

1 **Title: CURLYLEAF is a key modulator of apoplast water status in Arabidopsis**
2 **leaf**

3 **Authors:** Jingni Wu¹, Jinyu Zhang^{1,5}, Xiao Mei^{1,5}, Luhuan Ye¹, Tao Chen^{2,3}, Yiping
4 Wang¹, Menghui Liu⁴, Yijing Zhang^{1,5}, Xiu-Fang Xin^{1,5,6}

5 **Affiliations:** ¹National Key Laboratory of Plant Molecular Genetics, CAS Center for
6 Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology,
7 Chinese Academy of Sciences, Shanghai, China.

8 ²State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University,
9 Wuhan, China.

10 ³Department of Energy Plant Research Laboratory, Michigan State University, East
11 Lansing, Michigan, USA.

12 ⁴Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology,
13 School of Life Sciences, Henan University, Kaifeng, China.

14 ⁵University of the Chinese Academy of Sciences, Beijing, China.

15 ⁶CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute
16 of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.

17

18 To whom correspondence should be addressed: xinxf@sippe.ac.cn

19

20 **Key words:** CURLYLEAF, apoplast, water balance, abscisic acid, stomata, immunity

21

22 **Running title:** CLF regulates leaf water status through ABA pathway

23

24 **Abstract**

25 The apoplast of plant leaf, the intercellular space between mesophyll cells, is normally
26 largely filled with air with a minimal amount of water in it, which is essential for key
27 physiological processes such as gas exchange to occur. Interestingly, phytopathogens
28 exploit virulence factors to induce a water-rich environment, known as “water soaking”,
29 in the apoplast of the infected leaf tissue to promote disease. We propose that plants
30 evolved a “water soaking” pathway, which normally keeps a “minimized and balanced”

31 water level in the leaf apoplast for plant growth but is disturbed by microbial pathogens
32 to facilitate infection. Investigation of the “water soaking” pathway and leaf water
33 control mechanisms is a fundamental, yet previously-overlooked, aspect of plant
34 physiology. To identify key components in the “water soaking” pathway, we performed
35 a genetic screen to isolate *Arabidopsis* *severe water soaking* (*sws*) mutants that show
36 leaf water over-accumulation under high air humidity, a condition required for visible
37 water soaking. Here we report the *sws1* mutant, which displays rapid water soaking
38 upon high humidity treatment due to a loss-of-function mutation in *CURLY LEAF*
39 (*CLF*), encoding a histone methyl-transferase in the POLYCOMB REPRESSIVE
40 COMPLEX 2 (PRC2). We found that the *sws1* (*clf*) mutant exhibits an enhanced
41 abscisic acid (ABA) level and stomatal closure, which are indispensable for its water
42 soaking phenotype and mediated by *CLF*’s direct regulation of a group of ABA-
43 associated NAC transcription factors, *NAC019/055/072*. Interestingly, the *clf* mutant
44 showed a weakened immunity, which likely also contributes to the water soaking
45 phenotype. In addition, the *clf* plant supports a significantly higher level of
46 *Pseudomonas syringae* pathogen-induced water soaking and bacterial multiplication,
47 in an ABA pathway and *NAC019/055/072*-dependent manner. Collectively, our study
48 probes into a fundamental question in plant biology and demonstrates *CLF* as a key
49 modulator of leaf water status via epigenetic regulation of ABA pathway and stomatal
50 movement.

51

52

53

54

55 **Introduction**

56 Water is essential for virtually all biological processes in living organisms and water
57 availability largely affects plant diversity and microbial community (Lau and Lennon,
58 2012; Blazewicz et al., 2014; Jonas et al., 2015; Taketani et al., 2017). As sessile
59 organisms, plants evolved mechanisms to sense and respond to environmental water
60 status. For example, plants adapt to water deprivation, drought or flooding conditions
61 through abscisic acid (ABA)- and ethylene-related pathways and reprogram growth
62 (Loreti et al., 2016; Kuromori et al., 2018; Zhao et al., 2017; Zhu, 2016). Plant diseases
63 caused by foliar pathogens are also strongly influenced by water status in the plant and
64 the environment (i.e., air humidity). For instance, *Pseudomonas syringae* and
65 *Xanthomonas gardneri* bacterial pathogens utilize effectors, a class of virulence
66 proteins produced by Gram-negative bacteria and delivered into plant cells through the
67 type III secretion system, to induce water accumulation in the apoplastic space of the
68 infected leaf tissue. This aqueous living environment, also called “water soaking”, is
69 important for pathogen multiplication or egression (Xin et al., 2016; Schwartz et al.,
70 2017). Therefore, foliar pathogens purposely modify the apoplast water availability to
71 cause disease. However, plants normally maintain a “dry” apoplast with a minimal
72 amount of water, which is unarguably important for physiological processes such as gas
73 exchange and photosynthesis to occur. How the apoplastic water status is regulated in
74 the plant leaf is fundamentally-important but poorly-studied at the moment.

75

76 The ABA hormone pathway mediates adaptive responses of plants to water deficient or
77 osmotic stress conditions (Chen et al., 2020). ABA is perceived by the pyrabactin
78 resistance (PYR) and PYR1-like (PYL) receptors, which interact with protein
79 phosphatases 2C, and results in the released activity of sucrose non-fermenting 1-
80 related protein kinase 2s (SnRK2s), including SnRK2.2, SnRK2.3 and SnRK2.6 (Cutler
81 et al., 2010; Fàbregas et al., 2020). These SnRK2s in turn activate transcription factors
82 to induce the expression of downstream genes, including *9-cis-epoxycarotenoid*
83 *dioxygenase 3 (NCED3)* for ABA synthesis and other ABA-responsive genes for
84 metabolic and physiological responses (Hewage et al., 2020). SnRK2s, particularly

85 SnRK2.6 (also named Open Stomata 1, OST1), also phosphorylate and activate plasma
86 membrane-located anion efflux channels, namely slow anion channel 1 (SLAC1) and
87 SLAC1-homolog proteins 3 (SLAH3), in the guard cell to trigger stomatal closure and
88 minimize water loss (Hedrich and Geiger, 2017). SLAC1 and SLAH3 are also regulated
89 by calcium-dependent protein kinases (CPKs) (Chen et al., 2020), and both can inhibit
90 the inward-rectifying K⁺ channel KAT1 and trigger stomatal closure (Zhang et al.,
91 2016). Other stimuli such as reactive oxygen species, darkness and microbe-associated
92 molecules (e.g. flagellin) also trigger stomatal movement (Kwak et al., 2003; Guzel
93 Deger et al., 2015).

94

95 Polycomb group (PcG) proteins are epigenetic chromatin modifiers and highly
96 conserved in *Drosophila*, plants and mammals (Köhler and Villar, 2008). PcG proteins
97 form multi-protein complexes, with polycomb repressive complex 1 and 2 (PRC1/2)
98 best studied, to keep the repressed state of target genes and regulate diverse
99 developmental processes. In Arabidopsis, PRC2 deposits the trimethylation mark on
100 the K27 residue of histone 3 (H3K27me3) and the core catalytic subunits are SET
101 domain-containing methyl-transferases, namely Curly Leaf (CLF), Swinger (SWN)
102 and Medea (MEA), which function (partially) redundantly but in distinct processes.
103 PRC1 is comprised of Like Heterochromatin Protein1 (LHP1), which recognizes
104 H3K27me3-modified chromatin (Turck et al., 2007; Zhang et al., 2007), and two groups
105 of RING-domain proteins, AtRING1a/b and AtBMI1a/b/c, which monoubiquitylate
106 histone 2A (Xu and Shen, 2008; Bratzel et al., 2010). PRC1 and PRC2 act together to
107 establish a repressed chromatin status and play pivotal roles in embryogenesis, seed
108 germination, flowering time control and so on (Xiao and Wagner, 2015; Pu and Sung,
109 2015). Interestingly, many abiotic stress (i.e., cold, dehydration, osmosis)-responsive
110 genes are occupied by H3K27me3 mark and epigenome profiles change under abiotic
111 stress conditions (Liu et al., 2014; Kwon et al., 2009; Liu et al., 2019). CLF/SWN-
112 associated H3K27me3 was shown to repress ABA responses and regulate ABA-induced
113 senescence (Liu et al., 2019). These studies suggest that PRC2 also modulates plant
114 stress responses.

115

116 Our study aims to uncover key components involved in controlling water status in
117 Arabidopsis leaf. Through an ethylmethane sulfonate (EMS)-based genetic screen, we
118 identified CLF, the catalytic subunit of PRC2, as a key regulator of apoplast water. The
119 *clf* mutant plant displays a strong spontaneous “water soaking” under high air humidity,
120 and this is tightly linked to activation of ABA pathway and stomatal closure. Blockage
121 of ABA biosynthesis or stomatal movement in the *clf* plant largely compromised the
122 water soaking phenotype. Furthermore, we found a group of ABA-associated NAC
123 transcription factors, *NAC019/055/072*, are directly targeted by CLF and responsible
124 for the water soaking phenotype in the *clf* mutant. Our work identifies a novel function
125 of CLF in modulating leaf water status and illustrates a crucial role of ABA-mediated
126 signaling pathway and stomatal movement in the process.

127

128 **Results**

129 **A genetic screen for *Arabidopsis severe water soaking (sws)* mutants**

130 To uncover key elements involved in apoplastic water control, an EMS-mutagenized
131 population was generated in the background of *atmin7/fls2/efr/cerk1* (hereinafter *mfec*)
132 mutant, which exhibits enhanced, but not saturated, water soaking compared to Col-0
133 plants under high humidity (Xin et al., 2016). The M2 population was screened for
134 mutants showing severe water soaking in the leaf under high air humidity (~90-95%
135 relative humidity), a condition required for water to “stay” in the apoplast and
136 preventing water evaporation from stomata so that visible “water soaking” can be seen.
137 These mutants were named *severe water soaking (sws)* mutants. Among those, the *sws1*
138 mutant was identified as a strong allele and exhibits water soaking quickly (i.e., 0.5h)
139 after high humidity treatment (Figure 1A).

140

141 To identify the responsible gene locus, we crossed *sws1* with the parent plant. A
142 segregation ratio of 1:3 in water soaking phenotype was observed in the F2 population
143 (Supplemental Figure S1A, B), suggesting that a single recessive mutation causes *sws1*
144 phenotype. We also crossed *sws1* to Col-0 plant and observed a segregation ratio of 1:3

145 in the water soaking phenotype among F2 plants, suggesting that the *sws1* phenotype
146 is independent of the *mfec* background (Supplemental Figure S1B). Bulked segregant
147 analysis (BSA) coupled with genome sequencing of the F2 population of *sws1* x *mfec*
148 crossed plants was performed and results revealed a G to A nucleotide substitution in
149 the 17th exon of *CURLYLEAF* (*CLF*; At2g23380) gene, resulting in a Glycine to
150 Arginine substitution (Figure 1B). We then checked another two independent T-DNA
151 insertion lines of *CLF*, *clf-28* and *clf-29* (Zhou et al., 2017; Bouveret et al., 2006), and
152 water soaking occurred at a comparable level to *sws1* plants in these plants (Figure 1A),
153 suggesting that the mutation in the *sws1* mutant knocked out *CLF* activity. Notably,
154 another seven independent *sws* lines isolated from the screen also show SNPs in the
155 *CLF* gene (Supplemental Figure S2), suggesting that *CLF* is a mutation hot spot and
156 that our screen is near saturation.

157

158 It's known that water soaking in the plant leaf promotes pathogen infection (Xin et al.,
159 2016). We therefore performed a bacterial growth assay, in which the *P. syringae* pv.
160 *tomato* (*Pst*) DC3000 bacterium was infiltrated into the leaves of *sws1* (*mfec*
161 background), *clf-28* and *clf-29* (Col-0 background) plants. We found that *Pst* DC3000
162 grew significantly higher in the *clf* mutants compared to the control plant (Figure 1C),
163 consistent with an important role of apoplast water in bacterial pathogenesis (Xin et al.,
164 2016).

165

166 **The aqueous apoplast in the *clf* mutant is mediated by up-regulation of ABA
167 pathway**

168 To understand the physiological basis of the aqueous apoplast phenotype in *clf* plant,
169 we carried out a transcriptome analysis of Col-0 and *clf-28* (hereinafter *clf*) plants at 0
170 h and 0.5 h after high humidity treatment. In total, 2059 and 2513 differentially
171 expressed genes (DEGs) were detected at 0 h and 0.5 h, respectively, in the *clf* plant
172 (Figure 2A). Gene Ontology analysis revealed that ABA, jasmonic acid (JA) and
173 salicylic acid (SA) pathway genes are differentially regulated (Figure 2B). To clarify
174 which hormone pathway is biologically relevant, we exogenously sprayed methyl

175 jasmonic acid (MeJA), ABA or Benzothiadiazole (BTH, a chemical analog of SA) on
176 Arabidopsis leaf and examined whether water soaking occurs. Intriguingly, spray of
177 ABA, but not MeJA or BTH, leads to water soaking in Col-0 leaves (Figure 2C).
178 Furthermore, this ABA-induced water soaking was abolished in ABA receptor poly-
179 mutant *pyr/pyl112458* and signaling poly-mutant *snrk2.2/2.3/2.6* (Zhao et al., 2018;
180 Fujii and Zhu, 2009) (Figure 2D). These results suggest that ABA pathway is an
181 important regulator of apoplast water balance in Arabidopsis leaf.

182
183 We then measured ABA level in Col-0 and *clf* plants and found that, while high
184 humidity reduced ABA levels in both plants, the *clf* mutant accumulated a significantly
185 higher level of ABA than Col-0 plant before and after high humidity treatment (Figure
186 3A). To examine if the altered ABA pathway is responsible for water soaking phenotype,
187 we crossed the *clf* mutant to two ABA mutants, *aba2*, which lacks a key ABA
188 biosynthetic enzyme (González-Guzmán et al., 2002), and *ost1(snrk2.6)*, which lacks a
189 central kinase mediating downstream ABA responses and stomatal closure (Yoshida et
190 al., 2006). The water soaking phenotype was examined in the *clf/aba2* and *clf/ost1*
191 double mutants. We found that water soaking was abolished in the *clf/aba2* plant and
192 largely delayed in the *clf/ost1* plant (Figure 3B), suggesting that the up-regulated ABA
193 pathway mediates the water soaking phenotype in the *clf* plant.

194
195 **ABA-associated stomatal movement is essential for aqueous apoplast**
196 Stomatal closure is a key physiological output of ABA signaling transduction (Hsu et
197 al., 2021). As OST1/SnRK2.6 is a key regulator of stomatal closure, the severely-
198 compromised water soaking in the *clf/ost1* plant suggests that stomatal movement is
199 important for water soaking. We then measured the stomatal aperture in the *clf*, *aba2*,
200 *ost1*, *clf/aba2* and *clf/ost1* plant leaves before and after high humidity treatment. As
201 shown in Figure 3C, D, while high humidity led to stomatal opening in Col-0 plants,
202 we observed a striking stomatal closure response in the *clf* leaves 0.5 h after high
203 humidity. Importantly, this stomatal closure did not occur in the *clf/aba2* or *clf/ost1*
204 plants (Figure 3C, D). We further checked the water soaking level in the Arabidopsis

205 *slac1* and *slah3* mutants, which are mutated in two key anion channels in the guard cell
206 and defective in stomatal closure (Zhang et al., 2016), and found that ABA-induced
207 water soaking is much weaker in these two mutants compared to that in Col-0 (Figure
208 3E). Taken together, these results support a crucial role of stomatal movement in
209 regulating apoplastic water status.

210

211 **CLF directly targets ABA-associated NAC transcription factors for regulating
212 apoplast water**

213 We next searched for direct targets of CLF that are involved in water regulation. *CLF*
214 encodes a H3K27 methyltransferase and deposits H3K27me3 on chromatin (Goodrich
215 et al., 1997), we thus profiled H3K27me3 loci by chromatin immunoprecipitation
216 coupled with sequencing (ChIP-seq), in wild type and *clf* plants before and after high
217 humidity treatment. Since H3K27me3 is a transcriptional repression marker, genes
218 directly targeted by CLF are expected to show a higher expression level in the *clf* plant.
219 Hierarchical clustering analysis of differentially expressed genes in the *clf* plant under
220 our experimental conditions was performed and revealed five gene clusters (Figure 4A;
221 Supplemental Table S1). Among them, cluster IV represents highly upregulated genes
222 in the *clf* plant (more likely to be direct targets of CLF) at 0.5 h under high humidity,
223 when water soaking was observed, and, importantly, shows the highest percentage of
224 H3K27me3-regulated genes from our ChIP-seq experiment (Figure 4A, right panel).
225 Furthermore, GO analysis of the five clusters showed that genes related to “response to
226 water deprivation” are enriched in cluster IV (Supplemental Figure S3A), supporting
227 that CLF directly targets ABA-associated components to regulate apoplast water.

228

229 Our ChIP-seq results showed that 1527 and 1728 genes, at 0 and 0.5 h after high
230 humidity treatment respectively, showed a differential H3K27me3 level in the *clf* plant,
231 with over 80% of them having a lower H3K27me3 level in *clf* compared to Col-0,
232 indicating that these are candidates of CLF’s direct target genes (Supplemental Figure
233 S3B; Supplemental Table S2). Interestingly, only 769 genes are shared between 0 and
234 0.5 h datasets, suggesting that different humidity alters the CLF-associated H3K27me3

235 profile (Supplemental Figure S3B; Supplemental Table S2). Importantly, we found that
236 ABA signaling and homeostasis-related genes, including *PYL6*, *NPF4.1* and *BG2*, as
237 well as two ABA-inducible NAC transcription factors, *NAC019* and *NAC055*, showed
238 a lower H3K27me3 level, accompanied by a higher gene expression level, in the *clf*
239 plant (Figure 4B; Supplemental Figure S4). The NAC019/055 transcription factors are
240 particularly interesting, because they play an important role in positively regulating
241 ABA responses (Takasaki et al., 2015; Jensen et al., 2010; Tran et al., 2004) and were
242 also identified as CLF targets by previous studies (Liu et al., 2019). ChIP-qPCR and
243 RT-qPCR were performed to confirm the H3K27me3 and transcript levels of *NAC019*
244 and *NAC055* genes in our experimental conditions (Figure 4C, D). To examine if NACs
245 are important for regulating water soaking, we crossed the *clf* plant to the
246 *nac019/nac055/nac072* (hereafter *nac*) mutant, in which three functionally-redundant
247 NACs were knocked out (Takasaki et al., 2015). As shown in Figure 4E, water soaking
248 in the *clf/nac* plant was dramatically delayed compared to the *clf* plant. Furthermore,
249 the rapid stomatal closure phenotype in the *clf* plant was also abolished in the *clf/nac*
250 polymutant (Figure 4F, G). In addition, ABA-induced water soaking was significantly
251 reduced in the *nac* mutant plant (Supplemental Figure S5). These findings suggest that
252 CLF regulates apoplastic water in *Arabidopsis* leaf, in part, by directly regulating the
253 histone methylation level of NAC transcription factors.

254

255 **Plant immunity plays a role in regulating apoplast water**

256 Epigenetic regulation usually exerts a broad role and affects thousands of genes'
257 transcription. Considering the particularly strong water soaking phenotype in the *clf*
258 plant, we wondered if there are other mis-regulated pathways, in addition to ABA
259 pathway, in the *clf* plant that also contribute to the phenotype. Notably, a large
260 population of SA-responsive genes are differentially regulated in the *clf* plant,
261 compared to Col-0, in our RNAseq experiment (Figure 2B), suggesting that plant
262 immune status is altered in the *clf* plant. To confirm, we tested SA and pattern-triggered
263 immunity (PTI) responses, two primary plant defense pathways (Peng et al., 2021;
264 DeFalco and Zipfel, 2021), in the *clf* mutant. Interestingly, the transcript level of *ICS1*,

265 encoding a rate-limiting enzyme in SA biosynthesis- isochorismate synthase 1, and SA
266 accumulation were significantly reduced in the *clf* plant (Figure 5A, B). In addition,
267 application of flg22, a bacterial flagellin-derived 22-amino acid peptide eliciting PTI
268 (Gómez-Gómez and Boller, 2000; Felix et al., 1999), triggered a much lower ROS
269 production and MAPK phosphorylation in the *clf* plant, compared to Col-0 (Figure 5C,
270 D). These results indicate a weakened immunity in the *clf* plant, suggesting that plant
271 immunity, particularly SA and PTI responses, may negatively affect apoplastic water
272 accumulation. To further test this hypothesis, we examined ABA-induced water soaking
273 in the *ics1* mutant, which is deficient in SA biosynthesis (Wildermuth et al., 2001), and
274 the *bak1-5/bkk1-1/cerk1* (*bbc*) triple mutant, which lacks pattern recognition co-
275 receptors and is greatly impaired in PTI responses (Xin et al., 2016). As shown in Figure
276 5E, stronger water soaking was observed in these two mutants compared with Col-0,
277 suggesting that, in addition to ABA pathway, plant immunity exerts another layer of
278 regulation on apoplast water level. Whether this is through antagonistic crosstalk
279 between ABA and SA/PTI pathways (Moeder et al., 2010; Mine et al., 2017) needs
280 further investigation.

281

282 **The *clf* mutant exhibits an increased level of *P. syringae*-mediated water soaking
283 and disease susceptibility in an ABA- and NAC-dependent manner**

284 Interestingly, recent studies showed that *P. syringae* bacterial pathogen activates the
285 plant ABA pathway and stomatal closure at a later stage of infection, through type III
286 effectors AvrE and HopM1, to promote water soaking and cause disease (Hu et al., 2022;
287 Roussin-Léveillée et al., 2022). We therefore examined whether the enhanced bacterial
288 susceptibility observed in the *clf* mutant (Fig. 1C) also relies on ABA pathway and
289 stomatal closure. First, we found that *Pst* DC3000 triggered an even stronger stomatal
290 closure and water soaking in the *clf* mutant, compared to Col-0 (Figure 6A-C). Because
291 the *clf* mutant supports a faster bacterial growth, the concentration of inoculum was
292 adjusted so that there were similar bacterial populations in different genotypes when
293 water soaking was observed (24 h post infiltration) (Figure 6C). Importantly, *Pst*
294 DC3000-mediated stomatal closure and water soaking phenotypes were largely

295 abolished in the *clf/aba2* and *clf/ost1* plants, compared to the *clf* mutant (Figure 6A-C).
296 Consistently, while *Pst* DC3000 multiplied to a much higher population in the *clf* plant,
297 this did not occur in the *clf/aba2* or *clf/ost1* plant (Figure 6D).

298

299 Next, we tested if the increased level of bacteria-driven water soaking and stomatal
300 closure in the *clf* mutant also relies on *NAC019/055/072* transcription factors. The
301 bacterial infection phenotypes were examined in the *clf/nac* polymutant and, again, we
302 found that the *NAC019/055/072* mutation largely mitigated the stomatal closure and
303 water soaking phenotypes in the *clf* mutant (Figure 6E-G), and, to a lesser degree, the
304 enhanced bacterial growth phenotype (Figure 6H). Taken together, these results suggest
305 that the enhanced water soaking and disease susceptibility during *P. syringae* infection
306 in the *clf* mutant occur through ABA pathway and NAC transcription factors.

307

308 **Discussion**

309 Regulation of water status is crucial for various biological processes. Despite the great
310 progress in understanding plant adaptation mechanisms to water deficit conditions in
311 the soil (Kim et al., 2020; Siao et al., 2020; Dinneny, 2019; Ramachandran et al., 2020),
312 how water relations in the leaf tissue is maintained remained elusive. In this study, we
313 genetically isolated the *sws1* mutant that displays abnormal leaf water control and over-
314 accumulated water in the apoplast under high humidity. We show that *SWS1* encodes
315 CURLY LEAF, a key component of the plant PRC2 complex that deposits the
316 H3K27me3 marker on chromatin. We found that CLF normally inhibits ABA pathway
317 by epigenetically silencing ABA-related genes including *NAC019/055/072*
318 transcription factors to keep a dry apoplast, whereas the increased ABA signaling and
319 stomatal closure in the *clf* mutant leads to strong water soaking. Our results also suggest
320 a negative role of plant immunity pathways, particularly SA and PTI pathways, in water
321 accumulation in the leaf apoplast (Fig. 7). Collectively, our study elucidates a new
322 physiological function of CLF, as a key epigenetic regulator, in controlling leaf water
323 balance, likely through a combinatorial regulation of ABA pathway, stomata and plant
324 immunity, shedding light on the elusive basis of water control in the leaf apoplast.

325

326 Previous studies showed that the CLF-containing PRC2 complex epigenetically
327 regulates many ABA-associated genes and influences ABA responses and senescence
328 in *Arabidopsis* (Liu et al., 2019), which is in agreement with our results. Moreover, our
329 study revealed a striking “humidity-dependent” stomatal aperture dynamics in the *clf*
330 plant, in that a shift to high air humidity quickly (i.e., 0.5 h) triggers a strong stomatal
331 closure in the *clf* plant leaf, presumably leading to water soaking (Figure 3C, D). This
332 phenomenon was not observed in the *clf/aba2* or *clf/ost1* mutants (Figure 3C, D),
333 suggesting that it is an ABA-mediated process. It is possible that CLF exerts a specific,
334 and distinct from mesophyll cells, function in guard cells (e.g., directly regulating the
335 epigenetic and transcriptional status of ion channels for stomatal movement). Detailed
336 mechanisms would need future and cell type-specific investigations. Nonetheless, the
337 striking stomatal closure phenotype in *clf* plant and the fact that it requires key ABA
338 and stomata components supports our main conclusion that CLF modulates leaf water
339 balance through ABA pathway and stomatal movement.

340

341 PRC2-mediated H3K27me3 modification is broadly involved in transcriptional gene
342 silencing across plant genome. Interestingly, our study indicates that plant basal
343 immunity may represent another layer of modulation in apoplast water and functions in
344 CLF-regulated leaf water level. This is consistent with the results that water soaking in
345 the *clf* mutant is stronger than that induced by ABA spray treatment (Figure 2C),
346 suggestive of additional pathways, besides ABA, involved in water soaking. We found
347 that *CLF* mutation compromises the accumulation of defense hormone SA and flg22-
348 induced ROS and MAPK phosphorylation (Figure 5A-D), suggesting that CLF directly
349 or indirectly suppresses plant SA and PTI responses. This is in line with a recent study
350 demonstrating an important role of CLF in regulating leaf immunity against fungal
351 pathogens (Singkaravanit-Ogawa et al., 2021) and SA as a negative regulator of
352 pathogen-induced aqueous apoplast (Lajeunesse et al., 2022). It will be interesting to
353 study in the future whether CLF directly regulates certain SA or PTI pathway
354 components through histone methylation, although one cannot rule out the possibility

355 that the lower immunity level in the *clf* plant is due to antagonism between SA/PTI and
356 ABA pathways suggested by previous studies (Cao et al., 2011; Mine et al., 2017).
357 Future investigation of CLF function and other components involved in regulating
358 water relations in the leaf should provide more insights into this fundamental aspect of
359 plant biology.

360

361 **Materials and Methods**

362 **Plant materials and growth condition**

363 The *mfec*, *clf-28*, *clf-29*, *nac019/055/072*, *aba2*, *ost1*, *pyr/pyl12458* and *ics1*(also
364 named *sid2*) mutant lines were reported previously (Xin et al., 2016; Zhao et al., 2018;
365 González-Guzmán et al., 2002; Yoshida et al., 2006; Wildermuth et al., 2001). All plants
366 were grown in potting soil in environmentally-controlled growth chamber, with relative
367 humidity set at 60% and temperature at 22°C and a 12 h light/12 h dark photoperiod.
368 To grow plants on MS plates, seeds were surface sterilized and sown on half-strength
369 MS agar plates containing 0.7% (w/v) agarose. For high humidity treatment, four-to-
370 five weeks old plants were kept at 90-95% relative humidity in an environmentally-
371 controlled growth chamber (MMM group, Germany) for indicated time.

372 **EMS mutagenesis and isolation of *sws* mutants**

373 The *mfec* seeds were treated with 0.2% ethyl methanesulfonate (EMS) solution for 16
374 hours. The M1 plants were pooled (six M1 plants were pooled as one family and a total
375 of ~840 families were obtained) and the M2 population were used for screen. M2 seeds
376 were sown in potting soil and plants were grown to three weeks and then covered with
377 a plastic dome to keep high humidity overnight. Plants that displayed severe water
378 soaking the next day were isolated as *sws* mutants.

379 **BSA analysis and identification of the mutated loci in *sws* mutants**

380 Bulked segregant analysis (BSA) were performed using modified QTL-seq method
381 (Takagi et al., 2013). The read depth information for the homozygous SNPs/InDels in
382 the pools was obtained to calculate the SNP/InDel index. Col-0 and *mfec* genomes were
383 sequenced as reference and for analyzing the read number for the Mut-pool and Wild-
384 pool. Sliding window methods were used to determine the SNP/InDel index. The

385 average of all SNP/InDel indices in each window was used as the SNP/InDel index for
386 that window. A window size range between 2 Mb to 10 kb was used as the default
387 settings. The difference between the SNP/InDel index of two pools was calculated as
388 Δ SNP/InDel index. Data analysis was performed on the Majorbio Cloud Platform
389 (www.majorbio.com).

390 **RNA extraction and real-time RT-qPCR**

391 To analyze gene expression level, four-week-old *Arabidopsis* plant leave were treated
392 with high air humidity at indicated time points. Three leaves from different plants were
393 collected as one biological replicated and four biological replicates were collected for
394 each treatment. Total mRNA was extracted using TRIzol reagent (Invitrogen, Carlsbad,
395 CA, USA), following the manufacturer's protocol. Extracted RNA was treated with
396 DNase I (Roche), and two μ g of RNA was used to synthesize cDNA by ReverTra Ace®
397 qPCR RT Master Mix with gDNA remover (TOYOBO). Real-time qPCR was carried
398 out with the SYBR Green Realtime PCR master mix (TOYOBO) on a CFX Connect
399 Real Time System (Bio-Rad, Berkeley, CA, USA). The plant *ACTIN2* and *U-box* genes
400 were used as internal standard. Primers used in qPCR are listed in Supplemental Table
401 S3.

402 **cDNA library generation and RNAseq**

403 For RNAseq experiments, samples were collected as described above. Three leaves
404 from different plants were harvested as one replicate, and four biological replicates
405 were collected for each treatment/time point. Total mRNA was extracted using Trizol
406 reagent (Invitrogen). Total RNA was then treated with DNase I (Invitrogen) to remove
407 DNA and purified RNA was recovered with RNeasy® MinElute™ Cleanup kit
408 (QIAGEN) according to the manufacturer's instructions. Library construction and RNA
409 sequencing were performed in Majorbio company (Shanghai, China). Briefly, RNAseq
410 transcriptome library was prepared following TruSeq™ RNA sample preparation Kit
411 from Illumina (San Diego, CA) using 1 μ g of total RNA. Messenger RNA was isolated
412 using oligo (dT) beads and then fragmented by fragmentation. Then, double-stranded
413 cDNA was synthesized using a SuperScript double-stranded cDNA synthesis kit
414 (Invitrogen, CA) with random hexamer primers (Illumina). The synthesized cDNA was

415 then subjected to end-repair, phosphorylation and ‘A’ base addition. After size selection,
416 paired-end RNAseq sequencing library was sequenced with the Illumina HiSeq x
417 Ten/NovaSeq 6000 sequencer.

418 **Stomatal aperture measurement**

419 Four-week-old plants were used for stomatal measurement. Stomatal images before or
420 after high humidity treatment were collected on confocal microscope (SP8 STED, Leica)
421 with 405 nm excitation and 435-485nm emission (to observe auto-fluorescence from
422 the inner cell wall of the guard cell). The width and length of stomata were measured
423 by ImageJ and the ratio of width/length was calculated. At least 50 stomatal images
424 were analyzed for each treatment.

425 **Chromatin immunoprecipitation-seq (ChIPseq) and ChIP-qPCR**

426 ChIP experiment were carried out as described previously (Liu et al., 2019). Briefly, a
427 total of 5 g plant materials (4-weeks-old leaves of *clf-28* and Col-0 plants) grown in soil
428 were collected and vacuum infiltrated with 1% formaldehyde solution. The leaves were
429 then washed several times with deionized water and snap frozen in liquid nitrogen.
430 Tissues were ground into fine powder. Chromatin was isolated and fragmented into
431 approximately 500-1000 bp size with sonicator. The immunoprecipitation was
432 performed with the antibody against H3 tri-methyl-Lys 27 (Upstate, USA; Cat. # 07-
433 449). At least 2 ng of ChIP-DNA were used for Illumina library preparation according
434 to the manufacturer’s instructions (Illumina). Library construction and sequencing (150
435 bp of paired-end sequences) were performed by Novogene Co. Ltd (Shanghai, China),
436 using Illumina HiSeq 2500. Primers for ChIP-qPCR analysis are listed in Supplemental
437 Table S3.

438 **ChIPseq and RNAseq analysis**

439 Trimmomatic (version 0.36) was used to trim adaptor (Bolger et al., 2014). Next, the
440 program Sickle (version 1.33) was used to remove bases with low quality scores (<20)
441 and reads shorter than 20bp were eliminated. The cleaned reads were mapped to the
442 *Arabidopsis* genome (TAIR10) using the Burrows–Wheeler Aligner (version 0.7.5a-
443 r405) (Li and Durbin, 2010) for the ChIP-sequencing data and HISAT2 (version 2.1.0)
444 (Kim et al., 2015) for mapping the RNA sequencing data, both with default settings.

445 Uniquely mapped reads with MAPQ>20 was collected for further analysis. The MACS
446 (version 1.3.7) program (Zhang et al., 2008) as used to identify the read-enriched
447 regions (peaks) of the ChIPseq data based on the following criteria: $P < 1e - 5$ and fold-
448 change > 32 . To quantify gene expression levels, the featureCount program of the
449 Subread package (version 1.6.5) (Liao et al., 2013) with parameters “-s 2 -p -t exon”
450 was used to determine the RNAseq read density. To compare expression levels across
451 samples and genes, the RNAseq read density of each gene was normalized based on the
452 exon length in the gene and the sequencing depth. To quantify histone markers across
453 genes for the figure prepared with Integrative Genomics Viewer (Robinson et al., 2011),
454 the number of reads at each position was normalized against the total number of reads
455 (reads per million mapped reads). The DEseq program (Robinson et al., 2010) was used
456 for detecting differentially expressed genes based on the following criteria: $|\log_2 \text{fold-} \text{change}| > 1$ and $P < 0.05$. The MAnorm package (Shao et al., 2012) was used for the
457 quantitative comparison of ChIPseq signals between samples with the following criteria:
458 $|M \text{ value}| > 0.5$ and $P < 0.05$.

460 **Plant SA and ABA measurement**

461 Four-weeks-old plant leaves were used for ABA and SA measurement as described
462 previously (Huot et al., 2017). For each biological replicate, about 0.15 g leaf tissue
463 was collected and ground into fine power in liquid nitrogen. ABA and SA were
464 extracted using extraction buffer (20% HPLC water and 1% formic acid in methanol)
465 at 4 °C for 4-6 h, and the extracts were then air-dried in a speed vacuum and
466 resuspended in extraction buffer. ABA and SA concentration were determined by AB
467 SCIEX 4000Q TARP LC/MX/MX system (SCIEX QTRAP 6500+) at the mass
468 spectrometry facility at Chinese Academy of Sciences, Center for Excellence in
469 Molecular Plant Sciences, Shanghai.

470 **MAPK kinase activity assay**

471 Four-week-old plant leaves were infiltrated with flg22 (100 nM), and leaves were
472 harvested at indicated time points. Total proteins were extracted in protein extraction
473 buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 5mM EDTA pH 7.5, 1mM DTT, 1%
474 Triton X-100, 1mM Phenylmethylsulfonyl fluoride) supplemented with 1 x plant

475 protease inhibitor cocktail (Complete EDTA-free, Roche) and 1 x phosphatase inhibitor
476 cocktail (PhosSTOP, Roche). Bradford protein assay kit (Bio-rad) was used to
477 determine protein concentration. An equal amount of protein was loaded onto 10%
478 SDS-PAGE gel for western blot. Phosphorylated MPK3 and MPK6 were detected by
479 anti-Phospho-p44/42 antibody (Cell Signaling Technology).

480 **ROS detection Assay**

481 ROS measurement with luminol/HRP-based approach was performed as previously
482 described (Yuan et al., 2021). Briefly, leaf discs of four-week-old Col-0 and *clf* plants
483 were harvested and floated on 200 µL sterile water in a 96-well plate, and kept at room
484 temperature under continuous light. The next morning (about 10 h later), water was
485 replaced by a solution containing 30mg/L (w/v) luminol (Sigma-Aldrich), 20mg/L (w/v)
486 peroxidase from horseradish (Sigma-Aldrich) and 100nM flg22. The luminescence was
487 detected for 40 min with 1 min interval using Varioskan Flash plate reader (Thermo
488 Fisher Scientific).

489 **Bacterial growth assay**

490 *Pseudomonas syringae* pv. *tomato* DC3000 and mutant strains were cultured overnight
491 at 30°C in Luria–Marine (LM) medium supplemented with 50 µg/mL rifampicin. The
492 bacteria were collected by centrifugation, washed twice with water, and re-suspended
493 in sterile water. Cell density was adjusted to OD₆₀₀ = 0.002 (approximately 1 x 10⁶ cfu
494 ml⁻¹). Bacteria were infiltrated into leaves with a needless-syringe, and inoculated
495 plants were kept under ambient humidity for 1-2 h to allow evaporation of excess water
496 from the leaf. Plants were then placed back to the growth room (covered with a clear
497 plastic dome) for disease to develop. For quantification of bacteria, 5 leaf discs from
498 two different leaves (after surface sterilization) were taken using a cork borer (8 mm in
499 diameter) as one biological repeat, and 3-4 repeats were taken for each treatment. Leaf
500 discs were ground in sterile water, and bacteria solutions were diluted and plated on
501 LM agar plates supplemented with rifampicin (at 50 mg/L). Colonies were counted with
502 a stereoscope 24 h after incubation at 30°C.

503 **Data availability**

504 Raw sequencing data from RNAseq and ChIPseq experiments were uploaded onto the

505 Gene Expression Omnibus (GEO) database on NCBI, with the accession number
506 GSE183559.

507

508 **Acknowledgements**

509 The *CLF* T-DNA insertion line (SALK_139371) was kindly provided by Prof. Yue
510 Zhou's lab at Peking University. The *nac019/055/072* mutant seeds were kindly
511 provided by Prof. Kenichi Tsuda's lab at Huazhong Agricultural University. We thank
512 the Confocal Microscopy and Imaging Facility and Metabolomics/Mass Spectrometry
513 Facility at CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant
514 Physiology and Ecology, Shanghai, for technical support in stomatal measurement and
515 phytohormone quantification. We thank Dr. Sheng Yang He's lab at Michigan State
516 University, USA, for the help with generation of the EMS screen population. This work
517 was supported by the Chinese Academy of Sciences, Center for Excellence in
518 Molecular Plant Sciences/Institute of Plant Physiology and Ecology, National Key
519 Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Strategic
520 Priority Research Program (Type-B; project number: XDB27040211).

521

522 **Author Contributions**

523 J.W. and X-F.X. conceptualized the project and designed experiments. J.W. performed
524 most experiments including genetic screen, water soaking assays, RNAseq, qRT-PCR,
525 ChIP-qPCR, hormone measurement, stomatal measurement and bacterial inoculation
526 assays. X.M. performed qRT-PCR, stomatal measurement and bacterial infection assays.
527 J.Z. performed ChIPseq analysis. L.Y. performed ChIPseq experiment. T.C. helped with
528 the generation of EMS population. Y.W. confirmed SNP alleles of CLF in other *sws1*
529 lines. Y.Z. supervised ChIPseq experiment and data analysis. J.W. and X-F.X. wrote the
530 paper with input from all authors.

531

532 **References**

533 **Blazewicz, S.J., Schwartz, E., and Firestone, M.K.** (2014). Growth and death of bacteria and
534 fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. *Ecology*
535 **95**: 1162–1172.

536 **Bolger, A.M., Lohse, M., and Usadel, B.** (2014). Trimmomatic: a flexible trimmer for
537 Illumina sequence data. *Bioinformatics* **30**: 2114–2120.

538 **Bouveret, R., Schönrock, N., Gruisse, W., and Hennig, L.** (2006). Regulation of flowering
539 time by *Arabidopsis* MSI1. *Development* **133**: 1693–1702.

540 **Bratzel, F., López-Torrejón, G., Koch, M., Del Pozo, J.C., and Calonje, M.** (2010). Keeping
541 cell identity in *Arabidopsis* requires PRC1 RING-finger homologs that catalyze H2A
542 monoubiquitination. *Curr. Biol.* **20**: 1853–1859.

543 **Chen, K., Li, G.-J., Bressan, R.A., Song, C.-P., Zhu, J.-K., and Zhao, Y.** (2020). Abscisic
544 acid dynamics, signaling, and functions in plants. *J. Integr. Plant Biol.* **62**: 25–54.

545 **Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., and Abrams, S.R.** (2010). Abscisic acid:
546 emergence of a core signaling network. *Annu. Rev. Plant Biol.* **61**: 651–679.

547 **DeFalco, T.A. and Zipfel, C.** (2021). Molecular mechanisms of early plant pattern-triggered
548 immune signaling. *Mol. Cell* **81**: 3449–3467.

549 **Dinneny, J.R.** (2019). Developmental Responses to Water and Salinity in Root Systems. *Annu.*
550 *Rev. Cell Dev. Biol.* **35**: 239–257.

551 **Fàbregas, N., Yoshida, T., and Fernie, A.R.** (2020). Role of Raf-like kinases in SnRK2
552 activation and osmotic stress response in plants. *Nat. Commun.* **11**: 6184.

553 **Felix, G., Duran, J.D., Volko, S., and Boller, T.** (1999). Plants have a sensitive perception
554 system for the most conserved domain of bacterial flagellin. *Plant J.* **18**: 265–276.

555 **Fujii, H. and Zhu, J.-K.** (2009). *Arabidopsis* mutant deficient in 3 abscisic acid-activated
556 protein kinases reveals critical roles in growth, reproduction, and stress. *Proc. Natl. Acad.*
557 *Sci. U. S. A.* **106**: 8380–8385.

558 **Gómez-Gómez, L. and Boller, T.** (2000). FLS2: an LRR receptor-like kinase involved in the
559 perception of the bacterial elicitor flagellin in *Arabidopsis*. *Mol. Cell* **5**: 1003–1011.

560 **González-Guzmán, M., Apostolova, N., Bellés, J.M., Barrero, J.M., Piqueras, P., Ponce,**
561 **M.R., Micol, J.L., Serrano, R., and Rodríguez, P.L.** (2002). The short-chain alcohol

562 dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. *Plant*
563 *Cell* **14**: 1833–1846.

564 **Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M., and Coupland,**
565 **G.** (1997). A Polycomb-group gene regulates homeotic gene expression in *Arabidopsis*.
566 *Nature* **386**: 44–51.

567 **Guzel Deger, A., Scherzer, S., Nuhkat, M., Kedzierska, J., Kollist, H., Brosché, M.,**
568 **Unyayar, S., Boudsocq, M., Hedrich, R., and Roelfsema, M.R.G.** (2015). Guard cell
569 SLAC1-type anion channels mediate flagellin-induced stomatal closure. *New Phytol.* **208**:
570 162–173.

571 **Hedrich, R. and Geiger, D.** (2017). Biology of SLAC1-type anion channels - from nutrient
572 uptake to stomatal closure. *New Phytol.* **216**: 46–61.

573 **Hewage, K.A.H., Yang, J.-F., Wang, D., Hao, G.-F., Yang, G.-F., and Zhu, J.-K.** (2020).
574 Chemical Manipulation of Abscisic Acid Signaling: A New Approach to Abiotic and
575 Biotic Stress Management in Agriculture. *Adv. Sci.* (Weinheim, Baden-Wurttemberg,
576 Ger. **7**: 2001265.

577 **Hsu, P.-K., Dubeaux, G., Takahashi, Y., and Schroeder, J.I.** (2021). Signaling mechanisms
578 in abscisic acid-mediated stomatal closure. *Plant J.* **105**: 307–321.

579 **Hu, Y., Ding, Y., Cai, B., Qin, X., Wu, J., Yuan, M., Wan, S., Zhao, Y., and Xin, X.-F.**
580 (2022). Bacterial effectors manipulate plant abscisic acid signaling for creation of an
581 aqueous apoplast. *Cell Host Microbe* **30**: 518-529.e6.

582 **Huot, B., Castroverde, C.D.M., Velásquez, A.C., Hubbard, E., Pulman, J.A., Yao, J.,**
583 **Childs, K.L., Tsuda, K., Montgomery, B.L., and He, S.Y.** (2017). Dual impact of
584 elevated temperature on plant defence and bacterial virulence in *Arabidopsis*. *Nat.*
585 *Commun.* **8**: 1808.

586 **Jensen, M. K., Kjaersgaard, T., Nielsen, M. M., Galberg, P., Petersen, K., O'Shea, C.,**
587 **Skriver, K.** (2010) The *Arabidopsis thaliana* NAC transcription factor family: structure-
588 function relationships and determinants of ANAC019 stress signaling. *Biochem J.* **426**:
589 183-96.

590 **Jonas, J.L., Buhl, D.A., and Symstad, A.J.** (2015). Impacts of weather on long-term patterns
591 of plant richness and diversity vary with location and management. *Ecology* **96**: 2417–

592 2432.

593 **Kim, D., Langmead, B., and Salzberg, S.L.** (2015). HISAT: a fast spliced aligner with low
594 memory requirements. *Nat. Methods* **12**: 357–360.

595 **Kim, Y., Chung, Y.S., Lee, E., Tripathi, P., Heo, S., and Kim, K.-H.** (2020). Root response
596 to drought stress in rice (*Oryza sativa* L.). *Int. J. Mol. Sci.* **21**.

597 **Köhler, C. and Villar, C.B.R.** (2008). Programming of gene expression by Polycomb group
598 proteins. *Trends Cell Biol.* **18**: 236–243.

599 **Kuromori, T., Seo, M., and Shinozaki, K.** (2018). ABA Transport and plant water stress
600 responses. *Trends Plant Sci.* **23**: 513–522.

601 **Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E.,
602 Bodde, S., Jones, J.D., and Schroeder, J.I.** (2003). NADPH oxidase AtrbohD and
603 AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. *EMBO J.* **22**:
604 2623–2633.

605 **Kwon, C.S., Lee, D., Choi, G., and Chung, W.-I.** (2009). Histone occupancy-dependent and
606 -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis.
607 *Plant J.* **60**: 112–121.

608 **Lajeunesse, G., Roussin-Léveillée, C., Boutin, S., Fortin, E., Laforest-Lapointe, I., Moffett,
609 P.** (2022) Light prevents pathogen-induced aqueous microenvironments via potentiation
610 of salicylic acid signaling. *bioRxiv*. <https://doi.org/10.1101/2022.08.10.503390>.

611 **Lau, J.A. and Lennon, J.T.** (2012). Rapid responses of soil microorganisms improve plant
612 fitness in novel environments. *Proc. Natl. Acad. Sci. U. S. A.* **109**: 14058–14062.

613 **Li, H. and Durbin, R.** (2010). Fast and accurate long-read alignment with Burrows-Wheeler
614 transform. *Bioinformatics* **26**: 589–595.

615 **Liao, Y., Smyth, G.K., and Shi, W.** (2013). The Subread aligner: fast, accurate and scalable
616 read mapping by seed-and-vote. *Nucleic Acids Res.* **41**: e108.

617 **Liu, C., Cheng, J., Zhuang, Y., Ye, L., Li, Z., Wang, Y., Qi, M., Xu, L., and Zhang, Y.**
618 (2019). Polycomb repressive complex 2 attenuates ABA-induced senescence in
619 Arabidopsis. *Plant J.* **97**: 368–377.

620 **Liu, N., Fromm, M., and Avramova, Z.** (2014). H3K27me3 and H3K4me3 chromatin
621 environment at super-induced dehydration stress memory genes of *Arabidopsis thaliana*.

622 Mol. Plant **7**: 502–513.

623 **Loreti, E., van Veen, H., and Perata, P.** (2016). Plant responses to flooding stress. Curr. Opin.
624 Plant Biol. **33**: 64–71.

625 **Mine, A., Berens, M.L., Nobori, T., Anver, S., Fukumoto, K., Winkelmuller, T.M., Takeda,
626 A., Becker, D., and Tsuda, K.** (2017). Pathogen exploitation of an abscisic acid- and
627 jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity.
628 Proc. Natl. Acad. Sci. U. S. A. **114**: 7456–7461.

629 **Moeder, W., Ung, H., Mosher, S., and Yoshioka, K.** (2010). SA-ABA antagonism in defense
630 responses. Plant Signal. Behav. **5**: 1231–1233.

631 **Peng, Y., Yang, J., Li, X., and Zhang, Y.** (2021). Salicylic Acid: Biosynthesis and Signaling.
632 Annu. Rev. Plant Biol. **72**: 761–791.

633 **Pu, L. and Sung, Z.R.** (2015). PcG and trxG in plants - friends or foes. Trends Genet. **31**: 252–
634 262.

635 **Ramachandran, P., Augstein, F., Nguyen, V., and Carlsbecker, A.** (2020). Coping With
636 Water Limitation: Hormones That Modify Plant Root Xylem Development. Front. Plant
637 Sci. **11**: 570.

638 **Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G.,
639 and Mesirov, J.P.** (2011). Integrative genomics viewer. Nat. Biotechnol. **29**: 24–26.

640 **Robinson, M.D., McCarthy, D.J., and Smyth, G.K.** (2010). edgeR: a Bioconductor package
641 for differential expression analysis of digital gene expression data. Bioinformatics **26**:
642 139–140.

643 **Roussin-Léveillé, C., Lajeunesse, G., St-Amand, M., Veerapen, V.P., Silva-Martins, G.,
644 Nomura, K., Brassard, S., Bolaji, A., He, S.Y., and Moffett, P.** (2022). Evolutionarily
645 conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous
646 environment in the apoplast. Cell Host Microbe **30**: 489-501.e4.

647 **Schwartz, A.R., Morbitzer, R., Lahaye, T., and Staskawicz, B.J.** (2017a). TALE-induced
648 bHLH transcription factors that activate a pectate lyase contribute to water soaking in
649 bacterial spot of tomato. Proc. Natl. Acad. Sci. U. S. A. **114**: E897–E903.

650 **Schwartz, A.R., Morbitzer, R., Lahaye, T., and Staskawicz, B.J.** (2017b). TALE-induced
651 bHLH transcription factors that activate a pectate lyase contribute to water soaking in

652 bacterial spot of tomato. *Proc. Natl. Acad. Sci. U. S. A.* **114**: E897–E903.

653 **Shao, Z., Zhang, Y., Yuan, G.-C., Orkin, S.H., and Waxman, D.J.** (2012). MAnorm: a
654 robust model for quantitative comparison of ChIP-Seq data sets. *Genome Biol.* **13**: R16.

655 **Siao, W., Coskun, D., Baluška, F., Kronzucker, H.J., and Xu, W.** (2020). Root-Apex Proton
656 Fluxes at the Centre of Soil-Stress Acclimation. *Trends Plant Sci.* **25**: 794–804.

657 **Singkaravanit-Ogawa, S., Kosaka, A., Kitakura, S., Uchida, K., Nishiuchi, T., Ono, E.,**
658 **Fukunaga, S., and Takano, Y.** (2021). Arabidopsis CURLY LEAF functions in leaf
659 immunity against fungal pathogens by concomitantly repressing SEPALLATA3 and
660 activating ORA59. *Plant J.* **108**: 1005–1019.

661 **Takagi, H. et al.** (2013). QTL-seq: rapid mapping of quantitative trait loci in rice by whole
662 genome resequencing of DNA from two bulked populations. *Plant J.* **74**: 174–183.

663 **Takasaki, H., Maruyama, K., Takahashi, F., Fujita, M., Yoshida, T., Nakashima, K.,**
664 **Myouga, F., Toyooka, K., Yamaguchi-Shinozaki, K., and Shinozaki, K.** (2015).
665 SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf
666 senescence. *Plant J.* **84**: 1114–1123.

667 **Taketani, R.G., Lançoni, M.D., Kavamura, V.N., Durrer, A., Andreote, F.D., and Melo,**
668 **I.S.** (2017). Dry Season Constrains Bacterial Phylogenetic Diversity in a Semi-Arid
669 Rhizosphere System. *Microb. Ecol.* **73**: 153–161.

670 **Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita,**
671 **M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.** (2004) Isolation and functional
672 analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-
673 responsive cis-element in the early responsive to dehydration stress 1 promoter. *Plant Cell.*
674 **16**:2481-98.

675 **Turck, F., Roudier, F., Farrona, S., Martin-Magniette, M.-L., Guillaume, E., Buisine, N.,**
676 **Gagnot, S., Martienssen, R.A., Coupland, G., and Colot, V.** (2007). Arabidopsis
677 TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3
678 lysine 27. *PLoS Genet.* **3**: e86.

679 **Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M.** (2001). Isochorismate synthase
680 is required to synthesize salicylic acid for plant defence. *Nature* **414**: 562–565.

681 **Xiao, J. and Wagner, D.** (2015). Polycomb repression in the regulation of growth and

682 development in Arabidopsis. *Curr. Opin. Plant Biol.* **23**: 15–24.

683 **Xin, X.-F., Nomura, K., Aung, K., Velásquez, A.C., Yao, J., Boutrot, F., Chang, J.H.,**
684 **Zipfel, C., and He, S.Y.** (2016). Bacteria establish an aqueous living space in plants
685 crucial for virulence. *Nature* **539**: 524–529.

686 **Xu, L. and Shen, W.H.** (2008). Polycomb silencing of KNOX genes confines shoot stem cell
687 niches in Arabidopsis. *Curr Biol* **18**: 1966–1971.

688 **Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., and Shinozaki, K.**
689 (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and
690 integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in
691 Arabidopsis. *J. Biol. Chem.* **281**: 5310–5318.

692 **Zhang, A., Ren, H.-M., Tan, Y.-Q., Qi, G.-N., Yao, F.-Y., Wu, G.-L., Yang, L.-W., Hussain,**
693 **J., Sun, S.-J., and Wang, Y.-F.** (2016). S-type Anion Channels SLAC1 and SLAH3
694 Function as Essential Negative Regulators of Inward K⁺ Channels and Stomatal Opening
695 in Arabidopsis. *Plant Cell* **28**: 949–955.

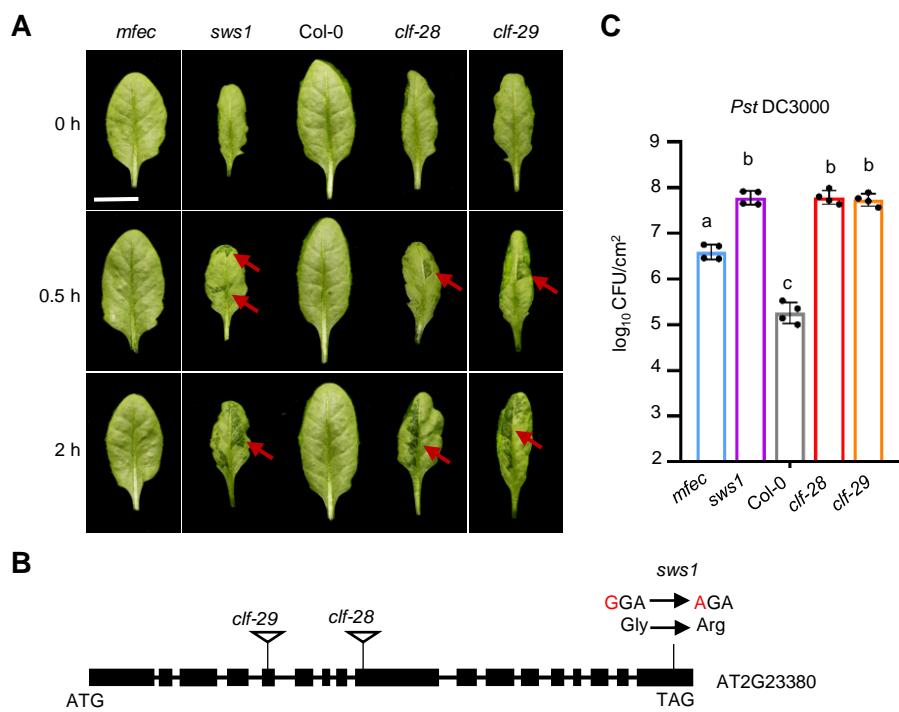
696 **Zhang, X., Germann, S., Blus, B.J., Khorasanizadeh, S., Gaudin, V., and Jacobsen, S.E.**
697 (2007). The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation.
698 *Nat. Struct. Mol. Biol.* **14**: 869–871.

699 **Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum,**
700 **C., Myers, R.M., Brown, M., Li, W., and Liu, X.S.** (2008). Model-based analysis of
701 ChIP-Seq (MACS). *Genome Biol.* **9**: R137.

702 **Zhao, Y. et al.** (2018). Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL
703 Repression of ABA-Independent SnRK2 Activity. *Cell Rep.* **23**: 3340-3351 e5.

704 **Zhao, Y., Gao, J., Im Kim, J., Chen, K., Bressan, R.A., and Zhu, J.-K.** (2017). Control of
705 Plant Water Use by ABA Induction of Senescence and Dormancy: An Overlooked Lesson
706 from Evolution. *Plant Cell Physiol.* **58**: 1319–1327.

707 **Zheng, X.-Y., Spivey, N.W., Zeng, W., Liu, P.-P., Fu, Z.Q., Klessig, D.F., He, S.Y., and**
708 **Dong, X.** (2012). Coronatine promotes *Pseudomonas syringae* virulence in plants by
709 activating a signaling cascade that inhibits salicylic acid accumulation. *Cell Host Microbe*
710 **11**: 587–596.


711 **Zhou, Y., Tergmina, E., Cui, H., Förderer, A., Hartwig, B., Velikkakam James, G.,**

712 **Schneeberger, K., and Turck, F.** (2017). Ctf4-related protein recruits LHP1-PRC2 to
713 maintain H3K27me3 levels in dividing cells in *Arabidopsis thaliana*. *Proc. Natl. Acad.*
714 *Sci. U. S. A.* **114**: 4833–4838.

715 **Zhu, J.-K.** (2016). Abiotic Stress Signaling and Responses in Plants. *Cell* **167**: 313–324.

716

717

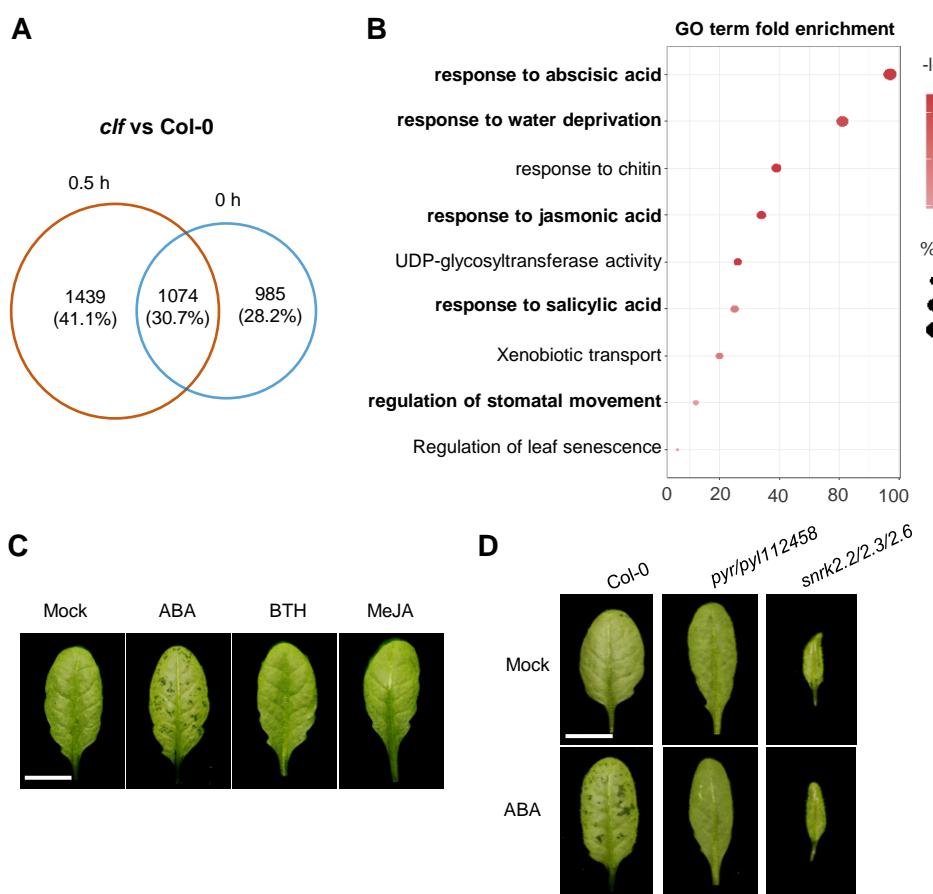


Figure 1. The severe water soaking1 (*sws1*) mutant exhibits strong water soaking under high humidity and increased susceptibility to *P. syringae* infection.

(A) High humidity (~90-95% relative humidity) induced water soaking in *mfec*, *sws1*, Col-0, *clf-28*, and *clf-29* plant leaves. Scale bar = 1 cm. Red arrows indicate water soaking regions.

(B) A schematic diagram indicating the mutated site in *sws1* mutant and the T-DNA insertion position in *clf-28* and *clf-29* lines.

(C) Bacterial growth in *mfec*, *sws1*, Col-0, *clf-28* and *clf-29* leaves. *Pst* DC3000 bacteria were syringe-infiltrated into plant leaves at the dosage of 1×10^6 CFU/ml and bacterial population were determined at 0 and 2 days post infiltration (dpi). Data are represented as mean \pm SD (n=4). One-way ANOVA with Tukey test ($P < 0.05$) was performed. Different letters indicate statistically significant differences.

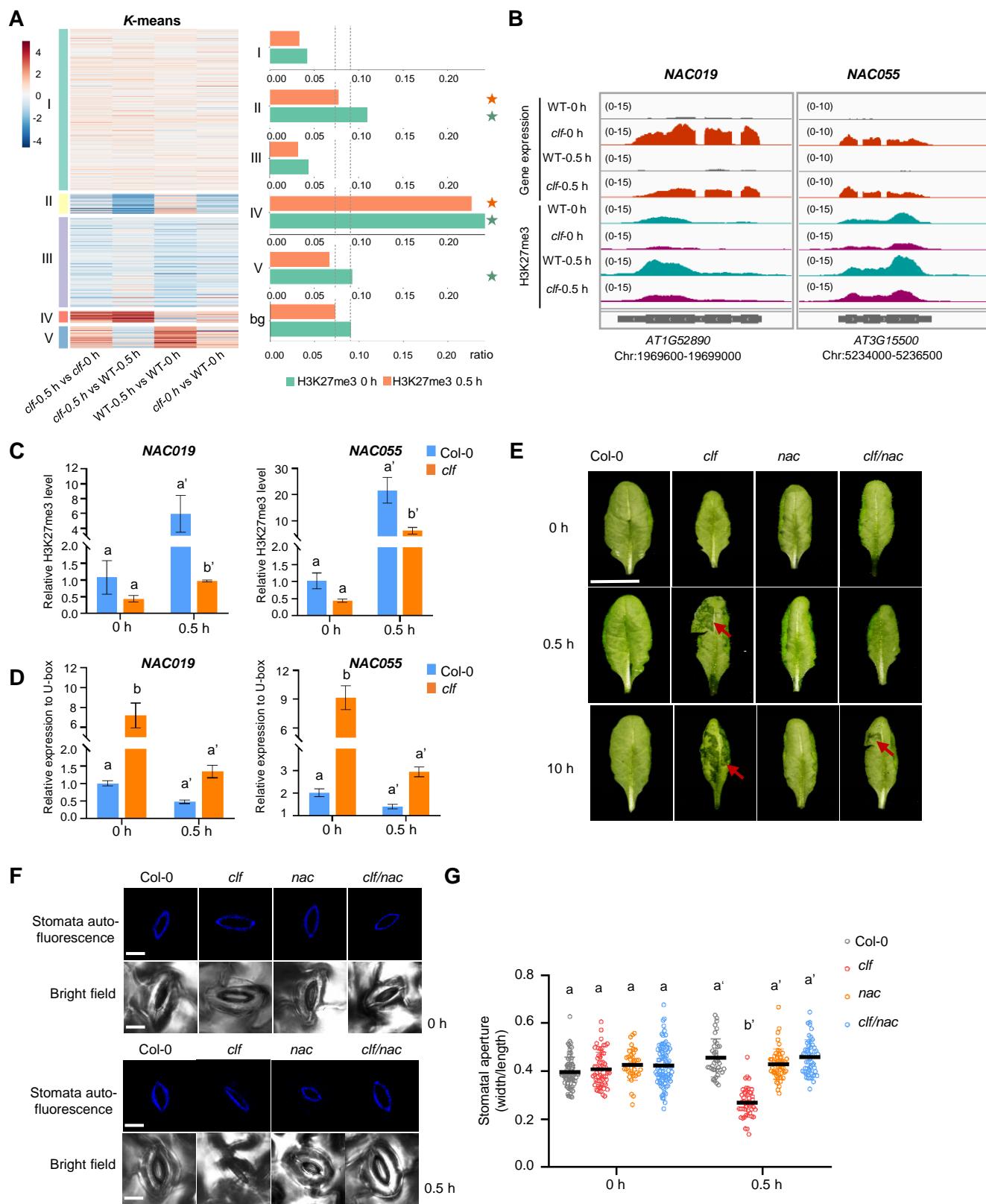

Figure 2. ABA is an important modulator of apoplast water in Arabidopsis leaf.

(A) Venn diagram showing the numbers of differentially expressed genes (DEGs) in Col-0 and *clf* plants at 0 and 0.5 h after high humidity treatment. Numbers of DEGs were calculated by pairwise comparison between Col-0 and *clf* (FDR < 0.01; log₂ fold change > 1 or < -1).

(B) Gene ontology (GO) analysis of all DEGs at 0.5 h after high humidity in the *clf* plant. The X-axis indicates the number of queried genes and Y-axis indicates the GO terms. Size of plotted circles indicates the percentage overlap within input genes. The filled color is scaled to -log₁₀ (FDR).

(C) Exogenous application of ABA leads to water soaking in Arabidopsis leaf. ABA (50 µM), BTH (50 µM) or MeJA (50 µM) were sprayed onto Col-0 leaves and plants were covered with transparent plastic dome to keep high humidity. Pictures were taken 8 h later.

(D) ABA-induced water soaking was dramatically reduced in *pyr/pyl112458* and *snrk2.2/2.3/2.6* plants. ABA (50 µM) was sprayed onto Arabidopsis leaves and pictures were taken 8 h later. Scale bar = 1 cm.


Figure 3. ABA signaling pathway and stomatal closure mediate the water soaking phenotype in the *clf* plant.

(A) ABA levels in Col-0 and *clf* plants before and after high humidity. Data are represented as mean \pm SD. Different letters indicate significant differences, as determined by two-way ANOVA with Tukey test ($P < 0.05$).

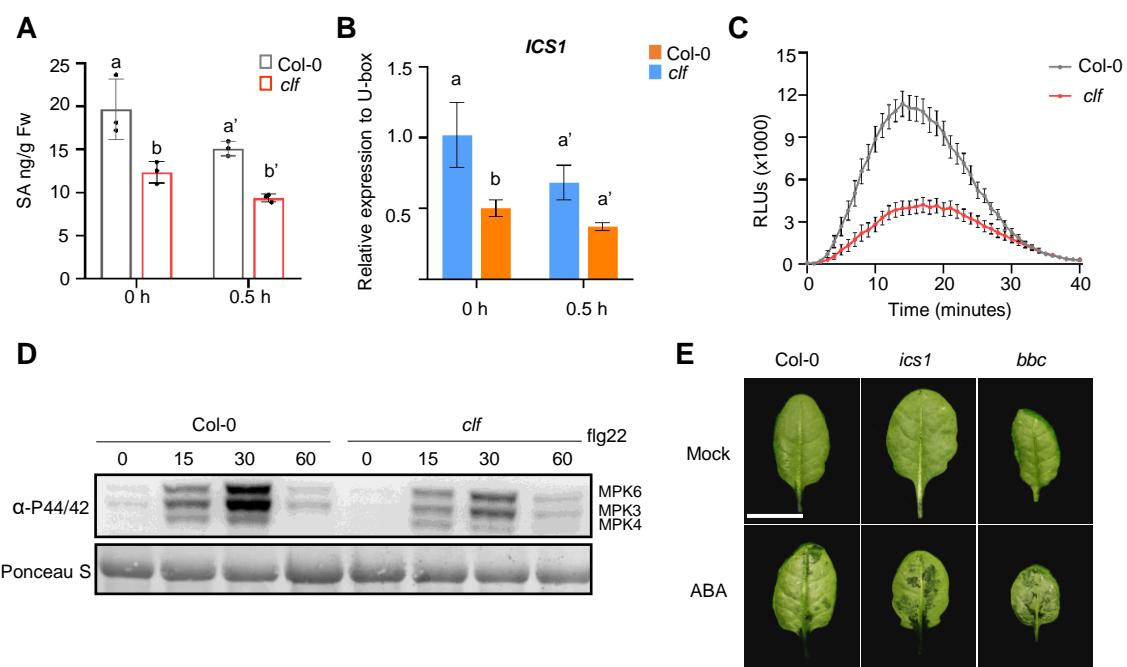
(B) Water soaking in Col-0, *clf*, *aba2*, *ost1*, *clf/aba2* and *clf/ost1* plants before and after high humidity treatment. Bar = 1 cm. Red arrows indicate water soaking regions.

(C, D) Stomatal aperture in Col-0, *clf*, *aba2*, *ost1*, *clf/aba2* and *clf/ost1* leaves at 0 and 0.5 h after high humidity. Representative stomatal images collected on confocal microscope are shown (bar = 10 μ m; C) and stomatal aperture (width/length ratio) was calculated (>50 stomata; D). The colored dots represent stomatal aperture of individual stomata. The black line represents the mean. Different letters indicate significant differences, as determined by two-way ANOVA with Tukey test ($P < 0.05$).

(E) Water soaking in Col-0, *slac1* and *slah3* plants before or after spray of ABA (50 μ M) and being kept under high humidity for 8 h. Bar = 1 cm.

Figure 4. ABA-associated NAC019/055/072 transcription factors are directly targeted by CLF and mediate apoplast water regulation.

(A) Hierarchical clustering analysis of the DEGs in Col-0 and *clf* plants at 0 and 0.5 h after high humidity treatment from the RNAseq experiment (FDR < 0.01; log₂ fold change < -1 or > 1; on the left). The percentage of genes in each cluster showing CLF/H3K27me3 regulation (i.e., differential H3K27me3 level in the *clf* mutant plant from our ChIPseq experiment) are shown on the right. bg, background.


(B) Transcription and H3K27me3 levels of *NAC019* and *NAC055* genes in Col-0 and *clf* plants before (0 h) and after (0.5 h) high humidity treatment from RNAseq and ChIPseq experiments.

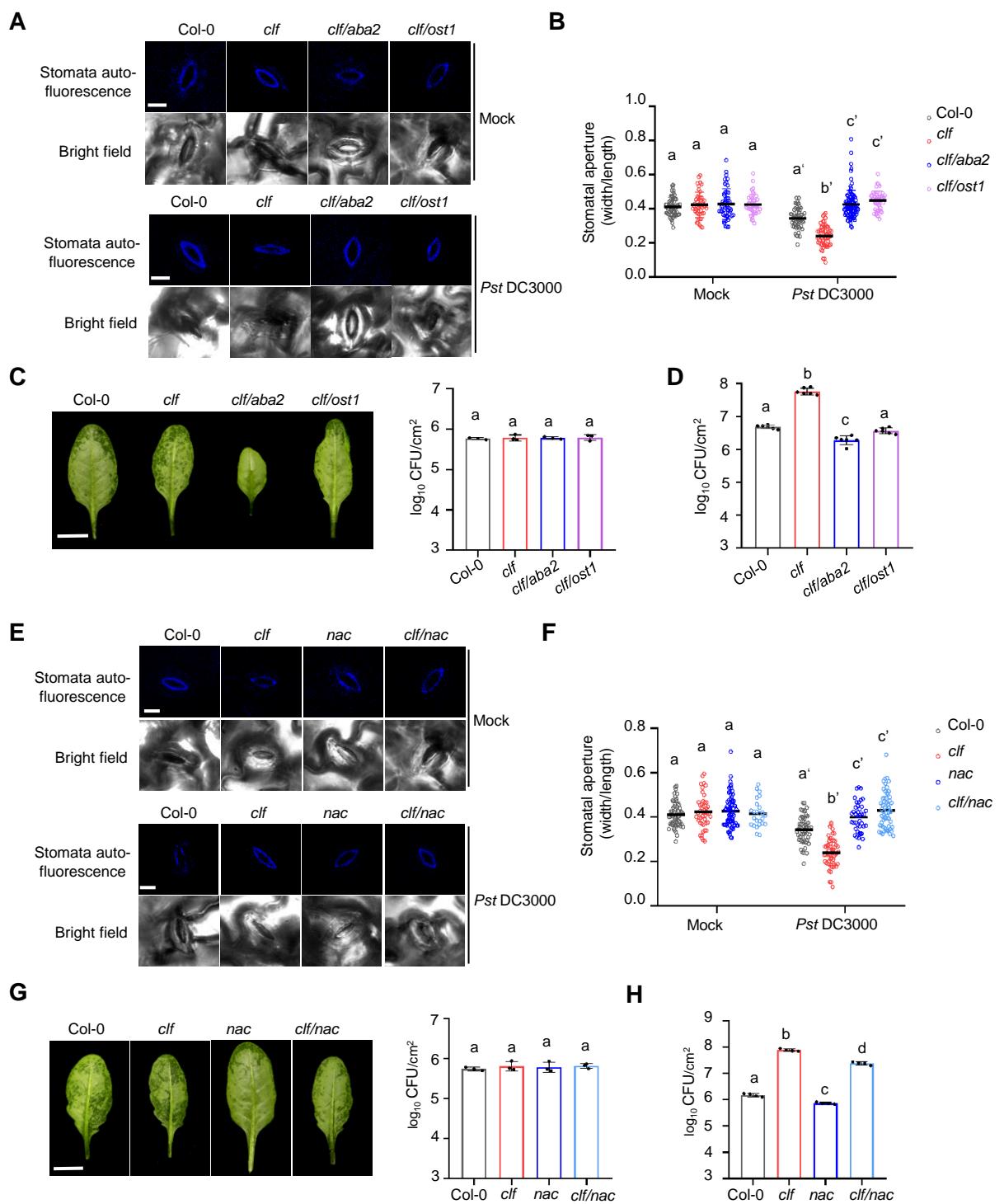
(C) Confirmation of H3K27me3 levels at *NAC019* and *NAC055* genes by ChIP-qPCR. Bars represent means \pm SD (n=3). Different letters indicate significant differences, as determined by two-way ANOVA with Tukey test (P < 0.05).

(D) Confirmation of *NAC019* and *NAC055* expression levels by qRT-PCR. Bars represent means \pm SD (n=3). Different letters indicate significant differences, as determined by two-way ANOVA with Tukey test (P < 0.05).

(E) Water soaking in Col-0, *clf*, *nac*, and *clf/nac* plants. Plants were treated with high humidity and pictures were taken at indicated time points. Bar=1 cm.

(F, G) Stomatal dynamics in Col-0, *clf*, *nac*, and *clf/nac* plants before and after high humidity. Representative images are shown (bar = 10 μ m; F) and stomatal aperture is calculated (G). Colored dots represent stomatal aperture of individual stomata (n > 50). The black line represents the mean. Different letters indicate significant differences, as determined by two-way ANOVA with Tukey test (P < 0.05). Experiments were repeated at least three times with similar results.

Figure 5. Plant basal immunity seems to play a role in water soaking.


(A) SA levels in Col-0 and *clf* plant leaves before and after high humidity treatment, determined by LC/MS/MS. Bars represent means \pm SD (n=3). Different letters indicate significant differences, as determined by two-way ANOVA with Tukey test (P <0.05).

(B) qRT-PCR analysis of *ICS1* expression in Col-0 and *clf* plants before and after high humidity treatment. Bars represent means \pm SD (n=4). Different letters indicate significant differences, as determined by two-way ANOVA with Tukey test (P <0.05).

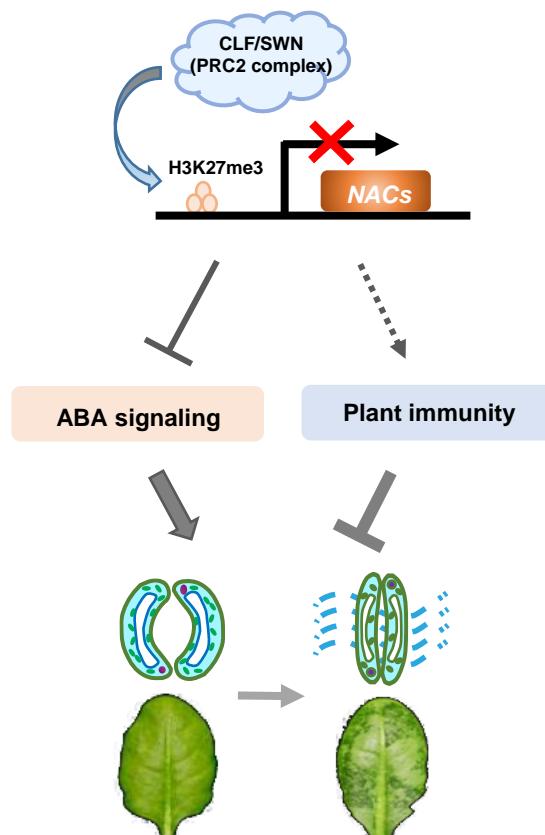
(C) flg22-induced ROS burst in Col-0 and *clf* plants. Leaf disks were treated with 100 nM flg22 and ROS burst was detected by luminol-HRP approach. RLU, relative luminescence units (n \geq 20).

(D) MAPK phosphorylation in Col-0 and *clf* plants at different time points after 100 nM flg22 treatment.

(E) ABA-induced water soaking in Col-0, *ics1* and *bak1-5/bkk1-1/cerk1* (*bbc*) plants. Four-weeks-old plants were sprayed with 25 μ M ABA, shifted to high humidity, and pictures were taken 24 h later. Experiments were repeated at least three times with similar results.

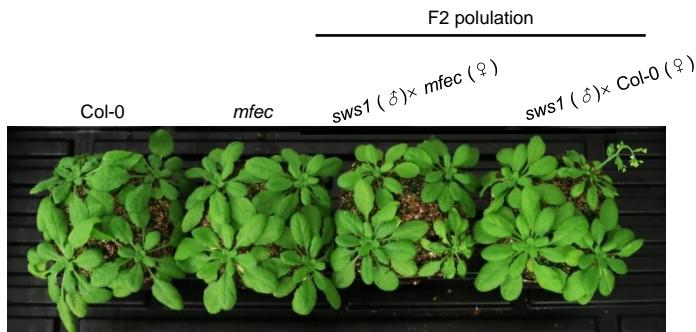
Figure 6. *Pst* DC3000 induced water soaking and disease susceptibility in the *clf*, *clf/aba2*, *clf/ost1* and *clf/nac* plants.

(A, B) *Pst* DC3000 triggered a stronger stomatal closure in the *clf* mutant, but not the *clf/aba2* or *clf/ost1* plants. Arabidopsis leaves were syringe-infiltrated with Mock (sterile water) or *Pst* DC3000 (at OD₆₀₀=0.1). Stomatal images were collected 4 h after infiltration. Representative images are shown (bar = 10 μ m; A) and stomatal aperture is calculated (B). Colored dots represent stomatal aperture of individual stomata (n>40). The black line represents the mean. Different letters indicate significant differences, as determined by two-way ANOVA with Tukey test (P <0.05).


(C) *Pst* DC3000 inoculation induced a stronger water soaking in the *clf* plant, but not *clf/aba2* or *clf/ost1* plants. Bacteria were infiltrated into Arabidopsis leaves of Col-0 (1x10⁶ cfu/mL), *clf* (5x10⁵ cfu/mL), *clf/aba2* (4x10⁶ cfu/mL) and *clf/ost1* (2x10⁶ cfu/mL). Pictures were taken 24 h after infiltration (on the left) and bacterial populations were counted (on the right). Bar=1 cm. Different letters indicate significant differences, as determined by one-way ANOVA with Tukey test (P <0.05).

(D) The *clf* mutant, but not the *clf/aba2* or *clf/ost1* plants, showed enhanced susceptibility to *Pst* DC3000 inoculation. *Pst* DC3000 bacteria were infiltrated into plant leaves at 1x10⁶ CFU/ml and bacterial titer were determined 2 days post infiltration. Bars represent mean \pm SD (n=6). Different letters indicate significant differences, as determined by one-way ANOVA with Tukey test (P <0.05).

(E, F) Stomata measurement in Arabidopsis leaves syringe-infiltrated with Mock (sterile water) or *Pst* DC3000 (at OD₆₀₀=0.1). Stomatal images were collected 4 h after infiltration. Representative images are shown (bar = 5 μ m; E) and stomatal aperture is calculated (F). Colored dots represent stomatal aperture of individual stomata (n \geq 40). The black line represents the mean. Different letters indicate significant differences, as determined by two-way ANOVA with Tukey test (P <0.05).


(G) *NAC019/055/072* mutations largely compromised the water soaking phenotype in the *clf* plant. Bacteria were infiltrated into Arabidopsis leaves of Col-0 (1x10⁶ cfu/mL), *clf* (5x10⁵ cfu/mL), *nac* (2x10⁶ cfu/mL) and *clf/nac* (1x10⁶ cfu/mL), so that they reached a similar population 24 h after infiltration (on the right). Pictures were taken 24 h after infiltration (on the left). Bar=1 cm. Different letters indicate significant differences, as determined by one-way ANOVA with Tukey test (P <0.05).

(H) *NAC019/055/072* mutations largely compromised the enhanced susceptibility in the *clf* plant. *Pst* DC3000 bacteria were infiltrated at 1x10⁶ cfu/mL and bacterial titers were determined 2 days post infiltration. Bars represent means \pm SD (n=4). Different letters indicate significant differences, as determined by one-way ANOVA with Tukey test (P <0.05).

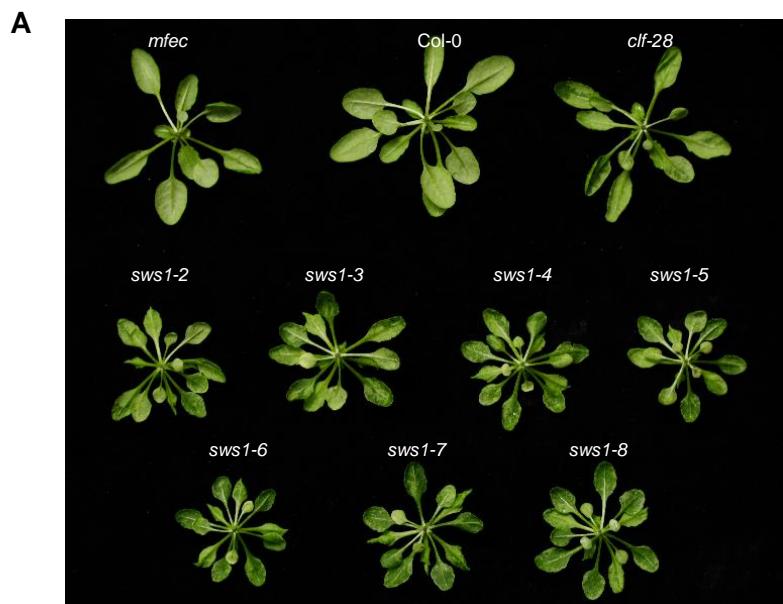
Figure 7. A model describing the findings in this study. The CLF-containing PRC2 complex regulates the H3K27me3 level and chromatin status of ABA pathway genes, including the NAC transcription factor NAC019/055/072, and normally suppresses ABA responses. Absence of CLF (i.e., in the *clf* mutant) results in heightened ABA responses and more closed stomata, leading to water over-accumulation in the leaf apoplast. Plant basal immunity (i.e., SA and PTI) seems to play a negative role in the process.

A

B

Genotype	Phenotype		χ^2	P
	water soaking	No water soaking		
<i>mfec</i>	0	24		
<i>sws1</i>	24	0		
F1 <i>mfec</i> x <i>sws1</i>	0	24		
F2 <i>mfec</i> x <i>sws1</i>	45	139	0.015	0.904

Genotype	Phenotype		χ^2	P
	water soaking	No water soaking		
Col-0	0	24		
<i>sws1</i>	24	0		
F1 Col-0 x <i>sws1</i>	0	24		
F2 Col-0 x <i>sws1</i>	45	133	0.001	0.975

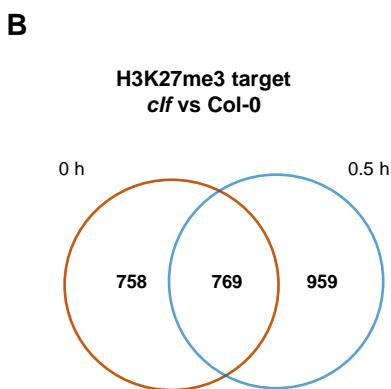

Segregation data were evaluated with chi-squared goodness-of-fit test using 3:1 segregation of the early flowering and water soaking phenotype as null hypothesis. Chi-squared value (χ^2) and corresponding probability (P) are indicated.

Supplemental Figure S1. Segregation of *SWS1* allele in Col-0 or *mfec* background.

(A) Morphology of 4-weeks-old Col-0, *mfec* and F2 populations of *sws1* crossed to Col-0 or *mfec* plants.

Plants were grown under normal humidity (~60% relative humidity).

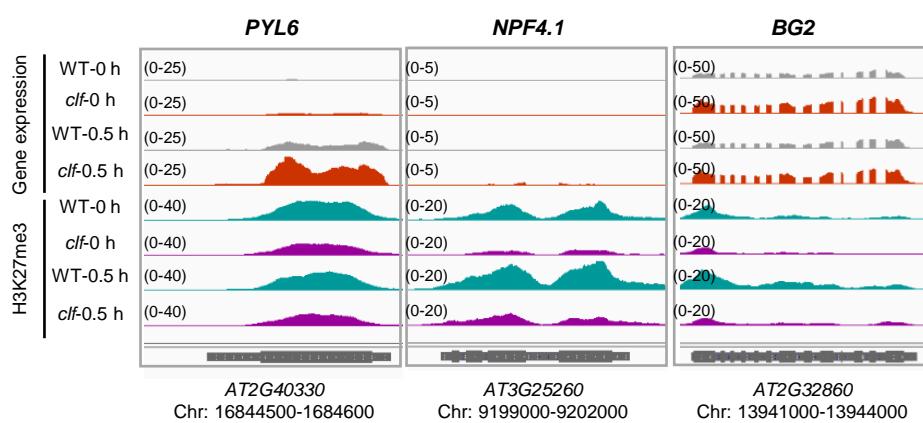
(B) Segregation ratio of the water soaking phenotype in F1 and F2 populations of *sws1* crossed to Col-0 or *mfec* plants.

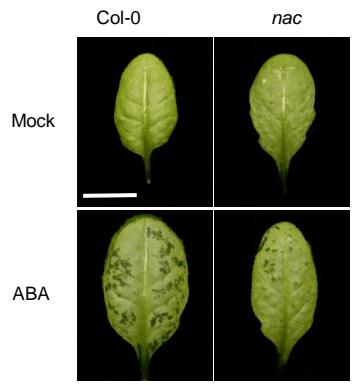


B

No.	Amino Acid	Amino Acid	Site	Type
sws1-2	GGA-AGA	Gly-Arg	4955	Exon
sws1-3	GGA-GAA	Gly-Glu	4370	Exon
sws1-4	TGG-TGA	Stop code	3845	Stop code
sws1-5	TGC-TAC	Cys-Tyr	3283	Exon
sws1-6	TCA-TTA	Ser-Leu	3495	Exon
sws1-7	TCT-TTT	Ser-Phe	3829	Exon
sws1-8			4743	Exon/Intron link

Supplemental Figure S2. Water soaking phenotype and mutation sites of different SNP alleles of *sws1*.
(A) High humidity-induced water soaking in other *sws1* lines isolated from the genetic screen. Plants were grown until 3-4 week old and were treated with high humidity for 4 h before pictures were taken.
(B) Mutation type in the *CLF* gene in other *sws1* lines determined by genome sequencing.


Cluster	GO Germ	p-Value
I	Proteasome complex	1.45E-05
	Nuclear envelope	9.53E-05
II	Response to jasmonic acid	2.02E-06
	Response to salicylic acid	0.0005222536
III	Chloroplast	1.98E-55
IV	Seed development	0.00028136919
	Response to water deprivation	0.00341548861
	Flower development	0.00881961314
	Leaf senescence	0.01689661635
V	Xyloglucan metabolic	1.94E-07


Supplemental Figure S3. Data analysis of the RNAseq and ChIPseq results.

(A) GO analysis of DEGs in each cluster as shown in Figure 4A.

(B) Number of genes that show differential H3K27me3 level in the *clf* mutant compared to Col-0 plant in the ChIPseq experiment. 0 and 0.5h indicate the time of high humidity treatment.

Supplemental Figure S4. Gene expression and H3K27me3 levels of several ABA-related genes from the RNAseq and ChIPseq experiments. *PYL6*, *NPF4.1* and *BG2* genes show lower H3K27me3 level, accompanied with higher transcription level, in the *clf* mutant compared to Col-0 plant. 0 and 0.5 h indicate the time of high humidity treatment.

Supplemental Figure S5. ABA-induced water soaking is significantly reduced in the *nac* triple mutant plant. Four-week-old Col-0 and *nac* plants were sprayed with ABA (50 μ M) and pictures were taken 6 h later. Bar=1 cm.