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ABSTRACT16

Genome-wide recessive genetic screens using lentiviral CRISPR-guide RNA libraries are widely performed in mammalian cells
to functionally characterise individual genes and for the discovery of new anti-cancer therapeutic targets. As the effectiveness
of such powerful and precise tools for cancer pharmacogenomic is emerging, reference datasets for their quality assessment
and the validation of the underlying experimental pipelines are becoming increasingly necessary. Here, we provide a dataset,
an R package, and metrics for the assessment of novel experimental pipelines upon the execution of a single calibration viability
screen of the HT-29 human colon cancer cell line, employing a commercially available genome-wide library of single guide
RNAs: the Human Improved Genome-wide Knockout CRISPR (Sanger) Library. This dataset contains results from screening
the HT-29 in multiple batches with the Sanger library, and outcomes from several levels of quality control tests on the resulting
data. Data and accompanying R package can be used as a toolkit for benchmarking newly established experimental pipelines
for CRISPR-Cas9 recessive screens, via the generation of a final quality-control report.

17

Background & Summary18

Genome-wide CRISPR-Cas9 screens are being increasingly employed to explore various genotype–phenotype associations1,19

to identify genes whose function is essential for cell viability and proliferation (essential genes or fitness genes), and new20

potential targets for personalised anti-cancer therapies2–7. Several methods exist for assessing the quality of the datasets21

derived from these screens, evaluating sequence quality, single-guide RNA (sgRNA) count distributions and negatively selected22

genes8. In addition, comprehensive analyses have been performed to evaluate the level of reproducibility and integrability of23

large-scale cancer dependency datasets assembled from independently performed CRISPR-Cas9 screens9, 10. However, to date24

no easy-to-use toolkit is available to assist experimental scientists in validating newly established experimental pipelines for25

genome-wide CRISPR-Cas9 genetic screens using pooled sgRNA libraries.26

In Behan et al.7, we performed genome-wide CRISPR–Cas9 fitness screens of 339 cancer cell lines from the Cell Models27

Passport panel11. We analysed the data resulting from this screen with an ad-hoc computational pipeline designed to identify28

new anti-cancer therapeutic targets at a genome-scale. To this aim, we defined quality control assessment practices and applied29

stringent quality control criteria, finally retaining data for 324 cell lines. Via a target-prioritisation bioinformatics pipeline we30

predicted and validated a novel selective therapeutic target for cancers with microsatellite instability: the Werner syndrome31

ATP-dependent helicase7 (a finding simultaneously reported by other independent studies12–14). Results and datasets from this32

study are available for download on the Project Score data portal (https://score.depmap.sanger.ac.uk/). As part33

of this effort, we screened the HT-29 colorectal cancer cell line with the same experimental settings in multiple batches and34

dates, to assess robustness and reproducibility of our experimental pipeline.35

36

Here, we provide high-quality data from 30 screens of the HT-29 cell line yielding reliable gene essentiality profiles, and a37

Data Descriptor
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dedicated analytical tool implemented into an R package15. We propose the use of this data and software as a simple toolkit to38

benchmark and validate newly established genome-scale CRISPR-Cas9 knock-out screening pipelines employing the Human39

Improved Genome-wide Knockout CRISPR sgRNA library (the Sanger library, available on Addgene)16. By performing a40

single calibration screen of the HT-29 cell line with the Sanger library and settings described in Behan et al.7, experimental41

scientists can assess quality and reproducibility of their pipeline by processing resulting data with our R package, which42

implements a diversified set of metrics to compare new data with expected outcomes.43

Data and code, including the HT29benchmark R package, are available at https://score.depmap.sanger.ac.uk/44

downloads, FigShare17 and https://iorio-apps.fht.org/.45

Methods46

Reference dataset generation: CRISPR-Cas9 screens47

The protocol used for the generation of Cas9-expressing HT-29 cell lines and transduction of the Sanger library16 is described48

in Behan et al.7. Briefly, we employed the commercially available Sanger Library v1.0 (Addgene, 67989), encompassing49

90,709 sgRNAs targeting 18,009 genes, and a second version of the same library (Sanger library v1.1) including all the50

sgRNAs from v1.0 plus 1,004 non-targeting sgRNAs, and 5 additional sgRNAs targeting 1,876 selected genes encoding kinases,51

epigenetics-related proteins and pre-defined fitness genes, for a total of 10,381 additional sgRNAs. Cells were grown for52

14 days following transduction with the Sanger Library (v1.0 or v1.1) and selection, and then collected for DNA extraction.53

Illumina sequencing and sgRNA counting were performed as described in Tzelepis et al16. Experiment identifiers and settings54

are fully described in Supplementary Table 1, summarised in Table 1 and further detailed in the Extended data Fig. 2j of Behan55

et al.7.56

Overall, we performed 2 independent experiments with the Sanger v1.0 library and 4 experiments with the Sanger v1.1 library.57

These can be regarded as biological replicates of HT-29 CRISPR screens, while each experiment has been performed with a58

varying number of technical replicates (from 3 to 9) for a total of 30 individual screens, as indicated in Table 1.59

Reference dataset preprocessing60

We quantified and pre-processed post library-transduction and control library-plasmid sgRNA read counts as described in61

Behan et al.7, removing sgRNAs with less than 30 reads in the library-plasmid and keeping only sgRNAs in common between62

the two versions of the Sanger libraries. Subsequently, we normalised counts across replicates, scaling each sample by total63

number of reads. Post normalisation, we computed sgRNA log fold-changes () between individual replicate read counts and64

library-plasmid read counts for each experiment, keeping the replicates separated (Supplementary Fig. 1). These pre-processing65

steps were performed with the ccr.NormfoldChanges function of our previously published CRISPRcleanR R package18,66

using default parameters. Resulting data at all intermediate pre-processing levels are included in our reference dataset (available67

at: https://score.depmap.sanger.ac.uk/downloads and on FigShare17).68

Example of user provided data69

In order to demonstrate and test the diverse functionalities of the HT29benchmarkR package, we used (as an example of70

user-provided data) a lower quality screen of the HT-29 cell line, which was discarded from the analysis set in Behan et al.7, and71

encompasses six technical replicates of an HT-29 screen, obtained following the same screening protocol and the pre-processing72

steps described above.73

Receiver operating characteristic analysis74

To compute receiver operating characteristic (ROC) and precision/recall (PrRc) curves, required to perform high-level quality75

control assessment of CRISPR-cas9 screens, we used the HT29R.individualROC function of the HT29benchmarkR76

package, which implements the ROC_Curve and PrRc_Curve functions of the CRISPRcleanR package18 (version 2.2.1),77

which itself implements the roc and coords functions of the pROC open-source R package (version 1.18.0)19.78

Fitness-effect threshold79

Following the approach we presented in Pacini et al.10, we employed a rank-based method to compute a fitness effect80

significance threshold for each HT-29 reference screen, thus identifying a set of significantly depleted (or essential) genes at a81

fixed level of 5% false discovery rate (FDR), based on their depletion log fold-changes (LFCs). Specifically, in a given screen,82

we first ranked all genes in increasing order of average depletion LFCs (based on the differential abundance of their targeting83

sgRNAs at the end of the assay versus plasmid control). Then we scrolled the obtained ranked list from the most depleted gene84

to the least depleted one, and we considered the depletion LFC r of each encountered gene as a potential threshold, i.e. calling85

all genes with a depletion log fold-change < r significantly depleted.86

Among the significantly depleted genes at a candidate threshold r we focused only on those belonging to any of two prior87
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known sets of essential (E) and non-essential (N) genes2. Considering these two sets as reference positive and negative88

controls, respectively, allowed us to compute a positive predictive value (PPV), thus a false discovery rate (FDR = 1�89

PPV). We finally select as fitness-effect significance threshold the largest r, yielding an FDR  0.05. We implemented this90

procedure using the roc and coords functions of the pROC open-source R package (version 1.18.0)19 implemented in the91

HT29R.ROCanalysis and HT29R.FDRconsensus functions of the HT29benchmark R package.92

Data visualisation93

For data visualisation, we used R base graphics plus the following R libraries and packages (listed in alphabetical order), all94

available on bioconductor20 or on The Comprehensive R Archive Network (CRAN) repository: crayon version 1.5.1; enrichPlot95

version 1.14.2; GGally version 2.1.2; ggplot2 version 3.3.6; ggrastr version 1.0.1; grid version 4.1.0; gridExtra version 2.3;96

gtable version 0.3.0; RcolorBrewer version 1.1.3; VennDiagram version 1.7.3; vioplot version 0.3.721.97

Enrichment analysis98

We performed Gene Ontology (GO) enrichment analysis to identify biological processes over-represented in the list of HT-29-99

specific fitness genes. For this analysis, we used the org.Hs.eg.db R package (version 3.14.0) to retrieve the gene universe and100

the clusterProfiler R package (version 4.2.2) to perform the enrichment analysis of the HT-29-specific genes.101

Data Records102

The entire HT-29 reference dataset described here is available at different intermediate levels of pre-processing on the Project103

Score website https://score.depmap.sanger.ac.uk/downloads and on FigShare17 (https://figshare.104

com/articles/dataset/HT29_reference_dataset/20480544).105

The main data folder contains four subfolders:106

• 00_rawCounts assembled - Containing one tsv file for each HT-29 screen. Each file comprises the control library-plasmid107

sgRNA counts, as well as 14 days post-selection sgRNA counts across technical replicates;108

• 01_normalised_and_FCs - Containing Rdata files of normalised counts and depletion Log fold-changes (LFCs) for the109

six screens, plots of counts’ distribution pre- and post-normalisation, and boxplots showing LFCs’ distributions (PDF110

files);111

• 02_lowLev_QC - subdivided in the following four subfolders:112

1. FC_distr - log fold-change distribution plots for each of the six screens, in PDF;113

2. FC_Rep_corr - Between-replicates correlation plots for each of the six screens, in PDF;114

3. PrRc_curves_ind_rep - Plots of replicate Precision Recall (PrRc) curves quantifying essential/non-essential genes’115

classification performances across the six screens, in PDF;116

4. ROC_curves_ind_rep - Plots of replicate Receiver Operating Characteristic (ROC) curves quantifying essential/non-117

essential genes’ classification performances across the six screens, in PDF;118

• 03_HL_QC_Stats - Density plots of depletion LFCs for reference gene sets across the six experiments with quality119

control values, in PDF.120

Technical validation121

In the HT29benchmark package we have implemented a set of reference metrics for the assessment of quality and reproducibility122

of CRISPR screens. In particular, these metrics assess sgRNA LFC distributions, screen outcomes’ reproducibility across123

technical replicates, inter-screen similarity, and screens’ ability to detect known fitness genes among the depleted ones. Here,124

we report results from applying these metrics to technically validate our HT-29 reference dataset, as well as to showcase how125

our package can be used to evaluate an example of user-provided dataset. Furthermore, we report a set of reliable HT-29 specific126

fitness genes, which we have identified via a joint analysis of all the screens in our reference dataset. These genes are expected127

to be detected as significantly essential in any CRISPR screen of the HT-29 cell line performed with the experimental settings128

underlying the generation of our reference dataset7, and using the Sanger library16. All the technical validations presented here129

can be re-executed by a user on its own data through our HT29benchmarkR package.130
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HT29benchmarkR package overview131

The HT29benchmarkR package allows assessing quality and reproducibility of both reference and user-provided CRISPR132

screens of the HT-29 cell lines employing the Sanger library and the experimental settings described in Behan et al7. More133

in detail, the HT29benchmarkpackage implements several routines from our previously published CRISPRcleanR package18
134

wrapped in novel ad-hoc designed functions, providing a powerful and easy-to-use tool able to:135

• Download the HT-29 reference dataset;136

• Inspect and visualise sgRNAs depletion LFC distributions of each screen;137

• Evaluate intra-screen reproducibility of depletion LFCs at the sgRNA level, as well as at the gene level;138

• Evaluate inter-screen similarity of depletion LFCs at the sgRNA level, as well as at the gene-level;139

• Evaluate individual screen performances in correctly partitioning known essential (positive control) and known non-140

essential (negative control) genes, when considered as rank based classifiers based on gene depletion LFCs - through141

ROC and PrRc curves, as well as Recall at a fixed False Discovery Rate (FDR);142

• Visualise depletion LFC distributions for positive and negative control genes (as well as for their targeting sgRNAs) and143

compute Glass’s D scores quantifying the difference of their average depletion LFCs in the screen under consideration;144

• Derive HT-29-specific essential/non-essential genes, by analysing all screens in the reference dataset jointly and then to145

use these sets as positive/negative controls to estimate to what extent a user-provided screen meets expectations, based on146

the metrics listed above.147

Inspection of sgRNA log fold-change distributions148

The HT29R.FCdistributions function of the HT29benchmark package allows inspecting sgRNA LFC distributions and149

it computes statistics such as average range, median, interquartile range, 10th �90th percentile range, skewness and kurtosis.150

We have applied these metrics to the screens in our reference HT-29 dataset, observing that the LFC distributions and their151

parameters meet expected shape/values of a typical CRISPR-Cas9 recessive screen22, 23 (Fig. 1a).152

This function can also take in input a user-provided screen, allowing a comparison between reference and new data, which153

might unveil unexpected distribution shapes, outliers and other data inconsistencies, thus allowing a first exploratory assessment154

of a new screen (Fig. 1a).155

Intra-screen reproducibility assessment156

To assess screen replicates’ reproducibility, we defined a reliable measure of intra-screen similarity. In our previous work7, we157

observed that comparing replicates of the same screen at the level of absolute post-transduction sgRNA count profiles produces158

meaningless outcomes, due to individual sgRNA counts varying in different ranges, which are determined by their initial amount159

in the library-plasmid. This produces a strong Yule-Simpson effect24 resulting in a generally high background correlation160

between any pair of genome-wide sgRNA count profiles. As a result, when using this criterion as a reproducibility metric, pairs161

of replicates of the same screen are indistinguishable from two individual replicates of different screens (Supplementary Fig.162

2a).163

Due to only a small fraction of genes having an impact on cellular fitness upon CRISPR-Cas9 targeting, pairs of replicates from164

different screens tend to yield generally highly correlated dependency profiles even when considering sgRNA (or gene level)165

depletion LFCs (Supplementary Fig. 2bc) instead of absolute counts.166

For these reasons, in Behan et al.7 we followed an approach similar to that introduced in Ballouz et al.25 and identified a set167

of library-specific informative, and highly reproducible, sgRNAs pairs targeting the same gene and with an average pairwise168

correlation of their depletion LFC pattern greater than 0.6 across a set of 332 cell lines from Project Score7. This yielded a169

total of 838 unique informative sgRNAs. Per construction, the depletion patterns of these sgRNAs are both reproducible and170

informative, as they involve genes carrying an actual and sufficiently variable fitness signal.171

When considering these informative sgRNAs only, correlation scores from comparing replicates of the same screens were172

significantly higher than those from comparing pairs of replicates from different screens (Supplementary Fig. 2de) of the173

Project Score dataset. This allowed us to define a threshold value discriminating the two distributions both at sgRNA- and174

gene-level (R = 0.55 and R = 0.68, respectively), as defined in Behan et al.7 (Fig. 1bc), and to use this value as a required175

minimal quality while evaluating intra-screen reproducibility.176

The function HT29R.evaluateReps of the HT29benchmark package allows a robust assessment of input screens, producing177

plots like those shown in Fig. 1bc. All technical replicate pairs in the HT-29 reference screens exceed the reproducibility178

threshold defined in Behan et al.7 (blue circles in Fig. 1bc). Moreover, inter-screen reproducibility of user-provided data can179
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also be evaluated (magenta circles in Fig. 1bc), and results visualised and compared with those observed for the reference180

HT-29 dataset.181

Inter-screen similarity evaluation182

As a second measure of reproducibility, we evaluated results’ comparability across different screens. Thus, we considered183

genes (or sgRNAs) passing pre-processing filters in all the six HT-29 screens, computed LFCs’ profiles and averaged them184

across technical replicates, ending up with six different LFC profiles (one for each screen). We computed Pearson’s cor-185

relation scores comparing each pair of these profiles. This analysis is performed (and results can be visualised) by the186

HT29R.expSimilarity function included in our HT29benchmark package, which (as before) can be also used on a user-187

provided screen to assess its similarity, in terms of depletion LFCs, to the six HT-29 reference screens. For consistency with the188

reproducibility measure introduced in the previous section, this function allows considering the entire Sanger library or highly189

informative sgRNAs only, and to evaluate screens’ similarity both at the sgRNA and gene level (Fig. 2 and Supplementary Fig.190

3abc).191

Screens classification performances192

The ability to discriminate prior known essential and non-essential genes based on their depletion LFC observed in a CRISPR-193

Cas9 recessive screen is widely used to assess the quality of that screen3, 5, 7, 9, 10, 23, 26, 27.194

In particular, a good quality CRISPR screen will tend to detect genes involved in fundamental cellular processes, and other core195

fitness genes, as highly depleted invariantly across screened cell types. Robust reference sets of core essential and non-essential196

genes can be used as a gold standard to evaluate screens’ performances26, 28. The HT29R.PhenoIntensity function197

provides a measure of screen quality by leveraging the intensity of the phenotype exerted by inactivating these genes. To198

quantify this effect, in Behan et al.7 we computed Glass’s D score29 computed respectively for reference essential genes (i.e.,199

genes that reduce cellular viability/fitness upon inactivation3) (E) and (more stringently) for ribosomal protein genes30 (R)200

genes. These scores account for the difference between the average depletion LFCs of the genes in E (respectively R) and201

that of genes known to be non-essential3 (N) in relation to the standard deviation of the depletion LFCs of the genes in E202

(respectively R), as it follows:203

D(X) = |µ[LFC(x 2 X)]�µ[LFC(x 2 N)]|/s [LFC(x 2 X)],

where X 2 E,R, and µ and s indicate mean and standard deviation, respectively. The Ds for the screens in the reference dataset204

were consistently > 2 for ribosomal protein genes and > 1 for the other essential genes (with a Glass’s Delta > 0.8 widely205

considered an indicator of large effect size), thus indicative of generally good data quality (Fig. 3a and Supplementary Fig. 4).206

In addition, as depicted in Fig. 3ab, in this case applying this metric to the example user-provided screen yielded values within207

the expected ranges.208

209

In addition to the Glass’s Ds, we implemented and included in our package the HT29R.ROCanalysis function com-210

puting and visualising ROC and PrRc curves to evaluate the ability of each screen in correctly partitioning prior known211

essential (E) and non-essential (N) genes, when considered as a rank based classifier based on sgRNA- or gene-depletion-212

LFCs (as explained in the previous sections). Applying this function to the HT-29 reference dataset, as well as to example213

user-provided data, yielded the results shown in Fig. 3cd. Also in this case our reference dataset yielded very good quality scores.214

215

Finally, as a further quality assessment and reference to the user, we computed fitness effect significance thresholds216

employing prior known essential and non-essential genes31 at different FDR levels, and we quantified corresponding Recall217

values of prior known essential-genes, as well as a novel set of human core-fitness genes introduced in Behan et al7 and various218

sets of other essential genes (all available in the CRISPRcleanR package18(Supplementary Fig. 5 and Supplementary Table 2).219

Also these results confirmed the high quality of our reference dataset.220

HT-29-specific fitness genes221

We assembled a list of genes that are consensually significantly depleted across all our reference HT-29 screens, thus should be222

observed as significantly depleted in new screens of the HT-29 cell line performed with the Sanger library16 and the experimental223

setting described in Behan et al.7. First of all, for each reference HT-29 screen we identified a set of genes significantly224

depleted at a 5% FDR and its complement, i.e. a set of genes not significantly depleted, using reference sets of essential225

(E) and non-essential (N) genes31 to compute significance thresholds, as explained in the previous sections. Intersecting all226

these sets of screen-specific significantly depleted, respectively non depleted, genes yielded a high-confidence set of HT-29227

specific essential, respectively non-essential, genes. We assessed how each reference screen discriminated these two sets in228
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terms of Glass’s D29 or Cohen’s d32, computed as explained in the previous sections. This allowed us to define again a set of229

expected values to evaluate a newly performed screen of the HT-29 (Fig 4abc). These HT-29-specific fitness genes are also230

provided in Supplementary Table 3, partitioned into three tiers based on their average depletion LFCs across screens. These231

genes showed a fairly consistent depletion LFCs across screens (Fig 4d) and were significantly enriched for previously report232

human essential genes (Fisher’s exact test p = 7.1⇤10�221, Fig. 4c) and for fundamental biological processes (BP) such as233

“ribosome biogenesis” and “RNA splicing” (Fig. 4e), confirming their reliability.234

Usage Notes235

The HT-29 reference dataset can be manually downloaded at https://score.depmap.sanger.ac.uk/downloads236

or http://iorio-apps.fht.org/, or on FigShare17. Alternatively, the function HT29R.download_ref_dataset237

of the HT29benchmark package can be used to download the reference dataset within an R session. A vignette with instructions238

on how to perform a quality assessment of a newly performed screen of the HT-29 cell line employing Sanger library16 and239

settings described in Behan et al.7 is provided with the package, together with a wrap-function that performs all the assessment240

steps and produces a final report in PDF format, as well as reproducing all the figures we presented here.241

242

Users have a non-exclusive, non-transferable right to use data files for internal proprietary research and educational purposes,243

including target, biomarker and drug discovery. Excluded from this licence are the use of the data (in whole or any significant244

part) for resale either alone or in combination with additional data/product offerings, or for provision of commercial services.245

Both package and reference data are experimental and academic in nature and are not licensed or certified by any regulatory246

body. Furthermore, data access is provided on an “as is” basis and excludes all warranties of any kind (express or implied).247

Code availability248

The R code used for generating this dataset, for its QC assessment, as well as to evaluate the quality of a user-provided screen and249

to reproduce all the figures presented here is available at https://github.com/francescojm/HT29benchmark.250
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Figures & Tables319

Sanger Experiments N. Cas9 Average Average

library identifiers of activity transfection Puromycin

version replicates efficiency selection

1.0 HT29_c903 6 94.8% 2.33% 83.53%
1.0 HT29_c904 3 94.8% 27.57% 89.97%
1.1 HT29_c905 9 94.8% 33.42% 80.81%
1.1 HT29_c906 6 94.8% 35.65% 88.40%
1.1 HT29_c907 3 94.8% 32.40% 89.07%
1.1 HT29_c908 3 94.8% 32% 79.33%

Table 1. Reference HT-29 screening dataset. Libraries, experiment identifiers and transfection/selection efficiencies across
screens.

8/12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2022. ; https://doi.org/10.1101/2022.09.23.509258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509258
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

Average Range (min;max)

Average Median

Average IQR range (Q1;Q3)

Average 10−90th percentile range

Average skewness

Average kurtosis

−7.97±0.099; 1.66±0.111

0.025±0.006

−0.23±0.01; 0.22±0.01

−0.68±0.02; 0.39±0.01

−3.81±0.04

19.53±0.55

Range (min;max)

Median

IQR range (Q1;Q3)

10−90th percentile range

Skewness

Kurtosis

9.273; 4.253

0.022

−0.506; 0.531

−1.15; 1.017

−2.089

8.673

-8 -6 -4 2 0 2

User data

-8

-6

-4

-2

0

2

4

HT29
_c

90
3

HT29
_c

90
4

HT29
_c

90
5

HT29
_c

90
6

HT29
_c

90
7

HT29
_c

90
8

Use
r d

ata

0.2

0.0

0.4

0.6

0.8

1.0

de
ns

ity

Reference HT-29 dataset sgRNAs FC statistics

A
vg

 s
gR

N
A

 fo
ld

-c
ha

ng
e

Avg sgRNA log fold-change

User data sgRNAs FC statistics

b

0.0 0.2 0.4 0.6 0.8 1.0-0.2-0.4

0.0 0.2 0.4 0.6 0.8 1.0-0.2-0.4-0.6
0

1
2
3

4
5

6

0

1

2

4

R

R

HT29_c906

HT29_c903

HT29_c905

HT29_c908

HT29_c907

HT29_c904

HT29_c906

HT29_c903

HT29_c905

HT29_c908

HT29_c907

HT29_c904

de
ns

ity
de

ns
ity

Project Score background
Project Score intra-screen User data

3

Reproducibility threshold

Reproducibility threshold

HT29 reference data
c

Figure 1. (a) Distributions of single-guide RNA (sgRNA) depletion log fold-changes and their average parameters (with
confidence intervals) across the different screens of the reference HT-29 dataset, and in an example of user-provided screen
performed using reagent and experimental settings described in Behan et al.7 and the Sanger library. (bc) Outcomes from an
evaluation of inter-screen similarity. Distributions of pairwise Pearson’s correlation scores computed between gene essentiality
profiles of replicates for each of the six HT-29 reference screens (blue dots), considering depletion log fold-changes of highly
reproducible/informative sgRNAs only. Their value is abundantly larger than the quality control threshold defined from the
analysis of the Project Score dataset (dark blue dashed vertical line), both at sgRNA- (b) and gene-level (c). The distribution of
correlations from comparing replicates of the same screen in Project Score is shown in green, while the distribution of
correlations from comparing each possible pair of replicates (regardless the screen) is shown in grey, with densities varying
according to the level inspected (sgRNA or gene). The magenta points indicate correlation between pairs of replicates of an
example user-provided screen of the HT-29 cell line (performed using the same setting of Behan et al.7) and the Sanger
library16 which in this case exceeds the reproducibility threshold.16.
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Figure 2. Inter-screen similarity evaluation. (a) Pearson’s correlation scores between profiles of depletion log fold-changes
(LFCs) computed at the gene level using the subset of reproducible and highly informative sgRNAs (n = 838) between pairs of
HT-29 screens (in green) and between the HT-29 reference screens and an example user-provided screen (in pink), with
replicates collapsed by LFC averaging. The distribution in grey are computed between each possible pair of screen replicates in
Project Score, to estimate expectation is also visualised (in gray). (b) Two-sided t-test comparing expected Project Score
correlation scores versus those computed between each pair of screens in the HT-29 reference dataset, as well as those
computed between the example data screens versus those computed in the HT-29 reference dataset. The reference dataset
scores are largely significantly different from expectation, the user data scores are still largely different from expectation but not
as much as the reference data. (c) Scatter-plot correlation matrix showing pairwise Pearson’s correlation scores computed
within HT-29 references and between user data versus HT-29 reference screens.
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Figure 3. Screens’ quality in terms of phenotype Intensity and receiver operating characteristic (ROC) analysis. (a)
Distributions of gene depletion log fold-changes (LFCs) for one of the screens in the HT-29 reference dataset (at the top) and an
example user-provided screen (at the bottom). Glass’s D (GD) scores for reference essential genes (E) and ribosomal protein
genes (R) with respect to non-essential genes are reported at the top of each plot. Vertical lines indicate mean LFCs for each
gene set as indicated by the different colours. (b) Distributions of GD scores with respect to ribosomal protein genes and other
essential genes (as indicated by the different colours), computed across the reference screens with overlaid GDs observed for
the example user-provided screen. (c) ROC and Precision Recall (PrRc) curves quantifying the ability of a given screen in
correctly classifying prior known essential and non-essential genes, based on their depletion LFCs for one of the screens in the
HT-29 reference dataset (at the top) and an example user-provided screen (at the bottom). Recall of prior known essential genes
at a 5% false discovery rate and areas under the curves are also reported, with the former indicated also by the dashed lines. (d)
As for panel c but extended to all the reference screens and the user data, as indicated by the different colours.
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Figure 4. (a) Depletion log fold-change (LFCs) distributions of HT-29 specific positive and negative essential genes across
individual reference HT-29 screens and example user-provided data. (b) Distribution of distances between HT-29 specific
positive and negative essential genes, quantified through Cohen’s d, across the reference HT-29 screens (the boxplot) or for the
example user-provided data (which in this case does not meet expectations). (c) On the left, comparing the HT-29-specific
essential genes and a widely used set of prior known essential genes highlights a statistically significant overlap (two-sided
Fisher’s exact test p-value = 7.1x10�221); on the right, distribution of LFCs for different gene sets along with the
HT-29-specific fitness genes across the reference HT-29 screens, as well as an example user-provided data. (d) Depletion LFCs
of the top 50 HT-29-specific fitness genes consistently depleted in all experiments, across HT-29 reference screens. (e) Top 10
Gene Ontology categories (Biological ProcessP) significantly enriched (Benjamini-Hochberg corrected p-value < 0.05) in the
HT-29-specific essential genes.
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