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ABSTRACT 11 
Structural variations (SVs) are larger polymorphisms (>50 bp in length), which consist of 12 
insertions, deletions, inversions, duplications, and translocations. They can have a strong impact 13 
on agronomical traits and play an important role in environmental adaptation. The development of 14 
long-read sequencing technologies, including Oxford Nanopore, allows for comprehensive SV 15 
discovery and characterization even in complex polyploid crop genomes. However, many of the 16 
SV discovery pipeline benchmarks do not include complex plant genome datasets. In this study, 17 
we benchmarked popular long-read alignment-based SV detection tools for crop plant genomes. 18 
We used real and simulated Oxford Nanopore reads for two crops, allotetraploid Brassica napus 19 
(oilseed rape) and diploid Solanum lycopersicum (tomato), and evaluated several read aligners and 20 
SV callers across 5×, 10×, and 20× coverages typically used in re-sequencing studies. Our 21 
benchmarks provide a useful guide for designing Oxford Nanopore re-sequencing projects and  SV 22 
discovery pipelines for crop plants. 23 
 24 
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1. INTRODUCTION 28 
 29 
Structural variations (SVs) are a major type of polymorphisms, which consist of insertions, 30 
deletions, inversions, duplications, and translocations. SVs are larger polymorphisms (>50 bp) 31 
compared with single nucleotide polymorphisms (SNPs) and small indels (insertions and 32 
deletions). Copy number variations (CNVs) and presence/absence variations (PAVs) occur due to 33 
these genomic polymorphisms (Alkan et al., 2011; Sedlazeck et al., 2018a). Insertions and deletions 34 
can have a strong effect on crop traits and have been shown to play a role in domestication and 35 
environmental adaptation (Gill et al., 2021; Tao et al., 2019; Yildiz et al., 2022; Zanini et al., 2022; 36 
Żmieńko et al., 2014). Until recently, the lack of high-quality reference assemblies and the complex 37 
nature of often large, polyploid genomes made comprehensive SVs exploration challenging in crop 38 
genomic research (Meyers and Levin, 2006; Yuan et al., 2021).  39 
 40 
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Development of long-read sequencing technologies such as Oxford Nanopore Technologies (ONT) 41 
(Jain et al., 2016) and Pacific Bioscience (PacBio) (Roberts et al., 2013) provided new 42 
opportunities for comprehensive SV discovery in crop plants. The sequencing accuracy of these 43 
technologies is continuously improving. Currently, PacBio HiFi consensus reads exceed 99% 44 
accuracy (Wenger et al., 2019) while ONT R10.3 raw reads accuracy exceeds 95% (Delahaye and 45 
Nicolas, 2021). The reduction in error rates facilitates downstream applications, including the 46 
production of high-quality genome assemblies, and SV detection. ONT sequencing in particular is 47 
being adopted in crop plant research for large scale re-sequencing projects of tens to hundreds of 48 
individuals (Alonge et al., 2020; Chawla et al., 2021; Lemay et al., 2022; Vollrath et al., 2021; 49 
Zhang et al., 2022). Despite the constant decrease in sequencing error rate, long-read technologies 50 
require specialized computational approaches to take advantage of them efficiently.  51 
 52 
The two main approaches for SV discovery are de novo assembly-based and read alignment-based. 53 
De novo assembly-based approaches assemble reads into longer contigs and identify SVs by 54 
aligning assemblies (Wenger et al., 2019). Read alignment-based approaches directly align reads 55 
to reference genomes to discover SVs. De novo assembly-based methods perform better at finding 56 
larger variants (tens to hundreds of kbp long; exceeding the length of individual reads) but require 57 
sufficient amount of data to produce high-quality assemblies, which leads to substantial increase 58 
in cost of the experiments for larger crop genomes. However, read alignment-based approaches 59 
can perform well even at modest sequencing depths of 5× to 10× and use less computational 60 
resources, but the discovered SVs are limited to differences with the reference genome which 61 
makes this approach more suitable for larger re-sequencing projects (Coster et al., 2021). Several 62 
algorithms were developed for SV discovery from long-reads including Sniffles (Sedlazeck et al., 63 
2018b), NanoVar (Tham et al., 2019), SVIM (Heller and Vingron, 2019), cuteSV (Jiang et al., 64 
2020), and dysgu (Cleal and Baird, 2022), which have been comprehensively reviewed recently 65 
(Mahmoud et al., 2019; Yuan et al., 2021). Additionally, several long-read aligners are available 66 
such as minimap2 (Li, 2018), NGMLR (Sedlazeck et al., 2018a), Vulcan (Fu et al., 2021), and lra 67 
(Ren and Chaisson, 2021). Considering the continued development and improvement in read-68 
alignment and SV detection algorithms and multitude of their possible combinations, their 69 
combined performances in SV detection demand realistic and up-to-date benchmarks to guide the 70 
selection of SV discovery tools. 71 
 72 
In this study, we hypothesized that certain combination(s) of read aligners and SV discovery 73 
software will have superior performance in datasets representing complex crop genomes. We used 74 
real and simulated ONT reads for two crop plant genomes and evaluated several mappers and SV 75 
callers across coverages including 5×, 10×, and 20× typically utilized in re-sequencing studies. We 76 
chose to perform benchmarking on allotetraploid Brassica napus (oilseed rape) and diploid 77 
Solanum lycopersicum (tomato) as these two species represent different ploidy, have different SV 78 
profiles, and were already studied using Oxford Nanopore Technology. Our benchmarks provide a 79 
useful guide for researchers designing Oxford Nanopore re-sequencing projects and those 80 
designing SV discovery pipelines. 81 
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 82 
2. MATERIALS AND METHODS 83 

 84 
2.1 Read Aligners, SV Callers, and Benchmarking Datasets 85 
The SV callers included in the study were selected using several criteria: (1) citation count (used 86 
as a proxy for popularity in the research community), (2) publication date and maintenance status 87 
(excluding older tools that were no longer maintained), (3) ability to detect both insertion and 88 
deletion SVs from ONT data. The benchmarking approach involved four long-read aligners, 89 
including minimap2 (Li, 2018), NGMLR (Sedlazeck et al., 2018a), lra (Ren and Chaisson, 2021), 90 
and Vulcan (Fu et al., 2021) as well as five SV calling software namely Sniffles (v2) (Sedlazeck et 91 
al., 2018b), NanoVar (Tham et al., 2019), SVIM (Heller and Vingron, 2019), cuteSV (Jiang et al., 92 
2020), and dysgu (Cleal and Baird, 2022). All aligners and SV caller versions are provided in detail 93 
in (Table S1). Three simulated datasets (Sim_ONT_Bn1, Sim_ONT_Bn2, and Sim_ONT_Sl) and 94 
publicly available data, for B. napus and S. lycopersicum genomes, were used. The real-world 95 
datasets for whole genome Nanopore sequencing of B. napus cv. King 10 (accession number: 96 
SRR15731030) (Vollrath et al., 2021) and S. lycopersicum cv. M82 (accession number: 97 
SRR16966224) (Alonge et al., 2021) were downloaded from NCBI Sequencing Read Archive. The 98 
ONT reads were randomly subsampled to 5×, 10×, and 20×  coverages using Rasusa (Hall, 2022) 99 
to test the effect of sequencing depth on SV discovery.  100 
 101 
2.2 Simulated Dataset Generation 102 
For three simulated datasets (workflow for all simulations is presented in (Figure S1), new 103 
haplotypes including SVs were generated, and synthetic ONT reads were simulated using VISOR 104 
v1.1 (Bolognini et al., 2020). For simulation one (Sim_ONT_Bn1) 20,000 genomic intervals 105 
(mean: 750 bp, SD: 500 bp) were randomly drawn from the B. napus genome (Express 617 v1). A 106 
subset of 10,000 were denoted as deletions. For the remaining 10,000, denoted as insertions, the 107 
genomic start coordinate was retained, while the sequences corresponding to the genomic intervals 108 
were extracted, randomly re-assigned to the coordinates, and served as insertion sequences at those 109 
coordinates (Figure S1).  110 
 111 
Simulations two and three, denoted Sim_ONT_Bn2 and Sim_ONT_Sl, were designed to reflect 112 
SVs found in real-world datasets. For Sim_ONT_Bn2 the assembled B. napus genomes Express 113 
617 v1 (Lee et al., 2020) and Westar (Song et al., 2020) were aligned using minimap2 v2.24. SVs 114 
were detected using SVIM-asm v1.0.2 (Heller and Vingron, 2020). To reduce the effect of using 115 
minimap2 for benchmarking dataset generation, the SV locations were shifted by a randomly 116 
selected number in the (-5000, 5000) interval. This changed the exact SV site while maintaining 117 
the realistic distribution of SV sizes and locations along the genome. A random subset of 10,000 118 
insertions and 10,000 deletions was drawn from all SVs to create the benchmarking dataset. SNPs 119 
discovered from short reads using bcftools v1.15.1 were also included. The SVs and SNPs were 120 
provided to VISOR to generate new haplotypes, which in turn were used for Oxford Nanopore read 121 
simulation. Sim_ONT_Sl was generated using the same strategy as for Sim_ONT_Bn2 but 122 
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designed to reflect SVs of the S. lycopersicum genome. Heinz 1706 (Slycopersicum_691_SL4.0) 123 
and M82 (Alonge et al., 2021) assemblies were used for whole genome alignments. Due to smaller 124 
number of SVs, a random subset of 2,500 insertions and 2,500 deletions were drawn from all SVs.   125 
 126 
To test the effect of sequencing depth on SV discovery, the datasets were simulated at 5×, 10×, and 127 
20× coverage. The simulations provided the objective truth sets, which could be used to calculate 128 
SV precision, recall, and combined F1-scores. Precision describes the proportion of correct positive 129 
predictions among all positive predictions. It is calculated by dividing the true positives by overall 130 
positives. Recall describes the proportion of positive predictions made out of all positive elements 131 
in the dataset. It is calculated by dividing true positives by total number of relevant elements. F1-132 
score combines precision and recall by taking their harmonic mean. Its value ranges from 0 to 1. 133 
F1-score close to 1 indicates high precision and recall. Using two different strategies for generating 134 
simulated datasets will make it possible to minimize analytical bias. If the same combination of 135 
tools performed best on all simulated datasets, this will likely reflect true superior performance. 136 
 137 
2.3 Comparative Analyses 138 
Express 617 v1 for the B. napus (Lee et al., 2020) and Slycopersicum_691_SL4.0 for the S. 139 
lycopersicum (Hosmani et al., 2019) were used as reference sequences. Simulated datasets and real 140 
subsampled reads at each coverage depth were aligned to respective reference genomes. The SV 141 
call sets were filtered using the following criteria: (1) number of minimum supporting reads: 5×: 142 
3, 10×: 5, and 20×: 8, (2) SV type: INS or DEL (the most abundant SVs supported by all the 143 
benchmarked tools), (3) minimum SV length: 50 bp, (4) SV quality: SVs flagged as “PASS” (5) 144 
genotype: homozygous genotype for alternative allele (‘1/1’). For simulated data, precision, recall, 145 
and F1-scores of the SVs were computed for each combination of coverage depth, read aligner, 146 
and SV caller using Truvari v3.0.0 (English et al., 2022). Comparisons between results from the 147 
same tool combination across different coverages and different tool combinations across the same 148 
coverages were performed using surpyvor v0.8.1 (Jeffares et al., 2017). For real datasets, where no 149 
truth sets were available, we focused on within-dataset comparisons and how those compared to 150 
the results from simulated data. For each coverage, 20 different read aligner/SV caller 151 
combinations were used which led to a total of 60 different combinations for three coverages. All 152 
the relevant commands for simulated data generation and SV discovery are available in the 153 
Supplementary Note. 154 
 155 

3. RESULTS 156 
 157 
3.1 Selecting the Benchmarking Datasets 158 
We chose to focus on two crop plant species B. napus (oilseed rape; genome size ~1.1 Gbp) and S. 159 
lycopersicum (tomato; genome size ~900 Mbp) because they are both important crops and their 160 
structural variation was previously studied using Oxford Nanopore Technologies (Alonge et al., 161 
2020; Chawla et al., 2021). Whole Genome Alignment (WGA)-based SV discovery also suggested 162 
that they have quite different SV profiles with 38,666 SVs (Real_WGA_Bn, mean size: 2,068 bp, 163 
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median size: 593 bp, 19,450 insertions and 19,216 deletions) discovered for B. napus and 7,108 164 
SVs (Real_WGA_Sl, mean size: 3,029 bp, median size: 178 bp, 4,159 insertions and 2,949 165 
deletions) discovered for S. lycopersicum. 166 
 167 
Two simulated B. napus haplotypes (Sim_ONT_Bn1 and Sim_ONT_Bn2) and one simulated          168 
S. lycopersicum haplotype (Sim_ONT_Sl) were used to generate Oxford Nanopore reads at 5×, 169 
10×, and 20× to test the effect of sequencing depth on SV discovery. The two publicly available 170 
real-world datasets, from B. napus (38×) and S. lycopersicum (68×), were subsampled with the 171 
same logic (Real_ONT_Bn, Real_ONT_Sl). The available graphical representation of a workflow 172 
for simulation and real data is shown in Figure 1. 173 
 174 
3.2 Characteristics of Structural Variant Truth Sets  175 
The SVs supplied to VISOR to generate Sim_ONT_Bn1, Sim_ONT_Bn2, and Sim_ONT_Sl  176 
haplotypes served as three truth sets for our comparisons. The truth sets included deletions and 177 
insertions. The length distribution of truth set SVs is presented in Figure 2. Sim_ONT_Bn1 is 178 
unbiased in terms of the bioinformatics tools used, as the regions representing SVs were entirely 179 
randomly drawn from the B. napus genome. For any simulated dataset to reflect realistic SV 180 
distribution, SVs have to be discovered first and provided to the simulation software. Any 181 
relationship between tools used for SV identification for long-read dataset simulation and tools 182 
used for SV detection from these simulated reads (for example use of similar/same mapping 183 
algorithm) can result in inflated performance and biased results. However, Sim_ONT_Bn1 does 184 
not reflect realistic SV length and genomic distribution. To mitigate that Sim_ONT_Bn2 and 185 
Sim_ONT_Sl were created using SVs derived from real-world datasets. The two simulation 186 
strategies are complementary and should allow both unbiased and realistic assessment of SV calls. 187 
The median (mean) sizes (bp) for insertions and deletions were 800 (834) and 795 (825) for 188 
Sim_ONT_Bn1, 629 (1,959) and 594 (1,904) for Sim_ONT_Bn2 and 162 (3,178) and 165 (2,477) 189 
for Sim_ONT_Sl.  Overall, the Sim_ONT_Bn2 and Sim_ONT_Sl truth sets had a wider range of 190 
insertion and deletion sizes. They were more reflective of true biological variation, making them 191 
more realistic than the Sim_ONT_Bn1 truth set.  192 
 193 
3.3 Performance of Long Read Aligners  194 
Subsampled S. lycopersicum, B. napus, and simulated reads were aligned using lra, minimap2, 195 
Vulcan, and NGMLR to the Slycopersicum_691_SL4.0, and Express 617 v1 reference genomes. 196 
Mapping statistics and run times of alignment against relevant reference genomes with different 197 
coverages of Sim_ONT_Bn1, Sim_ONT_Bn2, Sim_ONT_Sl, B. napus (Real_ONT_Bn), and S. 198 
lycopersicum (Real_ONT_Sl) real-world datasets are given in Table S2. Minimap2 had the 199 
shortest run time across all coverages. Conversely, NGMLR had the longest run time and also the 200 
lowest mapping rate. Figure 3 shows mapping runtime (h:mm:ss or m:ss) for both simulation and 201 
real-world datasets with eight CPUs. Real_ONT_Bn dataset with 20× coverage was aligned ~220 202 
hours by NGMLR and ~119 hours by Vulcan, compared to ~4 hours by minimap2 and ~5 hours 203 
by lra. Therefore, minimap2 and lra provided a greater speed advantage than NGMLR and Vulcan. 204 
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The run times increased with the higher coverages (Figure 3). Processing of real data took 205 
substantially longer than processing of simulated data. Moreover, Vulcan and minimap2 produced 206 
the highest proportion of mapped reads in Real_ONT_Bn (>96%), Real_ONT_Sl (96%-98%), and 207 
all simulated data (>98%) (Table S2). NGMLR reported the lowest proportion of mapped reads 208 
for Real_ONT_Bn (∼81%) and Real_ONT_Sl (∼76%), while lra and NGMLR resulted in similar 209 
statistics (96%-97%) for Sim_ONT_Bn1, Sim_ONT_Bn2, and Sim_ONT_Sl at each coverage. 210 
The combination of fast run time, good mapping rate, and the SV calling results presented below 211 
suggest that minimap2 is the top-performing aligner for simulated and real reads. 212 
 213 
3.4 Performance of SV Callers on Simulated Data 214 
 215 
3.4.1 Performance using Sim_ONT_Bn1 as benchmark  216 
We calculated the precision, recall, and F1-score of the SVs generated using different mapper and 217 
SV caller combinations using the Sim_ONT_Bn1 truth set. Table S3 shows comparison of the 218 
precision, recall, and F1-scores for all mapper/SV caller combinations at the 5×, 10×, and 20× 219 
coverages. Each aligner/SV caller combination was evaluated with respect to total SVs, deletions, 220 
and insertions. Figure 4 presents the corresponding F1-scores at 5× to 20× coverages. CuteSV after 221 
minimap2 alignment reached the highest F1-scores 5×:∼0.90, 10×:∼0.97, and 20×:∼0.99 for total 222 
SVs, 5×:∼0.91, 10×:∼0.97, and 20×:∼0.99 for deletions, and 5×:∼0.89, 10×:∼0.96, and 20×:∼0.99 223 
for insertions. At the lower end of coverage (5×), combination of minimap2/cuteSV provided a 224 
better advantage when compared to other mapper/SV caller combinations, especially in capturing  225 
insertions. Minimap2/Sniffles2 had second-best F1-scores (Figure 4). SVs detection by NanoVar 226 
was obtained directly from reads as NanoVar has its own internal mapping algorithm therefore the 227 
precision, recall, and F1-scores for different aligners are not included.  228 
 229 
We also compared the total number of SVs, insertions, and deletions for all tested aligner/SV caller 230 
combinations. Table S4 summarizes the number of SVs found at 5×, 10×, and 20× coverages. 231 
There were more discovered deletions than insertions regardless of coverage. The combinations of 232 
minimap2/cuteSV and minimap2/Sniffles2 detected the highest number of SVs at each coverage. 233 
We also analyzed how many of the SVs overlapped across different coverages while using the 234 
same tool combination and how many of the SVs overlapped across different tool combinations 235 
within the same coverage. Data S1 shows the number of overlapping and unique SVs across 236 
coverages. Minimap2/cuteSV combination had the highest number of overlapping SVs. It also 237 
resulted in the highest proportion of overlapping SVs; 76.99% for all SVs, 79.19% for deletions, 238 
and 74.79% for insertions, while the minimap2/Sniffles2 combination (second best according to 239 
F1-scores) had the second highest percentage overlap; 75.35% for all SVs, 78.35% for deletions, 240 
and 72.33% for insertions (Table S11 and Figure 7). In addition, we performed comparisons across 241 
different tool combinations within the same coverage. Data S2 displays the overlap, including the 242 
intersection sizes between SV calls and the Sim_ONT_Bn1 truth set. The highest number of 243 
overlapping SVs was found at 20x coverage, following minimap2 aligner. Our Sim_ONT_Bn1 244 
results suggest that the combination of cuteSV and Sniffles2 with minimap2 alignment gave the 245 
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best results achieving high F1-scores and capturing the highest number of overlapping SVs across 246 
coverages. 247 
 248 
3.4.2 Performance using Sim_ONT_Bn2 as benchmark  249 
While Sim_ONT_Bn1 represents relatively short SVs randomly distributed along the genome, 250 
Sim_ONT_Bn2 reflects true biological variation in B. napus. Table S5 presents comparison of the 251 
precision, recall, and F1-scores for all mapper/SV caller combinations at the 5×, 10×, and 20× 252 
coverages. Figure 5 presents the F1-scores of SVs (total, insertions, and deletions) obtained using 253 
different combinations of aligners and variant callers across coverages. CuteSV following 254 
minimap2 alignment again was the top performing combination with the highest overall F1-score 255 
values 5×:∼0.87, 10×:∼0.93, and 20×:∼0.96 for total SVs, 5×:∼0.90, 10×:∼0.96, and 20×:∼0.98 256 
for deletions, and 5×:∼0.83, 10×:∼0.89, and 20×:∼0.94 for insertions. Especially, at low 5× 257 
coverage, this combination performed better than others. Minimap2/Sniffles2 had the second 258 
highest F1-scores at 20× coverage as in Sim_ONT_Bn1. However, minimap2/dysgu F1-score for 259 
insertions at 5× and 10× was higher than Sniffles2 after the minimap2 alignment. 260 
 261 
In addition, the total number of SVs, the total number of insertions, and deletions for all 262 
combinations of tested aligners and SV callers were compared. Table S6 summarizes the total 263 
number of SVs detected at 5×, 10×, and 20× coverages. Minimap2/cuteSV found the highest 264 
number of SVs at each coverage like in Sim_ONT_Bn1. Again, more deletions than insertions 265 
were found for all aligner and SV caller combinations across different coverages. We also analyzed 266 
how many of the SVs overlapped across different coverages while using the same tool combination 267 
and how many of the SVs overlapped across different tool combinations within the same coverage. 268 
Data S3 lists the number of overlapping SVs across different coverages using the same tool 269 
combination. Minimap2/cuteSV combination had the highest number of overlapping SVs. It also 270 
had the highest proportion of overlapping SVs; 73.95% for all SVs, 80.05% for deletions, and 271 
67.44% for insertions. The minimap2/dysgu combination was second best detecting 73.23% for all 272 
SVs, and 67.28% for insertions. Minimap2/Sniffles2 combination was the second best for deletions 273 
with 79.14% overlap (Table S11 and Figure 7). Data S4 displays overlap between results from 274 
different SV callers within the same coverage after each aligner, including the intersection with the 275 
Sim_ONT_Bn2 truth set. The highest number of overlapping SVs was found at 20x coverage, 276 
following minimap2 aligner. Overall, in Sim_ONT_Bn2, the combination of cuteSV after 277 
minimap2 alignment gave the best results both in terms of F1-Scores and concordance across 278 
coverages.  279 
 280 
3.4.3 Performance using Sim_ONT_Sl as benchmark 281 
Sim_ONT_Sl represents the true biological variation of S. lycopersicum. Table S7 presents 282 
comparison of the precision, recall, and F1-scores for all mapper/SV caller combinations at the 5×, 283 
10×, and 20× coverages. Figure 6 shows the F1-score of SVs (total, insertions, and deletions) 284 
identified using combinations of the different aligners and variant callers. CuteSV and Sniffles2 285 
with minimap2 alignment were top performers with the highest F1-score values (5×:∼0.85, 286 
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10×:∼0.92, and 20×:∼0.94) for total SVs, (5×:∼0.88, 10×:∼0.95, and 20×:∼0.97) for deletions, 287 
and (5×:∼0.81, 10×:∼0.88, and 20×:∼0.91) for insertions. Lra/Sniffles2 combination had the best 288 
F1-score for insertions for each coverage.  289 
 290 
In addition, the total number of SVs, the total number of insertions, and deletions for all tested 291 
aligner/SV caller combinations were compared. Table S8 summarizes the total number of SVs at 292 
5×, 10×, and 20× coverages. Again, more deletions than insertions were found for all aligner and 293 
SV caller combinations across coverages like in the previous simulated datasets. The number of 294 
SVs overlapping across coverages while using the same tool combination and the number of SVs 295 
overlapping across different tool combinations but within the same coverage were also calculated. 296 
Data S5 shows the number of overlapping SVs across different coverages using the same tool 297 
combination. Minimap2/dysgu combination had the highest number of overlapping SVs. However, 298 
minimap2/cuteSV combination found the highest proportion of overlap; 73.49% for all SVs, 299 
77.52% for deletions, and 68.98% for insertions, while the minimap2/Sniffles2 combination was 300 
second best detecting 72.73% for all SVs, 76.32% for deletions, and 68.72% for insertions (Table 301 
S11 and Figure 7). Although minimap2/dysgu found the highest number of SVs at each coverage 302 
in Sim_ONT_Sl, the proportion of overlapped SVs was reported as 68.82%. Data S6 displays 303 
overlap between results from different SV callers within the same coverage after each aligner, 304 
including the intersection with Sim_ONT_Sl truth set. The highest number of overlapping SVs was 305 
found at 20x coverage, following minimap2 aligner. Overall, in Sim_ONT_Sl, the combination of 306 
cuteSV and Sniffles2 after minimap2 alignment gave the best results both in terms of F1-Scores 307 
and concordance across coverages. 308 
 309 
3.5 Performance of SV Callers on Real-World Data 310 
While tool performance on simulated data provides a useful guide, real-world datasets usually 311 
provide additional unaccounted-for complexity and challenges. After finding the best combinations 312 
in simulated data, we investigated whether the pattern would be similar in real-world datasets. 313 
Since for the real-world data we do not have an objective truth set, they were only evaluated from 314 
two perspectives which are the congruence of results when using the same tool combination across 315 
different coverages and when using different tool combinations within the same coverage. 316 
 317 
3.5.1 Performance on B. napus Real-World ONT Data 318 
B. napus ONT real dataset (Real_ONT_Bn) was evaluated using the above-described strategy. 319 
Table S9 shows the number of SVs from all tested combinations at different coverages in B. napus. 320 
The minimap2/cuteSV and minimap2/dysgu combinations within all coverages captured the 321 
highest number of total SVs, deletions, and insertions. Overall, a higher number of deletions than 322 
insertions was detected for all aligner and SV caller combinations at different coverages. The 323 
number of overlapped SVs across coverages for the same SVs caller/aligner combinations was 324 
calculated (Data S7). Minimap2/cuteSV combination found the highest proportion of overlapping 325 
SVs discovered at different coverages using the same combination of tools (51.53% of total SVs, 326 
54.52% of deletions, and 47.91% of insertions), while the minimap2/sniffles2 combination was 327 
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second best, detecting overlap of 50.1% for all SVs, 54.56% for deletions, and 44.92% for 328 
insertions across coverages (Table S12 and Figure 7). Although the minimap2/dysgu combination 329 
found more SVs, the percentage of intersecting SV was low. NanoVar detected the lowest 330 
proportion of overlapping SVs across coverages (19.04% of total SVs, 25.07% of deletions, and 331 
10.21% of insertions) and discovered more unique SVs. Surprisingly we noticed a high proportion 332 
of heterozygous genotypes (0/1) in SV calling results for Real_ONT_Bn, considering that the data 333 
represented a highly inbred elite line (Vollrath et al., 2021). Table S14 shows the number of SVs 334 
genotyped as homozygous and heterozygous in real-world data. As our SV filtering required the 335 
genotypes to be homozygous for the alternative allele (1/1) these heterozygous calls were removed 336 
prior to analysis. We also investigated the overlap in SV calls across different tool combinations 337 
within the same coverage (Data S8). We observed that a substantial proportion of deletions and 338 
insertions were shared by most SV callers, with the largest number of overlapping SVs at 20×, 339 
following minimap2 alignment. 340 
 341 
3.5.2 Performance on S. lycopersicum Real-World ONT Data 342 
We performed a similar evaluation for the real-world dataset of Solanum lycopersicum 343 
(Real_ONT_Sl). Table S10 shows the number of SVs found from all tested combinations at 344 
different coverages. The minimap2/dysgu combinations at 5×, 10×, and 20× captured the most 345 
SVs. Additionally, for S. lycopersicum all tool combinations with the exception of NanoVar found 346 
more insertions than deletions at each coverage. We also calculated the number of overlapping SVs 347 
while using the same tool combination across different coverages (Data S9). Minimap2/cuteSV 348 
combination found the highest proportion of overlapping SVs; 49.34% for all SVs, 49.63% for 349 
deletions, and 49.16% for insertions, while the minimap2/sniffles2 combination detected 47.80% 350 
for all SVs, 49.41% for deletions, and 46.61% for insertions. Even though the minimap2/dysgu 351 
combination found more SVs, the percentage of common SVs (40.82%) was low like 352 
Real_ONT_Bn data. NanoVar again detected the lowest proportion of overlapping SVs (21.57% 353 
for all SVs, 31.20% for deletions, and 12.16% for insertions), and it discovered more unique SVs 354 
like for the Real_ONT_Bn dataset (Table S12 and Figure 7). Again, we also tested overlaps 355 
between SV calls within the same coverage, but across different tool combinations (Data S10). 356 
The largest number of overlapping SVs was found at 20×, following minimap2 alignment.  357 
 358 
3.5.3 The Unique Features of Real-World Datasets 359 
We found a surprisingly high proportion of heterozygous calls in the real-world datasets given the 360 
highly inbred nature of the material used for sequencing. A high proportion of those is therefore 361 
likely SV discovery/genotyping errors. More heterozygous calls were found in the B. napus than 362 
the S. lycopersicum dataset. B. napus is an allotetraploid species, which undergoes reciprocal and 363 
non-reciprocal homeologous exchanges (HEs; exchanges of large corresponding chromosome 364 
segments between subgenomes). Non-reciprocal HEs could potentially cause erroneous SV calls if 365 
there are HE present in the reference, but absent in the sample. As a result, reads will have no 366 
corresponding mapping location and may be mis-mapped. To test such a scenario, we used the 367 
Sim_ONT_Bn2 dataset (20×, minimap2 for mapping, and cuteSV for SV detection) and two 368 
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versions of the modified Express 617 reference. In the first version, we replaced chromosome A01 369 
by C01 (two C01 chromosomes and no A01). In the second version, we replaced chromosome C01 370 
by A01 (two A01 chromosomes and no C01). In both cases, the use of the modified reference 371 
resulted in an increased number of heterozygous (162.3% for reference with A01 missing, and 372 
237.1% for reference with C01 missing), but not homozygous calls across all chromosomes 373 
(Figure 8), suggesting the non-reciprocal HEs can contribute to produce erroneous heterozygous 374 
calls.  375 
 376 

4. DISCUSSION 377 
 378 
Many of the SV detection tools are benchmarked primarily on human/animal datasets, (Bolognini 379 
and Magi, 2021; Coster et al., 2019; Dierckxsens et al., 2021; Jiang et al., 2020; Jiang et al., 2021; 380 
Zhou et al., 2019), however the complexity and different SV profiles of crop plant genomes might 381 
bring unique challenges. Therefore, to guide the design of large-scale long-read re-sequencing 382 
studies, this study performed comprehensive benchmarking of popular SV calling tools with a 383 
focus on tool performance at lower sequencing coverage. For this purpose, we designed two data 384 
simulation strategies representing both unbiased and realistic benchmarking datasets reflecting 385 
structural variation for two major crops oilseed rape (B. napus) and tomato (S. lycopersicum).  386 
 387 
Four long-read aligners (minimap2, NGMLR, lra, and Vulcan) and five SV callers (Sniffles2, 388 
SVIM, cuteSV, dysgu, and NanoVar) were tested to detect SVs, particularly deletions and 389 
insertions. Alignment time varied widely between the four aligners, while differences in the 390 
proportion of mapped reads were moderate. As expected, higher sequencing coverage and 391 
reference genome size length increased the run time of the mapping algorithms. The real-world 392 
datasets required more time at the same coverage and reference genome size, which most likely 393 
reflected additional complexity not captured in simulations. Overall, the results found minimap2 394 
to be the best performing aligner for SV calling applications, which also had the fastest run time 395 
and the most mapped bases. Recent benchmarking studies on human data also recommended 396 
minimap2 among tested aligners such as GraphMap, LAST, and NGMLR (Bolognini and Magi, 397 
2021; Coster et al., 2019; Zhou et al., 2019). 398 
 399 
We found that similar tool combinations (especially cuteSV, followed closely by Sniffles2 and 400 
dysgu after minimap2 alignment) had superior performance across all the simulated datasets. The 401 
findings are in line with a recent study reporting that cuteSV performed better than other tested SV 402 
tools such as Sniffles1, SVIM, and pbsv for precision and recall at both SV calling and genotyping 403 
in human datasets (Bolognini and Magi, 2021). Increasing coverage improved recall and F1-scores 404 
for all tested SVs calling combinations, confirming that the probability of detecting quality SVs 405 
increases with more sequencing coverage (Jiang et al., 2021). However, even at low coverages (5×) 406 
using cuteSV, Sniffles2, and dysgu for SV detection from reads aligned by minimap2 achieved 407 
>0.8 F1-scores on simulated datasets, suggesting that Oxford Nanopore technology might be 408 
suitable for large-scale low coverage re-sequencing projects. While the lack of objective truth sets 409 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.23.508909doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.508909
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

11 
 

for real-world datasets precludes similar comparisons, the results revealed that tool combinations 410 
with best performance for simulated datasets also had the most consistent outcome across the range 411 
of coverages. 412 
 413 
The criteria for filtering SV in this study were quite stringent, including retaining only SV 414 
genotyped as homozygous for alternative allele (1/1). While in simulated datasets the number of 415 
SV genotyped as heterozygous was relatively low, the proportion was much higher for real-world 416 
datasets, especially in B. napus. We found that in B. napus, the presence of homeologous exchanges 417 
will likely contribute to the erroneous discovery of heterozygous SV. B. napus is well known to 418 
harbour wide-spread non-reciprocal homeologous chromosomal exchanges even extending to 419 
whole chromosomes, e.g. for chromosomes A01 and C01 as simulated here (Udall et al., 2005).  420 
The finding underlies the importance of species-specific consideration when interpreting SV 421 
discovery results. The presence of HEs likely explains only a proportion of the observed 422 
heterozygous calls and other factors need to be considered as well, including other sources of mis-423 
mappings, genotyping errors, and residual heterozygosity in samples. 424 
 425 
In conclusion, we found that for homozygous/inbred genotypes often used in crop studies a 426 
substantial proportion of SVs can be discovered/genotyped at coverages as low as 5×, making 427 
Oxford Nanopore technology a suitable option for larger-scale re-sequencing studies. At this time, 428 
following our benchmarks we recommend using the minimap2/cuteSV combination as it achieves 429 
good precision and recall at SV calling and found the highest overlap between SVs across 430 
coverages. The performance of minimap2/cuteSV was followed closely by minimap2/Sniffles2 for 431 
both simulated and real datasets.  432 
 433 
FIGURES 434 
 435 
Figure 1: Graphical overview of the benchmarking workflow. 436 
Figure 2: Size distribution of the real-world SV and SV from three benchmarking datasets. 437 
Figure 3: Read aligner run time (h:mm: ss or m: ss) for both simulation and real-world datasets 438 
with 5×, 10×, and 20× coverages (8 CPU). The reads were simulated with a mean length of 15,000 439 
bp. The real-world datasets had a mean read length of 12,553 bp for B. napus and 22,339 bp for S. 440 
lycopersicum.  441 
Figure 4: F1-scores of Sim_ONT_Bn1 including total SVs, deletions, and insertions at 5×, 10×, 442 
and 20× coverages for different combinations of read aligners and SV callers.  443 
Figure 5: F1-scores of Sim_ONT_Bn2 including total SVs, deletions, and insertions at 5×, 10×, 444 
and 20× coverages for different combinations of read aligners and SV callers.  445 
Figure 6: F1-scores of Sim_ONT_Sl including total SVs, deletions, and insertions at 5×, 10×, and 446 
20× coverages for different combinations of read aligners and SV callers. 447 
Figure 7: Proportion of overlapped SVs (%), across 5×, 10×, and 20× coverages for simulated and 448 
real-world datasets. 449 
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Figure 8: The effect of non-reciprocal homeologous exchanges on SV discovery. Non-reciprocal 450 
homeologous exchanges were simulated by replacing chromosome A01 by C01 and C01 by A01. 451 
 452 
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Simulated data

Real-world data

Figure 3

minimap2 lra Vulcan NGMLR
5x 19:18.1 36:10.9 01:16:23 04:18:05
10x 38:07.1 01:11:49 02:32:03 09:05:54
20x 01:16:06 02:23:16 05:13:13 18:27:09
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2:24:00
4:48:00
7:12:00
9:36:00

12:00:00
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Runtimes (h:mm:ss or m:ss) of Sim_ONT_Bn1

minimap2 lra Vulcan NGMLR
5x 19:57.9 36:36.8 01:29:29 04:34:22
10x 39:48.7 01:12:28 02:56:15 08:45:46
20x 01:18:45 02:24:05 06:08:58 18:18:12

0:00:00
2:24:00
4:48:00
7:12:00
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Runtimes (h:mm:ss or m:ss ) of Sim_ONT_Bn2

minimap2 lra Vulcan NGMLR
5x 14:31.9 42:20.4 00:58:26 02:06:16
10x 31:09.0 01:27:02 01:40:02 04:11:44
20x 00:54:23 02:48:33 03:47:04 07:43:21

0:00:00
1:12:00
2:24:00
3:36:00
4:48:00
6:00:00
7:12:00
8:24:00

Runtimes (h:mm:ss or m:ss) of Sim_ONT_Sl

minimap2 lra Vulcan NGMLR
5x 59:15.0 01:13:05 32:10:56 55:06:47
10x 01:55:55 02:18:07 57:15:57 103:46:26
20x 03:52:07 04:44:12 119:39:11 220:11:56

0:00:00
24:00:00
48:00:00
72:00:00
96:00:00

120:00:00
144:00:00
168:00:00
192:00:00
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Runtimes (h:mm:ss or m:ss) of Real_ONT_Bn

minimap2 lra Vulcan NGMLR
5x 21:17.4 46:34.3 05:38:56 08:52:39
10x 43:40.8 01:25:41 11:33:37 19:23:59
20x 01:19:18 02:35:05 21:42:18 34:17:16
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Figure 4

Total Deletions Insertions
minimap2 minimap2 minimap2

5x-F1 10x-F1 20x-F1 5x-F1 10x-F1 20x-F1 5x-F1 10x-F1 20x-F1
cuteSV 0.9003 0.9676 0.9955 cuteSV 0.9074 0.9733 0.9961 cuteSV 0.8931 0.9620 0.9948
Sniffles2 0.8928 0.9635 0.9948 Sniffles2 0.9037 0.9724 0.9963 Sniffles2 0.8818 0.9544 0.9933
SVIM 0.7825 0.9645 0.9869 SVIM 0.7970 0.9715 0.9957 SVIM 0.7676 0.9574 0.9778
dysgu 0.8618 0.9417 0.9776 dysgu 0.9057 0.9721 0.9952 dysgu 0.8140 0.9092 0.9593

lra lra lra
cuteSV 0.8665 0.9417 0.9829 cuteSV 0.8836 0.9562 0.9860 cuteSV 0.8488 0.9267 0.9798
Sniffles2 0.8578 0.9352 0.9801 Sniffles2 0.8821 0.9557 0.9865 Sniffles2 0.8324 0.9138 0.9736
SVIM 0.7291 0.9354 0.9793 SVIM 0.7696 0.9563 0.9857 SVIM 0.6857 0.9135 0.9728
dysgu 0.7593 0.8718 0.9148 dysgu 0.8783 0.9552 0.9852 dysgu 0.6112 0.7735 0.8336

Vulcan Vulcan Vulcan
cuteSV 0.8495 0.9256 0.9751 cuteSV 0.8707 0.9441 0.9823 cuteSV 0.8275 0.9065 0.9678
Sniffles2 0.8000 0.8787 0.9463 Sniffles2 0.8544 0.9323 0.9780 Sniffles2 0.7401 0.8191 0.9124
SVIM 0.6864 0.9024 0.9345 SVIM 0.7325 0.9389 0.9809 SVIM 0.6367 0.8632 0.8834
dysgu 0.7441 0.8253 0.8639 dysgu 0.8695 0.9484 0.9814 dysgu 0.5866 0.6689 0.7150

NGMLR NGMLR NGMLR
cuteSV 0.8001 0.8691 0.9220 cuteSV 0.8490 0.9152 0.9496 cuteSV 0.7465 0.8187 0.8927
Sniffles2 0.6524 0.7174 0.7689 Sniffles2 0.8198 0.8924 0.9338 Sniffles2 0.4282 0.4753 0.5424
SVIM 0.6295 0.8496 0.8980 SVIM 0.7116 0.9110 0.9477 SVIM 0.5358 0.7805 0.8431
dysgu 0.6275 0.7120 0.7415 dysgu 0.8428 0.9260 0.9534 dysgu 0.3116 0.3894 0.4193

5x-F1 10x-F1 20x-F1 5x-F1 10x-F1 20x-F1 5x-F1 10x-F1 20x-F1
NanoVar 0.8950 0.9593 0.9848 NanoVar 0.9012 0.9676 0.9913 NanoVar 0.8886 0.9509 0.9784
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Figure 5

Total Deletions Insertions
minimap2 minimap2 minimap2

5x-F1 10x-F1 20x-F1 5x-F1 10x-F1 20x-F1 5x-F1 10x-F1 20x-F1
cuteSV 0.8709 0.9301 0.9628 cuteSV 0.9060 0.9609 0.9825 cuteSV 0.8335 0.8973 0.9422
Sniffles2 0.8589 0.9182 0.9545 Sniffles2 0.9011 0.9580 0.9827 Sniffles2 0.8132 0.8752 0.9248
SVIM 0.7481 0.9195 0.9527 SVIM 0.7942 0.9549 0.9791 SVIM 0.6984 0.8816 0.9250
dysgu 0.8602 0.9316 0.9528 dysgu 0.8968 0.9576 0.9756 dysgu 0.8214 0.9045 0.9292

lra lra lra
cuteSV 0.8059 0.8732 0.9203 cuteSV 0.8592 0.9254 0.9648 cuteSV 0.7474 0.8155 0.8715
Sniffles2 0.8032 0.8768 0.9237 Sniffles2 0.8473 0.9189 0.9578 Sniffles2 0.7556 0.8313 0.8874
SVIM 0.6726 0.8616 0.9068 SVIM 0.7334 0.9178 0.9553 SVIM 0.6056 0.7992 0.8535
dysgu 0.7045 0.8295 0.8686 dysgu 0.8125 0.9085 0.9466 dysgu 0.5752 0.7382 0.7784

Vulcan Vulcan Vulcan
cuteSV 0.8000 0.8635 0.9122 cuteSV 0.8469 0.9101 0.9524 cuteSV 0.7490 0.8126 0.8686
Sniffles2 0.7553 0.8240 0.8759 Sniffles2 0.8136 0.8832 0.9300 Sniffles2 0.6910 0.7581 0.8160
SVIM 0.6448 0.8382 0.8870 SVIM 0.7005 0.8919 0.9358 SVIM 0.5841 0.7790 0.8336
dysgu 0.7240 0.8391 0.8770 dysgu 0.7788 0.8914 0.9310 dysgu 0.6642 0.7819 0.8175

NGMLR NGMLR NGMLR
cuteSV 0.7762 0.8408 0.8885 cuteSV 0.8272 0.8887 0.9302 cuteSV 0.7201 0.7882 0.8429
Sniffles2 0.7219 0.7895 0.8442 Sniffles2 0.7857 0.8531 0.9029 Sniffles2 0.6509 0.7182 0.7785
SVIM 0.6137 0.8095 0.8608 SVIM 0.6825 0.8731 0.9204 SVIM 0.5372 0.7382 0.7943
dysgu 0.6703 0.7998 0.8436 dysgu 0.7541 0.8749 0.9160 dysgu 0.5743 0.7143 0.7612

NanoVar 0.7987 0.8583 0.8964 NanoVar 0.8399 0.9030 0.9432 NanoVar 0.7550 0.8108 0.8471
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Figure 6

Total Deletions Insertions
minimap2 minimap2 minimap2

5x-F1 10x-F1 20x-F1 5x-F1 10x-F1 20x-F1 5x-F1 10x-F1 20x-F1
cuteSV 0.8467 0.9167 0.9375 cuteSV 0.8831 0.9477 0.9654 cuteSV 0.8073 0.8833 0.9077
Sniffles2 0.8432 0.9174 0.9394 Sniffles2 0.8795 0.9492 0.9671 Sniffles2 0.8041 0.8835 0.9099
SVIM 0.7520 0.9184 0.9377 SVIM 0.7944 0.9488 0.9647 SVIM 0.7060 0.8858 0.9089
dysgu 0.8371 0.9008 0.9043 dysgu 0.8594 0.9194 0.9226 dysgu 0.8134 0.8814 0.8852

lra lra lra
cuteSV 0.8158 0.8936 0.9278 cuteSV 0.8547 0.9308 0.9628 cuteSV 0.7736 0.8530 0.8897
Sniffles2 0.8334 0.9170 0.9515 Sniffles2 0.8519 0.9329 0.9652 Sniffles2 0.8141 0.9007 0.9376
SVIM 0.7158 0.8955 0.9315 SVIM 0.7591 0.9322 0.9639 SVIM 0.6688 0.8558 0.8966
dysgu 0.7682 0.8884 0.9149 dysgu 0.8040 0.9215 0.9462 dysgu 0.7295 0.8524 0.8808

Vulcan Vulcan Vulcan
cuteSV 0.8128 0.8881 0.9161 cuteSV 0.8490 0.9255 0.9525 cuteSV 0.7736 0.8472 0.8763
Sniffles2 0.8012 0.8785 0.9120 Sniffles2 0.8324 0.9123 0.9448 Sniffles2 0.7678 0.8419 0.8768
SVIM 0.6994 0.8804 0.9140 SVIM 0.7396 0.9188 0.9476 SVIM 0.6562 0.8387 0.8780
dysgu 0.7852 0.8759 0.8992 dysgu 0.8005 0.9074 0.9241 dysgu 0.7694 0.8421 0.8730

NGMLR NGMLR NGMLR
cuteSV 0.8002 0.8693 0.9001 cuteSV 0.8370 0.9114 0.9380 cuteSV 0.7601 0.8226 0.8581
Sniffles2 0.7889 0.8615 0.9015 Sniffles2 0.8178 0.8924 0.9257 Sniffles2 0.7580 0.8282 0.8758
SVIM 0.6832 0.8662 0.9050 SVIM 0.7279 0.9106 0.9412 SVIM 0.6347 0.8174 0.8658
dysgu 0.7636 0.8626 0.8881 dysgu 0.7908 0.9002 0.9194 dysgu 0.7348 0.8214 0.8541

NanoVar 0.7504 0.8098 0.8103 NanoVar 0.8488 0.9093 0.9232 NanoVar 0.6282 0.6841 0.6608
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Real_ONT_Sl Real_ONT_Bn

Sim_ONT_Bn1 Sim_ONT_Bn2 Sim_ONT_SlFigure 7
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