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ABSTRACT

Structural variations (SVs) are larger polymorphisms (>50 bp in length), which consist of
insertions, deletions, inversions, duplications, and translocations. They can have a strong impact
on agronomical traits and play an important role in environmental adaptation. The development of
long-read sequencing technologies, including Oxford Nanopore, allows for comprehensive SV
discovery and characterization even in complex polyploid crop genomes. However, many of the
SV discovery pipeline benchmarks do not include complex plant genome datasets. In this study,
we benchmarked popular long-read alignment-based SV detection tools for crop plant genomes.
We used real and simulated Oxford Nanopore reads for two crops, allotetraploid Brassica napus
(oilseed rape) and diploid Solanum lycopersicum (tomato), and evaluated several read aligners and
SV callers across 5%, 10x, and 20x coverages typically used in re-sequencing studies. Our
benchmarks provide a useful guide for designing Oxford Nanopore re-sequencing projects and SV
discovery pipelines for crop plants.

Key words: Structural variants; benchmarking; long reads; Oxford Nanopore Technologies; crops;
plants

1. INTRODUCTION

Structural variations (SVs) are a major type of polymorphisms, which consist of insertions,
deletions, inversions, duplications, and translocations. SVs are larger polymorphisms (>50 bp)
compared with single nucleotide polymorphisms (SNPs) and small indels (insertions and
deletions). Copy number variations (CNVs) and presence/absence variations (PAVs) occur due to
these genomic polymorphisms (Alkan et al., 2011; Sedlazeck et al., 2018a). Insertions and deletions
can have a strong effect on crop traits and have been shown to play a role in domestication and
environmental adaptation (Gill et al., 2021; Tao et al., 2019; Yildiz et al., 2022; Zanini et al., 2022;
Zmienko et al., 2014). Until recently, the lack of high-quality reference assemblies and the complex
nature of often large, polyploid genomes made comprehensive SVs exploration challenging in crop
genomic research (Meyers and Levin, 2006; Yuan et al., 2021).
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Development of long-read sequencing technologies such as Oxford Nanopore Technologies (ONT)
(Jain et al., 2016) and Pacific Bioscience (PacBio) (Roberts et al., 2013) provided new
opportunities for comprehensive SV discovery in crop plants. The sequencing accuracy of these
technologies is continuously improving. Currently, PacBio HiFi consensus reads exceed 99%
accuracy (Wenger et al., 2019) while ONT R10.3 raw reads accuracy exceeds 95% (Delahaye and
Nicolas, 2021). The reduction in error rates facilitates downstream applications, including the
production of high-quality genome assemblies, and SV detection. ONT sequencing in particular is
being adopted in crop plant research for large scale re-sequencing projects of tens to hundreds of
individuals (Alonge et al., 2020; Chawla et al., 2021; Lemay et al., 2022; Vollrath et al., 2021;
Zhang et al., 2022). Despite the constant decrease in sequencing error rate, long-read technologies
require specialized computational approaches to take advantage of them efficiently.

The two main approaches for SV discovery are de novo assembly-based and read alignment-based.
De novo assembly-based approaches assemble reads into longer contigs and identify SVs by
aligning assemblies (Wenger et al., 2019). Read alignment-based approaches directly align reads
to reference genomes to discover SVs. De novo assembly-based methods perform better at finding
larger variants (tens to hundreds of kbp long; exceeding the length of individual reads) but require
sufficient amount of data to produce high-quality assemblies, which leads to substantial increase
in cost of the experiments for larger crop genomes. However, read alignment-based approaches
can perform well even at modest sequencing depths of 5% to 10x and use less computational
resources, but the discovered SVs are limited to differences with the reference genome which
makes this approach more suitable for larger re-sequencing projects (Coster et al., 2021). Several
algorithms were developed for SV discovery from long-reads including Sniffles (Sedlazeck et al.,
2018b), NanoVar (Tham et al., 2019), SVIM (Heller and Vingron, 2019), cuteSV (Jiang et al.,
2020), and dysgu (Cleal and Baird, 2022), which have been comprehensively reviewed recently
(Mahmoud et al., 2019; Yuan et al., 2021). Additionally, several long-read aligners are available
such as minimap2 (Li, 2018), NGMLR (Sedlazeck et al., 2018a), Vulcan (Fu et al., 2021), and Ira
(Ren and Chaisson, 2021). Considering the continued development and improvement in read-
alignment and SV detection algorithms and multitude of their possible combinations, their
combined performances in SV detection demand realistic and up-to-date benchmarks to guide the
selection of SV discovery tools.

In this study, we hypothesized that certain combination(s) of read aligners and SV discovery
software will have superior performance in datasets representing complex crop genomes. We used
real and simulated ONT reads for two crop plant genomes and evaluated several mappers and SV
callers across coverages including 5, 10x, and 20x typically utilized in re-sequencing studies. We
chose to perform benchmarking on allotetraploid Brassica napus (oilseed rape) and diploid
Solanum lycopersicum (tomato) as these two species represent different ploidy, have different SV
profiles, and were already studied using Oxford Nanopore Technology. Our benchmarks provide a
useful guide for researchers designing Oxford Nanopore re-sequencing projects and those
designing SV discovery pipelines.
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82
83 2. MATERIALS AND METHODS
84
85 2.1 Read Aligners, SV Callers, and Benchmarking Datasets
86  The SV callers included in the study were selected using several criteria: (1) citation count (used
87  as a proxy for popularity in the research community), (2) publication date and maintenance status
88  (excluding older tools that were no longer maintained), (3) ability to detect both insertion and
89  deletion SVs from ONT data. The benchmarking approach involved four long-read aligners,
90 including minimap2 (Li, 2018), NGMLR (Sedlazeck et al., 2018a), Ira (Ren and Chaisson, 2021),
91 and Vulcan (Fuetal., 2021) as well as five SV calling software namely Sniffles (v2) (Sedlazeck et
92 al., 2018b), NanoVar (Tham et al., 2019), SVIM (Heller and Vingron, 2019), cuteSV (Jiang et al.,
93  2020), and dysgu (Cleal and Baird, 2022). All aligners and SV caller versions are provided in detail
94  in (Table S1). Three simulated datasets (Sim_ONT Bnl, Sim ONT Bn2, and Sim_ ONT _SI) and
95 publicly available data, for B. napus and S. lycopersicum genomes, were used. The real-world
96 datasets for whole genome Nanopore sequencing of B. napus cv. King 10 (accession number:
97 SRRI15731030) (Vollrath et al.,, 2021) and S. lycopersicum cv. M82 (accession number:
98 SRR16966224) (Alonge et al., 2021) were downloaded from NCBI Sequencing Read Archive. The
99  ONT reads were randomly subsampled to 5%, 10%, and 20% coverages using Rasusa (Hall, 2022)
100 to test the effect of sequencing depth on SV discovery.
101
102 2.2 Simulated Dataset Generation
103  For three simulated datasets (workflow for all simulations is presented in (Figure S1), new
104  haplotypes including SVs were generated, and synthetic ONT reads were simulated using VISOR
105  vl.1 (Bolognini et al., 2020). For simulation one (Sim_ONT Bnl) 20,000 genomic intervals
106  (mean: 750 bp, SD: 500 bp) were randomly drawn from the B. napus genome (Express 617 v1). A
107  subset of 10,000 were denoted as deletions. For the remaining 10,000, denoted as insertions, the
108  genomic start coordinate was retained, while the sequences corresponding to the genomic intervals
109  were extracted, randomly re-assigned to the coordinates, and served as insertion sequences at those
110  coordinates (Figure S1).
111
112 Simulations two and three, denoted Sim_ ONT Bn2 and Sim ONT _SI, were designed to reflect
113 SVs found in real-world datasets. For Sim_ONT_ Bn2 the assembled B. napus genomes Express
114 617 vl (Lee et al., 2020) and Westar (Song et al., 2020) were aligned using minimap2 v2.24. SVs
115  were detected using SVIM-asm v1.0.2 (Heller and Vingron, 2020). To reduce the effect of using
116 minimap2 for benchmarking dataset generation, the SV locations were shifted by a randomly
117  selected number in the (-5000, 5000) interval. This changed the exact SV site while maintaining
118 the realistic distribution of SV sizes and locations along the genome. A random subset of 10,000
119  insertions and 10,000 deletions was drawn from all SVs to create the benchmarking dataset. SNPs
120  discovered from short reads using bcftools v1.15.1 were also included. The SVs and SNPs were
121 provided to VISOR to generate new haplotypes, which in turn were used for Oxford Nanopore read
122 simulation. Sim_ ONT Sl was generated using the same strategy as for Sim ONT Bn2 but

3


https://doi.org/10.1101/2022.09.23.508909
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.23.508909; this version posted September 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

123 designed to reflect SVs of the S. lycopersicum genome. Heinz 1706 (Slycopersicum 691 SL1.4.0)
124  and M82 (Alonge et al., 2021) assemblies were used for whole genome alignments. Due to smaller
125  number of SVs, a random subset of 2,500 insertions and 2,500 deletions were drawn from all SVs.
126

127  To test the effect of sequencing depth on SV discovery, the datasets were simulated at 5%, 10, and
128  20x coverage. The simulations provided the objective truth sets, which could be used to calculate
129 SV precision, recall, and combined F1-scores. Precision describes the proportion of correct positive
130  predictions among all positive predictions. It is calculated by dividing the true positives by overall
131  positives. Recall describes the proportion of positive predictions made out of all positive elements
132 in the dataset. It is calculated by dividing true positives by total number of relevant elements. F1-
133 score combines precision and recall by taking their harmonic mean. Its value ranges from 0 to 1.
134  Fl-score close to 1 indicates high precision and recall. Using two different strategies for generating
135  simulated datasets will make it possible to minimize analytical bias. If the same combination of
136  tools performed best on all simulated datasets, this will likely reflect true superior performance.
137

138 2.3 Comparative Analyses

139  Express 617 vl for the B. napus (Lee et al., 2020) and Slycopersicum 691 SI[.4.0 for the S.
140  Iycopersicum (Hosmani et al., 2019) were used as reference sequences. Simulated datasets and real
141  subsampled reads at each coverage depth were aligned to respective reference genomes. The SV
142 call sets were filtered using the following criteria: (1) number of minimum supporting reads: 5x:
143 3, 10x: 5, and 20x%: 8, (2) SV type: INS or DEL (the most abundant SVs supported by all the
144  benchmarked tools), (3) minimum SV length: 50 bp, (4) SV quality: SVs flagged as “PASS” (5)
145  genotype: homozygous genotype for alternative allele (‘1/1”). For simulated data, precision, recall,
146  and Fl-scores of the SVs were computed for each combination of coverage depth, read aligner,
147  and SV caller using Truvari v3.0.0 (English et al., 2022). Comparisons between results from the
148  same tool combination across different coverages and different tool combinations across the same
149  coverages were performed using surpyvor v0.8.1 (Jeffares et al., 2017). For real datasets, where no
150 truth sets were available, we focused on within-dataset comparisons and how those compared to
151  the results from simulated data. For each coverage, 20 different read aligner/SV caller
152  combinations were used which led to a total of 60 different combinations for three coverages. All
153  the relevant commands for simulated data generation and SV discovery are available in the
154  Supplementary Note.

155

156 3. RESULTS

157

158 3.1 Selecting the Benchmarking Datasets

159  We chose to focus on two crop plant species B. napus (oilseed rape; genome size ~1.1 Gbp) and S.
160  lycopersicum (tomato; genome size ~900 Mbp) because they are both important crops and their
161  structural variation was previously studied using Oxford Nanopore Technologies (Alonge et al.,
162 2020; Chawla et al., 2021). Whole Genome Alignment (WGA)-based SV discovery also suggested
163  that they have quite different SV profiles with 38,666 SVs (Real WGA Bn, mean size: 2,068 bp,
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164  median size: 593 bp, 19,450 insertions and 19,216 deletions) discovered for B. napus and 7,108
165 SVs (Real WGA_ SI, mean size: 3,029 bp, median size: 178 bp, 4,159 insertions and 2,949
166  deletions) discovered for S. lycopersicum.

167

168  Two simulated B. napus haplotypes (Sim_ONT Bnl and Sim ONT Bn2) and one simulated
169 . lycopersicum haplotype (Sim_ONT _Sl) were used to generate Oxford Nanopore reads at 5x,
170  10x, and 20x to test the effect of sequencing depth on SV discovery. The two publicly available
171 real-world datasets, from B. napus (38x) and S. lycopersicum (68x), were subsampled with the
172 same logic (Real ONT Bn, Real ONT _SI). The available graphical representation of a workflow
173 for simulation and real data is shown in Figure 1.

174

175 3.2 Characteristics of Structural Variant Truth Sets

176  The SVs supplied to VISOR to generate Sim ONT Bnl, Sim ONT Bn2, and Sim ONT Sl
177  haplotypes served as three truth sets for our comparisons. The truth sets included deletions and
178  insertions. The length distribution of truth set SVs is presented in Figure 2. Sim ONT Bnl is
179  unbiased in terms of the bioinformatics tools used, as the regions representing SVs were entirely
180 randomly drawn from the B. napus genome. For any simulated dataset to reflect realistic SV
181  distribution, SVs have to be discovered first and provided to the simulation software. Any
182  relationship between tools used for SV identification for long-read dataset simulation and tools
183  used for SV detection from these simulated reads (for example use of similar/same mapping
184  algorithm) can result in inflated performance and biased results. However, Sim_ ONT Bnl does
185  not reflect realistic SV length and genomic distribution. To mitigate that Sim ONT Bn2 and
186  Sim ONT Sl were created using SVs derived from real-world datasets. The two simulation
187  strategies are complementary and should allow both unbiased and realistic assessment of SV calls.
188  The median (mean) sizes (bp) for insertions and deletions were 800 (834) and 795 (825) for
189  Sim_ONT Bnl, 629 (1,959) and 594 (1,904) for Sim_ONT _Bn2 and 162 (3,178) and 165 (2,477)
190 for Sim ONT SI. Overall, the Sim ONT Bn2 and Sim_ONT _SI truth sets had a wider range of
191  insertion and deletion sizes. They were more reflective of true biological variation, making them
192  more realistic than the Sim ONT Bnl truth set.

193

194 3.3 Performance of Long Read Aligners

195  Subsampled S. lycopersicum, B. napus, and simulated reads were aligned using lra, minimap2,
196  Vulcan, and NGMLR to the Slycopersicum 691 SL4.0, and Express 617 v1 reference genomes.
197  Mapping statistics and run times of alignment against relevant reference genomes with different
198  coverages of Sim_ ONT Bnl, Sim ONT Bn2, Sim ONT SI, B. napus (Real ONT Bn), and S.
199  lycopersicum (Real ONT SI) real-world datasets are given in Table S2. Minimap2 had the
200  shortest run time across all coverages. Conversely, NGMLR had the longest run time and also the
201  lowest mapping rate. Figure 3 shows mapping runtime (h:mm:ss or m:ss) for both simulation and
202 real-world datasets with eight CPUs. Real ONT Bn dataset with 20x coverage was aligned ~220
203  hours by NGMLR and ~119 hours by Vulcan, compared to ~4 hours by minimap2 and ~5 hours
204 by Ira. Therefore, minimap2 and Ira provided a greater speed advantage than NGMLR and Vulcan.
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205 The run times increased with the higher coverages (Figure 3). Processing of real data took
206  substantially longer than processing of simulated data. Moreover, Vulcan and minimap2 produced
207  the highest proportion of mapped reads in Real ONT Bn (>96%), Real ONT _SI (96%-98%), and
208  all simulated data (>98%) (Table S2). NGMLR reported the lowest proportion of mapped reads
209  for Real ONT Bn (~81%) and Real ONT _SI (~76%), while Ira and NGMLR resulted in similar
210  statistics (96%-97%) for Sim_ONT Bnl, Sim_ ONT Bn2, and Sim ONT SI at each coverage.
211 The combination of fast run time, good mapping rate, and the SV calling results presented below
212 suggest that minimap? is the top-performing aligner for simulated and real reads.

213

214 3.4 Performance of SV Callers on Simulated Data

215

216  3.4.1 Performance using Sim_ONT_Bnl as benchmark

217  We calculated the precision, recall, and F1-score of the SVs generated using different mapper and
218 SV caller combinations using the Sim ONT Bnl truth set. Table S3 shows comparison of the
219  precision, recall, and F1-scores for all mapper/SV caller combinations at the 5%, 10x, and 20x
220  coverages. Each aligner/SV caller combination was evaluated with respect to total SVs, deletions,
221  and insertions. Figure 4 presents the corresponding F1-scores at 5% to 20 coverages. CuteSV after
222 minimap2 alignment reached the highest F1-scores 5x:~0.90, 10%:~0.97, and 20%:~0.99 for total
223 SVs, 5x:~0.91, 10%:~0.97, and 20x:~0.99 for deletions, and 5%:~0.89, 10x:~0.96, and 20x:~0.99
224  for insertions. At the lower end of coverage (5%), combination of minimap2/cuteSV provided a
225  better advantage when compared to other mapper/SV caller combinations, especially in capturing
226  insertions. Minimap2/Sniffles2 had second-best F1-scores (Figure 4). SVs detection by NanoVar
227  was obtained directly from reads as NanoVar has its own internal mapping algorithm therefore the
228  precision, recall, and F1-scores for different aligners are not included.

229

230  We also compared the total number of SVs, insertions, and deletions for all tested aligner/SV caller
231 combinations. Table S4 summarizes the number of SVs found at 5%, 10x, and 20x coverages.
232 There were more discovered deletions than insertions regardless of coverage. The combinations of
233 minimap2/cuteSV and minimap2/Sniffles2 detected the highest number of SVs at each coverage.
234 We also analyzed how many of the SVs overlapped across different coverages while using the
235  same tool combination and how many of the SVs overlapped across different tool combinations
236 within the same coverage. Data S1 shows the number of overlapping and unique SVs across
237 coverages. Minimap2/cuteSV combination had the highest number of overlapping SVs. It also
238  resulted in the highest proportion of overlapping SVs; 76.99% for all SVs, 79.19% for deletions,
239  and 74.79% for insertions, while the minimap2/Sniffles2 combination (second best according to
240  Fl-scores) had the second highest percentage overlap; 75.35% for all SVs, 78.35% for deletions,
241 and 72.33% for insertions (Table S11 and Figure 7). In addition, we performed comparisons across
242  different tool combinations within the same coverage. Data S2 displays the overlap, including the
243  intersection sizes between SV calls and the Sim ONT Bnl truth set. The highest number of
244  overlapping SVs was found at 20x coverage, following minimap2 aligner. Our Sim_ONT Bnl
245  results suggest that the combination of cuteSV and Sniffles2 with minimap2 alignment gave the
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246  best results achieving high F1-scores and capturing the highest number of overlapping SVs across
247  coverages.

248

249  3.4.2 Performance using Sim_ONT_Bn2 as benchmark

250  While Sim ONT Bnl represents relatively short SVs randomly distributed along the genome,
251  Sim_ ONT _Bn2 reflects true biological variation in B. napus. Table S5 presents comparison of the
252 precision, recall, and Fl-scores for all mapper/SV caller combinations at the 5%, 10x, and 20x
253 coverages. Figure 5 presents the F1-scores of SVs (total, insertions, and deletions) obtained using
254  different combinations of aligners and variant callers across coverages. CuteSV following
255  minimap2 alignment again was the top performing combination with the highest overall F1-score
256  values 5%:~0.87, 10x:~0.93, and 20x:~0.96 for total SVs, 5x:~0.90, 10x:~0.96, and 20x:~0.98
257  for deletions, and 5%:~0.83, 10x:~0.89, and 20%:~0.94 for insertions. Especially, at low 5x
258  coverage, this combination performed better than others. Minimap2/Sniffles2 had the second
259  highest F1-scores at 20x coverage as in Sim_ONT Bnl. However, minimap2/dysgu F1-score for
260 insertions at 5x and 10x was higher than Sniffles2 after the minimap2 alignment.

261

262 In addition, the total number of SVs, the total number of insertions, and deletions for all
263  combinations of tested aligners and SV callers were compared. Table S6 summarizes the total
264  number of SVs detected at 5%, 10x, and 20x coverages. Minimap2/cuteSV found the highest
265 number of SVs at each coverage like in Sim ONT Bnl. Again, more deletions than insertions
266  were found for all aligner and SV caller combinations across different coverages. We also analyzed
267  how many of the SVs overlapped across different coverages while using the same tool combination
268  and how many of the SVs overlapped across different tool combinations within the same coverage.
269  Data S3 lists the number of overlapping SVs across different coverages using the same tool
270  combination. Minimap2/cuteSV combination had the highest number of overlapping SVs. It also
271 had the highest proportion of overlapping SVs; 73.95% for all SVs, 80.05% for deletions, and
272 67.44% for insertions. The minimap2/dysgu combination was second best detecting 73.23% for all
273 SVs, and 67.28% for insertions. Minimap2/Sniffles2 combination was the second best for deletions
274 with 79.14% overlap (Table S11 and Figure 7). Data S4 displays overlap between results from
275  different SV callers within the same coverage after each aligner, including the intersection with the
276  Sim_ONT Bn2 truth set. The highest number of overlapping SVs was found at 20x coverage,
277  following minimap2 aligner. Overall, in Sim ONT Bn2, the combination of cuteSV after
278 minimap2 alignment gave the best results both in terms of F1-Scores and concordance across
279  coverages.

280

281  3.4.3 Performance using Sim_ONT_SI as benchmark

282  Sim ONT SI represents the true biological variation of S. lycopersicum. Table S7 presents
283  comparison of the precision, recall, and F1-scores for all mapper/SV caller combinations at the 5%,
284  10x, and 20x% coverages. Figure 6 shows the Fl-score of SVs (total, insertions, and deletions)
285 identified using combinations of the different aligners and variant callers. CuteSV and Sniffles2
286  with minimap2 alignment were top performers with the highest Fl-score values (5x:~0.85,
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287  10x:~0.92, and 20%:~0.94) for total SVs, (5x:~0.88, 10x:~0.95, and 20x:~0.97) for deletions,
288  and (5%:~0.81, 10x:~0.88, and 20x:~0.91) for insertions. Lra/Sniffles2 combination had the best
289  Fl-score for insertions for each coverage.

290

291  In addition, the total number of SVs, the total number of insertions, and deletions for all tested
292 aligner/SV caller combinations were compared. Table S8 summarizes the total number of SVs at
293 5%, 10x, and 20x coverages. Again, more deletions than insertions were found for all aligner and
294 SV caller combinations across coverages like in the previous simulated datasets. The number of
295  SVs overlapping across coverages while using the same tool combination and the number of SVs
296  overlapping across different tool combinations but within the same coverage were also calculated.
297  Data S5 shows the number of overlapping SVs across different coverages using the same tool
298  combination. Minimap2/dysgu combination had the highest number of overlapping SVs. However,
299  minimap2/cuteSV combination found the highest proportion of overlap; 73.49% for all SVs,
300 77.52% for deletions, and 68.98% for insertions, while the minimap2/Sniffles2 combination was
301  second best detecting 72.73% for all SVs, 76.32% for deletions, and 68.72% for insertions (Table
302  S11 and Figure 7). Although minimap2/dysgu found the highest number of SVs at each coverage
303 in Sim_ONT SI, the proportion of overlapped SVs was reported as 68.82%. Data S6 displays
304 overlap between results from different SV callers within the same coverage after each aligner,
305 including the intersection with Sim_ONT _SlI truth set. The highest number of overlapping SVs was
306  found at 20x coverage, following minimap2 aligner. Overall, in Sim_ONT _SI, the combination of
307 cuteSV and Sniffles2 after minimap2 alignment gave the best results both in terms of F1-Scores
308 and concordance across coverages.

309

310 3.5 Performance of SV Callers on Real-World Data

311  While tool performance on simulated data provides a useful guide, real-world datasets usually
312  provide additional unaccounted-for complexity and challenges. After finding the best combinations
313  in simulated data, we investigated whether the pattern would be similar in real-world datasets.
314  Since for the real-world data we do not have an objective truth set, they were only evaluated from
315  two perspectives which are the congruence of results when using the same tool combination across
316  different coverages and when using different tool combinations within the same coverage.

317

318  3.5.1 Performance on B. napus Real-World ONT Data

319  B. napus ONT real dataset (Real ONT Bn) was evaluated using the above-described strategy.
320 Table S9 shows the number of SVs from all tested combinations at different coverages in B. napus.
321  The minimap2/cuteSV and minimap2/dysgu combinations within all coverages captured the
322 highest number of total SVs, deletions, and insertions. Overall, a higher number of deletions than
323  insertions was detected for all aligner and SV caller combinations at different coverages. The
324  number of overlapped SVs across coverages for the same SVs caller/aligner combinations was
325  calculated (Data S7). Minimap2/cuteSV combination found the highest proportion of overlapping
326 SVs discovered at different coverages using the same combination of tools (51.53% of total SVs,
327  54.52% of deletions, and 47.91% of insertions), while the minimap2/sniffles2 combination was
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328 second best, detecting overlap of 50.1% for all SVs, 54.56% for deletions, and 44.92% for
329 insertions across coverages (Table S12 and Figure 7). Although the minimap2/dysgu combination
330 found more SVs, the percentage of intersecting SV was low. NanoVar detected the lowest
331  proportion of overlapping SVs across coverages (19.04% of total SVs, 25.07% of deletions, and
332 10.21% of insertions) and discovered more unique SVs. Surprisingly we noticed a high proportion
333  of heterozygous genotypes (0/1) in SV calling results for Real ONT Bn, considering that the data
334  represented a highly inbred elite line (Vollrath et al., 2021). Table S14 shows the number of SVs
335  genotyped as homozygous and heterozygous in real-world data. As our SV filtering required the
336  genotypes to be homozygous for the alternative allele (1/1) these heterozygous calls were removed
337  prior to analysis. We also investigated the overlap in SV calls across different tool combinations
338  within the same coverage (Data S8). We observed that a substantial proportion of deletions and
339 insertions were shared by most SV callers, with the largest number of overlapping SVs at 20x,
340 following minimap2 alignment.

341

342 3.5.2 Performance on S. lycopersicum Real-World ONT Data

343 We performed a similar evaluation for the real-world dataset of Solanum lycopersicum
344  (Real ONT Sl). Table S10 shows the number of SVs found from all tested combinations at
345  different coverages. The minimap2/dysgu combinations at 5%, 10x, and 20x captured the most
346 SVs. Additionally, for S. lycopersicum all tool combinations with the exception of NanoVar found
347  more insertions than deletions at each coverage. We also calculated the number of overlapping SVs
348  while using the same tool combination across different coverages (Data S9). Minimap2/cuteSV
349  combination found the highest proportion of overlapping SVs; 49.34% for all SVs, 49.63% for
350 deletions, and 49.16% for insertions, while the minimap2/sniffles2 combination detected 47.80%
351  for all SVs, 49.41% for deletions, and 46.61% for insertions. Even though the minimap2/dysgu
352  combination found more SVs, the percentage of common SVs (40.82%) was low like
353 Real ONT Bn data. NanoVar again detected the lowest proportion of overlapping SVs (21.57%
354  for all SVs, 31.20% for deletions, and 12.16% for insertions), and it discovered more unique SVs
355 like for the Real ONT Bn dataset (Table S12 and Figure 7). Again, we also tested overlaps
356  between SV calls within the same coverage, but across different tool combinations (Data S10).
357  The largest number of overlapping SVs was found at 20, following minimap2 alignment.

358

359  3.5.3 The Unique Features of Real-World Datasets

360 We found a surprisingly high proportion of heterozygous calls in the real-world datasets given the
361  highly inbred nature of the material used for sequencing. A high proportion of those is therefore
362  likely SV discovery/genotyping errors. More heterozygous calls were found in the B. napus than
363  the S. lycopersicum dataset. B. napus is an allotetraploid species, which undergoes reciprocal and
364  non-reciprocal homeologous exchanges (HEs; exchanges of large corresponding chromosome
365  segments between subgenomes). Non-reciprocal HEs could potentially cause erroneous SV calls if
366  there are HE present in the reference, but absent in the sample. As a result, reads will have no
367  corresponding mapping location and may be mis-mapped. To test such a scenario, we used the
368 Sim ONT Bn2 dataset (20%, minimap2 for mapping, and cuteSV for SV detection) and two
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369  versions of the modified Express 617 reference. In the first version, we replaced chromosome A01
370 by CO1 (two CO1 chromosomes and no AO1). In the second version, we replaced chromosome CO1
371 by A0l (two AOIl chromosomes and no C01). In both cases, the use of the modified reference
372 resulted in an increased number of heterozygous (162.3% for reference with AO1 missing, and
373 237.1% for reference with CO1 missing), but not homozygous calls across all chromosomes
374  (Figure 8), suggesting the non-reciprocal HEs can contribute to produce erroneous heterozygous
375  calls.

376

377 4. DISCUSSION

378

379  Many of the SV detection tools are benchmarked primarily on human/animal datasets, (Bolognini
380 and Magi, 2021; Coster et al., 2019; Dierckxsens et al., 2021; Jiang et al., 2020; Jiang et al., 2021;
381  Zhou et al., 2019), however the complexity and different SV profiles of crop plant genomes might
382  bring unique challenges. Therefore, to guide the design of large-scale long-read re-sequencing
383  studies, this study performed comprehensive benchmarking of popular SV calling tools with a
384  focus on tool performance at lower sequencing coverage. For this purpose, we designed two data
385  simulation strategies representing both unbiased and realistic benchmarking datasets reflecting
386  structural variation for two major crops oilseed rape (B. napus) and tomato (S. lycopersicum).

387

388  Four long-read aligners (minimap2, NGMLR, Ira, and Vulcan) and five SV callers (Sniffles2,
389  SVIM, cuteSV, dysgu, and NanoVar) were tested to detect SVs, particularly deletions and
390 insertions. Alignment time varied widely between the four aligners, while differences in the
391  proportion of mapped reads were moderate. As expected, higher sequencing coverage and
392 reference genome size length increased the run time of the mapping algorithms. The real-world
393  datasets required more time at the same coverage and reference genome size, which most likely
394 reflected additional complexity not captured in simulations. Overall, the results found minimap2
395 to be the best performing aligner for SV calling applications, which also had the fastest run time
396 and the most mapped bases. Recent benchmarking studies on human data also recommended
397 minimap2 among tested aligners such as GraphMap, LAST, and NGMLR (Bolognini and Magi,
398  2021; Coster et al., 2019; Zhou et al., 2019).

399

400  We found that similar tool combinations (especially cuteSV, followed closely by Sniffles2 and
401  dysgu after minimap2 alignment) had superior performance across all the simulated datasets. The
402  findings are in line with a recent study reporting that cuteSV performed better than other tested SV
403  tools such as Sniffles1, SVIM, and pbsv for precision and recall at both SV calling and genotyping
404  in human datasets (Bolognini and Magi, 2021). Increasing coverage improved recall and F1-scores
405  for all tested SVs calling combinations, confirming that the probability of detecting quality SVs
406  increases with more sequencing coverage (Jiang et al., 2021). However, even at low coverages (5%)
407  using cuteSV, Sniffles2, and dysgu for SV detection from reads aligned by minimap2 achieved
408 >0.8 Fl-scores on simulated datasets, suggesting that Oxford Nanopore technology might be
409  suitable for large-scale low coverage re-sequencing projects. While the lack of objective truth sets
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410  for real-world datasets precludes similar comparisons, the results revealed that tool combinations
411 with best performance for simulated datasets also had the most consistent outcome across the range
412  of coverages.

413

414  The criteria for filtering SV in this study were quite stringent, including retaining only SV
415  genotyped as homozygous for alternative allele (1/1). While in simulated datasets the number of
416 SV genotyped as heterozygous was relatively low, the proportion was much higher for real-world
417  datasets, especially in B. napus. We found that in B. napus, the presence of homeologous exchanges
418  will likely contribute to the erroneous discovery of heterozygous SV. B. napus is well known to
419  harbour wide-spread non-reciprocal homeologous chromosomal exchanges even extending to
420  whole chromosomes, e.g. for chromosomes A01 and CO1 as simulated here (Udall et al., 2005).
421  The finding underlies the importance of species-specific consideration when interpreting SV
422  discovery results. The presence of HEs likely explains only a proportion of the observed
423 heterozygous calls and other factors need to be considered as well, including other sources of mis-
424  mappings, genotyping errors, and residual heterozygosity in samples.

425

426  In conclusion, we found that for homozygous/inbred genotypes often used in crop studies a
427  substantial proportion of SVs can be discovered/genotyped at coverages as low as 5%, making
428  Oxford Nanopore technology a suitable option for larger-scale re-sequencing studies. At this time,
429  following our benchmarks we recommend using the minimap2/cuteSV combination as it achieves
430  good precision and recall at SV calling and found the highest overlap between SVs across
431  coverages. The performance of minimap2/cuteSV was followed closely by minimap2/Sniffles2 for
432 both simulated and real datasets.

433

434  FIGURES

435

436  Figure 1: Graphical overview of the benchmarking workflow.

437  Figure 2: Size distribution of the real-world SV and SV from three benchmarking datasets.

438  Figure 3: Read aligner run time (h:mm: ss or m: ss) for both simulation and real-world datasets
439  with 5%, 10x%, and 20% coverages (8 CPU). The reads were simulated with a mean length of 15,000
440  bp. The real-world datasets had a mean read length of 12,553 bp for B. napus and 22,339 bp for S.
441  [lycopersicum.

442  Figure 4: Fl-scores of Sim_ONT Bnl including total SVs, deletions, and insertions at 5x, 10x%,
443  and 20% coverages for different combinations of read aligners and SV callers.

444  Figure 5: Fl-scores of Sim ONT Bn2 including total SVs, deletions, and insertions at 5%, 10x%,
445  and 20x coverages for different combinations of read aligners and SV callers.

446  Figure 6: F1-scores of Sim_ ONT Sl including total SVs, deletions, and insertions at 5%, 10x, and
447  20x% coverages for different combinations of read aligners and SV callers.

448  Figure 7: Proportion of overlapped SVs (%), across 5%, 10x, and 20x coverages for simulated and
449  real-world datasets.
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450  Figure 8: The effect of non-reciprocal homeologous exchanges on SV discovery. Non-reciprocal
451  homeologous exchanges were simulated by replacing chromosome AO1 by CO1 and CO1 by AO1.
452
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Figure 4
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Figure 5
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Figure 6
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Figure 7 Sim_ONT_Bn1
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