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ABSTRACT: The yeast Saccharomyces cerevisiae is a widely used eukaryotic model organism and a promising cell factory for industry.
However, despite decades of research, the regulation of its metabolism is not yet fully understood, and its complexity represents a major
challenge for engineering and optimising biosynthetic routes. Recent studies have demonstrated the potential of resource and proteomic allo-
cation data in enhancing models for metabolic processes. However, comprehensive and accurate proteome dynamics data that can be used for
such approaches are still very limited. Therefore, we performed a quantitative proteome dynamics study to comprehensively cover the transition
from exponential to stationary phase for both aerobically and anaerobically grown yeast cells. The combination of highly controlled reactor
experiments, biological replicates and standardised sample preparation procedures ensured reproducibility and accuracy. Additionally, we se-
lected the CEN.PK lineage for our experiments because of its relevance for both fundamental and applied research. Together with the proto-
trophic, standard haploid strain CEN.PK113-7D, we also investigated an engineered strain with genetic minimisation of the glycolytic pathway,
resulting in the quantitative assessment of over 1700 proteins across 54 proteomes. These proteins account for nearly 40% of the overall yeast
proteome and approximately 99% of the total protein biomass. The anaerobic cultures showed remarkably less proteome-level changes com-
pared to the aerobic cultures, during transition from the exponential to the stationary phase as a consequence of the lack of the diauxic shift in
the absence of oxygen. These results support the notion that anaerobically growing cells lack time and resources to adapt to changes in the
environment. This proteome dynamics study constitutes an important step towards better understanding of the impact of glucose exhaustion
and oxygen on the complex proteome allocation process in yeast. Finally, the established proteome dynamics data provide a valuable resource

for the development of resource allocation models as well as for metabolic engineering efforts.

INTRODUCTION

The yeast Saccharomyces cerevisiae is a widely used eukaryotic
model organism and cell factory that represents a promising alterna-
tive to the fossil fuel-based production of chemicals. However, eco-
nomic competitiveness is still a major hurdle for such cell factories.
Constructing improved strains that realise high productivity and
yield involves extensive genetic engineering to rewire native ge-
nomes that have been optimised for growth and survival over mil-
lions of years of evolution. Nevertheless, intensive research over the
past decades have led to successful developments where yeast pro-
cesses were brought to an industrial scale, such as for the production
of the drug precursor artemisinic acid [1-4]. In silico approaches to
reproduce and predict microbial metabolism have been simultane-
ously developed to assist metabolic engineering efforts [5]. How-
ever, the complexity of yeast metabolism limits the predictive power
of these models. A promising approach to improve such models is to
consider resource allocation and more particularly the cost of protein
expression [6—10]. A prerequisite for this approach is the availability
of comprehensive and accurate proteome dynamics data established
under tightly controlled conditions. Unfortunately, such data are
commonly not available and are difficult to obtain.

S. cerevisiae displays a remarkable metabolic flexibility, as it tunes
its metabolism between full respiratory sugar dissimilation and alco-
holic fermentation, with different degrees of respiro-fermentative
metabolism as a function of environmental cues, substrate and oxy-
gen supply. The well-known Crabtree effect results in partial repres-
sion of respiration and therefore in respiro-fermentative growth in

the presence of excess sugar (e.g. glucose or galactose) even in aer-
obic conditions [11]. Conversely, the production of gluconeogenic
substrates as ethanol or acetate leads to strict respiratory metabolism
in aerobic settings. S. cerevisiae will fully ferment carbon sources in
the absence of oxygen. However, respiratory and fermentative sub-
strate dissimilation have a large impact on ATP yield, as full respi-
ration of 1 mol of glucose results in 16 mol of ATP, while fermenta-
tion of the same amount of glucose only yields 2 mol of ATP [12].
The metabolic mode therefore strongly affects cellular resources, in
particular their optimum allocation for growth and survival. To ob-
tain a better insight into how S. cerevisiae responds to changes in
substrate and oxygen supplies, we monitored its proteome employ-
ing tightly controlled bioreactors. Several yeast proteomics studies
have already been performed over the past decades [13-21]. In this
study, we monitored the dynamic proteome responses to substrate
availability during all growth phases of yeast (exponential, diauxic
and stationary phases) under both aerobic and anaerobic conditions
[22]. Thus far, only little has been known regarding the proteome
dynamics under anaerobic conditions, in particular during transition
from the exponential to the stationary phase.

Considering eukaryotes, such as S. cerevisiae, genetic redundancy is
another level of complexity for in silico design and experimental de-
velopment of cell factories. Many genes, more particularly those in-
volved in metabolism, have orthologues with similar functions [23],
but often with a poorly understood physiological role. In view of
minimal genomes, several studies have explored the requirement for


https://doi.org/10.1101/2022.09.23.509138
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.23.509138; this version posted September 23, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Yeast proteome dynamics under aerobic and anaerobic conditions. Maxime den Ridder et al., 2022

these redundant genes and implemented top-down approaches to re-
duce genetic redundancy [24-26]. Such minimised genomes have
the potential to facilitate the complete redesign and construction of
entirely synthetic yeast genomes. Moreover, genetic minimisation of
key metabolic pathways can facilitate the formulation and validation
of mathematical models by eliminating isoenzymes with different
regulatory and kinetic properties. Solis-Escalante et al. constructed
a yeast strain in which the 26 genes encoding enzymes of the Emb-
den—Meyerhof—Parnas pathway of glycolysis, the main pathway for
sugar utilisation, were minimalised to a set of 13 genes in the mini-
mal glycolysis (MG) strain (Figure 1a) [26]. While this genetically
reduced strain appeared physiologically comparable to its parent
strain (with the full set of glycolytic genes), the underlying proteome
dynamics and potential protein level adjustments were not investi-
gated. In this study, the engineered MG strain IMX372 and its pa-
rental S. cerevisiae CEN.PK113-7D were investigated together dur-
ing transition from the exponential to the stationary phase in the pres-
ence or absence of oxygen. The temporal proteome dynamics across
all growth phases were monitored from triplicate bioreactor cultures.
Quantitative shotgun proteomic experiments were performed using
10-plex tandem mass tag (TMT) isobaric labelling. The use of tightly
controlled reactor experiments in combination with robust sample
preparation protocols allows the establishment of highly accurate
quantitative data, which constitute valuable resources for in silico
approaches, including metabolic engineering effort assistance. Fur-
thermore, the established proteome dynamics data expand the cur-
rent understanding of protein dynamics in yeast during carbon-lim-
ited growth under both aerobic and anaerobic conditions from the
proliferation to the stationary phase. Finally, the comparison to the
MG mutant quantified the impact of the loss of the minor glycolytic
isoenzymes on the global proteome.

EXPERIMENTAL SECTION

Yeast strains and media. The MG yeast strain IMX372 (MATa
ura3-52  his3-1 leu2-3,112 MAL2-8¢ SUC2 glkl::SpHis5,
hxkl::KILEU2, tdhl::KIURA3, tdh2, gpm2, gpm3, enol, pyk2, pdcS,
pdc6, adh2, adh5, adh4) and CEN.PK113-7D (MATa MAL2-8C
SUC?2) used in this study share the CEN.PK genetic background [26,
27]. Shake flask and batch cultures were grown in synthetic medium
(SM) containing 5.0 g/L (NH4)SOs4, 3.0 g/L KH:POs4, 0.5 g/L
MgSO4:7H20 and 1 mL/L trace elements in demineralized water, set
at pH 6. The medium was heat sterilized (120°C) and supplemented
with 1 mL/L filter sterilized vitamin solution and 20 g/L heat steri-
lized (110 °C) glucose (SMQ) [28]. The bioreactor medium was sup-
plemented with 0.2 g/L antifoam Emulsion C (Sigma, St. Louise,
USA) or with 0.2 g/L antifoam Pluronic PE 6100 (BASF, Ludwigs-
hafen, Germany) for anaerobic and aerobic cultures, respectively. In
case of anaerobic cultivations, the medium was also supplied with
anaerobic growth factors, 10 mg/L ergosterol (Sigma-Aldrich, St.
Louis, MO) and 420 mg/L Tween 80 (polyethylene glycol sorbate

monooleate, Merck, Darmstadt, Germany) dissolved in ethanol. Fro-
zen stocks of S. cerevisiae cultures were prepared by the addition of
glycerol (30% v/v) in 1 mL aliquots for storage at -80 °C. Bioreactor
cultures. Acrobic shake flask cultures were grown at 30°C in a In-
nova incubator shaker (New Brunswick™ Scientific, Edison, NJ,
USA) at 200 rpm using 500 mL round-bottom shake flasks contain-
ing 100 mL medium. Triplicate aerobic batch cultures of control and
MG yeast were performed in 2 L laboratory fermenters (Applikon,
Schiedam, The Netherlands) with a 1.2 L working volume under aer-
obic and anaerobic conditions. SM-medium was used and main-
tained at pH 5 by the automatic addition of 2 M KOH. Mixing of the
medium was performed with stirring at 800 rpm. Gas inflow was fil-
ter sterilized and compressed air (Linde Gas, Schiedam, The Nether-
lands) or nitrogen (<10 ppm oxygen, Linde Gas) was sparged via the
bottom of the bioreactor at a rate of 500 mL/min, for aerobic and
anaerobic cultures, respectively. Dissolved oxygen levels were
measured with Clark electrodes (Mettler Toledo, Greifensee, Swit-
zerland). The temperature of the fermenters was maintained at 30°C.
The reactors were inoculated with exponentially growing shake flask
cultures of S. cerevisiae strain IMX372 and CEN.PK113-7D to ob-
tain an initial optical density (ODeeo) of approximately 0.2. Sampling
for HPLC and ODsso measurements was done every 90 minutes. Pro-
teome samples were taken at 6, 9, 12, 16.5, 27 and at 7.5, 10.5, 13.5,
16.5 hours in aerobic and anaerobic conditions, respectively. Bio-
mass, metabolites and gas measurements. To monitor growth,
ODsso measurements were performed on a JENWAY 7200 spectro-
photometer (Cole-Parmer, Stone, UK). The biomass dry weight was
determined in duplicate as described earlier [28]. For extracellular
metabolite determinations, broth samples were centrifuged for 5 min
at 13,000 g and the supernatant was collected for analysis with a Wa-
ters alliance 2695 HPLC (Waters Chromatography B.V., Etten-Leur,
The Netherlands) with an Aminex HPX-87H ion exchange column
(Biorad, Hercules, CA, USA). The HPLC was operated at 60°C and
5 mM of H2SOs4 was used as mobile phase at a rate of 0.6 mL/min.
Off-gas concentrations of CO2 and Oz were measured using an NGA
2000 analyser. Proteome samples (~3—5 mg dry weight) were taken
from batch cultures. The samples were collected in multifold in tri-
chloroacetic acid (TCA) (Merck Sigma, Cat. No. T0699) with a final
concentration of 10%. Samples were centrifuged at 4000 g for 5 min
at 4°C. Cell pellets were frozen at -80°C [29]. Yeast cell lysis, pro-
tein extraction and proteolytic digestion. Cell pellets of the aero-
bic and anaerobic cultures were resuspended in lysis buffer com-
posed of 100 mM Triethylammonium bicarbonate (TEAB) contain-
ing 1% SDS and phosphatase/protease inhibitors. Yeast cells were
lysed by glass bead milling by 10 cycles of 1 minute shaking alter-
nated with 1 min rest on ice. Proteins were reduced by addition of 5
mM DTT and incubation for 1 hour at 37°C. Subsequently, the pro-
teins were alkylated for 60 min at room temperature in the dark by
addition of 50 mM acrylamide. Protein precipitation was performed
by addition of four volumes of ice-cold acetone (-20°C), followed by
1 hour freezing at -20°C. The proteins were solubilized using 100
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mM ammonium bicarbonate. Proteolytic digestion was performed
by Trypsin (Promega, Madison, WI), 1:100 enzyme to protein ratio,
and incubated at 37°C overnight. Solid phase extraction was per-
formed with an Oasis HLB 96-well pElution plate (Waters, Milford,
USA) to desalt the mixture. Eluates were dried using a SpeedVac
vacuum concentrator at 50°C and frozen at -80°C. Quantitative
temporal proteome analysis. Desalted peptides were reconstituted
in 100 mM TEAB and TMT10-plex reagents (Thermo) were added
from stocks dissolved in 100% anhydrous acetonitrile (ACN). Pep-
tides were mixed with labels in a 1:8 ratio (12.5 ug to 100 pg) and
incubated for 1 hour at 25°C and 400 rpm and the labelling reaction
was stopped by addition of 5% hydroxylamine to a final concentra-
tion of 0.4%. Labelled peptides were then mixed in at approx. equal
quantities. Two bridging samples were included in each TMT10-
plex experiment to improve comparability between different experi-
ments. The bridging sample was a mixture of the three biological
replicates of MG yeast under aerobic conditions in the mid-station-
ary phase. Peptide solutions were diluted with water to obtain a final
concentration of acetonitrile (ACN) lower than 5%. Solid phase ex-
traction was performed to desalt the final peptide mixture. Desalted
peptides were subsequently frozen at -80°C for 1 hour and dried by
vacuum centrifugation. Peptides were finally resuspended in 3%
ACN/0.01% TFA prior to MS-analysis to give an approximate con-
centration of 500 ng per pL. Samples were labelled as indicated in

. Shotgun proteomic analysis. An aliquot corresponding
to approximately 1 pg protein digest was analysed using an one di-
mensional shot-gun proteomics approach [30]. Briefly, the samples
were analysed using a nano-liquid-chromatography system consist-
ing of an EASY nano-LC 1200, equipped with an Acclaim PepMap
RSLC RP C18 separation column (50 pum x 150 mm, 2 pm, Cat. No.
164568), and a QE plus Orbitrap mass spectrometer (Thermo Fisher
Scientific, Germany). The flow rate was maintained at 350 nL/min
over a linear gradient from 5% to 25% solvent B over 180 min, then
from 25% to 55% over 60 min, followed by back equilibration to
starting conditions. Data were acquired from 5 to 240 min. Solvent
A was H2O containing 0.1% formic acid (FA), and solvent B con-
sisted of 80% ACN in H20 and 0.1% FA. The Orbitrap was operated
in data-dependent acquisition (DDA) mode acquiring peptide signals
from 385-1250 m/z at 70 K resolution in full MS mode with a max-
imum ion injection time (IT) of 75 ms and an automatic gain control
(AGC) target of 3E6. The top 10 precursors were selected for
MS/MS analysis and subjected to fragmentation using higher-energy
collisional dissociation (HCD). MS/MS scans were acquired at 35 K
resolution with AGC target of 1E5 and IT of 100 ms, 1.2 m/z isola-
tion width and normalized collision energy (NCE) of 32. Processing
of mass spectrometric raw data. Data were analysed against the
proteome database from Saccharomyces cerevisiae (Uniprot, strain
ATCC 204508 / S288C, Tax ID: 559292, July 2020) using PEAKS
Studio X (Bioinformatics Solutions Inc., Waterloo, Canada) [31], al-
lowing for 20 ppm parent ion and 0.02 m/z fragment ion mass error,

3 missed cleavages, acrylamide and TMT10 label as fixed and me-
thionine oxidation and N/Q deamidation as variable modifications.
Peptide spectrum matches were filtered against 1% false discovery
rates (FDR) and identifications with >2 unique peptides. Changes in
protein abundances between different time points using the TMT
quantification option provided by the PEAKSQ software tool (Bio-
informatics Solutions Inc., Canada). Auto normalization was used
for quantitative analysis of the proteins, in which the global ratio was
calculated from the total intensity of all labels in all quantifiable pep-
tides. Quantitative analysis was performed using protein identifica-
tions containing at least 2 unique peptides, which peptide identifica-
tions were filtered against 1% FDR. The significance method for
evaluating the observed abundance changes was set to ANOVA and
the significance score was expressed as the -10xlog10(p), where p is
the significance testing p-value. The p-value represents the likeli-
hood that the observed change is caused by random chance. Results
from PEAKSQ were exported to ‘proteins.csv’, containing the quan-
tified proteins. Pathway analysis, functional enrichment, and
data visualisation. Briefly, the exported ‘proteins.csv’ files from
PEAKSAQ, listing the quantified proteins for each experiment, were
directly imported into the Python environment. Normalization be-
tween data was performed using a bridging sample. A function was
further established that links Uniprot accession numbers and yeast
genes (as obtained from https://www.uniprot.org/docs/yeast.txt, and
which subsequently was used to annotate identified proteins from the
experiments with correct gene names. The biological triplicates per
condition (aerobic and anaerobic) and strain (control and MG) were
treated separately. Furthermore, each biological replicate consisted
of two additional technical replicates. To analyse the technical and
biological replicates, clustermaps were made using a self-built Py-
thon function based on the clustermap function from the Seaborn
package in Python [32], using the Euclidean distances metric and the
average linkage method. Only proteins detected in all three biologi-
cal replicates were used for the cluster analysis. The fold change of
each protein in a specific condition was calculated relative to the
bridging sample. The average fold changes of the technical replicates
were subsequently used to determine the standard deviations of the
biological replicates. The averages of the biological replicates were
determined to obtain the four sub-datasets i) control aerobic, ii) MG
aerobic iii) MG anaerobic and iv) control anaerobic. All graphs ulti-
mately show the analyses of these biological-replicate averages and
their corresponding standard deviations.

To study how protein abundances changed in individual cellular
pathways, the obtained proteomics data were analysed using the
KEGG (Kyoto Encyclopaedia of Genes and Genome) pathway data-
base [33]. All the up-to-date KEGG pathways were retrieved with
the constructed ‘KEGG _tool.py’ code. Here, the Bio. KEGG.REST
module from the Biopython package in Python was used [34].
Thereby, the functions ‘kegg_list” was used to list all pathways for
S. cerevisiae, and ‘kegg_get’ to retrieve gene names that are assigned
to a specific pathway. Since many pathways have an extensive list


https://doi.org/10.1101/2022.09.23.509138
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.23.509138; this version posted September 23, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Yeast proteome dynamics under aerobic and anaerobic conditions. Maxime den Ridder et al., 2022

of members, the pathways in the central carbon metabolism (CCM)
were reduced to the most important genes in order to enable mean-
ingful visualisation in graphs. Using the above mentioned cluster-
map function, the protein fold changes of the CCM were plotted on
a heatmap for each of the experiments, without any clustering. For
better visualisation of the trends, the data were normalised to the
mid-exponential (ME) phase. The same function was moreover used
to display the average absolute intensity of every protein throughout
the whole growth curve, using logl0 and absolute scale, respec-
tively. The significance of a difference in biological-replicate-aver-
age fold changes between two datasets was assessed by performing
a two-sided two-sample unpaired t-test (also known as Welch’s t-
test), using the ‘ttest_ind_from_stats’ function from the ‘SciPy.stats’
module in Python [35]. Global proteome changes between two ex-
periments or phases were visualised in volcano plots, where the -
10log10(p) is plotted against the log2(fold change) between the two
conditions. These plots were generated using the ‘gene_exp.volcano’
a modified version of the GeneExpression.volcano function from the
‘Bioinfokit.visuz’ module in Python [36]. This function enabled the
division of the fold changes between two experiments into i) insig-
nificant changes, ii) statistically significant changes (but not neces-
sarily biologically significant), iii) statistically and likely biologi-
cally significant changes. For this study the statistical significance
threshold was generally set to p <0.05. The (presumed) biological
significance threshold was set to a log2 fold change threshold of +/-
0.32 (indicating a 1.25 absolute fold change).

A functional enrichment analysis using the STRING database was
performed in order to determine whether specific GO-terms or
KEGG-pathways are enriched under a particular condition [37]. For
this, Python was used to programmatically accesses the STRING da-
tabase via an API. This created a dictionary containing the up- and
downregulated proteins, the species identifier (4932 for S. cere-
visiae), the functional categories that should be assessed, the FDR
threshold (<0.05 in this study), and an optional set of ‘background
genes’ with as alternative background the whole species proteome.
The function ‘backgroundgene 2 string’ retrieves the protein-spe-
cific string identifiers for the back-ground genes/proteins, which in
this case were all proteins detected across the experiments. Estima-
tion of the average protein content for the aerobic and anaerobic
growth conditions using emPAI and PAI indices was performed ac-
cording to Yasushi Ishihama et al., 2005 [38]. Circle graphs were made
using the ‘surf” function in Matlab, where circle areas represent the ob-
tained emPAI values. Data availability. Mass spectrometric raw data
have been deposited to the ProteomeXchange Consortium [39] via
the PRIDE [40] partner repository and are publicly available under
the project code PXD031412.

RESULTS

Proteome dynamics of laboratory control CEN.PK113-7D and
MG yeast in aerobic and anaerobic batch bioreactor cultures
To optimise data reproducibility and reliability, we performed the
batch cultures in bioreactors in which mixing, aeration and pH were
tightly controlled. Independent triplicate cultures were conducted for
the two investigated strains to further increase biological signifi-
cance. Furthermore, we selected the prototrophic control strain S.
cerevisiae CEN.PK113-7D — a popular lineage for biotechnology for
which several omics datasets are already available — and the MG var-
iant (IMX372) lacking glycolytic minor isoenzymes, for our study
( ). The batch cultures were sampled during all growth
phases, ranging from the proliferation phase to growth arrest in the
stationary phase ( ). Generally, the presence or absence of
oxygen is known to strongly affect yeast physiology, which results
in differences in metabolism and growth phases. During growth on
glucose, aerobic cultures both respire and ferment, producing etha-
nol and other fermentation products. The growth on glucose is fol-
lowed by a diauxic growth phase during which fermentation prod-
ucts are fully respired until the stationary phase. Conversely, S. cere-
visiae fully ferments glucose and does not respire in the absence of
oxygen. Dissimilation of fermentation products requires oxygen;
therefore, anaerobic cultures directly switch from exponential
growth on glucose to the stationary phase, without a diauxic phase.
These physiological differences were also observed in the growth
and metabolite profiles performed in our study (

). Aerobic proteome dynamics were monitored in time with
sampling at 6, 9, 12, 16.5 and 27 hours of growth, corresponding to
the mid-exponential, late exponential, early diauxic, mid-diauxic and
stationary growth phases, respectively (
sampling time points to the physiology, we sampled the anaerobic
cultures at 7.5, 10.5, 13.5 and 16.5 hours of growth, corresponding

). To align the

to the mid- and late exponential, early stationary and stationary
growth phases, respectively ( ). After cell lysis and trypsin
digestion, peptide samples of three biological replicates per condi-
tion were labelled using TMT10-plex reagents, mixed equally and
subjected to a 4-hour (gradient) shotgun proteomics experiment (

). On average, 1175 and 1106 proteins were quantified in the
control yeast under aerobic and anaerobic conditions, respectively,
with at least two unique peptides and 1% FDR. Similarly, 1131 and
1127 proteins were quantified confidently on average for the aerobic
and anaerobic cultures of the MG strain, respectively. A total of 1734
proteins were quantified across all TMT experiments ( ),
which is close to 40% of the total proteome considering the theoret-
ical expression of approximately 4500 proteins at any time [41]. The
protein amount was estimated using the emPAI index [38]. Further-
more, the total protein content was estimated by summing all emPAI
values, thereby assuming for unidentified proteins the lowest ob-
served emPAI value of our study. This indicated that more than 99%
of the total protein biomass was captured in our study (

). The detected proteins were predominantly assigned
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to intracellular organelle functional GO categories, consisting of cy-
tosolic, mitochondrial and ribosomal proteins (

), which could be explained by their high expression levels [19,
42]. A similar GO term assignment was found for both strains and
conditions.
The crude protein quantification profiles were further analysed using
a Python data processing pipeline to enable a tailored visualisation
and interpretation of the large-scale data. To this end, the data from
the 14 separate TMT experiments were compared for their temporal
and conditional protein abundance changes in the control strain
(CEN.PK113-7D) and MG yeast strain IMX372 under (an)aerobic
conditions. Data were presented as fold changes for each protein in
a specific condition relative to a bridging sample. The bridging (con-
trol) sample used in all TMT experiments was a mixture of the three
biological replicates of the aerobic stationary-phase MG yeast to im-
prove comparability between the experiments ( ).
To assess experimental reproducibility, we compared global proteo-
mic data with cluster analysis data based on Euclidean distances us-
ing three biological replicates per strain and condition and two tech-
nical replicates per time point within each biological replicate. This
demonstrated clustering of replicates of the different growth phases
per strain and condition, confirming the reproducibility of the reactor
experiments and proteomic analyses (
tein abundance of the three biological replicates per condition and
strain was further used for the interpretation of the proteome dynam-
ics data.

). The average pro-

Effects of oxygen availability on the global proteome dynamics
across the growth curve

To explore the impact of oxygen availability on the yeast proteome,
we first focused on the growth phases with the most marked change
in the global proteome between the aerobic and anaerobic cultures
for the control strain CEN.PK113-7D (i.e. stationary and mid-expo-
nential phases). While a similar number of proteins were quantified
in the presence and absence of oxygen, the number of differently ex-
pressed proteins between the stationary and mid-exponential phases
varied significantly between both conditions (p-value of < 0.05 and
fold change of + 1.25). For the aerobic cultures, 364 proteins were
significantly more abundant under carbon starvation (stationary
phase), while this only accounted for 78 proteins under anaerobiosis
( ). A significantly lower abundance was also
observed in the stationary phase for 174 proteins than in the expo-
nential growth phase in the presence of oxygen and for 42 proteins
only in the absence of oxygen ( ).

Deprived of usable carbon source, stationary-phase yeast cells gen-
erally arrest growth, thereby entering a state of decreased metabo-
lism and biosynthesis and yielding overall lower transcription and
translation rates [43, 44]. Ribosomal proteins have been shown to be
expressed at lower levels in the stationary phase [45, 46]. In good
agreement with physiological data, the proteins involved in pro-
cesses associated with protein synthesis and cellular growth showed

decreased abundance in the transition between the exponential and
stationary growth phases under both aerobic and anaerobic condi-
tions, as shown in the categories ‘gene expression’, ‘ribosome as-
sembly’ and ‘cellular macromolecule biosynthetic process’ (

). Yeast cells transition from respiro-fermentation on
glucose to full respiration using ethanol as a primary carbon source
in the presence of oxygen. This increase in respiratory activity was
well reflected in the proteome in this study, as proteins more abun-
dant in the stationary phase (than in the exponential phase) were typ-
ically associated with mitochondrial respiration in the aerobic con-
ditions, including ‘generation of precursor metabolites and energy’,
‘mitochondrion organisation’ and ‘transmembrane transport’ (

). As expected, this response was not observed in the non-

respiring, anaerobic cultures. In these cultures, most proteins in-
volved in carbohydrate catabolic and disaccharide metabolic pro-
cesses showed an increased abundance in the stationary compared to
the mid-exponential phase, presumably to ensure survival in growth-
arrested cells. Proteins in the cellular components involving catego-
ries such as “cell periphery’ and ‘plasma membrane’ were also found
to be more abundant ( ).
The comparison of the proteomic data across the growth phases re-
vealed that the diauxic shift had the strongest impact on proteomic
rearrangement, with 24 proteins with lower abundance and 125 pro-
teins with higher abundance between the beginning of the diauxic
growth and mid-diauxic phases ( ). The di-
auxic shift was characterised by an increased abundance in proteins
involved in aerobic respiration, fatty acid metabolism and precursor
metabolite and energy generation, in line with the switch from
respiro-fermentative to fully respiratory metabolism. Conversely,
the set of proteins with decreased abundance during the diauxic shift
was enriched for proteins involved in protein synthesis in the cytosol.
This result was also consistent with the decreased growth rate and
thereby the protein synthesis rate of yeast cells grown on ethanol
media as compared with glucose [47]. Under anaerobiosis, most pro-
teomic changes occurred in the transition between exponential and
stationary growth (55 proteins; i.e. 46% of all detected changes in
abundance throughout the phases). Notably, prolonged cultivation
during the stationary phase under anaerobiosis did not further alter
the proteome ( ).

Impact of oxygen on the proteomic rearrangements in the cen-
tral carbon metabolism across the growth phases

The central carbon metabolism (CCM) consists of key pathways re-
quired for the conversion of carbon sources into the 12 building
blocks for the synthesis of cellular components and encompasses ca.
150 transport proteins and enzymes [25]. The flow of carbon and
electrons via the CCM therefore responds to the carbon source nature
and abundance. As oxygen availability dictates how much ATP mol-
ecules can be produced from the carbon source, the CCM also re-
sponds to oxygen availability. The proteins involved in the CCM are
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therefore expected to be considerably affected by glucose and oxy-
gen availability. In our study, 101 out of 142 CCM proteins (

) were successfully quantified in at least one of the main four
conditions ( ). In the presence of oxygen, 71 proteins had
significantly different abundance over the time-course, while in the
absence of oxygen, only 18 significant changes were observed.

S. cerevisiae harbours a set of 17 proteins able to transport hexoses,
known as Hxt proteins. The expression of these proteins is primarily
dictated by hexose (mostly glucose) abundance. Being membrane-
bound and having low abundance, Hxt proteins are typically difficult
to detect in proteomic studies; their high level of homology makes
their identification challenging. Nevertheless, six Hxt proteins were
quantified in the present dataset: Hxt2, 3, 4, 5, 6 and 7. Four of these
Hxt proteins could be quantified in all samples, irrespective of strain
and oxygen supply. Hxt6 and Hxt7 share a high protein sequence
similarity (>99%) and were therefore considered as one protein
group in this study. These were the most abundant Hxt proteins and
were consistently more abundant upon glucose exhaustion in all
tested conditions ( ), in good agreement with their high af-
finity for glucose [48]. Hxt3 and Hxt4, also identified in all condi-
tions, responded differently in the presence and absence of oxygen.
The abundance of Hxt4, a high-affinity transporter, expectedly in-
creased upon glucose exhaustion but decreased upon reaching the
stationary phase in the aerobic cultures; meanwhile, it remained high
under anaerobiosis. The low-affinity transporter Hxt3 was detected
at high and low glucose concentrations [49] but decreased in abun-
dance across the growth curve and most significantly in the aerobic
stationary phase. Hxt5 was only detected in the control strain in the
presence of oxygen, but its abundance was in line with its induction
by non-fermentable carbon sources and decreasing growth rates [48].
Hxt2 was only detected in the anaerobic cultures of the control strain.
Thereby, Hxt2 increased in abundance upon glucose exhaustion, as
expected for a high-affinity transporter.

Among the 26 glycolytic and fermentation enzymes, 13 major
isoforms are constitutively expressed with high abundance, while the
remaining are minor isoforms with lower abundance and condition-
dependent expression [26, 50]. This notion was well reflected in the
present comprehensive dataset, in which 23 of these proteins could
be quantified in both conditions of the control strain. All major iso-
enzymes were found; their abundance remained constant under an-
aerobiosis but slightly decreased in the stationary phase under aero-
biosis (
tected in at least one of the conditions. The minor glyceraldehyde-
3P dehydrogenase Tdh1 was found to be expressed with and without

). The majority of the minor isoenzymes were de-

oxygen. However, the enzyme was generally more abundant upon
glucose exhaustion. Similarly, Glk1 and Hxkl, glucose-repressed
isoenzymes of the predominant hexokinase 2, were also more abun-
dant upon glucose exhaustion. Adh2, alcohol dehydrogenase re-
pressed by glucose and induced by ethanol [51], was only detected
in the presence of oxygen, and its abundance strongly increased in
the mid-diauxic phase. Interestingly, the estimated total amount of

the glycolytic enzymes was larger than the sum of the other CCM
enzymes in all conditions ( ).

The TCA cycle, encompassing a set of 22 proteins located in the mi-
tochondrion, is particularly active during respiration. The majority
of the TCA cycle proteins were detected in our experiments. Their
abundance generally strongly increased during the diauxic shift but
did not change under the anaerobic conditions ( ). A small
group of proteins remained unaffected during progression through
the growth phase under anaerobiosis. For example, Pdal, Pdbl and
Lat1, which are three of the five subunits of the pyruvate dehydro-
genase complex, Aco2 and Idp1 remained unchanged. Interestingly,
Frd1 and Osm1, which are important for protein folding in anaerobic
conditions [52], also remained unaffected. Many CCM metabolites
cross the mitochondrial membrane via transporter proteins, and in-
creased respiratory activity is expected to increase the flux of metab-
olites between the cytosol and mitochondria. Accordingly, the abun-
dance of the seven quantified mitochondrial transporters increased
after glucose exhaustion aerobically but not anaerobically, with a
marked increase for Odc1 and Sfc1, which are carboxylic acid anti-
porters. Despite the increase in respiratory activity during the diauxic
shift and phase, which was reflected in the TCA cycle proteins, the
abundance of anaplerotic proteins Pycl, Pyc2 and Mael remained
unchanged. Conversely, the abundance of the gluconeogenic pro-
teins Fbpl and Pckl and glyoxylate cycle proteins MLs1 and Icll
required for ethanol utilisation strongly increased upon glucose ex-
haustion aerobically but was expectedly very stable anaerobically.
Growth on non-fermentable carbon sources requires a complex met-
abolic rearrangement to supply cytosolic and mitochondrial acetyl-
CoA. The expression of the proteins involved in acetate and acetyl-
CoA metabolism, particularly Acs1 and Achl, accordingly increased
during the diauxic phase but was not visibly affected by glucose ex-
haustion under anaerobiosis.

Redox metabolism, a key for cell survival, is balanced according to
oxygen availability. While respiring cells can oxidise the NADH
produced during glucose assimilation via oxidative phosphorylation,
two-step glycerol formation from dihydroxyacetone phosphate is the
major electron sink in the absence of oxygen. The abundances of pa-
ralogues Gpdl, Gpd2, Gppl and Gpp2 were not strongly affected
across the different phases and growth conditions ( ),
which is in agreement with the reported transcriptional regulation
and (in)activation by post-translational modification (phosphoryla-
tion) [53]. The only noticeable changes were the decreased abun-
dance of Gppl1 in the presence of oxygen and increased abundance
of Gpp2 upon glucose exhaustion in the absence of oxygen. In aero-
bic conditions, NADH is generally oxidised by external or internal
NADH dehydrogenases, which shuttle the electrons into the mito-
chondrial electron transfer chain. Contrarily, anaerobic yeast cul-
tures reoxidise the excess NADH formed during biosynthesis via
glycerol production [54]. The increased abundance of Gut2 during
the diauxic shift under aerobiosis can be explained by both its role in
glycerol utilisation and redox balance maintenance ( ).
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Oxygen-dependent dynamics in other pathways

Respiration is an important mechanism for energy conservation in
the presence of the electron acceptor oxygen. After the diauxic shift,
respiration becomes the main ATP source for the cells. Accordingly,
the abundance of the ATP synthases and cytochrome oxidases in the
oxidative phosphorylation pathway increased significantly after glu-
cose exhaustion ( ). However, the abundance of these pro-
teins remained constant over the entire growth curve in the anaerobic
cultures. Respiring cells are prone to generation of reactive oxygen
species (ROS), for instance by the production of superoxide during
electron transfer during oxidative phosphorylation, which can induce
the expression of stress tolerance genes [55]. Accordingly, Sod1 and
Sod2, enzymes that detoxify superoxide and produce hydrogen per-
oxide [56], were significantly more abundant under the aerobic con-
ditions than under the anaerobic conditions ( ). Their
abundance increased by at least twofold towards the stationary phase
compared with that under log growth in the presence of oxygen,
while the protein abundance remained constant under anaerobic
growth. A similar protein profile was found for the peroxisomal and
mitochondrial catalase A (Ctal) that detoxifies hydrogen peroxide.
Nevertheless, the abundance of Ccs1, copper ion chaperone to Sodl1,
was relatively constant and similar between both conditions in the
control strain ( ).

Heme synthesis, encompassing a set of eight Hem proteins, also de-
pends on oxygen availability [S7]. In this study, seven Hem proteins
could be quantified. The protein abundance of Hem1, 2, 3, 12 and 15
was either similar between the aerobic and anaerobic conditions or
higher aerobically ( ). However, Hem13 and Hem14 were
only quantified in the anaerobic conditions, although Hem14 could
be quantified only in one biological replicate based on a few pep-
tides. Hem13 was confidently quantified with more than 10 peptides
for each biological anaerobic replicate but was not found aerobically.
Surprisingly, both Hem13 and Hem14 require oxygen for enzymatic
activity.

Finally, sterol synthesis also requires oxygen and ergosterol and is
therefore supplied as an anaerobic growth factor during anaerobic
yeast cultures [58]. Herein, 17 Erg proteins were found in either the
aerobic or anaerobic condition or both ( ). The Erg proteins
that need oxygen, such as Ergl, Erg3, Ergll and Erg25-28, were
either solely present anaerobically or more abundant in the anaerobic
cultures than in the aerobic cultures.

Survival in the stationary phase in response to oxygen availabil-
ity A previous study has shown a strong effect of oxygen availability
and the presence of transition through the diauxic phase on yeast cell
robustness during the stationary phase [59]. This work proposed that
oxygen availability had a positive effect on the adenylate energy
charge, longevity, stress response and thermotolerance during the
stationary phase. However, this study was based on changes in the
transcript levels, without confirmation at the protein level. In partic-
ular, limited data are known regarding the proteome dynamics under

anaerobic conditions. To fill this knowledge gap, we studied the pro-
teomic differences between the stationary phase in the anaerobic and
aerobic conditions. A total of 249 proteins were significantly more
abundant, and 125 were less abundant in the presence of oxygen than
in the absence of oxygen (p-value of < 0.05 and fold change of +
1.25; ). In the stationary phase, the aer-
obic cells still relied on respiration, and the proteins involved in res-
piration were accordingly more abundant under the aerobic condi-
tions. Conversely, the yeast cells entered the stationary phase rather
abruptly after glucose depletion under the anaerobic conditions. The
proteins associated with ‘biosynthesis’, ‘glycolysis’ and ‘cytoplas-
mic translation’ were more abundant in the anaerobic stationary cells
than in the aerobic cells. Several ribosomal proteins were also more
abundant supposedly owing to the lack of time and resources re-
quired to adjust to the altering conditions. Furthermore, the proteins
involved in storage metabolism, in particular glycogen metabolism,
were enriched anaerobically.

Yeast cells generally accumulate storage carbohydrates in sugar-rich
conditions that can be used as carbon and energy source to ensure
survival during the stationary phase. Anaerobic cultures are entirely
dependent on glycogen and trehalose as energy storage components.
Conversely, the presence of oxygen enables yeast cells to metabolise
other available nutrients, such as lipids and amino acids [60—62]. In
this study, several proteins involved in glycogen metabolism were
more abundant in the anaerobic cultures than in the aerobic cultures
( ). Glucose-6P is the starting point for glycogen metab-
olism and is converted into glucose-1P by Pgm1 or Pgm2. Both pro-
teins were detected under the aerobic and anaerobic conditions, alt-
hough Pgm2 was detected with higher coverage and confidence in
each biological replicate, as it is the major isoform. The abundance
of Pgm?2 increased strongly (approximately 2.8-fold) after glucose
depletion under the anaerobic conditions. Unfortunately, Pgm2 was
only detected in the aerobic conditions after glucose exhaustion, alt-
hough it was less abundant than that in the anaerobic conditions. Glu-
cose-1P is subsequently converted to UDP-glucose by Ugpl. This
enzyme was consistently more abundant in the absence of oxygen
over the entire growth curve. Nevertheless, the protein profile was
similar under both conditions, as the abundance of Ugp1 increased
considerably after glucose was depleted. In the following step, gly-
cogen synthesis is initiated by Glg1 and Glg2, which were not found
in our analysis. Glycogen is subsequently generated by Gsyl/2,
where only Gsyl was detected in our experiments with sufficient
confidence in the anaerobic cultures. Glycogen is a polymer that can
be branched by Glc3; however, this enzyme was not quantified in
our study. Glycogen can also be utilised by Gphl to form glucose-
1P again or by Gdbl for conversion to glucose. Herein, only Gphl
showed a profile comparable to that of Pgm2.

Trehalose is another storage metabolite in yeast, which is synthe-
sised from UDP-glucose. It is converted into trehalose-6P by Tpsl
and subsequently into trehalose by Tps2. Trehalose is utilised by
Nth1, Nth2 and Athl and converted into glucose again. In our study,
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the enzymes leading up to trehalose had similar protein profiles un-
der the aerobic and anaerobic conditions, and the protein abundance
increased significantly after glucose depletion ( ). How-
ever, utilisation of trehalose was more difficult to capture, as only
Nth1 was quantified with only a few unique peptides under the aer-
obic and anaerobic conditions. Furthermore, in the absence of oxy-
gen, yeast cells could not catabolise fatty acid by beta-oxidation as
energy reserve during carbon starvation. Proteins such as Fox2,
Pox1, Cat2 and Crcl showed relatively constant expression levels
over the anaerobic growth curve, while their abundance increased
drastically after glucose depletion in the presence of oxygen (
).

Finally, aerobic stationary-phase cells are known to acquire in-
creased robustness and stress tolerance during transition to the sta-
tionary phase. However, previous studies have indicated that this
does not apply to anaerobic cultures to the same extent [59]. Stress
proteins include a range of heat shock proteins (Hsp) with various
functions. The fold changes and levels of Hsp were comparable in
the presence and absence of oxygen in the exponential growth phase
( ), but Hsp was more abundant in both aerobic and an-
aerobic conditions towards the end of the growth curve in the MS
phase. This increase was markedly greater in the aerobically cultured
cells, resulting in a significantly lower anaerobic fold change of the
proteins in the stationary phase.

Proteome-level alterations following genetic minimisation of the
glycolytic pathway

The genetic reduction in the MG strain consisted of the removal of
the 13 minor enzymes involved in glycolysis and fermentation, only
leaving the 13 major isoenzymes. The present dataset showed that
most minor isoenzymes were expressed and quantifiable in all sam-
ples from the aerobic and anaerobic batch cultivations, with the ex-
ception of Gpm?2 and Adh5 detected only in the anaerobic cultures,
Adh2 detected only in the aerobic cultures, and Adh4, Gpm3 and
Pyk2 not detected at all ( ). Tdh2, Enol and Adh2 were
abundant in the batch cultures, and deletion of the minor isoenzymes
might therefore affect the yeast physiology. The MG strain was pre-
viously well characterised by physiological and transcriptome anal-
yses in the presence of oxygen, revealing that the physiology and
transcriptome of this strain was nearly identical to that of the control
strain with a full set of glycolytic and fermentation genes. However,
the proteome of the MG strain was not explored, and limited data are
known regarding the response of the MG strain to anaerobiosis. The
fluxes through glycolysis and the fermentation pathway are substan-
tially higher in anaerobiosis than in aerobiosis [63], and the deletion
of all minor isoenzymes might therefore have a different cellular im-
pact in the presence and absence of oxygen. As previously observed,
the physiology of the MG and control strains in the aerobic and an-
aerobic cultures was nearly identical ( ) [26].

The difference in the abundance of the glycolytic and fermentation
proteins between the MG and parental control strains was assessed

by comparing the expression levels across the entire growth curve
using a two-sided two-sample t-test. Remarkably, all major isoen-
zymes displayed identical time profiles between the MG and control
strains; they were very stable under anaerobiosis, but their profiles
decreased after the mid-diauxic phase under aerobiosis ( ).
With the exception of Fbal and Tdh3, the abundance of the glyco-
lytic and fermentation proteins was well conserved between the MG
and control strains. The abundance of Tdh3 was consistently higher
across all growth phases by 40-50% in the MG strain compared to
the control strain anaerobically (p-value of < 0.01). The estimated
protein amount of Tdh2 in the control strain was approximately one-
third of the estimated protein amount of Tdh3 both under the aerobic
and anaerobic conditions ( ). The Tdh1 levels also markedly
increased after glucose depletion in the control strain ( ).
The loss of these relatively abundant minor isoenzymes and subse-
quent overall reduction of glyceraldehyde-3P activity in the MG
strain might have caused a cross-regulation and an increased abun-
dance of Tdh3. Interestingly, while the minor isoenzyme Enol was
also abundant in the control strain ( ), its deletion had no
visible effect on the Eno2 level in the MG strain ( ). The
abundance of Fbal was slightly (approximately 20—40%) but signif-
icantly higher in the MG strain than in the control strain both in the
presence and absence of oxygen. Fbal does not have isoenzymes,
and this difference in abundance could therefore not be attributed to
cross-regulation. Fbal is an abundant protein in yeast, operating far
from saturation [63]; the flux through glycolysis did not increase in
the MG strain compared with that in the control strain. This increase
in the abundance of Fbal is therefore not likely explained by the need
for a higher aldolase capacity in the MG strain.

The enzyme level adjustments within the glycolytic and fermenta-
tion pathways following the deletion of the minor isoenzymes were
remarkably small but slightly more pronounced under the anaerobic
conditions. In line with this subtle phenotype, the proteome was not
visibly affected by the deletion of the minor isoenzymes [cut-off p-
value of 0.05 (5%), fold change threshold of + 1.25;

]. Consequently, no enriched or depleted GO terms
or KEGG pathways could be identified. The metabolic comparability
between both strains is therefore underlined by their similar CCM
enzyme ( ) and global proteome profiles.

DISCUSSION

To our knowledge, this study provides the most comprehensive pro-
teomic study on the response of S. cerevisiae CEN.PK113-7D to ox-
ygen and nutrient availability. We employed tightly controlled batch
bioreactor cultures and performed biological triplicates combined
with standardised sample preparation protocols to ensure high repro-
ducibility and accuracy. Albeit different yeast proteome dynamics
studies have been performed over the past decades [16, 18, 20, 64],
no study has yet captured the complete spectrum of conditions using
the same strain and the same highly controlled experimental setup.
Moreover, the transition from the exponential to the stationary phase
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under anaerobic conditions has not yet been investigated. This study
moreover quantified the impact of genetic minimisation of the gly-
colytic pathway on proteome resource allocation using the recently
established MG strain [23]. The established dataset therefore covers
the quantitative analysis of 54 individual proteomes, where approx-
imately 40% of all yeast proteins and approximately 99% of the com-
plete protein biomass have been captured. The high reproducibility
was also highlighted by the strong similarities between the proteo-
mes of the MG and control strains. This comprehensive and accurate
dataset therefore provides an ideal resource for applied and funda-
mental studies in yeast and more particularly for in silico proteome
allocation studies.

The most remarkable observation was the substantially smaller pro-
teome response of yeast cells grown under anaerobiosis than under
aerobiosis. In both conditions, yeast cells had to tune their metabo-
lism to the transition from glucose excess to exhaustion, leading to a
shift from exponential to stationary growth. However, these drastic
changes triggered a far milder response than did the aerobic transi-
tion to and out of the diauxic phase, which represented 58% of the
measured changes in protein abundance. During the diauxic shift,
cells rewire the proteome for respiratory growth on ethanol as a main
carbon source. This transition leads to a multitude of physiological
and morphological changes, including smaller cell size, increased
mitochondrial volume, decreased growth rate, increased respiration
rate and therefore increased ROS production, induction of glucone-
ogenesis and the glyoxylate cycle, and large changes in the fluxes in
CCM. These changes were well reflected by the observed changes
in the proteome allocation in this study. For instance, an increase in
mitochondrial protein abundance was observed, while the glycolytic
proteins were simultaneously downregulated [13—15, 65]. The tran-
sition from the diauxic to the stationary phase led to a further strong
modification of the abundance of approximately 120 proteins. Con-
versely, as few as 55 proteins showed strongly altered abundances
after glucose depletion under anaerobiosis, and prolonged cultiva-
tion in the stationary phase did not further alter the proteome. Using
the exact same strain and experimental setup, Bisschops ez al. (2015)
[66] showed a stronger and faster decrease in viability upon glucose
exhaustion for anaerobic cultures than for aerobic cultures. Based on
physiological and transcriptome data, the authors attributed this lack
of robustness to the inability of cells to adapt to glucose exhaustion
in the absence of oxygen. Conversely, the diauxic shift provides the
time and resources needed to transition from fast growth to growth
arrest in the presence of oxygen. The present proteomics study sup-
ports this view in different ways. The small protein response during
transition from sugar excess to depletion suggests that the anaerobic
cells do not have the means or proper regulatory network to adjust to
the new conditions. Furthermore, aerobic cultures acquire robustness
and stress tolerance during transition to the stationary phase as a re-
sult of the expression of the ‘stress-response’ genes [67], such as
Hsp. Both aerobic and anaerobic cultures showed a similar ‘stress
signalling’ as shown by the increase in the Hsp level towards the

stationary phase; however, this increase was far less pronounced in
the anaerobic cultures. The abundance of Hsp was therefore substan-
tially lower in the absence of oxygen, in line with the lower tran-
scription of Hsp and lower thermo-tolerance of the anaerobic station-
ary-phase cultures than of the aerobic cultures observed by
Bisschops et al. [66]. Considering that industrial-scale processes fa-
vour anaerobic environments for practical and financial reasons, the
present results provide valuable information for the construction of
predictive metabolic models [5, 9, 68—73].

In the presence of oxygen, yeast cells switch from respiro-fermenta-
tive to full respiratory metabolism once glucose is depleted. Accord-
ingly, the abundance of respiration-related proteins increased upon
glucose exhaustion in the aerobic cultures herein, while their protein
profiles remained constant in the anaerobic cultures. Several other
non-respiratory pathways in S. cerevisiae, such as fatty acid beta-
oxidation and haeme and sterol synthesis, are oxygen-dependent.
Expectedly, most detected proteins in these pathways were aerobi-
cally more abundant or contained similar abundance profiles to the
anaerobic cultures. Nevertheless, oxygen-dependent protein Hem13
involved in haeme synthesis was only confidently quantified under
anaerobic conditions, and the lack of detection in the aerobic condi-
tions suggests that Hem13 is far less abundant. The transcription of
Hem13 is repressed by oxygen and haeme itself [74, 75]; therefore,
this protein lacks repression in the absence of oxygen, and its abun-
dance is thereby increased. Similar protein profiles under anaerobic
conditions were previously found for Hem1, Hem14 and Heml5
[18]. Several oxygen-dependent Erg proteins were also more abun-
dant or solely detected under anaerobiosis. Herein, the transcription
of various Erg proteins was regulated by oxygen, and an absence in-
creased the expression of these Erg proteins [76] [77].

Glycolysis and alcoholic fermentation are well-studied pathways
that play an important role in sugar conversion in the industry. Ear-
lier studies have shown that major glycolytic isoenzymes are abun-
dant proteins whose expression remains relatively stable irrespective
of the growth environment, although these measurements often rely
on gene transcription data or enzyme assays that cannot distinguish
between isoenzymes [26]. The present proteome dataset confirmed
that the abundance of most major glycolytic isoenzymes decreased
during the diauxic shift and further decreased during the stationary
phase in the presence of oxygen. Conversely, their abundance was
unaffected during transition to the stationary phase under the anaer-
obic environments. Aerobic cultures in the stationary phase therefore
display substantially lower glycolytic enzyme levels than do anaer-
obic cultures. For instance, a 2.5- to 3.5-fold lower abundance was
observed for Pgkl, Gpml, Pdcl and Adhl. While this difference in
abundance is not expected to affect survival in the stationary phase,
in which the glycolytic flux is extremely low or absent, it will influ-
ence the ability of stationary-phase cells to reach fast growth when
transitioned to a sugar-rich medium. When exposed to anaerobic
sugar excess, cells grown aerobically to the stationary phase have to
allocate resources to increase the abundance of glycolytic enzymes


https://doi.org/10.1101/2022.09.23.509138
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.23.509138; this version posted September 23, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Yeast proteome dynamics under aerobic and anaerobic conditions. Maxime den Ridder et al., 2022

and reach fast growth, while cells pre-cultured anaerobically do not.
As glycolytic enzymes are, next to ribosomal proteins, the most
abundant proteins, this aspect should be considered during the start-
up phase of anaerobic industrial fermentations and their modelling.

The expression of the minor glycolytic isoenzymes is condition-de-
pendent, and several of these isoenzymes are reported to have dis-
tinct functions, especially during changes in carbon source availabil-
ity. The present dataset showed that the presence of oxygen only vis-
ibly affected the abundance of Enol, Tdhl and Hxk1, as their abun-
dance was significantly higher after glucose depletion under anaero-
). While some
minor isoenzymes had a substantial abundance in yeast ( ,
e.g. Enol, Tdh2 and Hxkl), with the exception of Tdh3, their re-
moval did not trigger visible changes in the abundance of the major
isoenzymes. Tdh3, glyceraldehyde dehydrogenase major isoenzyme,
notably increased by 1.5-fold in the MG strain as compared to the
control strain under anaerobic conditions ( ). The same trend
was observed aerobically, albeit much less pronounced. Similar to
most glycolytic enzymes, glyceraldehyde dehydrogenase operates at
overcapacity, meaning that the enzyme capacity largely exceeds the
flux catalysed in vivo [78]. Therefore, the increased abundance of
Tdh3 in the MG strain does most likely not result from the need to
compensate for Tdh1l and Tdh2 deletion to maintain the glycolytic
flux. Glyceraldehyde dehydrogenase isoenzymes do not have any
well-described moonlighting functions. However, next to their cyto-
solic localization, they are also found in the cell wall in which they
might play a yet uncovered role. The composition and structure of S.
cerevisiae cell wall are affected by oxygen, and several cell wall pro-
teins are specifically enriched under anaerobiosis (e.g. cell wall man-
noprotein of the Srplp/Tiplp family), which might explain the ob-
served cross-regulation in the MG strain. Herein, Fbal was also
mildly but significantly upregulated in the MG mutant both aerobi-
cally (1.2 to 1.4-fold change) and anaerobically (1.15-fold change).
As Fbal does not have isoenzymes and is solely responsible for the
glycolytic flux, its change in abundance is difficult to explain. Fbal
is also involved in vacuolar function as a subunit of the vacuolar V-
ATPase [79]. However, as no or minimal differences were observed
in the other components of V-ATPase between the MG and control
strains, the molecular mechanism leading to the slightly higher abun-
dance of Fbal in the MG strain remains unclear. Many factors can
alter the functionality of proteins, including post-translational modi-
fications, protein localization or interactions with other proteins or
biomolecules [80, 81]. A recent study has suggested that phosphor-
ylation regulates the activity of many glycolytic enzymes [7]. How-
ever, the stable abundance of glycolytic proteins between the MG
and control strains was well reflected in the stability of in vitro en-
zyme activity [26], suggesting the lack of differences in the post-
transcriptional regulation between these strains. Taken together, re-
markably few proteome-level changes were observed as a conse-
quence of the genetic reduction of glycolysis. This similarity be-

bic conditions than under aerobic conditions (

10

tween both strains finally underscores the usefulness of the simpli-
fied MG strain for proteome allocation studies and for studying the
role of post-translational modifications in the regulation of glycoly-
sis.

The complete proteome dynamics and abundance data for the batch
reactor-cultured CEN.PK113-7D strain and the related MG mutant
for aerobic and anaerobic growth are shown in
mass spectrometric data and unprocessed search files are publicly
available via the PRIDE repository under the project code
PXDO031412.
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FIGURE 1. Yeast proteome dynamics study capturing the transition from proliferation to stationary phase under aerobic and anaerobic con-
ditions. A) Schematic overview of glycolysis in the yeast control strain (CEN.PK113-7D, black) and the MG strain (IMX372, blue). The enzymes in
blue are retained in MG yeast (*Adh3 is a mitochondrial protein). B) Yeast growth in aerobic and anaerobic cultures. Glucose (red) and ethanol (yellow)
concentrations, and OD660 (blue, secondary y-axis) were measured during the different growth phases of aerobic and anaerobic batch cultures for the
control yeast and the MG strain. The values shown are averages obtained from three biological replicates. Standard deviations are indicated by error bars.
The dotted grey lines indicate time points at which samples were taken for proteome analysis. Proteome samples were taken from each biological replicate
in the aerobic cultures after 6, 9, 12, 16.5 and 27 hours of growth, in the mid-exponential (ME), late-exponential (LE), early-diauxic (ED), mid-diauxic
(MD) and (mid-) stationary (MS) growth phase, respectively. Furthermore, proteome samples were taken of the anaerobic cultures after 7.5, 10.5, 13.5
and 16.5 hours of growth, in the ME, LE, early-stationary (ES) and MS growth phase, respectively. Proteome samples were subjected to quantitative
shotgun proteomics experiments, using 10-plex TMT isobaric labelling and a one-dimensional, 4-hour chromatographic separation. Database searching
and quantitative analysis was performed using PEAKS X and using a tailor-made Python data processing pipeline. C) Annotation of yeast protein func-
tions using Gene Ontology (GO) terms. Based on the classifications of GO annotation, the overall functions of the identified yeast proteins (with at least
2 unique peptides present) were categorized into cellular component, and displayed in pie chart format with absolute protein numbers (average of three
biological replicates). The global proteome changes between the mid-exponential and mid-stationary phase under aerobic and anaerobic conditions in
control and MG strain were visualised using volcano plots. The fold changes were normalized to the aerobic and anaerobic mid-exponential phases. The
log2 of the abundance fold change between the two conditions was plotted against the significance (-log10p), using a p-value threshold of <0.05 and a
fold change threshold of >1.25 (which corresponds to a log2 fold change threshold +/- 0.32). Significant changes of mid-stationary proteins were coloured
by their direction of change (red if higher, blue if lower, or peach if similar to their mid-exponential equivalents). The total number of proteins with
changes are listed in Table 1.

14


https://doi.org/10.1101/2022.09.23.509138
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint https //doi.org/10.1101/2022.09.23, 509138; this version sIed September 23, ht holder for this
preprint (which LRFOSENTRE BYPBELSr EEEOATY amgmmg}% ‘@?én Wﬁ@%ﬁé&&%@% rsgl}éé he preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A C

vy

Hexose Control MG strain  Control MG strain 234 Native
. transport T aerobic
2 -— Dl
1 ceoee t
L
-0 5 : - :
H--l T sess ¥
2 Glycolysis B coce !
LogZ 5.00 ]
fold change - ecee =
- ° =
- ::!3 —
2 -2 =
- esee e
X e 5
: L b
Mitochondrial 2 sece
3 LR R '
transport — 3 se 9
- ‘ees
el SeSS o
o | -Pdbl ccee
. e 3333
- Git2 ceee E’l'
e 35
-Aco2 csee G
-idh1 co e
idh2 ev e ]
| :gp% eoece ?‘
TCA cycle Sz eses ;
f— : o2 sese
-Lscl ce e
-Lsc2 oo
-Sdhl ce .
| -Sdh2 ce e
I -Frdl “vee
£
vl 388 X
. “Mdh3  eees !
Anaplerotic / _— L esee
gluconeogenesis A 334 b,
| -Pycl ceece ]
T 7 17 -Pyc2 s e
ST T
R L 1L
Acetate metabolism ‘ NG eess W
| [ :ﬁllgg ee e 5‘
I a5l Seee
e 228t}
== | ol )
Glycerol metabolism - P o= ale
y e L I
- Gut2 R
[ -Yprl ce e
I - Geyl e e
[ [ -Dakl ...
. i o = 1= i _-Ugpl R
Glycogen metabolism L PSSy 2 e
= == [& tiee
—
2<hig
Pentose phosphate ! - Sol3, L
pathway = h . “Rpel
-Tkl1l
’ T . ; -Tall _3::#
§ § § § § § Lr-m § z m § T 1
m w
mMMOS»n MMOT® wp MmMoy 0 100 200
aerobic anaerobic emPAl

FIGURE 2. Yeast central carbon metabolism protein abundances under aerobic and anaerobic growth. A) The heat map shows the temporal log2
fold changes of the enzymes of the central carbon metabolism (CCM) of the control yeast CEN.PK113-7D and MG yeast for the mid-exponential (ME),
late-exponential (LE), early-diauxic (ED), mid-diauxic (MD), early-stationary (ES), and mid-stationary (MS) phases, compared to the mid-exponential
(ME) phase for each condition. The proteins belonging to specific pathways of the CCM are highlighted with different colours. White gaps in the map
indicate that the protein was not detected, or that it has been deleted in case of the MG strain. No filtering for significance or fold-change thresholds was
applied for this figure, and all enzymes that were detected were included in the heat map. B and C) The circle graph (1=control aerobic, 2=MG aerobic,
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FIGURE 3. Protein fold change line graphs for non-respiratory oxygen-dependent pathways during aerobic and anaerobic growth. The fold-
change values were plotted against the time relative to glucose depletion (t=0) in hours for proteins involved in heme (A) and sterol (B) synthesis. The
different colours of the line graphs represent: “orange” the control yeast strain under anaerobic conditions (WT_AN), “light blue” the control strain under
aerobic conditions (WT_02). The line graphs represent the average of the three biological replicates, where the error bars indicate the standard deviation.
The grey dashed line represents the glucose concentration over time (mM, secondary y-axis). The number of quantified peptides per biological replicate
are shown in brackets. Asterisks (*) and circumflexes (") indicate the significance (p values) between the aerobic and anaerobic experiments as follows:
p<0.001 (***), p<0.01 (**), p<0.05 (*), and p< 0.1 (").
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FIGURE 4. Protein fold change line graphs for the major glycolytic enzymes under aerobic and anaerobic growth. The fold-change values were
plotted against the time relative to glucose depletion (t=0) in hours for all proteins of the major glycolytic enzymes. The different colours of the line
graphs represent: “red” for the MG strain under anaerobic conditions, “dark blue” the MG strain under aerobic conditions, “orange” for the control yeast
strain under anaerobic conditions and “light blue” for the control strain under aerobic conditions. Shown are the average values of the biological triplicates
where the error bars indicate the standard deviations. The grey dashed line represents the glucose concentration over time (mM, secondary y-axis).
Asterisks (*) and circumflexes (") indicate the significant changes between the control and MG strain. P-values are indicated as follows: < 0.001 (***),
<0.01 (**),<0.05 (*),and < 0.1 (").
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FIGURE 5. Abundance bar graphs for the glycolytic isoenzymes under aerobic and anaerobic conditions for the yeast control strain
(CEN.PK113-7D). The bar graphs show the averaged protein abundances for the observed glycolytic isoenzymes expressed by their emPAI (exponen-
tially modified protein abundance) indices, under aerobic (grey bars with green dashed lines) and anaerobic (grey bars) growth. The bars represent the
average values of the individual biological replicates (with at least one identification per replicate), where the error bars indicate the standard deviation.
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TABLE 1. Number of proteins with significant changes during the transition to subsequent growth phase under aerobic and anaerobic condi-
tions for the yeast control strain (CEN.PK113-7D). The total number of proteins indicates the number of proteins that were detected in at least two
biological replicates. Proteins were normalized to the preceding growth phase. Only proteins with a fold change of 1.25 or greater (which corresponds to
a log?2 fold change of +/- 0.32) and a p-value of at least 0.05 are considered. The number of proteins quantified indicates the number of proteins that were
detected and quantified in at least two biological replicates.

Late exponential / Mid-Exponential 1092 1 22
Early stationary / Late Exponential 1092 52 3
Stationary / Early Stationary 1092 0 0
Stationary / Mid-Exponential 1092 78 42
Late exponential / Mid-Exponential 998 12 21
Early Diauxic / Late exponential 998 67 4
Mid-Diauxic / Early Diauxic 1168 125 24
Stationary / Mid-Diauxic 1168 90 34
Stationary / Mid exponential 1168 364 174
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TABLE 2. Number of proteins with significant changes between the yeast control strain (CEN.PK113-7D) and minimal glycolysis (MG) stain
under aerobic and anaerobic conditions. The protein abundances of the MG strain were normalized to the yeast control strain (for the same growth
phase and the same condition). Only proteins with a fold change of 1.25 (log2 fold change of +/- 0.32) or greater and a p-value of at least 0.05 are
considered. The number of proteins quantified indicates the number of proteins that were detected and quantified in at least two biological replicates.

Mid exponential 978 10 13
Late exponential 978 10 8
Early stationary 978 8 18
Stationary 978 7 6
Mid-Exponential 1019 18 10
Late-Exponential 950 33 13
Early-Diauxic 1019 15 9
Mid-Diauxic 1019 3 3
Stationary 1019 3 2
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