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Abstract

Increasing the proportion of locally produced plant protein in currently meat-rich diets could
substantially reduce greenhouse gas emission and loss of biodiversity. However, plant protein
production is hampered by the lack of a cool-season legume equivalent to soybean in
agronomic value. Faba bean (Vicia faba L.) has a high yield potential and is well-suited for
cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-
guality chromosome-scale assembly of the faba bean genome and show that it has grown to
a massive 13 Gb in size through an imbalance between the rates of amplification and
elimination of retrotransposons and satellite repeats. Genes and recombination events are
evenly dispersed across chromosomes and the gene space is remarkably compact considering
the genome size, though with significant copy number variation driven by tandem duplication.
Demonstrating practical application of the genome sequence, we develop a targeted
genotyping assay and use high-resolution genome-wide association (GWA) analysis to dissect
the genetic basis of hilum colour. The resources presented constitute a genomics-based
breeding platform for faba bean, enabling breeders and geneticists to accelerate
improvement of sustainable protein production across Mediterranean, subtropical, and

northern temperate agro-ecological zones.
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Main

Replacing meat or milk protein with plant-based alternatives, even partially, would make a
large contribution to reducing carbon emissions! and help to mitigate climate change. An
obstacle to implementing this scheme is that meat-eating countries do not produce enough
plant protein2. Common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), and soybean
(Glycine max), which supply dietary protein in tropical and subtropical countries, do not attain
yield optima in temperate regions of Europe and America, where meat consumption is highest
globally®. Faba bean (Vicia faba L., 2n=12) was domesticated in the Near East more than
10,000 BP*® and its broad adaptability, value as a restorative crop in rotations and high
nutritional density has propelled it to the status of a global crop grown on all continents except
Antarctica®. It is the highest yielding of all grain legumes’ and has a favourable protein content
(c. 29%) compared to other cool season pulses such as pea, lentil and chickpea, making it a
suitable candidate to meet challenging projected future protein demands. Furthermore, faba
bean’s high biological nitrogen fixation rates® and long duration of nectar-rich, pollinator-
friendly flowers® provide important ecosystem services which mean that faba bean cultivation
is increasingly seen as a key crop in sustainable intensification strategies. On the other hand,
its partially allogamous mating system and estimated 13 Gb genome size, which puts it
amongst the largest diploid genomes of any major crop, coupled with a low seed
multiplication rate, have made it a challenging target for breeders?®. Significant progress has
been made in faba bean genomics and pre-breeding research. The mining of the first faba
bean transcriptomes and development of SNP-based genetic maps, which showed strong
collinearity with model legumes, set the scene for the identification of the WD40 transcription
factor underlying the Zero Tannin1 locus! while a combination of high resolution mapping,
transcriptomic, and metabolomic approaches led to the cloning of the VC1 gene controlling
seed content in vicine-convicine and paved the way for safer exploitation of the crop in the
human food chain®2. The lack of a reference genome sequence greatly complicated these
studies, however, and improved faba bean genomic resources are urgently needed to

accelerate crop improvement.

The sequence of the giant faba bean genome

The 13 Gb faba bean genome (2n=2x=12) is one of the largest among diploid field crops
(Extended Data Figure 1a, 1b) and its dominant repeat family members are longer'®>*4 (up to
25 kb) than those in similarly sized polyploid cereal genomes®. The biggest of its six

chromosomes holds the equivalent of an entire human genome. Although aiding
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cytogenetics'®, these properties made genome assembly very challenging before the
emergence of long and accurate reads. We sequenced the genome of the inbred line ‘Hedin/2’
with PacBio HiFi long reads to 20-fold coverage and assembled 11.9 Gb of sequence, more
than half of which was represented by contigs longer than 2.7 Mb (Extended Data Table 1).
Linkage information afforded by a genetic map (Supplementary Table 1) and chromosome
conformation capture sequencing (Hi-C) data placed 11.2 Gb (94 %) into chromosomal
pseudomolecules (Fig. 1a, Extended Figure 2a). Chromatin immunoprecipitation sequencing
for centromeric histone H3 pinpointed the locations of the centromeres in the ‘Hedin/2’
assembly and arm ratios were consistent with karyotypes (Extended Data Fig. 2b). The single
metacentric chromosome 1 was the only one to adopt a Rabl configuration, evident from the
presence of both a main and an anti-diagonal on that chromosome in Hi-C interaction plots
(Fig. 1a). This supports the notion that chromosome arms need to be of approximately equal
size to spatially juxtapose in interphase. Some regions of the Hi-C contact matrices were
empty for lack of mapped short reads (Fig. 1a). These white regions coincided with the
location of enormous (up to 752 Mb) satellite arrays and aligned well with cytological maps of
those repeats (Fig. 1 b-c). We also collected HiFi data (10-fold coverage) for the German
variety ‘Tiffany’ and assembled these into a set of contigs with an N50 of 1.6 Mb and spanning
11.4 Gb (Extended Data Table 1). This level of completeness and contiguity was sufficient to
arrange the contigs into pseudomolecules guided by the "Hedin/2" reference (Extended Data
Figure 3, Extended Data Table 1). In the future, the ‘Hedin/2’ assembly is expected to become

the nucleus of a faba pan-genome.

Transposable elements, not polyploidy, have enlarged the
genome

The genome sequence of ‘Hedin/2’ was annotated with RNA sequencing data from eight
diverse tissues (Supplementary Table 2), resulting in a total of 34,221 protein-coding genes
(Extended Data Table 2). A similar number of gene models (34,043) was also predicted in the
‘Tiffany’ assembly. The predicted ‘Hedin/2’ gene models captured 96% of single-copy
orthologues conserved in Embryophyta according to the BUSCO metric (Extended Data Table
3). Gene density was uniform along the chromosomes (except for the positions of satellite
DNA arrays) without the proximal-distal gradient typically observed for grass chromosomes?’.
Meiotic recombination displayed a similar distribution with an average of 27 genes per
centimorgan (Fig. 1d, Extended Data Figure 4). Thus, despite its large genome, faba bean may
be more amenable to genetic mapping than cereals, where up to a third of genes are locked

in non-recombining pericentric regions!’. Gene order was highly collinear and syntenic with
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other legumes (Fig. 2a). To further validate gene annotation, we aligned 262 Medicago
truncatula genes related to symbiosis with rhizobia or arbuscular mycorrhizal fungi and found
putative orthologues for them all. In addition, we verified using RNA-seq that a large subset

of these genes were responsive to inoculation as expected 81920 (Supplementary Table 3).

In contrast to gymnosperms with similarly gigantic genomes?%22 introns in faba bean genes
were not larger than in angiosperms with smaller genomes (Fig. 2f) but the intergenic space
was much expanded (Fig. 2b). Moreover, the number of multi-copy gene families in faba bean
was similar to related diploid species (Extended Data Figure 5), in contrast to soybean, which
is considered a partially diploidized tetraploid?3. Likewise, nucleotide substitution rates
between paralogous and orthologous gene pairs place the last whole-genome duplication
(WGD) event in the faba bean lineage at 55 million years ago (MYA) (Fig. 2c), well before the
split from other Papilionoideae?* (Fig. 2e, Extended Data Figure 6), a taxon that also includes
pea and lentil (Lens culinaris), species from which faba bean diverged around 12.2 and 13.8
MYA, respectively. Although we did not find evidence for a recent WGD in faba bean, more
genes were duplicated in tandem than in pea and lentil (Extended Data Figure 7a). These
duplications post-date the last WGD and occurred later than tandem duplications in
Arabidopsis thaliana and M. truncatula (Extended Data Figure 7b), two species whose
genomes were also rich in such events, and coincided with recent TE expansion. Overall, there
were 1,108 syntenic clusters of tandemly duplicated genes in ‘Hedin/2’ and ‘Tiffany’, some of
which differed in copy number. Notably, the agronomically relevant family of leghemoglobins
had expanded (Supplementary Table 5). Despite this, the absence of a lineage-specific WGD
or widespread gene family expansion means that the proliferation of repeat elements largely
explains why the faba genome is more than seven times larger than that of its close relative

common vetch (V. sativa).

Approximately 79% of the ‘Hedin/2’ assembly was annotated as transposon-derived
(Supplementary Table 6). By far the largest group is the long-terminal repeat (LTR)
retrotransposons (RLX), accounting for 63.7 % of the genome sequence. Other groups of TEs
represent only minor fractions of the genome (Supplementary Table 6). Among the RLX, those
of the Gypsy (RLG) superfamily outnumber Copia (RLC) elements by more than two to one
(Fig. 1d, Extended Data Figure 4). The Ogre family of Gypsy elements alone make up almost
half (44 %) of the genome, confirming its status as a major determinant of genome size in the
Fabaceae* (Fig. 2g). The great length of individual elements (up to 35 kb for Ogre and 32 kb
of SIRE, the longest and second-longest elements), together with their abundance, partially
explains the large size of the faba bean genome (Extended Data Figure 8). In addition, a large

and diverse set of satellite repeat families that differ in their monomer sequences and genome
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abundance?® accounted for 9.4% of the total assembly length, with the most abundant
satellite family Fokl reaching 4% (0.475 Gb). Fokl, together with several other highly amplified
satellites, forms prominent heterochromatic bands on faba bean chromosomes (Fig. 1c). The
TE density was remarkably invariable along all six chromosomes, mirroring gene density and
recombination rate, and inverse to the density of satellite arrays (Fig. 1d, Extended Data

Figure 4).

The persistence of retrotransposons as full-length copies can tell us about the balance
between genome size expansion by retrotransposition and shrinkage by elimination through
recombination. Modeling the solo-LTRs (sLTRs) as the product of the recombination between
the LTRs of a single element, and assuming the canonical Ogre to comprise LTRs of 4,161 bp
and in internal domain of 11,655 bp, the 395,657 sLTRs represent a loss of 6,26 Gb of DNA
from the genome (55.6% of the current assembly size). This loss would be even greater if
recombination between LTRs of different individual Ogre elements as well as DNA double-
strand break (DSB) repair-mediated internal truncations, were considered. However, unlike
plant species with smaller genomes, there were generally much fewer sLTRs in faba bean
relative to the number of full-length LTRs, similar to large gymnosperm genomes (Fig. 2f),

indicating slower removal than spreading of RLX?.

Efficient genome-wide methylation

In addition to the relatively slow RLX elimination rate, it is also possible that lower levels of
methylation could have accelerated TE proliferation through less efficient silencing. We found
that most cytosines in the faba bean genomes were methylated: 95.8 % in CG, 88.2 % in CHG
and 14% in CHH contexts, respectively (Fig. 1d, Extended Data Figure 4), placing it among the
most highly methylated plant genomes?2. Gene body methylation followed the canonical
pattern (Fig. 3a) observed in other plants?’: CG methylation was enriched in internal exons
and introns (Extended Data Figure 9a), in contrast to low methylation in first exons, and may
be related to transcriptional repression?. Genes with a high level of gene body methylation
were more highly expressed in young leaf tissue (Extended Data Figure 9b) and also tended
to be longer (average 3.3 kb). The elements of the major superfamilies of RLX, Gypsy and
Copia, occupied 48% and 11% of the genome respectively, and were heavily methylated, more
so in their bodies than their flanking regions (Fig. 3b). The most recent transposon burst
occurred less than 1 MYA, but many structurally intact elements were between 3 and 5 million
years old (Fig. 3c). Both young and old insertions were invariably methylated in all three
sequence contexts (Fig. 3d). In contrast to other plant taxa?’, RLX insertion times and

methylation levels were uncoupled. Conspicuous islands of elevated CHH methylation also
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coincided with the abundant satellite repeat FabTR-83 (Fig. 3e), which accounts for 1.1% of
the genome. Generally, the faba bean methylation machinery appeared fully functional,
efficiently methylating all classes of repetitive elements, suggesting that methylation

deficiency is unlikely to have played a role in genome expansion.

Integration of QTL and variation data

The faba bean genome sequence provides a unified frame of reference for genetic mapping,
gene expression profiling and comparative genomics. To assist the adoption of the new
infrastructure among faba bean breeders and geneticists, we mapped markers from two
commonly used genotyping platforms, the Illumina Infinium 1,536 single-nucleotide
polymorphism (SNP) and the lllumina Oligo Pool Array (OPA) assays. Moreover, we projected
genetic maps of both different bi-parental crosses and derived consensus genetic maps onto
the genome assembly. This provided physical coordinates to quantitative trait loci (QTL) for
disease resistance and phenology. Marker maps and QTL intervals can be browsed

interactively at https://pulses.plantinformatics.io (Extended Data Figure 10).

The genome sequence has also paved the way for sequence-based genotyping. We mined the
‘Hedin/2’ assembly for oligonucleotide probes for use in Single Primer Enrichment Technology
(SPET)3°, a reduced-representation genotyping method with high-throughput and low per-
sample costs. A panel of 197 accessions from a diversity collection were profiled with a 90,000
probe SPET assay with at least one probe in each predicted gene (Supplementary Table 7).
Sequence reads were mapped to the ‘Hedin/2’ assembly and 1,081,031 segregating variants
(SNPs) uniformly distributed along the genome were called, laying the foundations for high-
resolution GWAS analysis (Fig. 1d, Extended Data Figure 11). Population structure analysis by
model-based ancestry estimation and principal component analysis (PCA) divided the diversity

panel into four groups, corresponding to their geographic origin (Extended Data Figure 12).

Hilum colour mapping with candidate-gene resolution

Toillustrate how a GWAS approach, in conjunction with multiple genome sequences, can help
reveal the molecular basis for trait variation, we investigated the genetic control of seed hilum
colour (Fig. 4a), which is an important quality trait3l. We first carried out a GWAS for hilum
colour using the diversity panel and identified a single prominent peak that was coincident
both with the previously mapped Hilum Colour (HC) locus®! and peak homozygosity in
a recessive pale hilum bulk of segregants from a cross between pale and dark hilum faba bean
varieties (Fig. 4b). We found the most highly associated GWA marker in a polyphenol oxidase
(PPO) gene residing in a cluster of eight fully intact and highly conserved PPO genes in the
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‘Hedin/2’ assembly. In pea, PPO variation controls hilum colour, and a frameshifted, non-
functional form of the single PPO copy residing at the syntenic P/ locus conferring a pale hilum
is fixed in all modern pea varieties32. The pattern of pigmentation (Fig. 4a) and content in
oligomeric phenolic compounds at the hilum surface in faba bean (Fig. 4c and Extended Data
Figure 13) were very similar to those observed in pea32. Together with the genetic data, this
indicates that differential PPO activity is responsible for hilum colour variation in both pea and
faba bean, but it was unclear which faba bean PPO(s) may be causative.

To clarify, we compared the phylogeny and structure of the PPO clusters of the two fully
sequenced genotypes ‘Hedin/2’ (dark) and ‘Tiffany’ (pale). VfPPO-2 shared the highest level
of identity with the causal pea gene Psat1g2063360 (Fig. 4d), whereas the most strongly
associated GWA marker was found in VfPPO-3 and the pale hilum bulk homozygosity peak sat
between VfPPO-2 and VfPPO-3, suggesting that the causal polymorphism resided at the
proximal end of the cluster (Fig. 4e). Structurally, apart from large differences in intergenic
distances between syntenic PPOs caused mainly by Ogre insertions, the most striking features
of the ‘Hedin/2’-‘Tiffany’ comparison were the triplication of VfPPO-4 in ‘Tiffany’ and the
absence of VfPPO-5 in ‘Hedin/2’ (Fig. 4e), prompting us to investigate whether these structural
variations were associated with variation in PPO gene expression. We first established that
transcription of the PPO gene cluster was almost exclusively confined to the maternal testa
tissue (which encompasses the hilum), rather than the cotyledon in both genotypes (Fig. 4d,
Extended Data Figure 14, Supplementary Table 8, Supplementary Table 9). In ‘Hedin/2’ testa,
VfPPO-2, and to a lesser extent VfPPO-3, accounted for nearly all PPO expression. In contrast,
‘Tiffany’ testa PPO expression was dominated by VfPPO-6 and VfPPO-7 (Fig. 4d). A detailed
annotation and comparative repeat analysis of the PPO cluster region (Extended Data Figure
15) highlighted a c. 2kb AT-rich MITE insertion in the TiPPO-2 promoter region (Figure 4f),
which interrupts the sequence of predicted VfPPO-2 promoter and belongs to a class of MITE
associated with high levels of methylation (Figure 4g). Taken together, our results suggest that
regulation of expression of VfPPO-2 controls hilum colour variation in faba bean. Beyond
suggesting a causative mechanism for pale hilum in faba bean, our analysis illustrates that
increased copy number does not necessarily correlate with trait expression and emphasizes

the utility of complete genome sequences from multiple genotypes.

Discussion

Faba bean is one of the earliest domesticated crops. It was part of the Neolithic package of
crops that the early farmers took with them as they left the Fertile Crescent® and concern

about the bean’s toxicity was voiced already in classical antiquity34. In the 215t century,
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nutritional quality remains a central breeding goal: new faba bean varieties should be low in
the alkaloid glycosides vicine and convicine as well as in tannins; essential amino acids should
be balanced better to accommodate human dietary needs; seed phytate and protease
inhibitors should be reduced to improve nutrient bioavailability; all while taking care not to
compromise pest resistance and improving yield stability. Faba bean breeders can now face
these challenges enabled by genomic resources and insights. Ubiquitous and frequent
recombination will allow rapid introgression of new traits into elite material and permits
powerful and broadly applicable mapping approaches exploiting the high SNP densities
provided by SPET genotyping. Pinpointing causative variants can still be difficult in genomic
regions with tandemly duplicated genes, but our investigation of hilum colour demonstrates
that these challenges can be overcome using high-quality long-read assemblies coupled with
transcriptomics. Repeats and their methylation influence genome evolution, but can also
impact gene expression variation where the repeat elements insert within the regulatory
regions of genes. Our rich genome-wide repeat annotation now sheds light on these effects,
adding an important component to the genomics-based breeding platform. Expanding the
platform further by cataloguing and exploiting as much of the segregating variation of
domesticated faba bean as possible is now especially important, since we do not know the
wild progenitor of faba bean. It appears to be an isolated species and does not hybridize with
others in the genus Vicia®, effectively barring the use of wild relatives in faba bean breeding.
Population-scale resequencing of mutants, genebank collections and elite cultivars along with
pan-genome assemblies of representatives of major germplasm groups can now proceed

supported by the resources and methods presented here.
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Figure 1. Gigabase-size chromosome-scale assembly of faba bean and its genomic features.

a, Intrachromosomal contact matrix of assembled chromosomes. The red colour intensity indicates the
normalized Omni-C Hi-C links between 1 Mb windows on each chromosome. The antidiagonal pattern in
chromosome 1 represents the Rabl configuration. b, Distribution of major families of satellite repeats (FabTR-83,
green; FabTR-64, red; FabTR-53, magenta; Fokl, yellow) ¢, Distribution of major families of satellite repeats on
metaphase chromosomes visualized by multi-colour Fluorescent in situ hybridization (FISH) (FabTR-83, green;
FabTR-64, red; FabTR-53, magenta; Fokl, yellow). d, Distribution of genomic components including
recombination (cM/Mb), gene density, LTR retrotransposons of Gypsy and Copia, full-length LTR-RTs (fl-LTRs)
insertion, satellite repeats and DNA methylation (CH, CHG and CHH context) on chromosome 1.
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Figure 2. Evolution and synteny analysis in faba bean.

a, Syntenic relationship of faba bean (middle) with Medicago (top) and pea (bottom). b, Comparison of intergenic
length between legumes. ¢, Phylogenetic relationships between faba bean and other crop legumes in the
Papilionoideae clade. The numbers on the branches indicate the estimated divergence time (million years ago,
MYA). d, Distribution of the transversion rates at the four-fold degenerate sites (4dTv) of paralogous gene pairs
of faba bean and other legumes. e, A plot shows the proportion of major retrotransposons f, Ratio of solo-LTR
to full-length retrotransposons(fl-LTR) plotted against genome size in gymnosperms (green dots) and

angiosperms (red dots). The ratio for other species was retrieved from Cossu et al (2017).
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Figure 3. Methylation landscape in faba bean.
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a, Global distribution of DNA methylation levels at protein-coding genes including a 5 kb region upstream of the

transcription start site (TSS) and downstream of the transcription end site (TES). b, DNA methylation patterns for

TEs and their 5-kb flanking regions. c, Distribution of Copia (RLC)and Gypsy (RLG) retrotransposons based on

insertion age. d, Landscape of CG (top), CHG (middle) and CHH (bottom) methylation with different TE insertion

ages. e, CHH methylation peaks on FabTR-83 satellite repeats.
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Figure 4. Rearrangements at the complex PPO locus give rise to changes in PPO expression and hilum
colour. a, whole seeds of dark hilum Hedin/2 and pale hilum Tiffany are shown above light microscope images
of a transverse section (ts) of the dark (left) and pale (right) hila where the scale bar is 20um; b, genome-wide
scans for association with hilum colour scored as a binary trait in the NORFAB diversity panel (top sub-panel) and
for homozygosity of pale hilum parent alleles in an 84-component recessive pseudo-F, pale hilum bulk; ¢, an
optical image of Hedin/2 (left) and Tiffany (right) hilum specimens subjected to LDI/MSI (ms), and the LDI/MSI
signal distribution for chlorogenic acid (ca), epi-gallocatechin (gc) and tetracosylcaffeate (tc) for the respective
genotypes; d, phylogenetic tree showing the relationships between the causative pea gene and 8 and 11 PPO
copies found in a tandem arrangement at the Hedin/2 and Tiffany HC locus respectively, with eight clades found
forming the basis for a simplified PPO nomenclature and expression levels of each gene in testa tissue from mid
and late pod filling expressed in Transcripts Per Million (TPM); e, from top to bottom: to-scale schematic of the
chrl PPO cluster showing order and orientation of PPOs in Tiffany and Hedin/2 with syntenic PPO copies are
joined by dashed lines; closeup of hilum colour associations in the NORFAB diversity panel and homozygosity in
the pale hilum (hc) bulk; f, dotplot detail of 20kb upstream and downstream of HePPO-2 and TiPPO-2 showing a
c.2kb MITE, named ‘Tippo’ inserted in Tiffany amongst predicted transcription factor binding sites (brown ovals)
in close proximity to the RNA Pol Il binding site (TATA box — green oval) and transcriptional start site (arrow)
of PPO-2 ; g, genome-wide methylation status of genes (top panel) compared to the Tippo MITE family (bottom
panel).
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Online Methods

Genome assembly

PacBio HiFi reads were assembled using hifiasm (v0.11-r302)! with default parameters. The
dovetail Omni-C data were aligned to the resulting contigs using minimap2? to accurately
order and orient the contigs. Similarly, the genetic markers from a consensus genetic map
reported by Carrillo-Perdomo E et al®. and the 25K SNP array markers mapped in the NV644 x
NV153 recombinant inbred lines (F6) were aligned to the preliminary contigs using minimap2
to assign contigs to chromosomes. Subsequently, the pseudomolecule construction was done
with the TRITEX pipeline*. The final order and orientation of contigs in each chromosome were
inspected and corrected manually with complementary support of Omni-C and NV644 x
NV153 derived genetic map. The centromere regions were identified in each chromosome
using ChIP-seq with the CENH3 (a centromere-specific histone H3 variant) antibody reported
by Avila Robledillo L et al°. Briefly, the raw reads from the ChiP-seq were trimmed by cutadapt
(v.1.15)® and mapped to the preliminary pseudomolecules using minimap2. The alignments
were converted to BAM format using SAMtools’ and sorted by Novosort (V3.06.05)

(http://www.novocraft.com). The read depth was then calculated in 100 kb windows. Finally,

the order of each chromosome was determined with regard to centromere positions (short-

to-long arm), matching with the karyotype map of faba bean.

Estimation of genome size using flow cytometry

Nuclear genome size was estimated by flow cytometry as described previously®. Briefly, intact
leaf tissues of the V. faba accession Hedin/2 and Secale cereale cv. Dankovske (2C = 16.19 pg
DNA;®), which served as the internal reference standard, were chopped together in a glass
Petri dish containing 500 pl Otto | solution (0.1M citric acid, 0.5% v/v Tween 20; Otto, 1990).
The crude suspension was filtered through a 50 um nylon mesh. Nuclei were then pelleted
(300 x g, 2 min) and resuspended in 300 ul of Otto | solution. After 15 min of incubation on
ice, 600 pl of Otto Il solution supplemented with 50 pg/ml RNase and 50 pg/ml propidium
iodide was added. Samples were analysed using a CyFlow Space flow cytometer (Sysmex
Partec GmbH, Gorlitz, Germany) equipped with a 532 nm green laser. The gain of the
instrument was adjusted so that the peak representing G1 nuclei of the reference standard
was positioned approximately on channel 100 on a histogram of relative propidium
fluorescence intensity when using a 512-channel scale. Twelve Hedin/2 plants were sampled,

and each sample was analysed three times, each time on a different day. A minimum of 5000
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nuclei per sample were analysed and 2C DNA contents (in pg) were calculated from the means
of the G1 peak positions by applying the formula: 2C nuclear DNA content = (sample G1 peak
mean) x (standard 2C DNA content) / (standard G1 peak mean). The mean nuclear DNA
content (2C) was then calculated for each species and DNA contents in pg were converted to

the number of base pairs in bp using the conversion factor 1 pg DNA = 0.978 Gbp?°.

Genome size estimation and quality assessment

The distribution of the k-mer (K=101) frequency was estimated from PacBio HiFi reads using
Jellyfish (v2.2.10)'1. The output histograms were used to estimate the genome size and
heterozygosity using findGSE*?. The completeness of the assembly was assessed by two
intendent approaches; i) self-alignment of HiFi reads to the assembly by minimap2 followed
by SV calling using Sniffles®3; ii) BUSCO (v3.0.2b)* analysis with Embryophyta database 9.

Enzymatic methylation sequencing

DNA for methylome sequencing was extracted using the Qiagen DNEasy Plant 96 kit in
accordance with the manufacturer’s instructions, checked for intactness on a 1% agarose gel
and quantitated using the Thermofisher Quant-iT™ PicoGreen™ dsDNA Assay. 200 ng of
Hedin/2 genomic DNA was combined with 0.001 ng of CpG methylated pUC19 control DNA
and 0.02 ng of unmethylated bacteriophage Lambda control DNA, then brought to a volume
of 50 ul using EB buffer. The input DNA was sheared to 350-400 bp on the $220 Focused-
ultrasonicator instrument (Covaris, Woburn, USA) using the following protocol: duty
factor=10; peak incident power=175; cycles per burst=200; time=2 times 30 seconds. The
sheared DNA was used to prepare a large insert NEBnext Enzymatic Methyl-seq library

following the manufacturer’s instructions (https://www.neb.com/-

/media/nebus/files/manuals/manuale7120.pdf). Four libraries were constructed with

different sequencing indexes. Index PCR was performed with five PCR cycles to include indexes
and amplify the libraries. The final libraries were quantified by qPCR, pooled at equimolar
concentrations, and sequenced for 500 cycles (2 x 250 bp paired-end reads) on an SP-flow cell

of the Novaseq6000 system (lllumina, Inc., San Diego, USA).

Tiffany genome assembly

The distribution of k-mers (K=51) was estimated from PacBio HiFi reads using KAT (v2.4.2)*>.
The output histograms were used to estimate genome size and heterozygosity using findGSE.
Assembly was performed using hifiasm v0.15.5-r350 (-I 0). The completeness of the assembly
was assessed by aligning HiFi reads back to contigs and calling structural variants using cuteSV
v1.0.11%%. Despite there being no obvious heterozygous peak on the k-mer plots (Figure AS1),

we observed a higher proportion of BUSCO duplicate genes in Tiffany compared to Hedin/2
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and a slight over-estimation of genome size with findGSE. In addition, we also noted a number
of short contigs with read coverage about half of the expected, suggesting the presence of
regions of heterozygosity in the otherwise mostly homozygous genome. We therefore
performed haplotig purging using purge_haplotigs v1.1.2%7 (purge_haplotigs cov-13 -m 7 -h
25). Chromosome-level scaffolds were constructed with RagTag v2.0.1'® using the haplotig-
purged assembly. To confirm the success of scaffolding, Hedin/2 and Tiffany chromosomes
were aligned using GSAlign v1.0.22'°, We compared two approaches for Tiffany annotation in
order to choose one most suitable for comparative analyses: (i) individual annotation of
genomes; (ii) a “transfer and gap fill” approach (Extended Data Figure 16), as described below.
Overall, we observed that the transfer and gap fill approach resulted in more syntenic genes
and more genes with the same CDS length. Visual inspection of annotation suggests that with
the individual annotation approach, alternative transcripts of genes are annotated in some
cases, which results in different CDS lengths for syntenic genes. The issue was largely resolved

by using the transfer and gap fill approach.

Gene model annotation

The repeat sequences were masked using RepeatMasker
v4.1.1(http://www.repeatmasker.org) with a custom repeat library generated by
RepeatModeler v2.0.1%° (using the Hedin/2 assembly). The gene annotation was conducted
using BRAKER v2.1.6%! (etpmode, min_contig 10000). The RNAseq libraries (Table AS1) were
aligned using STAR 2.7.8a?%23, The protein database Viridiplantae OrthoDB v10.1%4, merged
with the translated sequences of the previously published Vicia faba transcriptome
assembly?®, was used as input for BRAKER, together with alignments generated by mapping
the faba transcriptome assembly using GMAP v2020-10-142%%. In addition, Medicago
truncatula genes (“Mt4.0v2_Genes”) and Pisum sativum genes
(“pissa.Cameor.gnm1.ann1.7SZR”) were aligned using GMAP v2020-10-14. The generated
alignments were used to polish the BRAKER gene models. In order to account for any gene
models missed by BRAKER prediction, but present in the Hedin/2 transcriptome assembly, the
gene models from GMAP faba transcriptome alignments and BRAKER were compared using
bedtools (2.30.0), retaining only the GMAP genes not having an intersection with the BRAKER
gene models. For these genes, a further filtration was done to eliminate any short (<50 amino
acids) translated proteins , in-frame stop codons, or low (< 200 reads) expression
(featureCounts, subread 2.0.1%7).

Completeness of the annotation was assessed for Hedin/2 and Tiffany by aligning one Iso-Seq
dataset?® and assembled transcriptomes produced for cvs. Hiverna, Dozah and Farah.
Transcriptomes were mapped using GMAP v2020-10-14 and comparisons between those

mappings and the annotations were made using bedtools?®. Gene models that had been
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removed by polishing, but which intersected mapped transcripts, were rescued if the
transcript wasn’t a putative transposable element. R genes were detected on the unpolished
and polished annotations using RGAugury3°. R genes present in the unpolished annotation but
not in the polished one were also rescued. The coding potential for each transcript was
computed with CPC231. The mRNAs with low coding potential were reclassified as IncRNAs.
Genes of which at least 50% overlapped a transposable element domain were removed.
Finally, any proteins that contained in-frame stop codons after phase correction were also
removed. The completeness of the final gene set was assessed using BUSCOv5.2.2 with the
embryophyta_odb10 and fabales_odb10 databases.

To ensure maximum comparability between annotations for Tiffany and Hedin/2 we
employed the transfer and gap-fill strategy. In this approach, Hedin/2 complete protein coding
gene annotations were transferred onto Tiffany assembly using Liftoff v1.6.132, Transcripts
with in-frame stop codons were removed and gaps between transferred genes were filled
with Tiffany genes from the annotation obtained using the method described above,
corresponding to genes removed due to in-frame stop codons and those which were Tiffany-

specific.

Symbiotic gene discovery

Total RNA sequencing was carried out for three biological replicates per condition. Eighteen
libraries were prepared, and paired-end lllumina HiSeqg mRNA sequencing (2x100bp RNA-Seq)
was performed by GeneWiz (Leipzig, Germany), which produced around 2 x 70 million reads
per library on average. Adaptor sequences were removed using CLC Genomics Workbench 11
(CLC Bio workbench, Qiagen, Aarhus, Denmark). Only inserts of at least 30 nt were conserved
for further analysis. Reads were mapped to the Hedin/2 genome using the CLC Genomics
Workbench 11 according to the manufacturer’s recommendations. The mapped reads for
each transcript were normalized as total counts and used for calculating gene expression.
Intact and broken pairs were counted as one. The total counts of each transcript under
different conditions were compared using proportion-based test statistics3® implemented in
the CLC genomic Workbench suite. This beta-binomial test compares the proportions of
counts in a group of samples against those of another group of samples. Different weights
were given to the samples, depending on their sizes (total counts). The weights were obtained
by assuming a beta distribution on the proportions in a group, and estimating these, along
with the proportion of a binomial distribution, by the method of moments. The result was a
weighted t-type test statistic. We then calculated a false discovery rate correction for multiple-
hypothesis tests®*. Only genes showing a difference of 10 reads between compared conditions

were considered as significantly expressed.
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Orthologous gene family identification

Genes from 19 legume species (Extended data Table 4) were clustered to determine the
orthologues relationship. The protein sequences from these species were aligned to each
other using BLASTP v2.2.26% with the parameter “evalue 1e-5”. The results were then used
to cluster the gene families by OrthoMCL v2.0.9%¢,

Phylogenetic analysis and divergence time estimation

The single-copy genes identified from 19 legume species (Extended data Table 4) by
OrthoMCL v2.0.9 were selected for the phylogenetic analysis. The four-fold degenerate
synonymous site (4d locus) was extracted to build the evolutionary tree by PhyML3” and
TreeBest (https://github.com/Ensembl/treebest). Molecular clocks and divergence times
were estimated using MCMCTREE in the PAML v4.538 package using the phylogenetic tree and
the divergence time of known species (published literature or

Timetree:http://www.timetree.org/).

Whole genome duplication

The whole-genome duplication of V. faba, M. truncatula and P. sativum were estimated using
the collinearity within each genome. First, synteny regions were identified using MCScanX 3°.
Then, the gene pairs in the synteny regions were used for 4dtv (four-fold degenerate
transversions) calculation. The transversion rate was corrected by the HKY*® model. The
synonymous (Ks) and non-synonymous (Ka) substitution was estimated by KaKs_Calculator
1.24,

Tandem duplicate gene discovery

Tandemly duplicated genes were also discovered using the CRBHits v0.0.4 package®? function
tandemdups. To confirm the results, genes were also classified using DupGen_finder*? , with
Arabidopsis thaliana serving as the outgroup. Vicia sativa was excluded from TD analysis due
to suspected fragmentation of its structural annotation, which could result in inflation in the
number of genes annotated as TDs (Supplementary Table 4). The age of duplications was
estimated using T=Ks /2 r,r=1.5x 10 8. Ks was calculated using CRBHits using method ‘Li’.
Synteny between Hedin/2 and Tiffany genes was analysed using CRBHits v0.0.4 package
function rbh2dagchainer (type = "idx", gap_length = 1, max_dist_allowed = 20), which
internally uses the DAGchainer algorithm*. Syntenic TDG clusters were discovered by
connecting TDG clusters in individual genomes using the syntenic gene pairs found between
Hedin/2 and Tiffany. To minimize the effect of unplaced genes on copy number variation
(CNV) analysis, as unplaced genes can result in spurious CNV calls, we corroborated the

synteny-based results with Orthofinder® analysis. Only clusters that had the same or higher
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copy number in the same genotype, based on both synteny and Orthofinder results (for
Orthofinder only genes on the matching chromosome and unplaced genes were considered),
were retained for further analysis. Syntenic clusters were functionally annotated with Human

Readable Descriptions (HRDs) using prot-scriber v0.1.0 (https://github.com/usadellab/prot-

scriber).

SPET library preparation and sequencing

Quantified genomic DNA using the Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA) was used
for library preparation, applying the Allegro Targeted Genotyping protocol (NUGEN
Technologies, San Carlos, CA), which relies on a panel of probes. 20 ng/uL of DNA in solution
was used as input following the manufacturer’s instructions. All libraries were quantified using
the Qubit 2.0 Fluorometer and library size verified using the High Sensitivity DNA assay from
Bioanalyzer (Agilent Technologies, Santa Clara, CA) or the High Sensitivity DNA assay from
Caliper LabChip GX (Caliper Life Sciences, Alameda, CA). Libraries were also quantified by
gPCR, using the CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories,
Hercules, CA). Samples were sequenced at IGA Technology Services (IGATech, Udine, Italy).
DNA sequencing was performed on the Illumina NovaSeq 6000 (lllumina, San Carlos, CA) in a

2x150 PE configuration, generating an average of 7.73 M sequenced read pairs per accession.

Hilum colour and Histology

To examine hilum morphology, seed coat containing hilum from inbred lines Hedin/2 (dark
hilum) and Tiffany (pale hilum) were dissected from mature dry seed, saturated with 2%
sucrose solution under vacuum for 1 hour and embedded in cryo-gel media (Cryo-gel Leica).
Samples were cut in cryotome (Leica CM1950, US) into 15um transversal sections) and stained
with Toluidine blue O (0.01 %, w/v in water; Sigma Aldrich, CZ) as previously described?®4’,
Observation and photography was done on an Olympus BX 51 microscope (Olympus Corp.,
Tokyo, Japan) in bright field and figures were documented with an Apogee U4000 digital
camera (Apogee Imaging Systems, Inc., Roseville, CA, USA). For the investigation of metabolite
content of surface layers of the hilum by laser desorption-ionization imaging mass
spectrometry (LDI-MS), seeds were mechanically cracked and hila with small part of
surrounding tissue were separated from the rest of seed coats using microscissors
(MicroSupport, Shizuoka, Japan), fixed using a double-sided tape on MALDI plates with outer
surfaces facing up and analysed as previously described*®*8, LDI-MSI experiments were done
using a high-resolution tandem mass spectrometer (HRTMS) Synapt G2-S (Waters, Milford,
USA). The vacuum MALDI ion source used was equipped with a 350 nm 1 kHz Nd:YAG solid
state laser. Parameters of the mass spectrometer were set as follows: Extraction voltage at 10

V, Collision energies: Trap collision energy (TrapCE) 4 eV, Transfer collision energy (TransferCE)
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2 eV. TrapCE at 25 eV and LM resolution at 10 were used for MS/MS experiments. Instrument
calibration was done using red phosphorus (1 mg.mL?, suspension in acetone). Mass imaging
data collection was driven by HDImaging 1.5 software (Waters). The laser beam size was 60
um. Spectra were collected in positive and negative ionization mode with laser energy 300
arb. Laser repetition rate was set up at 1000 Hz. Mass range was 50-1200 Da.In order to fine-
map the HC locus, a cross was made between inbred lines Disco ( @ pale) and Hedin/2 (J dark).
F4 seed from 337 Fs progeny of 21 F; individuals shown by flanking marker analysis to be
heterozygous across the HC interval were scored for hilum colour resulting in a 253 dark:84
pale hilum ratio (x> = 0.00098, p-value — 0.9749 for fit to expected 3:1 ratio). A pool composed
of equimolar quantities of DNA from each of the 84 recessive pseudo-F2 individuals was
created and subjected to SPET re-sequencing alongside DNA samples of the parent lines. In
order to study expression of the PPO gene family in mid- to late- pod fill, individual plants of
Hedin/2 and Tiffany, were grown in the glasshouse until the most mature pods on lower nodes
had almost reached maturity and the uppermost nodes were still in flower, giving a gradient
of seed development. All pods were then harvested and dissected into pod wall, testa,
cotyledon, funicle and embryo axis samples (Extended Data Figure 17); fresh weights of each
tissue recorded. Because all pods on a given node are not fertilized synchronously nor
necessarily progress through development at the same rate, and based on insights from our
prior studies of faba bean seed development*®, we categorised individual pods into mid- and
late- pod-fill stages in terms of the ratio of cotyledon weight to the total seed weight
(Extended Data Figure 18).

Comparative Sequence Analysis

To identify PPO homologues in Hedin/2 and Tiffany proteomes, the protein sequence from
the pea PPO1/Pl gene (Psat1g206360) was used as a BLAST query. Multiple sequence
alignment of PPO protein sequences was performed using Clustal Omega v1.2.4. The
evolutionary history was inferred using the Maximum Likelihood method and JTT matrix-
based model as implemented in MEGA X with 100 bootstrap replicates. The complete PPO
regions (from the beginning of the first to the end of the last PPO gene and 10,000 bp flanking
sequences on both sides) were extracted and aligned using minimap2 v 2.24-r1122. Then,
20,000 bp downstream and upstream from the transcription start of PPO-2 were extracted

and similarity between sequences was visualised using FlexiDot.
Gene Expression Analysis

RNA was extracted from 100mg of flash-frozen dissected tissue (testa and cotyledon) using a

Sigma Spectrum Kit (STRN250) according to the manufacturer’s directions, except that
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incubation was made at room temperature after DNA digestion. While extraction of RNA from
cotyledons was performed exactly as per manufacturer’s specifications, testa tissue was
disrupted in an extraction buffer consisting of CTAB, PVP, 2M Tris pH 8, 0.5M EDTA pH 8, 4M
NaCl, spermidine and beta mercaptoethanol, followed by precipitation with 8M lithium
chloride (instead of the kit’s lysis step). Total RNA was quantified using Qubit RNA IQ assay
and normalised prior to preparation of directional mRNA sequencing libraries using standard
methods. Between 4.1 and 5.6 million Illumina PE150 short reads per library (3x replicates, 2x
tissues, 2x genotypes) were generated. Hedin/2 and Tiffany gene expression was quantified
using Kallisto v 0.44.0 by pseudo-aligning RNA-Seq reads to respective reference transcripts.

Transcript level abundance was converted to gene level abundance using tximport.
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Extended Data Tables

Extended data Table 1. Summary of Genome assembly statistics

Hedin/2 Tiffany
Total assembly length 11.9 Gb 11.4 Gb
Total contig number 10,721 14,378
Contig N50 2.7 Mb 1.6 Mb
Contig N90 737 Kb 403 Kb
Longest contig length 70 Mb 25 Mb
Pseudomolecule size 11.2Gb 10.9 Gb
Unanchored size 648 Mb 509 Mb
Number of gene models 34,221 34,043
Chromosome length (bp)
chr1 3,379,771,922 3,458,517,216
chr2 1,716,769,615 1,792,532,106
chr3 1,637,815,978 1,706,184,849
chr4 1,645,877,737 1,654,096,858
chrb 1,365,994,436 1,478,006,265

chr6

1,520,236,431

1,511,980,837
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Extended data Table 2. Structural annotation statistics for Hedin/2 and Tiffany
assemblies

Annotation Gene total length [ Gene Gene Exon total Exon CDS
average | number length average | average
length length length
Hedin/2 all 104,751,785 2,357 44,439 | 42,500,136 224 1163
(coding + IncRNA)
Hedin/2 complete 95,042,832 2,777 34,221 | 39,546,400 231 1164
(coding with complete
CDS only)
Tiffany complete 95,719,908 2,812 34,043 | 38,674,818 226 1148

(transfer + gap fill)
(coding with complete
CDS only)
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Extended data Table 3. Annotation BUSCO completeness

Annotation | Complete [S:Single | Fragmented | Missing | Groups BUSCO database
copy, D:Duplicated] checked
C:96.8%[S:78.0%,D: 2.0% 1.2% 255 embryophyta_odb10
18.8%]
Hedinall =G94 7%5:906%D: | 0.9% 44% | 5366 fabales_odb10
4.1%]
C:96.8%[S:78.0%,D: 2.0% 1.2% 255 embryophyta_odb10
18.8%]
Hedin/2
complete C:94.5%[S:90.4%,D: 0.9% 4.6% 5366 fabales_odb10
4.1%]
C:94.9%[S:77.3%,D: 2.7% 2.4% 255 embryophyta_odb10
Tiffany 17.6%]
complete
(transfer+gap | C:90.2%[S:85.7%,D: 1.0% 8.8% 5366 fabales_odb10
fill) 4.5%)]
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Extended data Table 4. Summary statistics of gene families

Species Gene Genes Un- Family Unique Average
number in clustered number families genes
families genes per
family

Arachis
duranensis

32,899 27,703 5,196 17,302 341 1.6
Arachis
ipaensis 35,785 28,950 6,835 17,438 573 1.66
Cajanus cajan

30,842 26,425 4,417 16,507 256 1.6
Cicer arietinum

28,260 25,996 2,264 15,181 322 1.71
Glycine max

51,431 42,082 9,349 17,633 396 2.39
Lens culinaris

38,624 33,149 5,475 16,672 929 1.99
Lotus
Japonicus 25,460 23,104 2,356 14,613 324 1.58
Lupinus albus

37,837 30,588 7,249 17,318 289 1.77
Lupinus
angustifolius

33,663 31,447 2,216 16,644 200 1.89
Medicago
truncatula

31,571 28,978 2,593 16,857 368 1.72
Phaseolus
vulgaris 27,263 25,366 1,897 16,890 112 1.5
Pisum sativum

43,677 32,990 10,687 18,684 1,476 1.77
Prunus
persica* 26,631 22,127 4,504 14,490 604 1.53
Trifolium
pratense 33,342 31,284 2,058 17,108 388 1.83
Trifolium
subterraneum

39,578 29,312 10,266 17,066 740 1.72
Vicia faba

34,221 28,970 5,211 17,721 700 1.63
Vicia sativa

43,831 34,301 9,530 18,275 1,246 1.88
Vigna
angularis 26,445 24,753 1,692 16,506 111 1.5
Vigna radiata

26,715 24,917 1,798 16,511 144 1.51

*outgroup.
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Extended Data Figure 1. K-mer and flow-cytometry based estimation of faba bean cv. Hedin/2 genome size.
a, Histogram of relative DNA content obtained using flow cytometric analysis of fluorescence of cell nuclei
stained by propidium iodide. The nuclei were isolated simultaneously from leaf tissues of V. faba cv. Hedin/2
and Secale cereale cv. Dankovske, which served as an internal reference standard. The ratio of peaks
representing G1 nuclei informs the ratio of genome sizes. b, k-mer based estimation of genome using Hedin/2
raw HiFi sequencing data.


https://doi.org/10.1101/2022.09.23.509015
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.23.509015; this version posted September 26, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a chr chr2 chr3
600 4 N, Ay 200 | 7
So N\ .
~ o, ’
500 - - 200 \ ’J
e 150 4 o
i -, °N, -
400 Sway 150 o N ld
3 300 ™~ 3 \‘\ 3

100 | o -
100 4 \ /
200 “~ ...-J.

100 4 . e i
.,
., z
04 0 - od ¢
T T T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 0 500 1000 1500
Physical position (Mb) Physical position (Mb) Physical position (Mb)
chra chrs chré
200 200 -
. 140 - - -
" K N
\ 120 | J \
150 150 .
‘.‘s 100 / % S
‘v Dl -~
— o P \
S 100 o s . S 100 4 .,
S - S Pp— S s
= 60 | - ~
. -~
Y .
~ 4 :
50 o \\ “© 50 o s
.
204 e *
/ N,
. r s
04 > 0o ? 0 .
T T T T T T T T T T T T T T T T
0 500 1000 1500 0 200 400 600 800 1000 1200 1400 0 500 1000 1500
Physical position (Mb) Physical position (Mb) Physical position (Mb)
chrt chr2 chr3
b . 30000 4 .
10000 o . 25000 |
. 25000 -| . i
2 5000 - 2 ! 2 20000 |
8 8 20000 o H 8
g0 - g t & 15000 H
8 . 4 15000 | ‘ 8
] ] ]
8 8 8
o - 2 o ° -
g 4000 i % 10000 g 10000
g g g
g g g
= = =
2000 | l 5000 5000 |
o
'y -y s
04 - 0+ 0+ -
T T T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 0 500 1000 1500
Physical position (Mb) Physical position (Mb) Physical position (Mb)
chra chrs chré
25000 4 12000
20000 - .
w000 4 ® 10000 4 o
o . o . P
2 . 2 H 2
8 1s000 4 & ] s 8 8000 o
5 $ 5 15000 » 5 .
a a x a .
3 . 2 4 6000 - §
§ 10000 g g s
e . £ 10000 4 £ -
B s = :
g g 8 4000 o
g g g
£ 5000 o H 2
5000 | 2000
i - . .
o . o it N 0o o .
T T T T T T T T T T T T T T T T
0 500 1000 1500 0 200 400 600 800 1000 1200 1400 0 500 1000 1500
Physical position (Mb) Physical position (Mb) Physical position (Mb)

Extended Data Figure 2. Collinearity of physical and genetic maps and ChlP-seq
localisation of centromeres. a, Collinearity of physical and genetic maps. The antidiagonal
alignments in chr1, chr2, chr4, and chr6 were a result of the arbitrary orientation of linkage
groups in prior genetic maps. b, chromatin immunoprecipitation sequencing (ChiP-seq)
localization of centromeres.
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Extended Data Figure 3. A dot plot showing whole genome alignment between Hedin/2
and Tiffany.
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Extended Data Figure 5. A plot of homologous gene number in each of 19 species. Single-copy
orthologues, single-copy homologous genes in the gene families shared among species; multiple-
copy orthologues, multicopy homologous genes in gene families shared among species; unique
paralogues, genes of the strain unique to the family; other orthologs, all other genes; unclustered
genes, genes not clustered into any family The horizontal bars represent the number of protein-
coding genes.
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Extended Data Figure 6. Distribution of the synonymous substitution rate (Ks)
between paralogous gene pairs of faba bean and other legumes.
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Extended Data Figure 8. Full-length representation of Copia and Gypsy super family. Ogre
and SIRE are the largest size element in Gypsy and Copia respectively.
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genome. b, Expression comparison between all annotated genes and gene-body
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Extended Data Figure 10. Pretzel (pulses.plantinformatics.io) visualisations
integrating the consensus genetic map from Webb et al. (2016) together with 3
QTLs for frost tolerance from Sallam et al. (2016) (left axis), aligned to the Hedin/2
genome (middle and right axes). The gene annotation for Hedin/2 is shown
together with the three most abundant repeat types (Ogre, SIRE and rnd-1). Pretzel
enables rapid, interactive interrogation of multiple data types and integration of
legacy knowledge with the new assemblies.
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Extended Data Figure 11. a, Summary of high-quality SNPs identified in each of the
six chromosomes. b, Distribution of SNPs along each chromosome. ¢, The optimal K
value estimated by Admixture analysis.
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Extended Data Figure 12. Genetic structure and association scan. a, Population structure
grouped by ADMIXTURE b, Principal components analysis (PCA) of 197 accessions grouped with
regard to subpopulation group. ¢, PCA of 197 accessions colored based on geographic origin. d,
Neighbour joining (NJ) tree showing relationships among subpopulation group from 197
accessions.
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Extended Data Figure 13. FIA-MS showing polymerization of phenolic compounds.
Distribution of dimer and trimer of chlorogenic acid (1 and 2) and gallocatechin (3 and 4) on
the surface of pigmented (A, Hedin/2) and non-pigmented (B, Tiffany) hila. Zoomed spectra of
monomer, dimer and trimer of chlorogenic acid (5; signals at m/z 353.0811; 705.1667 and
1057.2427) and gallocatechin (6; signals at m/z 305.0646, 609.1223, 913.1827) collected from
pigmented (A, Hedin/2) and non-pigmented (B, Tiffany) hila (the spectra showing particular
signals are zoomed on the same intensity for both genotypes, A and B, e.g. the intensity
1.30x105 is set for spectra 5A and 5B, etc.), spectra are collected from the compact surface
without the hilar groove area and edges of seed coat fragment.
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Extended Data Figure 14. PCA of libraries showing tissue and developmental stage
differentiation. a, Hedin/2 libraries. b, Tiffany libraries.


https://doi.org/10.1101/2022.09.23.509015
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.23.509015; this version posted September 26, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

3,267,631,889 1 e PPO-8a

PPO-8b

PPO-7

- PPO-6

* PPO-5
PPO-4

Tiffany chr1

PPO-4c
PPO-4b

PPO-3

pPO:1"
PPO-1
3.291,199,855

3,262,628,982 -

PPO-2

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

PN

. o PPO-8b
. °
PPO-3 PPO-4

PPO-6 PPO-7 PPO-8a

Extended Data Figure 15. A dot plot alignment of PPO locus of Hedin/2 and Tiffany. The red
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Extended Data Figure 16. Principle behind individual annotations and ‘transfer and
gap fill' strategy.
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Extended Data Figure 17. Dissected parts of a pod of cv ‘Tiffany’: pod wall, testa, cotyledon,
funiculus and embryo axis.
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Extended Data Figure 18. Composition and phenotypic differentiation of testa and
cotyledon libraries from developmental pod-fill gradient.
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