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 2 

Abstract 25 
 26 
Tumour heterogeneity remains a major obstacle to effective and precise therapy for pancreatic 27 
ductal adenocarcinoma (PDAC), the most common pancreatic cancer. Several transcriptional 28 
subtypes of PDAC with differential prognosis have been described, but they co-occur within 29 
tumours and are difficult to distinguish in routine clinical workflows. To investigate the 30 
relationship between transcriptional PDAC subtypes, local tissue morphology and the tumour 31 
microenvironment, we employed in situ sequencing to profile single cells in their spatial tissue 32 
context. We identify five transcriptional subtypes of PDAC cells occurring in three distinct 33 
morphological patterns, including secretory tumour cell monolayers, invasive tumour cells 34 
with high expression of cell adhesion molecules CEACAM5 and CEACAM6, and spatially 35 
distributed tumour cells associated with inflammatory-type fibroblasts. Analysis of bulk RNA-36 
sequencing datasets of the TCGA-PAAD and PACA-AU cohorts according to these spatio-37 
transcriptional subtypes confirmed their prognostic significance. Our results thus indicate an 38 
automatable substratification based on spatially-resolved transcriptomics of PDAC and 39 
identify distinct subtypes of ‘classical’ PDAC, representing most cases of this devastating 40 
malignancy. 41 
 42 
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 3 

Introduction 44 
 45 
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal of all major organ malignancies, 46 
with a 5-year survival rate of less than 10% 1,2. Due to a lack of treatment advances compared 47 
to other cancer types, PDAC is predicted to become the second leading cause of cancer deaths 48 
in the United States by 2030 3.  49 
 50 
Bulk transcriptomic analyses have converged on two transcriptional subtypes of PDAC 51 
tumours, termed ‘classical’ and ‘basal-like’, with prognostic significance as the latter carry a 52 
poorer prognosis 4. Related molecular subtyping schemes have also been suggested, including 53 
a distinction into ‘classical’, ‘quasi-mesenchymal’ and ‘exocrine-like’ PDAC 5 or into 54 
‘squamous’, ‘pancreatic progenitor’, ‘immunogenic’ and ‘aberrantly differentiated endocrine 55 
(ADEX)’ tumours 6. These schemes show significant overlap as the ‘classical’ and ‘pancreatic 56 
progenitor’ subtypes, as well as the ‘basal-like’, ‘quasi-mesenchymal’ and ‘squamous’ 57 
subtypes, share similar transcriptional signatures 7. Due to low neoplastic cellularity in tumour 58 
samples, a recent study reported that the ‘exocrine-like’, ‘immunogenic’ and ‘ADEX’ subtypes 59 
may represent contaminating non-neoplastic cells instead of tumour cells 8. 60 
Recent single-cell transcriptomics studies provide emerging evidence that molecular PDAC 61 
subtypes are not mutually exclusive, but co-occur within the same tumours 9,10. Instead of 62 
discrete tumour cell states, PDAC cells may thus occupy a continuum of tumour cell states 63 
ranging from ‘classical’ to ‘basal-like’, requiring further investigation 11. 64 
 65 
Histopathologically, PDAC tumours are graded according to defined WHO criteria that include 66 
the occurrence of tubular duct-like structures or solid areas, retained mucin, nuclear 67 
polymorphism and number of mitoses 12. A recent histopathological investigation distinguished 68 
‘gland forming’ and ‘non-gland forming’ components based on the presence or absence of 69 
well-formed glands, and showed that tumours with at least 40% ‘non-gland forming’ regions 70 
transcriptionally corresponded to the ‘basal-like’ PDAC subtype, with significantly poorer 71 
outcomes 13. 72 
 73 
Cancer-associated fibroblasts (CAFs) and other cell types of the tumour microenvironment 74 
have additionally emerged as key contributors to PDAC development and therapy resistance 75 
14,15. In recent single-cell transcriptomics studies, at least three distinct subtypes of CAFs have 76 
been described in human and murine tumour samples: immunosuppressive cytokine-secreting 77 
inflammatory CAFs (iCAFs), myofibroblastic CAFs (myCAF) with high expression of α-78 
smooth muscle actin (ACTA2) that produce extracellular matrix and are thought to restrain 79 
tumour growth, and antigen-presenting CAFs (apCAFs) expressing MHC class II and CD74 80 
that may play an immunomodulatory role 16–21. Distinctive stromal gene expression signatures 81 
as well as patterns of immune cell and vascular infiltration have also been described 4,22,23. How 82 
these different microenvironment cell types interact with PDAC tumour cells remains a key 83 
area of research; their complex cellular exchanges may comprise both tumour-enhancing and 84 
tumour-suppressive effects, and curtail or boost the efficacy of therapeutic approaches 24,25.  85 
 86 
Investigating the relationship between tumour morphology, transcriptionally different PDAC 87 
subtype cells and their microenvironment is complicated by the spatial heterogeneity and low 88 
neoplastic cell content of PDAC tumours 23,26. While single-cell transcriptomics has helped to 89 
distinguish diverse cell types within tumour samples, spatial information is lost during tissue 90 
dissociation. Addressing this challenge, recently developed in situ sequencing (ISS) 91 
approaches enable transcriptional profiling at the single-cell level while retaining spatial 92 
context 27,28. 93 
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 4 

Here, we apply ISS to probe how gene expression in single PDAC tumour cells relates to local 94 
tissue morphology. We distinguish five transcriptional subtypes of PDAC correlating with 95 
distinct morphological patterns and microenvironment cell type compositions, and show that 96 
these spatio-transcriptional subtypes hold prognostic significance.  97 
 98 
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Methods 100 
 101 
Sample acquisition  102 
Pancreatic tissue specimens from 10 patients with pancreatic ductal adenocarcinoma (PDAC) 103 
were obtained from the Tissue Biobank of Klinikum rechts der Isar and TUM (MTBIO). 104 
Tumour content was approved by a board-certified pathologist. Informed consent was available 105 
from all patients. The use of tumour material was approved by the ethics committee of the 106 
medical faculty of TUM (403/17S).  107 
 108 
In situ sequencing 109 
To spatially characterise gene expression across patients, formalin-fixed paraffin-embedded 110 
tissue sections (5 µm thick) were processed for RNA in situ hybridisation according to the 111 
manufacturer’s instructions (HS Library Prep Kit Large 1110-02, CARTANA, 10xGenomics), 112 
with four DNA probes for each target gene (with a total of 199 different target genes) designed 113 
and manufactured by CARTANA (10xGenomics). As a modification, to enhance the probe 114 
signal to background ratio, 1× Lipofuscin Autofluorescence Quencher (Promocell) was applied 115 
for 30 seconds prior to fluorescence labelling. Sequencing was performed by CARTANA 116 
(10xGenomics) in six subsequent rounds of fluorescent labelling and stripping to detect the 117 
spatial coordinates of each target probe. On average, around 420,000 transcripts per sample 118 
(~190,000 – ~905,000) passed high threshold quality control. A reference 4′,6-diamidino-2-119 
phenylindole (DAPI) staining image was also acquired for each sample. Finally, all slides were 120 
stained using an adapted hematoxylin and eosin (H&E) staining protocol 29. 121 
 122 
Analysis 123 
 124 
ISS data pre-processing 125 
Given the DAPI stained images for each sample, the nuclei were detected and segmented using 126 
the deep learning framework StarDist version 0.7.2 for object detection with star-convex 127 
polygons 30. The neural network was pre-trained on fluorescent nuclear marker images based 128 
on a subset of the DSB 2018 nuclei segmentation challenge dataset 30. Cell boundaries were 129 
approximated by isotropically expanding the nuclei labels to the maximum radius of 6 µm, 130 
with the constraint of prohibiting overlaps of cells (Supplementary Figure 1). The number of 131 
cells per sample ranged from 71,666 to 270,454. Transcripts detected with ISS were assigned 132 
to these cells by mapping the coordinates of the sequenced target probes to the cell boundaries, 133 
resulting in a cell ×	gene count matrix. Online visualisations were generated using the Python 134 
package TissUUmaps version 3.0.931. 135 
 136 
Transcriptomic analysis  137 
ISS data were processed using the Python package Squidpy version 1.1.2 32. Cells with less 138 
than four detected transcripts and transcripts detected in less than ten cells were excluded from 139 
the analysis. Transcript counts per cell were normalised and log-transformed and scaled to unit 140 
variance and zero mean. To identify cell types, a reduced set of transcripts representing cell 141 
type markers was used (Supplementary Table 3). PCA was performed on the transcript counts 142 
of cells from all patient samples and a neighbourhood graph was constructed based on the first 143 
20 principal components. Clusters were identified by Leiden clustering (resolution = 2.0). The 144 
cellular identity of clusters was then determined based on differentially expressed genes. 145 
Clusters corresponding to the same cell type based on marker gene expression were merged, 146 
while clusters comprising two distinct cell types were split by subclustering. Transcriptional 147 
profiles were visualised using UMAP 33 for dimensional reduction. For more detailed analysis, 148 
clustering was repeated for malignant PDAC cells, fibroblasts, immune cells, endocrine cells 149 
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and exocrine cells separately. A small number of cells which could not be identified as any 150 
specific cell type were excluded from further analysis (5.1% of all cells). PCA and clustering 151 
were also performed for cells from each patient sample individually to confirm that the 152 
combined clustering was representative. 153 
 154 
Spatial co-occurrence analysis 155 
To analyse enrichment and depletion of cell types as a function of distance from other cell 156 
types, a graph encoding spatial neighbour relations was constructed, including neighbours 157 
within a distance of 50 µm. An enrichment score was calculated based on the connectivity 158 
graph by comparing the number of observed cell type co-occurrences against 1,000 random 159 
permutations and computing a z-score. Enrichment z-scores were visualised as heatmaps for 160 
each patient sample. 161 
 162 
Spatial correlation analysis 163 
To measure spatial co-occurrence of cell types, spatial auto-correlation and cross-correlation 164 
analysis was performed using the R package MERINGUE version 1.0 34. For co-occurrence at 165 
the level of transcripts, a hexagonal grid spaced at 100 µm distance between hexagon centres 166 
was defined spanning each sample, and transcripts were assigned to the nearest grid point. 167 
Transcripts detected at less than ten grid points were excluded. Counts per grid point were 168 
normalised with a scale factor of 6,000. A binary adjacency weight matrix was computed for 169 
each sample considering grid points up to 200 µm apart as neighbours. To detect spatially 170 
correlated transcripts in each sample separately, Moran’s I as a measure of spatial cross-171 
correlation was calculated for all neighbouring pairs and genes were summarised into spatial 172 
patterns across the population of N cells using the spatial cross-correlation index (SCI) as 173 
defined in MERINGUE, 174 
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 176 
where x and y correspond to the expression magnitude of two genes in a given cell i and its 177 
spatially adjacent neighbours j. To identify spatial cross-correlation patterns across all ten 178 
samples, a joint adjacency weight matrix Wjoint was defined where Wjointi,j = 1 if the indices i 179 
and j correspond to neighbouring grid points from the sample sample, and Wjointi,j = 0 otherwise. 180 
A joint spatial cross-correlation index SCIjoint was then calculated for each gene pair as 181 
 182 
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 184 
where p indexes samples. After calculating SCI and SCIjoint for each gene pair, the resulting 185 
spatial cross-correlation matrices were used to group genes into spatial patterns by hierarchical 186 
clustering with Ward's clustering criterion and dynamic tree cutting (tuning parameter 187 
deepSplit = 2). 188 
 189 
Survival analysis 190 
To analyse how identified PDAC subtype signatures relate to clinical outcomes, bulk RNA 191 
sequencing data from the TCGA-PAAD dataset 26 was downloaded using the R package 192 
TCGA2STAT version 1.2 35 and the PACA-AU dataset (release 28) 36 was downloaded from 193 
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the ICGC data portal (https://dcc.icgc.org/). Only samples characterised as primary solid 194 
tumour were considered (n=178 for TCGA-PAAD and n=80 for PACA-AU). RPKM 195 
expression data were converted to TPM, scaled, centred, and clipped at [-5, 5].  196 
Expression scores for pattern-defined gene sets and ‘basal-like’ subtype marker genes 197 
(Supplementary Table 4) were determined by calculating the average expression level of each 198 
gene set for each sample, subtracted by the average expression of a control gene set. To control 199 
for differential overall expression levels of genes, all genes were binned based on average 200 
expression across all samples into 24 bins, and the control gene set was assembled by randomly 201 
selecting 100 genes from the same expression bin for each gene in the query gene set. 202 
For each gene set, samples were divided into high and low expression groups using the median 203 
expression score as the cutoff. Kaplan-Meier plots were generated using the survminer package 204 
version 0.4.6 in R. To assess survival differences and hazard ratios, the log-rank test and cox 205 
proportional hazards regression model were used as implemented in the R package survival 206 
version 3.1-8. 207 
 208 
 209 
  210 
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Results 211 
 212 
Identification of PDAC cells and pancreatic cell types using ISS 213 
 214 
To investigate the relationship between transcriptional profiles and spatial architecture of the 215 
different cell types present in PDAC tumours, we obtained surgically resected tumour samples 216 
from ten randomly selected patients with a confirmed diagnosis of PDAC and processed them 217 
for ISS with a curated list of 199 target transcripts (Figure 1A; Supplementary Table 1 and 2). 218 
Briefly, during ISS, transcript-specific padlock probes hybridise directly to the mRNA target 219 
and are amplified and sequenced using fluorophore conjugated detection probes 27,28,37. 220 
Transcripts were assigned to cells by mapping their coordinates to the cell boundary map 221 
generated based on nuclei segmentation via star-convex polygons using a convolutional neural 222 
network 30 (Supplementary Figure 1A).  223 
By unsupervised clustering of the resulting single-cell transcriptional profiles, we identified 224 
different cell types present in the samples based on differential expression of characteristic 225 
marker genes across all patients (Figure 1B,C). PDAC cells were distinguished from healthy 226 
ductal cells by elevated keratin 19 (KRT19) expression; using published subtype marker gene 227 
sets 4, clusters of PDAC cells were further classified as ‘basal-like’ or ‘classical’ based on 228 
expression of 11 ‘basal-like’ and 19 ‘classical’ marker genes (Supplementary Table 2). 229 
Consistent with previous reports 8, the neoplastic cell content of samples was relatively low 230 
(41% across all patients). 231 
In addition to PDAC tumour cells, we identified a prominent fibroblast compartment based on 232 
expression of lumican (LUM), collagens and other fibroblast marker genes, which comprised 233 
multiple subclusters. Reflecting immune infiltration of the tumour volumes, lymphocytes and 234 
macrophages were also detected. Endothelial cells were classified based on von Willebrand 235 
factor (VWF) expression and Schwann cells based on expression of sodium channel protein 236 
type 7 subunit alpha (SCN7A) as well as crystallin alpha B (CRYAB). All samples also 237 
contained endocrine pancreatic islet cells which could be further subdivided into alpha cells 238 
expressing glucagon (GCG) and transthyretin (TTR), beta cells marked by insulin (INS) 239 
expression and absence of the other endocrine markers, gamma cells expressing pancreatic 240 
polypeptide (PPY), and a small number of delta cells marked by expression of somatostatin 241 
(SST). Finally, exocrine pancreatic acinar cells were identified by serine protease 1 (PRSS1), 242 
amylase alpha 2A (AMY2A) and regenerating family member 3 alpha (REG3A) expression. 243 
The different cell types were represented in broadly similar proportions across patients 244 
(Supplementary Figure 1B).  245 
By recording spatial coordinates for each detected transcript, ISS enables the morphological 246 
characterisation of cells in their spatial environment within the tissue. As expected, endocrine 247 
cells were found to occur in localised clumps representing pancreatic islets, confirming the 248 
validity of our experimental approach and processing pipeline (Supplementary Figure 1C).  249 
 250 
Spatial architectures of PDAC subtype cells 251 
 252 
PDAC tumour cells from the ten patient samples did not present as a homogeneous cell 253 
population, but separated into distinct clusters based on gene expression (Figure 1B). To 254 
differentiate PDAC cell subpopulations, we performed unsupervised clustering of the 255 
malignant cells alone. Besides ‘basal-like’ PDAC cells, four clusters of PDAC cells 256 
corresponding to the ‘classical’ subtype were distinguished based on differential gene 257 
expression (Figure 2A,B and Supplementary Figure 2A).  258 
One major cluster was characterised by the expression of secretion related genes including 259 
LYZ, TFF1 and TFF2, and was therefore labelled Classical_secretory. Another large cluster 260 
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comprised cells with high expression of the carcinoembryonic antigen-related cell adhesion 261 
molecules CEACAM5 and CEACAM6, which mediate cell adhesion and promote tumour 262 
invasion 38, as well as MUCL3, which has been shown to enhance PDAC cell proliferation, 263 
migration and invasion 39; this was labelled Classical_invasive. A smaller cluster defined by 264 
high expression of KRT7, an intermediate filament protein known to be overexpressed in 265 
pancreatic cancer tissues compared to non-malignant pancreatic tissue 40, was labelled 266 
Classical_adverse since a correlation of KRT7 overexpression with poorer overall survival of 267 
PDAC patients has been suggested 41. Finally, the smallest cluster comprised cells highly 268 
expressing regenerating family member 4 (REG4), which is thought to play a role in carcinoma 269 
development from intestinal-type intraductal papillary mucinous neoplasms (IPMNs) 42. The 270 
role of REG4 in PDAC progression remains unclear; serum REG4 levels in PDAC patients 271 
have been shown to predict unfavourable histologic response to neoadjuvant 272 
chemoradiotherapy and a higher rate of postoperative local recurrence 43, but a recent study 273 
also associated REG4 expression with longer survival 44. This cluster was labelled 274 
Classical_REG4.  275 
Transcriptional correlation confirmed that these clusters represent distinct PDAC cell states, 276 
with Classical_adverse showing greater transcriptional similarity with ‘basal-like’ PDAC 277 
compared to the other ‘classical’ PDAC cell states (Figure 2C). While none of the identified 278 
PDAC cell states derived from a single patient of origin, they were differently represented 279 
across patients (Figure 2D). ‘Basal-like’ PDAC cells were mostly detected in patient samples 280 
05 and 08 (36% and 52% of all PDAC cells in these samples, respectively). Among ‘classical’ 281 
PDAC subclusters, Classical_REG4 cells were most prominent in sample 02 (19%), 282 
Classical_secretory cells in samples 01 and 06 (40% and 73%) and Classical_invasive cells in 283 
samples 04 and 09 (49% and 41%). 284 
The spatial information retained in ISS data enables the assessment of the local architecture of 285 
these distinct PDAC cell states (Supplementary Figure 2B). Remarkably, across the ten-patient 286 
cohort, we observed recurring characteristic differences in tumour morphology related to the 287 
dominant PDAC cell state in different slide regions (Figure 2E,F and Supplementary Figure 288 
3). ‘Basal-like’ PDAC cells, which mostly derived from two patients, were diffusely distributed 289 
across contiguous areas of the tumour tissue. ‘Classical’ tumour cells were detected either as 290 
monolayers around a lumen, multiple layers of cells around a lumen, clumps, or distributed 291 
across tissue regions. Classical_REG4 cells largely presented in clumps, which could also 292 
comprise Classical_secretory cells. Classical_secretory cells were otherwise mostly detected 293 
as monolayers around a lumen, histologically representing more highly differentiated tumour 294 
areas, unless they co-localised with Classical_invasive cells and shared the spatial architecture 295 
of the latter. Classical_invasive cells presented as multiple layers of cells around a lumen where 296 
one existed, or distributed across areas without a lumen. Classical_adverse cells, on the other 297 
hand, which were detected in all patient samples, exhibited a distributed morphological pattern 298 
similar to ‘basal-like’ PDAC cells. 299 
Notably, different PDAC cell states co-occurred within individual patients, but with a 300 
phenotypic gradient from ‘classical’ to ‘basal-like’ states. Classical_secretory cells, 301 
characterised by secretion related gene expression and their monolayer morphology closely 302 
resembling healthy pancreatic ducts, did not co-occur with ‘basal-like’ PDAC cells. In contrast, 303 
Classical_invasive cells and ‘basal-like’ PDAC cells were observed in different regions of the 304 
same tumour section in samples 03, 08 and 09. As Classical_invasive cells showed increased 305 
gene expression associated with adhesion and invasion, this suggests a continuum of 306 
transcriptional and morphological states, with Classical_secretory and ‘basal-like’ PDAC cells 307 
occupying the opposite ends while Classical_invasive cells correspond to an intermediate 308 
phenotype. Upregulation of CEACAM5, CEACAM6 and MUCL3 may disrupt an initially 309 
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formed PDAC cell monolayer, leading to the emergence of multilayer structures and 310 
dissemination of tumour cells throughout the surrounding tissue.  311 
 312 
Co-localisation of malignant and tumour microenvironment cells 313 
 314 
PDAC development and prognosis is intricately linked with the tumour microenvironment, 315 
including cancer-associated fibroblasts (CAFs), infiltrating immune cells and vasculature 15. 316 
Unsupervised clustering of fibroblasts from all patient samples revealed four distinct clusters 317 
(Figure 3A,B). Inflammatory CAFs (iCAFs) were identified based on expression of hyaluronan 318 
synthase 1 (HAS1) and interleukin 6 (IL6), while myofibroblastic CAFs (CAFs) subdivided 319 
into two clusters. One cluster was distinguished by periostin (POSTN) expression, encoding an 320 
integrin ligand that supports cell adhesion and migration 45; it was labelled myCAF_adhesive. 321 
Enrichment for α-smooth muscle actin (ACTA2) expression characterised the second myCAF 322 
cluster, which was therefore labelled myCAF_contractile.  323 
While the limited number of transcripts in ISS experiments did not allow the distinction of 324 
immune cell subtypes at high resolution, the major categories of immune cells were also 325 
identified (Figure 3C,D). Macrophages, marked by expression of CD68 and CD14, could be 326 
divided into pro-inflammatory M1 macrophages expressing FCGR1A and regulatory M2 327 
macrophages with increased expression of CD163 and MS4A4A. Lymphocytes comprised large 328 
clusters of B cells and T cells. Finally, a cluster of cells enriched for expression of cytotoxicity-329 
related genes including granzymes (GZMA, GZMH) and NKG7 was identified as NK cells, 330 
although it cannot be ruled out that it might comprise cytotoxic T cells.  331 
To gain insight into the spatial co-localisation of PDAC tumour with microenvironment cells, 332 
we constructed a cell connectivity graph for each sample where all cells within a 50 µm radius 333 
of each other were counted as neighbours. We then quantified the enrichment of cell types in 334 
local neighbourhoods by determining the frequency of neighbouring cell type pairings and 335 
comparing it to expectation based on a randomly permuted graph 32. Across samples, 336 
myCAF_adhesive cells are largely absent from tumour areas with a clearly ‘classical’ 337 
phenotype, i.e. around Classical_secretory cells (Figure 3E); this is consistent with previous 338 
reports of poorer prognosis in tumours with a dominant POSTN expressing fibroblast 339 
population 45,46. Inflammatory CAF are often spatially associated with ‘basal-like’ PDAC and 340 
immune cells. Consistent with the proposed continuum of PDAC subtypes showing more 341 
‘classical’ to more ‘basal-like’ features, the vicinity of Classical_adverse tumour cells is also 342 
enriched for ‘basal-like’ PDAC cells as well as immune cells (Figure 3E).  343 
 344 
Spatial patterns of gene expression in PDAC tumour samples 345 
 346 
As the tumour samples in our cohort comprised varying proportions of the different PDAC 347 
subtypes, we adapted a published approach 34 to analyse the spatial cross-correlation of tumour 348 
cells with their microenvironment across all patients (Figure 4A). Due to the relatively low 349 
number of transcripts detected per cell, we defined a hexagonal grid with a distance of 100 µm 350 
between spots and assigned transcripts the nearest grid spots. Transcripts with spatially 351 
heterogeneous expression were identified through Local Indicators of Spatial Association 352 
(LISA) 34,47 using normalised transcript counts and a binary adjacency weight matrix encoding 353 
adjacent spots within a spatial distance of 200 µm. Hierarchical clustering of transcripts based 354 
on their spatial cross-correlation across all samples revealed patterns of transcripts with 355 
spatially coherent expression profiles (Supplementary Figure 4A,B).  356 
Spatial patterns largely reflect the previously identified cell types present in the PDAC samples 357 
(Figure 4B,C). Transcripts with high expression in endocrine cells, as expected, show high 358 
spatial cross-correlation with each other. They are spatially associated with transcripts enriched 359 
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in the exocrine compartment, i.e. acinar-i/s cells29, acinar-REG cells48 and ductal cells, 360 
reflecting healthy pancreatic tissue areas (Figure 4B). Transcripts characteristic of T cells, B 361 
cells, macrophages and immune-related surface genes also co-localise, and are spatially 362 
associated with fibroblast and endothelial cell enriched transcripts. Despite their morphological 363 
differences, transcripts identifying the ‘classical’ PDAC subpopulations Classical_secretory, 364 
Classical_invasive and Classical_adverse show overlapping spatial expression profiles. In 365 
contrast, Classical_REG4 and ‘basal-like’ PDAC transcripts do not form a separate pattern but 366 
co-localise with other transcripts showing a spatially distributed expression profile, including 367 
transcripts associated with stromal cells, Schwann cells, proliferation, angiogenesis and 368 
immune signalling (Figure 4B). This suggests that Classical_REG4 and ‘basal-like’ PDAC 369 
populations cannot be delineated based on spatial cross-correlation analysis of the marker 370 
genes employed to identify these cell populations in our data, and additional marker genes will 371 
be required to spatially resolve these populations in future studies. Spatial cross-correlation 372 
patterns of gene expression in PDAC tumour samples thus corroborate the distinction of 373 
‘classical’ PDAC subtypes, confirming that transcriptional differences relate to distinct 374 
morphologies.  375 
Among fibroblasts, myCAFs show a closer spatial correlation with ‘classical’ PDAC subtypes 376 
compared to iCAF, which in turn are associated with other microenvironment cell types as well 377 
as ‘basal-like’ PDAC (Figure 4B, Figure 3E). These results indicate that presence of different 378 
PDAC tumour subpopulations induces compositional changes of the microenvironment and/or 379 
microenvironment composition affects PDAC subtype identity. 380 
In addition to established cell type marker genes, our ISS probe set included additional targets 381 
based on their reported or postulated role in PDAC development (Supplementary Table 2). 382 
While the majority of these targets showed no coherent patterns of co-localisation with PDAC 383 
subtype specific transcripts (Supplementary Figure 4A), we observed spatial clustering of 384 
Classical_invasive cells with complement decay-accelerating factor (CD55), a glycoprotein 385 
that accelerates the decay of complement cascade proteins and thereby prevents damage to 386 
cells 49. In PDAC and other cancers, including colorectal and head and neck cancers, the 387 
evasion of complement cells achieved by elevated CD55 has been shown to confer worse 388 
prognosis 50–52. Moreover, hypoxia-inducible factor 1 (HIF1A) expression was spatially 389 
associated with iCAF, in line with a recent study suggesting that hypoxia drives iCAF 390 
formation in PDAC 53. Finally, we found a spatial co-localisation of neuropilin-2 (NRP2) with 391 
myCAF. Neuropilin-2 is known as a receptor for angiogenic growth factors. Besides its 392 
expression by endothelial cells 54, NRP2 in PDAC cells is associated with angiogenesis, tumour 393 
growth, migration and invasion 55. PDAC cells have also been reported to induce NRP2 394 
expression in tumour-associated macrophages, in turn promoting tumour growth 56. In gastric 395 
cancer, NRP2 is upregulated in CAFs compared to normal fibroblasts and high expression 396 
levels correlate with worse outcomes 57; our in situ sequencing data suggest this may also be 397 
true for PDAC.   398 
 399 
Prognostic significance of ‘classical’ PDAC subpopulations 400 
 401 
While it is well established that ‘basal-like’ PDAC carry a worse prognosis compared to 402 
‘classical’ PDAC tumours, the proposed multiplicity of ‘classical’ PDAC subtypes raises the 403 
question whether phenotypic features of these subtypes could be harnessed for prognostic 404 
substratification. We addressed this question by means of the pancreatic adenocarcinoma 405 
cohort within The Cancer Genome Atlas (TCGA-PAAD), limiting our analysis to primary 406 
tumour samples (n=178) 8. To probe our findings in a separate cohort, we also analysed 407 
pancreatic adenocarcinoma data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) 408 
study (PACA-AU), again considering only primary tumour samples (n=80) 36. For each 409 
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sample, gene set expression scores were computed based on bulk RNA-seq data for the gene 410 
sets corresponding to Classical_secretory, Classical_invasive and Classical_adverse spatial 411 
patterns as well as ‘basal-like’ marker genes (Figure 5A-C and Supplementary Table 4).  412 
In the TCGA-PAAD cohort, no significant difference in survival was observed between 413 
patients with high or low expression of Classical_secretory genes, consistent with the notion 414 
that this presents the most ‘classical’ phenotype reminiscent of healthy pancreatic duct tissue 415 
(Figure 5D). In contrast, high expression of Classical_invasive and Classical_adverse genes 416 
was associated with significantly worse survival. As expected, expression of ‘basal-like’ 417 
subtype marker genes was also associated with poor outcome. Hazard ratio (HR) analysis 418 
confirmed worse outcomes associated with the Classical_invasive (HR 1.6, 95% confidence 419 
interval 1.2-2.1), Classical_adverse (HR 1.9, 95% confidence interval 1.4-2.7) and ‘basal-like’ 420 
(HR 1.8, 95% confidence interval 1.4-2.4) phenotypes (Figure 5F).  421 
In the smaller PACA-AU cohort, survival differences were less significant, but we observed 422 
comparable tendencies (Figure 5E). Hazard ratios also indicated poorer prognosis for the 423 
‘basal-like’ PDAC subtype (HR 2, 95% confidence interval 1-3.7) while the 424 
Classical_secretory subtype emerged as protective (HR 0.57, 95% confidence interval 0.36-425 
0.93) (Figure 5G).  426 
Overall, these results corroborate a gradient of worsening overall survival from 427 
Classical_secretory to Classical_invasive and Classical_adverse tumours. As 428 
Classical_secretory tumour cells exhibit transcriptional features of healthy pancreatic tissue 429 
while Classical_adverse cells are most transcriptionally similar to ‘basal-like’ PDAC cells, we 430 
conclude that consistent survival differences, associated with transcriptional subtypes, exist 431 
even within configurations traditionally referred to as ‘classical’ PDAC. 432 
 433 
  434 
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Discussion 435 
 436 
Intratumoural heterogeneity remains a significant obstacle to PDAC treatment. In this study, 437 
we employed in situ sequencing to identify subpopulations of PDAC with distinct 438 
transcriptional and morphological characteristics. Our findings suggest a further stratification 439 
of ‘classical’ PDAC, which represent the majority of PDAC cases 7, into four subtypes 440 
representing a continuum from more ‘classical’ to more ‘basal-like’ phenotypes. 441 
Morphologically, we observed a spatial association of ‘classical’ PDAC subtypes, whereas 442 
‘basal-like’ PDAC are distributed in the stroma and co-localise preferentially with iCAF; this 443 
is consistent with the distinction between ‘classical’ and ‘squamoid-basaloid’ spatial 444 
communities in a recent whole-transcriptome profiling study 58.  445 
 446 
Among the ‘classical’ PDAC cell populations, Classical_secretory cells most closely resemble 447 
healthy pancreatic ductal tissue, both in terms of morphology and gene expression. 448 
Classical_REG4 cells are distinguished by high expression of REG4 but otherwise 449 
transcriptionally similar to Classical_secretory cells; while the latter largely occur as 450 
monolayers around a lumen, Classical_REG4 cells present as cell aggregates within the 451 
samples. REG4 has been suggested as a potential serological marker of PDAC and a target for 452 
antibody therapy 59. Our data suggests that REG4 overexpression may be limited to a subset of 453 
PDAC cells, potentially restricting the utility of this approach. Interestingly, REG4 has been 454 
linked to PDAC development from intestinal-type intraductal papillary mucinous neoplasms 455 
(IPMNs) 42, a potential alternative cancerogenic route that might be reflected in the different 456 
morphologies of Classical_secretory and Classical_REG4 tumour cell populations.  457 
Classical_invasive cells are characterised by increased expression of carcinoembryonic 458 
antigen-related cell adhesion molecules CEACAM5 and CEACAM6 along with multi-layer or 459 
more distributed tumour architectures. CEACAM5 and CEACAM6 expression reportedly 460 
correlates with shortened overall and disease-free survival in PDAC, as well as positive lymph 461 
node status and distant metastasis 60,61. Their expression is also associated with the progression 462 
of pancreatic intraepithelial neoplasia (PanIN), its most common precursor lesion, to malignant 463 
PDAC 38. Moreover, CEACAM6 has been linked to the invasive capacity of PDAC cells in 464 
vitro 62,63. Together with the described PDAC subtype morphologies, this suggests that 465 
CEACAM5 and CEACAM6 expression triggers the capacity of tumour cells to part from ductal 466 
monolayer structures and invade into the surrounding tissue or disseminate to distant sites. 467 
Interestingly, in an immunohistochemistry study of PDAC tissue microarrays, CEACAM5 and 468 
CEACAM6 expression was higher in moderately-differentiated than in well-differentiated or 469 
poorly-differentiated tumours 64, potentially reflecting the intermediate state that 470 
Classical_invasive cells occupy between more ‘classical’ and more ‘basal-like’ PDAC 471 
subtypes. Finally, Classical_adverse cells are most ‘basal-like’ and their expression profile is 472 
enriched for a combination of ‘basal-like’ and ‘classical’ marker genes.  473 
 474 
By stratifying the TCGA-PAAD and PACA-AU cohorts according to the morpho-475 
transcriptional PDAC subtypes identified here, we found that overall survival decreased on a 476 
gradient from more ‘classical’ to more ‘basal-like’ tumours. Despite the small cohort size, we 477 
also observed a tendency for better survival associated with lumina in the tumours and worse 478 
survival with ‘basal-like’ tumours within our own dataset of ten patients (Supplementary Table 479 
1). Morpho-transcriptional PDAC subtypes thus carry prognostic significance. 480 
 481 
Our results contribute to resolving the current multitude of partially overlapping classification 482 
schemes for PDAC tumours 4–7 by taking into account their spatial context. Transcriptionally 483 
defined subtypes with characteristic morphological features occupy a continuum from 484 
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‘classical’ to ‘basal-like’ PDAC and co-occur within the same tumours, consistent with 485 
previous observations of tumour subtype co-existence by RNA sequencing of dissociated cells 486 
9,10,65. Notably, Classical_secretory cells morphologically represent glandular or duct-like 487 
differentiation patterns, corresponding to higher differentiated tumour areas and better 488 
outcomes according to WHO grading criteria for PDAC, whereas Classical_invasive and 489 
Classical_adverse tumours with their invasive or distributed spatial architectures reflect 490 
morphological criteria for higher-grade tumours 66. 491 
 492 
While in situ sequencing is not yet feasible for clinical applications, the correspondence 493 
between transcriptional and morphological features of PDAC might in future enable the 494 
automated substratification of PDAC tumours based on morphology alone, for example using 495 
stained tumour sections acquired as part of routine clinical procedures. In addition, more 496 
comprehensive profiling using whole-transcriptome spatial analysis at the single-cell level 497 
could uncover molecular interactions between the different PDAC subtypes and their 498 
microenvironment, aiding the development of targeted therapies for PDAC. 499 
 500 
  501 
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Figures 693 
 694 

 695 
 696 
Figure 1: Cell type identification based on ISS of human PDAC.  (A) Overview of the 697 
experimental workflow. PDAC biopsies were acquired from 10 patients. For in situ 698 
sequencing, tissue sections are prepared from formalin-fixed paraffin-embedded samples. 699 
Transcript-specific padlock probes (PLP) hybridise directly to the mRNA targets and are 700 
amplified by Rolling Circle Amplification (RCA). PLP identities are then decoded by 701 
sequential cycles of hybridisation and stripping of bridge and fluorophore conjugated detection 702 
probes 27,28. To assign transcripts to cells, a convolutional neural network is applied that 703 
segments cell nuclei via star-convex polygons 30.  (B) UMAP representation of all profiled cells 704 
from ten patient samples, indicating the assigned cell types based on clustering and marker 705 
gene expression analysis.  (C) Expression of characteristic genes across the different cell types 706 
identified in the tumour samples. Colour indicates normalised mean expression while dot size 707 
represents the fraction of cells in each population expressing the gene. 708 
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 710 
 711 
Figure 2: Transcriptional subtypes of PDAC with characteristic morphologies.  (A) 712 
UMAP representation of the identified PDAC subtypes, labelled according to functional 713 
annotations of enriched genes in each cluster (see also Supplementary Figure 2A).  (B) 714 
Pearson’s correlation coefficients between mean transcriptional profiles of the different PDAC 715 
subtypes.  (C) Normalised expression of characteristic genes, including marker genes for the 716 
‘classical’ and ‘basal-like’ subtypes, across the identified PDAC cell clusters. Colour bars 717 
denote subtypes, with colours as in (A). (D) Relative frequencies of the different PDAC 718 
subtypes across all ten patient samples. Colours indicate subtypes as in (A). (E) Distinctive 719 
morphologies of the identified transcriptional PDAC subtypes were observed across patients. 720 
Top row depicts simplified illustrations of morphologies, while bottom row shows 721 
representative areas from different samples where the respective PDAC subtype and 722 
morphology was detected. Colours indicate PDAC subtypes as in (A), with all other tumour 723 
cells shown in grey. Scale bars, 200 µm. (F) Representation of morphological PDAC subtypes 724 
across patient samples. Dark blue: dominant morphology in the sample, light blue: morphology 725 
also detected in the sample, white: morphology not detected. 726 
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 728 
 729 
Figure 3: Stromal and immune cell types in PDAC tumour samples.  (A) UMAP 730 
representation of CAF populations, including inflammatory CAFs as well as two types of 731 
myofibroblastic CAFs.  (B) Expression of characteristic genes across the CAF populations.  732 
(C) UMAP representation of immune cell populations, including macrophages, B cells, T cells 733 
and NK cells.  (D) Expression of characteristic genes across the immune cell populations.  (E) 734 
Enrichment or depletion of cell types in local neighbourhoods was assessed by comparing the 735 
number of observed cell type co-occurrences within 50 µm against expected values based on 736 
random permutations on the cell connectivity graph. Heatmaps show z-scores for enrichment 737 
or depletion of cell type pairings for two patient samples. Bar plots indicate cell numbers for 738 
each sample. 739 
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 741 
 742 
Figure 4: Spatial cross-correlation patterns of transcripts.  (A) To identify spatial patterns 743 
of transcription, each recorded transcript is assigned to the nearest point on a hexagonal grid 744 
(grid point distance 100 µm). A binary adjacency weight matrix is determined for each sample, 745 
with two points considered adjacent if they are located within 200 µm of each other. Here, grey 746 
lines connect adjacent spots. Using the adjacency weight matrices for each sample, a spatial 747 
cross-correlation index is computed for every transcript pair taking into account neighbourhood 748 
information from all samples. Gene expression patterns are determined by dynamic tree cutting 749 
of a hierarchical dendrogram computed from the resulting spatial cross-correlation matrix. 750 
Groups of genes are z-scored and averaged for visualisation of transcriptional patterns 34.  (B) 751 
Hierarchical dendrogram depicting patterns of spatially cross-correlated transcripts across all 752 
samples. Most patterns could be identified as representing specific cell types and were labelled 753 
accordingly; the pattern labelled ‘Mixed’ comprised REG4, markers for ‘basal-like’ PDAC, 754 
Schwann cells, proliferation and angiogenesis, as well as various immune signalling genes. 755 
The full dendrogram including all transcript names is shown in Supplementary Figure 4A. 756 
Heatmap shows average gene expression per pattern across all cells, with column annotations 757 
indicating cell type identity and patient origin.  (C) Visualisation in different patient samples 758 
of spatial transcriptional patterns that correspond to the ‘classical’ PDAC subtypes, as well as 759 
the distributed pattern comprising ‘basal-like’ PDAC marker genes. Colour indicates 760 
normalised mean expression of pattern transcripts.     761 
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 762 
 763 
Figure 5: Prognostic relevance of PDAC subtypes.  (A) Gene sets corresponding to 764 
Classical_secretory, Classical_invasive and Classical_adverse spatial patterns as well as 765 
‘basal-like’ marker genes.  (B,C) PDAC subtype scores based on bulk RNA-seq data for 766 
primary tumour samples from the TCGA-PAAD cohort (n=178 patients) 8 and the PACA-AU 767 
cohort (n=80 patients) 36, visualised by z-scores for each sample.  (D,E) Kaplan-Meier curves 768 
comparing survival probability in TCGA-PAAD and PACA-AU patients with high (green) or 769 
low (red) expression of the gene sets defined by the spatial patterns representing secretory, 770 
invasive and adverse ‘classical’ PDAC subtypes. The comparison according to ‘basal-like’ 771 
signature gene expression is also shown for reference. Shaded areas indicate 95% confidence 772 
intervals. High scores for the invasive or adverse phenotypes are associated with significantly 773 
worse survival compared to the secretory phenotype (p<0.01, log-rank test).  (F,G) Hazard 774 
ratios associated with gene set scores for the secretory, invasive, adverse and ‘basal-like’ gene 775 
sets. Expression of the invasive or adverse gene sets is associated with worse outcome 776 
compared to the secretory gene set (p<0.001, Wald test).   777 
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Supplementary Figures 779 
 780 
 781 

 782 
 783 
Supplementary Figure 1: Characterisation of cell types detected in PDAC samples.  (A) 784 
Assignment of ISS transcript locations to cells using the deep-learning based segmentation 785 
framework StarDist: The DAPI stained nuclei image (i) is segmented using StarDist (ii). The 786 
nuclei label mask is expanded isotropically without overlapping to approximate cell boundaries 787 
(iii) and the transcript locations are mapped onto the cell boundary map (iv), resulting in a cell 788 
×	gene count matrix.  (B) Frequency of cell types detected across all patient samples.  (C) 789 
Spatial locations of endocrine cells reflecting pancreatic islets and other detected cells across 790 
all patient samples.  791 
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 793 
 794 
Supplementary Figure 2: Identification of PDAC subtypes and their spatial distribution.  795 
(A) PDAC subtype identity was determined based on Leiden clustering and marker gene 796 
expression. At lower clustering resolution (0.06), clusters 0, 2 and 4 expressed ‘classical’ 797 
marker genes but were distinguished by enrichment for MUCL3 and CEACAM6 in cluster 2 798 
and REG4 in cluster 4, while the remaining clusters expressed ‘basal-like’ marker genes. At 799 
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higher clustering resolution (0.4), fifteen clusters were identified by Leiden clustering. Of 800 
these, clusters 3, 8, 9, 11, 13, were enriched for ‘basal-like’ marker gene expression and were 801 
therefore summarised as ‘Basal-like’. Among the ‘classical’ clusters, clusters 0 and 4 shared 802 
enrichment for invasion related genes such as CEACAM5 and CEACAM6 and were 803 
summarised as Classical_invasive; clusters 2, 5, 6, 10, 12, 14, shared expression of secretion 804 
related genes such as TFF1, TFF2 and OLFM4 and were therefore summarised as 805 
Classical_secretory; cluster 1 did not show secretory features but high expression of KRT7, 806 
associated with poorer outcome in PDAC 41, and was therefore labelled Classical_adverse; and 807 
the REG4-expressing cluster 7 was labelled Classical_REG4. Cell clusters and gene expression 808 
are visualised on the same UMAP representation as in Figure 2A. Coloured boxes correspond 809 
to the identified PDAC subtypes.  (B) Spatial distribution of PDAC subtype cells across patient 810 
samples.  Each dot represents a PDAC tumour cell coloured by subtype identity, with the spatial 811 
distribution corresponding to the ISS coordinates. Scale bars, 1 mm. 812 
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 814 
 815 
Supplementary Figure 3: Identified PDAC morphologies as shown in Figure 2E (top) and 816 
H&E staining images of the corresponding tumour areas (bottom). Scale bars, 200 µm. 817 
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 819 
 820 
Supplementary Figure 4: (A) Hierarchical clustering for all transcripts based on spatial cross-821 
correlation across all samples.  (B) Distribution of dominant patterns across samples. Each 822 
position is coloured according to the locally dominant pattern. 823 
 824 
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