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Abstract

Defective viral genomes (DVGs) have been identified in many RNA viruses as a major
factor influencing antiviral immune response and viral pathogenesis. However, the generation and
function of DVGs in SARS-CoV-2 infection are less known. In this study, we elucidated DVG
generation in SARS-CoV-2 and its relationship with host antiviral immune response. We observed
DVGs ubiquitously from RNA-seq datasets of in vitro infections and autopsy lung tissues of
COVID-19 patients. Four genomic hotspots were identified for DVG recombination and RNA
secondary structures were suggested to mediate DVG formation. Functionally, bulk and single cell
RNA-seq analysis indicated the IFN stimulation of SARS-CoV-2 DVGs. We further applied our
criteria to the NGS dataset from a published cohort study and observed significantly higher DVG
amount and frequency in symptomatic patients than that in asymptomatic patients. Finally, we
observed unusually high DVG frequency in one immunosuppressive patient up to 140 days after
admitted to hospital due to COVID-19, first-time suggesting an association between DVGs and
persistent viral infections in SARS-CoV-2. Together, our findings strongly suggest a critical role
of DVGs in modulating host IFN responses and symptom development, calling for further inquiry
into the mechanisms of DVG generation and how DVGs modulate host responses and infection
outcome during SARS-CoV-2 infection.
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Importance

Defective viral genomes (DVGs) are ubiquitously generated in many RNA viruses, including
SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide them
the potential for novel antiviral therapies and vaccine development. SARS-CoV-2 DVGs are
generated through the recombination of two discontinuous genomic fragments by viral polymerase
complex and the recombination is also one of the major mechanisms for the emergence of new
coronaviruses. Focusing on the generation and function of SARS-CoV-2 DVGs, these studies
identify new hotspots for non-homologous recombination and strongly suggest that the secondary
structures within viral genomes mediate the recombination. Furthermore, these studies provide the
first evidence for IFN stimulation activity of de novo DV Gs during natural SARS-CoV-2 infection.
These findings set up the foundation for further mechanism studies of SARS-CoV-2 recombination
and provide the evidence to harness DVGs’ immunostimulatory potential in the development of
vaccine and antivirals for SARS-CoV-2.

Keywords defective viral genomes, SARS-CoV-2, recombination, secondary structure, type I/II1
IFN responses, human epithelial cells
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Introduction

Respiratory tract infection of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) results in varying immunopathology underlying coronavirus disease 2019 (COVID-19).
Its symptoms vary from asymptomatic infection to milder/moderate disease and further critical
illness, including respiratory failure and death. Immune responses in COVID-19 patients of
various disease severities have been studied (Lega, Naviglio et al. 2020, Chiale, Greene et al. 2022,
Dadras, Afsahi et al. 2022). In general, broad induction of IFN responses and antiviral genes are
associated with milder/moderate COVID-19, whereas severe COVID-19 is often characterized by
a blunt early IFN responses and elevated proinflammatory cytokine expression in nasopharyngeal
mucosa (Kwon, Kim et al. 2020, Liu, Li et al. 2020, Gozman, Perry et al. 2021, Janssen, Grondman
etal. 2021, Vanderbeke, Van Mol et al. 2021). Investigation of how IFN responses are induced by

SARS-CoV-2 infection, especially early IFN stimulation in some patients, requires further study.

During SARS-CoV-2 infection, in addition to full-length viral genomes and single
nucleotide mutations, three major types of viral RNAs are generated from non-homologous
recombination that are critical for viral pathogenesis, including subgenomic mRNAs (sgmRNAs),
structural variants (SVs), and defective viral genomes (DVGs). The viral replication-transcription
complex performs recombination at specific transcription regulatory sequences (TRSs) to generate
a set of sgmRNAs, which subsequently translate into viral structural proteins (van Hemert, van
den Worm et al. 2008, Dufour, Mateos-Gomez et al. 2011, Sola, Almazan et al. 2015, Brant, Tian
etal. 2021). SVs comprise small insertion/deletions that allow the variant genome to independently
replicate and transmit. Numerous SVs have been described including small deletions in viral spike
protein that alter the fitness and virulence of SARS-CoV-2 isolates (Davidson, Williamson et al.

2020, Li, Wu et al. 2020, Majumdar and Niyogi 2021, Wang, Lau et al. 2021). Different from
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sgmRNAs and SVs, SARS-CoV-2 DVGs contain large internal deletions and have recombination
positions distinct from TRSs while retaining 5’ and 3’ genomic untranslated regions (UTRs)

(Gribble, Stevens et al. 2021).

This type of DVGs, also known as defective viral or interfering RNAs (D-RNAs), is widely
generated during replication of most positive sense RNA viruses (Huang 1973, Marcus and
Sekellick 1977) and influenza (Nayak, Chambers et al. 1985), and their replication relies on viral
machinery provided by co-infected homologous full-length viruses (Huang and Baltimore 1970,
Brian and Spaan 1997, Wu and Brian 2010). When accumulated to a high level, DVGs can
interfere with full-length viral genome production by stealing essential viral elements from full-
length viruses (Roux, Simon et al. 1991, Vignuzzi and Lopez 2019). This interference activity has
been reported for influenza viruses (De and Nayak 1980) and multiple non-SARS-CoV-2
coronaviruses (CoVs), such as SARS-CoV (Raman and Brian 2005), mouse hepatitis virus (MHV)
(Makino, Fujioka et al. 1985), bovine CoV (Hofmann, Sethna et al. 1990), avian infectious
bronchitis virus (IBV) (Pénzes, Wroe et al. 1996), transmissible gastroenteritis virus (Méndez,
Smerdou et al. 1996), and middle east respiratory syndrome CoV (MERS-CoV) (Gribble, Stevens
et al. 2021). In addition to interference activity, DVGs from influenza A virus have strong IFN
stimulation (Kupke, Riedel et al. 2019) and are reported to promote viral persistence in vitro (De
and Nayak 1980, Moscona 1991, Frensing, Heldt et al. 2013). More importantly, DVGs are largely
observed in nasal samples from patients positive for influenza and their abundance is negatively
correlated with patients’ disease severity, indicating the critical roles of DVGs in host responses
and clinical outcome (Vasilijevic, Zamarrefio et al. 2017). The current approach to identify DVGs
from SARS-CoV-2 infection is through short-read and long-read next generation deep sequencing

(NGS). Several algorithms, such as DI-tector (Beauclair, Mura et al. 2018), VODKA (Viral
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Opensource DVG Key Algorithm) (Sun, Kim et al. 2019), and ViReMa, (Viral-Recombination-
Mapper) (Routh and Johnson 2014), and metasearch tool DVGfinder (Olmo-Uceda, Mufioz-
Sanchez et al. 2022) are developed to specifically detect the reads containing the recombination
sites of DV Gs. Using these approaches, DVGs are documented in SARS-CoV-2 infected Vero E6
cells (Chaturvedi, Vasen et al. 2021, Rand, Kupke et al. 2021) and in nasal samples of COVID-19
patients (Xiao, Lidsky et al. 2021). Long-read NGS, such as full length iso-seq and nanopore direct
RNA-seq, further confirmed that substantial TRS-independent deletions identified from short-read
NGS are from SARS-CoV-2 genomes and maintain two genomic ends (Gribble, Stevens et al.
2021, Wong, Ngan et al. 2021). Additionally, identical deletions are found in various transcripts
encoding distinct sgmRNAs (Wong, Ngan et al. 2021), strongly suggesting that even deletions in
sgmRNAs are likely to be originated from viral genomes, since deletions existing in the viral
genome can be used as the template to generate a set of sgmRNAs with the same deletions during

transcription.

Despite DVGs playing such an important role in viral pathogenesis, their function in
SARS-CoV-2 biology is less known. Recent reports show that synthetic SARS-CoV-2 DVGs
(named therapeutic interfering particles, TIPs) exhibit substantial reduction on viral load across
different viral variants when delivered in hamsters (Chaturvedi, Vasen et al. 2021) and mice (Xiao,
Lidsky et al. 2021) pre- or shortly after infection, demonstrating the potential of SARS-CoV-2
DVGs as a new class of antiviral intervention by interfering genomic replication. No reports have
been identified for the role of DVGs in IFN responses and viral persistence for SARS-CoV-2
infection so far. Interestingly, a COVID-19 cohort study (Wong, Ngan et al. 2021) indicates that

the abundance of TRS-independent deletions (>20nts) is significantly more in symptomatic
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patients than that in asymptomatic patients, suggesting a potential role of DVGs in modulating

host responses and symptom development in COVID-19 patients.

As our interest lies with the generation of DVGs, in relation to viral pathogenesis rather
than sgmRNAs or smaller deletions in SVs, we used a pipeline based on ViReMa combined with
sequence filtering via RStudio to specifically identify TRS-independent DVGs with deletion
lengths larger than 100nts. We identified DVGs with varying degrees of junction frequency,
termed Jgeq, from multiple NGS datasets that are either publicly available or from our own
infections. Interestingly, we found DVG junctions consistently clustered in several genomic
hotspots among different NGS datasets and secondary structures within viral genome are likely to
guide the recombination. Functionally, we found that with similar infection level, samples with
more DVG reads had enhanced type I/III IFN responses than samples with less or no DVGs,
indicating the potential IFN stimulation of SARS-CoV-2 DVGs. In support, analysis of single cell
RNA-Seq from infected primary human lung epithelial cells showed an earlier primary IFN
expression (IFNB and IFNL1) in DVG+ cells than in DVG- cells. Finally, we applied our DVG
analysis to several published NGS datasets from nasal samples of COVID-19 patients. We found
persistent DVG reads with unusually high frequency in one immunosuppressive patient and higher
DVG abundance in symptomatic patients than asymptomatic patients. Taken together, our analyses
demonstrate critical roles of DVGs in modulating host IFN responses, viral persistence, and clinic

outcome for SARS-CoV-2 infection.

Results

DVGs are ubiquitously produced during SARS-CoV-2 infection both in vitro and in patients.
To examine whether DVGs can be detected universally during SARS-CoV-2 infections, we used

the ViReMa pipeline (Virus Recombination Mapper) combining with R filtering (Fig. S6) to
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specifically map the DVG recombinant sites (Fig. 1A) in multiple next generation sequencing
(NGS) datasets. As reported previously, ViReMa can agnostically detect RNA recombination
events and reported these junction positions in BED files. Reported junction positions include
sgmRNAs, of which their junctions contain leader transcriptional-regulatory signal (TRS-L, within
the first 85 nts of leader), and other recombinant RNAs with their jumping positions that are far
away from TRS-L. We defined our targeted DVGs as TRS-L independent RNA species bearing
deletions larger than 100 nts (Fig. 1A). Use these criteria, we first examined DVGs in 4 publicly
available in vitro infected NGS datasets with various cell types, MOIs, viral stocks, and sample
origins (Table S1). We found that DVGs can be detected in all examined datasets ranging from
several counts to several thousand counts (Fig. 1B). As the infection level varied significantly
among different datasets, we normalized DVG levels by junction frequency (Jieq), a ratio of DVG
counts over virus counts. DVG counts were the total number of DVG reads obtained from ViReMa
and meeting the above criteria, whereas virus counts were the total amount of reads fully aligned
to the reference viral genome. We observed two ranges of Jieq, <0.1% and 0.1%-1%. A549-ACE2
infected cells have the highest Jgeq, whereas infections in NHBE varied. In addition, either total
RNA or polyA enriched RNA were used for NGS for Calu3-total RNA and Calu3-polyA,
respectively. Both samples had very similar Jgeq, suggesting Jieq 1S robust to different library
preparation methods. Interestingly, we detected DVGs, although with low Jfeq, in the supernatants
collected from infected Vero E6 cells, suggesting that certain DVG species generated within
infected cells, potentially the DVGs containing packaging signals, were able to be packaged into

virions and released out into supernatants.
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Figure 1. DVGs were ubiquitously generated in SARS-CoV-2 in vitro infections and autopsy
tissues of COVID-19 patients. (A) Schematic representation of DVG generation from positive
sense viral genome and the general principle of ViReMa identification of deletion DVGs. The V’
site represents the break point and the E’ site represents the rejoin point of the viral polymerase
in the formation of DVGs. The gray dashed box marks the recombinant site that distinguishes
DVGs from full length viral genomes, which are identified by ViReMa, and further filtered using
two criteria shown in the graph. (B) The DVG read counts, viral read counts, and Jseq percentages
were graphed for each of the in vitro samples including the infected cells and supernatants. (C)
The DVG read counts, viral read counts, and Jseq percentages were graphed for autopsy lung
tissues of 9 DVG + COVID-19 patients. Each case represented one patients and different dots
represented RNA-seq from the different location of the same lung tissues. (D) The correlations
between DVG read counts and viral read counts were plotted for both the in vitro and autopsy
samples. ****p<(.0001 by Pearson’s correlation. (E) The percentage of -sense DVG among total
DVGs in in vitro and autopsy samples were shown.
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We then examined DVGs in autopsy tissues from patients that unfortunately died from
COVID-19 complications (GSE150316). We analyzed lung, heart, jejunum, liver, and kidney from
19 cases and DVGs were observed in only lung tissues in 9 cases (Fig. 1C). Their DVG counts
were close to the level observed in infections in NHBE cells but much less compared to infections
in cell lines, such as A549-ACE2, Vero E6, Calu3, and Caco2. Jieq from autopsy tissues were
mostly less than 0.1%, comparable with the lower range of Jieq Observed from in vitro infections.
Next, we sought to examine the relationship between DVG production and viral replication.
Interestingly, we observed strong positive correlation between DVG counts and virus counts for
autopsy tissues, but not for in vitro infections (Fig. 1D). In addition, Jreq was not significantly
correlated with virus replication level. It is noted that both negative sense (-sense) and positive
sense (+sense) DVGs were detected in all NGS datasets. The percentage of -sense DVGs
dominated in most in vitro infected NGS using total RNA to prepare the library (Fig. 1E). Together
with the previous reports in nasal specimens of COVID-19 patients (Xiao, Lidsky et al. 2021) and
our own analysis, we concluded that DVGs are ubiquitously generated during SARS-CoV-2

infection in vitro and in patients.

Recombination sites of SARS-CoV-2 DVGs were clustered in certain genomic hotspots. To
characterize positions of DVGs’ recombination sites, we graphed the actual junction positions of
all identified DVGs from in vitro infections from different cells and DVG+ autopsy tissues. As
both +sense and -sense DVGs were identified, we examined their distributions separately and first
analyzed the junction positions of -sense DV Gs. Interestingly, we found that their generation were
clustered in three conserved genomic hotspots, indicated as junction areas A, B, C (green boxes in
Fig. 2A and 2B). Among them, area B was observed in all infections and area A was largely

observed in infected cells but absent in the supernatants from infected Vero E6 cells. As DVGs

10
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formed in junction area A contained the largest deletion compared to B and C, it is possible that
DVGs within area A lack the package signal and thus were less efficiently released into
supernatants. To further identify the genomic hotspots for DVG break and rejoin points, we
graphed their locations separately based on the junction frequency per DVG position. We
identified one major hotspot for break point, corresponding to genomic positions 28200-29750
(highlighted in grey dashed box in Fig. 2C, details in Fig. 2D). Additionally, three major rejoin
hotspots were identified including 700-2500 (red box), 6500-8200 (yellow box), and 27000-29400
(green box). When comparing the distribution between -sense and +sense DVGs, we observed that
rejoin points, V, of +sense DVGs shared the same hotspots with break point, V’, of -sense DVGs
(Fig. STA-D vs Fig. 2A). This suggests that the junction positions of -sense and +sense DVGs are
correlated, likely resulting from their self-replication (Fig. SI1E). Finally, we ought to examine
whether common DVGs can be detected from different infection or different autopsy tissues. We
only identified common DVGs from different in vitro infections within the same RNA-seq dataset
(likely used the same viral stock for infections, Table S2). We did not find any common DVGs
from different autopsy tissues. Taken together, our analysis from multiple NGS datasets indicated
that SARS-CoV-2 DVGs are not generated randomly, rather they are formed at specific genomic

regions.
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Figure 2. Four genomic hotspots were identified for DVG formation. Break point (V') and rejoin
point (E’) distributions for -sense DV Gs from in vitro samples (A) and autopsy samples (B). Circle
size and color intensity indicated the DVG counts. The green dashed boxes represented hotspots
clustered with DVG junctions. (C) Break point (V°) and rejoin point (E’) distributions by Jjeq per
position for all in vitro samples. The dashed boxes indicated hotspots with high concentrations of
break or rejoin points. The width of each bar represented 300 nts. (D) Detailed positions of 4
identified hotspots clustered with DVG break and rejoin points. The color of the dashed outline
around each graph indicated the corresponding hotspot with the same color in (C). The width of
each bar represented 10 nts.
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The RNA structure distance between SARS-CoV-2 DVG junction positions is shorter than
any two random SARS-CoV-2 genomic positions. Ziv et al. developed COMRADES (Ziv,
Gabryelska et al. 2018), which can probe RNA base pairing inside cells, and applied it to detect
short- and long-range interactions along the full-length SARS-CoV-2 genome (Ziv, Price et al.
2020). Interestingly, the positions of SARS-CoV-2 DVG junctions correlated well with the
pairings found by COMRADES (red arches in Fig. 3A), which suggests a role of RNA secondary
structures in the formation of DVGs. The paired bases bring distant nucleotides in the primary
sequence close and make it possible for the breaking and rejoining actions to occur around those
close pairs. To further study the relationship between DVG junctions and the identified secondary
structure within the SARS-CoV-2 genome, we calculated the structural distance between DVG
junction positions, which is the shortest distance between two nucleotides by traversing the
backbone and base pairs (red solid path in Fig. 3B) (Clote, Ponty et al. 2012). We further extended
this definition to allow competing base pairs from alternative secondary structures since many
RNAs are known to populate multiple conformations in equilibrium and Ziv et al.’s data included

alternative conformations of SARS-CoV-2.

We first analyzed the distribution of all structural distances between any two nucleotides
in SARS-CoV-2 (counts >= 2), where 41% of the distances were under 100 (Fig. 3C) with a long
tail up to 1200. The median distance of the distribution was 112. However, for the structural
distances only between SARS-CoV-2 DVG junction positions, the peak of the distribution shifted
to the left with a smaller median value 33, and the vast majority (94%) of distances were less than
100 (Fig. 3D). Therefore, the structural distances between DVG junction positions were
substantially shorter than the distances between any two random positions, which indicated a

strong correlation between secondary structures and DVGs formation. Moreover, we observed that
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the larger the cutoff value for DVG counts, the greater the proportion of distances under 100 and
the smaller the mean distance (Fig. S2). As a negative control, we also evaluated the sequence
distance, which is the distance between nucleotides only based on their positions along the primary
sequence; in fact, it is a special case of structural distance without any secondary structure. We
analyzed the sequence distance between any two nucleotides in SARS-CoV-2 and between SARS-
CoV-2 DVG junction positions (Fig. 3E and 3F), respectively. The distribution of sequence
distances between any two nucleotides on SARS-CoV-2 was a triangular distribution. Most of the
distances between DVG junctions were clustered similarly as the hotspots previously observed
(Fig. 2C vs Fig. 3F), which is completely different from the distribution of structural distances of

DVG junctions that has its peak on the left (Fig. 3C and 3D).
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Figure 3. The correlation between DV Gs and secondary structures. (A) Comparison between
DV G junction positions (top, in vitro, -sense DVGs) and chimeric reads from COMRADES
(bottom) along full-length SARS-CoV-2 genome (Ziv, Price et al. 2020). The red arches
represented DV G positions that match COMRADES crosslinks and the blue arches represented
positions that do not match crosslinks. (B) Example to compare sequence distance and structural
distance. The structural distance between nucleotides 10 to 50 is only 5 (red solid path that
includes a connection across a base pair), while the sequence distance is 40 (orange dashed
path). (C-D) The distribution of all structural distances between any two positions in SARS-
CoV-2 (C), and between SARS-CoV-2 DVG junction positions (D). The percent of distances less
than 50, 100 and 200 were indicated, respectively. (E—F) As a negative control, the distribution
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of all sequence distances between any two positions in SARS-CoV-2 (E), and between SARS-
CoV-2 DVG junction positions (F). The mean and median distances of all distributions were
annotated in C-F. In (D) and (F), the blue, yellow, and red bars corresponded to three hotspots
annotated in Fig. 2C, respectively, while the grey bars were out of the range of these detected
hotspots. The inset in (D) distinguished structural distance’s distributions of three hotspots and
the rest up to a structural distance of 100. The dashed contour in the inset represented the sum of
all distributions for the same structural distance, and it was with the same shape as the major
figure in (D). In both (C) and (E), the total occurrence of all distances equals the number of any
two positions along SARS-CoV-2, and in (D) and (F), the total occurrence of all distances is the
same as the number of DVG data points (with counts 2 or above).

SARS-CoV-2 DVGs specifically enhanced type I/III IFN responses. To understand the
dynamics of SARS-CoV-2 DVGs during infection and how that affects host responses and viral
replication, we infected PHLE cells from donors of different age groups with SARS-CoV-2 Hong
Kong strain (SARS-CoV-2/human/HKG/VM20001061/2020) at MOI of 5. Mock and infected
cells were harvested at different time points post infection (hpi) followed by bulk RNA-seq-
ViReMa analysis. We observed DVGs as early as 48 hpi in cells from infants and younger adults,
whereas in the elderly sample, we did not detect DVGs until 72 hpi (Fig. 4A), suggesting that DVG
generation may be delayed in the elderly who are more likely to display severe symptoms when
infected. We observed the same genomic hotspots for DVG junction regardless of their age groups
and time points (Fig. S3A-S3D). Strikingly, those hotspots were consistent with the ones identified
from different cell lines (Fig. 2), autopsy lung tissues (Fig. 2), and the following single cell RNA-
seq analysis (Fig. S3E). Again, we observed that V (rejoin point of +sense DVGs) and V’ (break
point of -sense DVGs) shared the same hotspots and E (break point of +sense DVGs) and E’ (rejoin
point of -sense DVGs) shared the same hotspots (Fig. S3A vs S3B), indicating that our identified

recombination sites were likely from DVGs capable of replication.

In order to examine the role of DVGs in host responses, we grouped our infected samples

based on their DVG counts and viral counts. Three samples (D231 1 48hr, D231 1 72hr, and
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D239 1 48hr) were significantly higher in both viral counts and DVG counts and thus categorized
as High group (marked dark blue in Fig. 4B and S4A). When compared this group with the rest
infected samples, one cluster of genes (pink cluster) were identified as upregulated in the High
group. Gene Ontology (GO) enrichment analysis of this cluster was highly enriched in genes
involved in type I IFN antiviral responses (Fig. S4B). A heatmap focusing on type I/III IFN related
genes confirmed that samples in High group had enhanced gene expression compared to the rest
of samples (Fig. 4B). In order to test if the IFN stimulation is specific to DVGs, we selected 4
samples at 72 hpi with similar levels of viral replication but different level of DVGs (Fig. 4E) to
compare their type I/III IFN responses. We observed that the sample with more DVGs exhibited
enhanced antiviral responses than samples with less DVGs (Fig. 4C), but this enhancement was
not observed for genes in other pathways such as type II responses and inflammation (Fig. 4D).
Although we cannot perform proper statistical analysis due to limited sample size, these data, for
the first time, suggest that SARS-CoV-2 DVGs enhance IFN production as observed previously

in other RNA viruses (Kupke, Riedel et al. 2019).
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Figure 4. DVGs influence type I/I1l interferon responses in infected PHLE cells. PHLE cells of
donors from different age groups were infected with SARS-CoV-2 at MOI of 5. Samples were
harvested at designated time points post infection. (A) Viral read counts, DVG read counts, and
Jieq were graphed for all samples, grouped by donor’ age group and time points. NA indicated
that the samples were not available for RNA-seq and thus no data were collected. (B) Differential
expression levels of genes related to type I interferon responses were graphed as heat map for all
infected samples. Samples were grouped by viral infection level. DVG levels of each sample were
indicated by different color codes on top of the heatmap. Four infected samples at 72 hpi with
similar level of viral counts were selected to compare their IFN responses (C) and other gene
expression unrelated to type I/Ill IFN responses (D). (E) The viral and DVG read counts for the
selected 4 infected samples (D198, D203, D239, and D283) were graphed.
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Primary IFNs were expressed earlier in DVG+ cells with moderate infection. To understand
DVG generation and their host responses at single cell level, we obtained one single cell RNA-seq
dataset using adult NHBE cells with infection at MOI of 0.01 (GSE166766). Consistent with the
previous observations, viral counts, DVG counts and Jseq at 2 dpi were all significantly increased
compared to that at 1 dpi, but not significantly different from 3 dpi (Fig. SA). Major cell types
enriched with DVGs were ciliated cells, basal cells, and SLC16A7+ (red in Fig. 5B, grouping of
cell types were based on the markers used in original publication). Among these three cell types,
ciliated cells had the most DVG+ cells, whereas SLC16A7+ cells had the highest percentage of
DVG+ (Fig. 5C). All DVG+ cells contained at least 1 viral count (virus positive cells) and total
viral counts were significantly higher in DVG+ cells than DVG- cells at all three time points (Fig.
5D). Only about 1% of virus positive cells at 1 dpi (n=60) were DVG+. Therefore, we focused on
the DVG+ population at 2 dpi (n=348) and 3 dpi (n=725) to analyze their host responses.
Differential expression tests were then performed using three different methods in Seurat (MAST,
Wilcox, and DEseq2) between DVG+ and DVG- groups within virus positive cells. Significantly
more genes were identified as downregulation in DV G+ cells than genes that were upregulated at
both time points (adj pvalue < 0.01 and logFC > 0.25) and similar enriched pathways were
observed from GO analysis. Specifically, the ribosomal cytoplasmic translation (host protein
synthesis) was largely inhibited in DVG+ cells, possibly due to their higher level of viral
replication (more expression of NSP1) than DVG- cells (2 dpi: upper panel in Fig. 6A; 3 dpi: Fig.
S5A). Despite of this, pathways such as transcription from RNA polymerase II promoter, TNF and
NF-kB, and apoptosis were significantly enriched in the upregulated genes. Importantly, defense
to virus and chemokines were also observed in the upregulation list, consistent with the results

from bulk RNA-seq (2 dpi: bottom panel in Fig. 6A, 3 dpi: Fig. S5B). Next, we specifically
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examined the expression level of representative genes related to type I/IIl IFN pathways between
DVG- and DVG+ viral positive cells, including two primary IFNs (IFNB1 and IFNL1), ISGs and
chemokines selected from the differentially expressed gene list. To better control viral loads, we
further categorized virus positive cells (cells with virus count >1) based on their viral counts as
three groups: low (viral counts <10), moderate (10< viral counts <20000 for 1 dpi and 2 dpi; 10<
viral counts <10000 for 3 dpi), and high (viral counts >20000 at 1 dpi and 2 dpi; viral counts
>10000 at 3 dpi). DVGs were identified majorly in moderate (~12%) and high groups (>84%), and
extremely small percentage (<0.2%) of low infected cells generated DVGs. Two primary IFNs
were predominantly expressed only in moderate viral group regardless of DVG presence.
However, DVG+ cells expressed two primary IFNs 1 day earlier than DVG- cells (2 dpi vs 3 dpi,
moderate group in Fig. 6B), suggesting a role of DVGs in stimulating primary IFNs early. In
support, ISGs showed similar trend. As IFN related genes are zero-inflated, we performed
comparisons for both the expression level of cells expressing interested genes (gene counts >0,
named as non-zero cells) and their percentages within DVG+ and DVG- groups. Briefly, the
average expression of ISGs (non-zero cells) was all significantly enhanced in DVG+ cells within
moderate group at 2 dpi but this enhancement was partially lost at 3 dpi despite of higher
percentage of DVG+ cells expressing IFNs and ISGs at 3 dpi relative to that of DVG- cells (Fig.
6C and 6D). Different from moderate group, high viral group had minimal expression of all IFN
related genes, further confirming IFN pathways were suppressed in highly infected cells (Fig. 6A,
6B). Low viral group predominantly expressed ISGs rather than two primary IFNs at all time points
(Fig. 6E), suggesting they are the secondary responders to initial type I/III IFN production. Taken

together, our analysis strongly suggests that DVG+ cells with moderate infection were the first
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responders to viral infection, quickly expressing primary IFNs and subsequentially alerting

neighboring cells to express ISGs.
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Figure 5. DVG generation in infected NHBE cells from single cell level. (A) Violin plots of log
transformed viral UMI counts, DVG UMI counts, and Jseq for 1 dpi, 2 dpi, 3 dpi, and mock
samples. (B) Bar plots of cell counts of uninfected cells, DVG- infected cells, and DVG+ cells
within different cell type for mock, 1 dpi, 2 dpi, 3 dpi samples. Infected cells were cells with viral
UMI over 1 and DVG+ cells were the ones with DVG UMI over 1. All DVG+ cells had at least 1
viral UMI. (C) Bar plots of DVG+ cell counts and DVG+ percentages per cell type for mock, 1
dpi, 2 dpi, and 3 dpi samples. (D) Violin plots of log transformed viral counts for DVG+ and DV G-
viral positive cells. ***p < 0.01, ** p < 0.05 by two-sided Wilcoxon Rank Sum test.
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Figure 6. DVG+ cells expressed primary IFNs earlier than DVG- cells. (A) Gene ontology
analysis of genes that were downregulated (Top) and upregulated (Bottom) in DVG+ cells relative
to DVG- cells at 2 dpi. Circle size represented number of genes in each pathway. Gene ratio
represented the ratio of number of genes in that pathway to the number of genes in the entire
cluster. (B) Gene expression of IFNBI and IFNLI1 (Y-axis) were correlated with viral UMI level
(X-axis) within each virus counts group. Virus groups with their counts criteria were indicated on
top of the graph. Each dot represented individual cell and were colored based on their presence
of DVGs. (C-D) In the moderate virus group, expression level of IFNB, IFNL1, selected ISGs and
chemokines for non-zero (gene counts > 0) cells and percentage of non-zero cells within DVG+
and DV G- groups were compared and graphed as violin plots at 2 dpi (C) and 3 dpi (D). ***p <
0.01, ** p < 0.05 by two-sided Wilcoxon Rank Sum test. (E) Expression level of IFNB, IFNLI, and
selected ISGs for DV G- cells with low virus group at 2 dpi and 3 dpi were graphed as violin plots.
EAE P<0.0001, ***p < 0.001, **p < 0.01, *p < 0.05 by Fisher’s exact test.
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Symptomatic COVID-19 patients had higher amount and Jfreq of SARS-CoV-2 DVGs than
asymptomatic patients. As SARS-CoV-2 DVGs can stimulate early expression of primary [FNs,
the question of whether DVG generation is associated to COVID-19 disease severity was asked.
We identified a publicly available NGS dataset (PRINA690577) investigating subgenomic RNAs
and their protein expression from symptomatic vs asymptomatic COVID-19 patients and the
authors also indicated more deletions with length over 20 nts in symptomatic patients than
asymptomatic patients (Wong, Ngan et al. 2021). To better examine the DVG (larger deletions)
level between two patient groups, we applied our criteria to this dataset and found a distinguished
increased DVG counts (both -sense and +sense, Fig. 7A) and subsequent higher Jieq (Fig. 7C) in
symptomatic individuals compared to asymptomatic patients on average. Additionally, our method
also confirmed the original finding that the read counts for genomic RNA was significantly lower
in symptomatic patients than that in asymptomatic patients (Fig. 7B). These data imply the

potential role of DVGs in COVID-19 symptom development.
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Figure 7. Symptomatic COVID-19 patients had higher amount and Jfreq of SARS-CoV-2 DV Gs
than asymptomatic patients. Samples of various collection methods including nasopharyngeal
(n =42), anterior nasal (n=35), and oropharyngeal (n=135) were used from NGS dataset
PRJNAG690577. Symptomatic samples (n = 51) were collected from patients presented at the
hospital with symptoms consistent with COVID-19 while asymptomatic samples (n = 30) were
collected from patients who did not have symptoms consistent with COVID-19 and were found
through contact tracing and workforce screening. DVG read counts (A), viral read counts (B),
and Jeq (C) percentages were calculated and graphed for all symptomatic and asymptomatic
samples. **** p < (0.0001, *** p < 0.001 by two-sided Mann-Whitney test.
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High DVG Jfreq was observed in one COVID-19 persistent patient. SARS-CoV-2 can develop
persistent infections in immunosuppressive patients (Caccuri, Messali et al. 2022, Quaranta,
Fusaro et al. 2022), and DVGs have been reported to facilitate viral persistence (Sun and Lopez
2017). To examine whether DV Gs are associated with persistent SARS-CoV-2 infection in patient,
we identified one NGS dataset, where nasal samples were taken at 9 time points from one
immunosuppressive patient who was infected with SARS-CoV-2 and was positive for virus up to
140 days since the first hospital admission (PRJEB47786). We detected DVGs in all 9 time points,
but the amount of DVGs were not always correlated with total virus counts (Fig. 8 A and 8B). More
interestingly, Jieq 0f DVGs from the samples in this patient were at least 10 times higher than the
number we observed in in vitro infections and autopsy tissues (Fig. 8C vs Fig. 1B, 4A, and 5A)
with highest Jieq up to nearly 20% at 56 days post initial admission to hospital. We noticed that
the method used in this dataset was tiled-PCR using ARTIC V3 followed by Illumina sequencing,
which is different from all the previous bulk and single cell RNA-seq we examined. To test
whether the high Jieq was due to the different approach and potentially because of nasal samples,
we found another NGS dataset with nasal samples of normal COVID-19 patients using tiled-PCR
(ARTIC V1 and V3) followed by Illumina sequencing (PRINA707211). We found that the Jgeq of
each patient sample was below 1%, within the range observed from previous in vitro and autopsy
NGS (Fig. 8D vs Fig. 1B, 4A, and 5A). This strongly suggests that the high Jgeq of DVGs in this
patient was not due to the amplification and sequencing methods, but rather may be associated

with the suppression status of patient’s immune system and persistent viral infection.
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Figure 8. High DV G Jfreq was observed in one SARS-CoV-2 persistent patient. Nasal samples
were collected from one immunosuppressive COVID-19 patient with persistent viral infection at 9
different time points. DVGs were identified from the NGS dataset (ERP132087/PRJEB47786) of
the nasal samples from this patient. DVG read counts (A), viral read counts (B), and Jfeq (C)
percentages were calculated and graphed for samples at each time points. (D) Jjeq of samples in
another NGS dataset (PRINA707211) utilizing the same amplification and sequencing methods
demonstrated a much smaller Jseq than the SARS-CoV-2 persistent patient, comparable to Jfeq
levels found SARS-CoV-2-infected in vitro and autopsy samples.

Discussion

It has been well-documented that DVGs are universally generated across single stranded
RNA viruses both in vitro and in vivo, such as Respiratory Syncytial Virus (RSV), measles,
influenza, Ebola, Dengue, CoVs, and many more. For SARS-CoV-2, DVGs are resulted from
non-homologous recombination and are previously observed in infected Vero cells (Chaturvedi,
Vasen et al. 2021) and nasal samples of COVID-19 patients (Xiao, Lidsky et al. 2021). In Vero
cells, SARS-CoV-2 is reported to be more than 10 times more recombinogenic than other CoVs,
such as MERS-CoV (Gribble, Stevens et al. 2021) and junctions of SARS-CoV-2 DVGs are most
commonly flanked at U-rich RNA sequences, suggesting a novel mechanism by which viral

polymerases use to generate DVGs. Interestingly, recombination is also proposed to be critical for
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coronavirus diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. To further
understand the recombination positions of SARS-CoV-2 DVGs, we expanded DVG analyses to 4
more commonly used cells lines for SARS-CoV-2 studies, primary human lung epithelial cells
(NHBE), and autopsy tissues from patients died of complications of COVID-19, further
confirming that DVGs are ubiquitously produced during SARS-CoV-2 infections. Importantly, we
identified specific genomic hotspots for DVG recombinant sites that are not only consistent in in
vitro and in patient samples, but also shared between +sense and -sense DV Gs. These results imply
two points: 1) DVG recombination is not random in SARS-CoV-2 and certain mechanisms are
utilized to regulate their production; and 2) our identified +sense DVGs and -sense DVGs are
correlated with each other, likely due to the self-replication in between. One limitation of our
analyses using short-read NGS is that short reads are <400 bp long and thus junction reads are less
likely to cover the entire DVG sequence. Despite of this, the replication capability of identified
DVGs strongly suggest that the 5> UTR and 3° UTR are retained in our identified DVGs, as two
UTRs are essential for genome replication. More analysis from long read sequencing data are

needed to further confirm full sequences of DVGs.

Based on the secondary structures identified by COMRADES crosslinking in the +sense
viral genome (Ziv, Gabryelska et al. 2018), we calculated the structural distance between two
recombination sites of any -sense DVGs and surprisingly found an association between DV G break
and rejoin points with short structural distance (Fig. 3C, D), as mediated by RNA base pairing.
The relatively short structural distance, as compared to the sequence length, indicates that DVGs
form when the viral polymerase falls off the template during replication and then rejoins the viral
template at a position close in space, which can be quite distant in sequence. This strongly suggests

that the recombination of viral polymerase complex can be guided by the secondary structures
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within viral genomes. As the structures formed within the -sense strand are expected to be different
from those in +sense strand (because folding stability is strand-direction dependent and G-U pairs
map to A-C mismatches in the complementary strand), we postulate that DVG generation is
initiated as -sense by viral polymerase complex using +sense viral genomes as template and -sense
DVGs are then used as templates to replicate +sense DVGs (Fig. S1E). More investigations on the
secondary structures in both strands of viral genomes and their role in viral recombination are

needed to further test this hypothesis.

The presence of DVGs on host response and viral replication were additionally explored.
It was observed that samples with moderate and high amounts of DVGs exhibited enhanced
antiviral responses than samples with low amounts of DVGs. From scRNA-seq analysis, IFN
pathways were suppressed in highly infected cells and primary IFNs were stimulated earlier in
moderately infected cells with DVGs than the ones without DVGs. These data suggest DVG
generation earlier on in infection can enhance antiviral response more quickly, which is critical for
mounting adequate and in-time immune response. The mechanisms by which DVGs enhance IFN
responses are unknown. DVGs from RSV and influenza can function as primary triggers to directly
stimulate type I IFN production through RIG-I like receptors (Sun and Lopez 2017). It is
previously reported that SARS-CoV-2 RNAs can be recognized by MDAS (Thorne, Reuschl et al.
2021, Znaidia, Demeret et al. 2022) and we showed that the expression of MDAS (IFIH1) was
elevated in DVG+ cells at 2 dpi (Fig. 6C). Therefore, it is possible that SARS-CoV-2 DVGs
stimulate type I/III IFNs through MDAS. Alternatively, if DVGs do not directly stimulate [FN
production, they can suppress the expression of viral-encoding IFN antagonists by large deletions,
resulting in an earlier and higher IFN expression in DVG+ cells. Indeed, IFN antagonists are

encoded in NSP1, NSP3, NSP5, NSP12, NSP13, NSP14, NSP15, ORF3a, ORF3b, ORF6, ORF7a,
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ORF7b, ORFS8, ORF9Ib, N, and M (Lei, Dong et al. 2020, Xia, Cao et al. 2020, Han, Zhuang et al.
2021, Wong, Cheung et al. 2022, Znaidia, Demeret et al. 2022) and most of them are within the
deletion regions based on our conserved genomic hotspots for DVG recombination sites (Fig. 2A
and 2B). Nevertheless, the higher IFN expression in DVG+ samples/cells suggest the critical role

of DVGs in modulating host responses and sequential disease severity of COVID-19.

To further explore the role of DVGs in COVID-19 severity, we take advantage of one
published NGS dataset that investigates sgmRNA levels in patients with differing clinical severity
(Wong, Ngan et al. 2021). They observed a reduction of viral sgmRNAs and viral deletions larger
than 20 nts but an increased viral genomic RNA level in nasal samples from asymptomatic patients.
As deletions with a cutoff of 20 nts may not represent the viral genomes that are defective, we
applied our criteria to this dataset and found that the abundance and Jgeq of DVGs containing
deletions larger than 100 nts were similarly reduced in asymptomatic patients compared to
symptomatic patients. A significant difference in DVG production between patients with and
without symptoms leads us to posit that quantity and Jgeq of DVGs contribute to the heterogeneity
of both disease outcomes and presentation of symptoms in infected individuals, potentially through
modulating host immune responses. As sgmRNAs and DVGs were both reduced in asymptomatic
group in this cohort study, we wonder whether sgmRNAs production is always positively
correlated with DVG generation. To examine this, we quantified TRS-dependent junction reads
(recombination sites <85) from the ViReMa output in infected PHLE cells from different age
groups as the estimation of sgmRNAs (dataset used in Fig. 4). Interestingly, we did not observe
any positive correlation. Specifically, D198 with the least DVG amount among all samples at 72
hpi had more sgmRNAs counts (n=385) than D239 (n=32), which again confirm that DVGs, rather

than sgmRNAs, specifically stimulate IFN responses. Why do symptomatic patients generate more
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DVGs? It is possible that the IFN response induced by DVGs lead to subsequential expression of
cytokines, such as IL6, which is known to be an important mediator for immune-induced fever, as
shown in blood monocytes for SARS-CoV-2 infection (Junqueira, Crespo et al. 2021). However,
rapid and controlled immune response will lead to milder symptoms, whereas prolonged and
uncontrolled immune response will lead to severe symptoms and even death (Janssen, Grondman
et al. 2021). Future studies with higher symptom scoring resolution, such as mild/moderate, severe,
and death, could elucidate the potential associations of DVG abundance and/or frequency with

viral load, IFN responses, and COVID-19 disease severity.

Analysis of DVG presence in longitudinal clinical samples describe the kinetics of the
DVG population across entire infection course. For one NGS dataset, we were surprised to find
one immunosuppressed patient generating DVGs consistently in every collected time point over a
period of 140 days, and Jieq of these samples being at least 10-fold higher than all previous
analyzed datasets (>1%). When comparing a similar method, it was determined that the increased
Jireq Was not due to the amplification and sequencing methods, but rather a biological difference
either from a compromised immune status or a prolonged viral infection. These data additionally
imply that a prolonged DVG presence/production may associate with a prolonged viral infection
and a longer length of illness. Indeed, DVGs have been shown to promote viral persistence for
various viruses, such as influenza A (De and Nayak 1980), dengue (Juarez-Martinez, Vega-
Almeida et al. 2013), Japanese encephalitis virus (Park, Choi et al. 2013), mumps (Andzhaparidze,
Bogomolova et al. 1983), rabies (Kawai, Matsumoto et al. 1975), Sendai (Roux and Waldvogel
1981), measles (Baczko, Liebert et al. 1986); additionally, worse disease outcome was found to be

associated with prolonged DVG detection in RSV (Felt, Sun et al. 2021). More longitudinal studies
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are needed to elucidate the relationship between DVGs and prolonged viral infection especially in

immunosuppressed COVID-19 patients.

Determining the generation (recombination) and function of DVGs during SARS-CoV-2
infection would facilitate reducing the viral recombination events, which greatly contribute to
newly emerging CoVs, and elucidate another point of mitigating disease severity from those
infected. We showed here that the recombination sites of SARS-CoV-2 DVGs are clustered in
several genomic regions, which are likely to be determined by RNA secondary structures formed
in between. Furthermore, our studies provide the evidence that DVGs play vital roles in IFN
stimulation, prolonged viral replication, and symptom development during SARS-CoV-2
infection, urging for more investigations to further determine the mechanism of DVG generation

and their impact on SARS-CoV-2 pathogenesis.

Materials and Methods

Virus and cell preparation

The following reagents were deposited by the Centers for Disease Control and Prevention and
obtained through BEI Resources, NIAID, NIH: SARS-Related Coronavirus 2, Isolate USA-
WAT1/2020, NR-52281. SARS-CoV-2 was propagated and titered using African green monkey
kidney epithelial Vero E6 cells (American Type Culture Collection, CRL-1586) in Eagle’s
Minimum Essential Medium (Lonza, 12-125Q) supplemented with 2% fetal bovine serum (FBS)
(Atlanta Biologicals), 2 mM l-glutamine (Lonza, BE17-605E), and 1% penicillin (100 U/ml) and
streptomycin (100 pg/ml). Viral stocks were stored at—80°C. All work involving infectious
SARS-CoV-2 was performed in the Biosafety Level 3 (BSL-3) core facility of the University of

Rochester, under institutional biosafety committee (IBC) oversight.
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PHLE culture on air-liquid interface and SARS-CoV-2 infection

Primary human lung epithelial (PHLE) cells were cultured on an air-liquid interface as previously
described (Wang, Bhattacharya et al. 2020, Anderson, Chirkova et al. 2021). Briefly, lung tissue
issues were digested with a protease cocktail and cells were then cultured on a collagen-coated
transwell plate (Corning, 3470) until each well reaches a transepithelial electrical resistance
(TEER) measurement of >300 ohms. Cells were then placed on an air-liquid interface (ALI) by
removing media from the apical layer of the transwell chamber and continuing to feed cells on the
basolateral layer as they differentiate. Cells were differentiated for 4-5 weeks at ALI before use in
experiments. The apical layer of primary lung cells that had been cultured on an air-liquid interface
for about 4-5 weeks were inoculated with SARS-CoV-2 (BEI, NR-52281, hCoV-19/USA-
WAT1/2020) at a MOI of 5 (titered in VeroE6 cells) in phosphate-buffered saline containing
calcium and magnesium (PBS++; Gibco, 14040-133), and incubated at 37°C for 1.5 hours. The
infectious solution was then removed and the apical layer washed with PBS++. Cells were then

incubated for 24, 48, or 72 hours.

SARS-CoV-2 inactivation and sample preparation

Cells that were harvested at 24 and 72 hours post infections were lysed with SDS lysis buffer
(50mM Tris pH8.0, 10mM EDTA, 1% SDS) and collected with a wide-bore pipette tip. Cells that
were harvested at 48 hours were first washed by dispensing and aspirating 37°C HEPES buftfered
saline solution (Lonza, CC-5022), and then trypsinized with 0.025% Trypsin/EDTA (Lonza, CC-
5012) for 10 min at 37°C. Dissociated cells were aspirated using a wide-bore pipette tip and to a
tube containing ice-cold Trypsin Neutralization Solution (Lonza, CC5002); this was repeated to
maximize cell collection. Cells were then pelleted by centrifugation, resuspended in chilled

HEPES, and centrifugally pelleted once more before being resuspended in SDS lysis buffer. All
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samples were physically lysed with QIAshredder homegenizers (Qiagen, 79656) and stored at -
80°C. Homogenized SDS lysates were diluted 1:1 with RNA lysis buffer (Agilent) and RNA was
extracted using the Absolutely RNA Microprep Kit (Agilent) according to the manufacturer’s

protocol, including on-column DNase treatment.

Bulk RNA-sequencing of infected PHLE cells

RNA concentration was determined with the NanopDrop 1000 spectrophotometer (NanoDrop,
Wilmington, DE) and RNA quality assessed with the Agilent Bioanalyzer 2100 (Agilent, Santa
Clara, CA). 1 ng of total RNA was pre-amplified with the SMARTer Ultra Low Input kit v4
(Clontech, Mountain View, CA) per manufacturer’s recommendations. The quantity and quality
of the subsequent cDNA was determined using the Qubit Flourometer (Life Technologies,
Carlsbad, CA) and the Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA). 150 pg of cDNA was
used to generate [llumina compatible sequencing libraries with the NexteraXT library preparation
kit (Illumina, San Diego, CA) per manufacturer’s protocols. The amplified libraries were
hybridized to the [llumina flow cell and sequenced using the NovaSeq6000 sequencer (Illumina,

San Diego, CA). Single end reads of 100nt were generated for each sample.

Bulk RNA-seq data processing and DVG identification

The datasets used for bulk RNA-Seq analyses in Fig. 1 and Fig. 2 were publicly available. Their
detailed information was listed in Table S1. The RNA-seq used in Fig. 4 were from our own
infection following the protocol as demonstrated earlier. For each sample, we first used Bowtie2
(v. 2.2.9, (Langmead and Salzberg 2012)) to align the reads to the GRCh38 human reference
genome. The unmapped reads were then applied to ViReMa (Viral-Recombination-Mapper v.

0.21) to identify recombination junction sites and their corresponding read counts using SARS-
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CoV-2 reference genome (GenBank ID MT020881.1). A custom filtering script was developed in
R to identify junction reads that met our criteria (R v4.1.0 and RStudio v1.4.17, script in Fig. S6).
We required the positions of both sites (break and rejoin) of junction reads larger than 85, as TRS-
L is reported to be located with the first 85 nts of the SARS-CoV-2 genome. Additionally, we
required deletions longer than 100 nts to ensure that the truncated viral RNAs are deficient in
replication. We also included all deletions that had one or more reads as identified by ViReMa.
The number of viral reads in each bulk RNA-Seq sample was quantified using the RSubread
Bioconductor package. The junction frequency (Jieq) Was calculated as shown below for each

sample.

_ DVG Count
Jpreq = Viral Read Count

For host transcriptome analysis, raw fastq files were mapped to the human transcriptome (cDNA;
Ensembl release 86) using Kallisto (Bray, Pimentel et al. 2016) with 60 bootstraps per sample.
Annotation and summarization of transcripts to genes was carried out in R, using the TxImport
package (Soneson, Love et al. 2015). Differentially expressed genes (>twofold and < 1% false
discovery rate) were identified by linear modeling and Bayesian statistics using the VOOM
function in the Limma package (Ritchie, Phipson et al. 2015). Gene Ontology (GO) was performed
using the Database for Annotation, Visualization and Integrated Discovery (DAVID) (Dennis,

Sherman et al. 2003).

DVG identification from scRNA-seq dataset

We used the publicly available dataset from Ravindra et al. 2021 accessed through the NCBI
database (GSE166766). This study consisted of single cell RNA-Seq (scRNA-Seq) data from

human bronchial epithelial cells (NHBESs) infected with SARS-CoV-2 that were harvested 1 day
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post infection (dpi), 2 dpi, and 3 dpi. We first used Cell Ranger (Zheng, Terry et al. 2017) to
construct gene expression matrices for each sample. To identify the number of viral transcripts,
the SARS-CoV-2 reference sequence was concatenated to the end of the human genome reference
as one additional gene. The gene expression matrices were then loaded into the Seurat package in
R (Satija, Farrell et al. 2015), followed by principal component analysis and cell clustering were
performed. Cells were then clustered and annotated based on the gene makers used in the original
publication of this dataset. To identify DVGs, we first used UMI-tools (Smith, Heger et al. 2017)
to associate the cell barcodes and UMIs with each corresponding read name. Similar to the bulk
RNA-Seq analysis, we used Bowtie2 (Langmead and Salzberg 2012), ViReMa, and a custom R
filtering script for DVG identification (details in Fig. S6). We then used the filtered ViReMa output
to re-quantify DVG count based on the UMIs associated with each cell barcode, which is
considered as DVG count per cell. We also calculated Jieq for each cell by using DVG UMI/viral
UMI per cell barcode. The numbers of DVG UMIs and Jseq 0f each cell barcode was then added
to the gene expression matrix created by Cell Ranger. The Jgeq values were multiplied by 10° so
that they would not be left out during the cell clustering and type identification steps. Cells with
more than one DVG UMI (virus positive cells) were grouped as DVG+ and DVG- based on the

presence or absence of DVG UMI, respectively.

Differentially expressed genes between DVG+ and DVG- in scRNA-seq analysis

The list of differentially expressed genes between the DVG+ group and DVG- group was
generated with the Seurat function FindMarkers, after normalizing and scaling the data with the
Seurat function SCTransform. Three different types of tests were used to create three differential
gene expression (DGE) lists for both 2 dpi and 3 dpi: Mast, DESeq2, and the Wilcoxon rank sum

test (default) using the criteria of percentage of cells where the gene was detected (pct) > 0.1,
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adj pval <0.01, and log fold change > 0.25. The final DGE list was determined based on common
genes that were found in two of the three methods. To identify the pathways enriched in the DGE
list, we first divided the DGE list based on their upregulation and downregulation in DVG+ group.
GO analysis was performed for the upregulated genes and downregulated genes separately through
DAVID functional annotation clustering tool and graphed in R using the code in Fig. S6. We then
specifically focused on interferon responses between DVG+ and DVG- groups. Low, medium and
high groups were further categorized based on their amount of viral UMI within virus positive
cells and the expression of selected IFN related genes were specifically compared and graphed

between DVG+ and DVG- cells within each viral groups in R (code in Fig. S6).

DVG identification from the tiled-PCR deep sequencing

The protocol for identifying DVGs in three publicly available datasets that utilize PCR tiling from

ARTIC LoCost (V1 or V3) (https://artic.network) primer sets followed bulk sequencing data

processing for DVG identification. The first dataset was used to study DVG generation during
longitudinal COVID-19 persistence in one immunosuppressed patient (ENA: ERP132087, NCBI
SRA: PRJEB4778) and the second one was served as the control cohort containing 16 regular
COVID-19 patients using the same way to prepare the library (PRINA707211). The third one is
to study DVGs in a cohort of both asymptomatic and symptomatic COVID-19 patients (NCBI
SRA: PRINA690577). This method of amplification produced overlapping 400 bp amplicons that
are then used to construct respective sequencing libraries from which data processing and
subsequent analysis can occur. For the longitudinal study, the ARTIC V3 amplicons were
sequenced as paired-end 300 bp reads on Illumina Miseq. The ARTIC V3 amplicons of the

symptomatic cohort study was PCR amplified by five cycles and also sequenced identically.

Secondary structure analysis of DVG junction positions
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Our definition of structural distance follows (Clote, Ponty et al. 2012). For a given primary
sequence and a corresponding secondary structure, we first convert them to a graph where each
nucleotide 1 is a node. We add an edge (i, i+1) between any two adjacent nucleotides i1 and i+1
(gray bonds in Fig. 3B), and an edge (i, j) between any paired bases i and j (black bonds in Fig.
3B) as reported by Ziv et al. from their COMRADES mapping (Ziv, Gabryelska et al. 2018). This
graph can model alternative base pairs. For example, if nucleotide i has possible pairs with
nucleotides j, k, and 1, then node 1 will connect five edges (i, i-1), (i, i*+1), (i, j), (i, k), and (i, 1).
Based on the connected graph, the structural distance between two nucleotides is formalized as the
number of edges in the shortest path between them (red solid path in Fig. 3B), which can be solved

by classical graph algorithms (Cormen, Leiserson et al. 2022).

The chimeric reads detected by COMRADES from (Ziv, Price et al. 2020) consist of only left- and
right-side sequences without base-pairing information. For short-range interactions, they extracted
a (continuous) subsequence between the 5° end of the left side and the 3’ end of the right side and
used RNAfold (Lorenz, Bernhart et al. 2011) to predict structures for that subsequence. For long-
range interactions, they utilized RNAduplex (Lorenz, Bernhart et al. 2011) to predict interactions
between the two (distant) segments, which does not model any intra-segmental base pairs for either
segment. Note that alternative base pairs exist in the data. Therefore, we built the graph based on
the predicted base pairs in Ziv et al.’s data and calculated the structural distance between any two
positions using the method described above. Additionally, we chose a cutoff value of 50 for the
number of chimeric reads, which leads to a balanced precision and sensitivity evaluated on the

known structure (Ziv, Gabryelska et al. 2018).

Statistical analysis
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Pearson’s correlation was performed to identify the association between virus and DVG counts
and virus and Jgeq in the bulk RNA-Seq datasets. For the scRNA-Seq dataset, unpaired two-sided
Wilcoxon rank sum tests were performed to identify the differences in viral load, DVG counts,
and Jgeq among mock, 1 dpi, 2 dpi, and 3 dpi samples. We first log transformed viral UMI counts
and expression level of selected IFN related genes and then compared between DVG- and DVG+

cells for each time point using unpaired two-sided Wilcoxon rank sum tests.

Data availability

Source data for the publicly available NGS datasets described in this manuscript is available as
Supplementary Table S1. All NGS datasets were retrieved with NCBI and ENA accession numbers
GSE147507 (Daamen, Bachali et al. 2021), GSE148729 (Wyler, Mosbauer et al. 2021), BioProject
PRINA628043 (Ogando, Dalebout et al. 2020), GSE166766 (Ravindra, Alfajaro et al. 2021),
GSE150316 (Desai, Neyaz et al. 2020), BioProject PRINA707211 (Jaworski, Langsjoen et al.
2021), and BioProject PRINA690577 (Wong, Ngan et al. 2021); ERP132087-BioProject
PRIEB47786 (Weigang, Fuchs et al. 2021), respectively. Dataset used in Fig. 4 are available upon

request and the raw data of all infected samples are under submission to GEO.
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Supplementary tables and figures

Table S1 Summary of all samples from published datasets

Cells/Tissues/Sam . Time Sequence Paired or
ple Types Infection Type MOI Points Dataset# (Sample#) Method Single end
A549-ACE2
In vitro GSE147507
Fig. 1B,D, & E (infected cells) 2 24h (GSM4486160, Bulk Single
) 4486161, 4486162)
Fig. 2
NHBE
In vitro GSE147507
Fig. 1B, D, & E (infected cells) 2 24h (GSM4432381, Bulk Single
. 4432382, 4432382)
Fig. 2
Calu3_total RNA
- In vitro GSE148729
Fig. 1B, D, & E (infected cells) 0.3 24h (GSM4477962, Bulk Paired
. 4477963)
Fig. 2
Calu3_polyA
Py In vitro GSE148729
Fig. 1B,D, & E (infected cells) 0.3 24h (GSM4477910, Bulk Single
. 4477911)
Fig. 2
Caco2
In vitro GSE148729
Fig. 1B, D, & E (infect: d cells) 0.3 24h (GSM4477888, Bulk Single
. 4477889)
Fig. 2
H1299
In vitro GSE148729
Fig. 1B, D, & E (infected cells) 0.3 24h (GSM4477868, Bulk Single
. infected cells 4477868)
Fig. 2
Vero E6_S
: 48h/ PRINA628043:
Fig. 1B, D, & E In vitro 3 Bulk Paired
(supernatants) passage SRP258466
Fig. 2
NHBE
. In vitro 24h, 48h, .
Fig. 4 (infected cells) ~0.01 7oh GSE166766 scRNA-seq Paired
Fig. 5
Casel GSE150316
. Autopsy lung (GSM4546576, .
Fig 16D, & E tissue ; ; 4546577, 4546578, Bulk Paired
Fig. 2 4546579)
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Case8 GSE150316
. Autopsy lung (GSM4698544, .
Fig 1€, D, & E tissue 4698545, 4698546, Bulk Paired
Fig. 2 4698547, 4698548)
Case9 GSE150316
. Autopsy lung (GSM4698549, .
Fig 1C.D, & E tissue 4698550, 4698551, Bulk Paired
Fig. 2 4698552, 4698553)
Casel 1l
Autonsy lun GSE150316
Fig. 1C,D, & E tigsfle & (GSM4698526, Bulk Paired
) 4698527, 4698528)
Fig. 2
CaseC
. Autopsy lung GSE150316 .
Fig. 1C,D, & E tissue (GSMA4698556) Bulk Paired
Fig. 2
CaseD
. Autopsy lung GSE150316 .
Fig. 1C,D, & E tissue (GSM4698557) Bulk Paired
Fig. 2
CaseE
. Autopsy lung GSE150316 .
Fig. 1C,D, & E tissue (GSMA4698558) Bulk Paired
Fig. 2
Longitudinal ENA: ERPI32087, | oo o
samples Nasal NCBI SRA: Bulk Paired
Fig. 6A,B, & C PRIJEB47786
ARTIC samples ARTIC
' Nasal PRINA707211 v1&v3- Paired
Fig. 6D Bulk
Asymptomatic
and Symptomatic )
samples Nasal PRINAG90577 AR];IIS? Paired
Fig. 7
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Table S2 Common DVGs identified from in vitro infections

GSE147507
Break Point Rejoin Point Counts Strand ID

28691 1620 109 - A549-ACE2 rl
28691 1620 49 - A549-ACE2 13
29173 27800 8 - NHBE r2

29173 27800 104 - A549-ACE2 rl
29173 27800 92 - A549-ACE2 12
29173 27800 63 - A549-ACE2 13
29307 731 129 - A549-ACE2 rl
29307 731 115 - A549-ACE2 12
29307 731 96 - A549-ACE2 13
29308 733 52 - A549-ACE2 rl
29308 733 57 - A549-ACE2 12
29308 733 46 - A549-ACE2 13
29310 747 76 - A549-ACE2 rl
29310 747 109 - A549-ACE2 12
29310 747 48 - A549-ACE2 13
29310 755 55 - A549-ACE2 rl
29310 755 56 - A549-ACE2 12
29310 755 54 - A549-ACE2 13
29310 827 89 - A549-ACE2 rl
29310 827 99 - A549-ACE2 12
29310 827 49 - A549-ACE2 13
29350 824 66 - A549-ACE2 rl
29350 824 110 - A549-ACE2 12
29350 824 92 - A549-ACE2 13
29353 734 13 - NHBE r2

29353 734 104 - A549-ACE2 rl
29353 734 52 - A549-ACE2 13
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29353 735 64 - A549-ACE2 rl
29353 735 68 - A549-ACE2 13
29477 730 54 - A549-ACE2 12
29477 730 68 - A549-ACE2 13
GSE148729
27234 27344 14 + calu3 totalRNA AR2
27234 27344 13 + calu3 totalRNA BR2
27341 27231 11 - calu3 polyA A
27341 27231 9 - calu3 polyA B
27341 27231 25 - calu3 totalRNA ARI
27341 27231 25 - calu3 totalRNA BRI
27341 27231 11 - caco2 polyA A
27341 27231 24 - caco2 polyA B
27794 29175 19 + calu3 totalRNA AR2
27794 29175 10 + calu3 totalRNA BR2
27794 29176 12 + calu3 totalRNA BR2
27795 29175 12 + calu3 totalRNA AR2
27796 29195 8 + calu3 totalRNA BR2
27802 29175 29 + calu3 totalRNA AR2
27802 29175 28 + calu3 totalRNA BR2
27965 27231 3 - calu3 polyA A
27965 27231 9 - calu3 totalRNA ARI
27965 27231 9 - caco2 polyA B
28318 29123 8 + calu3 totalRNA AR2
28318 29123 13 + calu3 totalRNA BR2
28319 29017 12 + calu3 totalRNA AR2
28319 29017 7 + calu3 totalRNA BR2
28408 29017 11 + calu3 totalRNA AR2
28408 29017 9 + calu3 totalRNA BR2
28673 28505 9 - calu3 totalRNA BRI
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28673 28505 5 - caco2 polyA A
28729 28464 13 - caco2 polyA A
28729 28464 6 - caco2 polyA B
28731 28465 13 - caco2 polyA A
28731 28465 8 - caco2 polyA B
28731 28495 8 - caco2 polyA A
28731 28495 5 - caco2 polyA B
29084 28318 12 - calu3 totalRNA ARI
29084 28318 11 - calu3 totalRNA BRI
29084 28318 6 - caco2 polyA A
29084 28318 8 - caco2 polyA B
29164 27800 4 - calu3 polyA A
29164 27800 6 - caco2 polyA A
29173 27792 8 - calu3 polyA B
29173 27793 6 - calu3 polyA B
29173 27793 6 - caco2 polyA A
29173 27800 16 - calu3 polyA A
29173 27800 15 - calu3 polyA B
29173 27800 16 - calu3 totalRNA ARI
29173 27800 14 - calu3 totalRNA BRI
29173 27800 25 - caco2 polyA A
29173 27800 12 - caco2 polyA B
29173 27801 3 - calu3 polyA A
29173 27801 6 - caco2 polyA A
29343 6653 3 - calu3 polyA A
29343 6655 5 - caco2 polyA B
29345 6635 3 - calu3 polyA A
29353 6603 3 - calu3 polyA B
29353 6653 7 - calu3 totalRNA ARI
29481 6683 3 - calu3 polyA B
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29481 6683 9 - calu3 totalRNA BRI
29493 6653 3 - calu3 polyA A
29494 6653 4 - calu3 polyA A
29494 6653 3 - calu3 polyA B
29495 6655 10 - calu3 totalRNA BRI
29520 6883 3 - calu3 polyA B
29520 6883 11 - calu3 totalRNA BRI
29805 29686 8 - caco2 polyA A
29805 29686 9 - caco2 polyA B
SRP258466

Break Point Rejoin Point Counts Strand ID
5981 6566 8 + veroE6 L8
5981 6566 9 + veroE6 s5p2
5982 6566 8 + veroE6 L8
5982 6566 8 + veroE6_s5pl
5982 6566 7 + veroE6_s5p3
5982 6573 7 + veroE6_s5pl
6044 6525 8 + veroE6_s5pl
6045 6525 8 + veroE6 L8
20272 20387 8 + veroE6 L8
20272 20387 9 + veroE6_s5p3
27386 29472 7 + veroE6_s5p3
27386 29473 13 + veroE6 L8
27386 29473 17 + veroE6 s5p2
27785 29195 9 + veroE6_s5p3
27788 29196 23 + veroE6 L8
27788 29196 8 + veroE6_s5pl
27788 29196 26 + veroE6_s5p3
27793 29163 11 + veroE6_s5pl
27794 29166 6 + veroE6_s5p3
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27794 29175 7 + veroE6_s5pl
27794 29175 9 + veroE6_s5p3
27794 29195 7 + veroE6 L8
27802 29175 14 + veroE6 L8
27802 29175 11 + veroE6_s5p3
28508 28676 22 + veroE6 L8
28508 28676 7 + veroE6_s5pl
28508 28676 11 + veroE6 s5p2
28508 28676 22 + veroE6_s5p3
PHLE cells in vitro infections (own infection)
Break Point Rejoin Point Counts Strand ID
1363 29345 6 + D231 1 72hr R1
1363 29353 4 + D231 1 72hr R1
1369 29353 1 + D283 1 72hr R1
1416 29449 3 + D231 1 72hr R1
1425 29444 2 + D283 1 72hr R1
1624 29337 15 + D231 1 72hr R1
1624 29339 1 + D231 1 72hr R1
27382 29472 10 + D231 1 72hr R1
27382 29473 7 + D231 1 72hr R1
27382 29483 1 + D231 1 72hr R1
27385 29473 14 + D231 1 48hr R1
27385 29479 9 + D231 1 72hr R1
27385 29472 7 + D231 1 72hr R1
27385 29473 3 + D231 1 72hr R1
27385 29473 2 + D239 1 48hr R1
27386 29473 12 + D231 1 72hr R1
27386 29476 4 + D231 1 72hr R1
27386 29474 1 + D231 1 72hr R1
27386 29473 9 + D239 1 48hr R1
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27386 29468 4 + D239 1 48hr RI
27793 29166 4 + D231 1 48hr RI
27793 29176 1 + D231 1 72hr RI
27794 29175 5 + D231 1 72hr RI
27794 29167 3 + D231 1 72hr RI
27794 29166 2 + D231 1 72hr RI
27795 29166 11 + D231 1 72hr RI
27795 29195 3 + D231 1 72hr RI
27795 29176 2 + D231 1 72hr RI
27795 29175 2 + D231 1 72hr RI
27795 29175 22 + D239 1 72hr R1
27796 29186 10 + D231 1 48hr RI
27797 29167 4 + D231 1 72hr RI
27798 29176 7 + D231 1 72hr RI
27800 29174 1 + D239 1 48hr R
27801 29175 4 + D231 1 72hr RI
27802 29175 21 + D231 1 48hr RI
27802 29166 12 + D231 1 72hr RI
27802 29175 9 + D231 1 72hr RI
27802 29176 3 + D231 1 72hr RI
27802 29175 28 + D239 1 48hr Rl
27802 29175 1 + D283 _1_72hr RI
27803 29174 1 + D203_1_72hr R1
27803 29175 10 + D231 1 72hr RI
27803 29172 3 + D231 1 72hr RI
29172 27803 3 - D231 1 72hr RI
29173 27802 1 - D203_1_72hr R1
29173 27800 10 - D231 1 48hr RI
29173 27801 10 - D231 1 72hr RI
29173 27800 7 - D231 1 72hr RI
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29173 27793 4 - D231 1 72hr RI
29173 27792 3 - D231 1 72hr RI
29173 27800 12 - D239 1 48hr RI
29173 27800 4 - D283 1 72hr RI
29174 27800 2 - D231 1 72hr RI
29175 27797 2 - D231 1 72hr RI
29176 27802 2 - D231 1 72hr RI
29184 27794 29 - D231 1 48hr RI
29443 1424 1 - D283 1 72hr RI
29448 1415 5 - D231 1 72hr RI
29468 27381 3 - D231 1 72hr RI
29471 27383 1 - D231 1 48hr RI
29472 27382 1 - D231 1 72hr RI
29473 27386 3 - D231 1 72hr RI
29473 27386 1 - D239 1 48hr R
29474 27389 1 - D198 1 72hr RI
29474 27386 1 - D231 1 72hr RI
29475 27385 1 - D231 1 72hr RI
29685 29808 1 + D231 1 72hr RI
29687 29813 1 + D231 1 72hr RI
29689 29812 1 + D231 1 48hr RI
29690 29813 2 + D231 1 72hr RI
29690 29828 1 + D231 1 72hr RI
29691 29818 3 + D231 1 72hr RI
29695 29814 8 + D231 1 72hr RI
29695 29823 1 + D231 1 72hr RI
29695 29814 4 + D239 1 48hr RI
29791 29681 1 - D239 1 48hr R
29793 29690 1 - D231 1 72hr RI
29805 29686 10 - D231 1 72hr RI
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29807 29688 3 - D203_1_48hr R
29807 29688 6 - D231 1 48hr RI
29807 29688 7 - D231 1 72hr RI
29807 29688 16 - D239 1 48hr RI
29807 29688 1 - D283 1 72hr RI
29810 29687 13 - D231 1 48hr RI
29812 29686 1 - D231 1 72hr RI
29813 29690 4 - D231 1 72hr RI
29813 29690 15 - D239 1 48hr RI
29814 29693 1 - D231 1 72hr RI
29816 29680 4 - D231 1 72hr RI
29817 29690 1 - D231 1 72hr RI
29818 29686 4 - D231 1 48hr RI
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Figure S1. Positive sense DVG generation in SARS-CoV-2 in vitro and autopsy samples. (A)
scheme for +sense DVGs as they were generated from -sense genomic template. V and E position
distributions for +sense DVG from in vitro infected samples (B), where circle size and color
intensity indicated DV G counts, and autopsy samples (C), where circle size indicated the Jfreq at
that position and circle color indicates sample case. The green dashed boxes represented genomic
hotspots for DVG junctions. (D) V and E position distributions by Jfreq per position for +sense
DVGs. Graph showed two in vitro infected samples with more than half of the DVGs are positive
sense. The width of each bar represents 300 nucleotides. (E) Schematic representation of how -
sense and +sense DVGs replicate from each other, leading to the observation that V position of
+sense DVGs shared the same hotspots with V'’ position of -sense DVGs.
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Figure S2: More comparisons between structural distance (left) and sequence distance (right).
The first row showed the distributions over all pairs of positions, and the next rows represented
distributions over DVG junctions with different cutoff values for counts (2, 5, 10). As the cutoff
value increased, a greater proportion of distances are under 100, and the mean values get
smaller.
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Figure S3. Junction distribution of DV Gs identified in bulk RNA-seq and scRNA-seq using
infected NHBE cells. (A-D) graphed DVGs of NGS used in Fig. 3. Junction distributions for
identified -sense (A) and +sense (B) DVGs from infected NHBE cells of different age groups were
graphed as scatterplot. Circle color represented harvest time post infection or patient age group.
(C) The location distribution of Break point and Rejoin point of -sense DVGs were plotted
separately as bar graph. The dashed boxes indicated hotspots with high concentrations of break
or rejoin points. The width of each bar represented 300 nucleotides. (D) Detailed positions of
identified hotspots clustered with -sense DVG break and rejoin points. The color of the dashed
outline around each graph indicated the corresponding hotspot with the same color in (C). The
width of each bar represented 10 nucleotides. (E) represented scRNA-seq used in Fig.4 and 5.
Break point (E) and rejoin point (V) distributions of +sense DV Gs were graphed at different time
points post infection. Circle size represented cell count per position and circle color represents
length of deletions in DVGs.
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Figure S4. Antiviral (type I IFN) responses was upregulated in samples with high viral counts
and DV G counts. (A) Differential expressed genes between high virus and low virus groups were
graphed as heatmap for all samples. Pink cluster was the genes upregulated in high virus group
and orange cluster was the gens downregulated in high virus group. The virus group and the DVG
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in R (GOplot). Circle size represented number of genes in each pathway. Gene ratio represented
the ratio of number of genes in that pathway to the number of genes in the entire cluster.
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Figure §5. Gene ontology analysis of differential expressed genes between DV G+ and DV G-
groups at 3 dpi. Gene ontology analysis of genes that were downregulated (A) and upregulated
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Figure S6 ViReMa, Cellranger and Seurat Pipelines
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Introduction

The purpose of this standard operating procedure is to outline the pipeline used for ViReMa. This document
describes the steps needed to identify and analyze defective viral genomes (DVGs) from bulk RNA-Seq and
single cell RNA-Seq (scRNA-Seq) data in SARS-CoV-2.

The Bowtie2 and ViReMa scripts were both run on the BlueHive Linux computing cluster supported by the
Center for Integrated Research Computing at the University of Rochester.

We used version 2.2.9 of Bowtie2 to map our samples to the human genome. We used the GRCh38 (hg38)
human reference genome. We also used UMI-Tools version bl for our single cell RNA-Seq analysis.

We used version 0.21 of ViReMa to identify the DVG recombinant events and their corresponding counts.
Version 0.21 of ViReMa uses version 0.12.9 of Bowtie and Python3 to map each sample to the reference viral
genome. We used the SARS-CoV-2 reference genome with GenBank ID MT020881.1.

For the rest of our analysis, we used version 4.1.0 of R and version 1.4.1717 of RStudio. Our analysis used
the following packages:

Rsubread
tidyverse
ggplot2

plotly
openxlsx

data.table

DVG analysis from bulk RNA-Seq dataset

The pipeline to identify DVGs from bulk RNA-Seq analysis was as follows:

Bowtie2
ViReMa
Subread
R filtering

PoNE

Bowtie2

We used Bowtie2 to align our sample to the human reference genome (GRCh38 (hg38)). The GRCh38
(hg38) index was downloaded from the Bowtie2 website. The unmapped output sequence served as the viral
sequence to be used for ViReMa.

The SLURM script used to run Bowtie2 alignment for single end reads is shown below:
module load bowtie2/2.2.9
bowtie2 -x /scratch/tzhoul18/hg38index/GRCh38_noalt_as

-U /scratch/tzhoul8/samplel.fastq.gz -p 8
--un-gz ./samplel.unmapped.fq.gz --al-gz ./samplel.mapped.fq.gz

For paired end samples, properly paired read files were specified using the -1 and -2 options instead of the
-U option used for single end reads.
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ViReMa

We used ViReMa to identify viral recombinant events.

module load bowtie/0.12.9
module load python3

python3 /scratch/tzhoul8/ViReMa_0.15/ViReMa_0.21/ViReMa.py
/scratch/tzhou18/sars2_MT020881.fasta /scratch/tzhoul8/samplel.unmapped.fq.gz
/scratch/tzhoul8/samplel_recombinations.bam --MicrolnDel_Length 5
--Aligner_Directory /software/bowtie/0.12.9 -BED

--Output_Dir /scratch/tzhoul8/samplel

The Virus_Recombination_Results.bed file within the BED_Files folder and the recombinations.bam
file were used for the downstream analysis.

Subread

Bioconductor R package Rsubread (v2.6.4) was used to align our RNA-seq data to the viral reference genome
to identify the number of viral reads in each sample.

To import each sample into RStudio to run Subread, a tab-delimited file named study_design.txt was
created to contain the file names and paths, as shown below:

fastq sample path

samplel.fastq.gz samplel /Users/terryzhou/
sample2.fastqg.gz sample2 /Users/terryzhou/
sample3.fastqg.gz sample3 /Users/terryzhou/

The following R script was used to run Rsubread in RStudio.

library(Rsubread)

targets <- read.table("study_design.txt",
NULL, T, T)

# Build Index from genome fasta -----------------------------------
buildindex( "reference_name", "reference.fasta")
# make sure the reference.fasta has lines that are less than 1000 bases long

22 AlEn fEEElS —s=s=sssssssssssooosocososoososososoooocosos

reads <- targetsSfastq

align( "reference_name", reads, "gzFASTQ",
"BAM", TRUE, 5, 8)

The number of viral reads printed out in the R console, as well as the subread.BAM.summary file, in the
Uniquely_mapped_reads row were used as the total counts of viral reads (FiglB_virus).

R Filtering Script

The following R script was used to filter out recombinations that are not deletions (i.e. insertions, duplica-
tions), deletions shorter than 100 nt, and those that had a break point before the 85 nt position. We also
separated the identified DVGs into positive and negative sense and analyzed them separately.
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Since viral load can affect DVG level, we used the junction frequency (Jseq) as a standardized value to
quantify DVG level. We calculated Jjreq by dividing the DVG count by the viral read count. The viral read
count was identified via the previous Subread step.

The filtering script is shown below:
library(tidyverse)

# import ViReMa output BED file as csv with headers
Tl <- read.csv("2dpi_recombinations.csv")

# filter out recombinations that are not deletions
T1_final <- filter(T1, Type == "Deletion")

# calculate deletion lengths

T2 <- mutate(T1_final, Deletion length = abs(Break_Point - Rejoin_Point))
# filter out deletions shorter than 100 nt

T2_less <- filter(T2, Deletion_length > 100)

# filter out deletions with break points before the 85 nt location
T2_final <- filter(T2_less, Break_Point > 85)

# negative sense DVGs have their break points labeled as Rejoin_Point
T2_final <- filter(T2_final, Rejoin_Point > 85)

# calculate ratio of DVGs at that position

T3 <- mutate(T2_final, DVGratio = (Counts/Total_Rejoin),
DVGratio R = (Counts/Total_Break))

# add sample ID name column

T3['ID'] = '2dpi'

# calculate Jfreq

T3['jfreq'] = T3$Counts / 300000

# replace the 300000 with actual numerical viral counts
# obtained in the Subread section

# separate T3 into positive and negative sense
T3_neg <- subset(T3, strand == "-")
T3_pos <- subset(T3, strand == "+"

write.csv(T3, file = "T3_2dpi.csv", row.names = FALSE)

Making Plots
We used the following script to graph plots as shown in Fig. 2 and Fig. S1.

library(ggplot2)

# plot negative sense break and rejoin distribution

neg.rejoin <- ggplot(T3_neg, aes(width = 300)) +
geom_col(aes(x = Rejoin_Point, y = Counts, fill = Deletion_length)) +
coord_cartesian(ylim = c(0, 10), xlim = c(0, 30000)) +
scale_x_continuous(breaks=seq(0, 30000, 2000)) +

labs(x = "Rejoin point", y = "Total reads",
title = "Rejoin point usage distribution (negative sense)",
fill = "Deletion Length") +
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theme_bw() +
theme(legend.position = "right",
axis.text = element_text(size = 8),
axis.title = element_text(size = 16))
neg.break <- ggplot(T3_neg, aes(width = 300)) +
geom_col(aes(x = Break_Point, v = Counts, fill = Deletion_length)) +
coord_cartesian(ylim = c(0, 10), xlim = c(0, 30000)) +
scale_x_continuous(breaks=seq(0, 30000, 2000)) +

labs(x = "Break point", y = "Total reads",
title = "Break point usage distribution (negative sense)",
fill = "Deletion Length") +

theme_bw() +

theme(legend.position = "right",

axis.text = element_text(size = 8),
axis.title = element_text(size = 16))

# DVG distribution -- Counts
neg.dist <- ggplot(T3_neg, aes(y = Break_Point, x = Rejoin_Point,
size = Counts, color = Deletion_length),
alpha = 0.5) +
geom_point() +
labs(y = "Break point (nt)", x = "Rejoin point (nt)",
title= "All Deletions (negative sense)",
color = "Deletion Length", size = "Counts") +
geom_rug(aes(color = Deletion_length)) +
theme_bw() +
xlim (0, 30000)+ ylim(0, 30000)+
theme(legend.position = "right", axis.text = element_text(size = 8),
axis.title = element_text(size = 16))
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DVG analysis from scRNA-Seq dataset

The pipeline to identify DVGs from scRNA-Seq analysis was as follows:

1. UMI-Tools
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2. Bowtie2
3. ViReMa
4. Rfiltering

UMI-Tools

UMI-Tools was used to associate the cell barcodes and UMIs for each read to the sequence. The cell barcodes
and UMlIs from the R1 file were combined with the corresponding read in the R2 file.

module load umi-tools

umi_tools extract --bc-pattern=CCCCCCCCCCCCCCCCNNNNNNNNNNNN
--extract-method=string

--stdin=1dpi_CoV2_HHT_S2 L001_R1_001.fastq.gz --stdout=1dpi_out_R1l.fastq.gz
--read2-in=1dpi_CoV2_HHT_S2_L001_R2 001.fastq.gz --read2-out=1dpi_out_R2.fastq.gz
-L extract.log

Bowtie2

As with the bulk RNA-Seq analysis, we are used Bowtie2 to align our sample to the human genome. The
unmapped output file was used for ViReMa analysis.

module load bowtie2/2.2.9

bowtie2 -x /scratch/tzhou18/hg38index/GRCh38_noalt_as
-U /scratch/tzhoul8/1dpi_out_R2.fastq.gz -p 8
--un-gz ./1dpi.unmapped.fq.gz --al-gz ./1dpi.mapped.fq.gz

ViReMa

For scRNA-Seqg analysis, ViReMa must be run twice in order to link the cell barcodes and UMis to the
identified DVGs. The first run was identical to running ViReMa for bulk RNA-Seq. The second run was as
follows:

module load bowtie/0.12.9
module load python3

python3 /scratch/tzhoul8/ViReMa_0.15/ViReMa_0.21/ViReMa.py
/scratch/tzhoul8/sars2_MT020881.fasta 1dpi.unmapped.fq.gz
1dpi_recombinations.bam --MicrolnDel_Length 5
--Aligner_Directory /software/bowtie/0.12.9

-BED --Output_Dir /scratch/tzhou18//1dpi -ReadNamesEntry

The Virus_Recombination_Results.bed file within the BED_Files folder and the recombinations.bam
file from the first run and the Virus_Recombination_Results.txt file from the second run were used for
the following R filtering.

R Filtering Script

The first section of the R filtering script was identical to bulk RNA-seq section.
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library(ggplot2)
library(tidyverse)
library(openxlsx)
library(data.table)

# filter ViReMa output

# this section is the same for both bulk and scRNA
# import ViReMa output BED file as csv with headers
T1 <- read.csv("3dpi_recombinations.csv")

# filter out recombinations that are not deletions
T1_final <- filter(T1, Type == "Deletion")

# calculate deletion lengths

T2 <- mutate(T1_final, abs(Break_Point - Rejoin_Point))
# filter out deletions shorter than 100 nt

T2_less <- filter(T2, Deletion_length > 100)

# filter out deletions with break points before the 85 nt location

T2_final <- filter(T2_less, Break_Point > 85)

# negative sense DVGs have their break points labeled as Rejoin_Point

T2_final <- filter(T2_final, Rejoin_Point > 85)

# calculate ratio of DVGs at that position

T3 <- mutate(T2_final, (Counts/Total_Rejoin),
(Counts/Total_Break))

# add sample ID name column

T3['ID'] = '3dpi'

# separate T3 into positive and negative sense
T3_neg <- subset(T3, strand == "-", Break_Point:ID)
T3_pos <- subset(T3, strand == "+", Break_Point:ID)

# save T3 dataframe as csv file
write.csv(T3, "T3_3dpi.csv", FALSE)

This next section of the R filtering was unique to scRNA-seq analysis. The input file for this section was the
Recombination_Results.txt file from the second run of ViReMa, including all of the read counts, positions,
and cell barcodes/UMIs for each DVG.

The viral.reads dataframe, including the number of viral UMIs for each cell and lists the cells in the order,
was used for downstream Seurat analysis. This dataframe was retrieved by outputting only the viral reads
row from the Cell Ranger gene matrix into a .csv file.

The final dataframes of interest from the following R filtering script were the dfl, df2, and df3 dataframes,
which included the number of DVG UMIs per cell, the number of DVG UMlIs per position and the number
of DVG UMIs per combination of cell and position, respectively. These datasets were used for downstream
analyses. In addition, the bcmatrix dataframe was added to the matrix in Seurat as a “DVG gene.”

The following script only showed the filtering process for the positive sense DVGs, however the same script
was used for the negative sense DVGs.

recomb <- read.csv("3dpi_Virus_Recombination_Results.txt")
# give column temporary header name
colnames(recomb) <- c("xx"
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# remove rows that are @NewlLibrary and @EndOfLibrary

ind <- (startsWith(recombSxx, "@"))

temp.dat <- recomb[!lind, ]

# dat dataframe has one column with pos/count in odd numbered rows
# and all of the barcodes in even rows

dat <- as.data.frame(temp.dat)

# reformat dat dataframe into two columns

# identify odd rows and making separate lists of odd and even rows
row_odd <- seq_len(nrow(dat)) %% 2

dat.odd <- dat[row_odd == 1, ]

dat.even <- dat[row_odd == 0, ]

# join odd and even rows into two columnes,

# so each row is pos/count then all cell barcodes

datl <- cbind(dat.odd, dat.even)

datl <- as.data.frame(datl)

# filter based on DVG filtering from T3 above
# creating new column that combines break/rejoin/counts
T3SPosCount <- pasteO(T3SBreak_Point, " to ", T3SRejoin_Point, " # ", T3SCounts)
T3_negSPosCount <- pasteO(T3_negSBreak_Point, " to ",
T3 _negSRejoin_Point, " # ", T3_negSCounts)
T3_posSPosCount <- pasteO(T3_posSBreak_Point, " to ",
T3 _posSRejoin_Point, " # ", T3_posSCounts)
# filter all
datl.1 <- recomb %>%
filter(xx %in% T3SPosCount)
datl.2 <- datl %>%
filter(dat.odd %in% datl.1Sxx)
# filtering only positive sense
datl.l.pos <- recomb %>%
filter(xx %in% T3_posSPosCount)
datl.2.pos <- datl %>%
filter(dat.odd %in% datl.1.posSxx)

# positive sense
# create new df with each column being a different DVG (position and count)
# each row is a different cell
dat3.pos.umi <- datl.2.pos %>%
mutate(id = row_number()) %>%
separate_rows(dat.even, sep ="' Fuzz=') %>%
separate(dat.even, c('dat.even'), sep = ' Fuzz=') %>%
group_by(id) %>%
mutate(x = row_number()) %>%
ungroup %>%
pivot_wider(names from = dat.odd, values from=dat.even) %>%
select(-c(id, x))
# move all cells with values to top
dat4.pos.umi <-
data.table(dat3.pos.umi)[, lapply(.SD, function(x) x[order(is.na(x))]1)]
# remove rows with all na from bottom
# (but still includes some individual cells with na)
dat5.pos.umi <-
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dat4.pos.umi[rowSums(is.na(dat4.pos.umi)) != ncol(dat4.pos.umi), ]
# get rid of information in read name that isn't the cell barcode or UMI
dat6.pos.umi <-
sapply(dat5.pos.umi, function(i) gsub(pattern = "[A-Z0-9:]+:[0-9]+ ",
replacement = "", x = i) )
dat6.pos.umi <- as.data.frame(dat6.pos.umi)
# get rid of any new lines, tabs, whitespaces
dat7.pos.umi <-
sapply(dat6.pos.umi, function(i) gsub(pattern = "[\r\n\t\\S+]",
replacement ="", x = i) )
dat7.pos.umi <- as.data.frame(dat7.pos.umi)
# every cell barcode/ UMI in one column
dat7.pos.umi <- data.frame(newcol = c(t(dat7.pos.umi)))
dat7.pos.umi <- na.omit(dat7.pos.umi)
dat7.pos.umiSnewcol <- as.character(dat7.pos.umiSnewcol)
dat7.pos.umi <- subset(dat7.pos.umi, newcol != "NA")
dat7.pos.umi <- subset(dat7.pos.umi, newcol = "")
# new dataframe separating barcodes from UMlIs
# whether barcode or umi comes first will depend on the specific sample.
# change as needed
dat8.pos.umi <-
separate(dat7.pos.umi, newcol, into = c("barcode"”, "umi"), sep ="_")
dat8.pos.umi <- na.omit(dat8.pos.umi)
dat8.pos.umiSbarcode <- as.character(dat8.pos.umiSbarcode)
dat8.pos.umiSumi <- as.character(dat8.pos.umiSumi)
# for each cell, how many unique UMlIs are there
dat9.pos.umil <- dat8.pos.umi %>%
group_by(barcode) %>%
distinct(umi) %>%
summarise(unique.umi.count = n())

# viral reads
# import table with cell barcodes in order and viral UMI counts
viral.reads <- read.xlsx("3dpi_Barcodes.xlsx")
# may have to modify these two lines based on how the imported table is formated
viral.reads <- separate(viral.reads, row_names,
into = c("barcode", "x"), sep = "-")
viral.reads <- viral.reads[,c(2,4)]
# final viral reads dataframe should have column 1 be the cell barcode and
# column 2 be the viral UMI counts
colnames(viral.reads) <- c("barcode", "viral.read")

# DVG UMlIs per cell

# merge filtered DVGs with viral reads

# not including cell barcodes that are in the filtered list,

# but are not in the viral reads dataframe

dfl.pos <- merge(dat9.pos.umil, viral.reads, by = c("barcode"))
# calculate Jfreq

dfl.posSjfreq <- dfl.posSunique.umi.count / dfl.posSviral.read

# DVG (UMI) per position

# append positions to each cell barcode/UM!I
dat6.pos.umi[] <- Map(paste, hames(dat6.pos.umi), dat6.pos.umi, sep = ":")
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# make dataframe into just one column
xyz <- data.frame(x=unlist(dat6.pos.umi))
# separate out the positions

Xyz <- separate(xyz, x, into = c("a", "b"), sep = ":")
Xyz <- subset(xyz, b = "NA")

Xyz <- subset(xyz, b != "\t")

# separate cell barcodes from UMlIs

Xyz <- separate(xyz, b, into = c("b", "c"), sep ="_")

# create new column that counts the number of unique UMlIs for each position
XXyz <- Xyz %>%

group_by(a) %>%

distinct(c) %>%

summarise(unique.umi.count = n())
colnames(xxyz) <- ¢("pos", "unique.umi.count")
# count the number of unique cells with DVGs at each position
y <- Xyz %>%

group_by(a) %>%

distinct(b) %>%

summarise(cells _per position = n())
colnames(y) <- c("pos", "cells_per_position")
# add number of cells for each position
xXyz<- merge(xxyz, y, by = c("pos"))
XXyz <- separate(xxyz, pos, sep = "_",

into = c("break_point", "to", "rejoin_point", "z", "count"))

df2.pos <- xxyz[, c(1, 3, 6, 7)]
df2.posSbreak_point <- as.numeric(df2.posSbreak_point)
df2.posSrejoin_point <- as.numeric(df2.posSrejoin_point)
# calculate deletion lengths
df2.posSdeletion_length <- abs(df2.posSbreak_point - df2.posSrejoin_point)

# DVG (UMI) per position + cell ----
# merge position and cell columns
Xyzz <- Xyz %>%
unite("a", a:b, sep=":", remove = FALSE)
# count number of unique UMlIs with each position/cell combination
Xyzzz <- Xyzz %>%
group_by(a) %>%
distinct(c) %>%
summarise(unique.umi.count = n())

Xyzzz <- separate(xyzzz, a, sep = ":", into = c("pos", "barcode"))

Xyzzz <- separate(xyzzz, pos, sep = ,

into = c("break_point", "to", "rejoin_point", "z", "count"))
xyzzz <- xyzzz[, c(1, 3, 6, 7)]
# merge with viral reads
# not including cell barcodes that are in the filtered list,
# but are not in the viral reads dataframe
df3.pos <- merge(xyzzz, viral.reads, by = c("barcode"))
# calculate IJfreq
df3.posSjfreq <- df3.posSunique.umi.count / df3.posS$viral.read
df3.posSbreak_point <- as.numeric(df3.posSbreak_point)
df3.posSrejoin_point <- as.numeric(df3.posSrejoin_point)
# at this point you should have 3 dataframes:
# df1 is the DVG UMI count per cell

11
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# df2 is the DVG UMI count per break and rejoin positon
# df3 is the DVG UMI count per combination of cell and position

# barcodes in order for seurat ----

# list of all cell barcodes

barcodes <- viral.reads][, c(1)]

barcodes <- as.data.frame(barcodes)

# all cells with unique DVG UMI count per cell

bc <- rbind(dfl.pos[, c(1, 2)1) #add dfi.neg/[, c(1, 2)] to rbind if relevant
# get rid of duplicates

bcl <- aggregate(unique.umi.count ~ barcode, bc, sum)
bclist <- bclSbarcode

counts <- bc1Sunique.umi.count

# create matrix of barcodes and counts with rowl=barcodes row2=counts
bcmatrix <- rbind(bclist, counts)

# make cell barcodes the column names

colnames(bcmatrix) <- bcmatrix[1,]

bcmatrix <- as.data.frame(bcmatrix)

# get rid of row with cell barcodes

bcmatrix <- bcmatrix[-1,]

rownames(bcmatrix) <- c("counts")

# list of all cell barcodes

bcs <- barcodes$Sbarcodes

bcs <- as.factor(bcs)

# identify DVG negative cells

nondvg <- setdiff(bcs, bclist)

# identify DVG positive cells

posdvg <- bclSbarcode

# set DVG negative cells to DVG UMI count = 0
bcmatrix[nondvg] <- 0

# order columns to match matrix needed for seurat

# the order should match the column order of the viral.reads dataframe,
# which should be in alphabetical order by cell barcode
bcmatrix <- bcmatrix[, order(colnames(bcmatrix))]
write.csv(bcmatrix, "3dpi_dvgmatrix.csv'")

Making Plots

We used the following code to create exploratory data analysis plots of the positive sense DVGs, however
the same code was used to visualize the negative sense DVGs.

library(plotly)
#plots for positive sense only
viral.percentile.95.pos <- quantile(dfl.posSviral.read,
probs=seq(0, 1, 0.05))[20]
viral.hist.pos <- ggplot(dfl.pos, mapping = aes(x = viral.read)) +
geom_histogram(color = "black", fill = "pink") +
theme_bw() +
ggtitle("Histogram of Viral Load") +
xlab("Unique UMlIls per Cell")
plot.viral.load.pos <- ggplot(dfl.pos, mapping = aes(x = "" , y = viral.read)) +
geom_jitter(color = "hotpink", size=2, alpha=0.9) +
theme_bw() +
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#ylim(0, 30) +
ggtitle("Viral Load - UMI") +
ylab("UMI Count per Cell Barcode") +

theme( element_blank(), element_blank(),
element_blank()) +
geom_hline( viral.percentile.95.pos, "blue")

dvg.percentile.95.pos <- quantile(dfl.posSunique.umi.count,
seq(0, 1, 0.05))[20]
dvg.hist.pos<- ggplot(dfl.pos, aes( unique.umi.count)) +
geom_histogram( "black", "pink") +
theme_bw() +
ggtitle("Histogram of DVG Count (UMI)") +
xlab("Unique UMiIs per Cell")
dvg.p.pos <- ggplot(dfl.pos, aes( ", unique.umi.count)) +
geom_jitter( "hotpink", 2, 0.9) +
theme_bw() +
#ylim(0, 2) +
ggtitle("DVG - UMI Per Cell Barcode") +
ylab("UMI Count per Cell Barcode") +

theme( element_blank(), element_blank(),
element_blank()) +
geom_hline( dvg.percentile.95.pos, "blue")
jfreq.percentile.95.pos <- quantile(dfl.posSjfreq, seq(0, 1, 0.05))[20]
dvg.jfreq.hist.pos <- ggplot(dfl.pos, aes( jfreq)) +
geom_histogram( "black", "pink") +

theme_bw() +
ggtitle("Histogram of Jfreq") +
xlab("Jfreq")
dvg.ratio.p.pos <- ggplot(dfl.pos, aes( ", jfreq)) +
geom_jitter( "hotpink", 2, 0.9) +
theme_bw() +
ggtitle("Jfreqg = DVG UMI/ Viral UMI") +
ylab("UMI Count per Cell Barcode") +

theme( element_blank(), element_blank(),
element_blank()) +
geom_hline( jfreq.percentile.95.pos, "blue")

# break/rejoin distribution graphs ----
# break point distribution
break.pos <- ggplot(df2.pos) +

geom__col( aes( break_point, unique.umi.count,
deletion_length, 300)) +

coord_cartesian( c(0, 100), c(0, 30000)) +

scale_x_continuous( seq(0, 30000, 2000)) +

labs( "Break point", "Total reads",

"Break point usage distribution (negative sense)",
"Deletion Length") +
theme_bw() +
theme( "right", element_text( 8),
element_text( 16))
# rejoin point distribution
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rejoin.pos <- ggplot(df2.pos) +

geom_col( aes( rejoin_point, deletion_length,
unique.umi.count, 300)) +

coord_cartesian( c(0, 100), c(0, 30000)) +

scale_x_continuous( seq(0, 30000, 2000)) +

labs( "Rejoin point", "Total reads",

"Rejoin point usage distribution (negative sense)",
"Deletion Length") +
theme_bw() +

theme( "right", element_text( 8),

element_text( 16))

dist.posl <- ggplot(df2.pos, aes( break_point, rejoin_point)) +

geom_point( aes( unique.umi.count, deletion_length),

0.5) +
geom_rug(aes( deletion_length)) +
theme_bw() +
scale_colour_gradient( "red", "blue") +
xlim (0, 30000) + ylim(0, 30000) +
labs( "Rejoin Point", "Break Point",

"DVG Distribution (Positive Sense)",
"Deletion Length", "DVG UMI Count") +
theme( 1, "right")
dist.pos2 <- ggplot(df2.pos, aes( break_point, rejoin_point)) +

geom_point( aes( cells_per_position), 0.5) +
geom_rug(aes( deletion_length)) +
theme_bw() +
scale_colour_gradient( "red", "blue") +
xlim (0, 30000) + ylim(0, 30000) +
labs( "Rejoin Point", "Break Point",

"DVG Distribution (Positive Sense)",
"Cells Per Position") +

theme( 1, "right")
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We used the following script to graph plots as shown in Fig. 4 and Fig. 5. The gene expression matrices
were imported for each time point and the mock sample. The same script as Fig.4D was used to plot other
time points and the same script as plots Fig.5A Fig.5B and Fig.5C was used to plot other time points and
viral loads.
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all <- rbind(genes.1dpi, genes.2dpi, genes.3dpi, mock)
allSvirus <-
ifelse(allsMT020881.1 >= 1 & allsSMT020881.1 <= 10,
"low", ifelse(allSMT020881.1 > 10 &
allsMT020881.1 <= 15000, "med", "high'))
allSjfreq <- (allsDVG / allsSMT020881.1)
allSdvg.presence <- ifelse(allSDVG == 0, "neg", "pos")
alll <- all[, -13]
all.infect <- subset(alll, MT020881.1 >= 1)
all2 <- all1[, c(1,11:16)]
all2.infect <- subset(all2, MT020881.1 >= 1)

Fig.4A <- ggplot(all2.infect, aes( day, logl0(MT020881.1), day)) +
geom_violin( 1, aes( day), 0.2,) +
geom_boxplot( 0.1, 0) +
theme_classic() +
scale_color_manual( c("dodgerblue4", "#E69F0Q",
"forestgreen", "gray49")) +
scale_fill_manual( c("dodgerblue4", "#E69F0O0",

"forestgreen", "gray49")) +
xlab("Sample") + ylab("log10(Viral UMI Count)") +
ggtitle('"Viral Load Per Sample") +

theme( "none"
Fig.4D <- ggplot(subset(all2.infect, day == "2dpi"),
aes( dvg.presence, log10(MT020881.1), dvg.presence)) +
geom_violin( 1, aes( dvg.presence), 0.2,) +
geom_boxplot( 0.1, 0) +
theme_classic() +
scale_fill_manual( c("dodgerblue", "brown3")) +
scale_color_manual( c("DVG+", "DVG-"),

c("dodgerblue", "brown3")) +
xlab("Sample") + ylab("log10(Viral UMI Count)") +
ggtitle("Viral Load by DVG Presence (2dpi)") +
theme( "none"
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all2dpi <- subset(all, day == "3dpi")

all2dpiSvirus <- factor(all2dpiSvirus, levels = c("low", "med", "high"))

“Fig.5A Fig.5B° <- ggplot(data = all2dpi, mapping = aes(x = MT020881.1, v = MX1)) +
geom_point(aes(colour = dvg.presence)) +
facet_grid(vars(dvg.presence), vars(virus)) +
xlab("Viral Count") + ylab("MX1 Gene Expression") + ggtitle("MX1 vs. Virus") +
theme_bw()

infected.2dpi <- subset(all.infect, day =="2dpi" & MT020881.1 >=1)
infected.2dpi <- infected.2dpi[, c(1, 5, 8, 9, 10, 2, 7, 6, 4, 11:16)]
infected.2dpi.long <- gather(infected.2dpi, gene, exp, IFNB1:IL6,
factor_key = TRUE)
Fig.5C <- ggplot(data = subset(infected.2dpi.long, virus == "med")) +
geom_violin(aes(x = gene, v = loglO(exp + 1),
group = interaction(gene, dvg.presence),
color = dvg.presence, fill = dvg.presence),
scale = "width", position = position_dodge(width = 0.9),
alpha = 0.2, width = 0.8) +
geom_boxplot(aes(x = gene, y = loglO(exp + 1),
group = interaction(gene, dvg.presence),
color = dvg.presence),
position = position_dodge(width = 0.9),
width = 0.2, outlier.shape = NA, alpha = 0) +
scale_color_manual(values = c("dodgerblue", "brown3"),
labels = c("Negative", "Positive")) +
scale_fill_manual(values = c("dodgerblue", "brown3"),
labels = c("Negative", "Positive")) +
theme_bw() + theme(aspect.ratio = 2/3, legend.position = "bottom") +
ylim(c(0, 2.25)) +
xlab("Gene") + ylab('"'Logl0(Gene Expression + 1)") +
labs(title = "Log Transformed Gene Expression by DVG Presence",
subtitle = "2dpi, Moderate Viral Load",
fill = "DVG Presence", color = "DVG Presence")
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dvg.neg <- all2.infect %>%
group_by(day, virus, dvg.presence) %>%
summarize(dvg.neg = n()) %>%
filter(virus == "low" & day != "mock") %>%
group_by(day, virus) %>%

mutate(total = sum(dvg.neg), neg.perc

filter(dvg.presence == "neg")
Fig.5D <- ggplot(dvg.neg) +

geom_col(aes(x = day, y = neg.perc, fill

= (dvg.neg / total)*100) %>%

= day), color = "black") +

scale_fill_manual(values = c("dodgerblue4", "goldenrod", "forestgreen")) +
scale_color_manual(values = c("dodgerblue4", "goldenrod", "forestgreen")) +
geom_text(aes(x = day, y = neg.perc,
label =pasteO(round(neg.perc, 3), "%")), vjust = -0.75) +
ylim(c(0, 105)) +
theme_bw() + theme(legend.position = "none") +
xlab("Day") + ylab("Percent of DVG- Cells") +
ggtitle("DVG Negative Low Viral Infection Cells")
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Cellranger and Seurat

The purpose of this section of the standard operating procedure is to outline the pipeline used for Cellranger and the
Seurat R package for DVG counting and their impact on host responses from single cell RNA-seq.

We used version 6.1.2 of Cellranger to generate the gene expression matrices for our single cell RNA-Seq analysis.
This part of the analysis used the following R packages:

Seurat
Matrix
sctransform
Mast
DESeq2
tidyverse
gegplot2
dplyr
data.table

Reference Genome

SARS-CoVz2 FASTA and GTF

We dowloaded the SARS-CoV2 genome fasta file. For the MT020881.1 strain, it can be found in the following ncbi link.
https://www.ncbi.nlm.nih.gov/nuccore/MT020881.1?report=fasta)

We made a custom GTF for the SARS-CoV2 genome such that it was labeled as a ‘gene’ in the human reference
genome to which the covid genome was appended.

echo -e 'MT020881.1\tunknown\texon\tl\t(number of bases in genome, i.e. 29882)\t
At+\t.\tgene_id "MT020881.1"; transcript_id "MT020881.1"; gene_name "MT020881.1
"; gene_biotype "protein coding";' > MT020881.1.gtf

The resulting gtf file looked like the following with the ‘cat MT020881.1.gtf’ command.

MT020881.1 unknown exon 1 29881 . + . gene_id
"MT020881.1"; transcript id "MT020881.1"; gene_name "MT020881.1"; gene_ biotype

"protein_coding";

Creating reference package for Cellranger

We used the following shell script to run the mkref command in cellranger to create the reference package.

#!/bin/bash

#SBATCH -J cellrngr_ref

#SBATCH -e /scratch/sspandau/Yan_Lab/cellrngr_ref _Log.err
#SBATCH -o /scratch/sspandau/Yan_Lab/cellrngr_ref Log.out
#SBATCH -t 24:00:00

#SBATCH -c 8

#SBATCH --partition=standard

#SBATCH --mem=24G

module load cellranger/6.1.2
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cellranger mkref --genome=GRCh38 SARS-CoV2 --fasta=/path_to_concatenated_fasta/G
RCh38_SARS-CoV2.fa --genes=/path_to_concatenated_gtf/GRCh38 SARS_CoV2.gtf

The ‘—genome=" argument was for naming the resulting reference package. The ‘—fasta=" was for inputing the
reference fasta, and the ‘—genes=" was for inputing the corresponding gtf file.

Gene Expression Matrix

Cellranger count

#!/bin/bash

#SBATCH -J cellrngrcount

#SBATCH -e /scratch/sspandau/Yan_Llab/cellrngrcount.err
#SBATCH -o /scratch/sspandau/Yan_Lab/cellrngrcount.out
#SBATCH -t 72:00:00

#SBATCH -c 8

#SBATCH --partition=standard

#SBATCH --mem=200G

module load cellranger/6.1.2

cellranger count --id=sample_name --transcriptome=/gpfs/fs2/scratch/sspandau/Yan
_lab/GRCh38 Covidl19/ --fastqgs=path/fastq --sample=id fastqfilename

The ‘—id=" argument was for naming the output folder which contains the gene expression matrix.

The ‘—transcriptome=" argument was for inputing the path to the reference genome folder that was previously
generated. The ‘—fastqs=" argument was for input the path(s) to the R1 and R2 fastgs of the sample. The ‘—sample=’
argument was for input the sample id, which was the first few characters at the beginning of the R1 and R2 fastq file
names.

Loading matrix into R and creating csv files

library(Seurat)

library(Matrix)
library(tidyverse)
library(dplyr)
library(data.table)

#read in matrix from cellranger
expression_matrix<- ReadMtx(

mtx = "pathway/cellranger/outs/filtered feature bc matrix/matrix.mtx.gz",featu
res = "pathway/cellranger/outs/filtered_feature_bc_matrix/features.tsv.gz",
cells = "pathway/cellranger/outs/filtered_feature_bc_matrix/barcodes.tsv.gz",

)

#convert to data frame

#makes barcodes rows, easier to align dvg matrix
Expression_table <- as.data.frame(t(expression_matrix))
rm("expression_matrix")

#adding dvg matrix from R filter after scRNAseq ViReMa
DVG_UMI<- read.csv("pathway/dvgmatrix.csv")
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#makes barcodes rows, check to see if dvg matrix 1is already in this format befor
e using this code
DVG_UMI<-as.data.frame(t(DVG_UMI))

#create column with barcode
Expression_table<-tibble::rownames_to_column(Expression_table, "barcode")

#removes -1 that Seurat added to end of barcodes when matrix Loaded into R
Expression_table$barcode <-
sapply (Expression_table$barcode, function(i) gsub(pattern ="-1"

J
replacement = "", x = i) )

#merges DVG matrix with Gene expression matrix based on barcode
Expression_ DVG<-merge(Expression_table, DVG_Umi, by = "barcode")

#re-adds barcodes as row names

rownames (Expression_DVG)<-Expression_DVG$barcode
#removes barcode columns
Expression_DVG$barcode<- NULL

rm("DVG_UMI")

rm("Expression_table")
Expression_DVG<-as.matrix(Expression_DVG)

#naming DVG row as DVG, the row number below

#may be different depending on the number of features
#can check with this code : rownames(Expression DVG)
rownames (Expression_DVG)[60667]<-"DVG"

#Target genes

#makes genes the rows

Expression_DVG<-as.data.frame(t(Expression_DVG))

#creates vector with target genes

data_keep_rows<-c("Mx1", "Mx2", "ILe6", "IFIT1", "STAT1", "STAT2", "IFNB1", "IFNL
1", "TNF", "MT@20881.1", "DVG")

#creates subset with target genes

Gene_subset<-Expression_ DVG[rownames(Expression DVG) %in% data_keep_rows, ]

#make barcodes the rows

Gene_subest<-as.data.frame(t(Gene_subset))

#add barcodes as column for excel

Gene_subset<-tibble::rownames_to column(Gene_subset, "row names”
#export to csv

write.csv(Gene_subset, "pathway/Gene_ subset name", row.names = TRUE)

Celltype Identification

library(sctransform)

#Cell Type
Expression_DVG<-as.data.frame(Expression_DVG)
# to check 1if data frame was in right format
#rownames (Expression_DVG)

#colnames (Expression_DVG)
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#load into seurat as a seurat data object

# min.cells filters out features that don't have counts in however many cells
#min. features filters out cells that don't have a certain number of features det
ected

seurat_Object<-CreateSeuratObject(counts = Expression_DVG, min.cells = 3, min.fe
atures = 200)

#normalize and scale data
seurat_Object <- SCTransform(seurat_Object)

#perform PCA
seurat_Object <- RunPCA(seurat_Object, features = VariableFeatures(object =
seurat_Object))

#Cluster the cells based on PCA and variable features

seurat_Object <- FindNeighbors(seurat Object, dims = 1:10)

#change resolution based on how many cells were in scRNA data set (i.e. for 3000
cells, resolution should be between 0.5 and 1.2, the higher the resolution, the
more clusters)

seurat_Object<- FindClusters(seurat_Object, resolution = 0.2)

#print out gene markers for clusters

all markers <-FindAllMarkers(seurat_Object, pval.type = "all", direction = "all"
)

markers <- as.data.frame(all markers %>% group_by(cluster) %>% top_n(n = 10, wt
= avg_log2FC))

topl@_markers

#renaming clusters based on cell types

#identify celltypes of each cluster based on top markers in the clusters

#1f data set was already published, Look in paper for which marker genes were us
ed for prior celltype identification

#can use online CellMarker data base (https://www.researchgate.net/deref/http%3A
%2F%2Fbio-bigdata. hrbmu.edu.cn%2FCel LMarker%2F) or PanglaoDB (https://panglaodb.
se/) to Look up marker genes and their associated celltypes

#create vector with new ident names (celltypes) 1in order of cluster number (i.e.
first cluster is first celltype in vector)

new.cluster.ids.0.2res <- c("SLC16A7+", "Secretory", "Ciliated", "SLC16A7+")
#new.cluster.ids.0.8res <- c("SLC16A7+", "Ciliated", "SLC16A7+", "SLC16A7+", "SL
C16A7+", "Secretory”, "Unknown", "FOXN4+")

#rename idents (clusters)
names(new.cluster.ids.0.2res) <- levels(seurat_Object)
seurat_Object<-Renameldents(seurat_Object, new.cluster.ids.@.2res)

#adding cell type to data frame
Celltype<-seurat_Object@assays$RNA@counts
Celltype<-as.data.frame(Celltype)
cell<-data.frame(seurat_Object@active.ident)
cell<-t(cell)
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colnames(cell)=colnames(Celltype)
Celltype<-rbind(Celltype, cell)
rownames (Celltype)

# Creating celltype data frame

#If want matrix to just have covid counts, dvg counts, and cell type

#use following Lline, numbers may vary based on how many features are present
# Celltype<-Celltype[17626:17627, ]

Celltype<-as.data.frame(Celltype)

rownames (Celltype)

flipped<-t(Celltype)

#convert new flipped expression table back to data frame
Celltype<-as.data.frame(flipped)

write.csv(Celltype, "Celltype PHLE.csv", row.names = TRUE)

Celltype Percents

#read in csv created at the end of the celltype 1identification section containin
g celltypes, covid counts, and dvg counts for each cellbarcode

celltype data<-read.csv("pathway/celltype.csv")

#to calculate number of cells in the sample

num_cells<-nrow(celltype data)

#for celltype 1

# to calculate celltype percent

num_celltypel<-nrow(celltype data[celltype_data$seurat_Object.active.ident == "n
ame_of_celltypel”])

percent celltypel<-100*(num_celltypel/num_cells)

celltypel subset<-subset(celltype data, seurat_Object.active.ident == "name_of c
elltypel™)

#to calculate number of uninfected cells for that cell type

num_celltypel uninfected<-nrow(celltypel subset[celltypel subset$MTO20881.1 ==

> 1)

celltypel subset_infected<-subset(celltypel subset, MT020881.1 > 0)

#to calculate DVG+ cells
num_DVGpos<-nrow(celltypel subset infected[celltypel subset infected$DVG > ©,])
#to calculate DVG- cells

num_DVGneg<-nrow(celltypel subset_infected[celltypel subset_infected$DVG == 0,])

#Repeat for however many celltypes were in the data and for however many samples
are being compared
#Add resulting statistics to csv

Differential Gene Expression

library(Mast)

library(DESeqg2)

#subset Seurat object to only contain infected cells

#the 1infection threshold used below was at least one covid count
Q1l<-subset(x = seurat_Object, subset = MT020881.1 > 9)
infectioncounts<- Ql@assays$RNA@counts
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infectioncounts<-as.data.frame(infectioncounts)

#load in dvg status data frame

#the data frame had first column as barcodes (sometimes called row _names), and t
he second column had the DVG status for that cell (i.e. Y for DVG+, N for DVG-,
No_1inf for uninfected cells)

dvg_status<-read.csv("dvg status PHLE.csv")

colnames(dvg_status)

#align gene matrix barcodes with dvg barcodes
infectioncounts<-as.data.frame(t(infectioncounts))

#name barcode column the same as it was named in the DVG status csv
infectioncounts<-tibble::rownames_to_column(infectioncounts, "row_names or barco
de")

#merge used to filter cells in expression matrix that were not present in dvg st
atus file

infectioncounts<-merge(infectioncounts, dvg status, by = "row_names or barcode")
# makes barcodes the rownames instead of a column

rownames (infectioncounts)<-infectioncounts$row_names

#rownames (infectioncounts)

#merge used to remove cells in dvg status file that were not present in filtered
expression matrix

dvg status<-merge(dvg status, infectioncounts, by = "row names"

#returns dvg status data frame with just the barcodes and dvg status
dvg_status<-dvg status[,c(1,2)]

#fix colnames after adjusting number of cells to matrix cells
colnames(dvg_status)<-c("row_names", "dvg_status™)

#colnames(dvg_status)

rownames (dvg_status)<-dvg status$row names

ncol(infectioncounts)

#remove row_names and dvg status from expression matrix so that expression matri

x only has numerical data

infectioncounts<-infectioncounts[,-c(1, 29575)]

colnames(infectioncounts)

# recreate seurat object with infectioncounts

#made features the rows and cell barcodes the columns such that

#1t was in the correct format for seurat object
infectioncounts<-t(infectioncounts)

seurat_infected<- CreateSeuratObject(counts = infectioncounts)

#add dvg status as meta data

seurat_infected<-AddMetaData(seurat infected, dvg status$dvg status, col.name =
'dvg_status')

#reset 1idents to be the dvg status meta data
seurat_infected<-SetIdent(seurat_infected, value = seurat_infected@meta.data$dvg

_status)

#use the following code to check if dvg status was correctly added as meta data
to seurat object
#VLlnPlot (seurat_infected, features = "MTND1P23", split.by = 'dvg status', split.
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plot = TRUE)

#standardization and normalization

seurat_infected<-SCTransform(seurat_infected)

#Find marker genes

list mast<-FindMarkers(seurat_infected, ident.1 = "Y", ident.2 = "N", test.use =
"Mast")

#Mast was DGE method for @-inflated expression matrix

#DESeqg2 and wilcox are other DGE methods that were used

list mast<-as.data.frame(list_mast)

list_mast<-tibble: :rownames_to_column(list _mast, "row_names")

#to calculate average expression for the two idents (DVG+ and DVG- cells)

#log normalize data

seurat_infected<-NormalizeData(object = seurat_infected)

#calculate average expression for the genes found in the DGE List above

avg_E <-AverageExpression(seurat_infected, features = list mast$row_names)
avg_E<-as.data.frame(avg_E)

avg E<-tibble::rownames_to_column(avg E, "row names”

#adds average expression to DGE List data frame such that resulting csv contains
p-vals, adjusted p-vals for differentially expressed genes, the the percentage

for which each genes were present in the two 1idents, and the average expression

for each gene in the two idents

list_mast_avgE<-merge(list_mast, avg E, by = "row_names"
write.csv(list mast _avgE, 'DGE_list mast.csv')

Fig 5 A: GO dotplots

#for merging the 3 DGE lists from the three methods, Mast, DESeq2, and Wilcoxon
rank sum test

#load in DGE Llists

mast<-read.csv("pathway\DGE_list mast.csv")

deseq2<-read.csv("pathway\DGE_list DESeq2.csv")
wilcox<-read.csv("pathway\DGE_list wilcox.csv")

#create merged data sets between each possible pairing of the Lists

wilcox_mast<-merge(mast, wilcox, by = "row_names"
wilcox_deseq2<-merge(wilcox, deseq2, by = "row_names"
mast_deseq2<-merge(mast, deseq2, by = "row_names"

#bind newly merged data together

all<-rbind(wilcox_mast, wilcox_deseq2)

all<-rbind(all, mast_deseq2)

#remove any duplicated rows (i.e. genes found in all three)
all noduplicate<-all['!duplicated(all$row _names), ]

#remove duplicated columns

all noduplicate<-all noduplicate[,-c(2:13)]

write.csv(all _noduplicate, "New DGE_list commongenes.csv")

After submitting DGE list to DAVID functional annotation tool and selecting the top pathways found in each cluster of
the DAVID results, we used the following script to generate the GO dotplots.

library(ggplot2)
# Load in top pathways from DAVID cluster results
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downreg<-read.csv("pathway/David_cluster_ topdownreg pathways.csv")

#add the pathway names as a factor with the lLevels being the generatio for those
pathways

downreg$Description<-factor(downreg$Description, levels=downreg[order(downreg$Ge
neratio,decreasing=F), ]$Description)

downreg<-as.data.frame(downreg)
upreg<-read.csv("pathway/David_cluster_upreg pathways.csv")
upreg$Description<-factor(upreg$Description, levels=upreg[order(upreg$Generatio,
decreasing=F), ]$Description)

upreg<-as.data.frame(upreg)

#plot the GO pathway enrichment
gegplot(downreg, #can replace the numbers to the row number of pathway of your 1in
terest
aes(x = Generatio, y = Description)) +
geom_point(aes(size = Genes.per.GO.category, color = Fold.Enrichment)) +
theme_bw(base size = 14) + theme(axis.text.y = element_text(size = 5))+
scale_colour_gradient(limits=c(2, 100), low="corall", high = "darkred") +
ylab(NULL) +
ggtitle("GO pathway enrichment Down Regulated")+theme(plot.title = element_tex
t(size = 15))

ggplot(upreg,
aes(x = Generatio, y = Description)) +
geom _point(aes(size = Genes.per.GO.category, color = Fold.Enrichment)) +
theme_bw(base size = 14) + theme(axis.text.y = element_text(size = 5))+
scale_colour_gradient(limits=c(1, 20), low="corall", high = "darkred") +
ylab(NULL) +
ggtitle("GO pathway enrichment Up Regulated")+theme(plot.title = element_text(
size = 15))

2dpi GO dotplots
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