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Abstract

Tumour heterogeneity remains a major obstacle to effective and precise therapy for pancreatic
ductal adenocarcinoma (PDAC), the most common pancreatic cancer. Several transcriptional
subtypes of PDAC with differential prognosis have been described, but they co-occur within
tumours and are difficult to distinguish in routine clinical workflows. To investigate the
relationship between transcriptional PDAC subtypes, local tissue morphology and the tumour
microenvironment, we employed in situ sequencing to profile single cells in their spatial tissue
context. We identify five transcriptional subtypes of PDAC cells occurring in three distinct
morphological patterns, including secretory tumour cell monolayers, invasive tumour cells
with high expression of cell adhesion molecules CEACAMS5 and CEACAMG6, and spatially
distributed tumour cells associated with inflammatory-type fibroblasts. Analysis of bulk RNA-
sequencing datasets of the TCGA-PAAD and PACA-AU cohorts according to these spatio-
transcriptional subtypes confirmed their prognostic significance. Our results thus indicate an
automatable substratification based on spatially-resolved transcriptomics of PDAC and
identify distinct subtypes of ‘classical’ PDAC, representing most cases of this devastating
malignancy.


https://doi.org/10.1101/2022.09.23.509133
http://creativecommons.org/licenses/by-nc-nd/4.0/

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.23.509133; this version posted September 23, 2022. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal of all major organ malignancies,
with a 5-year survival rate of less than 10% !2. Due to a lack of treatment advances compared
to other cancer types, PDAC is predicted to become the second leading cause of cancer deaths
in the United States by 2030 .

Bulk transcriptomic analyses have converged on two transcriptional subtypes of PDAC
tumours, termed ‘classical’ and ‘basal-like’, with prognostic significance as the latter carry a
poorer prognosis 4. Related molecular subtyping schemes have also been suggested, including
a distinction into ‘classical’, ‘quasi-mesenchymal’ and ‘exocrine-like> PDAC > or into
‘squamous’, ‘pancreatic progenitor’, ‘immunogenic’ and ‘aberrantly differentiated endocrine
(ADEX)’ tumours . These schemes show significant overlap as the ‘classical’ and ‘pancreatic
progenitor’ subtypes, as well as the ‘basal-like’, ‘quasi-mesenchymal’ and ‘squamous’
subtypes, share similar transcriptional signatures 7. Due to low neoplastic cellularity in tumour
samples, a recent study reported that the ‘exocrine-like’, ‘immunogenic’ and ‘ADEX’ subtypes
may represent contaminating non-neoplastic cells instead of tumour cells &,

Recent single-cell transcriptomics studies provide emerging evidence that molecular PDAC
subtypes are not mutually exclusive, but co-occur within the same tumours *'°. Instead of
discrete tumour cell states, PDAC cells may thus occupy a continuum of tumour cell states
ranging from ‘classical’ to ‘basal-like’, requiring further investigation !'.

Histopathologically, PDAC tumours are graded according to defined WHO criteria that include
the occurrence of tubular duct-like structures or solid areas, retained mucin, nuclear
polymorphism and number of mitoses '>. A recent histopathological investigation distinguished
‘gland forming’ and ‘non-gland forming’ components based on the presence or absence of
well-formed glands, and showed that tumours with at least 40% ‘non-gland forming’ regions
transcriptionally corresponded to the ‘basal-like’ PDAC subtype, with significantly poorer
outcomes 3.

Cancer-associated fibroblasts (CAFs) and other cell types of the tumour microenvironment
have additionally emerged as key contributors to PDAC development and therapy resistance
1415 In recent single-cell transcriptomics studies, at least three distinct subtypes of CAFs have
been described in human and murine tumour samples: immunosuppressive cytokine-secreting
inflammatory CAFs (iCAFs), myofibroblastic CAFs (myCAF) with high expression of a-
smooth muscle actin (4CTA2) that produce extracellular matrix and are thought to restrain
tumour growth, and antigen-presenting CAFs (apCAFs) expressing MHC class 11 and CD74
that may play an immunomodulatory role '-2!. Distinctive stromal gene expression signatures
as well as patterns of immune cell and vascular infiltration have also been described 2223, How
these different microenvironment cell types interact with PDAC tumour cells remains a key
area of research; their complex cellular exchanges may comprise both tumour-enhancing and
tumour-suppressive effects, and curtail or boost the efficacy of therapeutic approaches 2423

Investigating the relationship between tumour morphology, transcriptionally different PDAC
subtype cells and their microenvironment is complicated by the spatial heterogeneity and low
neoplastic cell content of PDAC tumours 2326, While single-cell transcriptomics has helped to
distinguish diverse cell types within tumour samples, spatial information is lost during tissue
dissociation. Addressing this challenge, recently developed in situ sequencing (ISS)
approaches enable transcriptional profiling at the single-cell level while retaining spatial
context 2728,
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Here, we apply ISS to probe how gene expression in single PDAC tumour cells relates to local
tissue morphology. We distinguish five transcriptional subtypes of PDAC correlating with
distinct morphological patterns and microenvironment cell type compositions, and show that
these spatio-transcriptional subtypes hold prognostic significance.
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100 Methods

101

102 Sample acquisition

103 Pancreatic tissue specimens from 10 patients with pancreatic ductal adenocarcinoma (PDAC)
104  were obtained from the Tissue Biobank of Klinikum rechts der Isar and TUM (MTBIO).
105  Tumour content was approved by a board-certified pathologist. Informed consent was available
106  from all patients. The use of tumour material was approved by the ethics committee of the
107  medical faculty of TUM (403/17S).

108

109  In situ sequencing

110  To spatially characterise gene expression across patients, formalin-fixed paraffin-embedded
111 tissue sections (5 um thick) were processed for RNA in situ hybridisation according to the
112 manufacturer’s instructions (HS Library Prep Kit Large 1110-02, CARTANA, 10xGenomics),
113 with four DNA probes for each target gene (with a total of 199 different target genes) designed
114  and manufactured by CARTANA (10xGenomics). As a modification, to enhance the probe
115  signal to background ratio, 1x Lipofuscin Autofluorescence Quencher (Promocell) was applied
116  for 30 seconds prior to fluorescence labelling. Sequencing was performed by CARTANA
117  (10xGenomics) in six subsequent rounds of fluorescent labelling and stripping to detect the
118  spatial coordinates of each target probe. On average, around 420,000 transcripts per sample
119  (~190,000 — ~905,000) passed high threshold quality control. A reference 4',6-diamidino-2-
120  phenylindole (DAPI) staining image was also acquired for each sample. Finally, all slides were
121  stained using an adapted hematoxylin and eosin (H&E) staining protocol °.

122

123 Analysis

124

125  ISS data pre-processing

126  Given the DAPI stained images for each sample, the nuclei were detected and segmented using
127  the deep learning framework StarDist version 0.7.2 for object detection with star-convex
128  polygons 3°. The neural network was pre-trained on fluorescent nuclear marker images based
129  on a subset of the DSB 2018 nuclei segmentation challenge dataset *°. Cell boundaries were
130  approximated by isotropically expanding the nuclei labels to the maximum radius of 6 pm,
131  with the constraint of prohibiting overlaps of cells (Supplementary Figure 1). The number of
132 cells per sample ranged from 71,666 to 270,454. Transcripts detected with ISS were assigned
133 to these cells by mapping the coordinates of the sequenced target probes to the cell boundaries,
134 resulting in a cell X gene count matrix. Online visualisations were generated using the Python
135  package TissUUmaps version 3.0.93!.

136

137 Transcriptomic analysis

138 ISS data were processed using the Python package Squidpy version 1.1.2 32, Cells with less
139  than four detected transcripts and transcripts detected in less than ten cells were excluded from
140  the analysis. Transcript counts per cell were normalised and log-transformed and scaled to unit
141  variance and zero mean. To identify cell types, a reduced set of transcripts representing cell
142 type markers was used (Supplementary Table 3). PCA was performed on the transcript counts
143 of cells from all patient samples and a neighbourhood graph was constructed based on the first
144 20 principal components. Clusters were identified by Leiden clustering (resolution = 2.0). The
145  cellular identity of clusters was then determined based on differentially expressed genes.
146 Clusters corresponding to the same cell type based on marker gene expression were merged,
147  while clusters comprising two distinct cell types were split by subclustering. Transcriptional
148  profiles were visualised using UMAP 3* for dimensional reduction. For more detailed analysis,
149  clustering was repeated for malignant PDAC cells, fibroblasts, immune cells, endocrine cells
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150  and exocrine cells separately. A small number of cells which could not be identified as any
151  specific cell type were excluded from further analysis (5.1% of all cells). PCA and clustering
152  were also performed for cells from each patient sample individually to confirm that the
153  combined clustering was representative.

154

155  Spatial co-occurrence analysis

156  To analyse enrichment and depletion of cell types as a function of distance from other cell
157  types, a graph encoding spatial neighbour relations was constructed, including neighbours
158  within a distance of 50 um. An enrichment score was calculated based on the connectivity
159  graph by comparing the number of observed cell type co-occurrences against 1,000 random
160  permutations and computing a z-score. Enrichment z-scores were visualised as heatmaps for
161  each patient sample.

162

163 Spatial correlation analysis

164  To measure spatial co-occurrence of cell types, spatial auto-correlation and cross-correlation
165  analysis was performed using the R package MERINGUE version 1.0 **. For co-occurrence at
166  the level of transcripts, a hexagonal grid spaced at 100 um distance between hexagon centres
167  was defined spanning each sample, and transcripts were assigned to the nearest grid point.
168  Transcripts detected at less than ten grid points were excluded. Counts per grid point were
169  normalised with a scale factor of 6,000. A binary adjacency weight matrix was computed for
170  each sample considering grid points up to 200 um apart as neighbours. To detect spatially
171  correlated transcripts in each sample separately, Moran’s I as a measure of spatial cross-
172 correlation was calculated for all neighbouring pairs and genes were summarised into spatial
173 patterns across the population of N cells using the spatial cross-correlation index (SCI) as
174  defined in MERINGUE,

SYIY W (4 =D (i — P)

175 SCI =
; \/z?(xi—aaz \/z;vm—mz

)

23N Y wy;

176

177  where x and y correspond to the expression magnitude of two genes in a given cell i and its
178  spatially adjacent neighbours j. To identify spatial cross-correlation patterns across all ten
179  samples, a joint adjacency weight matrix #°" was defined where W™, ; = 1 if the indices i
180  and; correspond to neighbouring grid points from the sample sample, and W™, ;= () otherwise.

181 A joint spatial cross-correlation index SCF°™ was then calculated for each gene pair as
182

183 scriomt = TS Z (SCIp A Wij)>
ZZp(ZIiVZ_I]y W) > N,

184

185  where p indexes samples. After calculating SCI and SCF°™ for each gene pair, the resulting
186  spatial cross-correlation matrices were used to group genes into spatial patterns by hierarchical
187  clustering with Ward's clustering criterion and dynamic tree cutting (tuning parameter
188  deepSplit =2).

189

190  Survival analysis

191  To analyse how identified PDAC subtype signatures relate to clinical outcomes, bulk RNA
192 sequencing data from the TCGA-PAAD dataset ?® was downloaded using the R package
193  TCGA2STAT version 1.2 % and the PACA-AU dataset (release 28) 3¢ was downloaded from
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194  the ICGC data portal (https://dcc.icgc.org/). Only samples characterised as primary solid
195  tumour were considered (n=178 for TCGA-PAAD and n=80 for PACA-AU). RPKM
196  expression data were converted to TPM, scaled, centred, and clipped at [-5, 5].

197  Expression scores for pattern-defined gene sets and ‘basal-like’ subtype marker genes
198  (Supplementary Table 4) were determined by calculating the average expression level of each
199  gene set for each sample, subtracted by the average expression of a control gene set. To control
200  for differential overall expression levels of genes, all genes were binned based on average
201  expression across all samples into 24 bins, and the control gene set was assembled by randomly
202 selecting 100 genes from the same expression bin for each gene in the query gene set.

203  For each gene set, samples were divided into high and low expression groups using the median
204  expression score as the cutoff. Kaplan-Meier plots were generated using the survminer package
205  wversion 0.4.6 in R. To assess survival differences and hazard ratios, the log-rank test and cox
206  proportional hazards regression model were used as implemented in the R package survival
207  wversion 3.1-8.

208

209

210
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211 Results

212

213 Identification of PDAC cells and pancreatic cell types using ISS

214

215  To investigate the relationship between transcriptional profiles and spatial architecture of the
216  different cell types present in PDAC tumours, we obtained surgically resected tumour samples
217  from ten randomly selected patients with a confirmed diagnosis of PDAC and processed them
218  for ISS with a curated list of 199 target transcripts (Figure 1A; Supplementary Table 1 and 2).
219  Briefly, during ISS, transcript-specific padlock probes hybridise directly to the mRNA target
220  and are amplified and sequenced using fluorophore conjugated detection probes 272837
221  Transcripts were assigned to cells by mapping their coordinates to the cell boundary map
222 generated based on nuclei segmentation via star-convex polygons using a convolutional neural
223 network ° (Supplementary Figure 1A).

224 By unsupervised clustering of the resulting single-cell transcriptional profiles, we identified
225  different cell types present in the samples based on differential expression of characteristic
226  marker genes across all patients (Figure 1B,C). PDAC cells were distinguished from healthy
227  ductal cells by elevated keratin 19 (KRT19) expression; using published subtype marker gene
228  sets 4, clusters of PDAC cells were further classified as ‘basal-like’ or ‘classical’ based on
229  expression of 11 ‘basal-like’ and 19 ‘classical’ marker genes (Supplementary Table 2).
230  Consistent with previous reports ¥, the neoplastic cell content of samples was relatively low
231  (41% across all patients).

232 Inaddition to PDAC tumour cells, we identified a prominent fibroblast compartment based on
233 expression of lumican (LUM), collagens and other fibroblast marker genes, which comprised
234 multiple subclusters. Reflecting immune infiltration of the tumour volumes, lymphocytes and
235  macrophages were also detected. Endothelial cells were classified based on von Willebrand
236  factor (VWF) expression and Schwann cells based on expression of sodium channel protein
237  type 7 subunit alpha (SCN7A4) as well as crystallin alpha B (CRYAB). All samples also
238  contained endocrine pancreatic islet cells which could be further subdivided into alpha cells
239  expressing glucagon (GCG) and transthyretin (77R), beta cells marked by insulin (/NS)
240  expression and absence of the other endocrine markers, gamma cells expressing pancreatic
241  polypeptide (PPY), and a small number of delta cells marked by expression of somatostatin
242 (SST). Finally, exocrine pancreatic acinar cells were identified by serine protease 1 (PRSS/),
243 amylase alpha 2A (AMY2A) and regenerating family member 3 alpha (REG3A4) expression.
244 The different cell types were represented in broadly similar proportions across patients
245  (Supplementary Figure 1B).

246 By recording spatial coordinates for each detected transcript, ISS enables the morphological
247  characterisation of cells in their spatial environment within the tissue. As expected, endocrine
248  cells were found to occur in localised clumps representing pancreatic islets, confirming the
249  wvalidity of our experimental approach and processing pipeline (Supplementary Figure 1C).
250

251  Spatial architectures of PDAC subtype cells

252

253  PDAC tumour cells from the ten patient samples did not present as a homogeneous cell
254  population, but separated into distinct clusters based on gene expression (Figure 1B). To
255  differentiate PDAC cell subpopulations, we performed unsupervised clustering of the
256  malignant cells alone. Besides ‘basal-like’ PDAC cells, four clusters of PDAC cells
257  corresponding to the °‘classical’ subtype were distinguished based on differential gene
258  expression (Figure 2A,B and Supplementary Figure 2A).

259  One major cluster was characterised by the expression of secretion related genes including
260 LYZ, TFFI and TFF2, and was therefore labelled Classical secretory. Another large cluster
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261  comprised cells with high expression of the carcinoembryonic antigen-related cell adhesion
262  molecules CEACAMS and CEACAMG6, which mediate cell adhesion and promote tumour
263  invasion 38 as well as MUCL3, which has been shown to enhance PDAC cell proliferation,
264  migration and invasion *°; this was labelled Classical invasive. A smaller cluster defined by
265  high expression of KR77, an intermediate filament protein known to be overexpressed in
266  pancreatic cancer tissues compared to non-malignant pancreatic tissue *°, was labelled
267  Classical _adverse since a correlation of KRT7 overexpression with poorer overall survival of
268  PDAC patients has been suggested *!. Finally, the smallest cluster comprised cells highly
269  expressing regenerating family member 4 (REG4), which is thought to play a role in carcinoma
270  development from intestinal-type intraductal papillary mucinous neoplasms (IPMNs) 42, The
271  role of REG4 in PDAC progression remains unclear; serum REG4 levels in PDAC patients
272  have been shown to predict unfavourable histologic response to neoadjuvant
273 chemoradiotherapy and a higher rate of postoperative local recurrence 43, but a recent study
274  also associated REG4 expression with longer survival *. This cluster was labelled
275  Classical REG4.

276  Transcriptional correlation confirmed that these clusters represent distinct PDAC cell states,
277  with Classical adverse showing greater transcriptional similarity with ‘basal-like’ PDAC
278  compared to the other ‘classical’ PDAC cell states (Figure 2C). While none of the identified
279  PDAC cell states derived from a single patient of origin, they were differently represented
280  across patients (Figure 2D). ‘Basal-like’ PDAC cells were mostly detected in patient samples
281 05 and 08 (36% and 52% of all PDAC cells in these samples, respectively). Among ‘classical’
282  PDAC subclusters, Classical REG4 cells were most prominent in sample 02 (19%),
283  Classical secretory cells in samples 01 and 06 (40% and 73%) and Classical _invasive cells in
284  samples 04 and 09 (49% and 41%).

285  The spatial information retained in ISS data enables the assessment of the local architecture of
286  these distinct PDAC cell states (Supplementary Figure 2B). Remarkably, across the ten-patient
287  cohort, we observed recurring characteristic differences in tumour morphology related to the
288  dominant PDAC cell state in different slide regions (Figure 2E,F and Supplementary Figure
289  3). ‘Basal-like’ PDAC cells, which mostly derived from two patients, were diffusely distributed
290  across contiguous areas of the tumour tissue. ‘Classical’ tumour cells were detected either as
291  monolayers around a lumen, multiple layers of cells around a lumen, clumps, or distributed
292 across tissue regions. Classical REG4 cells largely presented in clumps, which could also
293 comprise Classical secretory cells. Classical secretory cells were otherwise mostly detected
294 as monolayers around a lumen, histologically representing more highly differentiated tumour
295  areas, unless they co-localised with Classical invasive cells and shared the spatial architecture
296  ofthe latter. Classical invasive cells presented as multiple layers of cells around a lumen where
297  one existed, or distributed across areas without a lumen. Classical adverse cells, on the other
298  hand, which were detected in all patient samples, exhibited a distributed morphological pattern
299  similar to ‘basal-like’ PDAC cells.

300 Notably, different PDAC cell states co-occurred within individual patients, but with a
301  phenotypic gradient from ‘classical’ to ‘basal-like’ states. Classical secretory cells,
302  characterised by secretion related gene expression and their monolayer morphology closely
303  resembling healthy pancreatic ducts, did not co-occur with ‘basal-like” PDAC cells. In contrast,
304  Classical invasive cells and ‘basal-like’ PDAC cells were observed in different regions of the
305  same tumour section in samples 03, 08 and 09. As Classical _invasive cells showed increased
306 gene expression associated with adhesion and invasion, this suggests a continuum of
307  transcriptional and morphological states, with Classical secretory and ‘basal-like’ PDAC cells
308  occupying the opposite ends while Classical invasive cells correspond to an intermediate
309  phenotype. Upregulation of CEACAMS5, CEACAM6 and MUCL3 may disrupt an initially
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310 formed PDAC cell monolayer, leading to the emergence of multilayer structures and
311  dissemination of tumour cells throughout the surrounding tissue.

312

313 Co-localisation of malignant and tumour microenvironment cells

314

315 PDAC development and prognosis is intricately linked with the tumour microenvironment,
316 including cancer-associated fibroblasts (CAFs), infiltrating immune cells and vasculature '3
317  Unsupervised clustering of fibroblasts from all patient samples revealed four distinct clusters
318  (Figure 3A,B). Inflammatory CAFs (iCAFs) were identified based on expression of hyaluronan
319  synthase 1 (HAS!) and interleukin 6 (/L6), while myofibroblastic CAFs (CAFs) subdivided
320  into two clusters. One cluster was distinguished by periostin (POSTN) expression, encoding an
321  integrin ligand that supports cell adhesion and migration 4°; it was labelled myCAF _adhesive.
322 Enrichment for a-smooth muscle actin (4C7A42) expression characterised the second myCAF
323 cluster, which was therefore labelled myCAF contractile.

324  While the limited number of transcripts in ISS experiments did not allow the distinction of
325 immune cell subtypes at high resolution, the major categories of immune cells were also
326  identified (Figure 3C,D). Macrophages, marked by expression of CD68 and CD14, could be
327  divided into pro-inflammatory M1 macrophages expressing FCGRIA and regulatory M2
328  macrophages with increased expression of CD163 and MS444A. Lymphocytes comprised large
329  clusters of B cells and T cells. Finally, a cluster of cells enriched for expression of cytotoxicity-
330 related genes including granzymes (GZMA, GZMH) and NKG7 was identified as NK cells,
331  although it cannot be ruled out that it might comprise cytotoxic T cells.

332 To gain insight into the spatial co-localisation of PDAC tumour with microenvironment cells,
333 we constructed a cell connectivity graph for each sample where all cells within a 50 um radius
334  of each other were counted as neighbours. We then quantified the enrichment of cell types in
335  local neighbourhoods by determining the frequency of neighbouring cell type pairings and
336  comparing it to expectation based on a randomly permuted graph 2. Across samples,
337  myCAF adhesive cells are largely absent from tumour areas with a clearly ‘classical’
338  phenotype, i.e. around Classical secretory cells (Figure 3E); this is consistent with previous
339  reports of poorer prognosis in tumours with a dominant POSTN expressing fibroblast
340  population 46, Inflammatory CAF are often spatially associated with ‘basal-like’ PDAC and
341 immune cells. Consistent with the proposed continuum of PDAC subtypes showing more
342 ‘classical’ to more ‘basal-like’ features, the vicinity of Classical adverse tumour cells is also
343  enriched for ‘basal-like’ PDAC cells as well as immune cells (Figure 3E).

344

345  Spatial patterns of gene expression in PDAC tumour samples

346

347  As the tumour samples in our cohort comprised varying proportions of the different PDAC
348  subtypes, we adapted a published approach ** to analyse the spatial cross-correlation of tumour
349  cells with their microenvironment across all patients (Figure 4A). Due to the relatively low
350 number of transcripts detected per cell, we defined a hexagonal grid with a distance of 100 pm
351  between spots and assigned transcripts the nearest grid spots. Transcripts with spatially
352  heterogeneous expression were identified through Local Indicators of Spatial Association
353 (LISA)**7 using normalised transcript counts and a binary adjacency weight matrix encoding
354  adjacent spots within a spatial distance of 200 um. Hierarchical clustering of transcripts based
355 on their spatial cross-correlation across all samples revealed patterns of transcripts with
356  spatially coherent expression profiles (Supplementary Figure 4A,B).

357  Spatial patterns largely reflect the previously identified cell types present in the PDAC samples
358  (Figure 4B,C). Transcripts with high expression in endocrine cells, as expected, show high
359  spatial cross-correlation with each other. They are spatially associated with transcripts enriched

10
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360 in the exocrine compartment, i.e. acinar-i/s cells?’, acinar-REG cells*® and ductal cells,
361  reflecting healthy pancreatic tissue areas (Figure 4B). Transcripts characteristic of T cells, B
362  cells, macrophages and immune-related surface genes also co-localise, and are spatially
363  associated with fibroblast and endothelial cell enriched transcripts. Despite their morphological
364  differences, transcripts identifying the ‘classical’ PDAC subpopulations Classical secretory,
365  Classical invasive and Classical adverse show overlapping spatial expression profiles. In
366  contrast, Classical REG4 and ‘basal-like’ PDAC transcripts do not form a separate pattern but
367  co-localise with other transcripts showing a spatially distributed expression profile, including
368 transcripts associated with stromal cells, Schwann cells, proliferation, angiogenesis and
369 immune signalling (Figure 4B). This suggests that Classical REG4 and ‘basal-like’ PDAC
370  populations cannot be delineated based on spatial cross-correlation analysis of the marker
371  genes employed to identify these cell populations in our data, and additional marker genes will
372  be required to spatially resolve these populations in future studies. Spatial cross-correlation
373  patterns of gene expression in PDAC tumour samples thus corroborate the distinction of
374  ‘classical’ PDAC subtypes, confirming that transcriptional differences relate to distinct
375  morphologies.

376  Among fibroblasts, myCAFs show a closer spatial correlation with ‘classical’ PDAC subtypes
377  compared to iCAF, which in turn are associated with other microenvironment cell types as well
378  as ‘basal-like’ PDAC (Figure 4B, Figure 3E). These results indicate that presence of different
379  PDAC tumour subpopulations induces compositional changes of the microenvironment and/or
380  microenvironment composition affects PDAC subtype identity.

381 In addition to established cell type marker genes, our ISS probe set included additional targets
382  based on their reported or postulated role in PDAC development (Supplementary Table 2).
383  While the majority of these targets showed no coherent patterns of co-localisation with PDAC
384  subtype specific transcripts (Supplementary Figure 4A), we observed spatial clustering of
385  Classical invasive cells with complement decay-accelerating factor (CDS55), a glycoprotein
386  that accelerates the decay of complement cascade proteins and thereby prevents damage to
387 cells ®. In PDAC and other cancers, including colorectal and head and neck cancers, the
388  evasion of complement cells achieved by elevated CD55 has been shown to confer worse
389  prognosis 32 Moreover, hypoxia-inducible factor 1 (HIFIA) expression was spatially
390 associated with iCAF, in line with a recent study suggesting that hypoxia drives iCAF
391  formation in PDAC 3. Finally, we found a spatial co-localisation of neuropilin-2 (NRP2) with
392  myCAF. Neuropilin-2 is known as a receptor for angiogenic growth factors. Besides its
393  expression by endothelial cells **, NRP2 in PDAC cells is associated with angiogenesis, tumour
394  growth, migration and invasion *°. PDAC cells have also been reported to induce NRP2
395  expression in tumour-associated macrophages, in turn promoting tumour growth 3. In gastric
396  cancer, NRP2 is upregulated in CAFs compared to normal fibroblasts and high expression
397 levels correlate with worse outcomes °7; our in situ sequencing data suggest this may also be
398  true for PDAC.

399

400  Prognostic significance of ‘classical’ PDAC subpopulations

401

402  While it is well established that ‘basal-like’ PDAC carry a worse prognosis compared to
403  “classical”’ PDAC tumours, the proposed multiplicity of ‘classical’ PDAC subtypes raises the
404  question whether phenotypic features of these subtypes could be harnessed for prognostic
405  substratification. We addressed this question by means of the pancreatic adenocarcinoma
406  cohort within The Cancer Genome Atlas (TCGA-PAAD), limiting our analysis to primary
407  tumour samples (n=178) 8. To probe our findings in a separate cohort, we also analysed
408  pancreatic adenocarcinoma data from the Pan-Cancer Analysis of Whole Genomes (PCAWG)
409  study (PACA-AU), again considering only primary tumour samples (n=80) 6. For each
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410  sample, gene set expression scores were computed based on bulk RNA-seq data for the gene
411  sets corresponding to Classical secretory, Classical invasive and Classical adverse spatial
412  patterns as well as ‘basal-like” marker genes (Figure 5SA-C and Supplementary Table 4).

413  In the TCGA-PAAD cohort, no significant difference in survival was observed between
414  patients with high or low expression of Classical secretory genes, consistent with the notion
415  that this presents the most ‘classical’ phenotype reminiscent of healthy pancreatic duct tissue
416  (Figure 5D). In contrast, high expression of Classical invasive and Classical _adverse genes
417  was associated with significantly worse survival. As expected, expression of ‘basal-like’
418  subtype marker genes was also associated with poor outcome. Hazard ratio (HR) analysis
419  confirmed worse outcomes associated with the Classical invasive (HR 1.6, 95% confidence
420  interval 1.2-2.1), Classical _adverse (HR 1.9, 95% confidence interval 1.4-2.7) and ‘basal-like’
421  (HR 1.8, 95% confidence interval 1.4-2.4) phenotypes (Figure 5F).

422 In the smaller PACA-AU cohort, survival differences were less significant, but we observed
423  comparable tendencies (Figure SE). Hazard ratios also indicated poorer prognosis for the
424  ‘basal-like> PDAC subtype (HR 2, 95% confidence interval 1-3.7) while the
425  Classical secretory subtype emerged as protective (HR 0.57, 95% confidence interval 0.36-
426  0.93) (Figure 5G).

427  Overall, these results corroborate a gradient of worsening overall survival from
428  Classical secretory to  Classical invasive and  Classical adverse tumours. As
429  Classical secretory tumour cells exhibit transcriptional features of healthy pancreatic tissue
430  while Classical adverse cells are most transcriptionally similar to ‘basal-like’ PDAC cells, we
431  conclude that consistent survival differences, associated with transcriptional subtypes, exist
432  even within configurations traditionally referred to as ‘classical’ PDAC.

433

434
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435 Discussion

436

437  Intratumoural heterogeneity remains a significant obstacle to PDAC treatment. In this study,
438 we employed in situ sequencing to identify subpopulations of PDAC with distinct
439  transcriptional and morphological characteristics. Our findings suggest a further stratification
440  of ‘classical’ PDAC, which represent the majority of PDAC cases ’, into four subtypes
441  representing a continuum from more ‘classical’ to more ‘basal-like’ phenotypes.
442 Morphologically, we observed a spatial association of ‘classical’ PDAC subtypes, whereas
443 ‘basal-like’ PDAC are distributed in the stroma and co-localise preferentially with iCAF; this
444 is consistent with the distinction between °‘classical’ and ‘squamoid-basaloid’ spatial
445  communities in a recent whole-transcriptome profiling study 8.

446

447  Among the ‘classical’ PDAC cell populations, Classical secretory cells most closely resemble
448  healthy pancreatic ductal tissue, both in terms of morphology and gene expression.
449  Classical REG4 cells are distinguished by high expression of REG4 but otherwise
450  transcriptionally similar to Classical secretory cells; while the latter largely occur as
451  monolayers around a lumen, Classical REG4 cells present as cell aggregates within the
452  samples. REG4 has been suggested as a potential serological marker of PDAC and a target for
453 antibody therapy *. Our data suggests that REG4 overexpression may be limited to a subset of
454  PDAC cells, potentially restricting the utility of this approach. Interestingly, REG4 has been
455  linked to PDAC development from intestinal-type intraductal papillary mucinous neoplasms
456  (IPMNs) %2, a potential alternative cancerogenic route that might be reflected in the different
457  morphologies of Classical secretory and Classical REG4 tumour cell populations.

458  Classical invasive cells are characterised by increased expression of carcinoembryonic
459  antigen-related cell adhesion molecules CEACAMS and CEACAMG6 along with multi-layer or
460  more distributed tumour architectures. CEACAMS5 and CEACAMG6 expression reportedly
461  correlates with shortened overall and disease-free survival in PDAC, as well as positive lymph
462  node status and distant metastasis °*%!, Their expression is also associated with the progression
463  of pancreatic intraepithelial neoplasia (PanIN), its most common precursor lesion, to malignant
464  PDAC *. Moreover, CEACAMG6 has been linked to the invasive capacity of PDAC cells in
465  vitro 2%, Together with the described PDAC subtype morphologies, this suggests that
466 CEACAMS and CEACAMG6 expression triggers the capacity of tumour cells to part from ductal
467  monolayer structures and invade into the surrounding tissue or disseminate to distant sites.
468  Interestingly, in an immunohistochemistry study of PDAC tissue microarrays, CEACAMS and
469 CEACAMG expression was higher in moderately-differentiated than in well-differentiated or
470  poorly-differentiated tumours %, potentially reflecting the intermediate state that
471  Classical invasive cells occupy between more ‘classical’ and more ‘basal-like> PDAC
472  subtypes. Finally, Classical adverse cells are most ‘basal-like’ and their expression profile is
473  enriched for a combination of ‘basal-like’ and ‘classical’ marker genes.

474

475 By stratifying the TCGA-PAAD and PACA-AU cohorts according to the morpho-
476  transcriptional PDAC subtypes identified here, we found that overall survival decreased on a
477  gradient from more ‘classical’ to more ‘basal-like’ tumours. Despite the small cohort size, we
478  also observed a tendency for better survival associated with lumina in the tumours and worse
479  survival with ‘basal-like’ tumours within our own dataset of ten patients (Supplementary Table
480  1). Morpho-transcriptional PDAC subtypes thus carry prognostic significance.

481

482  Our results contribute to resolving the current multitude of partially overlapping classification
483  schemes for PDAC tumours 7 by taking into account their spatial context. Transcriptionally
484  defined subtypes with characteristic morphological features occupy a continuum from

13


https://doi.org/10.1101/2022.09.23.509133
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.23.509133; this version posted September 23, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

485  ‘classical’ to ‘basal-like’ PDAC and co-occur within the same tumours, consistent with
486  previous observations of tumour subtype co-existence by RNA sequencing of dissociated cells
487 %1965 Notably, Classical secretory cells morphologically represent glandular or duct-like
488  differentiation patterns, corresponding to higher differentiated tumour areas and better
489  outcomes according to WHO grading criteria for PDAC, whereas Classical invasive and
490  Classical _adverse tumours with their invasive or distributed spatial architectures reflect
491  morphological criteria for higher-grade tumours %°.

492

493  While in situ sequencing is not yet feasible for clinical applications, the correspondence
494  between transcriptional and morphological features of PDAC might in future enable the
495  automated substratification of PDAC tumours based on morphology alone, for example using
496  stained tumour sections acquired as part of routine clinical procedures. In addition, more
497  comprehensive profiling using whole-transcriptome spatial analysis at the single-cell level
498  could uncover molecular interactions between the different PDAC subtypes and their
499  microenvironment, aiding the development of targeted therapies for PDAC.

500

501
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697  Figure 1: Cell type identification based on ISS of human PDAC. (A) Overview of the
698  experimental workflow. PDAC biopsies were acquired from 10 patients. For in situ
699  sequencing, tissue sections are prepared from formalin-fixed paraffin-embedded samples.
700  Transcript-specific padlock probes (PLP) hybridise directly to the mRNA targets and are
701  amplified by Rolling Circle Amplification (RCA). PLP identities are then decoded by
702 sequential cycles of hybridisation and stripping of bridge and fluorophore conjugated detection
703  probes 2728, To assign transcripts to cells, a convolutional neural network is applied that
704  segments cell nuclei via star-convex polygons *°. (B) UMAP representation of all profiled cells
705  from ten patient samples, indicating the assigned cell types based on clustering and marker
706  gene expression analysis. (C) Expression of characteristic genes across the different cell types
707  identified in the tumour samples. Colour indicates normalised mean expression while dot size
708  represents the fraction of cells in each population expressing the gene.
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711

712 Figure 2: Transcriptional subtypes of PDAC with characteristic morphologies. (A)
713  UMAP representation of the identified PDAC subtypes, labelled according to functional
714  annotations of enriched genes in each cluster (see also Supplementary Figure 2A). (B)
715  Pearson’s correlation coefficients between mean transcriptional profiles of the different PDAC
716  subtypes. (C) Normalised expression of characteristic genes, including marker genes for the
717  ‘classical’ and ‘basal-like’ subtypes, across the identified PDAC cell clusters. Colour bars
718  denote subtypes, with colours as in (A). (D) Relative frequencies of the different PDAC
719  subtypes across all ten patient samples. Colours indicate subtypes as in (A). (E) Distinctive
720  morphologies of the identified transcriptional PDAC subtypes were observed across patients.
721  Top row depicts simplified illustrations of morphologies, while bottom row shows
722 representative areas from different samples where the respective PDAC subtype and
723  morphology was detected. Colours indicate PDAC subtypes as in (A), with all other tumour
724 cells shown in grey. Scale bars, 200 um. (F) Representation of morphological PDAC subtypes
725  across patient samples. Dark blue: dominant morphology in the sample, light blue: morphology
726  also detected in the sample, white: morphology not detected.
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730  Figure 3: Stromal and immune cell types in PDAC tumour samples. (A) UMAP
731  representation of CAF populations, including inflammatory CAFs as well as two types of
732 myofibroblastic CAFs. (B) Expression of characteristic genes across the CAF populations.
733  (C) UMAP representation of immune cell populations, including macrophages, B cells, T cells
734  and NK cells. (D) Expression of characteristic genes across the immune cell populations. (E)
735  Enrichment or depletion of cell types in local neighbourhoods was assessed by comparing the
736  number of observed cell type co-occurrences within 50 um against expected values based on
737  random permutations on the cell connectivity graph. Heatmaps show z-scores for enrichment
738  or depletion of cell type pairings for two patient samples. Bar plots indicate cell numbers for
739  each sample.
740
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Figure 4: Spatial cross-correlation patterns of transcripts. (A) To identify spatial patterns
of transcription, each recorded transcript is assigned to the nearest point on a hexagonal grid
(grid point distance 100 pm). A binary adjacency weight matrix is determined for each sample,
with two points considered adjacent if they are located within 200 um of each other. Here, grey
lines connect adjacent spots. Using the adjacency weight matrices for each sample, a spatial
cross-correlation index is computed for every transcript pair taking into account neighbourhood
information from all samples. Gene expression patterns are determined by dynamic tree cutting
of a hierarchical dendrogram computed from the resulting spatial cross-correlation matrix.
Groups of genes are z-scored and averaged for visualisation of transcriptional patterns **. (B)
Hierarchical dendrogram depicting patterns of spatially cross-correlated transcripts across all
samples. Most patterns could be identified as representing specific cell types and were labelled
accordingly; the pattern labelled ‘Mixed’ comprised REG4, markers for ‘basal-like’ PDAC,
Schwann cells, proliferation and angiogenesis, as well as various immune signalling genes.
The full dendrogram including all transcript names is shown in Supplementary Figure 4A.
Heatmap shows average gene expression per pattern across all cells, with column annotations
indicating cell type identity and patient origin. (C) Visualisation in different patient samples
of spatial transcriptional patterns that correspond to the ‘classical’ PDAC subtypes, as well as
the distributed pattern comprising ‘basal-like> PDAC marker genes. Colour indicates
normalised mean expression of pattern transcripts.
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764  Figure 5: Prognostic relevance of PDAC subtypes. (A) Gene sets corresponding to
765  Classical secretory, Classical invasive and Classical adverse spatial patterns as well as
766  ‘basal-like’ marker genes. (B,C) PDAC subtype scores based on bulk RNA-seq data for
767  primary tumour samples from the TCGA-PAAD cohort (n=178 patients) ® and the PACA-AU
768  cohort (n=80 patients) *°, visualised by z-scores for each sample. (D,E) Kaplan-Meier curves
769  comparing survival probability in TCGA-PAAD and PACA-AU patients with high (green) or
770  low (red) expression of the gene sets defined by the spatial patterns representing secretory,
771  invasive and adverse ‘classical’ PDAC subtypes. The comparison according to ‘basal-like’
772  signature gene expression is also shown for reference. Shaded areas indicate 95% confidence
773  intervals. High scores for the invasive or adverse phenotypes are associated with significantly
774  worse survival compared to the secretory phenotype (p<0.01, log-rank test). (F,G) Hazard
775  ratios associated with gene set scores for the secretory, invasive, adverse and ‘basal-like’ gene
776  sets. Expression of the invasive or adverse gene sets is associated with worse outcome
777  compared to the secretory gene set (p<0.001, Wald test).
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Supplementary Figure 1: Characterisation of cell types detected in PDAC samples. (A)
Assignment of ISS transcript locations to cells using the deep-learning based segmentation
framework StarDist: The DAPI stained nuclei image (i) is segmented using StarDist (i1). The
nuclei label mask is expanded isotropically without overlapping to approximate cell boundaries
(i11) and the transcript locations are mapped onto the cell boundary map (iv), resulting in a cell
X gene count matrix. (B) Frequency of cell types detected across all patient samples. (C)
Spatial locations of endocrine cells reflecting pancreatic islets and other detected cells across
all patient samples.
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Supplementary Figure 2: Identification of PDAC subtypes and their spatial distribution.
(A) PDAC subtype identity was determined based on Leiden clustering and marker gene
expression. At lower clustering resolution (0.06), clusters 0, 2 and 4 expressed ‘classical’
marker genes but were distinguished by enrichment for MUCL3 and CEACAM®6 in cluster 2
and REG4 in cluster 4, while the remaining clusters expressed ‘basal-like’ marker genes. At
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800  higher clustering resolution (0.4), fifteen clusters were identified by Leiden clustering. Of
801 these, clusters 3, 8, 9, 11, 13, were enriched for ‘basal-like’ marker gene expression and were
802  therefore summarised as ‘Basal-like’. Among the ‘classical’ clusters, clusters 0 and 4 shared
803  enrichment for invasion related genes such as CEACAMS5 and CEACAMG6 and were
804  summarised as Classical invasive; clusters 2, 5, 6, 10, 12, 14, shared expression of secretion
805 related genes such as TFFI, TFF2 and OLFM4 and were therefore summarised as
806  Classical secretory; cluster 1 did not show secretory features but high expression of KR77,
807  associated with poorer outcome in PDAC *#!, and was therefore labelled Classical adverse; and
808  the REG4-expressing cluster 7 was labelled Classical REG4. Cell clusters and gene expression
809 are visualised on the same UMAP representation as in Figure 2A. Coloured boxes correspond
810  to the identified PDAC subtypes. (B) Spatial distribution of PDAC subtype cells across patient
811  samples. Each dot represents a PDAC tumour cell coloured by subtype identity, with the spatial
812  distribution corresponding to the ISS coordinates. Scale bars, 1 mm.
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Supplementary Figure 3: Identified PDAC morphologies as shown in Figure 2E (top) and
H&E staining images of the corresponding tumour areas (bottom). Scale bars, 200 um.
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Supplementary Figure 4: (A) Hierarchical clustering for all transcripts based on spatial cross-
correlation across all samples. (B) Distribution of dominant patterns across samples. Each
position is coloured according to the locally dominant pattern.
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