

1 **CLASP2 facilitates dynamic actin filament organization along the microtubule lattice**
2

3 Rodgers NC¹, Lawrence EJ², Sawant AV², Efimova N², Gonzalez-Vasquez G³, Hickman TT⁴,
4 Kaverina I² and Zanic M^{2,5,6}

5 1 Chemical and Physical Biology Graduate Program

6 2 Department of Cell and Development Biology

7 3 Interdisciplinary Graduate Program

8 4 Quantitative and Chemical Biology Graduate Program

9 5 Department of Chemical and Biomolecular Engineering

10 6 Department of Biochemistry

11 Vanderbilt University, Nashville, TN USA 37232

12 Correspondence to M. Zanic: marija.zanic@vanderbilt.edu

13
14
15
16 **Abbreviations used:** APC, adenomatous polyposis coli; CLASP, cytoplasmic linker associated
17 protein; F-actin, actin filaments; MAP, microtubule associated protein; PCC, Pearson correlation
18 coefficient; +TIP, microtubule plus tip interacting protein; TIRF, total internal reflection
19 fluorescence microscopy; TOG, tumor overexpressing gene

20
21 **ABSTRACT**

22
23
24 Coordination between the microtubule and actin networks is essential for cell motility,
25 neuronal growth cone guidance, and wound healing. Members of the CLASP (Cytoplasmic
26 Linker-Associated Protein) family of proteins have been implicated in the cytoskeletal crosstalk
27 between microtubules and actin networks, however, the molecular mechanisms underlying
28 CLASPs role in cytoskeletal coordination are unclear. Here, we investigate CLASP2 α 's
29 crosslinking function with microtubules and F-actin. Our results demonstrate that CLASP2 α
30 crosslinks F-actin to the microtubule lattice in vitro. We find that the crosslinking ability is
31 retained by L-TOG2-S, a minimal construct containing the TOG2 domain and serine-arginine
32 rich region of CLASP2 α . Furthermore, CLASP2 α promotes the accumulation of multiple actin
33 filaments along the microtubule, supporting up to 11 F-actin landing events on a single
34 microtubule lattice region. CLASP2 α also facilitates dynamic organization of polymerizing actin
35 filaments templated by the microtubule network, with F-actin forming bridges between individual
36 microtubules. Finally, we find that depletion of CLASPs in vascular smooth muscle cells results
37 in disorganized actin fibers and reduced co-alignment of actin fibers with microtubules,
38 suggesting that CLASP and microtubules contribute to higher-order actin structures. Taken
39 together, our results indicate that CLASP2 α can directly crosslink F-actin to microtubules, and
40 that this microtubule-CLASP-actin interaction may influence overall cytoskeletal organization in
41 cells.

42
43
44 **INTRODUCTION**

45
46 The cytoskeleton is an essential cellular component that drives a multitude of processes
47 such as cell division and motility, and defines cell shape. Individual components of the
48 cytoskeleton must coordinate to perform their cellular functions (Dogterom & Koenderink, 2019;
49 Pimm & Henty-Ridilla, 2021; Rodriguez et al., 2003). For example, microtubules and actin
50 interact with each other to facilitate cell motility (Ballestrem et al., 2000; Salmon et al., 2002;
51 Waterman-Storer & Salmon, 1999, 1997; X. Wu et al., 2008) and growth cone guidance (Dent &

Rodgers et al. *CLASP crosslinks actin to microtubules*

52 Kalil, 2001; Rochlin et al., 1999; Schaefer et al., 2002; Slater et al., 2019). Many cellular factors
53 are involved in this coordination (Rodriguez et al., 2003), and the proteins that physically couple
54 the microtubule and actin networks are of particular interest (Dogterom & Koenderink, 2019;
55 Pimm & Henty-Ridilla, 2021). However, the specific interactions underlying cytoskeletal coupling
56 remain to be fully understood.

57
58 Cytoplasmic linker associated proteins (CLASPs) are a well-studied family of
59 microtubule-associated proteins (MAPs), that have been implicated in interacting with both
60 microtubules and F-actin (Dogterom & Koenderink, 2019; Engel et al., 2014; Tsvetkov et al.,
61 2007). CLASPs are known as microtubule stabilizers with essential roles in cell division, cell
62 migration and neuronal development (Lawrence et al., 2020). There are two paralogs of CLASP,
63 CLASP1 and CLASP2, that are alternatively spliced resulting in multiple isoforms, which are
64 differentially expressed and may have some isoform-specific functions (Akhmanova et al., 2001;
65 Lawrence et al., 2020). In vitro studies with purified proteins established that CLASPs promote
66 sustained microtubule growth by suppressing microtubule catastrophe, the transition from
67 growth to shrinkage, while promoting microtubule rescue, the transition from shrinkage to
68 growth (Aher et al., 2018; Akhmanova et al., 2001; Al-Bassam et al., 2010; Lawrence et al.,
69 2018; Leano et al., 2013; Maki et al., 2015; Patel et al., 2012). In cells, CLASPs are targeted to
70 growing microtubule plus ends via a direct interaction with microtubule end-binding EB proteins
71 and can specifically regulate microtubule dynamics at the actin-rich cell cortex (Mimori-Kiyosue
72 et al., 2005). Furthermore, CLASPs are involved in the process of microtubule plus-end capture
73 at the cell cortex through interactions with LL5 β , a component of the cortical microtubule
74 stabilization complex (Hotta et al., 2010; Lansbergen et al., 2006; Stehbens et al., 2014).
75 CLASPs' stabilization and anchoring of microtubules is also important for the regulation and
76 dynamics of podosomes, polymerizing actin-based structures, in vascular smooth muscle cells
77 (Efimova et al., 2014; Zhu et al., 2016). All these studies suggest CLASPs' roles in the interplay
78 between the microtubule and actin networks. However, it remains unclear if CLASPs directly
79 interact with the actin network in these contexts.

80
81 A previous study directly investigating CLASP-actin interaction reported that the two
82 CLASP paralogs, CLASP1 and CLASP2, colocalize with actin stress fibers in primary fibroblasts
83 and spinal cord neurons (Tsvetkov et al., 2007). The authors found that both CLASP paralogs
84 coimmunoprecipitated with actin from fibroblast cells and suggested that the tumor
85 overexpressing gene (TOG)-1 domain and serine-arginine rich region of CLASP2 α facilitate the
86 F-actin interaction. Another study, using co-sedimentation experiments with purified proteins
87 reported a direct interaction between F-actin and CLASP2 α , as well as co-sedimentation of G-
88 actin with microtubules in the presence of CLASP2 α (Engel et al., 2014). To our knowledge,
89 these two reports provide the only evidence of CLASP-actin interaction, leaving open the
90 question of whether CLASP alone is sufficient for crosslinking of microtubules and actin
91 filaments, which may play a role in the organization of stress fibers in cells.

92
93
94 **RESULTS AND DISCUSSION**

95
96 **Human CLASP2 α directly crosslinks actin filaments to microtubules**

97
98 To investigate CLASP2 α 's ability to directly crosslink microtubules and actin, we
99 expressed and purified full-length CLASP2 α using an Sf9-insect-cell based system (Figure 1A
100 and Supplemental Figure S1A). Performing co-sedimentation experiments with purified
101 CLASP2 α and polymerized purified F-actin, we found a statistically significant increase in the

Rodgers et al. CLASP crosslinks actin to microtubules

102 amount of CLASP2 α in the pellet (Supplemental Figure S1A). Thus, consistent with previous
103 reports (Engel et al., 2014), we find that CLASP2 α directly interacts with F-actin.

104
105 To determine if CLASP2 α can simultaneously bind to microtubules and F-actin, we
106 employed an *in vitro* reconstitution assay using 3-color imaging by total internal reflection
107 fluorescence (TIRF) microscopy. First, we bound Alexa-647-labeled, Taxol-stabilized
108 microtubules to the surface of a coverslip. Next, we added 6.5 μ M TRITC-phalloidin-stabilized F-
109 actin with or without 100 nM purified CLASP2 α -GFP (Supplemental Figure S1B) to the flow-cell.
110 As expected, we observed specific CLASP2 α -GFP localization along the microtubule lattice
111 (Figure 1B). We quantified the correlation between the CLASP2 α -GFP and microtubule signals
112 after 10 minutes of incubation using the Pearson Correlation Coefficient (PCC) and measured a
113 high degree of correlation (PCC = 0.88 \pm 0.06, SD, N = 9 fields of view (FOV) over 3
114 independent experimental days) (Figure 1C). The investigation of TRITC-phalloidin-F-actin
115 showed that F-actin robustly co-localized with microtubules in the presence of CLASP2 α -GFP
116 (PCC = 0.86 \pm 0.05, SD, N = 9 FOVs over 3 independent experimental days) (Figure 1B,D). No
117 significant co-localization between microtubules and F-actin was observed in the absence of
118 CLASP2 α (PCC = 0.022 \pm 0.001, SD, N = 9 FOVs over 3 independent experimental days)
119 (Figure 1B,D). Furthermore, we confirmed that the co-localization of F-actin with microtubules
120 does not depend on phalloidin-actin stabilization, as F-actin also localized to CLASP2-coated
121 microtubules without phalloidin (Supplemental Figure S2A). Taken together, we conclude that
122 CLASP2 α directly crosslinks F-actin to microtubules.
123

124 Previous reports using co-immunoprecipitation from fibroblast cells implicated a Serine-
125 Arginine rich region of CLASP2 α in its interaction with actin (Tsvetkov et al., 2007). Recently, a
126 minimal CLASP2 construct, L-TOG2-S, containing a single TOG2 domain and the Serine-
127 Arginine rich region (Figure 1A), was reported to recapitulate CLASP's effect on microtubule
128 dynamics (Aher et al., 2018). We wondered whether this minimal CLASP2 construct is also
129 sufficient to crosslink microtubules and F-actin. We used the same TIRF-based approach to
130 investigate TRITC-phalloidin-F-actin localization on microtubules in the presence of purified 100
131 nM GFP-L-TOG2-S (Supplemental Figure S1B). As expected, GFP-L-TOG2-S showed strong
132 localization to microtubules (PCC = 0.87 \pm 0.04, SD, N = 9 FOVs over 3 independent
133 experimental days) (Figure 1B-C). Furthermore, we found that F-actin also robustly co-localized
134 with microtubules in the presence of GFP-L-TOG2-S (PCC = 0.88 \pm 0.04, SD, N = 9 FOVs over
135 3 independent experimental days) (Figure 1B,D). This result demonstrates that the minimal
136 CLASP2 α construct containing a single TOG2 domain, and the Serine-Arginine rich region is
137 sufficient to directly crosslink F-actin to microtubules.
138
139

140 **CLASP2 α mediates sequential binding of actin filaments along the microtubule lattice**
141

142 To further investigate how actin filaments interact with microtubules in the presence of
143 CLASP2 α , we imaged TRITC-phalloidin-F-actin on microtubules over time for up to 40 minutes.
144 We observed the initial landing of actin filaments within two minutes (Figure 2A, Video 1).
145 Notably, the F-actin signal continued to increase over time, reaching saturation within the
146 duration of the experiment (Figure 2B). No F-actin binding to microtubules was observed in the
147 absence of CLASP2 α for the entire duration of the experiment (Figure 2A, Video 1).
148

149 A closer inspection of the increasing TRITC-phalloidin-F-actin intensity on individual
150 microtubules revealed step-like increases in fluorescence intensity on a region of microtubule
151 lattice (Figure 2C), suggesting sequential binding of actin filaments. Using a stepping analysis
152 (Bronson et al., 2009, see Methods), we measured the accumulation of F-actin within a 3-pixel-

153 wide (480 nm) microtubule segment over a period of 40 minutes. The mean number of landing
154 events was 6.3 ± 0.6 (SD, N = 91, 99, and 54 microtubule lattice segments analyzed on three
155 experimental days), with up to 11 sequential F-actin landing events occurring on a single
156 microtubule segment (Figure 2D).

157
158 We wondered if the sequential accumulation of F-actin on microtubules could be
159 supported by potential F-actin bundling activity of CLASP2 α . However, using a low-speed co-
160 sedimentation approach, we did not find any evidence that CLASP2 α can bundle F-actin
161 (Supplemental Figure S2B-D). In these experiments, bundled F-actin preferentially sediments
162 into the pellet, while single F-actin filaments remain in the supernatant, due to low centrifugation
163 speed. As a positive control, we used α -actinin, a well-known actin bundler, and observed a
164 significant increase in the amount of F-actin in the pellet (Supplemental Figure S2C,D). In
165 contrast, no significant increase in the F-actin pellet fraction was observed in the presence of
166 CLASP2 α (Supplemental Figure S2B,D). This result suggests that the CLASP2 α -mediated F-
167 actin accumulation on microtubules does not occur through bundling of actin filaments by
168 CLASP2 α .

169
170
171 **CLASP2 α facilitates dynamic actin filament organization templated by the microtubule
172 arrangement**

173
174 We next wondered if CLASP2 α could facilitate dynamic actin polymerization along the
175 microtubule lattice. To probe this, we introduced 250 nM soluble, Alexa-647-labeled, globular
176 actin (G-actin) into a flow-cell containing Taxol-stabilized, coverslip-bound microtubules (Figure
177 3). In the presence of CLASP2 α , we observed the binding and growth of dynamic actin
178 filaments along the microtubule lattice, which continued to grow off the ends of the microtubule
179 polymer. (Figure 3A,B). Although individual microtubules were sparsely distributed on the
180 coverslip surface, we often observed growing F-actin forming connections between microtubule
181 polymers (Figure 3A, Video 2). We measured the length of the individual F-actin connections
182 between microtubules to be $7 \pm 3 \mu\text{m}$ (SD, N = 26 F-actin bridges over 3 independent
183 experimental days, Figure 3C). Thus, under these conditions, CLASP2 α can promote linking of
184 microtubules by actin filaments. Without CLASP2 α , microtubules were not covered by F-actin
185 and no connections were observed (Figure 3A). These results demonstrate that CLASP2 α can
186 support dynamic F-actin organization templated by microtubules, and that F-actin can bridge
187 microtubules forming an interconnected network.

188
189
190 **CLASP depletion results in disorganized actin fibers in cultured vascular smooth muscle
191 cells**

192 To probe CLASPs' role in actin organization in cells, we depleted CLASPs in a rat
193 vascular smooth muscle cell line A7r5, chosen due to its notable actin bundle (stress fiber)
194 structures (Figure 4A). For prominent phenotypes, both CLASP paralogs (CLASP1 and
195 CLASP2) were depleted by siRNA oligo combinations, carefully validated in previous work
196 (Efimova et al., 2014; Zhu et al., 2016), achieving reliable reduction of CLASP protein levels
197 (Supplemental Figure S3). Our results showed that actin fiber organization was severely
198 disturbed in CLASP-depleted cells (Figure 4B,C). Actin organization was efficiently rescued by
199 ectopic overexpression of non-silenceable mutant of CLASP2 (Fig. 4D) in depleted cells,
200 indicating that CLASP2 paralog is likely sufficient for proper actin organization in this context.
201 Interestingly, co-alignment of actin fibers with microtubules in CLASP-depleted cells (Figure
202 4F,G) was reduced as compared to controls (Figure 4E), suggesting a diminished coordination

203 of these filaments, consistent with our *in vitro* results. Overall, our findings suggest that CLASPs
204 contribute to co-organization of higher-order actin structures with microtubules in cells.
205
206

207 Conclusions

208

209 In summary, our results demonstrate that CLASP2 α directly crosslinks F-actin to
210 microtubules. We find that a minimal CLASP construct, containing the TOG2 domain and the
211 Serine-Arginine rich region of CLASP2, is sufficient to crosslink microtubules and F-actin (Figure
212 5). Interestingly, this L-TOG2-S construct was previously shown to recapitulate CLASP2's
213 effects on microtubule end dynamics (Aher et al., 2018). There, the authors reported that the
214 TOG2 domain alone has a weak affinity for microtubules, and that CLASP's unstructured,
215 positively charged region is needed for robust direct microtubule binding. The same Serine-
216 Arginine region contains a Ser-x-Ile-Pro (SxIP) motif, which encodes CLASP's direct interaction
217 with EB proteins, facilitating targeting of CLASP to growing microtubule ends (Maki et al., 2015;
218 Patel et al., 2012). How interactions of the Serine-Arginine region with microtubules, actin and
219 EBs are regulated in different cellular contexts presents an interesting question. A previous
220 report using co-immunoprecipitation and co-localization experiments in fibroblasts suggested
221 that the TOG1 domain of CLASP2 α also interacts with F-actin (Tsvetkov et al., 2007). Our
222 results show that the TOG1 domain is not necessary for the CLASP-mediated crosslinking of
223 microtubules with F-actin; to what extent TOG1 domain may contribute to direct CLASP-actin
224 interaction warrants further investigation. Interestingly, a recent report suggested that another
225 TOG-domain protein, XMAP215, directly interacts with F-actin to promote microtubule-actin
226 coalignment in the neuronal growth cone (Slater et al., 2019). There, the authors found that all
227 five TOG domains of XMAP215 were required for XMAP215's localization to F-actin. Future
228 work will be needed to determine the affinities of individual TOG domains for F-actin and their
229 effects on the microtubule-actin crosstalk.
230

231 Our finding that microtubule-associated CLASP2 α supports the binding of up to 11 actin
232 filaments to a single microtubule region raises the question of F-actin organization on the
233 microtubule lattice. Our results don't show any evidence of actin forming bundles on the
234 microtubule lattice. The number of F-actin landing events saturated within the duration of our
235 experiment, and we never observed more than 11 sequential landing events, suggesting a limit
236 to the number of F-actin that can be linked to the microtubule lattice. Furthermore, we found no
237 evidence of CLASP2 α being able to directly bundle F-actin. This is different from the effects of
238 another well-studied MAP, tau, which directly bundles F-actin and facilitates actin elongation
239 and bundling along growing microtubules (Elie et al., 2015). Given that Taxol-stabilized bovine
240 microtubules typically contain 13 individual protofilaments (Amos & Klug, 1974; Arnal & Wade,
241 1995), and that the full microtubule surface may not be accessible to F-actin binding in our
242 experiments (due to the tethering of microtubules to the coverslip), the number of landing events
243 we observed is consistent with the model in which individual actin filaments bind around the
244 microtubule perimeter along microtubule protofilaments (Figure 5). High resolution structural
245 approaches, such as cryo-electron microscopy, will be needed to determine the exact
246 organization of F-actin on CLASP2 α -coated microtubules.
247

248 Our results demonstrate that CLASP2 α -coated microtubules can template dynamic F-
249 actin organization, specifically by F-actin linking multiple microtubules and forming an
250 interconnected cytoskeletal network. Other crosslinking proteins have been shown to organize
251 F-actin in a microtubule-centric fashion, with notable examples belonging to the spectraplakin
252 protein family (Dogterom & Koenderink, 2019; Pimm & Henty-Ridilla, 2021; Rodriguez et al.,
253 2003; Suozzi et al., 2012). Interestingly, a number of microtubule plus-tip interacting proteins

254 (+TIP) have also been shown to interact with F-actin and influence actin dynamics. Cytoplasmic
255 linker interacting protein 170 (CLIP-170), a prominent +TIP and a known binding partner of
256 CLASP, was recently reported to directly bind to F-actin and microtubules, however the
257 interaction of CLIP-170 with F-actin and microtubules was found to be mutually exclusive (Y.-F.
258 O. Wu et al., 2021). Similarly, EB1 was reported to directly interact with F-actin, however it did
259 not bind F-actin and microtubules simultaneously (Alberico et al., 2016). While some of the
260 +TIPs might not be able to directly crosslink F-actin and microtubules, many interactions among
261 +TIPs in combination with other actin binding proteins result in the collective regulation of
262 microtubule-actin crosstalk. For example, the combination of CLIP-170 and EB1 with actin-
263 regulators formin, mDia1, and profilin mediates F-actin polymerization from growing microtubule
264 ends *in vitro* (Henty-Ridilla et al., 2016). In another example, the +TIP protein adenomatous
265 polyposis coli (APC) was reported to promote actin assembly, activity that is negatively
266 regulated by interaction of APC with EB1 (Juanes et al., 2020). Future work investigating how
267 CLASP's interactions with its binding partners may impact the crosstalk between the
268 microtubule and actin networks is needed. It remains unclear if CLASP can interact with F-actin
269 when targeted to growing microtubule ends via EBs, and whether such interaction could also
270 promote actin polymerization from the dynamic microtubule ends, as shown for the complex
271 with CLIP-170 (Henty-Ridilla et al., 2016).

272
273 Microtubule-dependent actin filament coalescence demonstrated in our minimal
274 component system could be important for building higher-order actin structures in cells.
275 Regulators such as APC have been shown to both mediate actin assembly and facilitate
276 microtubule capture at focal adhesions (Juanes et al., 2017; Juanes et al., 2019; Wen et al.,
277 2004). More recently, it has also been reported that APC can organize branched actin networks
278 on microtubules in growth cones of hippocampal neurons (Efimova et al., 2020). In our study,
279 we find that both actin-microtubule association and the architecture of contractile actin fibers are
280 severely disrupted when CLASPs are depleted in vascular smooth muscle cells. Actin defects
281 observed in actin stress fiber structures are consistent with previous findings that CLASP
282 depletions cause defects in actin-based invasive protrusions in vascular smooth muscle cells
283 (Efimova et al., 2014; Zhu et al., 2016). Overall, our results identify a potential role for CLASP-
284 mediated organization of actin filaments along microtubules in the process of actin fiber
285 assembly in contractile cells (Figure 5).

286
287 **ACKNOWLEDGEMENTS**
288
289 We thank G. Brouhard and S. Bechstedt (McGill University) for the pHATHUGS vector and K.
290 Grishchuk (University of Pennsylvania) for the His-EGFP-L-TOG2-S construct. We thank H.
291 Manning and M. Lang (Vanderbilt) for MATLAB codes used for normalization of intensity line
292 scans and extracting step information when using vbFRET software. We thank G. Arpag for the
293 MATLAB code used for generating line scans for the stepping analysis. We thank D. Bowman
294 and A. Olivares for help with the actin purification. Finally, we thank all members of the Zanic lab
295 and the Vanderbilt Microtubules and Motors club for discussions and feedback. This work was
296 supported by National Institutes of Health grant R35GM119552 to MZ. IK acknowledges support
297 from R35GM127098. NR acknowledges support from National Institutes of Health grants
298 F31HL151033-01A1 and T32GM0083320. EJL acknowledges the support of the National
299 Institutes of Health IBSTO training grant T32CA119925.
300

301 **REFERENCES**

303 Aher, A., Kok, M., Sharma, A., Rai, A., Olieric, N., Rodriguez-Garcia, R., Katrukha, E. A.,
304 Weinert, T., Kapitein, L. C., Steinmetz, M. O., Dogterom, M., & Akhmanova, A. (2018).
305 CLASP Suppresses Microtubule Catastrophes through a Single TOG Domain.
306 *Developmental Cell*, 46(1), 1–19. <https://doi.org/10.1016/j.devcel.2018.05.032>

307 Akhmanova, A., Hoogenraad, C. C., Drabek, K., Stepanova, T., Dortland, B., Verkerk, T.,
308 Vermeulen, W., Burgering, B. M., De Zeeuw, C. I., Grosveld, F., & Galjart, N. (2001).
309 CLASPs Are CLIP-115 and -170 Associating Proteins Involved in the Regional Regulation
310 of Microtubule Dynamics in Motile Fibroblasts. *Cell*, 104(6), 923–935.
311 [https://doi.org/10.1016/S0092-8674\(01\)00288-4](https://doi.org/10.1016/S0092-8674(01)00288-4)

312 Al-Bassam, J., Kim, H., Brouhard, G., van Oijen, A., Harrison, S. C., & Chang, F. (2010).
313 CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule.
314 *Developmental Cell*, 19(2), 245–258. <https://doi.org/10.1016/j.devcel.2010.07.016>

315 Alberico, E. O., Zhu, Z. C., Wu, Y. F. O., Gardner, M. K., Kovar, D. R., & Goodson, H. V. (2016).
316 Interactions between the Microtubule Binding Protein EB1 and F-Actin. *Journal of
317 Molecular Biology*, 428(6), 1304–1314. <https://doi.org/10.1016/j.jmb.2016.01.032>

318 Amos, L. A., & Klug, A. (1974). Arrangement of Subunits in Flagellar Microtubules. *Journal of
319 Cell Science*, 14(3), 523–549. <https://doi.org/10.1242/jcs.14.3.523>

320 Arnal, I., & Wade, R. H. (1995). How does taxol stabilize microtubules? *Current Biology*, 5(8),
321 900–908. [https://doi.org/10.1016/S0960-9822\(95\)00180-1](https://doi.org/10.1016/S0960-9822(95)00180-1)

322 Ballestrem, C., Wehrle-Haller, B., Hinz, B., & Imhof, B. A. (2000). Actin-dependent Lamellipodia
323 Formation and Microtubule-dependent Tail Retraction Control-directed Cell Migration.
324 *Molecular Biology of the Cell*, 11(9), 2999–3012. <https://doi.org/10.1091/mbc.11.9.2999>

325 Bolte, S., & Cordelières, F. P. (2006). A guided tour into subcellular colocalization analysis in
326 light microscopy. *Journal of Microscopy*, 224(3), 213–232. [https://doi.org/10.1111/j.1365-2818.2006.01706.x](https://doi.org/10.1111/j.1365-
327 2818.2006.01706.x)

328 Bronson, J. E., Fei, J., Hofman, J. M., Gonzalez, R. L., & Wiggins, C. H. (2009). Learning rates
329 and states from biophysical time series: A Bayesian approach to model selection and
330 single-molecule FRET data. *Biophysical Journal*, 97(12), 3196–3205.
331 <https://doi.org/10.1016/j.bpj.2009.09.031>

332 Castoldi, M., & Popov, A. V. (2003). Purification of brain tubulin through two cycles of
333 polymerization–depolymerization in a high-molarity buffer. *Protein Expression and
334 Purification*, 32(1), 83–88. [https://doi.org/10.1016/S1046-5928\(03\)00218-3](https://doi.org/10.1016/S1046-5928(03)00218-3)

335 Dent, E. W., & Kalil, K. (2001). Axon branching requires interactions between dynamic
336 microtubules and actin filaments. *The Journal of Neuroscience : The Official Journal of the
337 Society for Neuroscience*, 21(24), 9757–9769. <https://doi.org/21/24/9757> [pii]

338 Dogterom, M., & Koenderink, G. H. (2019). Actin–microtubule crosstalk in cell biology. *Nature
339 Reviews Molecular Cell Biology*, 20(1), 38–54. <https://doi.org/10.1038/s41580-018-0067-1>

340 Dunn, K. W., Kamocka, M. M., & McDonald, J. H. (2011). A practical guide to evaluating
341 colocalization in biological microscopy. *Am J Physiol Cell Physiol*, 46202(300), 723–742.
342 <https://doi.org/10.1152/ajpcell.00462.2010>.

343 Efimov, A., Kharitonov, A., Efimova, N., Loncarek, J., Miller, P. M., Andreyeva, N., Gleeson, P.,
344 Galjart, N., Maia, A. R. R., McLeod, I. X., Yates, J. R., Maiato, H., Khodjakov, A.,
345 Akhmanova, A., & Kaverina, I. (2007). Asymmetric CLASP-Dependent Nucleation of
346 Noncentrosomal Microtubules at the trans-Golgi Network. *Developmental Cell*, 12(6), 917–
347 930. <https://doi.org/10.1016/j.devcel.2007.04.002>

348 Efimova, N., Grimaldi, A., Bachmann, A., Frye, K., Zhu, X., Feoktistov, A., Straube, A., &
349 Kaverina, I. (2014). Podosome-regulating kinesin KIF1C translocates to the cell periphery
350 in a CLASP-dependent manner. *Journal of Cell Science*, 127(24), 5179–5188.
351 <https://doi.org/10.1242/jcs.149633>

Rodgers et al. CLASP crosslinks actin to microtubules

352 Efimova, N., Yang, C., Chia, J. X., Li, N., Lengner, C. J., Neufeld, K. L., & Svitkina, T. M. (2020).
353 Branched actin networks are assembled on microtubules by adenomatous polyposis coli
354 for targeted membrane protrusion. *Journal of Cell Biology*, 219(9).
355 <https://doi.org/10.1083/jcb.202003091>

356 Elie, A., Prezel, E., Guérin, C., Denarier, E., Ramirez-Rios, S., Serre, L., Andrieux, A., Fourest-
357 Lievin, A., Blanchoin, L., & Arnal, I. (2015). Tau co-organizes dynamic microtubule and
358 actin networks. *Scientific Reports*, 5, 1–10. <https://doi.org/10.1038/srep09964>

359 Engel, U., Zhan, Y., Long, J. B., Boyle, S. N., Ballif, B. A., Dorey, K., Gygi, S. P., Koleske, A. J.,
360 & VanVactor, D. (2014). Abelson phosphorylation of CLASP2 modulates its association
361 with microtubules and actin. *Cytoskeleton*, 71(3), 195–209.
362 <https://doi.org/10.1002/cm.21164>

363 Gell, C., Bormuth, V., Brouhard, G. J., Cohen, D. N., Diez, S., Friel, C. T., Helenius, J.,
364 Nitzsche, B., Petzold, H., Ribbe, J., Schäffer, E., Stear, J. H., Trushko, A., Varga, V.,
365 Widlund, P. O., Zanic, M., & Howard, J. (2010). Microtubule Dynamics Reconstituted In
366 Vitro and Imaged by Single-Molecule Fluorescence Microscopy. In *Methods in Cell Biology*
367 (Vol. 95, pp. 221–245). [https://doi.org/10.1016/S0091-679X\(10\)95013-9](https://doi.org/10.1016/S0091-679X(10)95013-9)

368 Henty-Ridilla, J. L., Rankova, A., Eskin, J. A., Kenny, K., & Goode, B. L. (2016). Accelerated
369 actin filament polymerization from microtubule plus ends. *Science*, 352(6288), 1004–1009.
370 <https://doi.org/10.1126/science.aaf1709>

371 Hotta, A., Kawakatsu, T., Nakatani, T., Sato, T., Matsui, C., Sukezane, T., Akagi, T., Hamaji, T.,
372 Grigoriev, I., Akhmanova, A., Takai, Y., & Mimori-Kiyosue, Y. (2010). Laminin-based cell
373 adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5α/β.
374 *Journal of Cell Biology*, 189(5), 901–907. <https://doi.org/10.1083/jcb.200910095>

375 Hyman, A., Drechsel, D., Kellogg, D., Salser, S., Sawin, K., Steffen, P., Wordeman, L., &
376 Mitchison, T. (1991). Preparation of modified tubulins. *Methods in Enzymology*, 196, 478–
377 485. [https://doi.org/10.1016/0076-6879\(91\)96041-O](https://doi.org/10.1016/0076-6879(91)96041-O)

378 Juanes, M. Angeles, Bouguenina, H., Eskin, J. A., Jaiswal, R., Badache, A., & Goode, B. L.
379 (2017). Adenomatous polyposis coli nucleates actin assembly to drive cell migration and
380 microtubule-induced focal adhesion turnover. *Journal of Cell Biology*, 216(9), 2859–2875.
381 <https://doi.org/10.1083/jcb.201702007>

382 Juanes, M Angeles, Isnardon, D., Badache, A., Brasselet, S., Mavrakis, M., & Goode, B. L.
383 (2019). The role of APC-mediated actin assembly in microtubule capture and focal
384 adhesion turnover. *The Journal of Cell Biology*, 1–21.
385 <https://doi.org/10.1083/jcb.201904165>

386 Juanes, Maria Angeles, Fees, C. P., Hoeprich, G. J., Jaiswal, R., & Goode, B. L. (2020). Report
387 EB1 Directly Regulates APC-Mediated Actin Nucleation EB1 Directly Regulates APC-
388 Mediated Actin Nucleation. *Current Biology*, 30, 1–10.
389 <https://doi.org/10.1016/j.cub.2020.08.094>

390 Lansbergen, G., Grigoriev, I., Mimori-Kiyosue, Y., Ohtsuka, T., Higa, S., Kitajima, I., Demmers,
391 J., Galjart, N., Houtsmuller, A. B., Grosfeld, F., & Akhmanova, A. (2006). CLASPs Attach
392 Microtubule Plus Ends to the Cell Cortex through a Complex with LL5β. *Developmental
393 Cell*, 11(1), 21–32. <https://doi.org/10.1016/j.devcel.2006.05.012>

394 Lawrence, E. J., Arpag, G., Norris, S. R., & Zanic, M. (2018). Human CLASP2 specifically
395 regulates microtubule catastrophe and rescue. *Molecular Biology of the Cell*, 29(10), 1168–
396 1177. <https://doi.org/10.1091/mbc.E18-01-0016>

397 Lawrence, E. J., Zanic, M., & Rice, L. M. (2020). CLASPs at a glance. *Journal of Cell Science*,
398 133(8), 1–7. <https://doi.org/10.1242/jcs.243097>

399 Leano, J. B., Rogers, S. L., & Slep, K. C. (2013). A cryptic TOG domain with a distinct
400 architecture underlies CLASP-dependent bipolar spindle formation. *Structure*, 21(6), 939–
401 950. <https://doi.org/10.1016/j.str.2013.04.018>

402 Maki, T., Grimaldi, A. D., Fuchigami, S., Kaverina, I., & Hayashi, I. (2015). CLASP2 has two

Rodgers et al. CLASP crosslinks actin to microtubules

403 distinct TOG domains that contribute differently to microtubule dynamics. *Journal of*
404 *Molecular Biology*, 427(14), 2379–2395. <https://doi.org/10.1016/j.jmb.2015.05.012>

405 Mimori-Kiyosue, Y., Grigoriev, I., Lansbergen, G., Sasaki, H., Matsui, C., Severin, F., Galjart, N.,
406 Grosveld, F., Vorobjev, I., Tsukita, S., & Akhmanova, A. (2005). CLASP1 and CLASP2
407 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. *Journal of Cell*
408 *Biology*, 168(1), 141–153. <https://doi.org/10.1083/jcb.200405094>

409 Pardee, J. D., & Spudich, J. A. (1982). Purification of Muscle Actin. In *Methods in Cell Biology*
410 (Vol. 24, Issue 1942, pp. 271–289). [https://doi.org/10.1016/S0091-679X\(08\)60661-5](https://doi.org/10.1016/S0091-679X(08)60661-5)

411 Patel, K., Nogales, E., & Heald, R. (2012). Multiple domains of human CLASP contribute to
412 microtubule dynamics and organization in vitro and in *Xenopus* egg extracts. *Cytoskeleton*,
413 69(3), 155–165. <https://doi.org/10.1002/cm.21005>

414 Pimm, M. L., & Henty-Ridilla, J. L. (2021). New twists in actin–microtubule interactions.
415 *Molecular Biology of the Cell*, 32(3), 211–217. <https://doi.org/10.1091/mcb.E19-09-0491>

416 Rochlin, M. W., Dailey, M. E., & Bridgman, P. C. (1999). Polymerizing microtubules activate
417 site-directed F-actin assembly in nerve growth cones. *Molecular Biology of the Cell*, 10(7),
418 2309–2327. <https://doi.org/10.1091/mcb.10.7.2309>

419 Rodriguez, O. C., Schaefer, A. W., Mandato, C. A., Forscher, P., Bement, W. M., & Waterman-
420 Storer, C. M. (2003). Conserved microtubule-actin interactions in cell movement and
421 morphogenesis. *Nature Cell Biology*, 5(7), 599–609. <https://doi.org/10.1038/ncb0703-599>

422 Salmon, W. C., Adams, M. C., & Waterman-Storer, C. M. (2002). Dual-wavelength fluorescent
423 speckle microscopy reveals coupling of microtubule and actin movements in migrating
424 cells. *Journal of Cell Biology*, 158(1), 31–37. <https://doi.org/10.1083/jcb.200203022>

425 Schaefer, A. W., Kabir, N., & Forscher, P. (2002). Filopodia and actin arcs guide the assembly
426 and transport of two populations of microtubules with unique dynamic parameters in
427 neuronal growth cones. *Journal of Cell Biology*, 158(1), 139–152.
428 <https://doi.org/10.1083/jcb.200203038>

429 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
430 S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V.,
431 Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for
432 biological-image analysis. *Nature Methods*, 9(7), 676–682.
433 <https://doi.org/10.1038/nmeth.2019>

434 Shekhar, S. (2017). Microfluidics-Assisted TIRF Imaging to Study Single Actin Filament
435 Dynamics. *Current Protocols in Cell Biology*, 77(1), 12.13.1-12.13.24.
436 <https://doi.org/10.1002/cpcb.31>

437 Slater, P. G., Cammarata, G. M., Samuelson, A. G., Magee, A., Hu, Y., & Lowery, L. A. (2019).
438 XMAP215 promotes microtubule-F-actin interactions to regulate growth cone microtubules
439 during axon guidance in *Xenopus laevis*. *Journal of Cell Science*, 132(9), jcs224311.
440 <https://doi.org/10.1242/jcs.224311>

441 Stehbens, S. J., Paszek, M., Pemble, H., Ettinger, A., Gierke, S., & Wittmann, T. (2014).
442 CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and
443 adhesion site turnover. *Nature Cell Biology*, 16(6), 558–570.
444 <https://doi.org/10.1038/ncb2975>

445 Strothman, C., Farmer, V., Arpağ, G., Rodgers, N., Podolski, M., Norris, S., Ohi, R., & Zanic, M.
446 (2019). Microtubule minus-end stability is dictated by the tubulin off-rate. *Journal of Cell*
447 *Biology*, 218(9), 2841–2853. <https://doi.org/10.1083/jcb.201905019>

448 Suozzi, K. C., Wu, X., & Fuchs, E. (2012). Spectraplakins: Master orchestrators of cytoskeletal
449 dynamics. *Journal of Cell Biology*, 197(4), 465–475. <https://doi.org/10.1083/jcb.201112034>

450 Tsvetkov, A. S., Samsonov, A., Akhmanova, A., Galjart, N., & Popov, S. V. (2007). Microtubule-
451 binding proteins CLASP1 and CLASP2 interact with actin filaments. *Cell Motility and the*
452 *Cytoskeleton*, 64(7), 519–530. <https://doi.org/10.1002/cm.20201>

453 Wasilko, D. J., Edward Lee, S., Stutzman-Engwall, K. J., Reitz, B. A., Emmons, T. L., Mathis, K.

Rodgers et al. CLASP crosslinks actin to microtubules

454 J., Bienkowski, M. J., Tomasselli, A. G., & David Fischer, H. (2009). The titerless infected-
455 cells preservation and scale-up (TIPS) method for large-scale production of NO-sensitive
456 human soluble guanylate cyclase (sGC) from insect cells infected with recombinant
457 baculovirus. *Protein Expression and Purification*, 65(2), 122–132.
458 <https://doi.org/10.1016/j.pep.2009.01.002>

459 Wasilko, D., & Lee, S. E. (2006). TIPS: Titerless Infected-Cells Preservation and Scale-Up.
460 *BioProcessing Journal*, 5(3), 29–32. <https://doi.org/10.12665/J53.WasilkoLee>

461 Waterman-Storer, C. M., & Salmon, E. (1999). Positive feedback interactions between
462 microtubule and actin dynamics during cell motility. *Current Opinion in Cell Biology*, 11(1),
463 61–67. [https://doi.org/10.1016/s0955-0674\(99\)80008-8](https://doi.org/10.1016/s0955-0674(99)80008-8)

464 Waterman-Storer, C. M., & Salmon, E. D. (1997). Actomyosin-based retrograde flow of
465 microtubules in the lamella of migrating epithelial cells influences microtubule dynamic
466 instability and turnover and is associated with microtubule breakage and treadmilling.
467 *Journal of Cell Biology*, 139(2), 417–434. <https://doi.org/10.1083/jcb.139.2.417>

468 Wen, Y., Eng, C. H., Schmoranzer, J., Cabrera-Poch, N., Morris, E. J. S., Chen, M., Wallar, B.
469 J., Alberts, A. S., & Gundersen, G. G. (2004). EB1 and APC bind to mDia to stabilize
470 microtubules downstream of Rho and promote cell migration. *Nature Cell Biology*, 6(9),
471 820–830. <https://doi.org/10.1038/ncb1160>

472 Wu, X., Kodama, A., & Fuchs, E. (2008). ACF7 Regulates Cytoskeletal-Focal Adhesion
473 Dynamics and Migration and Has ATPase Activity. *Cell*, 135(1), 137–148.
474 <https://doi.org/10.1016/j.cell.2008.07.045>

475 Wu, Y.-F. O., Miller, R. A., Alberico, E. O., Nelson, N. T., Jonasson, E. M., & Goodson, H. V.
476 (2021). Characterizing interactions between the microtubule-binding protein CLIP-170 and
477 F-actin. *BioRxiv*. <https://doi.org/https://doi.org/10.1101/2021.04.27.441644>

478 Zhu, X., Efimova, N., Arnette, C., Hanks, S. K., & Kaverina, I. (2016). Podosome dynamics and
479 location in vascular smooth muscle cells require CLASP-dependent microtubule bending.
480 *Cytoskeleton*, 73(6), 300–315. <https://doi.org/10.1002/cm.21302>

481

482

483 **MATERIALS AND METHODS**

484

485 DNA constructs

486 The cDNA encoding full-length human CLASP2a was purchased from Dharmacaon
487 (Accession: BC140778.1) and subcloned into: (i) a pFastBacHT vector (Invitrogen) containing
488 an N-terminal 6xHis-tag and; (ii) a modified pHAT vector containing an N-terminal 6xHis tag and
489 a C-terminal eGFP and StrepII tag (a gift from S. Bechstedt and G. Brouhard, McGill University,
490 Canada). The cDNA encoding His-EGFP-L-TOG2-S in a pRSETa vector was a gift from E.
491 Grishchuk (University of Pennsylvania, Philadelphia, PA, USA).

492

493 Protein biochemistry

494

495 *His-CLASP2a*

496 His-CLASP2a was expressed in baculovirus-infected Sf9 insect cells using the Bac-to-
497 Bac system (Invitrogen). After the first amplification, baculovirus-infected insect cells (BIIIC)
498 stocks were used to infect Sf9 cells at a density of 1×10^6 viable cells/ml at a ratio of 10–4
499 BIIIC:total culture volume (D. J. Wasilko et al., 2009; D. Wasilko & Lee, 2006). Cells were
500 harvested 5 days after infection. The cell pellets were lysed by one freeze–thaw cycle and
501 Dounce homogenizing in lysis buffer containing 50 mM PIPES (pH 6.8), 120 mM KCl, 2 mM
502 MgCl₂, 50 mM L-glutamate, 50 mM L-arginine, 10% glycerol (v/v), 0.1% (v/v) Tween-20, 1 mM
503 DTT and supplemented with protease inhibitors. Genomic DNA was sheared by passing the
504 lysate through an 18-gauge needle. The crude lysates were clarified by centrifugation for 20 min
505 at 4°C and 35,000 rpm in a Beckman L90K Optima and 50.2 Ti rotor. Clarified lysates were
506 applied to a HisTrapHP column (GE Lifesciences) according to the manufacturer's protocol. His-
507 CLASP2a protein was eluted in 50 mM PIPES (pH 6.8), 400 mM KCl, 5% (v/v) glycerol, 0.1%
508 (v/v) Tween-20, 2 mM MgCl₂, 1 mM DTT, 50 mM L-glutamate, 50 mM L-arginine, and a linear
509 gradient of 50 mM - 300 mM imidazole. His-CLASP2a was then buffer exchanged into CLASP
510 storage buffer containing 25 mM PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] (pH 6.8),
511 150 mM KCl, 5% (v/v) glycerol, 0.1% (v/v) Tween-20, 50 mM L-glutamate, 50 mM L-arginine,
512 and 1 mM DTT using an Amicon centrifugal filter.

513

514 *His-CLASP2a-EGFP-Strep*

515 His-CLASP2a-EGFP-Strep was expressed in Sf9 insect cells and purified as described
516 above with the following modifications. Cell pellets were lysed in buffer containing 50 mM Tris
517 (pH 7.5), 100 mM NaCl, 5% Glycerol, 0.1% Tween-20, 1 mM DTT, supplemented with protease
518 inhibitors. His-CLASP2a-EGFP-Strep was eluted from the HisTrap column with 50 mM HEPES
519 pH 7.5, 150 mM NaCl, 5% glycerol, 0.1% Tween 20, 2 mM MgCl₂, 1 mM DTT, 100 mM L-
520 Glut/L-Arg, and a gradient of 50 - 500 mM imidazole. His-CLASP2a-EGFP-Strep protein was
521 then further purified by size exclusion chromatography using a Superdex 200 Increase 10/300
522 GL column (Cytiva) in CLASP storage buffer.

523

524 *His-EGFP-L-TOG2-S*

525 His-EGFP-L-TOG2-S was expressed in BL21(DE3) E. coli cells. Expression was
526 induced with 0.2 mM IPTG at 18°C for 16 h. Cells were lysed for 1 hr at 4°C in 50 mM HEPES
527 (pH 7.5), 300 mM NaCl, 2 mM MgCl₂, 5% (v/v) glycerol, 0.1% (v/v) Tween-20, 1 mM DTT and
528 40 mM imidazole and supplemented with 1 mg/ml lysozyme, 10 mg/ml PMSF and EDTA-free
529 protease inhibitors (Roche). The crude lysate was sonicated on ice and then clarified by
530 centrifugation for 30 min at 4°C and 35,000 rpm in a Beckman L90K Optima and 50.2 Ti rotor.
531 Clarified lysates were applied to a HisTrapHP column (Cytiva) according to the manufacturer's
532 protocol. His- EGFP-L-TOG2-S protein was eluted with 50 mM HEPES (pH 7.5), 500 mM NaCl,
533 2 mM MgCl₂, 5% (v/v) glycerol, 0.1% (v/v) Tween-20 and 1 mM DTT and linear gradient of 40

Rodgers et al. CLASP crosslinks actin to microtubules

534 mM - 500 mM imidazole. His-EGFP-L-TOG2-S protein was then further purified by size
535 exclusion chromatography using a Superdex 200 Increase 10/300 GL column (Cytiva) in
536 CLASP storage buffer.

537
538 All proteins were snap frozen in single-use aliquots and protein purity was assessed by 10%
539 SDS-PAGE (BioRad Laboratories) and stained with Coomassie Brilliant Blue (Supplemental
540 Figure S1).

541
542 *Tubulin purification and labeling*

543 Tubulin was purified from bovine brains using the standard protocol (Castoldi & Popov,
544 2003). Briefly, tubulin was purified by cycles of polymerization and depolymerization using the
545 high-molarity PIPES buffer method (Castoldi & Popov, 2003). Tubulin was labeled with Alexa
546 Fluor 555 and 647 dyes (Invitrogen), and biotin (Sigma-Aldrich) following a published protocol
547 (Hyman et al., 1991).

548
549 *Actin purification and labeling*

550 Actin was purified from chicken breast using the standard protocol (Pardee & Spudich,
551 1982). First, the chicken breast was made into a muscle acetone powder and then further
552 purified through cycles of polymerization and depolymerization (Pardee & Spudich, 1982). Actin
553 was labeled with Alexa Fluor 647 (Invitrogen) following a published protocol (Shekhar, 2017).
554 Before experiments, actin was left on ice overnight and pre-clarified by spinning actin at 450,000
555 x g for 20 minutes at 4C in a TL Optima ultracentrifuge. Actin was stored at 4C for up to 3
556 weeks.

557
558 Co-sedimentation experiments

559
560 *High-speed co-sedimentation experiments*

561 High-speed co-sedimentation experiments with CLASP2 α were adapted from published
562 work (Engel et al., 2014). In brief, F-actin was prepared by first pre-clarifying G-actin
563 (Cytoskeleton, Inc.) by spinning the sample at 13,300 rpm at 4C for 15 minutes. Supernatant
564 was collected and added to an actin polymerization buffer (50 mM KCl, 2 mM MgCl₂, and 1 mM
565 ATP) and was incubated for 1 hour at room temperature to obtain F-actin. Either 434 nM His-
566 CLASP2 α or CLASP storage buffer and 21 μ M F-actin, were incubated at 37C for 30 minutes in
567 a 100 μ L reaction buffer including 100 mM NaCl, 25 mM HEPES pH 7.25, and 10 mM MgCl₂.
568 Then samples were ultracentrifuged (TL-100, Beckman Coulter) at 160,000 x g for 20 minutes
569 at 4C. Then, 50 μ L of the top supernatant was collected and 13 μ L of 5X SDS Loading Dye was
570 added. The pellet was resuspended in 63 μ L of 1X SDS Loading Dye. 2 μ L of 1 mg/mL bovine
571 serum albumin (BSA, Boston BioProducts) was added to 38 μ L of each top supernatant and
572 pellet sample, boiled at 95C for 5 minutes, and then loaded onto a 10% SDS-PAGE gel for
573 electrophoresis. Subsequently, gels were stained with Coomassie Brilliant Blue, de-stained
574 overnight, and imaged for quantification.

575
576 *Low-speed co-sedimentation experiments*

577 For low-speed co-sedimentation experiments, phalloidin-stabilized F-actin was prepared
578 by incubating 20 μ M G-actin (Cytoskeleton, Inc.) with equimolar phalloidin, 50 mM KCl, and
579 MRB80 (80 mM PIPES pH 6.8, 4 mM MgCl₂, and 1 mM EDTA) on ice for 5 minutes, followed by
580 1 hour at room temperature. Solutions of 434 nM His-CLASP2 α or 1 μ M α -actinin (Cytoskeleton,
581 Inc.) were incubated with and without 15 μ M phalloidin-stabilized F-actin for 20 minutes at room
582 temperature. Samples were subsequently centrifuged at 10,000 x g (TL-100, Beckman Coulter
583 or accuSpin Micro 17R) for 20 minutes at 25C. Then, 50 μ L of the top supernatant was
584 collected, to avoid disturbing the pellet sample, and 13 μ L of 5X SDS Loading Dye was added

585 to the supernatant sample. The pellet was resuspended in 63 μ L of 1X SDS Loading Dye. 2 μ L
586 of 1 mg/mL BSA (Boston BioProducts) was added to 38 μ L of each top supernatant and pellet
587 sample, boiled at 95C for 5 minutes, and then loaded onto a 10% SDS-PAGE gel for
588 electrophoresis. Subsequently, gels were stained with Coomassie Brilliant Blue, de-stained
589 overnight, and imaged for quantification.

590

591 In vitro reconstitution assay conditions and imaging

592

593 *Chamber preparation*

594 Microscope chambers were constructed as previously described (Gell et al., 2010;
595 Strothman et al., 2019). Channels were constructed by sandwiching 22 x 22 mm and 18 x 18
596 mm silanized glass coverslips together between three thin strips of parafilm. A heat block was
597 used to melt the parafilm and stick the coverslips together. The surface was functionalized by
598 flowing in 25 – 100 μ g/ml NeutrAvidin (Thermo Scientific) for 10 minutes, followed by blocking
599 with 1% Pluronic F127 for 30 minutes. Chambers were washed in between these steps using
600 MRB80 or BRB80 (80 mM PIPES, 1 mM EGTA, and 1 mM MgCl₂, pH 6.8).

601

602 *Imaging*

603 Imaging was performed using total internal reflection fluorescence (TIRF) microscopy on
604 a Nikon Eclipse Ti microscope with a 100x/1.49 n.a. TIRF objective, equipped with Andor iXon
605 Ultra EM-CCD camera, 488-, 561-, and 640-nm solid state lasers (Nikon Lu-NA), Finger Lakes
606 Instruments HS-625 high-speed emission filter wheel, and standard filter sets. Laser exposure
607 time was 100 ms for all experiments. Experiments were performed at 35C using a Tokai Hit
608 objective heater. Images were acquired using NIS-Elements (Nikon).

609

610 *F-actin binding along CLASP2-coated microtubule experiments*

611 Taxol microtubules were prepared by polymerizing 28 μ M tubulin (16% biotinylated and
612 5% Alexa647-labeled) with a microtubule polymerization mix (MRB80, 5% DMSO, 4 mM MgCl₂,
613 and 1 mM GTP). Reaction was left on ice for 5 minutes, to remove any tubulin oligomers in the
614 stock, and then incubated for 1 hour at 37C. Then, microtubules were diluted 56 times into 10
615 μ M Taxol (Tocris) in MRB80 (MRB80T) while in the heat block. Microtubules were then spun
616 down in a Beckman Airfuge IM-13 at 20 psi for 5 minutes at room temperature. Pellet was
617 resuspended in 100 μ L of MRB80T. Microtubules were stored in the dark at room temperature
618 and used within 1 week. Phalloidin-stabilized F-actin was prepared by polymerizing 3.7 μ M
619 unlabeled G-actin, stored in 2 mM Tris-HCl pH 8.0, 0.2 mM ATP, 0.5 mM DTT, 0.1 mM CaCl₂,
620 and 1 mM NaN₃, with 50 mM KCl, 1 mM MgCl₂, and 1 mM ATP for 1 hour at room temperature.
621 Then, equimolar TRITC-phalloidin (Sigma-Aldrich) was added to the reaction mix and incubated
622 in the dark for 15 minutes at room temperature. F-actin was then spun down in an airfuge at 27
623 psi for 10 minutes. Pellet was resuspended in MRB80, 0.2 mM ATP, and 0.5 mM DTT. F-actin
624 was stored in 4C and used for 1 week. For control experiments with and without phalloidin
625 stabilization, F-actin was prepared similarly as above, but was polymerized with 20% labeled
626 A647 G-actin for an hour at room temperature, then the reaction was split into two, where one
627 was stabilized with equimolar unlabeled phalloidin (Sigma-Aldrich), and the other half used in
628 parallel.

629

630 Taxol microtubules were added to NeutrAvidin-functional channels to bind to the surface.
631 Once bound after a few minutes, channel was washed with MRB80T and then washed with
632 imaging buffer (MRB80T, 0.2 mM ATP, 40 μ g/mL glucose oxidase, 40 mM glucose, 16 μ g/mL
633 catalase, 0.08 mg/mL casein, and 10 mM DTT). Then, reaction mixes with imaging buffer, and
634 either 100 nM CLASP2 α -GFP or 100 nM L-TOG2-S, and 6.5 μ M TRITC-phalloidin-stabilized F-
635 actin were added to the imaging channel while simultaneously imaging. Control experiments

636 were performed with CLASP storage buffer. Control experiments with and without phalloidin
637 stabilization were performed with 1 μ M F-actin. All solutions were supplemented with 20 μ M
638 Taxol.

639
640 For the actin filament and microtubule co-localization experiments, CLASP2 α -GFP or
641 GFP-L-TOG2-S reaction mixes with F-actin were added to the channel and then images of all
642 three channels (488- for CLASP protein constructs, 561- for TRITC-phalloidin F-actin, and 640-
643 for 5% A647-labeled microtubules) were acquired every 3 seconds for 10 minutes. Several
644 images were taken throughout the channel after the 10-minute incubation.

645
646 For F-actin accumulation experiments, a three-color image to visualize the CLASP2 α -
647 GFP (488-), TRITC-phalloidin F-actin (561-), and microtubules (640-) was taken before adding
648 the F-actin-CLASP reaction mix as a control for fluorescence bleed through. Then, fast imaging
649 at 5 fps for the 561- channel was started while flowing in the reaction mix to capture the initial F-
650 actin landing events. After 5 minutes, another three-color image to visualize the CLASP (488-),
651 F-actin (561-), and microtubule (640-) channels was taken and then 488- and 561- channels
652 were imaged every 3 seconds for 35 minutes. Once done, a final three-color image was taken.
653 Experiments were performed in triplicate. Control experiments with and without phalloidin were
654 done in duplicate.

655
656 *Actin dynamics on CLASP2-coated microtubule experiments*

657 Taxol microtubules were prepared as described above, however were labeled with 16%
658 biotin and 5% Alexa555 tubulin and stored in BRB80T (BRB80, 10 μ M Taxol (Tocris)). After
659 chamber preparation, Taxol microtubules were added to bind to the surface and then were
660 washed out with BRB80T. Before adding the reaction mix, the chamber was washed with
661 imaging buffer (BRB80, 0.1% methylcellulose, 40 μ g/ml glucose oxidase, 40 mM di-glucose, 18
662 μ g/ml catalase, 0.8 mg/ml casein, 10 mM DTT, and 0.2 mM ATP). Then, either 100 nM
663 CLASP2 α -GFP or CLASP2 α -GFP storage buffer in imaging buffer was added to the chamber
664 and incubated for 5 minutes to allow for full coating of Taxol microtubules. Then a reaction mix
665 with 250 nM, 20% Alexa647 labeled G-actin and either 100 nM CLASP2 α -GFP or CLASP2 α -
666 GFP storage buffer were added. Three-color imaging every 5 seconds for 30 minutes
667 immediately followed. All solutions were supplemented with 20 μ M Taxol. Experiments were
668 done in triplicate.

669
670 Cells

671
672 A7r5 rat smooth muscle cells (ATCC # CRL-1444) were grown in low-glucose (1000
673 mg/l) Dulbecco's modified Eagle's medium (DMEM) without Phenol Red, supplemented with
674 10% fetal bovine serum at 37°C and 5% CO₂. Cells were plated on glass coverslips coated with
675 10 μ g/ml fibronectin 24 hours prior to experiments.

676
677 *siRNA sequences, CLASP2 expression rescue, and transfection*

678 Two different combinations of mixed siRNA oligonucleotides against CLASP1 and
679 CLASP2 were used. Combination 1 (custom design, Sigma) included the CLASP1-targeted
680 siRNA sequence 5'-CGGGAUUGCAUCUUUGAAA-3' and the CLASP2-targeted siRNA
681 sequence 5'- CUGAUAGUGUCUGUUGGUU-3'. Combination 2 (Mimori-Kiyosue et al., 2005)
682 included the CLASP1-targeted siRNA sequence 5'-CCUACUAAAUGUUCUGACC-3' and the
683 CLASP2-targeted siRNA sequence 5'-CUGUAUGUACCCAGAAUCU-3'. Non-targeting siRNA
684 (Dharmacon) was used for controls. For siRNA oligonucleotide transfection, HiPerFect (Qiagen)
685 was used according to the manufacturer's protocol. Experiments were conducted 72 hours after
686 siRNA transfection, as at this time minimal protein levels were detected.

Rodgers et al. CLASP crosslinks actin to microtubules

687 For CLASP2 expression rescues, a GFP-labeled CLASP2 mutant using alternative
688 codons and therefore non-silenceable by anti-CLASP2 siRNA from combination 2 (Mimori-
689 Kiyosue et al., 2005) was transfected into depleted cells at 48 hours after siRNA transfection.
690 For DNA transfection, Fugene6 (Roche) was used according to the manufacturer's protocol.
691 Cells were processed for imaging after additional 24 hours to meet the 48-hour depletion
692 optimum.

693

694 *Cell labeling, imaging, and image processing*

695 For actin imaging, cells on coverslips were fixed in 4% paraformaldehyde plus 0.3%
696 Triton X-100 in cytoskeleton buffer (10 mM MES, 150 mM NaCl, 5 mM EGTA, 5 mM glucose
697 and 5 mM MgCl₂, pH 6.1) for 10 minutes. For co-staining with tubulin, 0.1% glutaraldehyde was
698 added into the fixative solution. The actin cytoskeleton was visualized by phalloidin conjugated
699 to Alexa Fluor 488 (Invitrogen, Molecular Probes). Tubulin was immunostained using anti-alpha-
700 tubulin monoclonal antibodies DM1a (Sigma-Aldrich) and Alexa 568-conjugated goat anti-
701 mouse IgG antibodies (Invitrogen, Molecular Probes) as secondary antibodies. CLASPs were
702 immunostained by non-paralog-specific rabbit polyclonal antibodies VU-83 (pan-CLASP
703 antibodies) (Efimov et al., 2007). Nuclei were visualized by DAPI (ThermoFisher). Staining was
704 performed at room temperature. After washing, samples were mounted into ProLong® Gold
705 Antifade Reagent (Invitrogen, Molecular Probes) on glass slides and stored at -20°C.

706

707 Wide-field fluorescence imaging (Figure 4 A-D, Supplemental Figure 3 A-C) was
708 performed using a Nikon 80i microscope with a CFI APO 60× oil lens, NA 1.4 and CoolSnap ES
709 CCD camera (Photometrics). Laser-scanning confocal imaging was performed using Nikon A1r
710 based on a Ti-E inverted microscope with SR Apo TIRF 100× NA1.49 oil lens run by NIS
711 Elements C software (Nikon, Tokyo, Japan). Laser scanning confocal imaging (Figure 4 E-G)
712 was performed using a Nikon A1r with a 100x lens NA 4.5. Maximum intensity projection over
713 the whole cell is shown in overview images. Single confocal slices processed through the
714 emboss filter are shown in insets. In all cell images, each fluorescent channel was contrasted by
715 whole-image histogram stretching. In overview images in Figure 4 (E-G), the tubulin channel
716 was gamma-adjusted to highlight microtubules at the cell periphery.

717

718 *Phenotype verification*

719 Actin channel images (as in Figure 4A-C) were separated and coded for double-blind
720 phenotype verification. Three researchers independently sorted images to detect actin fiber
721 disturbance. These blinded analyses resulted in >84% of correct image designation into NT
722 control and CLASP-depleted phenotypes.

723

724 *CLASP Western Blotting*

725 Western blotting was performed using the Protein Electrophoresis and Blotting System
726 (Bio-Rad). Briefly, A7r5 cells were transfected with two different combinations of mixed siRNA
727 oligonucleotides against CLASP1 and CLASP2 using TransIT-X2 (Mirus). After 72 h, the cells
728 were collected, lysed and resuspended in Laemmli Sample Buffer (Bio-Rad). 20 µg total protein
729 for each condition was resolved on 12% SDS-PAGE gels and transferred to nitrocellulose
730 membranes (GE Healthcare Life Sciences) at 350 mA for 3 h for blotting. The membranes were
731 then blocked with 5% nonfat dried milk (Sigma-Aldrich) for 1 h and incubated overnight with
732 primary antibodies: anti-rat CLASP1 (KT 67, Absea), anti-rat CLASP2 (KT69, Absea) and anti-
733 mouse GAPDH (Santa Cruz). IRDye 700 or 800 (LI-COR Biosciences) were used as secondary
734 antibodies. The membranes were imaged on an Odyssey Infrared Imaging system (LI-COR
735 Biosciences).

736

737 Image Analysis

738

739 Images were processed using the Fiji (Fiji Is Just another ImageJ) image processing
740 package (Schindelin et al., 2012).

741

742 *Protein Gel Densitometry*

743 Gels were quantified using the gel ImageJ plugin. Intensities were recorded and
744 normalized to the loading control in Microsoft Excel. Normalized bands were then summed to
745 determine percentage of protein in supernatants and pellets. Positive and negative controls
746 were done with 2 μ M α -actinin and 2 μ M BSA, respectively. Plots were produced in GraphPad
747 Prism.

748

749 *Colocalization using Pearson Correlation Coefficient (PCC)*

750 Three, three-color images of 488 nm- (Control, CLASP2 α -GFP, or GFP-L-TOG2-S), 561
751 nm- (TRITC-phalloidin F-actin), and 640 nm- (5% A647-labeled microtubules) channels were
752 cropped to 335 x 170 pixel size (~ 54 μ m x 27 μ m). Then, the PCC was measured using the
753 ImageJ plugin, JACoP (Just Another Co-localization Plugin) for microtubules versus CLASP and
754 microtubules versus F-actin (Bolte & Cordelières, 2006; Dunn et al., 2011). Individual PCC
755 values with the standard deviation were plotted in GraphPad Prism. Kruskal-Wallis one-way
756 ANOVA with multiple comparisons test was used to test for significance in GraphPad Prism.
757 Experiments were done in triplicate.

758

759 *Average Actin Intensity on CLASP2-coated Microtubules*

760 All microscopy movies were first drift-corrected using the Image Stabilizer plugin for
761 ImageJ. To avoid heterogeneous illumination occurring in the TIRF field, all the microscope
762 images were cropped (~300 x 512-pixel size) to eliminate out of focus or dimmer microtubules.
763 For F-actin landing experiments, the microtubule channel image taken between the first 5-
764 minute movie and the second 35-minute movie was used to determine the microtubule region.
765 For actin polymerization experiments, the last microtubule image was used. This image was
766 thresholded, using the Auto MaxEntropy method, and recorded. Then a selection was created
767 around the thresholded microtubule region and overlayed on the F-actin channel. A ROI was
768 created, and the average F-actin intensity was measured using the Time Series Analyzer V3
769 ImageJ plugin. F-actin intensity was normalized to the maximum intensity and fit to the following
770 intensity equation,

$$771 \quad I = A(1 - e^{-\frac{t}{\tau}}) \quad (1)$$

772

773 where I is the F-actin intensity, A is the maximum F-actin intensity, t is time, and τ is the half
774 time in the MATLAB Curve Fitting Tool (MathWorks, Inc.). Results were plotted in MATLAB
775 (MathWorks, Inc.).

776

777 *F-actin Landing Step Analysis*

778 For kymograph production, straight or segmented lines were drawn along microtubules
779 and then overlayed on the F-actin channel. Straight line kymographs were produced using a
780 custom ImageJ plugin, and segmented line kymographs (used occasionally for curvy
781 microtubules), were produced using the KymographBuilder ImageJ plugin. Kymographs were
782 made for the first 5-minute movies and the second 35-minute movie along the same
783 microtubule. Since F-actin landing events appear as steps, we used the open-source, vbFRET
784 graphical user interface (gui) to measure the number of “steps” (Bronson et al., 2009). This
785 software was created to analyze single-molecule FRET data using hidden Markov modeling and
786 finds the most probable fit using the variational Bayesian expectation maximization algorithm
787 (Bronson et al., 2009). For analysis, kymographs were loaded into a custom MATLAB function

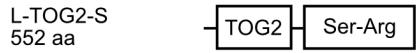
788 that extracts vertical line scans of a designated width (3-pixels) and intensity values were
789 normalized to 90% of the maximum intensity. This normalization was recommended when
790 analyzing non-single molecule FRET data using the vbFRET software (Bronson et al., 2009). To
791 use this software, the FRET efficiency, which is defined as
792

$$793 \quad FRET \text{ efficiency} = \frac{I_A}{I_A + I_D}, \quad (2)$$

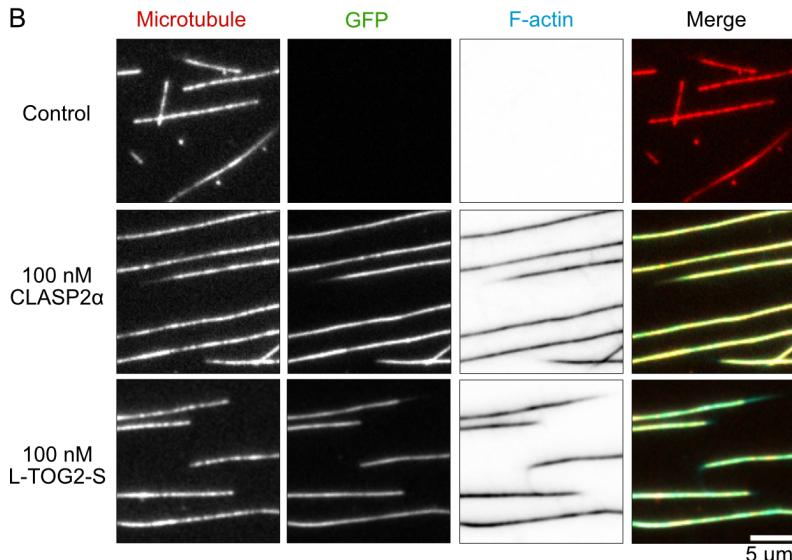
794
795 was set equal to the F-actin intensity or donor intensity (I_D), by defining the acceptor intensity
796 (I_A) as,

$$797 \quad I_A = \frac{I_D^2}{1 - I_D}. \quad (3)$$

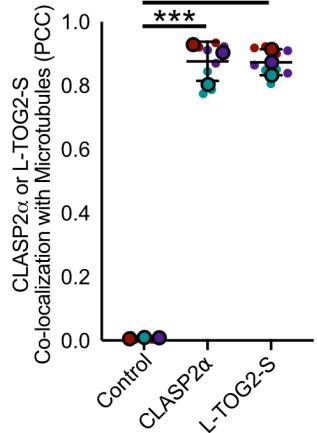
798
799 Line scans were selected based on the center-most line scan and then additional line scans
800 were selected in intervals of 15 pixels or 2.5 microns along the microtubule lattice, as permitted
801 by individual microtubule lengths. Selected line scans were then loaded into the vbFRET gui for
802 stepping analysis (Bronson et al., 2009). The number of possible states was set to a minimum
803 of 1 and maximum of 20, and the number of fitting attempts per trace was set to 25. The
804 vbFRET session and idealized traces were saved, and steps were extracted using custom
805 MATLAB codes. Steps were measured after F-actin was visible in solution (after 30-40
806 seconds). Due to overfitting of noise, step fits were filtered, with steps of sizes smaller than the
807 3 standard deviations below the mean step size removed. F-actin landing events followed by F-
808 actin unbinding (negative steps) were additionally removed to consider the maximum number of
809 F-actin accumulating on a microtubule segment. Line traces were analyzed separately for 5-
810 minute and 35-minute movies and reported results are the summation of the two movies to
811 ensure all F-actin landing events are measured. Example F-actin intensity trace in Figure 2, with
812 vbFRET generated fit, was produced in MATLAB (MathWorks, Inc.) and F-actin landing event
813 numbers were plotted in GraphPad Prism.

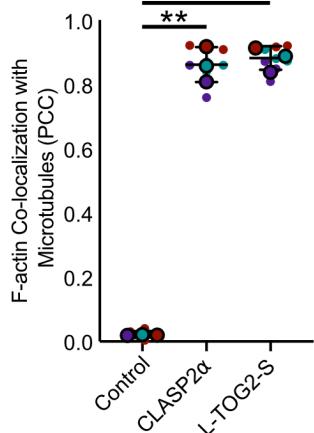

814

815 *F-actin Bridge Length*

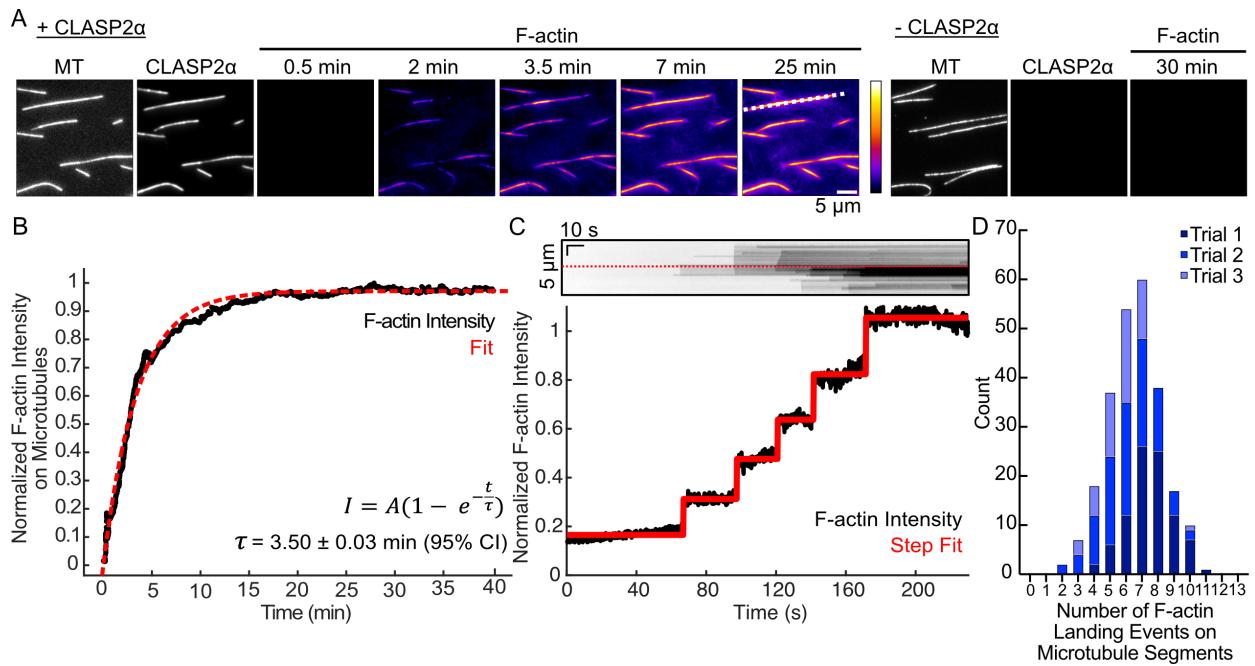

816 After 30 minutes, F-actin bridge lengths were measured by drawing segmented lines
817 along F-actin in ImageJ. Error bars are the standard deviation of the mean F-actin bridge
818 lengths for each repeat. Analysis and plots were done in Microsoft Excel and GraphPad Prism.

FIGURES

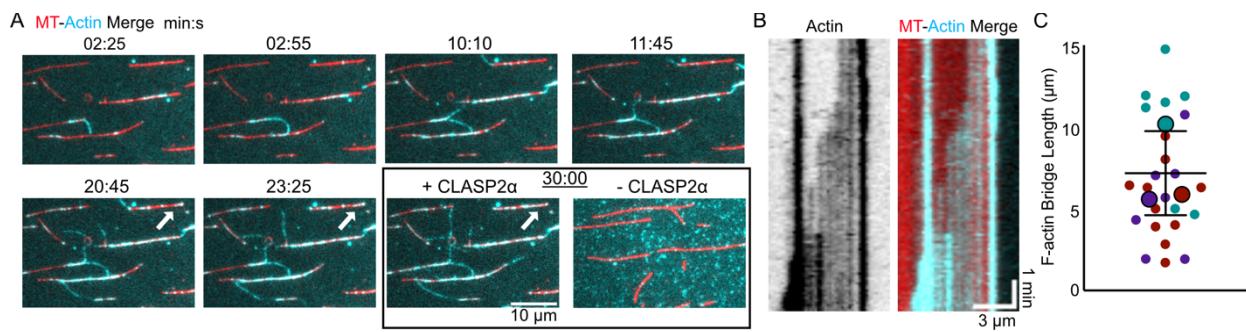

A


B

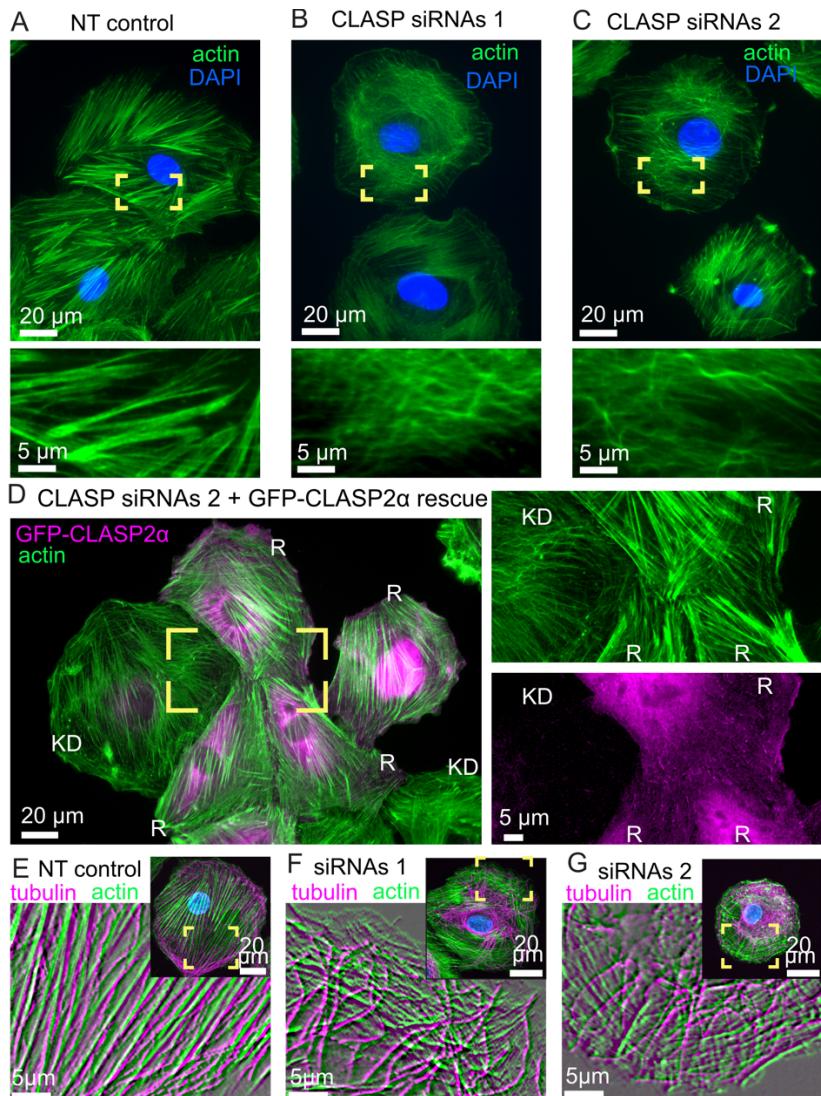
C



D


Figure 1. Human CLASP2 α directly crosslinks actin filaments to microtubules. A) Schematic of the domain structure of human CLASP2 α and minimal construct, L-TOG2-S. B) Representative images of Taxol-stabilized microtubules incubated for 10 minutes with storage buffer, 100 nM CLASP2 α -GFP, or 100 nM GFP-L-TOG2-S and 6.5 μ M TRITC-Phalloidin F-actin. C) Quantification of co-localization between either CLASP2 α or L-TOG2-S with microtubules using the Pearson correlation coefficient (PCC). D) Quantification of co-localization between actin filaments and microtubules, using the PCC. Small data points are individual PCC measurements and large data points are the mean PCC for three independent experimental days, represented by color. Error bars are the standard deviation. Kruskal-Wallis test multiple comparisons, ** $p < 0.01$ and *** $p < 0.001$. Comparisons between CLASP2 α and L-TOG2-S are ns, $p > 0.05$.

Rodgers et al. CLASP crosslinks actin to microtubules


Figure 2. CLASP2 mediates sequential binding of actin filaments along the microtubule lattice. A) Example time-lapse TIRFM images of Taxol-stabilized microtubules, in the presence of 100 nM CLASP2 α -GFP or CLASP2 α storage buffer, and addition of 6.5 μ M TRITC-phalloidin-stabilized F-actin. White dotted line corresponds to the kymograph in Panel C. B) Example normalized actin filament intensity in microtubule areas over time for the images in panel A. Red dotted line represents the fit to the intensity over time equation. C) Top: kymograph of the F-actin channel for an example microtubule (denoted by a dotted orange line in Panel A) for the first 5 minutes. Red dotted line corresponds to the intensity line scan. Bottom: 3-pixel intensity line scan for the F-actin channel in the kymograph. Red line represents the vbFRET stepping algorithm fit to count steps of F-actin landing events (see Methods). D) Stacked histogram of the total number of F-actin landing events on microtubule segments. Experiments done in triplicate (N = 91 (Trial 1), 99 (Trial 2), and 54 (Trial 3) microtubule regions analyzed).

Rodgers et al. CLASP crosslinks actin to microtubules

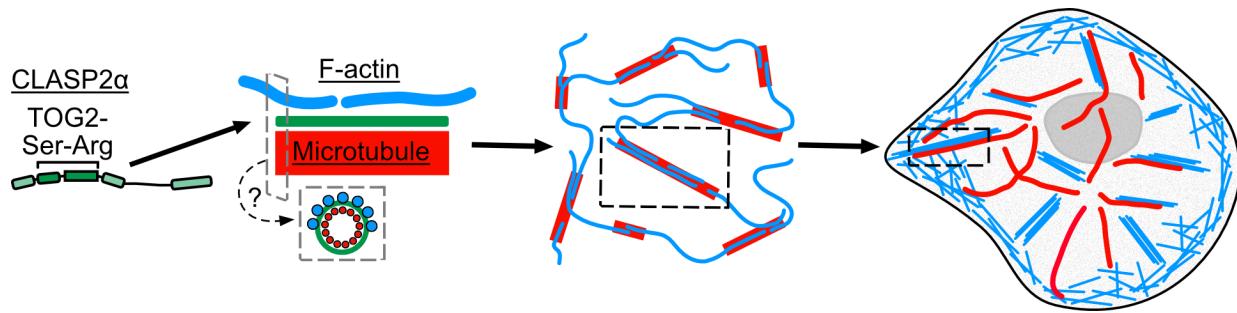


Figure 3. CLASP2 facilitates dynamic actin filament organization templated by the microtubule network. A) Example time-lapse images demonstrating dynamic F-actin (cyan) connecting multiple microtubules (red). White arrow highlights an example of growing F-actin shown by a kymograph in Panel B. Last image represents the buffer control (- CLASP2 α) after 30 minutes. B) Example kymograph demonstrating growing F-actin along a microtubule lattice (left: actin channel alone, right: merged image). C) Quantification of the individual lengths of F-actin connections between microtubules. Smaller data points are the individual measurements and larger data points are the mean lengths for each repeat (N = 12, 7, and 7). The error bar is the standard deviation of the mean lengths.

Rodgers et al. CLASP crosslinks actin to microtubules

Figure 4. CLASPs are essential for correct stress fiber organization in vascular smooth muscle cells. A) Prominent actin stress fibers in cells treated with a control (non-targeting, NT) siRNA. B-C) Disorganized actin mesh in cells treated with two alternative combinations of siRNA oligos. Phalloidin-stained actin, green. DAPI, blue. Yellow boxes are enlarged below to highlight details. The phenotypes have been vetted by a double-blinded evaluation (see Methods). D) Cells treated with siRNA combination 2 and transfected with GFP-CLASP2 (pseudo-colored magenta) resistant to this siRNA. Separate channels from the yellow box are enlarged at the right. Actin organization in GFP-CLASP2-rescued cells (R) is similar to control (as in Panel A), while in a non-expressing cell (KD) it is similar to knockdown phenotype (as in Panel C). Phalloidin-stained actin, green. GFP-CLASP2, magenta. E-F) Actin and microtubules in cells treated with a control (non-targeting, NT) siRNA (E) or with siRNA combinations 1 (F) or 2 (G). Phalloidin-stained actin, green. Tubulin, magenta. DAPI, blue. Yellow boxes in overview images are enlarged in insets. Inset images are processed through the emboss filter for exclusive visualization of fibers and illustration of their alignment with microtubules, which is diminished in (F, G) as compared to (E). Scale bars, 20 μm in overviews and 5 μm in insets. All panels show representative images out of more than 45 cells per condition over 3 or more repeated experiments.

Figure 5. CLASP2 facilitates dynamic actin filament organization along the microtubule lattice. Microtubules are in red, actin is in blue, and CLASP2 is green throughout figure. Gray dashed boxes represent cross-sectional view of a potential model for F-actin organization along microtubules coated with CLASP2α, where F-actin are binding around the microtubule shaft. Black dashed boxes are highlighted zoom ins representing instances of co-organization of actin filaments and microtubules observed *in vitro* and in cells.