two sub-types of inhibition. Our model suggests that decreasing
556 inhibition onto excitatory neurons while maintaining inhibition onto inhibitory neurons leads to
557 significant instability of the cortical network at higher levels of sensory input. We hypothesize
558 that this is due to high levels of dis-inhibition of pyramidal cells in addition to their decreased
559 activity leading to unstable levels of excitatory activity. Selectively decreasing inhibition onto
560 inhibitory neurons while maintaining inhibition onto excitatory neurons led to more subtle
561 changes in the range of inputs at which the network functions as an ISN_P. FThis suggest that
562 there is an abnormality in the range of activity where network dynamics are dominated by
563 recurrent within-network inhibition, and may cause abnormalities in functions like surround
564 suppression. Finally, decreasing inhibition onto both excitatory and inhibitory neurons results in
565 a network that performs similarly to the wild-type network. Our double-cKO mouse model does
566 have significant lethality defects and constitutive knock out mice display behavioral and
567 developmental phenotypes suggesting that their cortical network is still abnormal, however it is
568 clearly milder than the Vgat-cKO or Vglut2-cKO. A more complex model that better represents
569 the different types of neurons and connections in the cortex might better capture these more
570 subtle changes.

571

572 **Methods**

573 **Mice**

574 *Nlgn2* flox (JAX #025544), *Sox2-Cre* (JAX #008454), *Sst-ires-Cre* (Jax #013044), *Vip-ires-Cre*
575 (JAX #010908), *Pv-ires-Cre* (JAX #017320), *Sst-ires-Flpo* (JAX #028579), *Vip-ires-Flpo* (JAX
576 #028578), *Pv-2A-Flpo* (Jax #022730), *Viaat-ires-Cre* (JAX #028862), *Vglut2-ires-Cre* (JAX
577 #016963), *Pv-tdTomato* (JAX #027395), *Rosa26-CAG-LSL-tdTomato* (Ai14 line, JAX #007914),
578 and *Rosa26-CAG-FSF-LSL-tdTomato* (Ai65 line, JAX #021875) mice were obtained from the
579 Jackson Laboratory. *Nlgn2* KO mice were generated by crossing *Nlgn2* flox mice with *Sox2-Cre*
580 mice to delete the floxed exons 4–6. *Rosa26-CAG-FSF-tdTomato* mice were generated by
581 crossing *Rosa26-CAG-FSF-LSL-tdTomato* mice with *Sox2-Cre* mice to remove the LSL cassette.
582 *Viaat-ires2-Flpo* (JAX #031331) mice were obtained from Dr. Hongkui Zeng at the Allen
583 Institute for Brain Science. All mice were maintained on the C57BL/6J background except *Sst-*
584 *ires-Cre*, *Vip-ires-Cre*, *Sst-ires-Flpo*, and *Vip-ires-Flpo* mice that were on a C57BL/6;129S4
585 mixed background. *Nlgn2* KO mice were genotyped by PCR using a common forward primer 5'-
586 CAGGAGCAGGAAGGAGACTTGTG-3', a reverse primer located downstream of the deleted
587 region 5'-CCTCCACGAACTTGAGACCCT-3' and a reverse primer located within the deleted
588 region, 5'-CTCCTCATCACTGGCCAGCAT-3'. *Rosa26-CAG-FSF-tdTomato* mice were
589 genotyped by PCR using primer sets 5'-AAGGGAGCTGCAGTGGAGTA-3' and 5'-
590 CCGAAAATCTGTGGGAAGTC-3' for WT allele and 5'-GGCATTAAAGCAGCGTATCC-3'
591 and 5'-CTGTTCTGTACGGCATGG-3' for the knockin allele. Both male and female mice
592 were used for all experiments. Mice were housed in an Association for Assessment and
593 Accreditation of Laboratory Animal Care International-certified animal facility on a 14-hour/10-

594 hour light/dark cycle. All procedures to maintain and use mice were approved by the Institutional
595 Animal Care and Use Committee at Baylor College of Medicine (protocol AN-6544).

596

597 **DNA constructs**

598 Plasmids pAAV-EF1 α -DIO-hChR2(H134R)-mCherry (Addgene #20297), pAAV-CaMKII α -
599 eArchT3.0-P2A-EGFP (Addgene #51110), pAAV-EF1 α -DIO-oChIEF(E163A/T199C)-P2A-
600 dTomato (Addgene #51094), pCAG-EGFP (Addgene #11150), pAAV-EF1 α -fDIO-
601 hChR2(H134R)-EYFP (Addgene #55639), and pAAV-S5E2-dTomato-P2A-nls-dTomato
602 (Addgene #135630) were obtained from Addgene, pCAGGS-iCre-Puro from Dr. A. Francis
603 Stewart at Technische Universität Dresden, pAAV-CAG-mNeonGreen (Addgene #99134) from
604 Dr. Viviana Gradinaru at California Institute of Technology, and pCAG-tdTomato from Dr.
605 Anirvan Ghosh at University of California, San Diego. Plasmids pAAV-EF1 α -FRT-FLEX-
606 mNaChBac-T2A-tdTomato (Addgene #60658) and pCAG-hChR2(H134R)-EYFP (Addgene
607 #114367) were described previously {Xue:2014dl, Messier:2018fo}. All other plasmids were
608 generated and deposited at Addgene as below. pAAV-EF1 α -DIO-tdTomato (Addgene #190767)
609 were generated by replacing the hChR2(H134R)-mCherry in pAAV-EF1 α -DIO-
610 hChR2(H134R)-mCherry with the tdTomato from pCAG-tdTomato. pAAV-CaMKII α -iCre-
611 P2A-3xNLS-dTomato (Addgene #190768) was generated by replacing the eArchT3.0-P2A-
612 EGFP of pAAV-CaMKII α -eArchT3.0-P2A-EGFP with the iCre-P2A-3xNLS-dTomato, which
613 was generated by PCR amplification from pCAGGS-iCre-Puro and pAAV-EF1 α -DIO-
614 oChIEF(E163A/T199C)-P2A-dTomato. pAAV-CaMKII α -iCre-P2A-mNeonGreen (Addgene
615 #190769) was generated by replacing the 3xNLS-dTomato in pAAV-CaMKII α -iCre-P2A-
616 3xNLS-dTomato with the mNeonGreen from pAAV-CAG-mNeonGreen. pAAV-EF1 α -FRT-

617 FLEX-EGFP (Addgene #190770) was generated by replacing the mNaChBac-T2A-tdTomato of
618 pAAV-EF1 α -FRT-FLEX-mNaChBac-T2A-tdTomato with the EGFP from pCAG-EGFP.
619 pAAV-EF1 α -FRT-FLEX-MCS (Addgene #190771) was generated by replacing the DIO-
620 oChIEF(E163A/T199C)-P2A-dTomato of pAAV-EF1 α -DIO-oChIEF(E163A/T199C)-P2A-
621 dTomato with the FRT-FLEX-MCS of pJ244-FRT-FLEX-MCS {Xue:2014dl}. The iCre-P2A-
622 3xNLS-dTomato from pAAV-CaMKII α -iCre-P2A-3xNLS-dTomato was then inserted into
623 pAAV-EF1 α -FRT-FLEX-MCS to generate pAAV-EF1 α -FRT-FLEX-iCre-P2A-3xNLS-
624 dTomato (Addgene #190772). pAAV-EF1 α -FRT-FLEX-iCre-P2A-3xNLS-mNeonGreen
625 (Addgene #190773) was generated by replacing the dTomato of pAAV-EF1 α -FRT-FLEX-iCre-
626 P2A-3xNLS-dTomato with the mNeonGreen from pAAV-CAG-mNeonGreen. pAAV-S5E2-
627 hChR2(H134R)-EYFP (Addgene #190774) was generated by replacing the dTomato-P2A-nls-
628 dTomato of pAAV-S5E2-dTomato-P2A-nls-dTomato with the hChR2(H134R)-EYFP from
629 pCAG-hChR2(H134R)-EYFP.

630

631 **AAV production and injection**

632 All recombinant AAV serotype 9 vectors were produced by the Gene Vector Core at Baylor
633 College of Medicine, except for AAV9-hSyn-HI-EGFP-Cre, which was purchased from Penn
634 Vector Core (PL-C-PV1848). AAV vectors were injected into the primary visual cortices of
635 neonatal mice at postnatal day 0–2 (P0–2) with 100–200 nl of virus or young adult mice at
636 postnatal day 30 (P30) with 200 nl of virus (see below). Injection was performed with an
637 UltraMicroPump III and a Micro4 controller (World Precision Instruments) as previously
638 described {Xue:2014dl, Messier:2018fo}.

639

640 To express tdTomato in Sst cells of *Nlgn2^{ff};Sst^{Cre/+}* and *Nlgn2^{+/+};Sst^{Cre/+}* mice at P0–2, 200 nl of
641 AAV9-EF1 α -DIO-tdTomato (6.1x10¹¹ GC/ml) was used. To express iCre-P2A-3xNLS-dTomato
642 and EGFP in Sst cells of *Nlgn2^{ff};Sst^{Flpo/+}* and *Nlgn2^{+/+};Sst^{Flpo/+}* mice at P0–2 or P30, a 200 nl
643 mixture of AAV9-EF1 α -FRT-FLEX-iCre-P2A-3xNLS-dTomato (4.3x10¹⁰ GC/ml) and AAV9-
644 EF1 α -FRT-FLEX-EGFP (5.5x10¹² GC/ml) was used. To express iCre-P2A-3xNLS-dTomato
645 and EGFP in Sst cells and ChR2 in Pv cells of *Nlgn2^{ff};Sst^{Flpo/+}* mice at P0–2, a 200 nl mixture of
646 AAV9-EF1 α -FRT-FLEX-iCre-P2A-3xNLS-dTomato (4.3x10¹⁰ GC/ml), AAV9-EF1 α -FRT-
647 FLEX-EGFP (5.63x10¹¹ GC/ml), and AAV9-S5E2-hChR2(H134R)-EYFP (2.46x10¹³ GC/ml)
648 was used. To express iCre-P2A-3xNLS-dTomato in Sst cells of *Nlgn2^{ff};Sst^{Flpo/+};Rosa26^{Ai14/+}* and
649 *Nlgn2^{+/+};Sst^{Flpo/+};Rosa26^{Ai14/+}* mice at P1, 200 nl of AAV9-EF1 α -FRT-FLEX-iCre-P2A-
650 3xNLS-dTomato (4.3x10¹⁰ GC/ml) was used. To express iCre-P2A-3xNLS-dTomato and EGFP
651 in Vip cells of *Nlgn2^{ff};Vip^{Flpo/+}* and *Nlgn2^{+/+};Vip^{Flpo/+}* mice at P0–2 or P30, a 200 nl mixture of
652 AAV9-EF1 α -FRT-FLEX-iCre-P2A-3xNLS-dTomato (8.67x10¹⁰ GC/ml) and AAV9-EF1 α -
653 FRT-FLEX-EGFP (5.5x10¹² GC/ml) was used. To express iCre-P2A-3xNLS-mNeonGreen in
654 Vip cells of *Nlgn2^{ff};Vip^{Flpo/+};Rosa26^{Ai14/+}* and *Nlgn2^{+/+};Vip^{Flpo/+};Rosa26^{Ai14/+}* mice at P1, 200 nl
655 of AAV9-EF1 α -FRT-FLEX-iCre-P2A-3xNLS-mNeonGreen (2.15x10¹¹ GC/ml) was used. To
656 express iCre-P2A-3xNLS-dTomato and EGFP in Pv cells of *Nlgn2^{ff};Pv^{Flpo/+}* mice at P0–2, a 200
657 nl mixture of AAV9-EF1 α -FRT-FLEX-iCre-P2A-3xNLS-dTomato (1.3x10¹¹ GC/ml) and
658 AAV9-EF1 α -FRT-FLEX-EGFP (5.5x10¹² GC/ml) was used. To express iCre-P2A-3xNLS-
659 mNeonGreen in Pv cells of *Nlgn2^{ff};Viaat^{Flpo/+};Pv-tdTomato^{Tg/+}* mice at P0–2, 200 nl of AAV9-
660 EF1 α -FRT-FLEX-iCre-P2A-3xNLS-mNeonGreen (8.6x10¹⁰ GC/ml) was used. To express iCre-
661 P2A-3xNLS-dTomato in pyramidal cells and ChR2 in Sst cells of *Nlgn2^{ff};Sst^{Flpo/+}* and
662 *Nlgn2^{+/+};Sst^{Flpo/+}* mice at P0–2, a 100 nl mixture of AAV9-CaMKII α -iCre-P2A-3xNLS-

663 dTomato (1.4×10^{10} GC/ml or 1.05×10^{11} GC/ml) and AAV9-EF1 α -fDIO-hChR2(H134R)-EYFP
664 (1.89×10^{14} GC/ml) was used. To express iCre-P2A-3xNLS-dTomato in pyramidal cells and
665 ChR2 in Pv cells of *Nlgn2^{ff};Pv^{Flpo/+}* and *Nlgn2^{+/+};Pv^{Flpo/+}* mice at P0–2, a 100 nl mixture of
666 AAV9-CaMKII α -iCre-P2A-3xNLS-dTomato (2.1×10^{10} GC/ml) and AAV9-EF1 α -fDIO-
667 hChR2(H134R)-EYFP (1.89×10^{14} GC/ml) was used. To express iCre-P2A-3xNLS-dTomato in
668 pyramidal cells and ChR2 in Sst cells of *Nlgn2^{ff};Sst^{Flpo/+}* mice at P30, a 200 nl mixture of
669 AAV9-CaMKII α -iCre-P2A-3xNLS-dTomato (1.9×10^{10} GC/ml) and AAV9-EF1 α -fDIO-
670 hChR2(H134R)-EYFP (1.3×10^{12} GC/ml) was used. To express iCre-P2A-3xNLS-dTomato in
671 pyramidal cells and ChR2 in Pv cells of *Nlgn2^{ff};Pv^{Flpo/+}* mice at P30, a 200 nl mixture of AAV9-
672 CaMKII α -iCre-P2A-3xNLS-dTomato (1.9×10^{10} GC/ml) and AAV9-EF1 α -fDIO-
673 hChR2(H134R)-EYFP (1.3×10^{13} GC/ml) was used. To express iCre-P2A-mNeonGreen in
674 pyramidal cells of *Nlgn2^{ff};Sst^{Flpo/+};Rosa26^{FSF-tdTomato/+}* mice at P0–2, 100 nl of AAV9-CaMKII α -
675 iCre-P2A-mNeonGreen (1.7×10^{10} GC/ml) was used. To densely express EGFP-Cre in neurons of
676 *Nlgn2^{ff}* and *Nlgn2^{+/+}* mice at P30, 200 nl of AAV9-hSyn-HI-EGFP-Cre (2.5×10^{11} GC/ml) was
677 used.

678

679 **Double fluorescence *in situ* hybridization**

680 A digoxigenin (DIG)-labeled RNA antisense probe against mouse *Nlgn2* and fluorescein (FITC)-
681 labeled RNA antisense probes against *tdTomato* and mouse *Sst*, *Vip*, and *Pv* were generated by *in*
682 *vitro* transcription using cDNA templates and RNA DIG-or FITC-labeling kits (Sigma, catalog #
683 11277073910 or 11685619910, respectively). The DNA templates were made by PCR
684 amplification from a plasmid pCMV6-m*Nlgn2*(A+)-mycDDK (Origene, catalog #MR222168,
685 GenBank Accession NM_198862) for the *Nlgn2* probe, a plasmid pAAV-EF1 α -DIO-*tdTomato*

686 for the *tdTomato* probe, or mouse brain cDNA for the *Sst*, *Vip*, and *Pv* probes, with a T3
687 promoter (AATTAACCCTCACTAAAGGG) added at the 5' end of the PCR forward primers
688 and a T7 promoter (TAATACGACTCACTATAGGG) at the 5' end of the PCR reverse primers.
689 The *Nlgn2* probe was designed to span exons 4–6. The sequences of *tdTomato*, *Sst*, *Vip*, and *Pv*
690 probes were from Allen Brain Atlas (<http://mouse.brain-map.org>). All probe sequences are listed
691 in **Supplementary File 1**.

692

693 Double fluorescence *in situ* hybridization (DFISH) was performed by the RNA *In Situ*
694 Hybridization Core at Baylor College of Medicine using an automated robotic platform and
695 procedures as described previously {Yaylaoglu:2005bb} with minor modifications for double
696 ISH. Briefly, fresh-frozen brains were embedded in optimal cutting temperature (OCT)
697 compound and cryosectioned at 14- μ m thickness. Two probes were hybridized to brain sections
698 simultaneously (*Nlgn2/Sst*, *Nlgn2/Vip*, *Nlgn2/Pv*, or *Nlgn2/tdTomato*) in hybridization buffer
699 (Ambion, catalog #B8807G). Sections were washed with standard saline citrate stringency
700 solution (SSC; 0.15 M NaCl, 0.015 M sodium citrate) to remove unbound and non-specifically
701 bound probes. To visualize the DIG-labeled probe, brain sections were incubated for 30 minutes
702 with a horse radish peroxidase (HRP)-conjugated sheep anti-DIG primary antibody (Sigma,
703 catalog #11207733910) diluted at 1/500 in Tris-NaCl blocking buffer (TNB; 100 mM Tris, 150
704 mM NaCl, 0.5% (w/v) blocking reagent (Perkin Elmer, catalog #FP1012), pH 7.6). After washes
705 in Tris-NaCl-Tween (TNT; 10 mM Tris-HCl, pH 8.0, 150 mM NaCl and 0.05% TWEEN 20)
706 buffer, brain sections were then developed with tyramide-Cy3 Plus (Akoya Biosciences, catalog
707 #NEL744001KT, 1/50 dilution in amplification diluent, 15 minutes). After washes in TNT
708 buffer, the remaining HRP activity was quenched by a 10-minute incubation in 0.2 M HCl.

709 Sections were then washed in TNT, blocked in TNB for 15 minutes before incubation with an
710 HRP-conjugated sheep anti-FITC antibody (Sigma, catalog #11426346910) diluted at 1/500 in
711 TNB for 30 minutes. After washes in TNT, the FITC-labeled probe was visualized using
712 tyramide-FITC Plus (Akoya Biosciences, catalog #NEL741001KT, 1/50 dilution in amplification
713 diluent, 15 minutes). The slides were washed in TNT and stained with 4',6-diamidino-2-
714 phenylindole (DAPI; Invitrogen, catalog #D3571), washed again, removed from the machine,
715 and mounted in ProLong Diamond (Invitrogen, catalog #P36961).

716

717 To compare *Nlgn2* mRNA levels in Sst, Vip, or Pv cells between 8-week-old *Nlgn2*^{-/-} mice and
718 sex matched *Nlgn2*^{+/+} control mice, sagittal brain sections were cut from 2 to 3 mm from the
719 lambda and stained in parallel for *Nlgn2/Sst*, *Nlgn2/Vip*, or *Nlgn2/Pv*, respectively. To compare
720 *Nlgn2* mRNA levels in Sst cells between *Nlgn2*^{fl/fl}; *Sst*^{Cre/+}; *Rosa26*^{Ai14/+} and
721 *Nlgn2*^{+/+}; *Sst*^{Cre/+}; *Rosa26*^{Ai14/+} mice or in Vip cells between *Nlgn2*^{fl/fl}; *Vip*^{Cre/+}; *Rosa26*^{Ai14/+} and
722 *Nlgn2*^{+/+}; *Vip*^{Cre/+}; *Rosa26*^{Ai14/+} mice at P14 and P21, sagittal brain sections were cut from 2 to 3
723 mm from the lambda and stained in parallel for *Nlgn2/tdTomato*. To compare *Nlgn2* mRNA
724 levels in Pv cells between *Nlgn2*^{fl/fl}; *Pv*^{Cre/+}; *Rosa26*^{Ai14/+} and *Nlgn2*^{+/+}; *Pv*^{Cre/+}; *Rosa26*^{Ai14/+} mice at
725 P14, sagittal brain sections were cut from 1 to 2 mm from the lambda. To compare *Nlgn2* mRNA
726 levels in Sst cells between *Nlgn2*^{fl/fl}; *Sst*^{Flpo/+}; *Rosa26*^{Ai14/+} and *Nlgn2*^{+/+}; *Sst*^{Flpo/+}; *Rosa26*^{Ai14/+} mice
727 or in Vip cells between *Nlgn2*^{fl/fl}; *Vip*^{Flpo/+}; *Rosa26*^{Ai14/+} and *Nlgn2*^{+/+}; *Vip*^{Flpo/+}; *Rosa26*^{Ai14/+} mice
728 that were injected with AAV expressing iCre (see above), coronal brain sections were cut at P14
729 from approximately -4 to -3 mm from the bregma to cover the location of AAV injection and
730 stained in parallel for *Nlgn2/tdTomato*.

731

732 **DFISH fluorescence imaging and analysis**

733 Fluorescence images of the visual cortex were acquired on an Sp8X Confocal Microscope
734 (Leica) using a 40x oil objective. 3–4 brain sections per mouse were imaged based on the density
735 of *Sst*, *Vip*, or *Pv* cells in the section. Approximately 40–60 images were acquired per tile scan
736 with a 5% overlap between images for tiling. The z-stack (~20 optical sections, 0.6- μ m step)
737 contained the entire thickness of the brain section.

738

739 For analysis, the images were opened in ImageJ and z-projected using the “Sum Slices” function
740 and then converted to a .ims format for analysis in Imaris 9.7 (Oxford Instruments). To compare
741 *Nlgn2* mRNA levels between *Nlgn2*^{+/+} and *Nlgn2*^{-/-} mice for the *Sst*, *Vip*, or *Pv* cells in layer
742 2/3, neurons were identified based on DAPI-positive nuclei using the “Surfaces” function with
743 the following parameters: smooth with surface grain size of 0.455 μ m, eliminate background
744 with diameter of largest sphere = 1.70 μ m, minimum threshold value of 300, and number of
745 voxels between 1000 to 2500. Surfaces were then manually inspected to rule out glial nuclei (i.e.,
746 elongated nuclei) and exclude any surfaces that contained two nuclei. The mean *Nlgn2* intensity
747 was then calculated for each surface that was positive for *Sst*, *Vip*, or *Pv*. The background
748 intensity in the *Nlgn2* channel was calculated by averaging the mean intensity in *Nlgn2* channel
749 from 5 ovals of area ~150 μ m² in the intercellular space of layer 2/3. This value was subtracted
750 from the mean *Nlgn2* intensity of the *Sst*, *Vip*, or *Pv*-positive surfaces.

751

752 To analyze *Nlgn2* mRNA levels for *tdTomato*-positive *Sst*, *Vip*, or *Pv* cells following Cre-
753 mediated deletion of *Nlgn2*, a 3 x 3 x 1 median filter was applied to the *tdTomato* channel of
754 each image to decrease the background. The *tdTomato*-positive cells in layer 2/3 were identified

755 using the “Surfaces” function with the following parameters: smooth with surface grain size of
756 1.00 μm , eliminate background with diameter of largest sphere = 5.00 μm , minimum threshold
757 value of 50, and number of voxels about 1000. *tdTomato* surfaces were then manually inspected
758 to ensure that 1) each surface represented a real cell as evidenced by colocalization of the
759 *tdTomato* signal and a DAPI-positive nucleus and 2) each surface represented the *Nlgn2* mRNA
760 from only a single cell. If the nucleus of a *tdTomato* surface had another nucleus located within 5
761 μm of it, then this *tdTomato* surface was excluded from the analysis due to the potential signal
762 contamination. After confirming the accuracy of the *tdTomato* surfaces, the mean intensity of the
763 *Nlgn2* channel was calculated for each surface. The background intensity in the *Nlgn2* channel
764 was calculated by averaging the mean intensity in *Nlgn2* channel from 5 ovals of area \sim 150 μm^2
765 (roughly the same area as *tdTomato* surfaces) in the intercellular space of layer 2/3. This value
766 was subtracted from the mean *Nlgn2* intensity of the *tdTomato* surfaces. Due to the variability in
767 *Nlgn2* intensity between different staining batches and mice, surfaces from each section were
768 then normalized to the mean *Nlgn2* intensity of all cells in layer 2/3, which served as an internal
769 control for staining variability. This was done by using the “Surfaces” function to generate a
770 surface from the DAPI channel containing all cells in layer 2/3 with the following parameters:
771 smooth with surface grain size of 1.00 μm , eliminate background with diameter of largest sphere
772 = 1.70 μm , minimum threshold of 5, and number of voxels between 1000 and 5000.
773 Approximately 1000 surfaces were generated for each section. The mean *Nlgn2* intensity minus
774 the background was calculated for each surface and averaged across all surfaces to determine the
775 normalization value for each section. The mean *Nlgn2* intensity in each *tdTomato* surface was
776 then divided by the normalization value to determine the final normalized mean *Nlgn2* intensity
777 for each *tdTomato*-positive cell.

778

779 **Brain slice electrophysiology**

780 Mice were anesthetized by an intraperitoneal injection of a ketamine and xylazine mix (80 mg/kg
781 and 16 mg/kg, respectively) and transcardially perfused with cold (0–4°C) slice cutting solution
782 containing 80 mM NaCl, 2.5 mM KCl, 1.3 mM NaH₂PO₄, 26 mM NaHCO₃, 4 mM MgCl₂, 0.5
783 mM CaCl₂, 20 mM D-glucose, 75 mM sucrose, and 0.5 mM sodium ascorbate (315 mosmol, pH
784 7.4, saturated with 95% O₂/5% CO₂). Brains were removed and sectioned in the cutting solution
785 with a VT1200S vibratome (Leica) to obtain 300 mm coronal slices. Slices containing the
786 primary visual cortex were collected and incubated in a custom-made interface holding chamber
787 saturated with 95% O₂/5% CO₂ at 34°C for 30 min and then at room temperature for 20 min to 6
788 hr until they were transferred to the recording chamber.

789

790 Recordings were performed on submerged slices in artificial cerebrospinal fluid (ACSF)
791 containing 119 mM NaCl, 2.5 mM KCl, 1.3 mM NaH₂PO₄, 26 mM NaHCO₃, 1.3 mM MgCl₂,
792 2.5 mM CaCl₂, 20 mM D-glucose, and 0.5 mM sodium ascorbate (305 mosmol, pH 7.4,
793 saturated with 95% O₂/5% CO₂, perfused at 3 ml/min) at 32°C. For whole-cell recordings, a K⁺-
794 based pipette solution containing 142 mM K⁺-gluconate, 10 mM HEPES, 1 mM EGTA, 2.5 mM
795 MgCl², 4 mM ATP-Mg, 0.3 mM GTP-Na, 10 mM Na₂-phosphocreatine (295 mosmol, pH 7.35)
796 or a Cs⁺-based pipette solution containing 121 mM Cs⁺-methanesulfonate, 10 mM HEPES, 10
797 mM EGTA, 1.5 mM MgCl₂, 4 mM ATP-Mg, 0.3 mM GTP-Na, 10 mM Na₂-phosphocreatine,
798 and 2 mM QX314-Cl (295 mosmol, pH 7.35) was used. Membrane potentials were not corrected
799 for liquid junction potential (experimentally measured as 12.5 mV for the K⁺-based pipette
800 solution and 9.5 mV for the Cs⁺-based pipette solution).

801
802 Neurons were visualized with video-assisted infrared differential interference contrast imaging
803 and fluorescent neurons were identified by epifluorescence imaging under a water immersion
804 objective (40x, 0.8 numerical aperture) on an upright SliceScope Pro 1000 microscope
805 (Scientifica) with an infrared IR-1000 CCD camera (DAGE-MTI). Data were acquired at 10 kHz
806 and low-pass filtered at 4 kHz with an Axon Multiclamp 700B amplifier and an Axon Digidata
807 1550 or 1440 Data Acquisition System under the control of Clampex 10.7 (Molecular Devices).
808 For the photostimulation of ChR2-expressing neurons, blue light (455 or 470 nm) was emitted
809 from a collimated light-emitting diode (LED). The LED was driven by a LED driver (Mightex or
810 Thorlabs) under the control of an Axon Digidata 1550 or 1440 Data Acquisition system and
811 Clampex 10.7. Light was delivered through the reflected light fluorescence illuminator port and
812 the 40x objective. Data were analyzed offline using AxoGraph X.
813
814 To record spontaneous postsynaptic currents (sPSCs), pyramidal cells or interneurons were
815 recorded under voltage-clamp mode using the Cs⁺-based pipette solution at the reversal potential
816 of inhibition (-70 mV) for sEPSCs or the reversal potential of excitation (+10 mV) for sIPSCs.
817 Cells were recorded for 5–10 minutes for sEPSCs and sIPSCs. To detect sPSCs, data were
818 digitally low-pass filtered at 2 kHz offline and events were detected by a scaled-template
819 algorithm in AxoGraph X {Clements:1997he}. Different templates were used for detecting
820 sPSCs in different cell types. For pyramidal cells, the parameters for sEPSCs are: length, 3 ms;
821 baseline, 10 ms; amplitude, -2 pA; rise time, 0.6 ms; decay time, 3 ms; threshold, 3xSD, and the
822 parameters for sIPSCs are: length, 3 ms; baseline, 20 ms; amplitude, 2 pA; rise time, 0.6 ms;
823 decay time, 10 ms; threshold, 2.5xSD. For Sst cells, the parameters for sEPSCs are: length, 3 ms;

824 baseline, 10 ms; amplitude, -2 pA; rise time, 0.4 ms; decay time, 1.9 ms; threshold, 3.25xSD, and
825 the parameters for sIPSCs are: length, 3 ms; baseline, 20 ms; amplitude, 2 pA; rise time, 0.6 ms;
826 decay time, 13 ms; threshold, 3.3xSD. For Vip cells, the parameters for sEPSCs are: length, 3
827 ms; baseline, 10 ms; amplitude, -2 pA; rise time, 0.43 ms; decay time, 2.95 ms; threshold, 3xSD,
828 and the parameters for sIPSCs are: length, 3 ms; baseline, 15 ms; amplitude, 2 pA; rise time, 0.34
829 ms; decay time, 7.5 ms; threshold, 3xSD. For Pv cells, the parameters for sEPSCs are: length, 1.5
830 ms; baseline, 5 ms; amplitude, -2 pA; rise time, 0.2 ms; decay time, 1 ms; threshold, 3.25xSD,
831 and the parameters for sIPSCs are: length, 3 ms; baseline, 10 ms; amplitude, 2 pA; rise time, 0.27
832 ms; decay time, 3.7 ms; threshold, 3xSD.

833

834 To record photostimulation-evoked inhibitory postsynaptic currents (eIPSCs), a pair of control
835 and iCre-positive pyramidal cells or Sst cells that were within were within 50 μ m of each other
836 were recorded under voltage-clamp mode using the Cs^+ -based pipette solution at the reversal
837 potential of excitation (+10 mV). Blue light pulse duration (0.5–5 ms) and intensity (1.1–5.5
838 mW/mm²) were adjusted for each recording to evoke small (to minimize voltage-clamp errors)
839 but reliable monosynaptic IPSCs. Light pulses were delivered at 30-s inter-trial intervals. eIPSC
840 amplitudes were measured from the average of 5–7 trials.

841

842 To record unitary connections between Sst cells and pyramidal cells, a control and an iCre-
843 positive pyramidal cell were recorded under voltage-clamp mode at the reversal potential of
844 excitation (+10 mV) using the Cs^+ -based pipette solution, and a nearby (within 50 μ m of both
845 pyramidal cells) Sst cell was identified by the Flpo-dependent expression of tdTomato and
846 recorded under current-clamp mode using the K^+ -based pipette solution. Action potentials were

847 elicited in Sst cells by a train of 6 depolarizing current steps (2 ms, 1–2 nA) at 10 Hz with 15-s
848 inter-trial intervals. Unitary IPSC (uIPSC) amplitudes were measured from the first IPSCs of the
849 average of 50 trials. A Sst cell was considered to be connected with a pyramidal cell if the
850 average uIPSC amplitude was at least three times of the baseline standard deviation.

851

852 **Fluorescence imaging of live brain slices and analysis**

853 Fluorescence images were acquired from 300 μm -thick live brain slices immediately following
854 electrophysiological recordings. Images were acquired on an Axio Zoom.V16 Fluorescence
855 Stereo Zoom Microscope (Zeiss) at 20x (whole brain) or 63x (visual cortex) to visualize the
856 fluorescent cells. Images were manually analyzed in ImageJ to quantify the numbers of
857 tdTomato-positive cells and GFP-positive cells.

858

859 **Neural network modeling**

860 *Firing-rate-based population model*

861 A simple recurrent network consisting of one population of excitatory cells (E cells) and one
862 population of inhibitory cells (I cells) was constructed. The state of the network is characterized
863 by $r_E(t)$, $r_I(t)$, which are the population firing rates of E cells and I cells, respectively. The
864 temporal evolution of $r_E(t)$, $r_I(t)$ is given by temporally coarse-grained equations
865 {Wilson:1972kj}:

$$866 \quad \tau_E \frac{dr_E}{dt} = -r_E + g_E(\text{input}_E + W_{EE}r_E - W_{EI}r_I) \quad (1)$$

$$867 \quad \tau_I \frac{dr_I}{dt} = -r_I + g_I(\text{input}_I + W_{IE}r_E - W_{II}r_I) \quad (2)$$

868 Here $input_E$, $input_I$ are the tonic external inputs to each cell in the E population and I
 869 population, respectively. τ_E , τ_I are the time constants. W_{EI} is the strength of connection from I
 870 population to E population ($I \rightarrow E$). Similarly, W_{EE} , W_{IE} , and W_{II} represent $E \rightarrow E$, $E \rightarrow I$, and
 871 $I \rightarrow I$ connections, respectively. W_{EE} , W_{EI} , W_{IE} , and $W_{II} > 0$. The response functions of each
 872 population, $g_E(x)$ and $g_I(x)$, are given by:

873
$$g_E(x) = k_E([x]_+)^n \quad (3)$$

874
$$g_I(x) = k_I([x]_+)^n \quad (4)$$

875 Here k_E and k_I are positive constants. $[.]_+$ denotes the rectifier: $[x]_+ = x$ if $x > 0$; $= 0$
 876 otherwise. n , the power of the response function, is taken identical for E and I populations for
 877 simplicity. Note that here we take $n > 1$ to model a stabilized supralinear network (SSN), which
 878 has been proposed to explain various nonlinear cortical computation {Ahmadian:2013kq}.

879

880 *Linearized equations about the fixed points*

881 In the small neighborhood of the fixed points $\begin{pmatrix} r_{E,S} \\ r_{I,S} \end{pmatrix}$ satisfying $\begin{pmatrix} r_{E,S} \\ r_{I,S} \end{pmatrix} =$
 882 $\begin{pmatrix} g_E(input_E + W_{EE}r_{E,S} - W_{EI}r_{I,S}) \\ g_I(input_I + W_{IE}r_{E,S} - W_{II}r_{I,S}) \end{pmatrix}$, with external input fixed, the model can be linearized to:

883
$$\tau_E \frac{dr_E}{dt} = -r_E + J_{EE}r_E - J_{EI}r_I \quad (5)$$

884
$$\tau_I \frac{dr_I}{dt} = -r_I + J_{IE}r_E - J_{II}r_I \quad (6)$$

885 where

886
$$J_{\alpha,\beta} = \frac{\partial g_\alpha}{\partial r_\beta} \Big|_{r_E=r_{E,S}, r_I=r_{I,S}} = g'_\alpha(input_\alpha + W_{EE}r_{E,S} - W_{EI}r_{I,S})W_{\alpha\beta}, \alpha, \beta \in \{E, I\} \quad (7)$$

887 Note that $r_E(t)$ and $r_I(t)$ are now defined as the deviations from the fixed points $(r_{E,S}, r_{I,S})$.

888 Equations (5) and (6) can be expressed in matrix forms:

889
$$\tau \frac{d\vec{r}}{dt} = (J - I)\vec{r} \quad (8)$$

890 The vector of population firing rates $\vec{r} = \begin{pmatrix} r_E \\ r_I \end{pmatrix}$, the connectivity matrix $J = \begin{pmatrix} J_{EE} & -J_{EI} \\ -J_{IE} & J_{II} \end{pmatrix}$, the
891 time constant matrix $\tau = \begin{pmatrix} \tau_E & 0 \\ 0 & \tau_I \end{pmatrix}$, and the identity matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

892

893 *Conditions for the network to operate as an inhibition-stabilized network (ISN)*

894 A network would operate as an ISN if the following two conditions are met: (1) The network
895 would be unstable without feedback inhibition, and (2) the feedback inhibition is sufficiently
896 strong to stabilize the network. Condition (1) requires that the linearized network without
897 feedback inhibition about the fixed points is unstable, which is equivalent to that

898
$$\begin{pmatrix} \frac{1}{\tau_E} (J_{EE} - 1) & 0 \\ \frac{-1}{\tau_I} J_{IE} & \frac{1}{\tau_I} (J_{II} - 1) \end{pmatrix}$$
 has at least one positive eigenvalue. The two eigenvalues of the

899 matrix are $\frac{1}{\tau_E} (J_{EE} - 1)$ and $\frac{1}{\tau_I} (J_{II} - 1)$. As $J_{II} < 0$ and $\frac{1}{\tau_I} (J_{II} - 1) < 0$, the instability of the
900 network is equivalent to $J_{EE} > 1$. Similarly, condition (2) requires that the linearized network
901 with feedback inhibition about the fixed points is stable, which is equivalent to that

902
$$\begin{pmatrix} \frac{1}{\tau_E} (J_{EE} - 1) & \frac{-1}{\tau_E} J_{EI} \\ \frac{-1}{\tau_I} J_{IE} & \frac{1}{\tau_I} (J_{II} - 1) \end{pmatrix}$$
 has two eigenvalues with negative real parts. This is in turn

903 equivalent to that the matrix has a positive determinant and a negative trace, which reduces to
904 $(J_{EE} - 1)(J_{II} - 1) - J_{EI}J_{IE} > 0$ and $\frac{1}{\tau_E} (J_{EE} - 1) + \frac{1}{\tau_I} (J_{II} - 1) < 0$.

905

906 *Response of the network to changes in external inputs*

907 To characterize the response of the network, how its stationary rate will change for a small
908 change in external inputs was considered. For the stationary state of the network $\begin{pmatrix} r_{E,S} \\ r_{I,S} \end{pmatrix} =$
909 $\begin{pmatrix} g_E(input_E + W_{EE}r_{E,S} - W_{EI}r_{I,S}) \\ g_I(input_I + W_{IE}r_{E,S} - W_{II}r_{I,S}) \end{pmatrix}$, with a small perturbation $\begin{pmatrix} \Delta input_E \\ \Delta input_I \end{pmatrix}$ applied to the original
910 external inputs $\begin{pmatrix} input_E \\ input_I \end{pmatrix}$, the network will reach a new stationary state $\begin{pmatrix} r_{E,S} + \Delta r_{E,S} \\ r_{I,S} + \Delta r_{I,S} \end{pmatrix} =$
911 $\begin{pmatrix} g_E((input_E + \Delta input_E) + W_{EE}(r_{E,S} + \Delta r_{E,S}) - W_{EI}(r_{I,S} + \Delta r_{I,S})) \\ g_I((input_I + \Delta input_I) + W_{IE}(r_{E,S} + \Delta r_{E,S}) - W_{II}(r_{I,S} + \Delta r_{I,S})) \end{pmatrix}$. Under linearization,
912
$$\begin{aligned} \begin{pmatrix} \Delta r_{E,S} \\ \Delta r_{I,S} \end{pmatrix} &= (I - J)^{-1} \begin{pmatrix} \Delta input_E \\ \Delta input_I \end{pmatrix} \\ &= \frac{1}{\det(I - J)} \begin{pmatrix} 1 - J_{II} & J_{EI} \\ J_{IE} & 1 - J_{EE} \end{pmatrix} \begin{pmatrix} \Delta input_E \\ \Delta input_I \end{pmatrix} \end{aligned} \quad (9)$$

913 The paradoxical effect refers to that the modulation of the external input to I cells leads to a
914 paradoxical change of their firing rate, i.e., $\Delta input_I$ always has a negative effect on $\Delta r_{I,S}$. In the
915 regime of ISN, $\det(I - J) > 0$. Therefore, the paradoxical effect is present only when $1 - J_{EE} <$
916 0. Note that although both exhibiting a paradoxical effect and the instability of the network in
917 the absence of feedback inhibition require ' $1 - J_{EE} < 0$ ', they refer to different stationary rates.
918 Due to the nonlinearity of the response functions, these two properties are not equivalent.

919

920 *Simulation method*

921 Stationary states were determined by simulations using forward Euler method with $dt = 0.1$.
922 Multiple initial conditions were applied to confirm the independence of final stationary state
923 from initial condition.

924

925 **Experimental study design and statistics**

926 Estimation of the sample size was made based on the previous studies {Xue:2014dl,
927 Chen:2020ga} that used similar assays and pilot experiments. They are within the range that is
928 generally accepted in the field. All experiments were performed and analyzed blind to the
929 genotypes. Both male and female mice were included in experiments. No data point was
930 excluded.

931

932 For DFISH and electrophysiology experiments, all reported sample numbers (n) represent the
933 number of total cells followed by the number of mice. For health monitoring, all reported sample
934 numbers represent tested mice. Statistical analyses were performed with Prism 9 (Graphpad
935 Software). Anderson-Darling test, D'Agostino-Pearson, Shapiro-Wilk, and Kolmogorov-
936 Smirnov tests were used to determine if data were normally distributed. If all data within one
937 experiment passed all four normality tests, then the statistical test that assumes a Gaussian
938 distribution was used. Otherwise, the statistical test that assumes a non-Gaussian distribution was
939 used. The details of all statistical tests, numbers of replicates, and P values are reported in

940 **Supplementary File 2.**

941

942 **Materials and data availability**

943 All new plasmids generated in this study will be available from Addgene (see DNA constructs
944 section). All data generated and analyzed in this study are included in the manuscript.

945

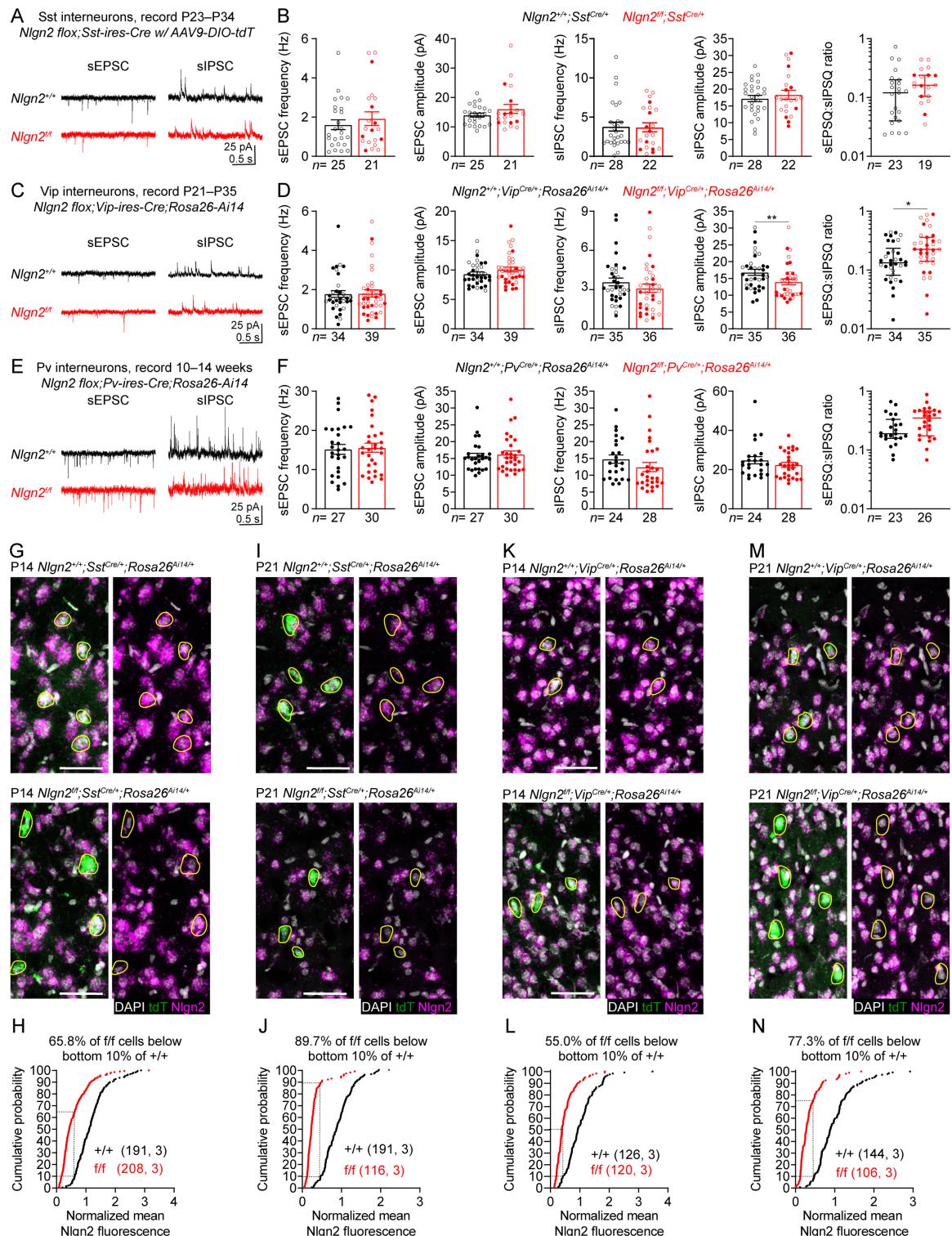
946 **References:**

947 Adesnik, H. and Naka, A. (2018) 'Cracking the Function of Layers in the Sensory Cortex',
948 *Neuron*. Elsevier Inc., 100, pp. 1028–1043. doi: 10.1016/j.neuron.2018.10.032.

- 949 Ahmadian, Y., Rubin, D. B. and Miller, K. D. (2013) 'Analysis of the Stabilized Supralinear
950 Network', *Neural Computation*, 25, pp. 1994–2037. doi: 10.1162/NECO.
951 Almási, Z. *et al.* (2019) 'Distribution patterns of three molecularly defined classes of gabaergic
952 neurons across columnar compartments in mouse barrel cortex', *Frontiers in
953 Neuroanatomy*, 13(April), pp. 1–12. doi: 10.3389/fnana.2019.00045.
954 Amit, D. J. and Brunel, N. (1997) 'Model of global spontaneous activity and local structured
955 activity during delay periods in the cerebral cortex', *Cerebral Cortex*, 7(3), pp. 237–252.
956 doi: 10.1093/cercor/7.3.237.
957 Antoine, M. W. *et al.* (2019) 'Increased Excitation-Inhibition Ratio Stabilizes Synapse and
958 Circuit Excitability in Four Autism Mouse Models', *Neuron*. Elsevier Inc., 101(4), pp.
959 648-661.e4. doi: 10.1016/j.neuron.2018.12.026.
960 Ascoli, G. A. *et al.* (2008) 'Petilla terminology: Nomenclature of features of GABAergic
961 interneurons of the cerebral cortex', *Nature Reviews Neuroscience*, 9(7), pp. 557–568.
962 doi: 10.1038/nrn2402.
963 Babaev, O. *et al.* (2016) 'Neuroligin 2 deletion alters inhibitory synapse function and anxiety-
964 associated neuronal activation in the amygdala', *Neuropharmacology*, 100, pp. 56–65.
965 doi: 10.1016/j.neuropharm.2015.06.016.
966 Blundell, J. *et al.* (2009) 'Increased anxiety-like behavior in mice lacking the inhibitory synapse
967 cell adhesion molecule neuroligin 2', *Genes, Brain and Behavior*, 8(1), pp. 114–126. doi:
968 10.1111/j.1601-183X.2008.00455.x.
969 Budreck, E. C. and Scheiffele, P. (2007) 'Neuroligin-3 is a neuronal adhesion protein at
970 GABAergic and glutamatergic synapses', *European Journal of Neuroscience*, 26(7), pp.
971 1738–1748. doi: 10.1111/J.1460-9568.2007.05842.X/FORMAT/PDF.

- 972 Cao, F. *et al.* (2020) 'Neuroligin 2 regulates absence seizures and behavioral arrests through
973 GABAergic transmission within the thalamocortical circuitry', *Nature Communications*.
974 Springer US, 11(1). doi: 10.1038/s41467-020-17560-3.
- 975 Chang, E. F. and Merzenich, M. M. (2003) 'Environmental Noise Retards Auditory Cortical
976 Development', *Science*, 300(April), pp. 498–502.
- 977 Chao, H.-T. *et al.* (2010) 'Dysfunction in GABA signalling mediates autism-like stereotypies
978 and Rett syndrome phenotypes.', *Nature*, 468(7321), pp. 263–9. doi:
979 10.1038/nature09582.
- 980 Chen, C.-H. *et al.* (2017) 'Neuroligin 2 R215H Mutant Mice Manifest Anxiety, Increased
981 Prepulse Inhibition, and Impaired Spatial Learning and Memory', *Frontiers in
982 Psychiatry*, 8, p. 257. doi: 10.3389/fpsyg.2017.00257.
- 983 Chih, B., Engelmann, H. and Scheiffele, P. (2005) 'Control of Excitatory and Inhibitory Synapse
984 Formation by Neuroligins', *Science*, 307(22), pp. 1324–1328. doi:
985 10.1126/science.1103773.
- 986 Chubykin, A. A. *et al.* (2007) 'Activity-Dependent Validation of Excitatory versus Inhibitory
987 Synapses by Neuroligin-1 versus Neuroligin-2', *Neuron*, 54, pp. 919–931. doi:
988 10.1016/j.neuron.2007.05.029.
- 989 Gibson, J. R., Huber, K. M. and Südhof, T. C. (2009) 'Neuroligin-2 Deletion Selectively
990 Decreases Inhibitory Synaptic Transmission Originating from Fast-Spiking but Not from
991 Somatostatin-Positive Interneurons', *Journal of Neuroscience*, 29(44), pp. 13883–13897.
- 992 Horn, M. E. *et al.* (2017) 'Somatostatin and parvalbumin inhibitory synapses onto hippocampal
993 pyramidal neurons are regulated by distinct mechanisms', *PNAS*. doi:
994 10.1073/pnas.1719523115.

- 995 Jiang, D.-Y. *et al.* (2018) 'GABAergic deficits and schizophrenia-like behaviors in a mouse
996 model carrying patient-derived neuroligin-2 R215H mutation', *Molecular Brain*, 11(31).
997 doi: 10.1186/s13041-018-0375-6.
- 998 Liang, J. *et al.* (2015) 'Conditional neuroligin-2 knockout in adult medial prefrontal cortex links
999 chronic changes in synaptic inhibition to cognitive impairments', *Molecular Psychiatry*,
1000 20, pp. 850–859. doi: 10.1038/mp.2015.31.
- 1001 Messier, J. E. *et al.* (2018) 'Targeting light-gated chloride channels to neuronal somatodendritic
1002 domain reduces their excitatory effect in the axon', *eLife*, 7, pp. 1–21. doi:
1003 10.7554/eLife.38506.
- 1004 Parente, D. J. *et al.* (2017) 'Neuroligin 2 nonsense variant associated with anxiety, autism,
1005 intellectual disability, hyperphagia, and obesity', *American Journal of Medical Genetics,
1006 Part A*, 173(1), pp. 213–216. doi: 10.1002/ajmg.a.37977.
- 1007 Pfeffer, C. K. *et al.* (2013) 'Inhibition of inhibition in visual cortex: the logic of connections
1008 between molecularly distinct interneurons', *Nature Neuroscience*, 16(8), pp. 1068–1076.
1009 doi: 10.1038/nn.3446.
- 1010 Poulopoulos, A. *et al.* (2009) 'Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic
1011 Inhibitory Synapses through Gephyrin and Collybistin', *Neuron*, 63, pp. 628–642. doi:
1012 10.1016/j.neuron.2009.08.023.
- 1013 Rubenstein, J. L. R. and Merzenich, M. M. (2003) 'Model of autism: Increased ratio of
1014 excitation/inhibition in key neural systems', *Genes, Brain and Behavior*, 2(5), pp. 255–
1015 267. doi: 10.1034/j.1601-183X.2003.00037.x.
- 1016 Rudy, B. *et al.* (2011) 'Three groups of interneurons account for nearly 100% of neocortical
1017 GABAergic neurons', *Developmental Neurobiology*, 71(1), pp. 45–61. doi:


- 1018 10.1002/dneu.20853.
- 1019 Schuler, V. *et al.* (2001) 'Epilepsy, hyperalgesia, impaired memory, and loss of pre- and
1020 postsynaptic GABAB responses in mice lacking GABAB(1)', *Neuron*, 31(1), pp. 47–58.
1021 doi: 10.1016/S0896-6273(01)00345-2.
- 1022 Selimbeyoglu, A. *et al.* (2017) 'Modulation of prefrontal cortex excitation / inhibition balance
1023 rescues social behavior in CNTNAP2 -deficient mice'.
- 1024 Seok, B. S. *et al.* (2018) 'The effect of Neuroligin-2 absence on sleep architecture and
1025 electroencephalographic activity in mice', *Molecular Brain*. Molecular Brain, 11(52), pp.
1026 1–11.
- 1027 Staiger, J. F. *et al.* (2004) 'Calbindin-Containing Interneurons Are a Target for VIP-
1028 Immunoreactive Synapses in Rat Primary Somatosensory Cortex', *Journal of
1029 Comparative Neurology*, 468(2), pp. 179–189. doi: 10.1002/cne.10953.
- 1030 Staiger, J. F. and Petersen, C. C. H. (2021) 'Neuronal circuits in barrel cortex for whisker
1031 sensory perception', *Physiological Reviews*, 101(1), pp. 353–415. doi:
1032 10.1152/physrev.00019.2019.
- 1033 Takács, V. T., Freund, T. F. and Nyiri, G. (2013) 'Neuroligin 2 Is Expressed in Synapses
1034 Established by Cholinergic Cells in the Mouse Brain', *PLoS ONE*, 8(9). doi:
1035 10.1371/journal.pone.0072450.
- 1036 Taniguchi, H. *et al.* (2011) 'A Resource of Cre Driver Lines for Genetic Targeting of
1037 GABAergic Neurons in Cerebral Cortex', *Neuron*, 71, pp. 995–1013. doi:
1038 10.1016/j.neuron.2011.07.026.
- 1039 Tremblay, R., Lee, S. and Rudy, B. (2016) 'GABAergic Interneurons in the Neocortex: From
1040 Cellular Properties to Circuits', *Neuron*, 91, pp. 260–292. doi:

- 1041 10.1016/j.neuron.2016.06.033.
- 1042 Varoqueaux, F. *et al.* (2006) 'Neuroligins Determine Synapse Maturation and Function', *Neuron*.
- 1043 Elsevier Inc, 51, pp. 741–754. doi: 10.1016/j.neuron.2006.09.003.
- 1044 Varoqueaux, F., Jamain, S. and Brose, N. (2004) 'Neuroligin 2 is exclusively localized to
- 1045 inhibitory synapses', *European Journal of Cell Biology*, 83, pp. 449–456. doi:
- 1046 10.1078/0171-9335-00410.
- 1047 Vogt, B. A. (1991) *The Role of Layer I in Cortical Function, Normal and Altered States of*
- 1048 *Function. Cerebral Cortex, vol 9.* Edited by A. Peters and E. G. Jones. Springer, Boston,
- 1049 MA. doi: 10.1007/978-1-4615-6622-9_2.
- 1050 Wilson, H. R. and Cowan, J. D. (1972) 'Excitatory and Inhibitory Interactions in Localized
- 1051 Populations of Model Neurons', *Biophysical Journal*. Elsevier, 12, pp. 1–24. doi:
- 1052 10.1016/S0006-3495(72)86068-5.
- 1053 Wöhr, M. *et al.* (2013) 'Developmental delays and reduced pup ultrasonic vocalizations but
- 1054 normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2',
- 1055 *Behavioural Brain Research*, 251, pp. 50–64. doi: 10.1016/j.bbr.2012.07.024.
- 1056 Xu, Haifeng *et al.* (2019) 'A Disinhibitory Microcircuit Mediates Conditioned Social Fear in the
- 1057 Prefrontal Cortex', *Neuron*. Elsevier Inc., 102(3), pp. 668-682.e5. doi:
- 1058 10.1016/j.neuron.2019.02.026.
- 1059 Xue, M., Atallah, B. V and Scanziani, M. (2014) 'Equalizing excitation–inhibition ratios across
- 1060 visual cortical neurons', *Nature*, 511, pp. 596–600. doi: 10.1038/nature13321.
- 1061 Yaylaoglu, M. B. *et al.* (2005) 'Comprehensive expression atlas of fibroblast growth factors and
- 1062 their receptors generated by a novel robotic *in situ* hybridization platform',
- 1063 *Developmental Dynamics*, 234(2), pp. 371–386. doi: 10.1002/dvdy.20441.

- 1064 Yizhar, O. *et al.* (2011) ‘Neocortical excitation/inhibition balance in information processing and
1065 social dysfunction’, *Nature*. Nature Publishing Group, 477(7363), pp. 171–178. doi:
1066 10.1038/nature10360.
- 1067 Zhang, B. *et al.* (2015) ‘Neuroligins Sculpt Cerebellar Purkinje-Cell Circuits by Differential
1068 Control of Distinct Classes of Synapses’, *Neuron*, 87, pp. 781–796. doi:
1069 10.1016/j.neuron.2015.07.020.
- 1070 Zhang, B. and Südhof, T. C. (2016) ‘Neuroligins Are Selectively Essential for NMDAR
1071 Signaling in Cerebellar Stellate Interneurons’, *Journal of Neuroscience*, 36(35), pp.
1072 9070–9083. doi: 10.1523/JNEUROSCI.1356-16.2016.
- 1073 Zhang, L. I., Bao, S. and Merzenich, M. M. (2002) ‘Disruption of primary auditory cortex by
1074 synchronous auditory inputs during a critical period’, *Proceedings of the National
1075 Academy of Sciences of the United States of America*, 99(4), pp. 2309–2314. doi:
1076 10.1073/pnas.261707398.
- 1077
- 1078
- 1079

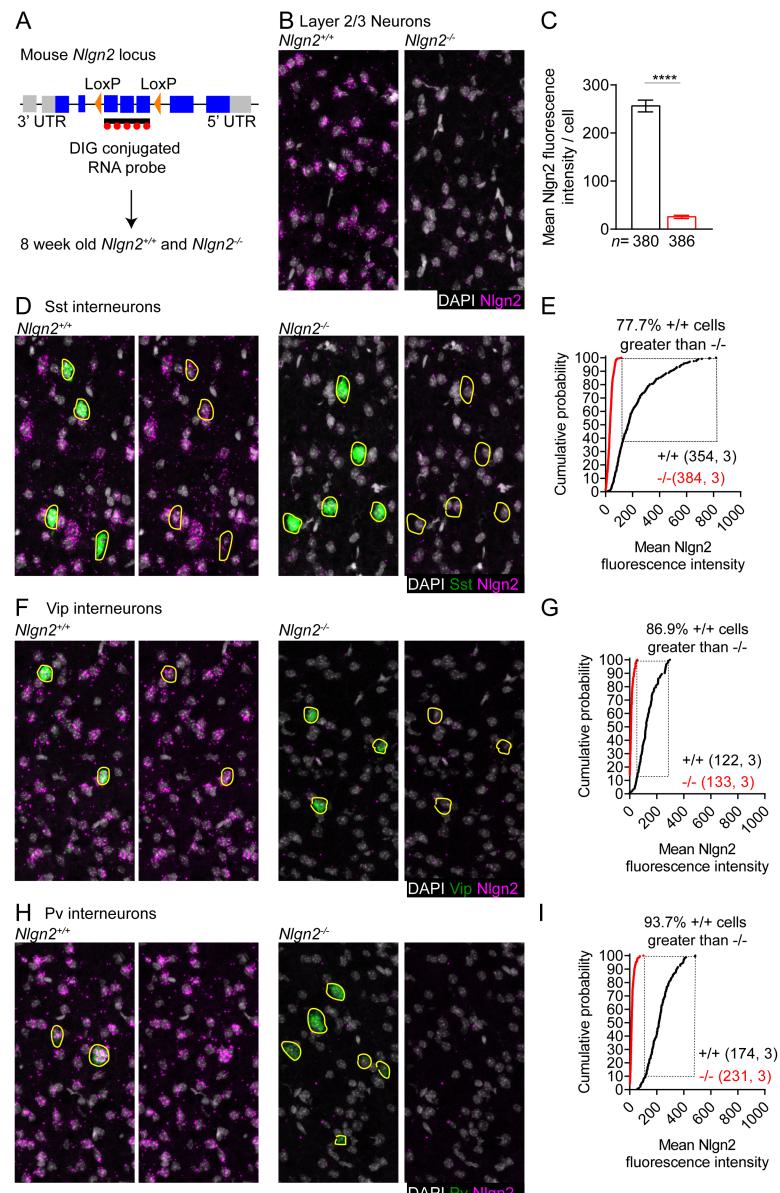

1080 **Figures and legends**

Figure 1

1082 **Figure 1:** Targeting Nlgn2 with interneuron-specific Cre lines does not affect inhibition (A)
1083 Representative traces of sEPSCs (left) and sIPSCs (right) of a layer 5 Sst interneuron in the
1084 visual cortex from a *Nlgn2^{+/+};Sst^{Cre/+}* (top) and *Nlgn2^{ff};Sst^{Cre/+}* (bottom) mouse. (B) Summary
1085 data of the frequency and amplitude of sEPSCs, sIPSCs, and the sEPSC:sIPSC ratio between
1086 *Nlgn2^{+/+};Sst^{Cre/+}* and *Nlgn2^{ff};Sst^{Cre/+}* mice. (C,D) As in (A,B), but for Vip interneurons in layer
1087 2/3 of *Nlgn2^{+/+};Vip^{Cre/+};Rosa26^{Ai14/+}* and *Nlgn2^{ff};Vip^{Cre/+};Rosa26^{Ai14/+}* mice (E,F) As in (A,B),
1088 but for Pv interneurons in layer 5 from *Nlgn2^{+/+};Pv^{Cre/+};Rosa26^{Ai14/+}* and
1089 *Nlgn2^{ff};Pv^{Cre/+};Rosa26^{Ai14/+}* mice. (G) Representative images of DFISH showing *Nlgn2*
1090 (magenta), *tdTomato* (green), and DAPI (white) in the visual cortex of P14
1091 *Nlgn2^{+/+};Sst^{Cre/+};Rosa26^{Ai14/+}* (top) and *Nlgn2^{ff};Sst^{Cre/+};Rosa26^{Ai14/+}* (bottom) mice. Yellow
1092 outlines represent *tdTomato* positive cells. (H) Cumulative frequencies of *tdTomato* positive
1093 cells as a function of their normalized *Nlgn2* levels. Dashed lines indicate that the *Nlgn2* levels
1094 of 65.8% of *tdTomato* positive cells from the P14 *Nlgn2^{ff};Sst^{Cre/+};Rosa26^{Ai14/+}* are within the
1095 bottom 10% of *tdTomato* positive cells from *Nlgn2^{+/+};Sst^{Cre/+};Rosa26^{Ai14/+}* mice. (I,J) As in
1096 (G,H), but for P21. (K,L) As in (G,H), but for P14 *Nlgn2^{+/+};Vip^{Cre/+};Rosa26^{Ai14/+}* and
1097 *Nlgn2^{ff};Vip^{Cre/+};Rosa26^{Ai14/+}* mice. (M,N) As in (K,L), but for P21. N number represents # of
1098 cells followed by number of animals for cumulative frequency graphs or # of cells for
1099 physiology summary data. Each filled (male) or open (female) circle represents one neuron. Bar
1100 graphs are mean \pm S.E.M. except for sEPSC:sIPSC ratio which is median \pm interquartile range.
1101 *, p<0.05; **, p<0.005. Scale bar is 50 μ m.

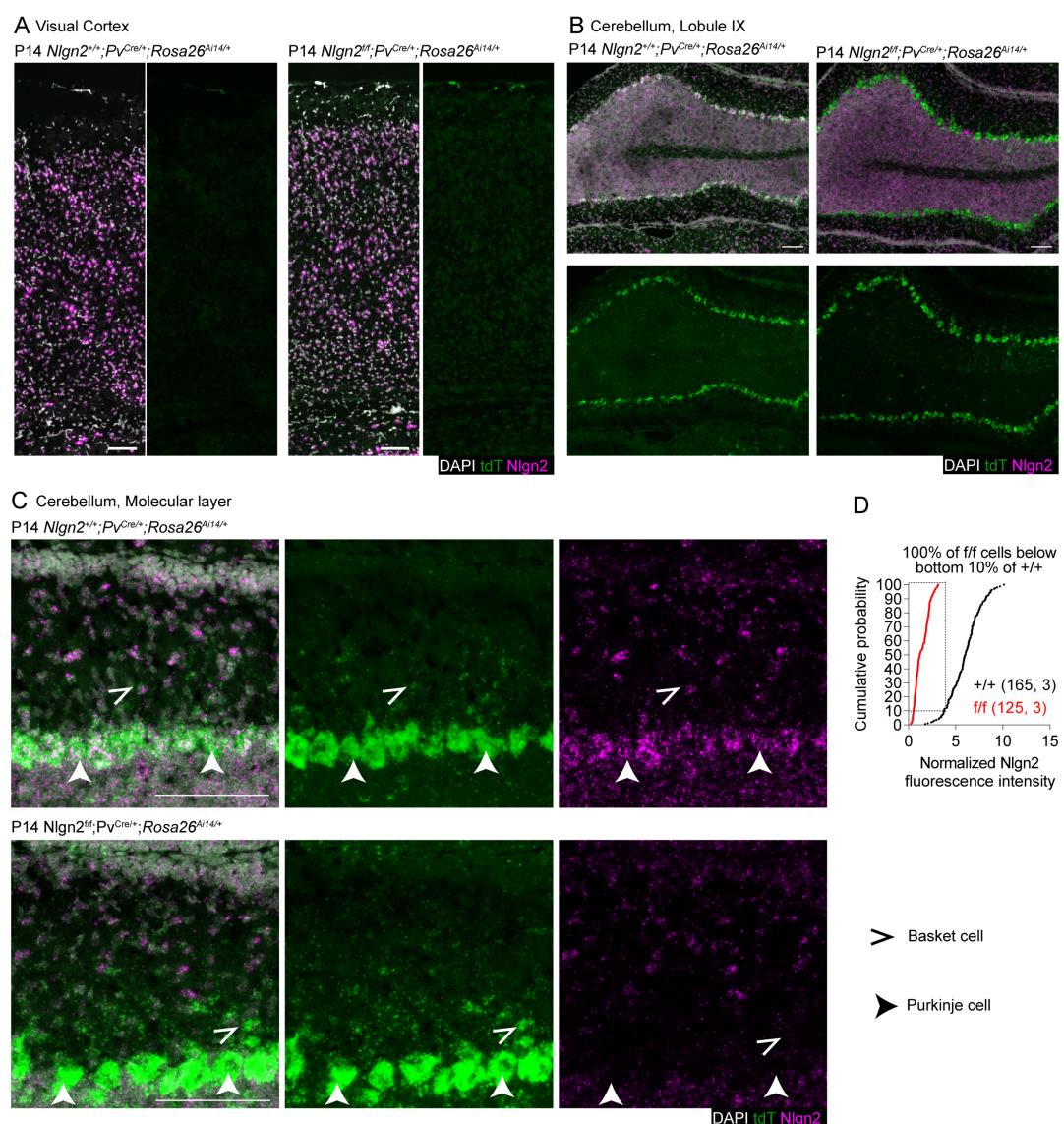
Supplemental Figure 1

1102

1103 **Supplemental Figure 1 (Related to Figure 1): *Nlgn2* mRNA is expressed in Sst, Vip, and Pv**

1104 interneurons (A) Genomic structure of the *Nlgn2* locus in mouse with LoxP sites flanking the

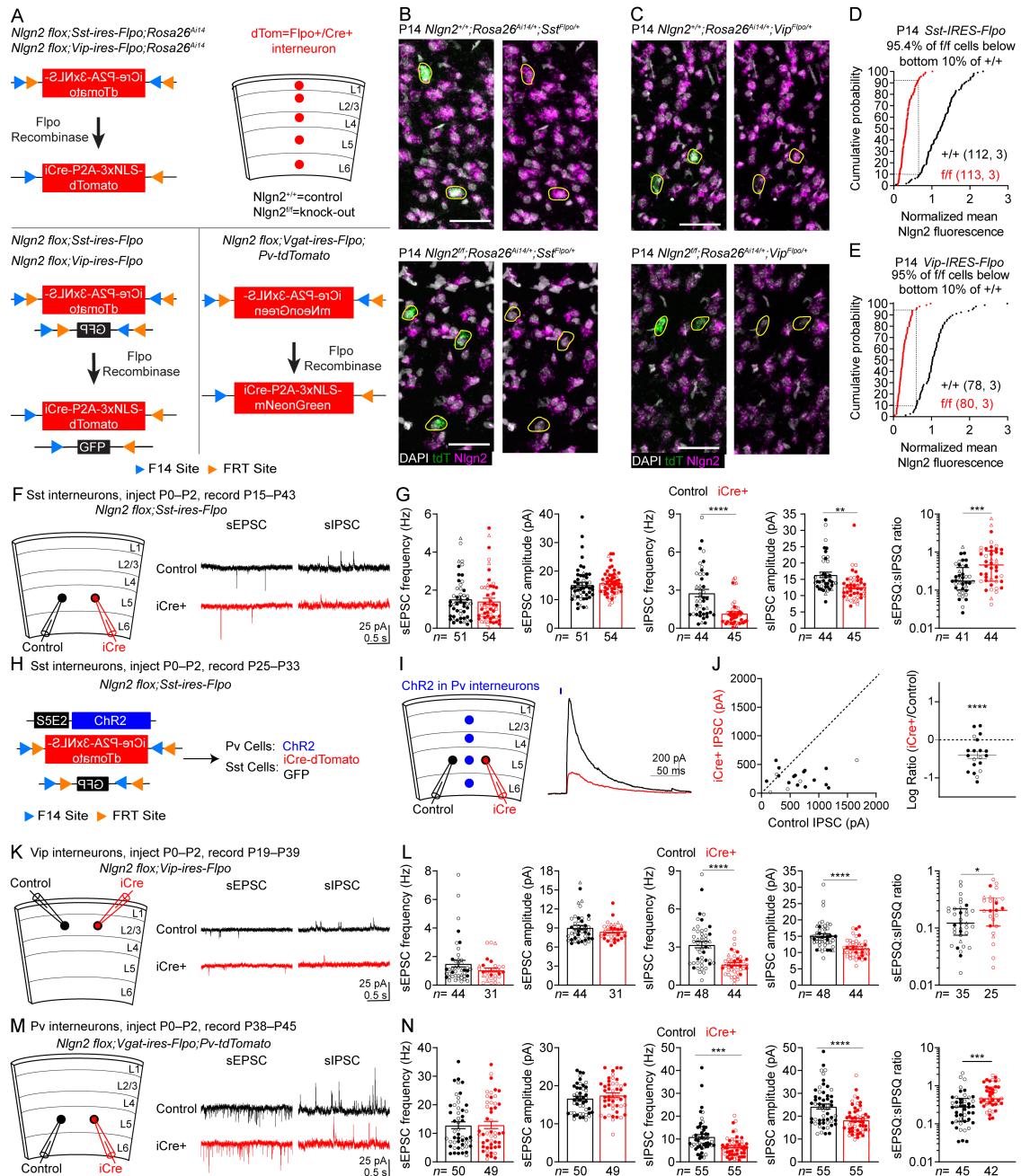
1105 region that is deleted following Cre mediated recombination. The area recognized by the *Nlgn2*


1106 ISH probe is also indicated. (B) Representative images of DFISH showing *Nlgn2* (magenta) and

1107 DAPI (gray) from 8-week-old *Nlgn2*^{+/+} (left) and *Nlgn2*^{-/-} (right) mice. (C) Summary data of the

1108 *Nlgn2* levels of layer 2/3 neurons. (D) Representative images of DFISH showing *Nlgn2*

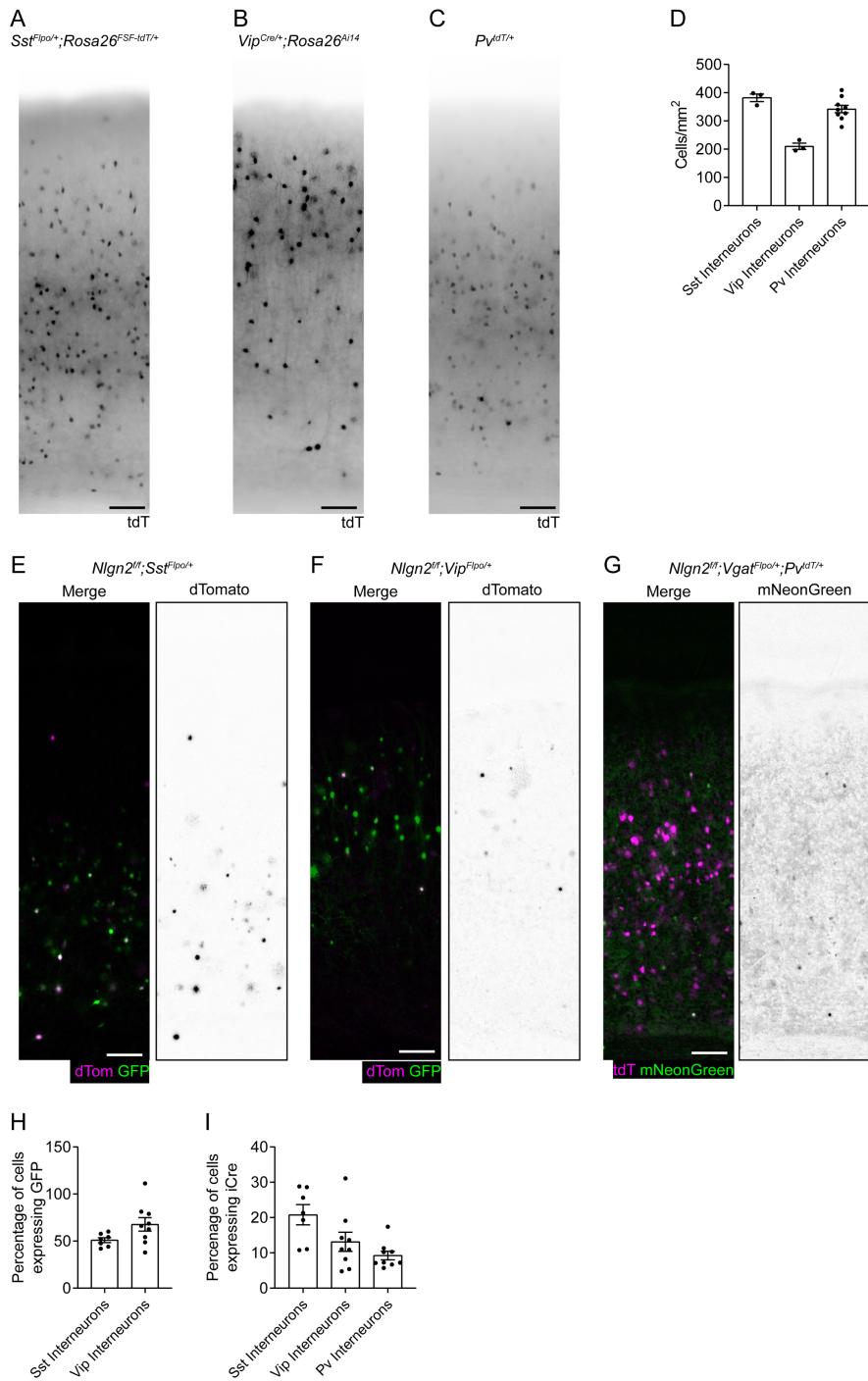
1109 (magenta), *Sst* (green), and DAPI (gray) in the visual cortex of 8-week-old *Nlgn2*^{+/+} (left) and
1110 *Nlgn2*^{-/-} (right) mice. Yellow outlines represent *Sst* positive cells. (E) Cumulative frequencies of
1111 *Sst* positive cells as a function of their *Nlgn2* levels. Dashed lines indicate that 77.7% of *Sst*
1112 positive cells from *Nlgn2*^{+/+} mice are greater than all *Sst* positive cells in *Nlgn2*^{-/-} mice. (F,G) As
1113 in (C,D), but for *Vip* positive cells. (H,I) As in (D,E), but for *Pv* positive cells. *N* represents # of
1114 cells followed by # of animals. Bar graph is mean \pm S.E.M. ****, p<0.0001. Scale bar is 50 μ m.
1115


Supplemental Figure 2

1116

1117 **Supplemental Figure 2 (Related to Figure 1):** At P14 Pv-Cre is not expressed in visual cortex
1118 but efficiently deletes *Nlgn2* in cerebellum **(A)** Representative images of DFISH showing *Nlgn2*
1119 (magenta), *tdTomato* (green), and DAPI (gray) in the visual cortex of P14
1120 *Nlgn2*^{+/+};Pv^{Cre/+};Rosa26^{AI14/+} (left) and *Nlgn2*^{ff};Pv^{Cre/+};Rosa26^{AI14/+} (right) mice. **(B)** As in (A)
1121 but for lobule IX of the cerebellum. **(C)** As in (A), but for the molecular layer of lobule IX of the
1122 cerebellum. High magnification images of the molecular layer of lobule IX of the cerebellum.
1123 Closed arrowhead indicates Purkinje cells and open arrowhead indicates basket cells. **(D)**
1124 Cumulative frequencies of *tdTomato* positive Purkinje cells as a function of their *Nlgn2* levels.
1125 Dashed line indicates that 100% of *tdTomato* positive cells in *Nlgn2*^{ff};Pv^{Cre/+};Rosa26^{AI14/+} mice
1126 are within the bottom 10% of *tdTomato* positive purkinje cells from
1127 *Nlgn2*^{+/+};Pv^{Cre/+};Rosa26^{AI14/+} mice. *N* represents # of cells followed by # of animals. Scale bar is
1128 100 μ m.

Figure 2

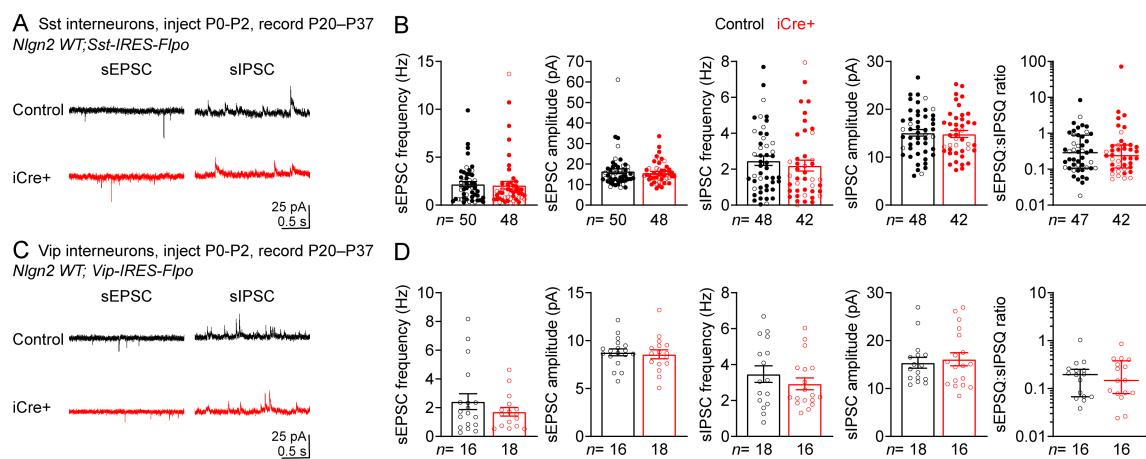

1129

1130 **Figure 2:** Early deletion of *Nlgn2* reduces inhibition onto interneurons. (A) Schematic showing
1131 viral vectors and experimental strategy. (Top) Genotypes, viral vectors and illustration
1132 demonstrating experimental design for dFISH experiments. (Bottom left) Genotypes and viral

1133 vectors used for recordings of Sst and Vip positive interneurons. (Bottom right) Genotypes and
1134 viral vectors used for recordings of Pv positive interneurons. **(B)** Representative images of
1135 DFISH showing *Nlgn2* (magenta), *tdTomato* (green), and DAPI (white) in the visual cortex of
1136 P14 *Nlgn2*^{+/+}; *Rosa26*^{Ai14/+}; *Sst*^{Flpo/+} and *Nlgn*^{ff}; *Rosa26*^{Ai14/+}; *Sst*^{Flpo/+} mice injected with FFLEX-
1137 iCre-P2A-3xNLS-dTomato at P0–P2. Yellow outlines represent *tdTomato* positive cells. **(C)** As
1138 in (B), but for *Nlgn2*^{+/+}; *Rosa26*^{Ai14/+}; *Vip*^{Flpo/+} and *Nlgn*^{ff}; *Rosa26*^{Ai14/+}; *Vip*^{Flpo/+} mice. **(D)**
1139 Cumulative frequencies of *tdTomato* positive cells as a function of their normalized *Nlgn2*
1140 levels. Dashed lines indicate that the *Nlgn2* levels of 95.4% of *tdTomato* positive cells from the
1141 P14 *Nlgn2*^{ff}; *Sst*^{Flpo/+}; *Rosa26*^{Ai14/+} are within the bottom 10% of *tdTomato* positive cells from
1142 *Nlgn2*^{+/+}; *Sst*^{Flpo/+}; *Rosa26*^{Ai14/+}. **(E)** As in (D), but for P14 *Nlgn2*^{+/+}; *Rosa26*^{Ai14/+}; *Vip*^{Flpo/+} and
1143 *Nlgn*^{ff}; *Rosa26*^{Ai14/+}; *Vip*^{Flpo/+} mice. **(F)** (Left) Schematic illustrating experimental setup for
1144 recording of Sst interneurons following early deletion. (Right) Representative traces of sEPSCs
1145 (left) and sIPSCs (right) from a control (top) and iCre+ (bottom) Sst cell in layer 5 of visual
1146 cortex from *Nlgn2*^{ff}; *Sst*^{Flpo/+} mice injected at P0–P2 with FFLEX-iCre-P2A-dTomato and
1147 FFLEX-GFP. **(G)** Summary data of the frequency and amplitude of sEPSCs, sIPSCs, and the
1148 sEPSQ:sIPSQ ratio between control and iCre+ cells in *Nlgn2*^{ff}; *Sst*^{Flpo/+} mice following P0–P2
1149 injection. **(H)** Schematic showing viral vectors and genotypes for recording Pv evoked IPSCs
1150 onto control and iCre+ Sst interneurons. **(I)** (Left) Schematic illustrating experimental setup for
1151 recording Pv evoked IPSCs onto control and iCre+ Sst interneurons. (Right) Representative trace
1152 of Pv evoked IPSC onto a control (black) or iCre+ (red) Sst interneuron from layer 5 of visual
1153 cortex from *Nlgn2*^{ff}; *Sst*^{Flpo/+} mice injected at P0–P2 with FFLEX-iCre-P2A-3xNLS-dTomato,
1154 FFLEX-GFP, and S5E2-ChR2. **(J)** (Left) Summary data of the amplitude of Pv evoked IPSCs
1155 onto pairs of control and iCre+ Sst cells from *Nlgn2*^{ff}; *Sst*^{Flpo/+} mice injected at P0–P2. (Right)

1156 Summary data of the log ratio of the amplitude of Pv evoked IPSCs onto pairs of control and
1157 iCre+ Sst cells *Nlgn2^{ff};Sst^{Flpo/+}* mice injected at P0–P2. (K,L) As in (F,G) but for Vip cells in
1158 layer 2/3 from *Nlgn2^{ff};Vip^{Flpo/+}* mice. (M,N) As in (F,G) but for Pv cells in layer 5 from
1159 *Nlgn2^{ff};Vgat^{Flpo/+};Pv^{TdT/+}* mice. N number represents # of cells followed by number of animals
1160 for cumulative frequency graphs or # of cells for physiology summary data. Each filled (male)
1161 or open (female) circle represents one neuron. Open triangle indicates sex unknown. Bar graphs
1162 are mean \pm S.E.M. except for sEPSC:sIPSC ratio which is median \pm interquartile range. *,
1163 p<0.05; **, p<0.005; ***, p<0.0005; ****, p<0.0001. Scale bar is 50 μ m.
1164

Supplemental Figure 3

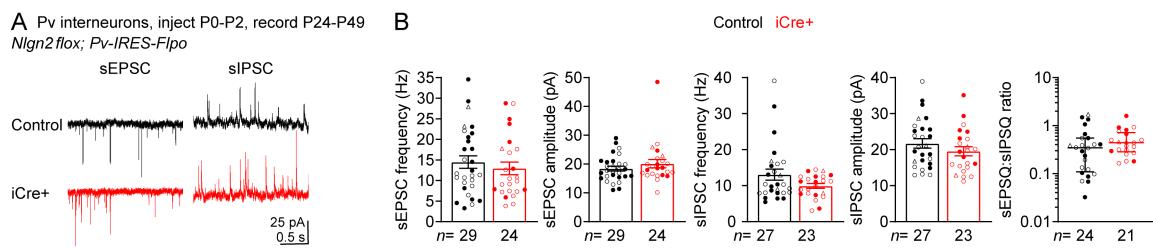


1165

1166 **Supplemental Figure 3 (Related to Figure 2):** Determination of viral titer needed to infect 10%
 1167 of each interneuron subtype with iCre. (A) Representative image of a 300 μ m live section from
 1168 visual cortex of a *Sst*^{Flpo/+}; *Rosa26*^{FSF-tdT/+} animal showing tdTomato signal in Sst interneurons.

1169 (B) As in (A), but for Vip interneurons in a *Vip*^{Cre/+}; *Rosa26*^{Ai14/+} animal. (C) As in (A), but for
1170 Pv interneurons in a *Pv*^{tdT/+} animal. (D) Summary data of the number of tdT cells/mm² for Sst
1171 interneurons in *Sst*^{Flpo/+}; *Rosa26*^{FSF-tdT/+} animals, Vip interneurons in *Vip*^{Cre/+}; *Rosa26*^{Ai14/+}
1172 animals, and Pv interneurons in *Pv*^{tdT/+} animals. (E) Representative image of a 300 μ m live
1173 section from visual cortex of a *Nlgn2*^{fl/fl}; *Sst*^{Flpo/+} animal injected at P0–P2 with AAV9-FRT-
1174 FLEX-iCre-P2A-3xNLS-dTomato and AAV9-FRT-FLEX-GFP showing GFP (green) and
1175 dTomato (magenta) merged (left) and dTomato alone (right). (F) As in (E), but for a
1176 *Nlgn2*^{fl/fl}; *Vip*^{Flpo/+} animal. (G) Representative image of a 300 μ m live section from visual cortex of
1177 a *Nlgn2*^{fl/fl}; *Vgat*^{Flpo/+}; *Pvt*^{tdT/+} animal injected at P0–P2 with AAV9-FRT-FLEX-iCre-P2A-
1178 3xNLS-mNeonGreen. (H) Summary data of the percentage of Sst or Vip interneurons expressing
1179 GFP following viral injection. (I) Summary data of the percentage of Sst, Vip, or Pv interneurons
1180 expressing iCre following viral injection. Bar graph is mean \pm S.E.M. Each dot represents the
1181 average number from 2–5 sections for one animal. Scale bar is 100 μ m.
1182

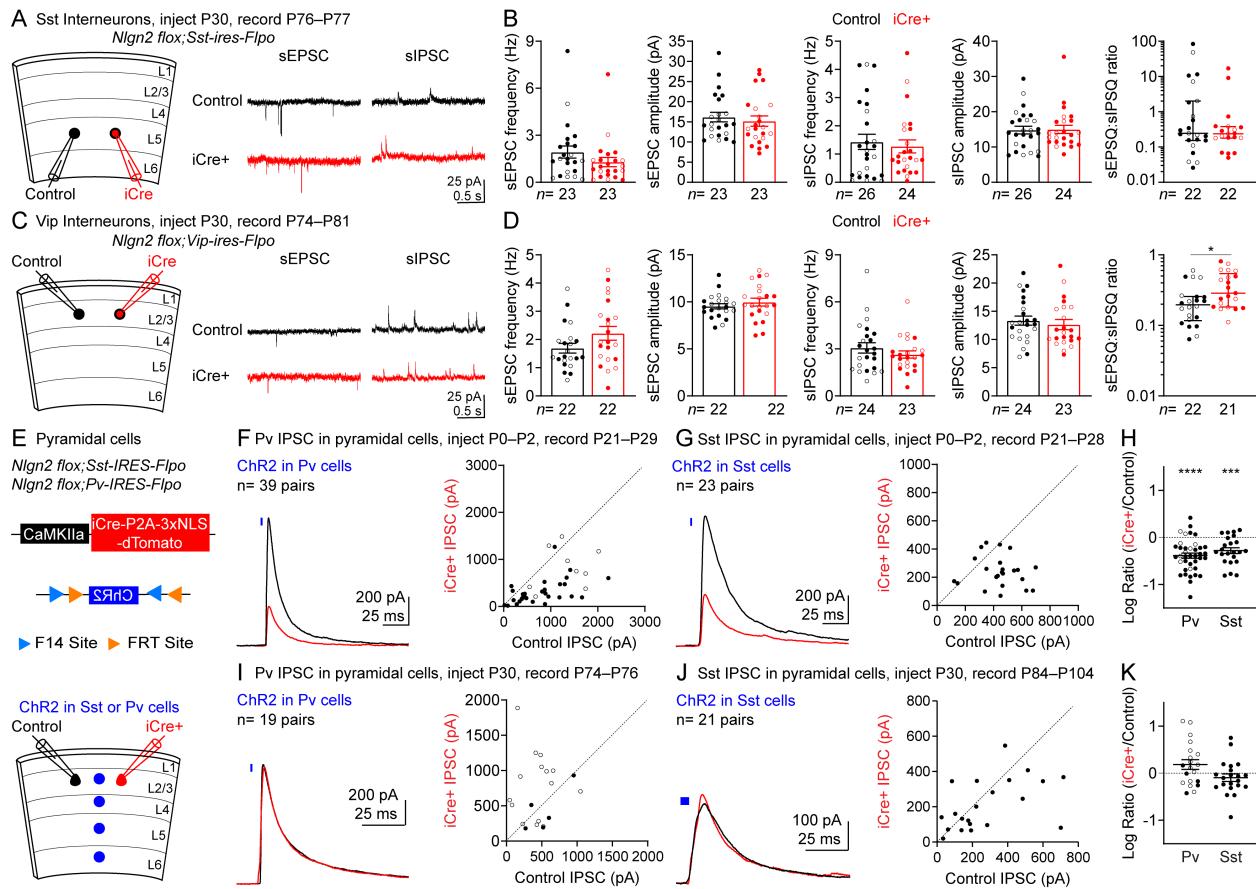
Supplemental Figure 4



1183 1184 **Supplemental Figure 4 (Related to Figure 2):** Flpo dependent Cre virus has no effect on
1185 inhibition onto Sst and VIP cells in *Nlgn2*^{+/+} mice. (A) Representative trace of sEPSCs (left) and

1186 sIPSCs (right) from control (top) and iCre+ (bottom) Sst cells from *Nlgn2*^{+/+}; *Sst*^{Flpo/+} mice
1187 injected with AAV9-FRT-FLEX-iCre-P2A-3xNLS-dTomato and AAV9-FRT-FLEX-GFP at P0–
1188 P2. **(B)** Summary data of frequency and amplitude of sEPSCs, sIPSCs, and sEPSQ:sIPSQ ratio
1189 between control and iCre+ cells in *Nlgn2*^{+/+}; *Sst*^{Flpo/+} mice injected at P0–P2. **(C,D)** As in (A,B),
1190 but for VIP cells from *Nlgn2*^{+/+}; *Vip*^{Flpo/+} mice. Each filled (male) or open (female) circle
1191 represents one neuron. Bar graphs are mean ± S.E.M. except for sEPSQ:sIPSQ ratio which is
1192 median ± interquartile range.

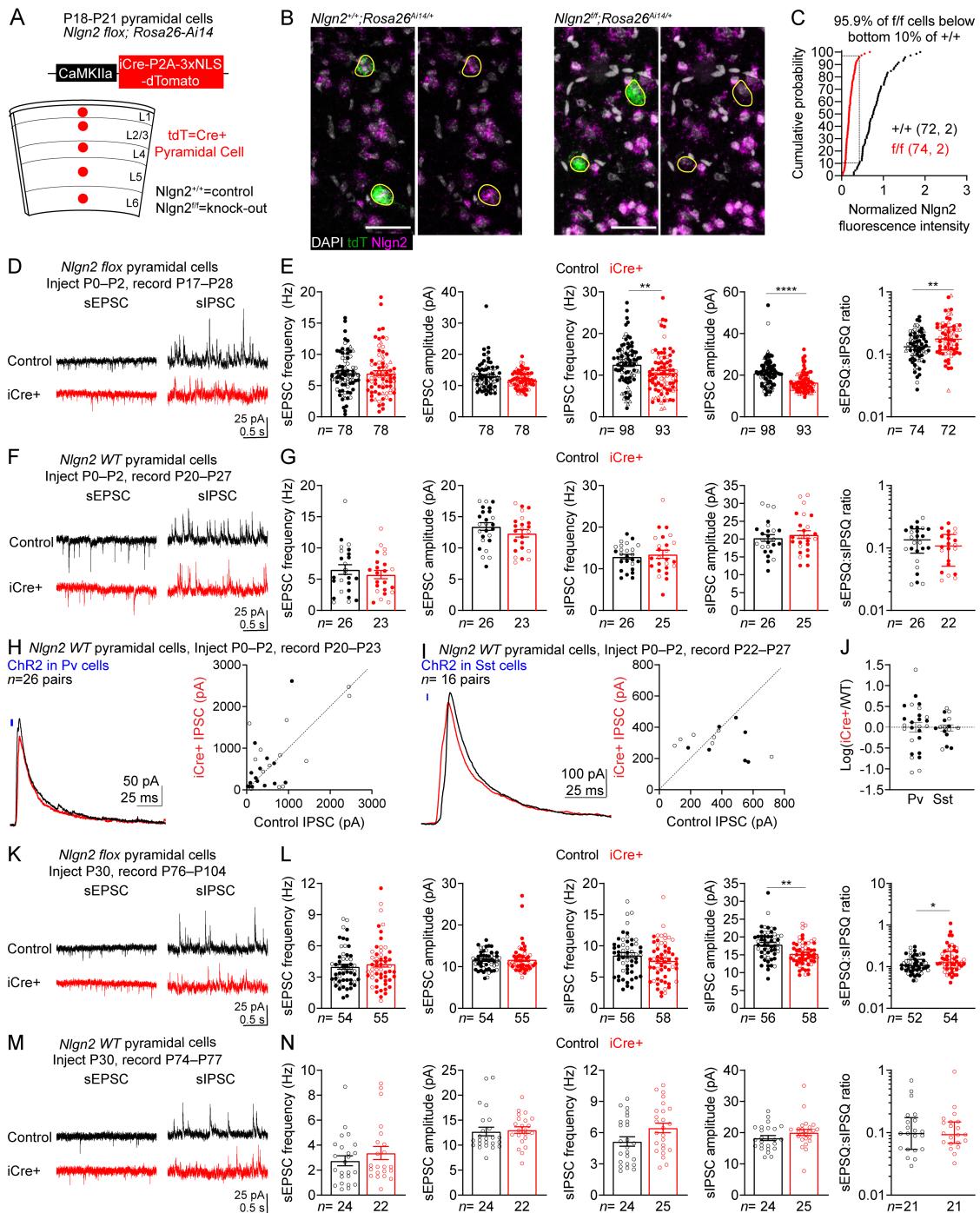
1193


Supplemental Figure 5

1194

1195 **Supplemental Figure 5 (Related to Figure 2):** Targeting Pv cells using *Pv*-IRES-*Flpo* and *Flpo*
1196 dependent Cre virus has no effect on inhibition onto Pv cells. **(A)** Representative trace of sEPSCs
1197 (left) and sIPSCs (right) from control (top) and iCre+ (bottom) Pv cells from *Nlgn2*^{fl/fl}; *Pv*^{Flpo/+}
1198 mice injected with AAV9-FRT-FLEX-iCre-P2A-3xNLS-dTomato and AAV9-FRT-FLEX-GFP
1199 at P0–P2. **(B)** Summary data of frequency and amplitude of sEPSCs, sIPSCs, and sEPSQ:sIPSQ
1200 ratio between control and iCre+ cells in *Nlgn2*^{fl/fl}; *Pv*^{Flpo/+} mice injected at P0–P2. Each filled
1201 (male) or open (female) circle represents one neuron. Bar graphs are mean ± S.E.M. except for
1202 sEPSQ:sIPSQ ratio which is median ± interquartile range.

Figure 3

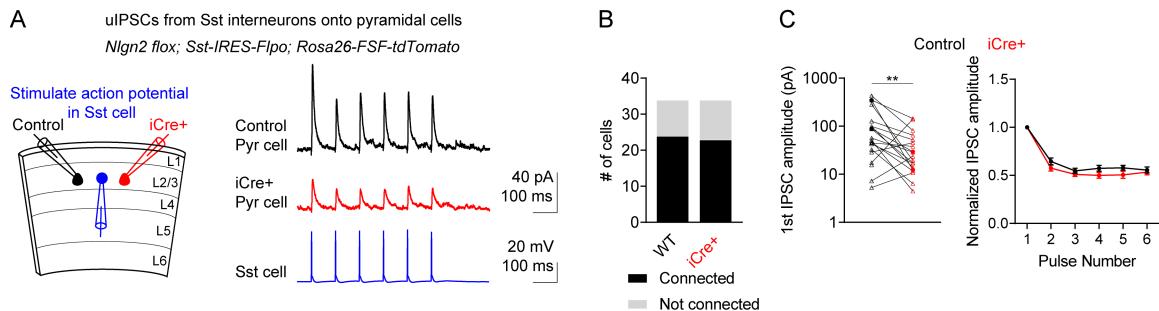


1203

1204 **Figure 3:** Adult deletion of *Nlgn2* has no effect on inhibition onto interneurons or pyramidal
1205 cells. **(A)** (Left) Schematic illustrating experimental setup for recording of Sst interneurons
1206 following adult deletion. (Right) Representative traces of sEPSCs (left) and sIPSCs (right) from
1207 a control (top) and iCre+ (bottom) Sst cell in layer 5 of visual cortex from *Nlgn2^{f/f};Sst^{Flopo/+}* mice
1208 injected at P30 with FFLEX-iCre-P2A-3xNLS-dTomato and FFLEX-GFP. **(B)** Summary data of
1209 the frequency and amplitude of sEPSCs, sIPSCs, and the sEPSC:sIPSC ratio between control
1210 and iCre+ cells in *Nlgn2^{f/f};Sst^{Flopo/+}* mice following P30 injection. **(C,D)** As in (A,B), but for
1211 Vip cells in layer 2/3 from *Nlgn2^{f/f};Vip^{Flopo/+}* mice. **(E)** Schematic illustrating genotypes and viral
1212 vectors used for recordings of Pv and Sst evoked IPSCs onto pyramidal cells (top) and
1213 experimental strategy (bottom). **(F)** (Left) Representative trace of Pv evoked IPSC onto a control

1214 (black) or iCre+ (red) layer 2/3 pyramidal cell from *Nlgn2^{fl/fl};Pv^{Flpo/+}* mice following P0–P2
1215 injection of CaMKIIa-iCre-P2A-3xNLS-dTomato and FFLEX-ChR2. (Right) Summary data of
1216 the amplitude of Pv evoked IPSCs onto pairs of control and iCre+ layer 2/3 pyramidal cells from
1217 *Nlgn2^{fl/fl};Pv^{Flpo/+}* mice following P0–P2 injection. (G) As in (F) but for Sst evoked IPSCs from
1218 *Nlgn2^{fl/fl};Sst^{Flpo/+}* mice. (H) Summary data of the log ratio of the amplitude of Pv and Sst evoked
1219 IPSCs onto pairs of control and iCre+ layer 2/3 pyramidal cells. (I–K) As in (F–H), but following
1220 P30 injection of CaMKIIa-iCre-P2A-3xNLS-dTomato and FFLEX-ChR2. Each filled (male) or
1221 open (female) circle represents one neuron. Bar graphs are mean ± S.E.M. except for
1222 sEPSC:sIPSC ratio which is median ± interquartile range. *, p<0.05; **, p<0.0005; ***,
1223 p<0.0001.

Supplemental Figure 6

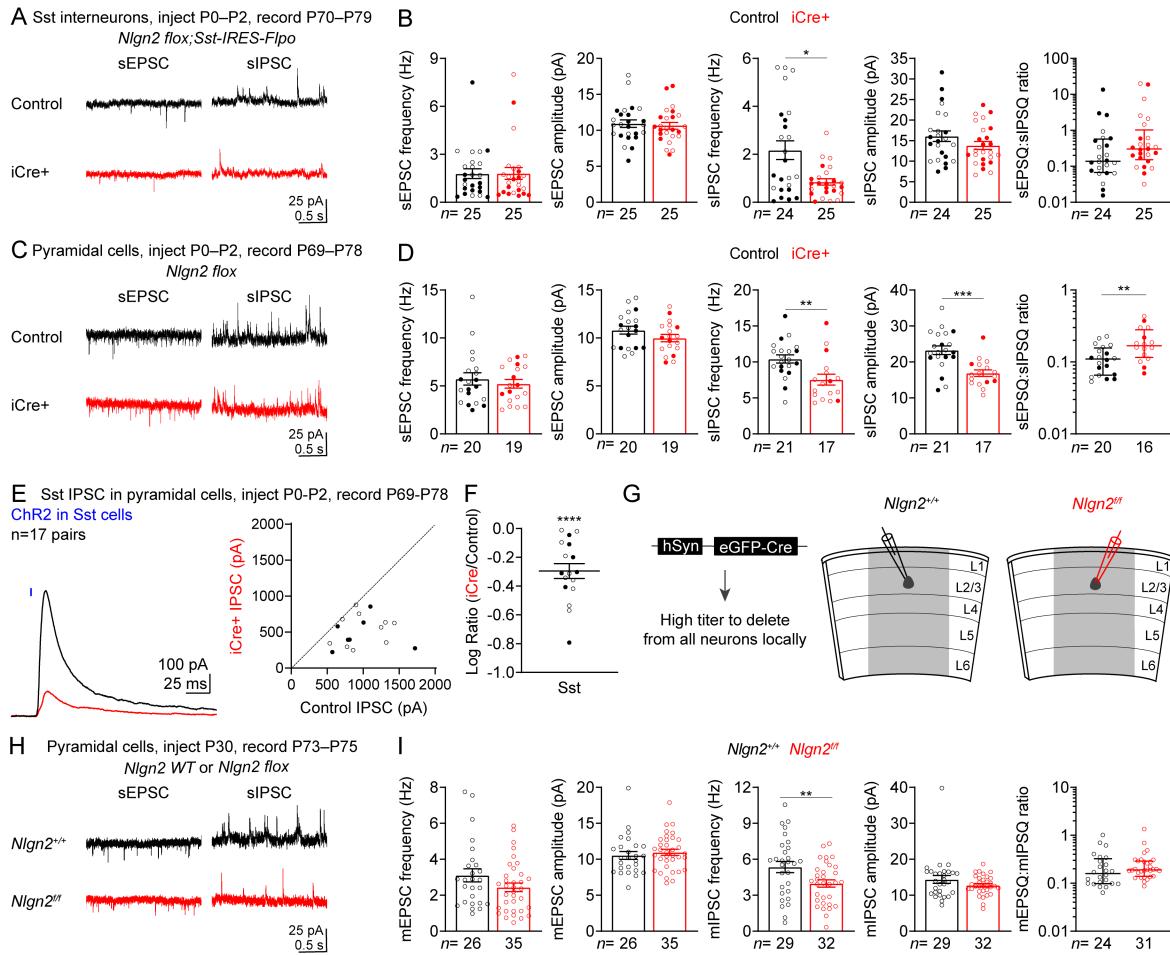


1224

1225 **Supplemental Figure 6 (Related to Figure 3):** Early deletion of *Nlgn2* in pyramidal cells
1226 disrupts inhibition but adult deletion has no affect. **(A)** Schematic illustrating genotypes, viral
1227 vectors, and experimental design for DFISH of *Nlgn2* in pyramidal cells. **(B)** Representative

1228 images of DFISH showing *Nlgn2* (magenta), *tdTomato* (green), and DAPI (gray) from P18–P21
1229 *Nlgn2^{ff};Rosa26^{Ai14/+}* and *Nlgn2^{+/+};Rosa26^{Ai14/+}* mice injected at P0–P2 with
1230 CaMKIIa-iCre-P2A-3xNLS-dTomato. Yellow outlines represent *tdTomato* positive cells. (C)
1231 Cumulative frequencies of *tdTomato* positive cells as a function of their *Nlgn2* levels. Dashed
1232 lines indicate that 95.9% of *tdTomato* positive cells from *Nlgn2^{ff};Rosa26^{Ai14/+}* mice are within
1233 the bottom 10% of *tdTomato* positive cells from *Nlgn2^{+/+};Rosa26^{Ai14/+}* mice. (D) Representative
1234 trace of sEPSCs (left) and sIPSCs (right) from control (top) and iCre+ (bottom) layer 2/3
1235 pyramidal cells from *Nlgn2^{ff}* mice injected at P0–P2 with AAV9-CaMKIIa-iCre-P2A-3xNLS-
1236 dTomato. (E) Summary data of frequency and amplitude of sEPSCs, sIPSCs, and sEPSQ:sIPSQ
1237 ratio between control and iCre+ layer 2/3 pyramidal cells in *Nlgn2^{ff}* mice injected at P0–P2.
1238 (F,G) As in (D,E), but for *Nlgn2^{+/+}* mice. (H) (Left) Representative trace of a Pv evoked IPSC
1239 onto a control (black) and iCre+ (red) layer 2/3 pyramidal cell in *Nlgn2^{+/+};Pv^{Flop/+}* mice injected
1240 with AAV9-CaMKIIa-iCre-P2A-3xNLS-dTomato and AAV9-FRT-FLEX-ChR2. (Right)
1241 Summary data of the amplitude of Pv evoked IPSCs onto pairs of control and iCre+ layer 2/3
1242 pyramidal cells from *Nlgn2^{+/+};Pv^{Flop/+}* mice following P0–P2 injection. (I) As in (H) but for Sst
1243 evoked IPSCs from *Nlgn2^{+/+};Sst^{Flop/+}* mice. (J) Summary data of the log ratio of the amplitude of
1244 Pv and Sst evoked IPSCs onto pairs of control and iCre+ layer 2/3 pyramidal cells. (K,L) As in
1245 (D,E) but following P30 injection of CaMKIIa-iCre-P2A-3xNLS-dTomato. (M,N) As in (K,L),
1246 but for *Nlgn2^{+/+}* mice. N number represents # of cells followed by number of animals for
1247 cumulative frequency graphs or # of cells for physiology summary data. Each filled (male) or
1248 open (female) circle represents one neuron. Open triangle indicates sex unknown. Bar graphs are
1249 mean \pm S.E.M. except for sEPSQ:sIPSQ ratio which is median \pm interquartile range. *, p<0.05;
1250 **, p<0.005; ****, p<0.0001. Scale bar is 50 μ m.

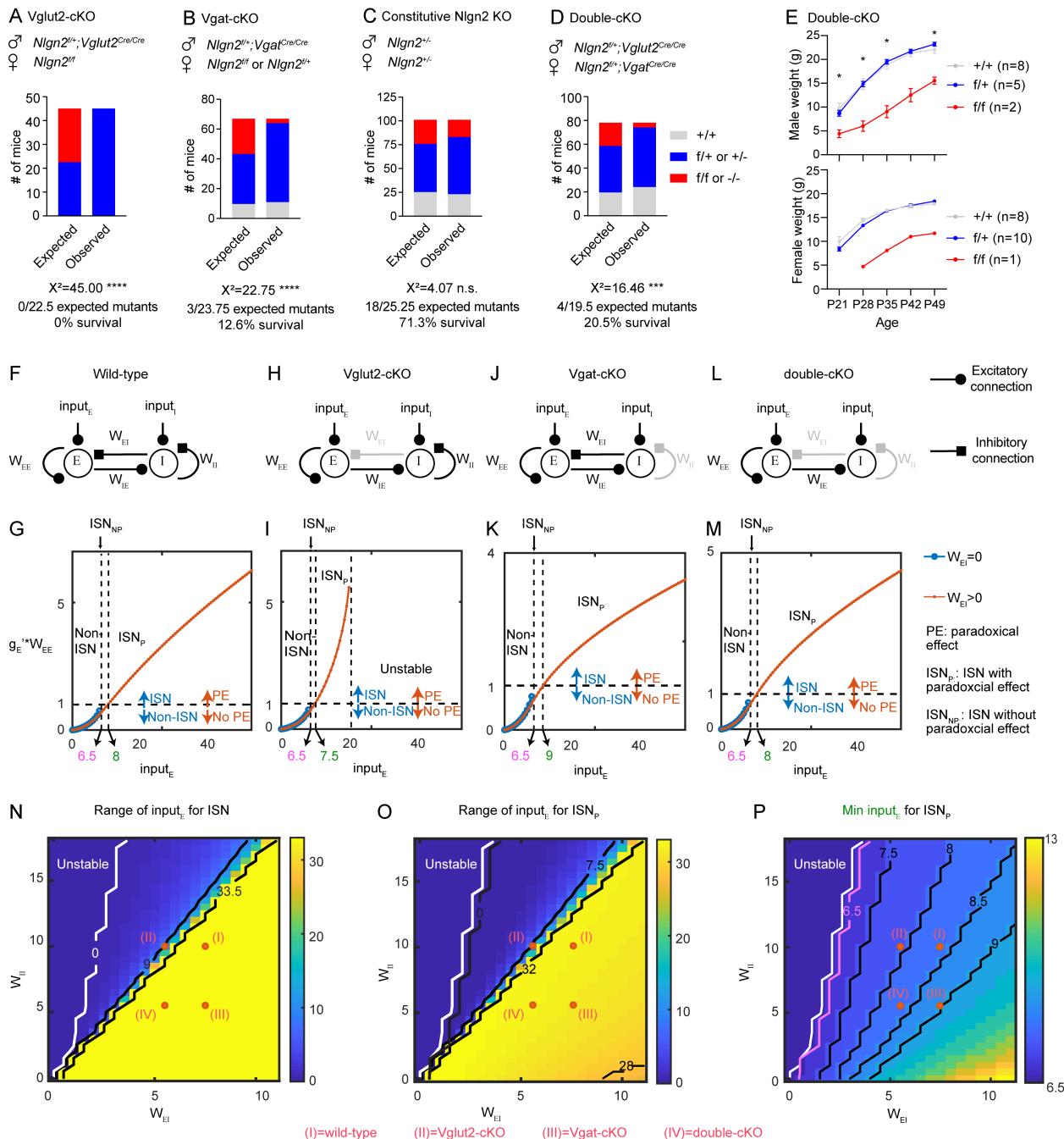
Supplemental Figure 7



1251

1252 **Supplemental Figure 7 (Related to Figure 3):** Unitary IPSC between Sst cells and layer 2/3

1253 pyramidal cells are reduced following deletion of *Nlgn2*. **(A)** (Left) Schematic illustrating
1254 experimental design for recording unitary IPSC from Sst cell onto pair of control and iCre+ layer
1255 2/3 pyramidal cells. (Right) Representative trace of Sst evoked IPSC onto control (black) and
1256 iCre+ (red) layer 2/3 pyramidal cells from *Nlgn2^{fl/fl}; Sst^{Flpo/+}; Rosa26^{FSF-TdT/+}* mice following P0–
1257 P2 injection of AAV9-CaMKIIa-iCre-P2A-3xNLS-mNeonGreen. Blue trace indicates action
1258 potentials evoked by stimulating Sst cell. **(B)** Summary data of the rate of connectivity between
1259 control and iCre+ pyramidal cells and nearby Sst cells. **(C)** (Left) Summary data of the amplitude
1260 of the first IPSC evoked by stimulating Sst cell between control and iCre+ pyramidal cells. Lines
1261 connect pairs of control and iCre+ cells. (Right) Summary data of the amplitude of the IPSC
1262 evoked by each stimulation of the Sst cell normalized to the amplitude of the first IPSC evoked
1263 for a given cell between control and iCre+ pyramidal cells. Each filled (male) or open (female)
1264 circle represents one neuron. Open triangle indicates sex unknown. XY plot is mean ± S.E.M.
1265 **, p<0.005.


Supplemental Figure 8

1267 **Supplemental Figure 8 (Related to Figure 3):** Recording age does not impact *Nlgn2* mediated
1268 decrease in inhibition but density of *Nlgn2* knock-out cells does. (A) Representative traces of
1269 sEPSCs (left) and sIPSCs (right) from control and iCre+ Sst cells from *Nlgn2*^{flox}; *Sst*^{Flopo/+} mice
1270 injected at P0–P2 with AAV9-FRT-FLEX-iCre-P2A-3xNLS-dTomato and AAV9-FRT-FLEX-
1271 GFP and recorded at ~10 weeks of age. (B) Summary data of frequency and amplitude of
1272 sEPSCs, sIPSCs, and sEPSC:sIPSC ratio between control and iCre+ Sst cells from
1273 *Nlgn2*^{flox}; *Sst*^{Flopo/+} mice injected at P0–P2 and recorded at ~10 weeks of age. (C,D) As in (A,B), but
1274 for layer 2/3 pyramidal cells from *Nlgn2*^{flox}; *Sst*^{Flopo/+} mice injected at P0–P2 with AAV9-CaMKIIa-
1275 iCre-P2A-3xNLS-dTomato and FFLEX-ChR2 and recorded at ~10 weeks of age. (E) (Left)

1276 Representative trace of an Sst evoked IPSC onto control (black) and iCre+ (red) layer 2/3
1277 pyramidal cells from *Nlgn2^{ff};Sst^{Flpo/+}* mice injected at P0–P2 with AAV9-CaMKIIa-iCre-P2A-
1278 3xNLS-dTomato and AAV9-FRT-FLEX-ChR2. (Right) Summary data of the amplitude of Sst
1279 evoked IPSCs onto pairs of control and iCre+ layer 2/3 pyramidal cells from
1280 *Nlgn2^{ff};Sst^{Flpo/+}* mice injected at P0–P2 and recorded at ~10 weeks of age. (F) Summary data of
1281 the log ratio of the amplitude of Sst evoked IPSCs from pairs of control and iCre+ layer 2/3
1282 pyramidal cells. (G) Schematic illustrating the viral vectors, genotypes, and experimental design
1283 for dense deletion of *Nlgn2* from all cells within local region of visual cortex. (H) Representative
1284 traces of sEPSCs (left) and sIPSCs (right) from layer 2/3 pyramidal cells of *Nlgn2^{+/+}* (black) or
1285 *Nlgn2^{ff}* (red) mice following P30 injection of hSyn-eGFP-Cre. (I) Summary data of frequency
1286 and amplitude of sEPSCs, sIPSCs, and sEPSQ:sIPSQ ratio between layer 2/3 pyramidal cells of
1287 *Nlgn2^{+/+}* and *Nlgn2^{ff}* mice. Each filled (male) or open (female) circle represents one neuron. Bar
1288 graphs are mean ± S.E.M. except for sEPSQ:sIPSQ ratio which is median ± interquartile range.
1289 *, p<0.05; **, p<0.005; ***, p<0.0005; ****, p<0.0001.

Figure 4

1290

1291 **Figure 4:** Conditional deletion of *Nlgn2* in excitatory or inhibitory neurons is lethal, potentially
1292 due to abnormal network dynamics. (A) Survival data for *Nlgn2 floxed; Vglut2-Cre* conditional
1293 knock-out of *Nlgn2* in excitatory neurons. X^2 value compares observed offspring to expected
1294 Mendelian ratio for the depicted breeding scheme. (B) As in (A), but for *Nlgn2 floxed; Vgat-Cre*

1295 conditional knock-out of *Nlgn2* in inhibitory neurons. **(C)** As in (A), but for constitutive *Nlgn2*
1296 knock-out in all cells. **(D)** As in (A), but for *Nlgn2 floxed*; *Vglut2-Cre*; *Vgat-Cre* double
1297 conditional knock-out of *Nlgn2* in excitatory and inhibitory neurons. **(E)** Summary data of the
1298 body weight for male and female double-cKO mice and controls from 3–7 weeks of age. Stars
1299 indicate results of two-way ANOVA with Tukey's multiple comparison test between *Nlgn2*^{+/+}
1300 and *Nlgn2*^{ff}. N number represents # of mice. n.s., p>0.05; **, p<0.005; ****, p<0.0001. **(F)-(J)**
1301 A computational model of an E-I network, which operates in different dynamical regimes
1302 depending on the external input to E-population ($input_E$). **(F)** Schematic of the computational
1303 model corresponding to four experimental scenarios explored in this paper (see **Methods** for
1304 additional details). The effect of conditional deletion of *Nlgn2* is mimicked by weakening the
1305 strength of the inhibitory connections (grey) onto specific types of cells. **(F1)** Wildtype. **(F2)**
1306 *Vglut2*-cKO, reduced W_{EI} . **(F3)** *Vgat*-cKO, reduced W_{II} . **(F4)** Double-cKO, reduced W_{EI} and
1307 W_{II} . **(G)** The operating regime of the network changes with the external input $input_E$ in a
1308 connectivity-dependent manner. Blue curve: value of $g'_E W_{EE}$ at the stationary state for the
1309 network without feedback inhibition ($W_{IE} = 0$) as a function of the external input $input_E$. The
1310 network without feedback inhibition is stable if and only if this term is smaller than 1. Red
1311 curve: same as the blue curve but for the network with feedback inhibition ($W_{IE} > 0$). The
1312 network exhibits a paradoxical effect if and only if this term is larger than 1. With increasing
1313 $input_E$, the blue curve vanishes, which implies a transition from non-ISN regime to ISN regime.
1314 With sufficiently large $input_E$, the paradoxical effect emerges (from ISN_{NP} to ISN_P) as the red
1315 curve crosses 1. In **(G2)**, with sufficiently large $input_E$, the red curve vanished, indicating the
1316 instability of the network with feedback inhibition. The input thresholds for the transition from
1317 non-ISN to ISN (magenta) and the emergence of paradoxical effect (green) are labeled. Note that

1318 the input threshold for an ISN regime is independent of W_{EI} and W_{II} . Amplitude of reduction in
1319 W_{EI} and W_{II} compared to the scenario of wild type: (I) 0%, 0%. (II) 26.7%, 0%. (III) 0%, 45%.
1320 (IV) 26.7%, 45%. **(H)** The range of $input_E$ allowing an ISN operating regime as a function of
1321 the strength of the inhibitory connections onto excitatory cells (W_{EI}) and inhibitory cells (W_{II}).
1322 Under the parameter regime on the left of the contour line at 0 (white), the network can never
1323 operate in an ISN regime since it loses stability from non-ISN regime with increasing $input_E$.
1324 Same area is marked by white in **(I)** and **(J)**. On the right of the contour line at 33.5, the network
1325 operates in an ISN regime under the maximal value of $input_E$ ($\max(input_E) = 40$) we
1326 explored. **(I)** The range of $input_E$ allowing a paradoxical effect as a function of W_{EI} and W_{II} . **(J)**,
1327 The threshold of $input_E$ to obtain a paradoxical effect as a function of W_{EI} and W_{II} . In **(H)-(J)**,
1328 the parameters for four examples shown in **(G)** are marked.

1329