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Abstract  

In this study, we measured the kinase activity profiles of 32 pre-treatment tumour biopsies of HER2-
positive breast cancer patients. The aim of this study was to assess the prognostic potential of 
kinase activity levels to identify potential mechanisms of resistance and to predict treatment 
success of HER2-targeted therapy combined with chemotherapy. Indeed, our system-wide kinase 
activity analysis, based on targeted mass spectrometry measurement of kinase activation loops, 
allowed us to link kinase activity to treatment response. Overall, high kinase activity in the HER2-
pathway was associated with good treatment outcome. Furthermore, we found eleven kinases 
differentially regulated between treatment outcome groups. Amongst those, well-known players in 
therapy resistance were found, such as p38a, ERK and FAK, as well as a potential new player in 
drug resistance, namely MARK. Lastly, we defined an optimal signature of four kinases in a multiple 
logistic regression diagnostic test for prediction of treatment outcome (AUC=0.926). This kinase 
signature showed high sensitivity and specificity, indicating its potential as predictive biomarker for 
treatment success of HER2-targeted therapy.  
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Introduction 
Invasive breast cancer (IBC) is a highly heterogeneous disease, which is classified in subtypes with 
distinct molecular signatures (Hu et al. 2006). The disease course, survival rate and treatment 
strategy is highly dependent on the subtype. Around 15% of all breast cancer cases overexpress 
the human epidermal growth factor receptor 2 (ERBB2 or HER2), and is therefore referred to as 
HER2+ (HER2 positive) breast cancer. This subtype is more aggressive and typically has a poor 
treatment outcome (Harbeck et al. 2019; Andrulis et al. 1998; Owens, Horten, and Da Silva 2004). 
The development of antibodies blocking the HER2 receptor (Trastuzumab, TTZ, and Pertuzumab, 
PTZ) have improved the clinical outcome of HER2+ patients profoundly (Carter et al. 1992; 
Michailidou, Trenz, and de Wilde 2019; 2019; Owens, Horten, and Da Silva 2004; Schneeweiss et al. 
2013). Consequently, these drugs have found their way to standard of care (Swain et al. 2015; 
2013).  

Treatment resistance against HER2-inhibition (both primary and acquired) is observed frequently 
(Pernas and Tolaney 2019). The development of treatment resistance has been extensively studied 
in the last decade resulting in the discovery of a multitude of different resistance mechanisms 
(Pernas and Tolaney 2019; Rimawi, Schiff, and Osborne 2015). Despite these discoveries, predictive 
biomarkers for treatment success are still absent, hampering effective clinical decision-making. 

Many of the proposed resistance mechanisms evolve around rewiring of cellular signalling 
pathways. This can be either due to activation of alternative survival routes bypassing the HER2-
pathway or the re-activation of HER2 and/or downstream signalling nodes via compensatory, 
redundant or mutated signalling molecules. The myriad of potential escape mechanisms 
demonstrates the need for patient-specific treatment strategies and hence appropriate patient 
stratification. However, the lack of effective diagnostic tools to pinpoint the rewiring mechanisms 
in a case-by-case fashion in a clinically relevant setting hampers biomarker identification and 
development of precision medicine.  

Several strategies exist to measure rewiring of cellular signalling pathways; however, none of them 
provide all the relevant information. Since cellular signalling is heavily dependent on rapid and 
reversible protein phosphorylation (P Cohen 2001; Philip Cohen 2002), gene-, transcript- and 
protein-based analysis are insufficient. These techniques provide insights into pathway alterations, 
yet fail to pinpoint pathway activation. Phosphoprotein analysis, such as phosphoprotein-specific 
western blots and discovery phosphoproteomics, provide a more detailed view on which kinase 
substrates are activated within a pathway. Antibody-based techniques are generally very sensitive, 
yet their use is restricted by the limited availability of phosphosite-specific antibodies. Furthermore, 
due to its poor multiplexing capabilities antibody-based studies are generally focussed on a few 
phosphosites, providing limited pathway coverage and only allow for hypothesis-driven research. 
Phosphoproteomics-based techniques provide a more system-wide view, covering multiple 
signalling pathways in a single analysis, making it ideal to monitor signal transduction rewiring and 
to find tumour resistance mechanisms. However, determination of the exact kinase responsible for 
pathway rewiring is hampered by information-bias of kinase-substrate pairs and kinase motifs.  

To overcome these limitations, a novel type of phosphoproteomics technology was developed 
previously, which allows for the direct measurement of kinase and pathway activity in a high-
throughput and precise manner, covering a large set of kinases (currently, one third of the total 
kinome) (Schmidlin et al. 2019). This technology, QuantaKinome™, is based on measurement of 
the phosphorylation of kinase activation loops (T-loops), which in the majority of cases is a direct 
proxy for kinase activity (Nolen, Taylor, and Ghosh 2004). The precise quantification of such a large 
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panel of kinase activities provides a comprehensive understanding of pathway activation and 
cellular rewiring in a simple, fast and precise way. Furthermore, since this approach does not rely 
on prior knowledge on substrate phosphorylation as surrogate for kinase activity, it allows for the 
discovery of the role of ‘dark’ or understudied kinases. Lastly, the unbiased system-wide approach 
grants the possibility of hypothesis-generating discovery studies.  

In the current study, we applied this kinase activation loop assay to 32 treatment-naive HER2+ 
breast cancer biopsies to identify kinases and pathways linked to treatment success and to 
improve patient stratification. We found that increased HER2-pathway signalling was associated 
with treatment success. Furthermore, we identified 11 kinase activation states that were 
differentially regulated between treatment outcome groups. Lastly, we defined a panel of 4 kinases 
that were predictive of treatment outcome; the high specificity and sensitivity of this panel 
illustrates the potential of kinase activity as a predictive biomarker for treatment success of HER2-
targeted therapy.  
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Results 
In order to identify kinase activities predictive of treatment success, we performed Quantakinome™ 
analysis on 32 treatment-naïve breast cancer biopsies. These clinical samples originated from the 
TRAIN-2 randomized phase 3 clinical trial (Van Der Voort et al. 2021; van Ramshorst et al. 2018) in 
which treatment-naive patients with stage II–III HER2+ breast cancer tumours were enrolled. All 
patients received therapy consisting of dual HER2 blockade (Trastuzumab and Pertuzumab) in 
combination with varying types of chemotherapy (with or without anthracyclines). The clinical 
outcome was defined as pathological complete response (pCR, no tumour cells left), near 
pathological complete response (npCR; <10% of cells contained invasive tumour cells) and no 
pathological complete response (No pCR; >10% tumour cells remaining). Patients classified as No 
pCR are referred to as treatment resistant throughout this study. Prior to drug treatment, a core 
needle biopsy was taken for local histology-based assessment and the remainder was stored for 
later analysis. In the current study, we received 32 of these pre-treatment tumour biopsy samples 
for QuantaKinome™ analysis. In total, 17 patients were classified as pCR, 6 as npCR and 9 as No 
pCR. A complete list of patient biopsy details is provided in Supplementary Table 1.  

The tumour biopsies were lysed, and the proteins were extracted and digested before being 
desalted on an automated platform, and spiked with an internal reference standard containing 
stable-isotope labelled standards for each phosphorylated kinase T-loop. Subsequently, 
phosphorylated peptides were enriched by automated phosphopeptide enrichment. Thereafter, the 
signal of 311 T- loop peptides was measured using a single targeted mass spectrometry assay on 
a triple quadrupole mass spectrometer. Finally, endogenous kinase T-loop signals in each sample 
were normalised using their respective internal standard, to achieve a precise quantification of 
kinase activation. The complete workflow is depicted in Figure 1A. 

In total, we successfully detected 307 kinase T-loop reference standards of which 56 were 
endogenously quantified. 5 of the endogenously detected T-loop phosphopeptides contained a 
methionine oxidation and 4 were doubly phosphorylated, yielding a total of 51 unique kinase 
activation states, which were mapped to 61 endogenous kinases (Supplementary Figure 1A). The 
number of quantified kinase T-loops per patient ranged from 20 to 40 and was comparable 
between the three treatment outcome groups (Figure 1B).  

 

Figure 1. Study overview. A) Experimental workflow. B) Number of kinase T-loops quantified per patient 
biopsy in each treatment outcome group. C) Reproducibility of a technical workflow replicate.  
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One patient biopsy sample contained enough material to perform the entire workflow in duplicate 
on the exact same sample allowing us to explore the reproducibility of the workflow. As shown in 
Figure 1C, the correlation between the two replicates is very strong (R=0.998). The high correlation 
coefficient together with a slope of one and an offset near zero indicates a high reproducibility of 
the method in clinical samples.  

A high dynamic range in the detection of kinases was found; the most abundant kinase T-loop 
(GSK3A [Y279]) was more than 4,400-fold higher abundant compared to the lowest detected kinase 
T-loop (NEK6 [S206]). Supplementary Figure 1B illustrates that all kinase families show a wide 
dynamic range and that the top five most abundant kinase T-loops are from the CMGC-family. 
Moreover, some kinases within the CMGC-family show high correlation, indicating that these 
kinases could be co-regulated. However, as shown in Supplementary Figure 1C, overall the kinase 
activity does not seem to be regulated family-wide, but rather on the individual kinase level. 
Typically, T-loop phosphorylation sites within the same kinase (such as CDK7 and MARK) have a 
high correlation.  

The biological relevance of the detected kinases is evident from their high mutation frequency in 
breast cancer, which is similar to other well-known non-kinase breast cancer markers such as 
BRCA2 and ESR1 (Supplementary Figure 1D). Furthermore, Supplementary Figure 1E illustrates 
that the quantified kinase T-loops in this study consisted of both extensively studied kinases (such 
as ERK1/2, p38A and JNK1/2/3) and under-studied kinases. 

Low kinase activity in HER2-pathway is associated with treatment resistance 

Since the targeted therapy used in this study is directed against HER2, we first explored the activity 
of kinases (by T-loop phosphorylation) relevant in this pathway. Firstly, the HER2-pathway was 
extensively covered in our dataset, including crucial kinases such as ERK, PDK1 and RSK1 (Figure 
2A). Importantly, we found a large number of kinases in this pathway differentially regulated 
between the tumours that were treatment resistant (no pCR) compared to the treatment 
responsive tumours (pCR and npCR). The majority of differentially regulated kinases showed a 
lower kinase activity in treatment resistant tumours (such as ERK1, ERK2, RSK1, CaMKID and p38). 
However, one kinase was found upregulated amongst the resistant tumours: Focal Adhesion 
Kinase (FAK). 

Unsupervised clustering of key kinases within the HER2-pathway grouped patients into two main 
clusters. One cluster contained the majority of the treatment resistant tumours and displayed low 
kinase activity levels (Figure 2B). Interestingly, we observed a kinase activity heterogeneity within 
patient groups, indicating that individual patients can have different nodes activated within the 
HER2-pathway, leading to a similar outcome. Overall, there is consensus on the pathway level: 
reduced kinase activity within the HER2-pathway was associated with treatment resistance. This 
could indicate that these tumours were less HER2-driven and hence less susceptible to HER2-
inhibition. 
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Figure 2. Low kinase activity levels within HER2 pathway are associated with treatment resistance. A) 
Graphical representation of HER2-pathway. Kinases quantified in this study are highlighted. B) 
Unsupervised clustering of HER2-pathway kinase activities (Euclidean distance, Z-scored data). 
*Significantly regulated kinase; #kinase T-loop peptide was shared with at least one paralog.  

Differentially regulated kinase activities are predictive of treatment outcome 

The primary goal of this study was to identify kinases that predict therapy response in HER2+ 
breast cancer treated with a combination of HER2-blockade and chemotherapy. An ANOVA-test 
revealed eleven kinases that were differentially activated between the pCR, npCR and No pCR 
groups. Unsupervised hierarchical clustering of these regulated kinases revealed two clusters of 
patients (Figure 3A). Cluster 1 consisted of mainly pCR tumours, which displayed a high relative 
kinase activity. Cluster 2 contained npCR and all No pCR tumours, characterised by generally lower 
kinase activity levels. As discusses above, many of these kinases were involved in the HER2-
pathway.  

MARK (microtubule affinity-regulated kinase, also known as Par-1), RSK1, CDK1 and CaMKID were 
significantly downregulated amongst treatment resistant tumours and showed intermediate levels 
for the npCR tumours (Figure 3B, Supplementary Figure 2A). P38A, ERK1 and ERK2 contrarily were 
downregulated in both the npCR and No pCR tumours compared to the pCR tumours (Figure 3C, 
Supplementary Figure 2A). This suggests that p38A, ERK1 and ERK2 could be important in 
treatment sensitivity yet are not sufficient for a full treatment response, whereas MARK, RSK, CDK1 
and CaMKID are stronger determinants for a complete treatment response. Apart from CDK1 and 
MARK, all of these kinases were involved in the HER2-pathway highlighting that reduced HER2-
pathway kinase activity was linked to treatment resistance.  

Interestingly, FAK showed an opposite trend, displaying a higher activity in the No pCR tumours 
(Figure 3D). FAK integrates signalling events from two different types of receptors; it is a key 
downstream kinase of both growth factor and integrin receptors. Hence, increased FAK activity 
suggests that these alternative signalling routes might be important in treatment resistant tumours 
and that tumours could escape HER2-inhibition via this alternative signalling node.  

To assess whether kinase activity levels could be used to predict treatment outcome, a receiver-
operating characteristic (ROC) curve analysis was performed using both single kinase activity 
levels and a panel of kinases. For clinically relevant predictions two patient groups were formed; 
pCR patients were considered “responders”, whereas No and npCR patients were designated “non-
responders”. The kinase activity differences between these two groups and corresponding ROC 
characteristics are tabulated in Table I. 
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Table I: Kinase activities regulated in clinical groups and used for ROC analysis 

Kinase 
Activity 

Log2 FC 
Responders vs. 

Non-Responders 
T-test  

p-value 

No. 
Patients 
Detected AUC 

ROC  
p-value 

ERK2 (T185) 1.10 <0.001 32 (100%) 0.847 0.0008 
MARK1 
(S219)# 0.75 0.001 26 (81.3%) 0.866 0.0013 
RSK1 
(T573)# 0.89 0.003 32 (100%) 0.792 0.0049 
CaMK1D 
(T180) 1.15 0.007 28 (87.5%) 0.797 0.0081 
ERK1 (T202) 0.72 0.008 32 (100%) 0.741 0.0202 
FAK (Y576) -0.64 0.009 22 (68.8%) 0.818 0.0115 
p38A (T180) 0.78 0.010 26 (81.3%) 0.764 0.0240 
MARK1 
(T214)# 1.10 0.013 13 (40.6%) 0.762 0.1161 
CaMKIV 
(S189)# 0.42 0.026 24 (75%) 0.748 0.0397 
p38A 
(T180+Y182) 0.54 0.031 29 (90.6%) 0.733 0.0325 
PAK4 (S474) 0.57 0.046 32 (100%) 0.694 0.0616 
DDR1 (Y796) -2.22 0.049 7 (21.9%) 1.000 0.0339 

# phosphorylated T-loop shared with protein paralogs.  

The overall performance of our diagnostic markers to predict treatment outcome was assessed 
using the area under the curve (AUC) of the ROC. The AUC for the individual kinase activity 
measurements ranged from 0.866 to 0.694 (Table I, Figure 3E). The two most significantly 
regulated kinase activities (ERK2 T185 and MARK1 S219) showed good predictive potential with 
an AUC ≥0.85.  

Previous research has shown that tumours display considerable heterogeneity between patients; 
tumours utilise different signalling routes to drive tumour growth or treatment evasion (Satpathy 
et al. 2020; Krug et al. 2020). Indeed, we also observed varying kinase activity levels between and 
within the patient groups in this study (Figure 2A and Figure 3A). Therefore, to account for this 
patient heterogeneity in a diagnostic test, we explored the use of a panel of kinase activities to 
better predict treatment response. The first kinase panel consisted of 6 kinase activities (RSK1 
T573, CaMK1D T180, p38A T180, ERK1 T202, ERK2 T185, MARK1 S219) from the HER2-signalling 
pathway that were selected based on their p-value (<0.05), fold change (>1.5-fold) and detectability 
(detected in at least 80% of patients). For the second panel, kinase activation states were only 
considered if they were significantly regulated and detected in all patients. This resulted in a set of 
4 kinases (RSK1 T573, ERK1 T202, ERK T185, PAK4 S474). A multiple logistic regression of both 
kinase signatures resulted in higher AUC values (0.962 and 0.926, respectively) compared to the 
best single kinase predictors (Figure 3F). In summary, the 4-kinase panel showed a strong basis 
for a prognostic test that performed better than the best single kinase T-loop (MARK1 S219) with 
an added benefit of 100% detectability compared to 81.3%.  
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Figure 3. Kinase activities (by T-loop phosphorylation) differentiate treatment outcome groups. A) Heatmap 
of unsupervised clustering of all significantly regulated kinase T-loops (ANOVA p-value < 0.05) (Euclidean 
distance, data was Z-scored). # kinase T-loop was shared with at least one close paralog. B-D) Boxplots of 
regulated kinase T-loops. * p-value < 0.05; ** p-value < 0.001. E) Receiver operator characteristics (ROC) 
curve analysis to predict treatment outcome based on kinase T-loop abundance for single kinases. F) ROC 
curve to predict treatment outcome based on a panel of kinases. Six-kinase panel consisted of kinase T-
loops detected in at least 80% of the patients, with a minimum of 1.5 fold difference and max p-value of 
0.05. Four-kinase panel consisted of kinase T-loops detected in all patients with p-value < 0.05.  
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Conclusion and discussion 
The significance of phosphorylation dynamics and kinase activity in health and disease is 
indisputable. In this study, we applied a method previously developed by Schmidlin et al. (Schmidlin 
et al. 2019) for the direct measurement of kinase activity (as measured by kinase T-loop 
phosphorylation) in 32 breast cancer biopsies. Results of this novel technology demonstrated a 
high reproducibility and sampling depth from low sample quantities. We quantified 56 kinase 
activation states, largely covering the HER2-pathway. Classical approaches use substrate 
phosphorylation as proxy for kinase activation; however, determination of the exact activated 
kinase is hindered by information-bias and overlapping substrate specificity. Our kinase T-loop 
assay contrarily, directly infers kinase activity from T-loop phosphorylation.  

The primary goal of this study was to explore the potential of kinase activation states in predicting 
therapy response in HER2+ breast cancer patients. 11 kinase activation states were significantly 
regulated between the different response groups. Patients that responded well to therapy showed 
a generally higher kinase activation profile, especially in the HER2-pathway. Poor responders 
displayed reduced kinase activities within the HER2-pathway, indicating a lower HER2-dependency 
among these tumours and hence poor response to HER2-inhibition. This is in line with previous 
research showing that decreased HER2-expression levels were linked to unfavourable treatment 
outcomes (Nuciforo et al. 2016; Baselga et al. 2014). Importantly, we observed heterogeneity on 
the individual kinase level within the HER2 pathway, highlighting the importance of a broad 
coverage of signalling nodes to catch tumour heterogeneity for mapping pathway activation.  

The prognostic value of kinase activation levels was demonstrated by ROC analysis. Several kinase 
activation states were indeed predictive for treatment success of HER2-targeted therapy. 
Furthermore, the prognostic power was improved when a panel of kinase activities was used; the 
benefit of this panel compared to single kinase activities likely results from the heterogeneity in 
activating signalling nodes between patients. Hence, combining the activation states of multiple 
kinases within a single diagnostic test is crucial.  

In this study, we found significant downregulation of p38A [T180] amongst the treatment resistant 
tumours. Previous research has revealed the highly complex and context-specific function of p38 
in drug resistance in cancer. In leukaemia, upregulation of p38 is linked to drug resistance against 
genotoxic chemotherapy (Gao and Liu 2016), whereas the opposite holds true for targeted therapy; 
increased p38 phosphorylation is then linked to increased drug sensitivity (Parmar et al. 2004; 
Dumka et al. 2009). Furthermore, resistance against EGFR inhibitors in lung cancer can be 
overcome by dual inhibition of MEK and PI3K via activation of p38 signalling (Sato et al. 2018). The 
antibody-based techniques used as readout for p38-activation could partially explain the different 
roles attributed to this kinase, since distinct biological functions have been ascribed to different 
phosphorylation states of p38 (Mittelstadt et al. 2009). Due to the close proximity of these 
phosphorylation sites in the kinase T- loop, these are difficult to distinguish using antibodies. In our 
study, we quantified multiple T-loop activation states of p38A, of which only p38A [T180] was found 
significantly changing (Supplementary Figure 2B). This suggests diverse functions of p38A 
activation states and highlights the potential of our method to distinguish between these kinase 
states.  

Among the treatment resistant tumours, we found a significant upregulation of FAK activity at FAK 
Y576. A growing body of evidence suggests that FAK may play an important role in cancer biology 
and therapy resistance and a variety of FAK-inhibitors is currently in development (Lee et al. 2015; 
Lv et al. 2018). FAK has been found over-expressed and/or hyper-phosphorylated in many cancers, 
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including breast cancer (Weiner, Liu, and Craven 1990; Park et al. 2010). This over-expression or 
over-activation is associated with increased cell motility, survival, proliferation and poor clinical 
outcome (Balsas et al. 2017; Ferguson and Gray 2018; Pylayeva et al. 2009; Fan et al. 2016). 
Furthermore, FAK has been linked to Trastuzumab resistance via compensatory cross-talk (Park 
et al. 2010) and inhibition of FAK has been shown to help to overcome this resistance (Lazaro et 
al. 2013). Our data is in agreement with these findings and suggests that over-activation of FAK 
might indeed play a role in reduced drug sensitivity. The increased FAK activity could provide 
alternative signalling nodes aiding in the tumour’s escape of HER2-inhibition.  

In addition to the differential regulation of these well-described kinases, we also identified a 
significant downregulation of the relatively unexplored kinase MARK among treatment resistant 
tumours. This serine-threonine kinase is often found amplified in breast cancer (Supplementary 
Figure 1D) and plays a role in cell motility and regulation of energy metabolism. Recently, MARK1 
has been discovered as the direct target of microRNA in both cervical and colorectal cancer where 
it was linked to proliferation and cell migration (Natalia et al. 2018; Tang et al. 2019). Furthermore, 
MARK is a substrate of LKB1, a well-known tumour suppressor gene linked to metastatic outgrowth 
of cancer cells (Lizcano et al. 2004; Spicer et al. 2003; Goodwin et al. 2014). In this study, we link 
increased MARK activation to better treatment response and show that the activation status of this 
kinase is predictive for drug resistance in this cohort of patients. Since computational tools used 
in shotgun phosphoproteomics exploit substrate phosphorylation as surrogate for kinase activity, 
it is inherently biased towards well-studied kinases. Hence, a kinase such as MARK (for which the 
downstream targets are largely unknown) will remain hidden in these conventional methods. The 
direct measurement of kinase activity used in this study does not suffer from this information-bias 
and is therefore able to identify this kinase as a potential new player in drug resistance.  

The suitability of the kinase T-loop assay as a diagnostic tool in breast cancer treatment requires 
further validation in larger clinical cohorts. However, we believe that our study shows the large 
potential of this technology in the prediction of treatment response in vivo.  
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Method 

KEY RECOURCES TABLE 

 

RESOURCE AVAILIBILITY  
Lead contact 

Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the lead contact, Maarten Altelaar (m.altelaar@uu.nl). 
  

REAGENT SOURCE IDENTIFIER 
Biological samples 
Human IBC tumour 
samples 

TRAIN2 clinical trial https://clinicaltrials.gov/ct2/show/NCT01996267 

Chemicals, peptides and recombinant proteins 
Sodium deoxycholate 
(SDC) 

Sigma Aldrich MFCD00064139 

Tris(2- carboxyethyl) 
phosphinehydrochloride 
(TCEP) 

Sigma Aldrich MFCD00145469 

Chloroacetamide (CAA) Sigma Aldrich MFCD0008027 
TRIS Sigma Aldrich  
PhosSTOP Merck 4906837001 
cOmplete, Mini, EDTA-free 
Protease Inhibitor Cocktail 

Merck 11836170001 

Trypsin  Thermo Scientific Prod# 90057S 
LysC Wako 125-05061 
SpikeMix Kinase Activation 
Loops (Human) - heavy 

JPT Germany SPT-KAL-POOL-L-100pm 

iRT Kit Biognosys Ki-3002-1 
Critical commercial assays 
AssayMap Cartridge Rack, 
Fe(III)-NTA 5 mL 

Agilent Technologies Cat#G5496-60085 

AssayMAP Cartridge Rack 
C18 5ul  

Agilent Technologies Cat# 5190-6532 

Bradford Protein Assay  Bio-Rad 5000006 
PepMap RSLC C18 2um, 
100A 75x25 

Thermo Scientific ES802 

Deposited Data 
Skyline documents Panorama  
Raw files Panorama  
Software and algorithms 
Skyline  Skyline  https://skyline.ms/project/home/software/Skyline/ 
GraphPad Prism 9.3.0 Graphpad Software Inc https://www.graphpad.com/scientific-

software/prism/ 
R v4.3.3 https://www.r-

project.org/ 
https://www.r-project.org/ 

RStudio (v2022.02.1 461)  RStudio, PBC https://www.rstudio.com/ 
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Materials availability 
The study did not generate new unique reagents. 

Data and code availability  

• The mass spectrometry data used in this study has been deposited to Panorama  

• This study did not generate original code 

• Any additional information required to reanalyses the data reported in this paper is 
available form the lead contact upon request  

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
Patient biopsies were obtained from patients enrolled in the TRAIN-2 study (van Ramshorst et al., 
2016). 

METHOD DETAILS 
Biopsy preparation  

Patient biopsies were obtained from patients enrolled in the TRAIN-2 study (van Ramshorst et al. 
2016). The study was approved by the ethical committee and informed consent was obtained. 
Patients overexpressed HER2 and received neoadjuvant therapy consisting of Trastuzumab and 
Pertuzumab supplemented with either 5-fluorouracil, epirubicin, cyclophosphamide or a 
combination of paclitaxel and carboplatin. Prior to start of the treatment a 14G needle biopsy was 
taken of approximately 30 µm and flash frozen in liquid nitrogen. Part of this biopsy was used to 
perform hematoxylin and eosin (HE) staining to determine tumour cell content, while 1/3 of the 
biopsy was snap frozen and kept at -80°C for QuantaKinome™ analysis. Only samples with a 
minimum tumour percentage of 60% were used in this study. After nine cycles of drug treatment, 
the response was determined at surgery.  

Kinase activity analysis using QuantaKinome™ 

The QuantaKinome™ platform was applied to measure T-loop phosphopeptides by using a targeted 
LC-MS approach (QuantaKinome™, Pepscope B.V.), which is based on the method described in 
Schmidlin et al. Briefly, frozen biopsy were lysed and sonicated in lysis buffer. For each sample, 200 
μg of protein was processed. After reduction, alkylation and digestion, all samples were dried and 
stored at -20°C until phosphoenrichment. Phosphorylated peptides were desalted and enriched 
using an automated platform. Samples were dried and stored at -80°C until LC-MS analysis. Next, 
samples within one experiment were measured in randomized order using the QuantaKinome™ 
targeted LC-MS assay (QuantaKinome™ Library v1, Pepscope). 

QUANTIFICATION AND STATISTICAL ANALYSIS  
Preprocessing of datasets 

Raw files were uploaded into Skyline (MacLean et al. 2010) and peak boundaries were manually 
checked and adjusted if needed. Subsequently, an in-house build R-script was used to filter-out 
endogenous peptides with interference. First, all transitions with a signal-to-noise level below three 
times the background were removed. Subsequently, for each peptide the relative contribution of 
each transition to the total peptide signal was calculated and light transitions with a difference of 
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more than 20% compared to the heavy standard relative contribution were removed. Next, peptides 
with less than two transitions were removed. Lastly, peptides that were detected in less than five 
files were removed. Remaining peptides were visually inspected in Skyline. After peptide 
identification, the transitions suitable for quantification were chosen to reliably quantify the 
peptides over all samples. For each peptide, only transitions that showed a consistent light/heavy 
ratio in all samples were used. Furthermore, quantification was based on at least two transitions. 
The same transitions were used to quantify across all files. Lastly, a weighted and internal standard 
corrected T-loop abundance was created by dividing the sum of the light transitions by the sum of 
the heavy transitions following a log2 transformation. The T-loop abundance is also referred to as 
kinase activity in this manuscript. 

Some peptides were detected in oxidised and non-oxidised form. Oxidised T-loop phosphopeptides 
were detected less frequently and generally showed a 10-fold lower signal compared to their non-
oxidised counterpart (Supplementary Figure 3). The correlation between the two oxidation forms 
was high in all samples, indicating that the oxidation rate was similar between all samples. 
Therefore, when both oxidation states were detected, only the non-oxidised form was used to 
calculate the kinase T-loop abundance level. 

Statistics 

To compare three means, a one-way ANOVA test was used (using the aov-function, followed by 
TukeyHSD-function in Rstudio). A p-value below 0.05 was regarded as statistically significant. 
Correlation analysis was performed by Pearson correlation using cor-function in RStudio.  

Unsupervised clustering and visualization were performed in R using the pheatmap package. The 
data was z-scored (scaled by row) prior to clustering. Euclidean distance was used for both row 
and column clustering. ROC analysis and multiple logistic regression was performed in Graphpad 
Prism 9.  

Data and code availability  

Raw data and processed data are available on Panorama. 
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Supplementary Table 1. Patient information 

 
Patient  Histology Tumour 

grade 
ER 
(%) 

PR 
(%) 

HER2 
score 

Treatment 
outcome 

Tumour 
(%) 

1 ID 2 95 70 3+ pCR 80 
2 ID 2 100 0 3+ pCR 80 
3 ID 3 20 0 3+ pCR 80 
4 ID 2 80 5 3+ pCR 70 
5 IL 3 100 40 3+ npCR 80 
6 ID 2 40 0 3+ pCR 60 
7 ID 2 100 1 2+ pCR 70 
9 ID 3 80 70 3+ npCR 70 

10 ID 2 0 0 3+ pCR 70 
11A* ID 2 0 0 3+ pCR 60 
11B* ID 2 0 0 3+ pCR 60 

12 ID 3 0 0 3+ pCR 70 
13 ID 2 0 0 3+ pCR 60 
14 ID 3 60 5 2+ npCR 60 
15 ID 3 0 0 3+ pCR 60 
16 IL 3 90 0 3+ pCR 80 
17 ID 3 90 100 3+ npCR 70 
18 ID 3 100 20 3+ No pCR 80 
20 ID 3 90 40 3+ pCR 60 
21 ID 3 99 1 2+ No pCR 80 
22 ID 3 100 60 2+ No pCR 80 
23 ID 2 70 70 3+ pCR 60 
24 ID 3 10 0 2+ pCR 80 
25 ID 3 100 100 3+ pCR 70 
26 ID 2 50 100 3+ No pCR 70 
27 ID 3 100 5 3+ No pCR 80 
28 ID 3 100 90 3+ No pCR 70 
30 ID 2 100 40 3+ No pCR 60 
32 ID 3 100 1 3+ npCR 60 
33 ID 3 100 0 2+ pCR 80 
34 ID 2 100 0 3+ npCR 70 
36 ID 3 100 5 3+ No pCR 80 
37 IL 2 100 0 2+ No pCR 80 

 
ID: invasive ductal 
IL: invasive lobular 
*Workflow replicate  
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Supplementary Figures 
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Supplementary Figure 1. Characterisation of quantified T-loops and kinases in this study. A) Total number 
of quantified kinases, phosphopeptides, phosphosites and T-loops across all biopsies. B) Average kinase 
T-loop abundance of the endogenous signals, coloured by kinase family. Amongst the most highly 
abundant kinases are family members of the CMGC-family (GSK3A and CDKs). C) Correlation plot of all 
quantified kinase T-loops in this study. Kinase names are coloured according to the kinase family. Pearson 
correlation was used. Hierarchical clustering method was Ward.D. D) Kinase mutation frequency in breast 
cancer, reported by TCGA (The Cancer Genome Atlas). Many detected kinases show a very high mutation 
frequency in breast cancer, comparable to other well-known breast cancer associated genes such as BRCA 
and ESR1. E) Number of references in PhosphoSitePlus for each endogenously detected T-loop 
phosphosite. Although many (but not all) sites have been identified often in high throughput studies (HTS), 
the biological relevance has been mostly understudied, as evidenced by the low number of low througphut 
studies (LTS). 
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Supplementary Figure 2. Boxplots of kinase T-loops. A) Boxplots of differentially regulated kinase T-loops. 
* p-value < 0.05; ** p-value < 0.001. B) Boxplots of kinase T-loops of p38A that were not significantly 
changing between treatment outcome groups.  
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Supplementary Figure 3. Detected oxidised and non-oxidised kinase T-loops. A) Correlation plots, 
comparing the abundance of the oxidised and non-oxidised T-loop versions.  Good linear correlations show 
the rate of oxidation is similar between samples. Moreover, oxidised versions are >10-fold lower in 
abundance. B) The number of quantified T loops is lower for the oxidised T loop phosphopeptides. 
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