

1 **Transcriptionally defined morphological subtypes of pancreatic ductal
2 adenocarcinoma**

3

4

5 Teresa G Krieger^{1,*}, Alexander Sudy^{1,*}, Felix Schicktanz², Luca Tosti¹, Johannes Liebig¹,
6 Björn Konukiewitz², Morgane Rouault³, Anežka Niesnerová³, Xiaoyan Qian³, Wilko
7 Weichert², Roland Eils^{1‡}, Katja Steiger^{2,‡}, Christian Conrad^{1,‡}

8

9 ¹Digital Health Center, Berlin Institute of Health (BIH)/Charité-Universitätsmedizin Berlin,
10 Berlin, Germany

11 ²Institute for Pathology, School of Medicine, Technical University Munich, Munich, Germany

12 ³10xGenomics, 6230 Stoneridge Mall Road, Pleasanton, CA 94588-3260, USA

13

14 * These authors contributed equally and share first authorship.

15 ‡ These authors contributed equally and share senior authorship.

16

17

18

19

20

21

22

23

24

25 **Abstract**

26

27 Tumour heterogeneity remains a major obstacle to effective and precise therapy for pancreatic
28 ductal adenocarcinoma (PDAC), the most common pancreatic cancer. Several transcriptional
29 subtypes of PDAC with differential prognosis have been described, but they co-occur within
30 tumours and are difficult to distinguish in routine clinical workflows. To investigate the
31 relationship between transcriptional PDAC subtypes, local tissue morphology and the tumour
32 microenvironment, we employed *in situ* sequencing to profile single cells in their spatial tissue
33 context. We identify five transcriptional subtypes of PDAC cells occurring in three distinct
34 morphological patterns, including secretory tumour cell monolayers, invasive tumour cells
35 with high expression of cell adhesion molecules *CEACAM5* and *CEACAM6*, and spatially
36 distributed tumour cells associated with inflammatory-type fibroblasts. Analysis of bulk RNA-
37 sequencing datasets of the TCGA-PAAD and PACA-AU cohorts according to these spatio-
38 transcriptional subtypes confirmed their prognostic significance. Our results thus indicate an
39 automatable substratification based on spatially-resolved transcriptomics of PDAC and
40 identify distinct subtypes of ‘classical’ PDAC, representing most cases of this devastating
41 malignancy.

42

43

44 Introduction

45

46 Pancreatic ductal adenocarcinoma (PDAC) is the most lethal of all major organ malignancies,
47 with a 5-year survival rate of less than 10% ^{1,2}. Due to a lack of treatment advances compared
48 to other cancer types, PDAC is predicted to become the second leading cause of cancer deaths
49 in the United States by 2030 ³.

50

51 Bulk transcriptomic analyses have converged on two transcriptional subtypes of PDAC
52 tumours, termed ‘classical’ and ‘basal-like’, with prognostic significance as the latter carry a
53 poorer prognosis ⁴. Related molecular subtyping schemes have also been suggested, including
54 a distinction into ‘classical’, ‘quasi-mesenchymal’ and ‘exocrine-like’ PDAC ⁵ or into
55 ‘squamous’, ‘pancreatic progenitor’, ‘immunogenic’ and ‘aberrantly differentiated endocrine
56 (ADEX)’ tumours ⁶. These schemes show significant overlap as the ‘classical’ and ‘pancreatic
57 progenitor’ subtypes, as well as the ‘basal-like’, ‘quasi-mesenchymal’ and ‘squamous’
58 subtypes, share similar transcriptional signatures ⁷. Due to low neoplastic cellularity in tumour
59 samples, a recent study reported that the ‘exocrine-like’, ‘immunogenic’ and ‘ADEX’ subtypes
60 may represent contaminating non-neoplastic cells instead of tumour cells ⁸.

61

62 Recent single-cell transcriptomics studies provide emerging evidence that molecular PDAC
63 subtypes are not mutually exclusive, but co-occur within the same tumours ^{9,10}. Instead of
64 discrete tumour cell states, PDAC cells may thus occupy a continuum of tumour cell states
65 ranging from ‘classical’ to ‘basal-like’, requiring further investigation ¹¹.

66

67 Histopathologically, PDAC tumours are graded according to defined WHO criteria that include
68 the occurrence of tubular duct-like structures or solid areas, retained mucin, nuclear
69 polymorphism and number of mitoses ¹². A recent histopathological investigation distinguished
70 ‘gland forming’ and ‘non-gland forming’ components based on the presence or absence of
71 well-formed glands, and showed that tumours with at least 40% ‘non-gland forming’ regions
72 transcriptionally corresponded to the ‘basal-like’ PDAC subtype, with significantly poorer
73 outcomes ¹³.

74

75 Cancer-associated fibroblasts (CAFs) and other cell types of the tumour microenvironment
76 have additionally emerged as key contributors to PDAC development and therapy resistance
77 ^{14,15}. In recent single-cell transcriptomics studies, at least three distinct subtypes of CAFs have
78 been described in human and murine tumour samples: immunosuppressive cytokine-secreting
79 inflammatory CAFs (iCAFs), myofibroblastic CAFs (myCAF) with high expression of α -
80 smooth muscle actin (*ACTA2*) that produce extracellular matrix and are thought to restrain
81 tumour growth, and antigen-presenting CAFs (apCAFs) expressing MHC class II and CD74
82 that may play an immunomodulatory role ¹⁶⁻²¹. Distinctive stromal gene expression signatures
83 as well as patterns of immune cell and vascular infiltration have also been described ^{4,22,23}. How
84 these different microenvironment cell types interact with PDAC tumour cells remains a key
85 area of research; their complex cellular exchanges may comprise both tumour-enhancing and
86 tumour-suppressive effects, and curtail or boost the efficacy of therapeutic approaches ^{24,25}.

87

88 Investigating the relationship between tumour morphology, transcriptionally different PDAC
89 subtype cells and their microenvironment is complicated by the spatial heterogeneity and low
90 neoplastic cell content of PDAC tumours ^{23,26}. While single-cell transcriptomics has helped to
91 distinguish diverse cell types within tumour samples, spatial information is lost during tissue
92 dissociation. Addressing this challenge, recently developed *in situ* sequencing (ISS)
93 approaches enable transcriptional profiling at the single-cell level while retaining spatial
94 context ^{27,28}.

94 Here, we apply ISS to probe how gene expression in single PDAC tumour cells relates to local
95 tissue morphology. We distinguish five transcriptional subtypes of PDAC correlating with
96 distinct morphological patterns and microenvironment cell type compositions, and show that
97 these spatio-transcriptional subtypes hold prognostic significance.

98

99

100 Methods

101

102 *Sample acquisition*

103 Pancreatic tissue specimens from 10 patients with pancreatic ductal adenocarcinoma (PDAC)
104 were obtained from the Tissue Biobank of Klinikum rechts der Isar and TUM (MTBIO).
105 Tumour content was approved by a board-certified pathologist. Informed consent was available
106 from all patients. The use of tumour material was approved by the ethics committee of the
107 medical faculty of TUM (403/17S).

108

109 *In situ sequencing*

110 To spatially characterise gene expression across patients, formalin-fixed paraffin-embedded
111 tissue sections (5 μ m thick) were processed for RNA in situ hybridisation according to the
112 manufacturer's instructions (HS Library Prep Kit Large 1110-02, CARTANA, 10xGenomics),
113 with four DNA probes for each target gene (with a total of 199 different target genes) designed
114 and manufactured by CARTANA (10xGenomics). As a modification, to enhance the probe
115 signal to background ratio, 1 \times Lipofuscin Autofluorescence Quencher (Promocell) was applied
116 for 30 seconds prior to fluorescence labelling. Sequencing was performed by CARTANA
117 (10xGenomics) in six subsequent rounds of fluorescent labelling and stripping to detect the
118 spatial coordinates of each target probe. On average, around 420,000 transcripts per sample
119 (~190,000 – ~905,000) passed high threshold quality control. A reference 4',6-diamidino-2-
120 phenylindole (DAPI) staining image was also acquired for each sample. Finally, all slides were
121 stained using an adapted hematoxylin and eosin (H&E) staining protocol ²⁹.

122

123 *Analysis*

124

125 *ISS data pre-processing*

126 Given the DAPI stained images for each sample, the nuclei were detected and segmented using
127 the deep learning framework StarDist version 0.7.2 for object detection with star-convex
128 polygons ³⁰. The neural network was pre-trained on fluorescent nuclear marker images based
129 on a subset of the DSB 2018 nuclei segmentation challenge dataset ³⁰. Cell boundaries were
130 approximated by isotropically expanding the nuclei labels to the maximum radius of 6 μ m,
131 with the constraint of prohibiting overlaps of cells (Supplementary Figure 1). The number of
132 cells per sample ranged from 71,666 to 270,454. Transcripts detected with ISS were assigned
133 to these cells by mapping the coordinates of the sequenced target probes to the cell boundaries,
134 resulting in a cell \times gene count matrix. Online visualisations were generated using the Python
135 package TissUUmmaps version 3.0.9³¹.

136

137 *Transcriptomic analysis*

138 ISS data were processed using the Python package Squidpy version 1.1.2 ³². Cells with less
139 than four detected transcripts and transcripts detected in less than ten cells were excluded from
140 the analysis. Transcript counts per cell were normalised and log-transformed and scaled to unit
141 variance and zero mean. To identify cell types, a reduced set of transcripts representing cell
142 type markers was used (Supplementary Table 3). PCA was performed on the transcript counts
143 of cells from all patient samples and a neighbourhood graph was constructed based on the first
144 20 principal components. Clusters were identified by Leiden clustering (resolution = 2.0). The
145 cellular identity of clusters was then determined based on differentially expressed genes.
146 Clusters corresponding to the same cell type based on marker gene expression were merged,
147 while clusters comprising two distinct cell types were split by subclustering. Transcriptional
148 profiles were visualised using UMAP ³³ for dimensional reduction. For more detailed analysis,
149 clustering was repeated for malignant PDAC cells, fibroblasts, immune cells, endocrine cells

150 and exocrine cells separately. A small number of cells which could not be identified as any
151 specific cell type were excluded from further analysis (5.1% of all cells). PCA and clustering
152 were also performed for cells from each patient sample individually to confirm that the
153 combined clustering was representative.

154

155 *Spatial co-occurrence analysis*

156 To analyse enrichment and depletion of cell types as a function of distance from other cell
157 types, a graph encoding spatial neighbour relations was constructed, including neighbours
158 within a distance of 50 μm . An enrichment score was calculated based on the connectivity
159 graph by comparing the number of observed cell type co-occurrences against 1,000 random
160 permutations and computing a z-score. Enrichment z-scores were visualised as heatmaps for
161 each patient sample.

162

163 *Spatial correlation analysis*

164 To measure spatial co-occurrence of cell types, spatial auto-correlation and cross-correlation
165 analysis was performed using the R package MERINGUE version 1.0³⁴. For co-occurrence at
166 the level of transcripts, a hexagonal grid spaced at 100 μm distance between hexagon centres
167 was defined spanning each sample, and transcripts were assigned to the nearest grid point.
168 Transcripts detected at less than ten grid points were excluded. Counts per grid point were
169 normalised with a scale factor of 6,000. A binary adjacency weight matrix was computed for
170 each sample considering grid points up to 200 μm apart as neighbours. To detect spatially
171 correlated transcripts in each sample separately, Moran's I as a measure of spatial cross-
172 correlation was calculated for all neighbouring pairs and genes were summarised into spatial
173 patterns across the population of N cells using the spatial cross-correlation index (SCI) as
174 defined in MERINGUE,

$$175 \quad SCI = \frac{N}{2 \sum_i^N \sum_j^N W_{ij}} \cdot \sum_p \left(\frac{\sum_i^N \sum_j^N W_{ij} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i^N (x_i - \bar{x})^2} \sqrt{\sum_j^N (y_j - \bar{y})^2}} \right),$$

176

177 where x and y correspond to the expression magnitude of two genes in a given cell i and its
178 spatially adjacent neighbours j . To identify spatial cross-correlation patterns across all ten
179 samples, a joint adjacency weight matrix W^{joint} was defined where $W^{joint}_{i,j} = 1$ if the indices i
180 and j correspond to neighbouring grid points from the sample sample, and $W^{joint}_{i,j} = 0$ otherwise.
181 A joint spatial cross-correlation index SCI^{joint} was then calculated for each gene pair as

182

$$183 \quad SCI^{joint} = \frac{\sum_p N_p}{2 \sum_p (\sum_i^N \sum_j^N W_{ij})} \cdot \sum_p \left(\frac{SCI_p \cdot 2(\sum_i^N \sum_j^N W_{ij})}{N_p} \right),$$

184

185 where p indexes samples. After calculating SCI and SCI^{joint} for each gene pair, the resulting
186 spatial cross-correlation matrices were used to group genes into spatial patterns by hierarchical
187 clustering with Ward's clustering criterion and dynamic tree cutting (tuning parameter
188 `deepSplit = 2`).

189

190 *Survival analysis*

191 To analyse how identified PDAC subtype signatures relate to clinical outcomes, bulk RNA
192 sequencing data from the TCGA-PAAD dataset²⁶ was downloaded using the R package
193 TCGA2STAT version 1.2³⁵ and the PACA-AU dataset (release 28)³⁶ was downloaded from

194 the ICGC data portal (<https://dcc.icgc.org/>). Only samples characterised as primary solid
195 tumour were considered (n=178 for TCGA-PAAD and n=80 for PACA-AU). RPKM
196 expression data were converted to TPM, scaled, centred, and clipped at [-5, 5].
197 Expression scores for pattern-defined gene sets and ‘basal-like’ subtype marker genes
198 (Supplementary Table 4) were determined by calculating the average expression level of each
199 gene set for each sample, subtracted by the average expression of a control gene set. To control
200 for differential overall expression levels of genes, all genes were binned based on average
201 expression across all samples into 24 bins, and the control gene set was assembled by randomly
202 selecting 100 genes from the same expression bin for each gene in the query gene set.
203 For each gene set, samples were divided into high and low expression groups using the median
204 expression score as the cutoff. Kaplan-Meier plots were generated using the survminer package
205 version 0.4.6 in R. To assess survival differences and hazard ratios, the log-rank test and cox
206 proportional hazards regression model were used as implemented in the R package survival
207 version 3.1-8.
208
209
210

211 Results

212

213 *Identification of PDAC cells and pancreatic cell types using ISS*

214

215 To investigate the relationship between transcriptional profiles and spatial architecture of the
216 different cell types present in PDAC tumours, we obtained surgically resected tumour samples
217 from ten randomly selected patients with a confirmed diagnosis of PDAC and processed them
218 for ISS with a curated list of 199 target transcripts (Figure 1A; Supplementary Table 1 and 2).
219 Briefly, during ISS, transcript-specific padlock probes hybridise directly to the mRNA target
220 and are amplified and sequenced using fluorophore conjugated detection probes^{27,28,37}.
221 Transcripts were assigned to cells by mapping their coordinates to the cell boundary map
222 generated based on nuclei segmentation via star-convex polygons using a convolutional neural
223 network³⁰ (Supplementary Figure 1A).

224 By unsupervised clustering of the resulting single-cell transcriptional profiles, we identified
225 different cell types present in the samples based on differential expression of characteristic
226 marker genes across all patients (Figure 1B,C). PDAC cells were distinguished from healthy
227 ductal cells by elevated keratin 19 (*KRT19*) expression; using published subtype marker gene
228 sets⁴, clusters of PDAC cells were further classified as ‘basal-like’ or ‘classical’ based on
229 expression of 11 ‘basal-like’ and 19 ‘classical’ marker genes (Supplementary Table 2).
230 Consistent with previous reports⁸, the neoplastic cell content of samples was relatively low
231 (41% across all patients).

232 In addition to PDAC tumour cells, we identified a prominent fibroblast compartment based on
233 expression of lumican (*LUM*), collagens and other fibroblast marker genes, which comprised
234 multiple subclusters. Reflecting immune infiltration of the tumour volumes, lymphocytes and
235 macrophages were also detected. Endothelial cells were classified based on von Willebrand
236 factor (*VWF*) expression and Schwann cells based on expression of sodium channel protein
237 type 7 subunit alpha (*SCN7A*) as well as crystallin alpha B (*CRYAB*). All samples also
238 contained endocrine pancreatic islet cells which could be further subdivided into alpha cells
239 expressing glucagon (*GCG*) and transthyretin (*TTR*), beta cells marked by insulin (*INS*)
240 expression and absence of the other endocrine markers, gamma cells expressing pancreatic
241 polypeptide (*PPY*), and a small number of delta cells marked by expression of somatostatin
242 (*SST*). Finally, exocrine pancreatic acinar cells were identified by serine protease 1 (*PRSS1*),
243 amylase alpha 2A (*AMY2A*) and regenerating family member 3 alpha (*REG3A*) expression.
244 The different cell types were represented in broadly similar proportions across patients
245 (Supplementary Figure 1B).

246 By recording spatial coordinates for each detected transcript, ISS enables the morphological
247 characterisation of cells in their spatial environment within the tissue. As expected, endocrine
248 cells were found to occur in localised clumps representing pancreatic islets, confirming the
249 validity of our experimental approach and processing pipeline (Supplementary Figure 1C).

250

251 *Spatial architectures of PDAC subtype cells*

252

253 PDAC tumour cells from the ten patient samples did not present as a homogeneous cell
254 population, but separated into distinct clusters based on gene expression (Figure 1B). To
255 differentiate PDAC cell subpopulations, we performed unsupervised clustering of the
256 malignant cells alone. Besides ‘basal-like’ PDAC cells, four clusters of PDAC cells
257 corresponding to the ‘classical’ subtype were distinguished based on differential gene
258 expression (Figure 2A,B and Supplementary Figure 2A).

259 One major cluster was characterised by the expression of secretion related genes including
260 *LYZ*, *TFF1* and *TFF2*, and was therefore labelled *Classical_secretory*. Another large cluster

261 comprised cells with high expression of the carcinoembryonic antigen-related cell adhesion
262 molecules *CEACAM5* and *CEACAM6*, which mediate cell adhesion and promote tumour
263 invasion³⁸, as well as *MUCL3*, which has been shown to enhance PDAC cell proliferation,
264 migration and invasion³⁹; this was labelled *Classical_invasive*. A smaller cluster defined by
265 high expression of *KRT7*, an intermediate filament protein known to be overexpressed in
266 pancreatic cancer tissues compared to non-malignant pancreatic tissue⁴⁰, was labelled
267 *Classical_adverse* since a correlation of *KRT7* overexpression with poorer overall survival of
268 PDAC patients has been suggested⁴¹. Finally, the smallest cluster comprised cells highly
269 expressing regenerating family member 4 (*REG4*), which is thought to play a role in carcinoma
270 development from intestinal-type intraductal papillary mucinous neoplasms (IPMNs)⁴². The
271 role of *REG4* in PDAC progression remains unclear; serum *REG4* levels in PDAC patients
272 have been shown to predict unfavourable histologic response to neoadjuvant
273 chemoradiotherapy and a higher rate of postoperative local recurrence⁴³, but a recent study
274 also associated *REG4* expression with longer survival⁴⁴. This cluster was labelled
275 *Classical_REG4*.

276 Transcriptional correlation confirmed that these clusters represent distinct PDAC cell states,
277 with *Classical_adverse* showing greater transcriptional similarity with ‘basal-like’ PDAC
278 compared to the other ‘classical’ PDAC cell states (Figure 2C). While none of the identified
279 PDAC cell states derived from a single patient of origin, they were differently represented
280 across patients (Figure 2D). ‘Basal-like’ PDAC cells were mostly detected in patient samples
281 05 and 08 (36% and 52% of all PDAC cells in these samples, respectively). Among ‘classical’
282 PDAC subclusters, *Classical_REG4* cells were most prominent in sample 02 (19%),
283 *Classical_secretory* cells in samples 01 and 06 (40% and 73%) and *Classical_invasive* cells in
284 samples 04 and 09 (49% and 41%).

285 The spatial information retained in ISS data enables the assessment of the local architecture of
286 these distinct PDAC cell states (Supplementary Figure 2B). Remarkably, across the ten-patient
287 cohort, we observed recurring characteristic differences in tumour morphology related to the
288 dominant PDAC cell state in different slide regions (Figure 2E,F and Supplementary Figure
289 3). ‘Basal-like’ PDAC cells, which mostly derived from two patients, were diffusely distributed
290 across contiguous areas of the tumour tissue. ‘Classical’ tumour cells were detected either as
291 monolayers around a lumen, multiple layers of cells around a lumen, clumps, or distributed
292 across tissue regions. *Classical_REG4* cells largely presented in clumps, which could also
293 comprise *Classical_secretory* cells. *Classical_secretory* cells were otherwise mostly detected
294 as monolayers around a lumen, histologically representing more highly differentiated tumour
295 areas, unless they co-localised with *Classical_invasive* cells and shared the spatial architecture
296 of the latter. *Classical_invasive* cells presented as multiple layers of cells around a lumen where
297 one existed, or distributed across areas without a lumen. *Classical_adverse* cells, on the other
298 hand, which were detected in all patient samples, exhibited a distributed morphological pattern
299 similar to ‘basal-like’ PDAC cells.

300 Notably, different PDAC cell states co-occurred within individual patients, but with a
301 phenotypic gradient from ‘classical’ to ‘basal-like’ states. *Classical_secretory* cells,
302 characterised by secretion related gene expression and their monolayer morphology closely
303 resembling healthy pancreatic ducts, did not co-occur with ‘basal-like’ PDAC cells. In contrast,
304 *Classical_invasive* cells and ‘basal-like’ PDAC cells were observed in different regions of the
305 same tumour section in samples 03, 08 and 09. As *Classical_invasive* cells showed increased
306 gene expression associated with adhesion and invasion, this suggests a continuum of
307 transcriptional and morphological states, with *Classical_secretory* and ‘basal-like’ PDAC cells
308 occupying the opposite ends while *Classical_invasive* cells correspond to an intermediate
309 phenotype. Upregulation of *CEACAM5*, *CEACAM6* and *MUCL3* may disrupt an initially

310 formed PDAC cell monolayer, leading to the emergence of multilayer structures and
311 dissemination of tumour cells throughout the surrounding tissue.

312

313 ***Co-localisation of malignant and tumour microenvironment cells***

314

315 PDAC development and prognosis is intricately linked with the tumour microenvironment,
316 including cancer-associated fibroblasts (CAFs), infiltrating immune cells and vasculature ¹⁵.
317 Unsupervised clustering of fibroblasts from all patient samples revealed four distinct clusters
318 (Figure 3A,B). Inflammatory CAFs (iCAFs) were identified based on expression of hyaluronan
319 synthase 1 (*HAS1*) and interleukin 6 (*IL6*), while myofibroblastic CAFs (CAFs) subdivided
320 into two clusters. One cluster was distinguished by periostin (*POSTN*) expression, encoding an
321 integrin ligand that supports cell adhesion and migration ⁴⁵; it was labelled *myCAF_adhesive*.
322 Enrichment for α -smooth muscle actin (*ACTA2*) expression characterised the second myCAF
323 cluster, which was therefore labelled *myCAF_contractile*.

324 While the limited number of transcripts in ISS experiments did not allow the distinction of
325 immune cell subtypes at high resolution, the major categories of immune cells were also
326 identified (Figure 3C,D). Macrophages, marked by expression of *CD68* and *CD14*, could be
327 divided into pro-inflammatory M1 macrophages expressing *FCGR1A* and regulatory M2
328 macrophages with increased expression of *CD163* and *MS4A4A*. Lymphocytes comprised large
329 clusters of B cells and T cells. Finally, a cluster of cells enriched for expression of cytotoxicity-
330 related genes including granzymes (*GZMA*, *GZMH*) and *NKG7* was identified as NK cells,
331 although it cannot be ruled out that it might comprise cytotoxic T cells.

332 To gain insight into the spatial co-localisation of PDAC tumour with microenvironment cells,
333 we constructed a cell connectivity graph for each sample where all cells within a 50 μ m radius
334 of each other were counted as neighbours. We then quantified the enrichment of cell types in
335 local neighbourhoods by determining the frequency of neighbouring cell type pairings and
336 comparing it to expectation based on a randomly permuted graph ³². Across samples,
337 *myCAF_adhesive* cells are largely absent from tumour areas with a clearly ‘classical’
338 phenotype, i.e. around *Classical_secretory* cells (Figure 3E); this is consistent with previous
339 reports of poorer prognosis in tumours with a dominant *POSTN* expressing fibroblast
340 population ^{45,46}. Inflammatory CAF are often spatially associated with ‘basal-like’ PDAC and
341 immune cells. Consistent with the proposed continuum of PDAC subtypes showing more
342 ‘classical’ to more ‘basal-like’ features, the vicinity of *Classical_adverse* tumour cells is also
343 enriched for ‘basal-like’ PDAC cells as well as immune cells (Figure 3E).

344

345 ***Spatial patterns of gene expression in PDAC tumour samples***

346

347 As the tumour samples in our cohort comprised varying proportions of the different PDAC
348 subtypes, we adapted a published approach ³⁴ to analyse the spatial cross-correlation of tumour
349 cells with their microenvironment across all patients (Figure 4A). Due to the relatively low
350 number of transcripts detected per cell, we defined a hexagonal grid with a distance of 100 μ m
351 between spots and assigned transcripts the nearest grid spots. Transcripts with spatially
352 heterogeneous expression were identified through Local Indicators of Spatial Association
353 (LISA) ^{34,47} using normalised transcript counts and a binary adjacency weight matrix encoding
354 adjacent spots within a spatial distance of 200 μ m. Hierarchical clustering of transcripts based
355 on their spatial cross-correlation across all samples revealed patterns of transcripts with
356 spatially coherent expression profiles (Supplementary Figure 4A,B).

357 Spatial patterns largely reflect the previously identified cell types present in the PDAC samples
358 (Figure 4B,C). Transcripts with high expression in endocrine cells, as expected, show high
359 spatial cross-correlation with each other. They are spatially associated with transcripts enriched

360 in the exocrine compartment, i.e. acinar-i/s cells²⁹, acinar-REG cells⁴⁸ and ductal cells,
361 reflecting healthy pancreatic tissue areas (Figure 4B). Transcripts characteristic of T cells, B
362 cells, macrophages and immune-related surface genes also co-localise, and are spatially
363 associated with fibroblast and endothelial cell enriched transcripts. Despite their morphological
364 differences, transcripts identifying the ‘classical’ PDAC subpopulations *Classical_secretory*,
365 *Classical_invasive* and *Classical_adverse* show overlapping spatial expression profiles. In
366 contrast, *Classical_REG4* and ‘basal-like’ PDAC transcripts do not form a separate pattern but
367 co-localise with other transcripts showing a spatially distributed expression profile, including
368 transcripts associated with stromal cells, Schwann cells, proliferation, angiogenesis and
369 immune signalling (Figure 4B). This suggests that *Classical_REG4* and ‘basal-like’ PDAC
370 populations cannot be delineated based on spatial cross-correlation analysis of the marker
371 genes employed to identify these cell populations in our data, and additional marker genes will
372 be required to spatially resolve these populations in future studies. Spatial cross-correlation
373 patterns of gene expression in PDAC tumour samples thus corroborate the distinction of
374 ‘classical’ PDAC subtypes, confirming that transcriptional differences relate to distinct
375 morphologies.

376 Among fibroblasts, myCAF_s show a closer spatial correlation with ‘classical’ PDAC subtypes
377 compared to iCAF, which in turn are associated with other microenvironment cell types as well
378 as ‘basal-like’ PDAC (Figure 4B, Figure 3E). These results indicate that presence of different
379 PDAC tumour subpopulations induces compositional changes of the microenvironment and/or
380 microenvironment composition affects PDAC subtype identity.

381 In addition to established cell type marker genes, our ISS probe set included additional targets
382 based on their reported or postulated role in PDAC development (Supplementary Table 2).
383 While the majority of these targets showed no coherent patterns of co-localisation with PDAC
384 subtype specific transcripts (Supplementary Figure 4A), we observed spatial clustering of
385 *Classical_invasive* cells with complement decay-accelerating factor (*CD55*), a glycoprotein
386 that accelerates the decay of complement cascade proteins and thereby prevents damage to
387 cells⁴⁹. In PDAC and other cancers, including colorectal and head and neck cancers, the
388 evasion of complement cells achieved by elevated *CD55* has been shown to confer worse
389 prognosis⁵⁰⁻⁵². Moreover, hypoxia-inducible factor 1 (*HIF1A*) expression was spatially
390 associated with iCAF, in line with a recent study suggesting that hypoxia drives iCAF
391 formation in PDAC⁵³. Finally, we found a spatial co-localisation of neuropilin-2 (*NRP2*) with
392 myCAF. Neuropilin-2 is known as a receptor for angiogenic growth factors. Besides its
393 expression by endothelial cells⁵⁴, *NRP2* in PDAC cells is associated with angiogenesis, tumour
394 growth, migration and invasion⁵⁵. PDAC cells have also been reported to induce *NRP2*
395 expression in tumour-associated macrophages, in turn promoting tumour growth⁵⁶. In gastric
396 cancer, *NRP2* is upregulated in CAFs compared to normal fibroblasts and high expression
397 levels correlate with worse outcomes⁵⁷; our in situ sequencing data suggest this may also be
398 true for PDAC.

399

400 ***Prognostic significance of ‘classical’ PDAC subpopulations***

401

402 While it is well established that ‘basal-like’ PDAC carry a worse prognosis compared to
403 ‘classical’ PDAC tumours, the proposed multiplicity of ‘classical’ PDAC subtypes raises the
404 question whether phenotypic features of these subtypes could be harnessed for prognostic
405 substratification. We addressed this question by means of the pancreatic adenocarcinoma
406 cohort within The Cancer Genome Atlas (TCGA-PAAD), limiting our analysis to primary
407 tumour samples (n=178)⁸. To probe our findings in a separate cohort, we also analysed
408 pancreatic adenocarcinoma data from the Pan-Cancer Analysis of Whole Genomes (PCAWG)
409 study (PACA-AU), again considering only primary tumour samples (n=80)³⁶. For each

410 sample, gene set expression scores were computed based on bulk RNA-seq data for the gene
411 sets corresponding to *Classical_secretory*, *Classical_invasive* and *Classical_adverse* spatial
412 patterns as well as ‘basal-like’ marker genes (Figure 5A-C and Supplementary Table 4).
413 In the TCGA-PAAD cohort, no significant difference in survival was observed between
414 patients with high or low expression of *Classical_secretory* genes, consistent with the notion
415 that this presents the most ‘classical’ phenotype reminiscent of healthy pancreatic duct tissue
416 (Figure 5D). In contrast, high expression of *Classical_invasive* and *Classical_adverse* genes
417 was associated with significantly worse survival. As expected, expression of ‘basal-like’
418 subtype marker genes was also associated with poor outcome. Hazard ratio (HR) analysis
419 confirmed worse outcomes associated with the *Classical_invasive* (HR 1.6, 95% confidence
420 interval 1.2-2.1), *Classical_adverse* (HR 1.9, 95% confidence interval 1.4-2.7) and ‘basal-like’
421 (HR 1.8, 95% confidence interval 1.4-2.4) phenotypes (Figure 5F).
422 In the smaller PACA-AU cohort, survival differences were less significant, but we observed
423 comparable tendencies (Figure 5E). Hazard ratios also indicated poorer prognosis for the
424 ‘basal-like’ PDAC subtype (HR 2, 95% confidence interval 1-3.7) while the
425 *Classical_secretory* subtype emerged as protective (HR 0.57, 95% confidence interval 0.36-
426 0.93) (Figure 5G).
427 Overall, these results corroborate a gradient of worsening overall survival from
428 *Classical_secretory* to *Classical_invasive* and *Classical_adverse* tumours. As
429 *Classical_secretory* tumour cells exhibit transcriptional features of healthy pancreatic tissue
430 while *Classical_adverse* cells are most transcriptionally similar to ‘basal-like’ PDAC cells, we
431 conclude that consistent survival differences, associated with transcriptional subtypes, exist
432 even within configurations traditionally referred to as ‘classical’ PDAC.

433

434

435 Discussion

436

437 Intratumoural heterogeneity remains a significant obstacle to PDAC treatment. In this study,
438 we employed *in situ* sequencing to identify subpopulations of PDAC with distinct
439 transcriptional and morphological characteristics. Our findings suggest a further stratification
440 of 'classical' PDAC, which represent the majority of PDAC cases⁷, into four subtypes
441 representing a continuum from more 'classical' to more 'basal-like' phenotypes.
442 Morphologically, we observed a spatial association of 'classical' PDAC subtypes, whereas
443 'basal-like' PDAC are distributed in the stroma and co-localise preferentially with iCAF; this
444 is consistent with the distinction between 'classical' and 'squamoid-basaloid' spatial
445 communities in a recent whole-transcriptome profiling study⁵⁸.

446

447 Among the 'classical' PDAC cell populations, *Classical_secretory* cells most closely resemble
448 healthy pancreatic ductal tissue, both in terms of morphology and gene expression.
449 *Classical_REG4* cells are distinguished by high expression of REG4 but otherwise
450 transcriptionally similar to *Classical_secretory* cells; while the latter largely occur as
451 monolayers around a lumen, *Classical_REG4* cells present as cell aggregates within the
452 samples. *REG4* has been suggested as a potential serological marker of PDAC and a target for
453 antibody therapy⁵⁹. Our data suggests that *REG4* overexpression may be limited to a subset of
454 PDAC cells, potentially restricting the utility of this approach. Interestingly, *REG4* has been
455 linked to PDAC development from intestinal-type intraductal papillary mucinous neoplasms
456 (IPMNs)⁴², a potential alternative cancerogenic route that might be reflected in the different
457 morphologies of *Classical_secretory* and *Classical_REG4* tumour cell populations.

458

459 *Classical_invasive* cells are characterised by increased expression of carcinoembryonic
460 antigen-related cell adhesion molecules *CEACAM5* and *CEACAM6* along with multi-layer or
461 more distributed tumour architectures. *CEACAM5* and *CEACAM6* expression reportedly
462 correlates with shortened overall and disease-free survival in PDAC, as well as positive lymph
463 node status and distant metastasis^{60,61}. Their expression is also associated with the progression
464 of pancreatic intraepithelial neoplasia (PanIN), its most common precursor lesion, to malignant
465 PDAC³⁸. Moreover, *CEACAM6* has been linked to the invasive capacity of PDAC cells *in*
466 *vitro*^{62,63}. Together with the described PDAC subtype morphologies, this suggests that
467 *CEACAM5* and *CEACAM6* expression triggers the capacity of tumour cells to part from ductal
468 monolayer structures and invade into the surrounding tissue or disseminate to distant sites.
469 Interestingly, in an immunohistochemistry study of PDAC tissue microarrays, *CEACAM5* and
470 *CEACAM6* expression was higher in moderately-differentiated than in well-differentiated or
471 poorly-differentiated tumours⁶⁴, potentially reflecting the intermediate state that
472 *Classical_invasive* cells occupy between more 'classical' and more 'basal-like' PDAC
473 subtypes. Finally, *Classical_adverse* cells are most 'basal-like' and their expression profile is
474 enriched for a combination of 'basal-like' and 'classical' marker genes.

475

476 By stratifying the TCGA-PAAD and PACA-AU cohorts according to the morpho-
477 transcriptional PDAC subtypes identified here, we found that overall survival decreased on a
478 gradient from more 'classical' to more 'basal-like' tumours. Despite the small cohort size, we
479 also observed a tendency for better survival associated with lumina in the tumours and worse
480 survival with 'basal-like' tumours within our own dataset of ten patients (Supplementary Table
481 1). Morpho-transcriptional PDAC subtypes thus carry prognostic significance.

482

483 Our results contribute to resolving the current multitude of partially overlapping classification
484 schemes for PDAC tumours⁴⁻⁷ by taking into account their spatial context. Transcriptionally
defined subtypes with characteristic morphological features occupy a continuum from

485 ‘classical’ to ‘basal-like’ PDAC and co-occur within the same tumours, consistent with
486 previous observations of tumour subtype co-existence by RNA sequencing of dissociated cells
487 ^{9,10,65}. Notably, *Classical_secretory* cells morphologically represent glandular or duct-like
488 differentiation patterns, corresponding to higher differentiated tumour areas and better
489 outcomes according to WHO grading criteria for PDAC, whereas *Classical_invasive* and
490 *Classical_adverse* tumours with their invasive or distributed spatial architectures reflect
491 morphological criteria for higher-grade tumours ⁶⁶.

492

493 While *in situ* sequencing is not yet feasible for clinical applications, the correspondence
494 between transcriptional and morphological features of PDAC might in future enable the
495 automated substratification of PDAC tumours based on morphology alone, for example using
496 stained tumour sections acquired as part of routine clinical procedures. In addition, more
497 comprehensive profiling using whole-transcriptome spatial analysis at the single-cell level
498 could uncover molecular interactions between the different PDAC subtypes and their
499 microenvironment, aiding the development of targeted therapies for PDAC.

500

501

502 References

- 504 1. Bengtsson, A., Andersson, R. & Ansari, D. The actual 5-year survivors of pancreatic
505 ductal adenocarcinoma based on real-world data. *Sci. Rep.* **10**, 1–9 (2020).
- 506 2. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. *CA. Cancer J. Clin.* **72**, 7–33 (2022).
- 507 3. Rahib, L. *et al.* Projecting cancer incidence and deaths to 2030: The unexpected
508 burden of thyroid, liver, and pancreas cancers in the united states. *Cancer Res.* **74**,
509 2913–2921 (2014).
- 510 4. Moffitt, R. A. *et al.* Virtual microdissection identifies distinct tumor- and stroma-
511 specific subtypes of pancreatic ductal adenocarcinoma. *Nat. Genet.* **47**, 1168–1178
512 (2015).
- 513 5. Collisson, E. A. *et al.* Subtypes of pancreatic ductal adenocarcinoma and their
514 differing responses to therapy. *Nat. Med.* **17**, 500–503 (2011).
- 515 6. Bailey, P. *et al.* Genomic analyses identify molecular subtypes of pancreatic cancer.
516 *Nature* **531**, 47–52 (2016).
- 517 7. Collisson, E. A., Bailey, P., Chang, D. K. & Biankin, A. V. Molecular subtypes of
518 pancreatic cancer. *Nat. Rev. Gastroenterol. Hepatol.* **16**, 207–220 (2019).
- 519 8. Raphael, B. J. *et al.* Integrated Genomic Characterization of Pancreatic Ductal
520 Adenocarcinoma. *Cancer Cell* **32**, 185–203.e13 (2017).
- 521 9. Juiz, N. *et al.* Basal-like and classical cells coexist in pancreatic cancer revealed by
522 single-cell analysis on biopsy-derived pancreatic cancer organoids from the classical
523 subtype. *FASEB J.* **34**, 12214–12228 (2020).
- 524 10. Krieger, T. G. *et al.* Single-cell analysis of patient-derived PDAC organoids reveals
525 cell state heterogeneity and a conserved developmental hierarchy. *Nat. Commun.* **12**,
526 (2021).
- 527 11. Chan-seng-yue, M. *et al.* Transcription phenotypes of pancreatic cancer are driven by
528 genomic events during tumor evolution. *Nat. Genet.* doi:10.1038/s41588-019-0566-9.
- 529 12. Lokuhetty, D., White, V. A., Watanabe, R. & Cree, I. A. *WHO Classification of
530 Tumours: Digestive System Tumours*. (International Agency for Research on Cancer,
531 2019).
- 532 13. Kalimuthu, S. N. *et al.* Morphological classification of pancreatic ductal
533 adenocarcinoma that predicts molecular subtypes and correlates with clinical outcome.
534 *Gut* **69**, 317–328 (2020).
- 535 14. Biffi, G. & Tuveson, D. A. Diversity and biology of cancer-associated fibroblasts.
536 *Physiol. Rev.* **101**, 147–176 (2021).
- 537 15. Ho, W. J., Jaffee, E. M. & Zheng, L. The tumour microenvironment in pancreatic
538 cancer — clinical challenges and opportunities. *Nat. Rev. Clin. Oncol.* **17**, 527–540
539 (2020).
- 540 16. Öhlund, D. *et al.* Distinct populations of inflammatory fibroblasts and myofibroblasts
541 in pancreatic cancer. *J. Exp. Med.* **214**, 579–596 (2017).
- 542 17. Elyada, E. *et al.* Cross-Species Single-Cell Analysis of Pancreatic Ductal
543 Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. *Cancer
544 Discov.* **9**, 1102–1123 (2019).
- 545 18. Dominguez, C. X. *et al.* Single-cell RNA sequencing reveals stromal evolution into
546 LRRC15+ myofibroblasts as a determinant of patient response to cancer
547 immunotherapy. *Cancer Discov.* **10**, 232–253 (2020).
- 548 19. Biffi, G. *et al.* IL1-induced Jak/STAT signaling is antagonized by TGFβ to shape CAF
549 heterogeneity in pancreatic ductal adenocarcinoma. *Cancer Discov.* **9**, 282–301
550 (2019).
- 551

552 20. Bernard, V. *et al.* Single-cell transcriptomics of pancreatic cancer precursors
553 demonstrates epithelial and microenvironmental heterogeneity as an early event in
554 neoplastic progression. *Clin. Cancer Res.* **25**, 2194–2205 (2019).

555 21. Hosein, A. N. *et al.* Cellular heterogeneity during mouse pancreatic ductal
556 adenocarcinoma progression at single-cell resolution. *JCI Insight* **4**, (2019).

557 22. Maurer, C. *et al.* Experimental microdissection enables functional harmonisation of
558 pancreatic cancer subtypes. *Gut* **68**, 1034–1043 (2019).

559 23. Vickman, R. E. *et al.* Deconstructing tumor heterogeneity: The stromal perspective.
560 *Oncotarget* **11**, 3621–3632 (2020).

561 24. Klemm, F. & Joyce, J. A. Microenvironmental regulation of therapeutic response in
562 cancer. *Trends Cell Biol.* **25**, 198–213 (2015).

563 25. Grünwald, B. T. *et al.* Spatially confined sub-tumor microenvironments in pancreatic
564 cancer. *Cell* **184**, 5577-5592.e18 (2021).

565 26. Raphael, B. J. *et al.* Integrated Genomic Characterization of Pancreatic Ductal
566 Adenocarcinoma. *Cancer Cell* **32**, 185-203.e13 (2017).

567 27. Ke, R. *et al.* In situ sequencing for RNA analysis in preserved tissue and cells. *Nat.*
568 *Methods* **10**, 857–860 (2013).

569 28. Gyllborg, D. *et al.* Hybridization-based in situ sequencing (HybISS) for spatially
570 resolved transcriptomics in human and mouse brain tissue. *Nucleic Acids Res.* **48**,
571 E112 (2020).

572 29. Tosti, L. *et al.* Single-Nucleus and In Situ RNA–Sequencing Reveal Cell
573 Topographies in the Human Pancreas. *Gastroenterology* **160**, 1330-1344.e11 (2021).

574 30. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex
575 polygons. *Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.*
576 *Notes Bioinformatics)* **11071 LNCS**, 265–273 (2018).

577 31. Solorzano, L., Partel, G. & Wählby, C. TissUUmaps: Interactive visualization of large-
578 scale spatial gene expression and tissue morphology data. *Bioinformatics* **36**, 4363–
579 4365 (2020).

580 32. Palla, G. *et al.* Squidpy: a scalable framework for spatial omics analysis. *Nat. Methods*
581 **19**, 171–178 (2022).

582 33. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and
583 Projection for Dimension Reduction. *arXiv* 1802.03426v2 (2018).

584 34. Miller, B. F., Bambah-Mukku, D., Dulac, C., Zhuang, X. & Fan, J. Characterizing
585 spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic
586 data with nonuniform cellular densities. *Genome Res.* **31**, 1843–1855 (2021).

587 35. Wan, Y. W., Allen, G. I. & Liu, Z. TCGA2STAT: Simple TCGA data access for
588 integrated statistical analysis in R. *Bioinformatics* **32**, 952–954 (2016).

589 36. Scarlett, C. J., Salisbury, E. L., Biankin, A. V. & Kench, J. Precursor lesions in
590 pancreatic cancer: Morphological and molecular pathology. *Pathology* **43**, 183–200
591 (2011).

592 37. Lee, H., Marco Salas, S., Gyllborg, D. & Nilsson, M. Direct RNA targeted in situ
593 sequencing for transcriptomic profiling in tissue. *Sci. Rep.* **12**, 1–9 (2022).

594 38. Zińczuk, J. *et al.* Expression of chosen carcinoembryonic-related cell adhesion
595 molecules in pancreatic intraepithelial neoplasia (PanIN) associated with chronic
596 pancreatitis and pancreatic ductal adenocarcinoma (PDAC). *Int. J. Med. Sci.* **16**, 583–
597 592 (2019).

598 39. Yan, J. *et al.* High expression of diffuse panbronchiolitis critical region 1 gene
599 promotes cell proliferation, migration and invasion in pancreatic ductal
600 adenocarcinoma. *Biochem. Biophys. Res. Commun.* **495**, 1908–1914 (2018).

601 40. Bournet, B. *et al.* Gene expression signature of advanced pancreatic ductal

602 adenocarcinoma using low density array on endoscopic ultrasound-guided fine needle
603 aspiration samples. *Pancreatology* **12**, 27–34 (2012).

604 41. Li, Y., Su, Z., Wei, B. & Liang, Z. Krt7 overexpression is associated with poor
605 prognosis and immune cell infiltration in patients with pancreatic adenocarcinoma. *Int.*
606 *J. Gen. Med.* **14**, 2677–2694 (2021).

607 42. Nakata, K. *et al.* REG4 is associated with carcinogenesis in the ‘intestinal’ pathway of
608 intraductal papillary mucinous neoplasms. *Mod. Pathol.* **22**, 460–468 (2009).

609 43. Eguchi, H. *et al.* Serum REG4 level is a predictive biomarker for the response to
610 preoperative chemoradiotherapy in patients with pancreatic cancer. *Pancreas* **38**, 791–
611 798 (2009).

612 44. Bhardwaj, A. *et al.* Deeper insights into long-term survival heterogeneity of Pancreatic
613 Ductal Adenocarcinoma (PDAC) patients using integrative individual- and group-level
614 transcriptome network analyses. *bioRxiv* 2020.06.01.116194 (2020)
615 doi:10.1101/2020.06.01.116194.

616 45. Liu, Y. *et al.* Role of microenvironmental periostin in pancreatic cancer progression.
617 *Oncotarget* **8**, 89552–89565 (2017).

618 46. Neuzillet, C. *et al.* Inter- and intra-tumoural heterogeneity in cancer-associated
619 fibroblasts of human pancreatic ductal adenocarcinoma. *J. Pathol.* **248**, 51–65 (2019).

620 47. Anselin, L. Local Indicators of Spatial Association—LISA. *Geogr. Anal.* **27**, 93–115
621 (1995).

622 48. Muraro, M. J. *et al.* A Single-Cell Transcriptome Atlas of the Human Pancreas. *Cell*
623 *Syst.* **3**, 385–394.e3 (2016).

624 49. Spendlove, I., Ramage, J. M., Bradley, R., Harris, C. & Durrant, L. G. Complement
625 decay accelerating factor (DAF)/CD55 in cancer. *Cancer Immunol. Immunother.* **55**,
626 987–995 (2006).

627 50. He, Z., Wu, H., Jiao, Y. & Zheng, J. Expression and prognostic value of CD97 and its
628 ligand CD55 in pancreatic cancer. *Oncol. Lett.* **9**, 793–797 (2015).

629 51. Durrant, L. G. *et al.* Enhanced expression of the complement regulatory protein CD55
630 predicts a poor prognosis in colorectal cancer patients. *Cancer Immunol. Immunother.* **52**,
631 638–642 (2003).

632 52. Kesselring, R. *et al.* The complement receptors CD46, CD55 and CD59 are regulated
633 by the tumour microenvironment of head and neck cancer to facilitate escape of
634 complement attack. *Eur. J. Cancer* **50**, 2152–2161 (2014).

635 53. Mello, A. *et al.* Hypoxia promotes an inflammatory phenotype of fibroblasts in
636 pancreatic cancer. *bioRxiv* (2022).

637 54. Islam, R. *et al.* Role of Neuropilin - 2 - mediated signaling axis in cancer progression
638 and therapy resistance. *Cancer Metastasis Rev.* (2022) doi:10.1007/s10555-022-
639 10048-0.

640 55. Dallas, N. A. *et al.* Neuropilin-2-mediated tumor growth and angiogenesis in
641 pancreatic adenocarcinoma. *Clin. Cancer Res.* **14**, 8052–8060 (2008).

642 56. Roy, S. *et al.* Macrophage-derived neuropilin-2 exhibits novel tumor-promoting
643 functions. *Cancer Res.* **78**, 5600–5617 (2018).

644 57. Yang, Y. *et al.* CAF promotes chemoresistance through NRP2 in gastric cancer.
645 *Gastric Cancer* **25**, 503–514 (2022).

646 58. Hwang, W. L. *et al.* Single-nucleus and spatial transcriptome profiling of pancreatic
647 cancer identifies multicellular dynamics associated with neoadjuvant treatment. *Nat.*
648 *Genet.* **54**, (2022).

649 59. Takehara, A. *et al.* Novel tumor marker REG4 detected in serum of patients with
650 resectable pancreatic cancer and feasibility for antibody therapy targeting REG4.
651 *Cancer Sci.* **97**, 1191–1197 (2006).

652 60. Gebauer, F. *et al.* Carcinoembryonic antigen-related cell adhesion molecules
653 (CEACAM) 1, 5 and 6 as biomarkers in pancreatic cancer. *PLoS One* **9**, (2014).

654 61. Duxbury, M. S., Ito, H., Zinner, M. J., Ashley, S. W. & Whang, E. E. CEACAM6 gene
655 silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic
656 adenocarcinoma cells. *Oncogene* **23**, 465–473 (2004).

657 62. Okuda, R. *et al.* Reconstructing cell interactions and state trajectories in pancreatic
658 cancer stromal tumoroids. *bioRxiv* 2022.02.14.480334 (2022).

659 63. Chen, J. *et al.* CEACAM6 induces epithelial-mesenchymal transition and mediates
660 invasion and metastasis in pancreatic cancer. *Int. J. Oncol.* **43**, 877–885 (2013).

661 64. Blumenthal, R. D., Leon, E., Hansen, H. J. & Goldenberg, D. M. Expression patterns
662 of CEACAM5 and CEACAM6 in primary and metastatic cancers. *BMC Cancer* **7**,
663 8809–8817 (2007).

664 65. Topham, J. T. *et al.* Subtype-discordant pancreatic ductal adenocarcinoma tumors
665 show intermediate clinical and molecular characteristics. *Clin. Cancer Res.* **27**, 150–
666 157 (2021).

667 66. Nagtegaal, I. D. *et al.* The 2019 WHO classification of tumours of the digestive
668 system. *Histopathology* **76**, 182–188 (2020).

669

670 **Acknowledgements**

671
672 The survival analysis presented here is in part based upon data generated by the TCGA
673 Research Network (<https://www.cancer.gov/tcga>) and the International Cancer Genome
674 Consortium (<https://dcc.icgc.org/>); we gratefully acknowledge the respective clinical
675 contributors and data producers. We thank the Tissue Biobank of MRI and TUM as well as
676 Anja Kühl and Simone Spieckermann at iPATH.Berlin for excellent technical support, and
677 Naveed Ishaque and Sebastian Tiesmeyer for helpful discussions.

678
679

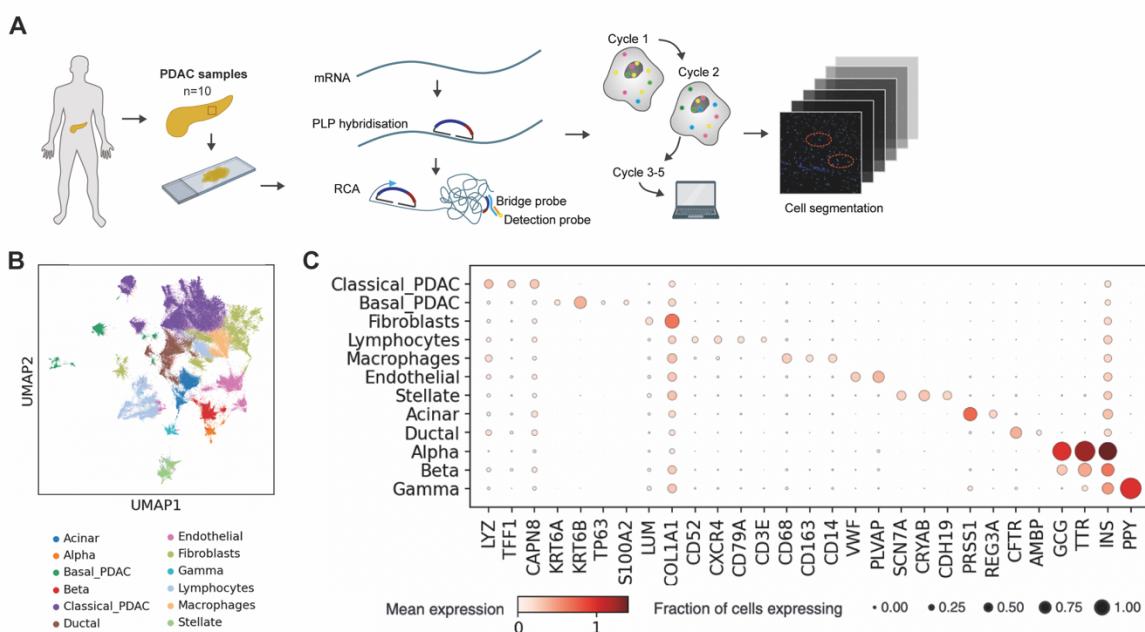
680 **Author contributions**

681
682 CC, KS, WW and RE conceived of and supervised the project. FS, BK KS and LT prepared
683 PDAC samples. LT, MR, XQ and AN designed probes and conducted experiments. TGK, AS
684 and JL analysed data. TGK wrote the manuscript with input from AS and FS. WW, KS, RE
685 and CC acquired funding. All authors commented on the manuscript.

686
687
688
689
690
691
692

693 **Figures**

694



695

696

Figure 1: Cell type identification based on ISS of human PDAC. (A) Overview of the experimental workflow. PDAC biopsies were acquired from 10 patients. For in situ sequencing, tissue sections are prepared from formalin-fixed paraffin-embedded samples. Transcript-specific padlock probes (PLP) hybridise directly to the mRNA targets and are amplified by Rolling Circle Amplification (RCA). PLP identities are then decoded by sequential cycles of hybridisation and stripping of bridge and fluorophore conjugated detection probes^{27,28}. To assign transcripts to cells, a convolutional neural network is applied that segments cell nuclei via star-convex polygons³⁰. (B) UMAP representation of all profiled cells from ten patient samples, indicating the assigned cell types based on clustering and marker gene expression analysis. (C) Expression of characteristic genes across the different cell types identified in the tumour samples. Colour indicates normalised mean expression while dot size represents the fraction of cells in each population expressing the gene.

700

701

702

703

704

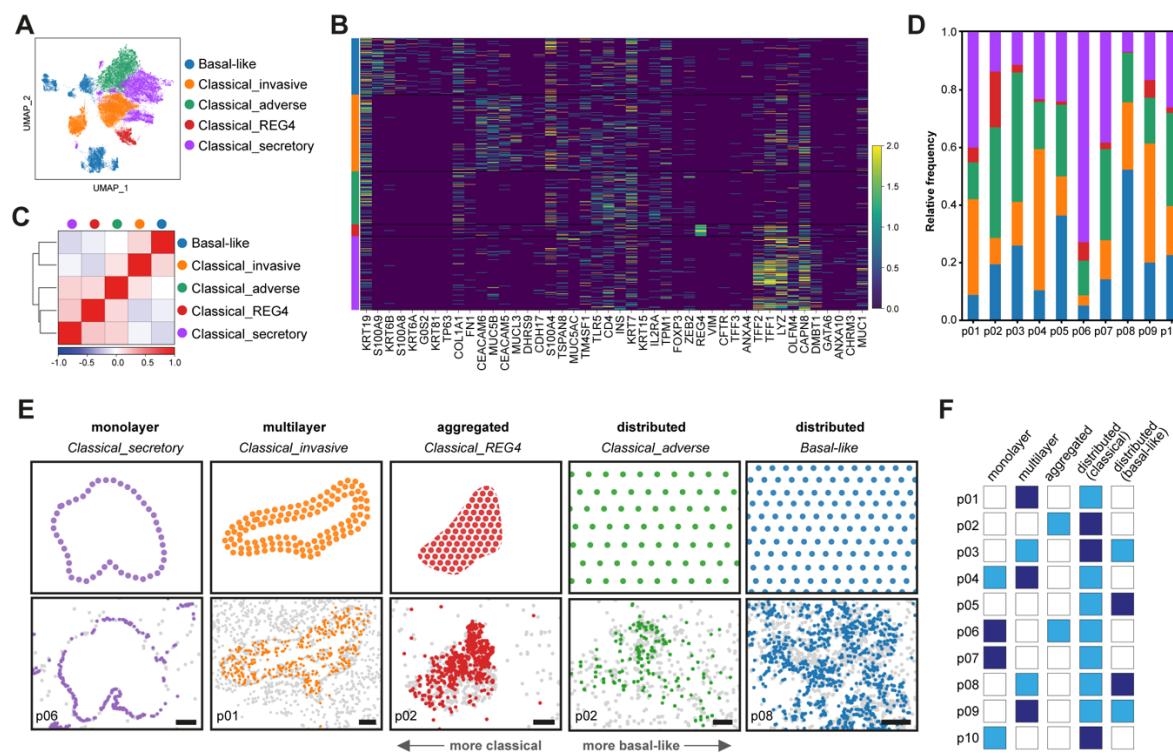
705

706

707

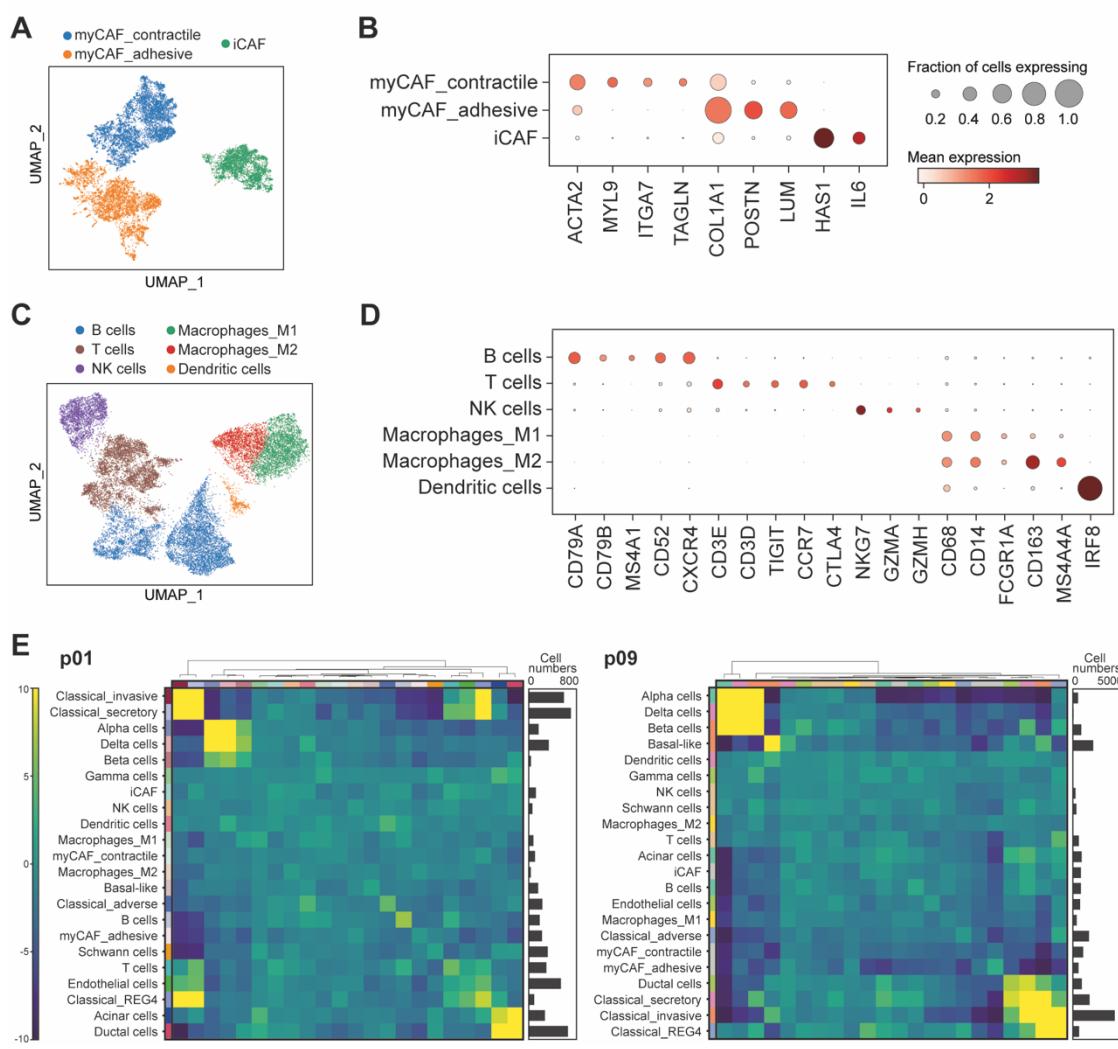
708

709



710
711

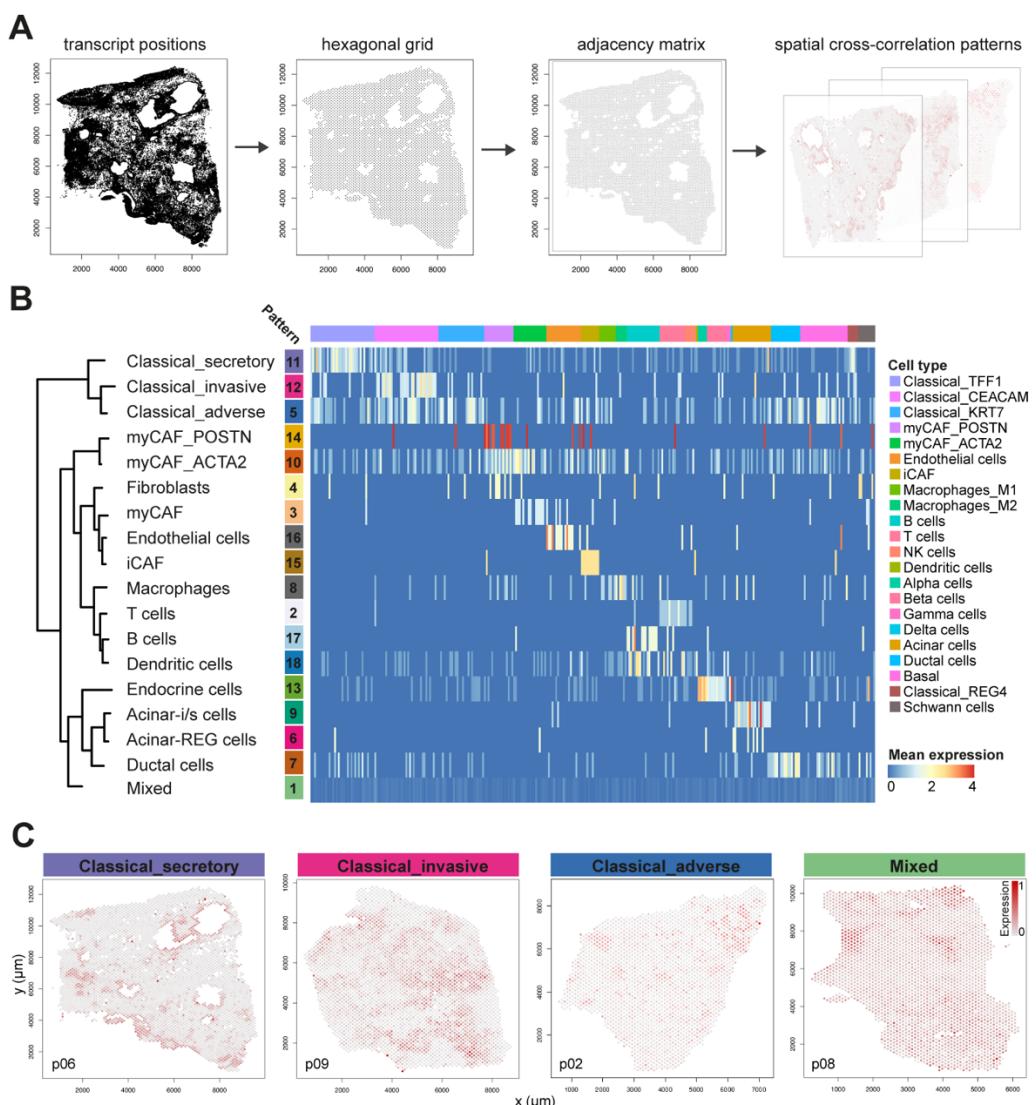
712 **Figure 2: Transcriptional subtypes of PDAC with characteristic morphologies.** (A)
713 UMAP representation of the identified PDAC subtypes, labelled according to functional
714 annotations of enriched genes in each cluster (see also Supplementary Figure 2A). (B)
715 Pearson's correlation coefficients between mean transcriptional profiles of the different PDAC
716 subtypes. (C) Normalised expression of characteristic genes, including marker genes for the
717 'classical' and 'basal-like' subtypes, across the identified PDAC cell clusters. Colour bars
718 denote subtypes, with colours as in (A). (D) Relative frequencies of the different PDAC
719 subtypes across all ten patient samples. Colours indicate subtypes as in (A). (E) Distinctive
720 morphologies of the identified transcriptional PDAC subtypes were observed across patients.
721 Top row depicts simplified illustrations of morphologies, while bottom row shows
722 representative areas from different samples where the respective PDAC subtype and
723 morphology was detected. Colours indicate PDAC subtypes as in (A), with all other tumour
724 cells shown in grey. Scale bars, 200 μ m. (F) Representation of morphological PDAC subtypes
725 across patient samples. Dark blue: dominant morphology in the sample, light blue: morphology
726 also detected in the sample, white: morphology not detected.



728
729

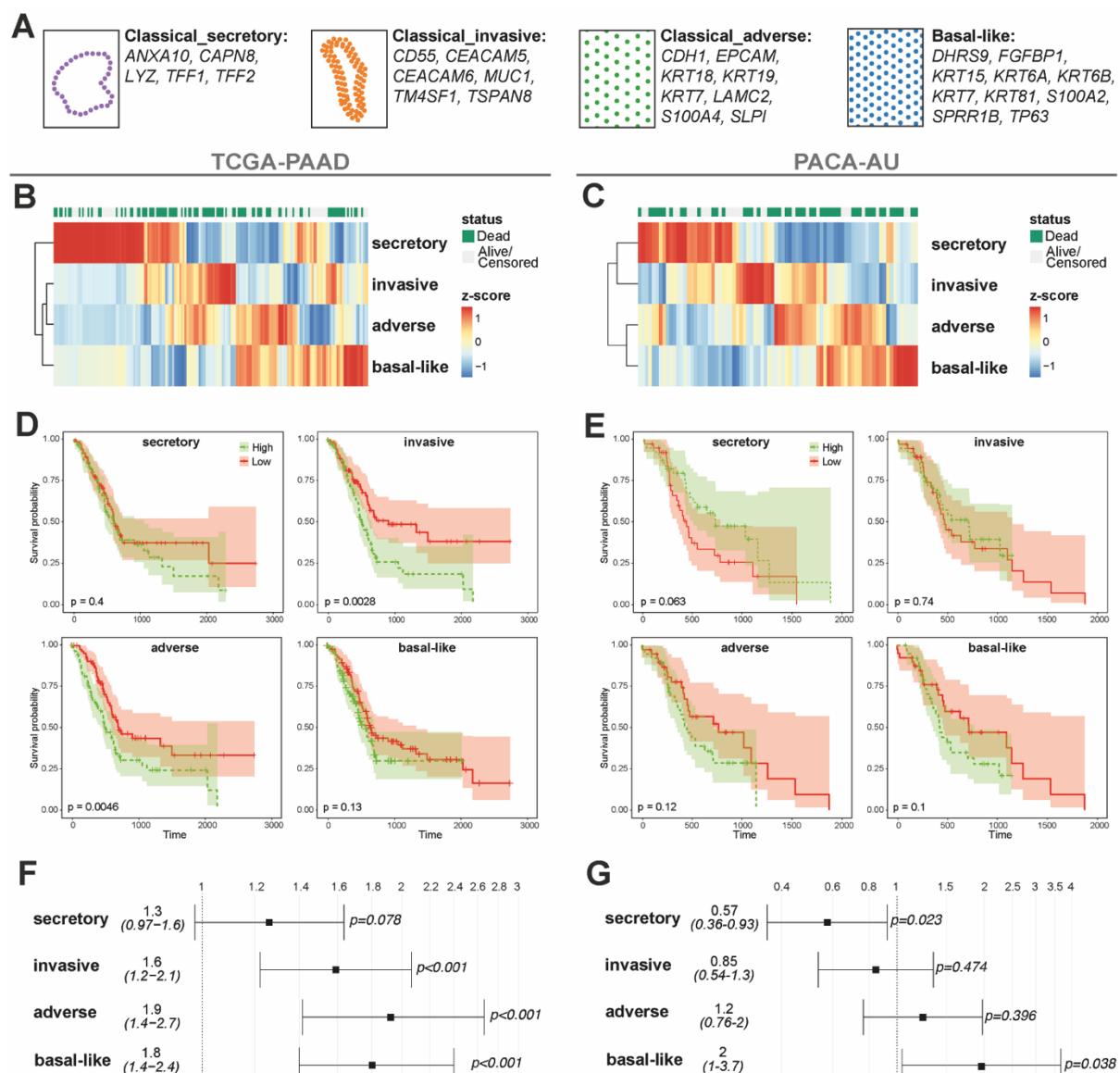
730 **Figure 3: Stromal and immune cell types in PDAC tumour samples.** (A) UMAP
731 representation of CAF populations, including inflammatory CAFs as well as two types of
732 myofibroblastic CAFs. (B) Expression of characteristic genes across the CAF populations.
733 (C) UMAP representation of immune cell populations, including macrophages, B cells, T cells
734 and NK cells. (D) Expression of characteristic genes across the immune cell populations. (E)
735 Enrichment or depletion of cell types in local neighbourhoods was assessed by comparing the
736 number of observed cell type co-occurrences within 50 μ m against expected values based on
737 random permutations on the cell connectivity graph. Heatmaps show z-scores for enrichment
738 or depletion of cell type pairings for two patient samples. Bar plots indicate cell numbers for
739 each sample.

740



741
742

743 **Figure 4: Spatial cross-correlation patterns of transcripts.** (A) To identify spatial patterns
744 of transcription, each recorded transcript is assigned to the nearest point on a hexagonal grid
745 (grid point distance 100 μm). A binary adjacency weight matrix is determined for each sample,
746 with two points considered adjacent if they are located within 200 μm of each other. Here, grey
747 lines connect adjacent spots. Using the adjacency weight matrices for each sample, a spatial
748 cross-correlation index is computed for every transcript pair taking into account neighbourhood
749 information from all samples. Gene expression patterns are determined by dynamic tree cutting
750 of a hierarchical dendrogram computed from the resulting spatial cross-correlation matrix.
751 Groups of genes are z-scored and averaged for visualisation of transcriptional patterns³⁴. (B)
752 Hierarchical dendrogram depicting patterns of spatially cross-correlated transcripts across all
753 samples. Most patterns could be identified as representing specific cell types and were labelled
754 accordingly; the pattern labelled 'Mixed' comprised *REG4*, markers for 'basal-like' PDAC,
755 Schwann cells, proliferation and angiogenesis, as well as various immune signalling genes.
756 The full dendrogram including all transcript names is shown in Supplementary Figure 4A.
757 Heatmap shows average gene expression per pattern across all cells, with column annotations
758 indicating cell type identity and patient origin. (C) Visualisation in different patient samples
759 of spatial transcriptional patterns that correspond to the 'classical' PDAC subtypes, as well as
760 the distributed pattern comprising 'basal-like' PDAC marker genes. Colour indicates
761 normalised mean expression of pattern transcripts.



762
763

Figure 5: Prognostic relevance of PDAC subtypes. (A) Gene sets corresponding to *Classical secretory*, *Classical invasive* and *Classical adverse* spatial patterns as well as ‘basal-like’ marker genes. (B,C) PDAC subtype scores based on bulk RNA-seq data for primary tumour samples from the TCGA-PAAD cohort (n=178 patients)⁸ and the PACA-AU cohort (n=80 patients)³⁶, visualised by z-scores for each sample. (D,E) Kaplan-Meier curves comparing survival probability in TCGA-PAAD and PACA-AU patients with high (green) or low (red) expression of the gene sets defined by the spatial patterns representing secretory, invasive and adverse ‘classical’ PDAC subtypes. The comparison according to ‘basal-like’ signature gene expression is also shown for reference. Shaded areas indicate 95% confidence intervals. High scores for the invasive or adverse phenotypes are associated with significantly worse survival compared to the secretory phenotype (p<0.01, log-rank test). (F,G) Hazard ratios associated with gene set scores for the secretory, invasive, adverse and ‘basal-like’ gene sets. Expression of the invasive or adverse gene sets is associated with worse outcome compared to the secretory gene set (p<0.001, Wald test).

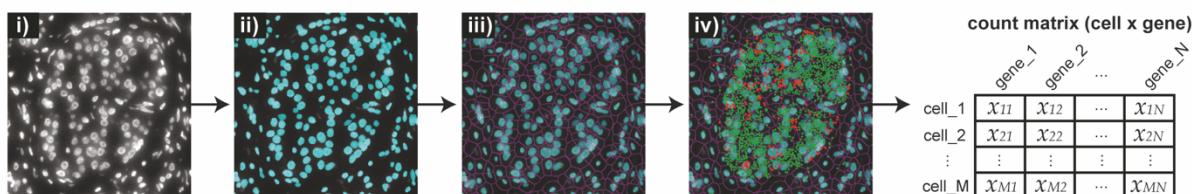
777
778

779 **Supplementary Figures**

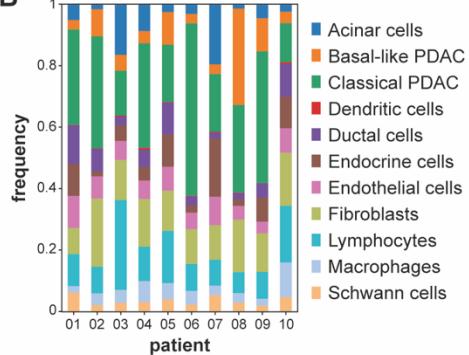
780

781

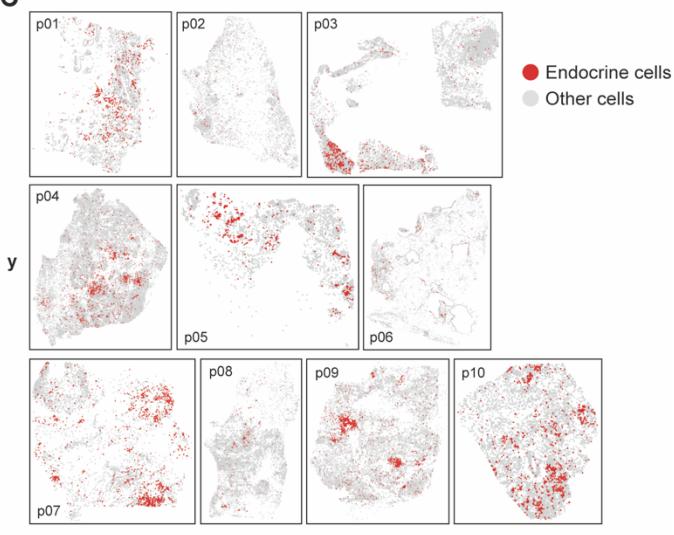
A



B



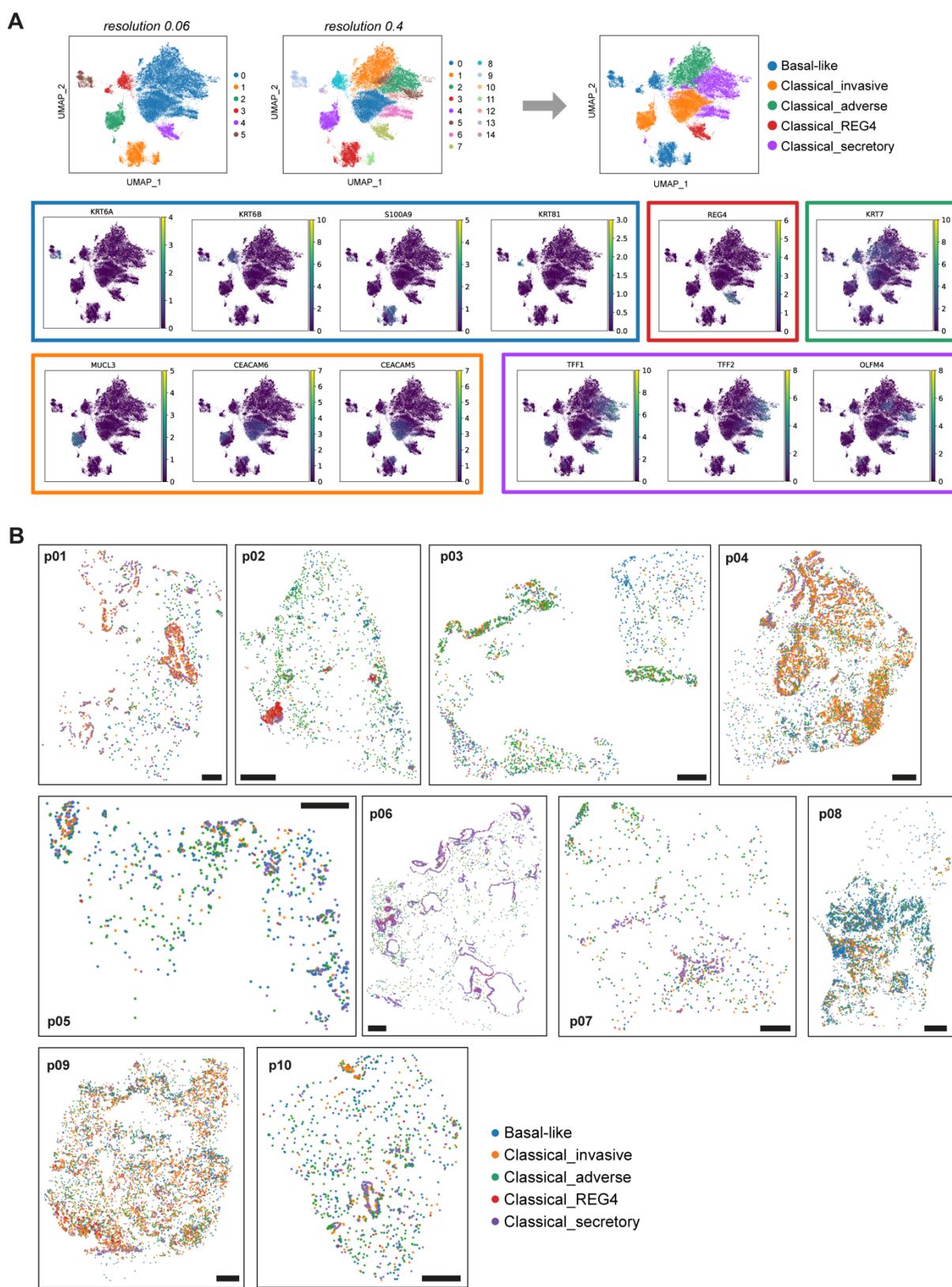
C



782

783

784 **Supplementary Figure 1: Characterisation of cell types detected in PDAC samples. (A)**
785 Assignment of ISS transcript locations to cells using the deep-learning based segmentation
786 framework StarDist: The DAPI stained nuclei image (i) is segmented using StarDist (ii). The
787 nuclei label mask is expanded isotropically without overlapping to approximate cell boundaries
788 (iii) and the transcript locations are mapped onto the cell boundary map (iv), resulting in a cell
789 \times gene count matrix. **(B)** Frequency of cell types detected across all patient samples. **(C)**
790 Spatial locations of endocrine cells reflecting pancreatic islets and other detected cells across
791 all patient samples.
792



793

795

793 **Supplementary Figure 2. Identification of PDAC subtypes and their spatial distribution.**
794 (A) PDAC subtype identity was determined based on Leiden clustering and marker gene
795 expression. At lower clustering resolution (0.06), clusters 0, 2 and 4 expressed ‘classical’
796 marker genes but were distinguished by enrichment for *MUC3* and *CEACAM6* in cluster 2
797 and *REG4* in cluster 4, while the remaining clusters expressed ‘basal-like’ marker genes. At
798

800 higher clustering resolution (0.4), fifteen clusters were identified by Leiden clustering. Of
801 these, clusters 3, 8, 9, 11, 13, were enriched for ‘basal-like’ marker gene expression and were
802 therefore summarised as ‘Basal-like’. Among the ‘classical’ clusters, clusters 0 and 4 shared
803 enrichment for invasion related genes such as *CEACAM5* and *CEACAM6* and were
804 summarised as *Classical_invasive*; clusters 2, 5, 6, 10, 12, 14, shared expression of secretion
805 related genes such as *TFF1*, *TFF2* and *OLFM4* and were therefore summarised as
806 *Classical_secretory*; cluster 1 did not show secretory features but high expression of *KRT7*,
807 associated with poorer outcome in PDAC⁴¹, and was therefore labelled *Classical_adverse*; and
808 the REG4-expressing cluster 7 was labelled *Classical_REG4*. Cell clusters and gene expression
809 are visualised on the same UMAP representation as in Figure 2A. Coloured boxes correspond
810 to the identified PDAC subtypes. **(B)** Spatial distribution of PDAC subtype cells across patient
811 samples. Each dot represents a PDAC tumour cell coloured by subtype identity, with the spatial
812 distribution corresponding to the ISS coordinates. Scale bars, 1 mm.
813

814
815
816
817
818

