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ABSTRACT: The yeast Saccharomyces cerevisiae is a widely used eukaryotic model organism and a promising cell factory for industry. 
However, despite decades of research, the regulation of its metabolism is not yet fully understood, and its complexity represents a major 
challenge for engineering and optimising biosynthetic routes. Recent studies have demonstrated the potential of resource and proteomic allo-
cation data in enhancing models for metabolic processes. However, comprehensive and accurate proteome dynamics data that can be used for 
such approaches are still very limited. Therefore, we performed a quantitative proteome dynamics study to comprehensively cover the transition 
from exponential to stationary phase for both aerobically and anaerobically grown yeast cells. The combination of highly controlled reactor 
experiments, biological replicates and standardised sample preparation procedures ensured reproducibility and accuracy. Additionally, we se-
lected the CEN.PK lineage for our experiments because of its relevance for both fundamental and applied research. Together with the proto-
trophic, standard haploid strain CEN.PK113-7D, we also investigated an engineered strain with genetic minimisation of the glycolytic pathway, 
resulting in the quantitative assessment of over 1700 proteins across 54 proteomes. These proteins account for nearly 40% of the overall yeast 
proteome and approximately 99% of the total protein biomass. The anaerobic cultures showed remarkably less proteome-level changes com-
pared to the aerobic cultures, during transition from the exponential to the stationary phase as a consequence of the lack of the diauxic shift in 
the absence of oxygen. These results support the notion that anaerobically growing cells lack time and resources to adapt to changes in the 
environment. This proteome dynamics study constitutes an important step towards better understanding of the impact of glucose exhaustion 
and oxygen on the complex proteome allocation process in yeast. Finally, the established proteome dynamics data provide a valuable resource 
for the development of resource allocation models as well as for metabolic engineering efforts. 

INTRODUCTION 
The yeast Saccharomyces cerevisiae is a widely used eukaryotic 
model organism and cell factory that represents a promising alterna-
tive to the fossil fuel-based production of chemicals. However, eco-
nomic competitiveness is still a major hurdle for such cell factories. 
Constructing improved strains that realise high productivity and 
yield involves extensive genetic engineering to rewire native ge-
nomes that have been optimised for growth and survival over mil-
lions of years of evolution. Nevertheless, intensive research over the 
past decades have led to successful developments where yeast pro-
cesses were brought to an industrial scale, such as for the production 
of the drug precursor artemisinic acid [1–4]. In silico approaches to 
reproduce and predict microbial metabolism have been simultane-
ously developed to assist metabolic engineering efforts [5]. How-
ever, the complexity of yeast metabolism limits the predictive power 
of these models. A promising approach to improve such models is to 
consider resource allocation and more particularly the cost of protein 
expression [6–10]. A prerequisite for this approach is the availability 
of comprehensive and accurate proteome dynamics data established 
under tightly controlled conditions. Unfortunately, such data are 
commonly not available and are difficult to obtain. 
S. cerevisiae displays a remarkable metabolic flexibility, as it tunes 
its metabolism between full respiratory sugar dissimilation and alco-
holic fermentation, with different degrees of respiro-fermentative 
metabolism as a function of environmental cues, substrate and oxy-
gen supply. The well-known Crabtree effect results in partial repres-
sion of respiration and therefore in respiro-fermentative growth in 

the presence of excess sugar (e.g. glucose or galactose) even in aer-
obic conditions [11]. Conversely, the production of gluconeogenic 
substrates as ethanol or acetate leads to strict respiratory metabolism 
in aerobic settings. S. cerevisiae will fully ferment carbon sources in 
the absence of oxygen. However, respiratory and fermentative sub-
strate dissimilation have a large impact on ATP yield, as full respi-
ration of 1 mol of glucose results in 16 mol of ATP, while fermenta-
tion of the same amount of glucose only yields 2 mol of ATP [12]. 
The metabolic mode therefore strongly affects cellular resources, in 
particular their optimum allocation for growth and survival. To ob-
tain a better insight into how S. cerevisiae responds to changes in 
substrate and oxygen supplies, we monitored its proteome employ-
ing tightly controlled bioreactors. Several yeast proteomics studies 
have already been performed over the past decades [13–21]. In this 
study, we monitored the dynamic proteome responses to substrate 
availability during all growth phases of yeast (exponential, diauxic 
and stationary phases) under both aerobic and anaerobic conditions 
[22]. Thus far, only little has been known regarding the proteome 
dynamics under anaerobic conditions, in particular during transition 
from the exponential to the stationary phase. 
Considering eukaryotes, such as S. cerevisiae, genetic redundancy is 
another level of complexity for in silico design and experimental de-
velopment of cell factories. Many genes, more particularly those in-
volved in metabolism, have orthologues with similar functions [23], 
but often with a poorly understood physiological role. In view of 
minimal genomes, several studies have explored the requirement for 
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these redundant genes and implemented top-down approaches to re-
duce genetic redundancy [24–26]. Such minimised genomes have 
the potential to facilitate the complete redesign and construction of 
entirely synthetic yeast genomes. Moreover, genetic minimisation of 
key metabolic pathways can facilitate the formulation and validation 
of mathematical models by eliminating isoenzymes with different 
regulatory and kinetic properties. Solis-Escalante et al. constructed 
a yeast strain in which the 26 genes encoding enzymes of the Emb-
den–Meyerhof–Parnas pathway of glycolysis, the main pathway for 
sugar utilisation, were minimalised to a set of 13 genes in the mini-
mal glycolysis (MG) strain (Figure 1a) [26]. While this genetically 
reduced strain appeared physiologically comparable to its parent 
strain (with the full set of glycolytic genes), the underlying proteome 
dynamics and potential protein level adjustments were not investi-
gated. In this study, the engineered MG strain IMX372 and its pa-
rental S. cerevisiae CEN.PK113-7D were investigated together dur-
ing transition from the exponential to the stationary phase in the pres-
ence or absence of oxygen. The temporal proteome dynamics across 
all growth phases were monitored from triplicate bioreactor cultures. 
Quantitative shotgun proteomic experiments were performed using 
10-plex tandem mass tag (TMT) isobaric labelling. The use of tightly 
controlled reactor experiments in combination with robust sample 
preparation protocols allows the establishment of highly accurate 
quantitative data, which constitute valuable resources for in silico 
approaches, including metabolic engineering effort assistance. Fur-
thermore, the established proteome dynamics data expand the cur-
rent understanding of protein dynamics in yeast during carbon-lim-
ited growth under both aerobic and anaerobic conditions from the 
proliferation to the stationary phase. Finally, the comparison to the 
MG mutant quantified the impact of the loss of the minor glycolytic 
isoenzymes on the global proteome. 
 
EXPERIMENTAL SECTION 
Yeast strains and media. The MG yeast strain IMX372 (MATa 
ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, 
hxk1::KlLEU2, tdh1::KlURA3, tdh2, gpm2, gpm3, eno1, pyk2, pdc5, 
pdc6, adh2, adh5, adh4) and CEN.PK113-7D (MATa MAL2-8C 
SUC2) used in this study share the CEN.PK genetic background [26, 
27]. Shake flask and batch cultures were grown in synthetic medium 
(SM) containing 5.0 g/L (NH4)SO4, 3.0 g/L KH2PO4, 0.5 g/L 
MgSO4·7H2O and 1 mL/L trace elements in demineralized water, set 
at pH 6. The medium was heat sterilized (120°C) and supplemented 
with 1 mL/L filter sterilized vitamin solution and 20 g/L heat steri-
lized (110 °C) glucose (SMG) [28]. The bioreactor medium was sup-
plemented with 0.2 g/L antifoam Emulsion C (Sigma, St. Louise, 
USA) or with 0.2 g/L antifoam Pluronic PE 6100 (BASF, Ludwigs-
hafen, Germany) for anaerobic and aerobic cultures, respectively. In 
case of anaerobic cultivations, the medium was also supplied with 
anaerobic growth factors, 10 mg/L ergosterol (Sigma-Aldrich, St. 
Louis, MO) and 420 mg/L Tween 80 (polyethylene glycol sorbate 

monooleate, Merck, Darmstadt, Germany) dissolved in ethanol. Fro-
zen stocks of S. cerevisiae cultures were prepared by the addition of 
glycerol (30% v/v) in 1 mL aliquots for storage at -80 °C. Bioreactor 
cultures. Aerobic shake flask cultures were grown at 30°C in a In-
nova incubator shaker (New Brunswick™ Scientific, Edison, NJ, 
USA) at 200 rpm using 500 mL round-bottom shake flasks contain-
ing 100 mL medium. Triplicate aerobic batch cultures of control and 
MG yeast were performed in 2 L laboratory fermenters (Applikon, 
Schiedam, The Netherlands) with a 1.2 L working volume under aer-
obic and anaerobic conditions. SM-medium was used and main-
tained at pH 5 by the automatic addition of 2 M KOH. Mixing of the 
medium was performed with stirring at 800 rpm. Gas inflow was fil-
ter sterilized and compressed air (Linde Gas, Schiedam, The Nether-
lands) or nitrogen (<10 ppm oxygen, Linde Gas) was sparged via the 
bottom of the bioreactor at a rate of 500 mL/min, for aerobic and 
anaerobic cultures, respectively. Dissolved oxygen levels were 
measured with Clark electrodes (Mettler Toledo, Greifensee, Swit-
zerland). The temperature of the fermenters was maintained at 30°C. 
The reactors were inoculated with exponentially growing shake flask 
cultures of S. cerevisiae strain IMX372 and CEN.PK113-7D to ob-
tain an initial optical density (OD660) of approximately 0.2. Sampling 
for HPLC and OD660 measurements was done every 90 minutes. Pro-
teome samples were taken at 6, 9, 12, 16.5, 27 and at 7.5, 10.5, 13.5, 
16.5 hours in aerobic and anaerobic conditions, respectively. Bio-
mass, metabolites and gas measurements. To monitor growth, 
OD660 measurements were performed on a JENWAY 7200 spectro-
photometer (Cole-Parmer, Stone, UK). The biomass dry weight was 
determined in duplicate as described earlier [28]. For extracellular 
metabolite determinations, broth samples were centrifuged for 5 min 
at 13,000 g and the supernatant was collected for analysis with a Wa-
ters alliance 2695 HPLC (Waters Chromatography B.V., Etten-Leur, 
The Netherlands) with an Aminex HPX-87H ion exchange column 
(Biorad, Hercules, CA, USA). The HPLC was operated at 60°C and 
5 mM of H2SO4 was used as mobile phase at a rate of 0.6 mL/min. 
Off-gas concentrations of CO2 and O2 were measured using an NGA 
2000 analyser. Proteome samples (~3–5 mg dry weight) were taken 
from batch cultures. The samples were collected in multifold in tri-
chloroacetic acid (TCA) (Merck Sigma, Cat. No. T0699) with a final 
concentration of 10%. Samples were centrifuged at 4000 g for 5 min 
at 4°C. Cell pellets were frozen at -80°C [29]. Yeast cell lysis, pro-
tein extraction and proteolytic digestion. Cell pellets of the aero-
bic and anaerobic cultures were resuspended in lysis buffer com-
posed of 100 mM Triethylammonium bicarbonate (TEAB) contain-
ing 1% SDS and phosphatase/protease inhibitors. Yeast cells were 
lysed by glass bead milling by 10 cycles of 1 minute shaking alter-
nated with 1 min rest on ice. Proteins were reduced by addition of 5 
mM DTT and incubation for 1 hour at 37°C. Subsequently, the pro-
teins were alkylated for 60 min at room temperature in the dark by 
addition of 50 mM acrylamide. Protein precipitation was performed 
by addition of four volumes of ice-cold acetone (-20°C), followed by 
1 hour freezing at -20°C. The proteins were solubilized using 100 
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mM ammonium bicarbonate. Proteolytic digestion was performed 
by Trypsin (Promega, Madison, WI), 1:100 enzyme to protein ratio, 
and incubated at 37°C overnight. Solid phase extraction was per-
formed with an Oasis HLB 96-well μElution plate (Waters, Milford, 
USA) to desalt the mixture. Eluates were dried using a SpeedVac 
vacuum concentrator at 50°C and frozen at -80°C. Quantitative 
temporal proteome analysis. Desalted peptides were reconstituted 
in 100 mM TEAB and TMT10-plex reagents (Thermo) were added 
from stocks dissolved in 100% anhydrous acetonitrile (ACN). Pep-
tides were mixed with labels in a 1:8 ratio (12.5 µg to 100 µg) and 
incubated for 1 hour at 25°C and 400 rpm and the labelling reaction 
was stopped by addition of 5% hydroxylamine to a final concentra-
tion of 0.4%. Labelled peptides were then mixed in at approx. equal 
quantities. Two bridging samples were included in each TMT10-
plex experiment to improve comparability between different experi-
ments. The bridging sample was a mixture of the three biological 
replicates of MG yeast under aerobic conditions in the mid-station-
ary phase. Peptide solutions were diluted with water to obtain a final 
concentration of acetonitrile (ACN) lower than 5%. Solid phase ex-
traction was performed to desalt the final peptide mixture. Desalted 
peptides were subsequently frozen at -80°C for 1 hour and dried by 
vacuum centrifugation. Peptides were finally resuspended in 3% 
ACN/0.01% TFA prior to MS-analysis to give an approximate con-
centration of 500 ng per µL. Samples were labelled as indicated in 
SI table 2. Shotgun proteomic analysis. An aliquot corresponding 
to approximately 1 µg protein digest was analysed using an one di-
mensional shot-gun proteomics approach [30]. Briefly, the samples 
were analysed using a nano-liquid-chromatography system consist-
ing of an EASY nano-LC 1200, equipped with an Acclaim PepMap 
RSLC RP C18 separation column (50 μm x 150 mm, 2 μm, Cat. No. 
164568), and a QE plus Orbitrap mass spectrometer (Thermo Fisher 
Scientific, Germany). The flow rate was maintained at 350 nL/min 
over a linear gradient from 5% to 25% solvent B over 180 min, then 
from 25% to 55% over 60 min, followed by back equilibration to 
starting conditions. Data were acquired from 5 to 240 min. Solvent 
A was H2O containing 0.1% formic acid (FA), and solvent B con-
sisted of 80% ACN in H2O and 0.1% FA. The Orbitrap was operated 
in data-dependent acquisition (DDA) mode acquiring peptide signals 
from 385–1250 m/z at 70 K resolution in full MS mode with a max-
imum ion injection time (IT) of 75 ms and an automatic gain control 
(AGC) target of 3E6. The top 10 precursors were selected for 
MS/MS analysis and subjected to fragmentation using higher-energy 
collisional dissociation (HCD). MS/MS scans were acquired at 35 K 
resolution with AGC target of 1E5 and IT of 100 ms, 1.2 m/z isola-
tion width and normalized collision energy (NCE) of 32. Processing 
of mass spectrometric raw data. Data were analysed against the 
proteome database from Saccharomyces cerevisiae (Uniprot, strain 
ATCC 204508 / S288C, Tax ID: 559292, July 2020) using PEAKS 
Studio X (Bioinformatics Solutions Inc., Waterloo, Canada) [31], al-
lowing for 20 ppm parent ion and 0.02 m/z fragment ion mass error, 

3 missed cleavages, acrylamide and TMT10 label as fixed and me-
thionine oxidation and N/Q deamidation as variable modifications. 
Peptide spectrum matches were filtered against 1% false discovery 
rates (FDR) and identifications with ≥2 unique peptides. Changes in 
protein abundances between different time points using the TMT 
quantification option provided by the PEAKSQ software tool (Bio-
informatics Solutions Inc., Canada). Auto normalization was used 
for quantitative analysis of the proteins, in which the global ratio was 
calculated from the total intensity of all labels in all quantifiable pep-
tides. Quantitative analysis was performed using protein identifica-
tions containing at least 2 unique peptides, which peptide identifica-
tions were filtered against 1% FDR. The significance method for 
evaluating the observed abundance changes was set to ANOVA and 
the significance score was expressed as the -10xlog10(p), where p is 
the significance testing p-value. The p-value represents the likeli-
hood that the observed change is caused by random chance. Results 
from PEAKSQ were exported to ‘proteins.csv’, containing the quan-
tified proteins. Pathway analysis, functional enrichment, and 
data visualisation. Briefly, the exported ‘proteins.csv’ files from 
PEAKSQ, listing the quantified proteins for each experiment, were 
directly imported into the Python environment. Normalization be-
tween data was performed using a bridging sample. A function was 
further established that links Uniprot accession numbers and yeast 
genes (as obtained from https://www.uniprot.org/docs/yeast.txt, and 
which subsequently was used to annotate identified proteins from the 
experiments with correct gene names. The biological triplicates per 
condition (aerobic and anaerobic) and strain (control and MG) were 
treated separately. Furthermore, each biological replicate consisted 
of two additional technical replicates. To analyse the technical and 
biological replicates, clustermaps were made using a self-built Py-
thon function based on the clustermap function from the Seaborn 
package in Python [32], using the Euclidean distances metric and the 
average linkage method. Only proteins detected in all three biologi-
cal replicates were used for the cluster analysis. The fold change of 
each protein in a specific condition was calculated relative to the 
bridging sample. The average fold changes of the technical replicates 
were subsequently used to determine the standard deviations of the 
biological replicates. The averages of the biological replicates were 
determined to obtain the four sub-datasets i) control aerobic, ii) MG 
aerobic iii) MG anaerobic and iv) control anaerobic. All graphs ulti-
mately show the analyses of these biological-replicate averages and 
their corresponding standard deviations.  
To study how protein abundances changed in individual cellular 
pathways, the obtained proteomics data were analysed using the 
KEGG (Kyoto Encyclopaedia of Genes and Genome) pathway data-
base [33]. All the up-to-date KEGG pathways were retrieved with 
the constructed ‘KEGG_tool.py’ code. Here, the Bio.KEGG.REST 
module from the Biopython package in Python was used [34]. 
Thereby, the functions ‘kegg_list’ was used to list all pathways for 
S. cerevisiae, and ‘kegg_get’ to retrieve gene names that are assigned 
to a specific pathway. Since many pathways have an extensive list 
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of members, the pathways in the central carbon metabolism (CCM) 
were reduced to the most important genes in order to enable mean-
ingful visualisation in graphs. Using the above mentioned cluster-
map function, the protein fold changes of the CCM were plotted on 
a heatmap for each of the experiments, without any clustering. For 
better visualisation of the trends, the data were normalised to the 
mid-exponential (ME) phase. The same function was moreover used 
to display the average absolute intensity of every protein throughout 
the whole growth curve, using log10 and absolute scale, respec-
tively. The significance of a difference in biological-replicate-aver-
age fold changes between two datasets was assessed by performing 
a two-sided two-sample unpaired t-test (also known as Welch’s t-
test), using the ‘ttest_ind_from_stats’ function from the ‘SciPy.stats’ 
module in Python [35]. Global proteome changes between two ex-
periments or phases were visualised in volcano plots, where the -
10log10(p) is plotted against the log2(fold change) between the two 
conditions. These plots were generated using the ‘gene_exp.volcano’ 
a modified version of the GeneExpression.volcano function from the 
‘Bioinfokit.visuz’ module in Python [36]. This function enabled the 
division of the fold changes between two experiments into i) insig-
nificant changes, ii) statistically significant changes (but not neces-
sarily biologically significant), iii) statistically and likely biologi-
cally significant changes. For this study the statistical significance 
threshold was generally set to p <0.05. The (presumed) biological 
significance threshold was set to a log2 fold change threshold of +/- 
0.32 (indicating a 1.25 absolute fold change). 
A functional enrichment analysis using the STRING database was 
performed in order to determine whether specific GO-terms or 
KEGG-pathways are enriched under a particular condition [37]. For 
this, Python was used to programmatically accesses the STRING da-
tabase via an API. This created a dictionary containing the up- and 
downregulated proteins, the species identifier (4932 for S. cere-
visiae), the functional categories that should be assessed, the FDR 
threshold (<0.05 in this study), and an optional set of ‘background 
genes’ with as alternative background the whole species proteome. 
The function ‘backgroundgene_2_string’ retrieves the protein-spe-
cific string identifiers for the back-ground genes/proteins, which in 
this case were all proteins detected across the experiments. Estima-
tion of the average protein content for the aerobic and anaerobic 
growth conditions using emPAI and PAI indices was performed ac-
cording to Yasushi Ishihama et al., 2005 [38]. Circle graphs were made 
using the ‘surf’ function in Matlab, where circle areas represent the ob-
tained emPAI values. Data availability. Mass spectrometric raw data 
have been deposited to the ProteomeXchange Consortium [39] via 
the PRIDE [40] partner repository and are publicly available under 
the project code PXD031412. 
 

RESULTS  
Proteome dynamics of laboratory control CEN.PK113-7D and 
MG yeast in aerobic and anaerobic batch bioreactor cultures 
To optimise data reproducibility and reliability, we performed the 
batch cultures in bioreactors in which mixing, aeration and pH were 
tightly controlled. Independent triplicate cultures were conducted for 
the two investigated strains to further increase biological signifi-
cance. Furthermore, we selected the prototrophic control strain S. 
cerevisiae CEN.PK113-7D – a popular lineage for biotechnology for 
which several omics datasets are already available – and the MG var-
iant (IMX372) lacking glycolytic minor isoenzymes, for our study 
(Figure 1a). The batch cultures were sampled during all growth 
phases, ranging from the proliferation phase to growth arrest in the 
stationary phase (Figure 1b). Generally, the presence or absence of 
oxygen is known to strongly affect yeast physiology, which results 
in differences in metabolism and growth phases. During growth on 
glucose, aerobic cultures both respire and ferment, producing etha-
nol and other fermentation products. The growth on glucose is fol-
lowed by a diauxic growth phase during which fermentation prod-
ucts are fully respired until the stationary phase. Conversely, S. cere-
visiae fully ferments glucose and does not respire in the absence of 
oxygen. Dissimilation of fermentation products requires oxygen; 
therefore, anaerobic cultures directly switch from exponential 
growth on glucose to the stationary phase, without a diauxic phase. 
These physiological differences were also observed in the growth 
and metabolite profiles performed in our study (SI Table 1 and Fig-
ure 1b). Aerobic proteome dynamics were monitored in time with 
sampling at 6, 9, 12, 16.5 and 27 hours of growth, corresponding to 
the mid-exponential, late exponential, early diauxic, mid-diauxic and 
stationary growth phases, respectively (Figure 1b). To align the 
sampling time points to the physiology, we sampled the anaerobic 
cultures at 7.5, 10.5, 13.5 and 16.5 hours of growth, corresponding 
to the mid- and late exponential, early stationary and stationary 
growth phases, respectively (Figure 1b). After cell lysis and trypsin 
digestion, peptide samples of three biological replicates per condi-
tion were labelled using TMT10-plex reagents, mixed equally and 
subjected to a 4-hour (gradient) shotgun proteomics experiment (SI 
Table 2). On average, 1175 and 1106 proteins were quantified in the 
control yeast under aerobic and anaerobic conditions, respectively, 
with at least two unique peptides and 1% FDR. Similarly, 1131 and 
1127 proteins were quantified confidently on average for the aerobic 
and anaerobic cultures of the MG strain, respectively. A total of 1734 
proteins were quantified across all TMT experiments (SI Table 3), 
which is close to 40% of the total proteome considering the theoret-
ical expression of approximately 4500 proteins at any time [41]. The 
protein amount was estimated using the emPAI index [38]. Further-
more, the total protein content was estimated by summing all emPAI 
values, thereby assuming for unidentified proteins the lowest ob-
served emPAI value of our study. This indicated that more than 99% 
of the total protein biomass was captured in our study (SI Figure 1 
and SI Table 4). The detected proteins were predominantly assigned 
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to intracellular organelle functional GO categories, consisting of cy-
tosolic, mitochondrial and ribosomal proteins (Figure 1c and SI Ta-
ble 5), which could be explained by their high expression levels [19, 
42]. A similar GO term assignment was found for both strains and 
conditions. 
The crude protein quantification profiles were further analysed using 
a Python data processing pipeline to enable a tailored visualisation 
and interpretation of the large-scale data. To this end, the data from 
the 14 separate TMT experiments were compared for their temporal 
and conditional protein abundance changes in the control strain 
(CEN.PK113-7D) and MG yeast strain IMX372 under (an)aerobic 
conditions. Data were presented as fold changes for each protein in 
a specific condition relative to a bridging sample. The bridging (con-
trol) sample used in all TMT experiments was a mixture of the three 
biological replicates of the aerobic stationary-phase MG yeast to im-
prove comparability between the experiments (SI Table 2). 
To assess experimental reproducibility, we compared global proteo-
mic data with cluster analysis data based on Euclidean distances us-
ing three biological replicates per strain and condition and two tech-
nical replicates per time point within each biological replicate. This 
demonstrated clustering of replicates of the different growth phases 
per strain and condition, confirming the reproducibility of the reactor 
experiments and proteomic analyses (SI Figure 2). The average pro-
tein abundance of the three biological replicates per condition and 
strain was further used for the interpretation of the proteome dynam-
ics data. 
 
Effects of oxygen availability on the global proteome dynamics 
across the growth curve 
To explore the impact of oxygen availability on the yeast proteome, 
we first focused on the growth phases with the most marked change 
in the global proteome between the aerobic and anaerobic cultures 
for the control strain CEN.PK113-7D (i.e. stationary and mid-expo-
nential phases). While a similar number of proteins were quantified 
in the presence and absence of oxygen, the number of differently ex-
pressed proteins between the stationary and mid-exponential phases 
varied significantly between both conditions (p-value of < 0.05 and 
fold change of ± 1.25). For the aerobic cultures, 364 proteins were 
significantly more abundant under carbon starvation (stationary 
phase), while this only accounted for 78 proteins under anaerobiosis 
(Figure 1c and Table 1). A significantly lower abundance was also 
observed in the stationary phase for 174 proteins than in the expo-
nential growth phase in the presence of oxygen and for 42 proteins 
only in the absence of oxygen (Figure 1c and Table 1). 
Deprived of usable carbon source, stationary-phase yeast cells gen-
erally arrest growth, thereby entering a state of decreased metabo-
lism and biosynthesis and yielding overall lower transcription and 
translation rates [43, 44]. Ribosomal proteins have been shown to be 
expressed at lower levels in the stationary phase [45, 46]. In good 
agreement with physiological data, the proteins involved in pro-
cesses associated with protein synthesis and cellular growth showed 

decreased abundance in the transition between the exponential and 
stationary growth phases under both aerobic and anaerobic condi-
tions, as shown in the categories ‘gene expression’, ‘ribosome as-
sembly’ and ‘cellular macromolecule biosynthetic process’ (SI Ta-
bles 6 and 7). Yeast cells transition from respiro-fermentation on 
glucose to full respiration using ethanol as a primary carbon source 
in the presence of oxygen. This increase in respiratory activity was 
well reflected in the proteome in this study, as proteins more abun-
dant in the stationary phase (than in the exponential phase) were typ-
ically associated with mitochondrial respiration in the aerobic con-
ditions, including ‘generation of precursor metabolites and energy’, 
‘mitochondrion organisation’ and ‘transmembrane transport’ (SI 
Table 6). As expected, this response was not observed in the non-
respiring, anaerobic cultures. In these cultures, most proteins in-
volved in carbohydrate catabolic and disaccharide metabolic pro-
cesses showed an increased abundance in the stationary compared to 
the mid-exponential phase, presumably to ensure survival in growth-
arrested cells. Proteins in the cellular components involving catego-
ries such as ‘cell periphery’ and ‘plasma membrane’ were also found 
to be more abundant (SI Table 7). 
The comparison of the proteomic data across the growth phases re-
vealed that the diauxic shift had the strongest impact on proteomic 
rearrangement, with 24 proteins with lower abundance and 125 pro-
teins with higher abundance between the beginning of the diauxic 
growth and mid-diauxic phases (Table 1 and SI Table 6). The di-
auxic shift was characterised by an increased abundance in proteins 
involved in aerobic respiration, fatty acid metabolism and precursor 
metabolite and energy generation, in line with the switch from 
respiro-fermentative to fully respiratory metabolism. Conversely, 
the set of proteins with decreased abundance during the diauxic shift 
was enriched for proteins involved in protein synthesis in the cytosol. 
This result was also consistent with the decreased growth rate and 
thereby the protein synthesis rate of yeast cells grown on ethanol 
media as compared with glucose [47]. Under anaerobiosis, most pro-
teomic changes occurred in the transition between exponential and 
stationary growth (55 proteins; i.e. 46% of all detected changes in 
abundance throughout the phases). Notably, prolonged cultivation 
during the stationary phase under anaerobiosis did not further alter 
the proteome (Table 1 and SI Table 7). 
  
Impact of oxygen on the proteomic rearrangements in the cen-
tral carbon metabolism across the growth phases 
The central carbon metabolism (CCM) consists of key pathways re-
quired for the conversion of carbon sources into the 12 building 
blocks for the synthesis of cellular components and encompasses ca. 
150 transport proteins and enzymes [25]. The flow of carbon and 
electrons via the CCM therefore responds to the carbon source nature 
and abundance. As oxygen availability dictates how much ATP mol-
ecules can be produced from the carbon source, the CCM also re-
sponds to oxygen availability. The proteins involved in the CCM are 
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therefore expected to be considerably affected by glucose and oxy-
gen availability. In our study, 101 out of 142 CCM proteins (SI Ta-
ble 8) were successfully quantified in at least one of the main four 
conditions (Figure 2a). In the presence of oxygen, 71 proteins had 
significantly different abundance over the time-course, while in the 
absence of oxygen, only 18 significant changes were observed. 
S. cerevisiae harbours a set of 17 proteins able to transport hexoses, 
known as Hxt proteins. The expression of these proteins is primarily 
dictated by hexose (mostly glucose) abundance. Being membrane-
bound and having low abundance, Hxt proteins are typically difficult 
to detect in proteomic studies; their high level of homology makes 
their identification challenging. Nevertheless, six Hxt proteins were 
quantified in the present dataset: Hxt2, 3, 4, 5, 6 and 7. Four of these 
Hxt proteins could be quantified in all samples, irrespective of strain 
and oxygen supply. Hxt6 and Hxt7 share a high protein sequence 
similarity (>99%) and were therefore considered as one protein 
group in this study. These were the most abundant Hxt proteins and 
were consistently more abundant upon glucose exhaustion in all 
tested conditions (Figure 2a), in good agreement with their high af-
finity for glucose [48]. Hxt3 and Hxt4, also identified in all condi-
tions, responded differently in the presence and absence of oxygen. 
The abundance of Hxt4, a high-affinity transporter, expectedly in-
creased upon glucose exhaustion but decreased upon reaching the 
stationary phase in the aerobic cultures; meanwhile, it remained high 
under anaerobiosis. The low-affinity transporter Hxt3 was detected 
at high and low glucose concentrations [49] but decreased in abun-
dance across the growth curve and most significantly in the aerobic 
stationary phase. Hxt5 was only detected in the control strain in the 
presence of oxygen, but its abundance was in line with its induction 
by non-fermentable carbon sources and decreasing growth rates [48]. 
Hxt2 was only detected in the anaerobic cultures of the control strain. 
Thereby, Hxt2 increased in abundance upon glucose exhaustion, as 
expected for a high-affinity transporter. 
Among the 26 glycolytic and fermentation enzymes, 13 major 
isoforms are constitutively expressed with high abundance, while the 
remaining are minor isoforms with lower abundance and condition-
dependent expression [26, 50]. This notion was well reflected in the 
present comprehensive dataset, in which 23 of these proteins could 
be quantified in both conditions of the control strain. All major iso-
enzymes were found; their abundance remained constant under an-
aerobiosis but slightly decreased in the stationary phase under aero-
biosis (Figure 2a). The majority of the minor isoenzymes were de-
tected in at least one of the conditions. The minor glyceraldehyde-
3P dehydrogenase Tdh1 was found to be expressed with and without 
oxygen. However, the enzyme was generally more abundant upon 
glucose exhaustion. Similarly, Glk1 and Hxk1, glucose-repressed 
isoenzymes of the predominant hexokinase 2, were also more abun-
dant upon glucose exhaustion. Adh2, alcohol dehydrogenase re-
pressed by glucose and induced by ethanol [51], was only detected 
in the presence of oxygen, and its abundance strongly increased in 
the mid-diauxic phase. Interestingly, the estimated total amount of 

the glycolytic enzymes was larger than the sum of the other CCM 
enzymes in all conditions (Figure 2b and c).  
The TCA cycle, encompassing a set of 22 proteins located in the mi-
tochondrion, is particularly active during respiration. The majority 
of the TCA cycle proteins were detected in our experiments. Their 
abundance generally strongly increased during the diauxic shift but 
did not change under the anaerobic conditions (Figure 2a). A small 
group of proteins remained unaffected during progression through 
the growth phase under anaerobiosis. For example, Pda1, Pdb1 and 
Lat1, which are three of the five subunits of the pyruvate dehydro-
genase complex, Aco2 and Idp1 remained unchanged. Interestingly, 
Frd1 and Osm1, which are important for protein folding in anaerobic 
conditions [52], also remained unaffected. Many CCM metabolites 
cross the mitochondrial membrane via transporter proteins, and in-
creased respiratory activity is expected to increase the flux of metab-
olites between the cytosol and mitochondria. Accordingly, the abun-
dance of the seven quantified mitochondrial transporters increased 
after glucose exhaustion aerobically but not anaerobically, with a 
marked increase for Odc1 and Sfc1, which are carboxylic acid anti-
porters. Despite the increase in respiratory activity during the diauxic 
shift and phase, which was reflected in the TCA cycle proteins, the 
abundance of anaplerotic proteins Pyc1, Pyc2 and Mae1 remained 
unchanged. Conversely, the abundance of the gluconeogenic pro-
teins Fbp1 and Pck1 and glyoxylate cycle proteins MLs1 and Icl1 
required for ethanol utilisation strongly increased upon glucose ex-
haustion aerobically but was expectedly very stable anaerobically. 
Growth on non-fermentable carbon sources requires a complex met-
abolic rearrangement to supply cytosolic and mitochondrial acetyl-
CoA. The expression of the proteins involved in acetate and acetyl-
CoA metabolism, particularly Acs1 and Ach1, accordingly increased 
during the diauxic phase but was not visibly affected by glucose ex-
haustion under anaerobiosis. 
Redox metabolism, a key for cell survival, is balanced according to 
oxygen availability. While respiring cells can oxidise the NADH 
produced during glucose assimilation via oxidative phosphorylation, 
two-step glycerol formation from dihydroxyacetone phosphate is the 
major electron sink in the absence of oxygen. The abundances of pa-
ralogues Gpd1, Gpd2, Gpp1 and Gpp2 were not strongly affected 
across the different phases and growth conditions (SI Figure 3a), 
which is in agreement with the reported transcriptional regulation 
and (in)activation by post-translational modification (phosphoryla-
tion) [53]. The only noticeable changes were the decreased abun-
dance of Gpp1 in the presence of oxygen and increased abundance 
of Gpp2 upon glucose exhaustion in the absence of oxygen. In aero-
bic conditions, NADH is generally oxidised by external or internal 
NADH dehydrogenases, which shuttle the electrons into the mito-
chondrial electron transfer chain. Contrarily, anaerobic yeast cul-
tures reoxidise the excess NADH formed during biosynthesis via 
glycerol production [54]. The increased abundance of Gut2 during 
the diauxic shift under aerobiosis can be explained by both its role in 
glycerol utilisation and redox balance maintenance (SI Figure 3a). 
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Oxygen-dependent dynamics in other pathways 
Respiration is an important mechanism for energy conservation in 
the presence of the electron acceptor oxygen. After the diauxic shift, 
respiration becomes the main ATP source for the cells. Accordingly, 
the abundance of the ATP synthases and cytochrome oxidases in the 
oxidative phosphorylation pathway increased significantly after glu-
cose exhaustion (SI Figure 6). However, the abundance of these pro-
teins remained constant over the entire growth curve in the anaerobic 
cultures. Respiring cells are prone to generation of reactive oxygen 
species (ROS), for instance by the production of superoxide during 
electron transfer during oxidative phosphorylation, which can induce 
the expression of stress tolerance genes [55]. Accordingly, Sod1 and 
Sod2, enzymes that detoxify superoxide and produce hydrogen per-
oxide [56], were significantly more abundant under the aerobic con-
ditions than under the anaerobic conditions (SI Figure 6). Their 
abundance increased by at least twofold towards the stationary phase 
compared with that under log growth in the presence of oxygen, 
while the protein abundance remained constant under anaerobic 
growth. A similar protein profile was found for the peroxisomal and 
mitochondrial catalase A (Cta1) that detoxifies hydrogen peroxide. 
Nevertheless, the abundance of Ccs1, copper ion chaperone to Sod1, 
was relatively constant and similar between both conditions in the 
control strain (SI Figure 6). 
Heme synthesis, encompassing a set of eight Hem proteins, also de-
pends on oxygen availability [57]. In this study, seven Hem proteins 
could be quantified. The protein abundance of Hem1, 2, 3, 12 and 15 
was either similar between the aerobic and anaerobic conditions or 
higher aerobically (Figure 3a). However, Hem13 and Hem14 were 
only quantified in the anaerobic conditions, although Hem14 could 
be quantified only in one biological replicate based on a few pep-
tides. Hem13 was confidently quantified with more than 10 peptides 
for each biological anaerobic replicate but was not found aerobically. 
Surprisingly, both Hem13 and Hem14 require oxygen for enzymatic 
activity. 
Finally, sterol synthesis also requires oxygen and ergosterol and is 
therefore supplied as an anaerobic growth factor during anaerobic 
yeast cultures [58]. Herein, 17 Erg proteins were found in either the 
aerobic or anaerobic condition or both (Figure 3b). The Erg proteins 
that need oxygen, such as Erg1, Erg3, Erg11 and Erg25–28, were 
either solely present anaerobically or more abundant in the anaerobic 
cultures than in the aerobic cultures. 
 
Survival in the stationary phase in response to oxygen availabil-
ity A previous study has shown a strong effect of oxygen availability 
and the presence of transition through the diauxic phase on yeast cell 
robustness during the stationary phase [59]. This work proposed that 
oxygen availability had a positive effect on the adenylate energy 
charge, longevity, stress response and thermotolerance during the 
stationary phase. However, this study was based on changes in the 
transcript levels, without confirmation at the protein level. In partic-
ular, limited data are known regarding the proteome dynamics under 

anaerobic conditions. To fill this knowledge gap, we studied the pro-
teomic differences between the stationary phase in the anaerobic and 
aerobic conditions. A total of 249 proteins were significantly more 
abundant, and 125 were less abundant in the presence of oxygen than 
in the absence of oxygen (p-value of < 0.05 and fold change of ± 
1.25; SI Table 9 and SI Figure 4). In the stationary phase, the aer-
obic cells still relied on respiration, and the proteins involved in res-
piration were accordingly more abundant under the aerobic condi-
tions. Conversely, the yeast cells entered the stationary phase rather 
abruptly after glucose depletion under the anaerobic conditions. The 
proteins associated with ‘biosynthesis’, ‘glycolysis’ and ‘cytoplas-
mic translation’ were more abundant in the anaerobic stationary cells 
than in the aerobic cells. Several ribosomal proteins were also more 
abundant supposedly owing to the lack of time and resources re-
quired to adjust to the altering conditions. Furthermore, the proteins 
involved in storage metabolism, in particular glycogen metabolism, 
were enriched anaerobically. 
Yeast cells generally accumulate storage carbohydrates in sugar-rich 
conditions that can be used as carbon and energy source to ensure 
survival during the stationary phase. Anaerobic cultures are entirely 
dependent on glycogen and trehalose as energy storage components. 
Conversely, the presence of oxygen enables yeast cells to metabolise 
other available nutrients, such as lipids and amino acids [60–62]. In 
this study, several proteins involved in glycogen metabolism were 
more abundant in the anaerobic cultures than in the aerobic cultures 
(SI Figure 3b). Glucose-6P is the starting point for glycogen metab-
olism and is converted into glucose-1P by Pgm1 or Pgm2. Both pro-
teins were detected under the aerobic and anaerobic conditions, alt-
hough Pgm2 was detected with higher coverage and confidence in 
each biological replicate, as it is the major isoform. The abundance 
of Pgm2 increased strongly (approximately 2.8-fold) after glucose 
depletion under the anaerobic conditions. Unfortunately, Pgm2 was 
only detected in the aerobic conditions after glucose exhaustion, alt-
hough it was less abundant than that in the anaerobic conditions. Glu-
cose-1P is subsequently converted to UDP-glucose by Ugp1. This 
enzyme was consistently more abundant in the absence of oxygen 
over the entire growth curve. Nevertheless, the protein profile was 
similar under both conditions, as the abundance of Ugp1 increased 
considerably after glucose was depleted. In the following step, gly-
cogen synthesis is initiated by Glg1 and Glg2, which were not found 
in our analysis. Glycogen is subsequently generated by Gsy1/2, 
where only Gsy1 was detected in our experiments with sufficient 
confidence in the anaerobic cultures. Glycogen is a polymer that can 
be branched by Glc3; however, this enzyme was not quantified in 
our study. Glycogen can also be utilised by Gph1 to form glucose-
1P again or by Gdb1 for conversion to glucose. Herein, only Gph1 
showed a profile comparable to that of Pgm2. 
Trehalose is another storage metabolite in yeast, which is synthe-
sised from UDP-glucose. It is converted into trehalose-6P by Tps1 
and subsequently into trehalose by Tps2. Trehalose is utilised by 
Nth1, Nth2 and Ath1 and converted into glucose again. In our study, 
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the enzymes leading up to trehalose had similar protein profiles un-
der the aerobic and anaerobic conditions, and the protein abundance 
increased significantly after glucose depletion (SI Figure 3b). How-
ever, utilisation of trehalose was more difficult to capture, as only 
Nth1 was quantified with only a few unique peptides under the aer-
obic and anaerobic conditions. Furthermore, in the absence of oxy-
gen, yeast cells could not catabolise fatty acid by beta-oxidation as 
energy reserve during carbon starvation. Proteins such as Fox2, 
Pox1, Cat2 and Crc1 showed relatively constant expression levels 
over the anaerobic growth curve, while their abundance increased 
drastically after glucose depletion in the presence of oxygen (SI Fig-
ure 6). 
Finally, aerobic stationary-phase cells are known to acquire in-
creased robustness and stress tolerance during transition to the sta-
tionary phase. However, previous studies have indicated that this 
does not apply to anaerobic cultures to the same extent [59]. Stress 
proteins include a range of heat shock proteins (Hsp) with various 
functions. The fold changes and levels of Hsp were comparable in 
the presence and absence of oxygen in the exponential growth phase 
(SI Figure 5), but Hsp was more abundant in both aerobic and an-
aerobic conditions towards the end of the growth curve in the MS 
phase. This increase was markedly greater in the aerobically cultured 
cells, resulting in a significantly lower anaerobic fold change of the 
proteins in the stationary phase. 
 
Proteome-level alterations following genetic minimisation of the 
glycolytic pathway 
The genetic reduction in the MG strain consisted of the removal of 
the 13 minor enzymes involved in glycolysis and fermentation, only 
leaving the 13 major isoenzymes. The present dataset showed that 
most minor isoenzymes were expressed and quantifiable in all sam-
ples from the aerobic and anaerobic batch cultivations, with the ex-
ception of Gpm2 and Adh5 detected only in the anaerobic cultures, 
Adh2 detected only in the aerobic cultures, and Adh4, Gpm3 and 
Pyk2 not detected at all (Figure 4). Tdh2, Eno1 and Adh2 were 
abundant in the batch cultures, and deletion of the minor isoenzymes 
might therefore affect the yeast physiology. The MG strain was pre-
viously well characterised by physiological and transcriptome anal-
yses in the presence of oxygen, revealing that the physiology and 
transcriptome of this strain was nearly identical to that of the control 
strain with a full set of glycolytic and fermentation genes. However, 
the proteome of the MG strain was not explored, and limited data are 
known regarding the response of the MG strain to anaerobiosis. The 
fluxes through glycolysis and the fermentation pathway are substan-
tially higher in anaerobiosis than in aerobiosis [63], and the deletion 
of all minor isoenzymes might therefore have a different cellular im-
pact in the presence and absence of oxygen. As previously observed, 
the physiology of the MG and control strains in the aerobic and an-
aerobic cultures was nearly identical (SI Table 1) [26]. 
The difference in the abundance of the glycolytic and fermentation 
proteins between the MG and parental control strains was assessed 

by comparing the expression levels across the entire growth curve 
using a two-sided two-sample t-test. Remarkably, all major isoen-
zymes displayed identical time profiles between the MG and control 
strains; they were very stable under anaerobiosis, but their profiles 
decreased after the mid-diauxic phase under aerobiosis (Figure 4). 
With the exception of Fba1 and Tdh3, the abundance of the glyco-
lytic and fermentation proteins was well conserved between the MG 
and control strains. The abundance of Tdh3 was consistently higher 
across all growth phases by 40–50% in the MG strain compared to 
the control strain anaerobically (p-value of < 0.01). The estimated 
protein amount of Tdh2 in the control strain was approximately one-
third of the estimated protein amount of Tdh3 both under the aerobic 
and anaerobic conditions (Figure 5). The Tdh1 levels also markedly 
increased after glucose depletion in the control strain (Figure 2a). 
The loss of these relatively abundant minor isoenzymes and subse-
quent overall reduction of glyceraldehyde-3P activity in the MG 
strain might have caused a cross-regulation and an increased abun-
dance of Tdh3. Interestingly, while the minor isoenzyme Eno1 was 
also abundant in the control strain (Figure 5), its deletion had no 
visible effect on the Eno2 level in the MG strain (Figure 4). The 
abundance of Fba1 was slightly (approximately 20–40%) but signif-
icantly higher in the MG strain than in the control strain both in the 
presence and absence of oxygen. Fba1 does not have isoenzymes, 
and this difference in abundance could therefore not be attributed to 
cross-regulation. Fba1 is an abundant protein in yeast, operating far 
from saturation [63]; the flux through glycolysis did not increase in 
the MG strain compared with that in the control strain. This increase 
in the abundance of Fba1 is therefore not likely explained by the need 
for a higher aldolase capacity in the MG strain. 
The enzyme level adjustments within the glycolytic and fermenta-
tion pathways following the deletion of the minor isoenzymes were 
remarkably small but slightly more pronounced under the anaerobic 
conditions. In line with this subtle phenotype, the proteome was not 
visibly affected by the deletion of the minor isoenzymes [cut-off p-
value of 0.05 (5%), fold change threshold of ± 1.25; Table 2 and SI 
Tables 10 and 11]. Consequently, no enriched or depleted GO terms 
or KEGG pathways could be identified. The metabolic comparability 
between both strains is therefore underlined by their similar CCM 
enzyme (Figure 2a) and global proteome profiles. 
 
DISCUSSION 
To our knowledge, this study provides the most comprehensive pro-
teomic study on the response of S. cerevisiae CEN.PK113-7D to ox-
ygen and nutrient availability. We employed tightly controlled batch 
bioreactor cultures and performed biological triplicates combined 
with standardised sample preparation protocols to ensure high repro-
ducibility and accuracy. Albeit different yeast proteome dynamics 
studies have been performed over the past decades [16, 18, 20, 64], 
no study has yet captured the complete spectrum of conditions using 
the same strain and the same highly controlled experimental setup. 
Moreover, the transition from the exponential to the stationary phase 
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under anaerobic conditions has not yet been investigated. This study 
moreover quantified the impact of genetic minimisation of the gly-
colytic pathway on proteome resource allocation using the recently 
established MG strain [23]. The established dataset therefore covers 
the quantitative analysis of 54 individual proteomes, where approx-
imately 40% of all yeast proteins and approximately 99% of the com-
plete protein biomass have been captured. The high reproducibility 
was also highlighted by the strong similarities between the proteo-
mes of the MG and control strains. This comprehensive and accurate 
dataset therefore provides an ideal resource for applied and funda-
mental studies in yeast and more particularly for in silico proteome 
allocation studies. 
The most remarkable observation was the substantially smaller pro-
teome response of yeast cells grown under anaerobiosis than under 
aerobiosis. In both conditions, yeast cells had to tune their metabo-
lism to the transition from glucose excess to exhaustion, leading to a 
shift from exponential to stationary growth. However, these drastic 
changes triggered a far milder response than did the aerobic transi-
tion to and out of the diauxic phase, which represented 58% of the 
measured changes in protein abundance. During the diauxic shift, 
cells rewire the proteome for respiratory growth on ethanol as a main 
carbon source. This transition leads to a multitude of physiological 
and morphological changes, including smaller cell size, increased 
mitochondrial volume, decreased growth rate, increased respiration 
rate and therefore increased ROS production, induction of glucone-
ogenesis and the glyoxylate cycle, and large changes in the fluxes in 
CCM. These changes were well reflected by the observed changes 
in the proteome allocation in this study. For instance, an increase in 
mitochondrial protein abundance was observed, while the glycolytic 
proteins were simultaneously downregulated [13–15, 65]. The tran-
sition from the diauxic to the stationary phase led to a further strong 
modification of the abundance of approximately 120 proteins. Con-
versely, as few as 55 proteins showed strongly altered abundances 
after glucose depletion under anaerobiosis, and prolonged cultiva-
tion in the stationary phase did not further alter the proteome. Using 
the exact same strain and experimental setup, Bisschops et al. (2015) 
[66] showed a stronger and faster decrease in viability upon glucose 
exhaustion for anaerobic cultures than for aerobic cultures. Based on 
physiological and transcriptome data, the authors attributed this lack 
of robustness to the inability of cells to adapt to glucose exhaustion 
in the absence of oxygen. Conversely, the diauxic shift provides the 
time and resources needed to transition from fast growth to growth 
arrest in the presence of oxygen. The present proteomics study sup-
ports this view in different ways. The small protein response during 
transition from sugar excess to depletion suggests that the anaerobic 
cells do not have the means or proper regulatory network to adjust to 
the new conditions. Furthermore, aerobic cultures acquire robustness 
and stress tolerance during transition to the stationary phase as a re-
sult of the expression of the ‘stress-response’ genes [67], such as 
Hsp. Both aerobic and anaerobic cultures showed a similar ‘stress 
signalling’ as shown by the increase in the Hsp level towards the 

stationary phase; however, this increase was far less pronounced in 
the anaerobic cultures. The abundance of Hsp was therefore substan-
tially lower in the absence of oxygen, in line with the lower tran-
scription of Hsp and lower thermo-tolerance of the anaerobic station-
ary-phase cultures than of the aerobic cultures observed by 
Bisschops et al. [66]. Considering that industrial-scale processes fa-
vour anaerobic environments for practical and financial reasons, the 
present results provide valuable information for the construction of 
predictive metabolic models [5, 9, 68–73]. 
In the presence of oxygen, yeast cells switch from respiro-fermenta-
tive to full respiratory metabolism once glucose is depleted. Accord-
ingly, the abundance of respiration-related proteins increased upon 
glucose exhaustion in the aerobic cultures herein, while their protein 
profiles remained constant in the anaerobic cultures. Several other 
non-respiratory pathways in S. cerevisiae, such as fatty acid beta-
oxidation and haeme and sterol synthesis, are oxygen-dependent. 
Expectedly, most detected proteins in these pathways were aerobi-
cally more abundant or contained similar abundance profiles to the 
anaerobic cultures. Nevertheless, oxygen-dependent protein Hem13 
involved in haeme synthesis was only confidently quantified under 
anaerobic conditions, and the lack of detection in the aerobic condi-
tions suggests that Hem13 is far less abundant. The transcription of 
Hem13 is repressed by oxygen and haeme itself [74, 75]; therefore, 
this protein lacks repression in the absence of oxygen, and its abun-
dance is thereby increased. Similar protein profiles under anaerobic 
conditions were previously found for Hem1, Hem14 and Hem15 
[18]. Several oxygen-dependent Erg proteins were also more abun-
dant or solely detected under anaerobiosis. Herein, the transcription 
of various Erg proteins was regulated by oxygen, and an absence in-
creased the expression of these Erg proteins [76] [77]. 
Glycolysis and alcoholic fermentation are well-studied pathways 
that play an important role in sugar conversion in the industry. Ear-
lier studies have shown that major glycolytic isoenzymes are abun-
dant proteins whose expression remains relatively stable irrespective 
of the growth environment, although these measurements often rely 
on gene transcription data or enzyme assays that cannot distinguish 
between isoenzymes [26]. The present proteome dataset confirmed 
that the abundance of most major glycolytic isoenzymes decreased 
during the diauxic shift and further decreased during the stationary 
phase in the presence of oxygen. Conversely, their abundance was 
unaffected during transition to the stationary phase under the anaer-
obic environments. Aerobic cultures in the stationary phase therefore 
display substantially lower glycolytic enzyme levels than do anaer-
obic cultures. For instance, a 2.5- to 3.5-fold lower abundance was 
observed for Pgk1, Gpm1, Pdc1 and Adh1. While this difference in 
abundance is not expected to affect survival in the stationary phase, 
in which the glycolytic flux is extremely low or absent, it will influ-
ence the ability of stationary-phase cells to reach fast growth when 
transitioned to a sugar-rich medium. When exposed to anaerobic 
sugar excess, cells grown aerobically to the stationary phase have to 
allocate resources to increase the abundance of glycolytic enzymes 
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and reach fast growth, while cells pre-cultured anaerobically do not. 
As glycolytic enzymes are, next to ribosomal proteins, the most 
abundant proteins, this aspect should be considered during the start-
up phase of anaerobic industrial fermentations and their modelling. 
The expression of the minor glycolytic isoenzymes is condition-de-
pendent, and several of these isoenzymes are reported to have dis-
tinct functions, especially during changes in carbon source availabil-
ity. The present dataset showed that the presence of oxygen only vis-
ibly affected the abundance of Eno1, Tdh1 and Hxk1, as their abun-
dance was significantly higher after glucose depletion under anaero-
bic conditions than under aerobic conditions (Figure 2). While some 
minor isoenzymes had a substantial abundance in yeast (Figure 5, 
e.g. Eno1, Tdh2 and Hxk1), with the exception of Tdh3, their re-
moval did not trigger visible changes in the abundance of the major 
isoenzymes. Tdh3, glyceraldehyde dehydrogenase major isoenzyme, 
notably increased by 1.5-fold in the MG strain as compared to the 
control strain under anaerobic conditions (Figure 4). The same trend 
was observed aerobically, albeit much less pronounced. Similar to 
most glycolytic enzymes, glyceraldehyde dehydrogenase operates at 
overcapacity, meaning that the enzyme capacity largely exceeds the 
flux catalysed in vivo [78]. Therefore, the increased abundance of 
Tdh3 in the MG strain does most likely not result from the need to 
compensate for Tdh1 and Tdh2 deletion to maintain the glycolytic 
flux. Glyceraldehyde dehydrogenase isoenzymes do not have any 
well-described moonlighting functions. However, next to their cyto-
solic localization, they are also found in the cell wall in which they 
might play a yet uncovered role. The composition and structure of S. 
cerevisiae cell wall are affected by oxygen, and several cell wall pro-
teins are specifically enriched under anaerobiosis (e.g. cell wall man-
noprotein of the Srp1p/Tip1p family), which might explain the ob-
served cross-regulation in the MG strain. Herein, Fba1 was also 
mildly but significantly upregulated in the MG mutant both aerobi-
cally (1.2 to 1.4-fold change) and anaerobically (1.15-fold change). 
As Fba1 does not have isoenzymes and is solely responsible for the 
glycolytic flux, its change in abundance is difficult to explain. Fba1 
is also involved in vacuolar function as a subunit of the vacuolar V-
ATPase [79]. However, as no or minimal differences were observed 
in the other components of V-ATPase between the MG and control 
strains, the molecular mechanism leading to the slightly higher abun-
dance of Fba1 in the MG strain remains unclear. Many factors can 
alter the functionality of proteins, including post-translational modi-
fications, protein localization or interactions with other proteins or 
biomolecules [80, 81]. A recent study has suggested that phosphor-
ylation regulates the activity of many glycolytic enzymes [7]. How-
ever, the stable abundance of glycolytic proteins between the MG 
and control strains was well reflected in the stability of in vitro en-
zyme activity [26], suggesting the lack of differences in the post-
transcriptional regulation between these strains. Taken together, re-
markably few proteome-level changes were observed as a conse-
quence of the genetic reduction of glycolysis. This similarity be-

tween both strains finally underscores the usefulness of the simpli-
fied MG strain for proteome allocation studies and for studying the 
role of post-translational modifications in the regulation of glycoly-
sis.  
The complete proteome dynamics and abundance data for the batch 
reactor-cultured CEN.PK113-7D strain and the related MG mutant 
for aerobic and anaerobic growth are shown in SI Table 12. Raw 
mass spectrometric data and unprocessed search files are publicly 
available via the PRIDE repository under the project code 
PXD031412. 
 
AUTHOR INFORMATION 
Corresponding Authors 
*Delft University of Technology, Department of Biotechnology, van 
der Maasweg 9, 2629 HZ Delft, The Netherlands. E-mail: 
p.a.s.daran-lapujade@tudelft.nl or m.pabst@tudelft.nl 
 
AUTHOR CONTRIBUTIONS 
MP, PDL and MDR designed the experiments. MDR performed ex-
periments. MA helped with data generation. WB developed the pro-
teome analysing pipeline in Python. MDR, WB and MP analysed the 
data. MDR, PDL and MP wrote the manuscript. All authors have 
given approval to the final version of the manuscript. 
 
NOTES 
This work was supported by a TU Delft start-up fund. The Authors 
declare that there is no conflict of interest. 
 
ACKNOWLEDGMENTS 
The authors are grateful to valuable discussions with our colleagues 
from the department of Biotechnology and acknowledge Carol de 
Ram, Christiaan Mooiman, Erik de Hulster, Jelle van Alphen and 
Casper van der Luijt for technical support. 
 
REFERENCES 
1.  Paddon, C.J., Keasling, J.D.: Semi-synthetic artemisinin: A model for 

the use of synthetic biology in pharmaceutical development. Nat. Rev. 
Microbiol. 12, 355–367 (2014). https://doi.org/10.1038/nrmicro3240 

2.  Nielsen, J.: Yeast Systems Biology: Model Organism and Cell Factory. 
Biotechnol. J. 14, 1–9 (2019). https://doi.org/10.1002/biot.201800421 

3.  Ro, D.K., Paradise, E.M., Quellet, M., Fisher, K.J., Newman, K.L., 
Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., Chang, 
M.C.Y., Withers, S.T., Shiba, Y., Sarpong, R., Keasling, J.D.: 
Production of the antimalarial drug precursor artemisinic acid in 
engineered yeast. Nature. 440, 940–943 (2006). 
https://doi.org/10.1038/nature04640 

4.  Nielsen, J., Larsson, C., van Maris, A., Pronk, J.: Metabolic engineering 
of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol. 
24, 398–404 (2013). https://doi.org/10.1016/j.copbio.2013.03.023 

5.  Lao-Martil, D., Verhagen, K.J.A., Schmitz, J.P.J., Teusink, B., Wahl, 
S.A., van Riel, N.A.W.: Kinetic Modeling of Saccharomyces cerevisiae 
Central Carbon Metabolism: Achievements, Limitations, and 
Opportunities. Metabolites. 12, (2022). 
https://doi.org/10.3390/metabo12010074 

6.  Nilsson, A., Nielsen, J.: Metabolic Trade-offs in Yeast are Caused by 
F1F0-ATP synthase. Sci. Rep. 6, 1–11 (2016). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.23.509138doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Yeast proteome dynamics under aerobic and anaerobic conditions. Maxime den Ridder et al., 2022 

 

11 

 

https://doi.org/10.1038/srep22264 
7.  Xia, J., Sánchez, B., Chen, Y., Campbell, K., Kasvandik, S., Nielsen, 

J.: Proteome allocations change linearly with specic growth rate of 
Saccharomyces cerevisiae under glucose-limitation. 1–21 (2021) 

8.  Metzl-Raz, E., Kafri, M., Yaakov, G., Soifer, I., Gurvich, Y., Barkai, 
N.: Principles of cellular resource allocation revealed by condition-
dependent proteome profiling. Elife. 6, 1–21 (2017). 
https://doi.org/10.7554/eLife.28034 

9.  Björkeroth, J., Campbell, K., Malina, C., Yu, R., Bartolomeo, F. Di, 
Nielsen, J.: Proteome reallocation from amino acid biosynthesis to 
ribosomes enables yeast to grow faster in rich media. Proc. Natl. Acad. 
Sci. U. S. A. 117, 21804–21812 (2020). 
https://doi.org/10.1073/pnas.1921890117 

10.  Elsemman, I.E., Rodriguez Prado, A., Grigaitis, P., Garcia Albornoz, 
M., Harman, V., Holman, S.W., van Heerden, J., Bruggeman, F.J., 
Bisschops, M.M.M., Sonnenschein, N., Hubbard, S., Beynon, R., 
Daran-Lapujade, P., Nielsen, J., Teusink, B.: Whole-cell modeling in 
yeast predicts compartment-specific proteome constraints that drive 
metabolic strategies. Nat. Commun. 13, 1–12 (2022). 
https://doi.org/10.1038/s41467-022-28467-6 

11.  De Deken, R.H.: The Crabtree effects and its relation to the petite 
mutation. J. Gen. Microbiol. 44, 157–165 (1966). 
https://doi.org/10.1099/00221287-44-2-157 

12.  Van Dijken, J.P., Bauer, J., Brambilla, L., Duboc, P., Francois, J.M., 
Gancedo, C., Giuseppin, M.L.F., Heijnen, J.J., Hoare, M., Lange, H.C., 
Madden, E.A., Niederberger, P., Nielsen, J., Parrou, J.L., Petit, T., 
Porro, D., Reuss, M., Van Riel, N., Rizzi, M., Steensma, H.Y., Verrips, 
C.T., Vindeløv, J., Pronk, J.T.: An interlaboratory comparison of 
physiological and genetic properties of four Saccharomyces cerevisiae 
strains. Enzyme Microb. Technol. 26, 706–714 (2000). 
https://doi.org/10.1016/S0141-0229(00)00162-9 

13.  Slavov, N., Budnik, B.A., Schwab, D., Airoldi, E.M., van 
Oudenaarden, A.: Constant Growth Rate Can Be Supported by 
Decreasing Energy Flux and Increasing Aerobic Glycolysis. Cell Rep. 
7, 705–714 (2014). https://doi.org/10.1016/j.celrep.2014.03.057 

14.  Zampar, G.G., Kümmel, A., Ewald, J., Jol, S., Niebel, B., Picotti, P., 
Aebersold, R., Sauer, U., Zamboni, N., Heinemann, M.: Temporal 
system-level organization of the switch from glycolytic to 
gluconeogenic operation in yeast. Mol. Syst. Biol. 9, (2013). 
https://doi.org/10.1038/msb.2013.11 

15.  Murphy, J.P., Stepanova, E., Everley, R.A., Paulo, J.A., Gygi, S.P.: 
Comprehensive Temporal Protein Dynamics during the Diauxic Shift 
in Saccharomyces cerevisiae. Mol. Cell. Proteomics. 14, 2454–2465 
(2015). https://doi.org/10.1074/mcp.M114.045849 

16.  Costenoble, R., Picotti, P., Reiter, L., Stallmach, R., Heinemann, M., 
Sauer, U., Aebersold, R.: Comprehensive quantitative analysis of 
central carbon and amino-acid metabolism in Saccharomyces 
cerevisiae under multiple conditions by targeted proteomics. Mol. Syst. 
Biol. 7, (2011). https://doi.org/10.1038/msb.2010.122 

17.  Picotti, P., Bodenmiller, B., Mueller, L.N., Domon, B., Aebersold, R.: 
Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted 
Proteomics. Cell. 138, 795–806 (2009). 
https://doi.org/10.1016/j.cell.2009.05.051 

18.  Helbig, A.O., De Groot, M.J.L., Van Gestel, R.A., Mohammed, S., De 
Hulster, E.A.F., Luttik, M.A.H., Daran-Lapujade, P., Pronk, J.T., Heck, 
A.J.R., Slijper, M.: A three-way proteomics strategy allows differential 
analysis of yeast mitochondrial membrane protein complexes under 
anaerobic and aerobic conditions. Proteomics. 9, 4787–4798 (2009). 
https://doi.org/10.1002/pmic.200800951 

19.  Ho, B., Baryshnikova, A., Brown, G.W.: Unification of Protein 
Abundance Datasets Yields a Quantitative Saccharomyces cerevisiae 
Proteome. Cell Syst. 6, 192-205.e3 (2018). 
https://doi.org/10.1016/j.cels.2017.12.004 

20.  de Groot, M.J.L., Daran-Lapujade, P., van Breukelen, B., Knijnenburg, 
T.A., de Hulster, E.A.F., Reinders, M.J.T., Pronk, J.T., Heck, A.J.R., 
Slijper, M.: Quantitative proteomics and transcriptomics of anaerobic 
and aerobic yeast cultures reveals post-transcriptional regulation of key 
cellular processes. Microbiology. 153, 3864–3878 (2007). 
https://doi.org/10.1099/mic.0.2007/009969-0 

21.  Di Bartolomeo, F., Malina, C., Campbell, K., Mormino, M., Fuchs, J., 
Vorontsov, E., Gustafsson, C.M., Nielsen, J.: Absolute yeast 
mitochondrial proteome quantification reveals trade-off between 
biosynthesis and energy generation during diauxic shift. Proc. Natl. 
Acad. Sci. U. S. A. 117, 7524–7535 (2020). 
https://doi.org/10.1073/pnas.1918216117 

22.  den Ridder, M., Knibbe, E., van den Brandeler, W., Daran-Lapujade, 
P., Pabst, M.: A systematic evaluation of yeast sample preparation 
protocols for spectral identifications, proteome coverage and post-
isolation modifications. J. Proteomics. 261, 104576 (2022). 
https://doi.org/10.1016/j.jprot.2022.104576 

23.  Escalera-Fanjul, X., Quezada, H., Riego-Ruiz, L., González, A.: 
Whole-Genome Duplication and Yeast’s Fruitful Way of Life. Trends 
Genet. 35, 42–54 (2019). https://doi.org/10.1016/j.tig.2018.09.008 

24.  Luo, Z., Yu, K., Xie, S., Monti, M., Schindler, D., Fang, Y., Zhao, S., 
Liang, Z., Jiang, S., Luan, M., Xiao, C., Cai, Y., Dai, J.: Compacting a 
synthetic yeast chromosome arm. Genome Biol. 22, 1–18 (2021). 
https://doi.org/10.1186/s13059-020-02232-8 

25.  Postma, E.D., Couwenberg, L.G.F., van Roosmalen, R.N., Geelhoed, 
J., de Groot, P.A., Daran-Lapujade, P.: Top-down, knowledge-based 
genetic reduction of yeast central carbon metabolism. bioRxiv. 
2021.08.24.457526 (2021) 

26.  Solis-Escalante, D., Kuijpers, N.G.A., Barrajon-Simancas, N., van den 
Broek, M., Pronk, J.T., Daran, J.M., Daran-Lapujade, P.: A Minimal 
set of glycolytic genes reveals strong redundancies in saccharomyces 
cerevisiae central metabolism. Eukaryot. Cell. 14, 804–816 (2015). 
https://doi.org/10.1128/EC.00064-15 

27.  Entian, K.-D., Kötter, P.: 25 Yeast Genetic Strain and Plasmid 
Collections. Methods Microbiol. 36, 629–666 (2007). 
https://doi.org/10.1016/S0580-9517(06)36025-4 

28.  Verduyn, C., Postma, E., Scheffers, W.A., Van Dijken, J.P.: Effect of 
benzoic acid on metabolic fluxes in yeasts: A continuous-culture study 
on the regulation of respiration and alcoholic fermentation. Yeast. 8, 
501–517 (1992). https://doi.org/10.1002/yea.320080703 

29.  Kanshin, E., Tyers, M., Thibault, P.: Sample Collection Method Bias 
Effects in Quantitative Phosphoproteomics. J. Proteome Res. 14, 2998–
3004 (2015). https://doi.org/10.1021/acs.jproteome.5b00404 

30.  Köcher, T., Pichler, P., Swart, R., Mechtler, K.: Analysis of protein 
mixtures from whole-cell extracts by single-run nanolc-ms/ms using 
ultralong gradients. Nat. Protoc. 7, 882–890 (2012). 
https://doi.org/10.1038/nprot.2012.036 

31.  Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., 
Lajoie, G.: PEAKS: Powerful software for peptide de novo sequencing 
by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17, 
2337–2342 (2003). https://doi.org/10.1002/rcm.1196 

32.  Waskom, M.: Seaborn: Statistical Data Visualization. J. Open Source 
Softw. 6, 3021 (2021). https://doi.org/10.21105/joss.03021 

33.  Kanehisa, M., Susumu Goto: KEGG: Kyoto Encyclopedia of Genes 
and Genomes. Nucleic Acids Res. 28, 27–30 (2000). 
https://doi.org/10.3892/ol.2020.11439 

34.  Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, 
A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., De Hoon, 
M.J.L.: Biopython: Freely available Python tools for computational 
molecular biology and bioinformatics. Bioinformatics. 25, 1422–1423 
(2009). https://doi.org/10.1093/bioinformatics/btp163 

35.  Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., 
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., 
van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., 
Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., 
Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., 
Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, 
A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., 
Bardelli, A. Pietro, Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, 
A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., 
Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., 
Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, 
F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.L., Allen, G.E., Lee, 
G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., 
Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.23.509138doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Yeast proteome dynamics under aerobic and anaerobic conditions. Maxime den Ridder et al., 2022 

 

12 

 

Miranda Cardoso, J.V., Reimer, J., Harrington, J., Rodríguez, J.L.C., 
Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., 
Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., 
Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., 
McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., 
Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., 
Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., 
Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y.: SciPy 
1.0: fundamental algorithms for scientific computing in Python. Nat. 
Methods. 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-
0686-2 

36.  Bedre, R.: Reneshbedre/bioinfokit: Bioinformatics data analysis and 
visualization toolkit, (2020) 

37.  Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., 
Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., von Mering, 
C.: STRING 8 - A global view on proteins and their functional 
interactions in 630 organisms. Nucleic Acids Res. 37, 412–416 (2009). 
https://doi.org/10.1093/nar/gkn760 

38.  Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J., 
Mann, M.: Exponentially modified protein abundance index (emPAI) 
for estimation of absolute protein amount in proteomics by the number 
of sequenced peptides per protein. Mol. Cell. Proteomics. 4, 1265–1272 
(2005). https://doi.org/10.1074/mcp.M500061-MCP200 

39.  Deutsch, E.W., Bandeira, N., Sharma, V., Perez-Riverol, Y., Carver, 
J.J., Kundu, D.J., García-Seisdedos, D., Jarnuczak, A.F., 
Hewapathirana, S., Pullman, B.S., Wertz, J., Sun, Z., Kawano, S., 
Okuda, S., Watanabe, Y., Hermjakob, H., Maclean, B., Maccoss, M.J., 
Zhu, Y., Ishihama, Y., Vizcaíno, J.A.: The ProteomeXchange 
consortium in 2020: Enabling “big data” approaches in proteomics. 
Nucleic Acids Res. 48, D1145–D1152 (2020). 
https://doi.org/10.1093/nar/gkz984 

40.  Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., 
Hewapathirana, S., Kamatchinathan, S., Kundu, D.J., Prakash, A., 
Frericks-Zipper, A., Eisenacher, M., Walzer, M., Wang, S., Brazma, A., 
Vizcaíno, J.A.: The PRIDE database resources in 2022: a hub for mass 
spectrometry-based proteomics evidences. Nucleic Acids Res. 50, 
D543–D552 (2022). https://doi.org/10.1093/nar/gkab1038 

41.  Ghaemmaghami, S., Huh, W.K., Bower, K., Howson, R.W., Belle, A., 
Dephoure, N., O’Shea, E.K., Weissman, J.S.: Global analysis of protein 
expression in yeast. Nature. 425, 737–741 (2003). 
https://doi.org/10.1038/nature02046 

42.  Kolkman, A., Daran-Lapujade, P., Fullaondo, A., Olsthoorn, M.M.A., 
Pronk, J.T., Slijper, M., Heck, A.J.R.: Proteome analysis of yeast 
response to various nutrient limitations. Mol. Syst. Biol. 2, (2006). 
https://doi.org/10.1038/msb4100069 

43.  Fuge, E.K., Braun, E.L., Werner-Washburne, M.: Protein synthesis in 
long-term stationary-phase cultures of Saccharomyces cerevisiae. J. 
Bacteriol. 176, 5802–5813 (1994). 
https://doi.org/10.1128/jb.176.18.5802-5813.1994 

44.  Choder, M.: A general topoisomerase I-dependent transcriptional 
repression in the stationary phase in yeast. Genes Dev. 5, 2315–2326 
(1991). https://doi.org/10.1101/gad.5.12a.2315 

45.  Valcourt, J.R., Lemons, J.M.S., Haley, E.M., Kojima, M., Demuren, 
O.O., Coller, H.A.: Staying alive: Metabolic adaptations to quiescence. 
Cell Cycle. 11, 1680–1696 (2012). https://doi.org/10.4161/cc.19879 

46.  Werner-Washburne, M., Braun, E.L., Crawford, M.E., Peck, V.M.: 
Stationary phase in Saccharomyces cerevisiae. Mol. Microbiol. 19, 
1159–1166 (1996). https://doi.org/10.1111/j.1365-
2958.1996.tb02461.x 

47.  Paalme, T., Elken, R., Vilu, R., Korhola, M.: Growth efficiency of 
Saccharomyces cerevisiae on glucose/ethanol media with a smooth 
change in the dilution rate (A-stat). Enzyme Microb. Technol. 20, 174–
181 (1997). https://doi.org/10.1016/S0141-0229(96)00114-7 

48.  Özcan, S., Johnston, M.: Function and Regulation of Yeast Hexose 
Transporters. Microbiol. Mol. Biol. Rev. 63, 554–569 (1999). 
https://doi.org/10.1128/mmbr.63.3.554-569.1999 

49.  Ozcan, S., Johnston, M.: Three different regulatory mechanisms enable 
yeast hexose transporter (HXT) genes to be induced by different levels 
of glucose. Mol. Cell. Biol. 15, 1564–1572 (1995). 

https://doi.org/10.1128/mcb.15.3.1564 
50.  Fraenkel, D.G.: The top genes: On the distance from transcript to 

function in yeast glycolysis. Curr. Opin. Microbiol. 6, 198–201 (2003). 
https://doi.org/10.1016/S1369-5274(03)00023-7 

51.  Thomson, J.M., Gaucher, E.A., Burgan, M.F., Kee, D.W. de, Li, T., 
Aris, J.P., Benner, S.A.: Resurrecting ancestral alcohol dehydrogenases 
from yeast. Nat. Genet. 37, 630–635 (2005). 
https://doi.org/10.1038/ng1553.Resurrecting 

52.  Camarasa, C., Faucet, V., Dequin, S.: Role in anaerobiosis of the 
isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded 
by OSM1 and FRDS1. Yeast. 391–401. (2007). 
https://doi.org/10.1002/yea 

53.  Påhlman, A.K., Granath, K., Ansell, R., Hohmann, S., Adler, L.: The 
Yeast Glycerol 3-Phosphatases Gpp1p and Gpp2p Are Required for 
Glycerol Biosynthesis and Differentially Involved in the Cellular 
Responses to Osmotic, Anaerobic, and Oxidative Stress. J. Biol. Chem. 
276, 3555–3563 (2001). https://doi.org/10.1074/jbc.M007164200 

54.  van Dijken, J.P., Scheffers, W.A.: Redox balances in the metabolism of 
sugars by yeasts. FEMS Microbiol. Lett. 32, 199–224 (1986). 
https://doi.org/10.1016/0378-1097(86)90291-0 

55.  Herrero, E., Ros, J., Bellí, G., Cabiscol, E.: Redox control and oxidative 
stress in yeast cells. Biochim. Biophys. Acta - Gen. Subj. 1780, 1217–
1235 (2008). https://doi.org/10.1016/j.bbagen.2007.12.004 

56.  Han, D., Williams, E., Cadenas, E.: Mitochondrial respiratory chain-
dependent generation of superoxide anion and its release into the 
intermembrane space. Biochem. J. 353, 411–416 (2001). 
https://doi.org/10.1042/0264-6021:3530411 

57.  Kwast, K.E., Burke, P. V, Poyton, R.O.: Oxygen sensing and the 
transcriptional regulation of oxygen-responsive genes in yeast. J. Exp. 
Biol. 201, 1177–1195 (1998) 

58.  Snoek, I., Steensma, H.Y.: Factors involved in anaerobic growth of 
Saccharomyces cerevisiae. Yeast. 24, 1–10 (2007). 
https://doi.org/10.1002/yea 

59.  Bisschops, M.M.M., Vos, T., Martínez-Moreno, R., Cortés, P. de la T., 
Pronk, J.T., Daran-Lapujade, P.: Oxygen availability strongly affects 
chronological lifespan and thermotolerance in batch cultures of 
Saccharomyces cerevisiae. Microb. Cell. 2, 429–444 (2015). 
https://doi.org/10.15698/mic2015.11.238 

60.  Boender, L.G.M., Almering, M.J.H., Dijk, M., van Maris, A.J.A., de 
Winde, J.H., Pronk, J.T., Daran-Lapujade, P.: Extreme calorie 
restriction and energy source starvation in Saccharomyces cerevisiae 
represent distinct physiological states. Biochim. Biophys. Acta - Mol. 
Cell Res. 1813, 2133–2144 (2011). 
https://doi.org/10.1016/j.bbamcr.2011.07.008 

61.  François, J., Parrou, J.L.: Reserve carbohydrates metabolism in the 
yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25, 125–145 
(2001). https://doi.org/10.1016/S0168-6445(00)00059-0 

62.  Wilson, K., McLeod, B.J.: The influence of conditions of growth on the 
endogenous metabolism of Saccharomyces cerevisiae: effect on 
protein, carbohydrate, sterol and fatty acid content and on viability. 
Antonie Van Leeuwenhoek. 42, 397–410 (1976). 
https://doi.org/10.1007/BF00410171 

63.  Daran-Lapujade, P., Rossell, S., van Gulik, W.M., Luttik, M.A.H., de 
Groot, M.J.L., Slijper, M., Heck, A.J.R., Daran, J.-M., de Winde, J.H., 
Westerhoff, H. V., Pronk, J.T., Bakker, B.M.: The fluxes through 
glycolytic enzymes in Saccharomyces cerevisiae are predominantly 
regulated at posttranscriptional levels. Proc. Natl. Acad. Sci. 104, 
15753–15758 (2007). https://doi.org/10.1073/pnas.0707476104 

64.  Bruckmann, A., Hensbergen, P.J., Balog, C.I.A., Deelder, A.M., 
Brandt, R., Snoek, I.S.I., Steensma, H.Y., van Heusden, G.P.H.: 
Proteome analysis of aerobically and anaerobically grown 
Saccharomyces cerevisiae cells. J. Proteomics. 71, 662–669 (2009). 
https://doi.org/10.1016/j.jprot.2008.11.012 

65.  Picotti, P., Clément-Ziza, M., Lam, H., Campbell, D.S., Schmidt, A., 
Deutsch, E.W., Röst, H., Sun, Z., Rinner, O., Reiter, L., Shen, Q., 
Michaelson, J.J., Frei, A., Alberti, S., Kusebauch, U., Wollscheid, B., 
Moritz, R.L., Beyer, A., Aebersold, R.: A complete mass-spectrometric 
map of the yeast proteome applied to quantitative trait analysis. Nature. 
494, 266–270 (2013). https://doi.org/10.1038/nature11835 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.23.509138doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Yeast proteome dynamics under aerobic and anaerobic conditions. Maxime den Ridder et al., 2022 

 

13 

 

66.  Bisschops, M.M.M., Vos, T., Martínez-moreno, R., De, P., Cortés, T., 
Pronk, J.T., Daran-lapujade, P.: Oxygen availability strongly affects 
chronological lifespan and thermotolerance in batch cultures of 
Saccharomyces cerevisiae. 2, 429–444 (2015). 
https://doi.org/10.15698/mic2015.11.238 

67.  Herman, P.K.: Stationary phase in yeast. Curr. Opin. Microbiol. 5, 602–
607 (2002). https://doi.org/10.1016/S1369-5274(02)00377-6 

68.  Malina, C., Di Bartolomeo, F., Kerkhoven, E.J., Nielsen, J.: Constraint-
based modeling of yeast mitochondria reveals the dynamics of protein 
import and iron-sulfur cluster biogenesis. iScience. 24, 103294 (2021). 
https://doi.org/10.1016/j.isci.2021.103294 

69.  Lu, H., Kerkhoven, E.J., Nielsen, J.: Multiscale models quantifying 
yeast physiology: towards a whole-cell model. Trends Biotechnol. 40, 
291–305 (2022). https://doi.org/10.1016/j.tibtech.2021.06.010 

70.  Elsemman, I.E., Prado, A.R., Grigaitis, P., Albornoz, M.G., Harman, 
V., Holman, S.W., Heerden, J. van, Bruggeman, F.J., Bisschops, 
M.M.M., Sonnenschein, N., Hubbard, S., Beynon, R., Daran-Lapujade, 
P., Nielsen, J., Teusink, B.: Whole-cell modeling in yeast predicts 
compartment-specific proteome constraints that drive metabolic 
strategies. bioRxiv. 2021.06.11.448029 (2021) 

71.  Kolkman, A., Daran-Lapujade, P., Fullaondo, A., Olsthoorn, M.M.A., 
Pronk, J.T., Slijper, M., Heck, A.J.R., Elsemman, I.E., Rodriguez 
Prado, A., Grigaitis, P., Garcia Albornoz, M., Harman, V., Holman, 
S.W., van Heerden, J., Bruggeman, F.J., Bisschops, M.M.M., 
Sonnenschein, N., Hubbard, S., Beynon, R., Daran-Lapujade, P., 
Nielsen, J., Teusink, B., Huh, K., W., Falvo, V., J., Gerke, C., L., 
Carroll, S., A., Howson, W., R., Weissman, S., J., O’Shea, K., E., 
Prokisch, H., Scharfe, C., Camp, D.G., Xiao, W., David, L., Andreoli, 
C., Monroe, M.E., Moore, R.J., Gritsenko, M.A., Kozany, C., Hixson, 
K.K., Mottaz, H.M., Zischka, H., Ueffing, M., Herman, Z.S., Davis, 
R.W., Meitinger, T., Oefner, P.J., Smith, R.D., Steinmetz, L.M., 
Malina, C., Yu, R., Bjorkeroth, J., Kerkhoven, E.J., Nielsen, J., Di 
Bartolomeo, F., Malina, C., Campbell, K., Mormino, M., Fuchs, J., 
Vorontsov, E., Gustafsson, C.M., Nielsen, J., Lao-Martil, D., Verhagen, 
K.J.A., Schmitz, J.P.J., Teusink, B., Wahl, S.A., van Riel, N.A.W., Lu, 
H., Kerkhoven, E.J., Nielsen, J., Xia, J., Sánchez, B.J., Chen, Y., 
Nielsen, J.: Proteome allocations change linearly with the specific 
growth rate of Saccharomyces cerevisiae under glucose limitation. Nat. 
Commun. 2, 1–12 (2022). https://doi.org/10.1038/s41467-022-30513-2 

72.  Regueira, A., Lema, J.M., Mauricio-Iglesias, M.: Microbial inefficient 
substrate use through the perspective of resource allocation models. 
Curr. Opin. Biotechnol. 67, 130–140 (2021). 
https://doi.org/10.1016/j.copbio.2021.01.015 

73.  Chen, Y., Li, F., Mao, J., Chen, Y., Nielsen, J.: Yeast optimizes metal 
utilization based on metabolic network and enzyme kinetics. Proc. Natl. 
Acad. Sci. U. S. A. 118, (2021). 
https://doi.org/10.1073/pnas.2020154118 

74.  Keng, T.: HAP1 and ROX1 form a regulatory pathway in the repression 
of HEM13 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 
12, 2616–2623 (1992). https://doi.org/10.1128/mcb.12.6.2616-
2623.1992 

75.  Amillet, J.M., Buisson, N., Labbe-Bois, R.: Positive and negative 
elements involved in the differential regulation by heme and oxygen of 
the HEM13 gene (coproporphyrinogen oxidase) in Saccharomyces 
cerevisiae. Curr. Genet. 28, 503–511 (1995). 
https://doi.org/10.1007/BF00518161 

76.  Jordá, T., Puig, S.: Regulation of ergosterol biosynthesis in 
saccharomyces cerevisiae. Genes (Basel). 11, 1–18 (2020). 
https://doi.org/10.3390/genes11070795 

77.  Rintala, E., Toivari, M., Pitkänen, J.P., Wiebe, M.G., Ruohonen, L., 
Penttilä, M.: Low oxygen levels as a trigger for enhancement of 
respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics. 
10, 461 (2009). https://doi.org/10.1186/1471-2164-10-461 

78.  Van Hoek, P., Van Dijken, J.P., Pronk, J.T.: Effect of specific growth 
rate on fermentative capacity of baker’s yeast. Appl. Environ. 
Microbiol. 64, 4226–4233 (1998). 
https://doi.org/10.1128/aem.64.11.4226-4233.1998 

79.  Lu, M., Ammar, D., Ives, H., Albrecht, F., Gluck, S.L.: Physical 
interaction between aldolase and vacuolar H+-ATPase is essential for 

the assembly and activity of the proton pump. J. Biol. Chem. 282, 
24495–24503 (2007). https://doi.org/10.1074/jbc.M702598200 

80.  Chen, Y., Nielsen, J.: Flux control through protein phosphorylation in 
yeast. FEMS Yeast Res. 16, 1–14 (2016). 
https://doi.org/10.1093/femsyr/fow096 

81.  Ridder, M. Den, Daran-lapujade, P., Pabst, M.: Shot-gun proteomics : 
why thousands of unidentified signals matter. (2018). 
https://doi.org/10.1093/femsyr/foz088 

 
 
 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.23.509138doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Yeast proteome dynamics under aerobic and anaerobic conditions. Maxime den Ridder et al., 2022 

 

14 

 

 

FIGURE 1. Yeast proteome dynamics study capturing the transition from proliferation to stationary phase under aerobic and anaerobic con-
ditions. A) Schematic overview of glycolysis in the yeast control strain (CEN.PK113-7D, black) and the MG strain (IMX372, blue). The enzymes in 
blue are retained in MG yeast (*Adh3 is a mitochondrial protein). B) Yeast growth in aerobic and anaerobic cultures. Glucose (red) and ethanol (yellow) 
concentrations, and OD660 (blue, secondary y-axis) were measured during the different growth phases of aerobic and anaerobic batch cultures for the 
control yeast and the MG strain. The values shown are averages obtained from three biological replicates. Standard deviations are indicated by error bars. 
The dotted grey lines indicate time points at which samples were taken for proteome analysis. Proteome samples were taken from each biological replicate 
in the aerobic cultures after 6, 9, 12, 16.5 and 27 hours of growth, in the mid-exponential (ME), late-exponential (LE), early-diauxic (ED), mid-diauxic 
(MD) and (mid-) stationary (MS) growth phase, respectively. Furthermore, proteome samples were taken of the anaerobic cultures after 7.5, 10.5, 13.5 
and 16.5 hours of growth, in the ME, LE, early-stationary (ES) and MS growth phase, respectively. Proteome samples were subjected to quantitative 
shotgun proteomics experiments, using 10-plex TMT isobaric labelling and a one-dimensional, 4-hour chromatographic separation. Database searching 
and quantitative analysis was performed using PEAKS X and using a tailor-made Python data processing pipeline. C) Annotation of yeast protein func-
tions using Gene Ontology (GO) terms. Based on the classifications of GO annotation, the overall functions of the identified yeast proteins (with at least 
2 unique peptides present) were categorized into cellular component, and displayed in pie chart format with absolute protein numbers (average of three 
biological replicates). The global proteome changes between the mid-exponential and mid-stationary phase under aerobic and anaerobic conditions in 
control and MG strain were visualised using volcano plots. The fold changes were normalized to the aerobic and anaerobic mid-exponential phases. The 
log2 of the abundance fold change between the two conditions was plotted against the significance (-log10p), using a p-value threshold of <0.05 and a 
fold change threshold of >1.25 (which corresponds to a log2 fold change threshold +/- 0.32). Significant changes of mid-stationary proteins were coloured 
by their direction of change (red if higher, blue if lower, or peach if similar to their mid-exponential equivalents). The total number of proteins with 
changes are listed in Table 1.  
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FIGURE 2. Yeast central carbon metabolism protein abundances under aerobic and anaerobic growth. A) The heat map shows the temporal log2 
fold changes of the enzymes of the central carbon metabolism (CCM) of the control yeast CEN.PK113-7D and MG yeast for the mid-exponential (ME), 
late-exponential (LE), early-diauxic (ED), mid-diauxic (MD), early-stationary (ES), and mid-stationary (MS) phases, compared to the mid-exponential 
(ME) phase for each condition. The proteins belonging to specific pathways of the CCM are highlighted with different colours. White gaps in the map 
indicate that the protein was not detected, or that it has been deleted in case of the MG strain. No filtering for significance or fold-change thresholds was 
applied for this figure, and all enzymes that were detected were included in the heat map. B and C) The circle graph (1=control aerobic, 2=MG aerobic, 
3=control anaerobic and 4=MG anaerobic) on the right express the emPAI values of the individual proteins for each condition as circle areas. The bar 
graph on the right shows the averaged emPAI values per enzyme. Standard deviations are indicated by the error bars in the bar graph. 
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FIGURE 3. Protein fold change line graphs for non-respiratory oxygen-dependent pathways during aerobic and anaerobic growth. The fold-
change values were plotted against the time relative to glucose depletion (t=0) in hours for proteins involved in heme (A) and sterol (B) synthesis. The 
different colours of the line graphs represent: “orange” the control yeast strain under anaerobic conditions (WT_AN), “light blue” the control strain under 
aerobic conditions (WT_O2). The line graphs represent the average of the three biological replicates, where the error bars indicate the standard deviation. 
The grey dashed line represents the glucose concentration over time (mM, secondary y-axis). The number of quantified peptides per biological replicate 
are shown in brackets. Asterisks (*) and circumflexes (ˆ) indicate the significance (p values) between the aerobic and anaerobic experiments as follows: 
p< 0.001 (***), p< 0.01 (**), p< 0.05 (*), and p< 0.1 (ˆ). 

 
 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.23.509138doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Yeast proteome dynamics under aerobic and anaerobic conditions. Maxime den Ridder et al., 2022 

 

17 

 

 

FIGURE 4. Protein fold change line graphs for the major glycolytic enzymes under aerobic and anaerobic growth. The fold-change values were 
plotted against the time relative to glucose depletion (t=0) in hours for all proteins of the major glycolytic enzymes. The different colours of the line 
graphs represent: “red” for the MG strain under anaerobic conditions, “dark blue” the MG strain under aerobic conditions, “orange” for the control yeast 
strain under anaerobic conditions and “light blue” for the control strain under aerobic conditions. Shown are the average values of the biological triplicates 
where the error bars indicate the standard deviations. The grey dashed line represents the glucose concentration over time (mM, secondary y-axis). 
Asterisks (*) and circumflexes (ˆ) indicate the significant changes between the control and MG strain. P-values are indicated as follows: < 0.001 (***), 
< 0.01 (**), < 0.05 (*), and < 0.1 (ˆ). 
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FIGURE 5. Abundance bar graphs for the glycolytic isoenzymes under aerobic and anaerobic conditions for the yeast control strain 
(CEN.PK113-7D). The bar graphs show the averaged protein abundances for the observed glycolytic isoenzymes expressed by their emPAI (exponen-
tially modified protein abundance) indices, under aerobic (grey bars with green dashed lines) and anaerobic (grey bars) growth. The bars represent the 
average values of the individual biological replicates (with at least one identification per replicate), where the error bars indicate the standard deviation. 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.23.509138doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Yeast proteome dynamics under aerobic and anaerobic conditions. Maxime den Ridder et al., 2022 

 

19 

 

 
 
TABLE 1. Number of proteins with significant changes during the transition to subsequent growth phase under aerobic and anaerobic condi-
tions for the yeast control strain (CEN.PK113-7D). The total number of proteins indicates the number of proteins that were detected in at least two 
biological replicates. Proteins were normalized to the preceding growth phase. Only proteins with a fold change of 1.25 or greater (which corresponds to 
a log2 fold change of +/- 0.32) and a p-value of at least 0.05 are considered. The number of proteins quantified indicates the number of proteins that were 
detected and quantified in at least two biological replicates. 
 

 
 
 
 
  

CEN.PK113-7D growth transition #Proteins quantified # more abundant # less abundant 
ANAEROBIC 

Late exponential / Mid-Exponential 1092 1 22 

Early stationary / Late Exponential 1092 52 3 

Stationary / Early Stationary 1092 0 0 

Stationary / Mid-Exponential 1092 78 42 

AEROBIC 

Late exponential / Mid-Exponential 998 12 21 

Early Diauxic / Late exponential 998 67 4 

Mid-Diauxic / Early Diauxic 1168 125 24 

Stationary / Mid-Diauxic 1168 90 34 

Stationary / Mid exponential 1168 364 174 
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TABLE 2. Number of proteins with significant changes between the yeast control strain (CEN.PK113-7D) and minimal glycolysis (MG) stain 
under aerobic and anaerobic conditions. The protein abundances of the MG strain were normalized to the yeast control strain (for the same growth 
phase and the same condition). Only proteins with a fold change of 1.25 (log2 fold change of +/- 0.32) or greater and a p-value of at least 0.05 are 
considered. The number of proteins quantified indicates the number of proteins that were detected and quantified in at least two biological replicates.  
 

MG mutant vs. control yeast #Proteins quantified # more abundant # less abundant 
ANAEROBIC 
Mid exponential 978 10 13 
Late exponential 978 10 8 
Early stationary 978 8 18 
Stationary 978 7 6 
AEROBIC 
Mid-Exponential 1019 18 10 
Late-Exponential 950 33 13 
Early-Diauxic 1019 15 9 
Mid-Diauxic 1019 3 3 
Stationary 1019 3 2 
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