

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1 **Petra C. Fay^{1†}, Najith Wijesiriwardana^{1,2†}, Henry Munyanduki¹, Beatriz Sanz-Bernardo¹,**
2 **Isabel Lewis¹, Ismar R. Haga¹, Katy Moffat¹, Arnoud H. M. van Vliet², Jayne Hope³, Simon**
3 **Graham¹, and Philippa M. Beard^{1*}**

4 ¹ The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK

5 ² School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL,
6 UK

7 ³ The Roslin Institute, Easter Bush, University of Edinburgh, EH25 9RG, UK

8

9 [†] These authors contributed equally to this work and share first authorship

10

11 *** Correspondence:**

12 Philippa M. Beard

13 pip.beard@pirbright.ac.uk

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

14 Abstract

15 Lumpy skin disease virus (LSDV) causes severe disease in cattle and water buffalo and is transmitted
16 by hematophagous arthropod vectors. Detailed information of the adaptive and innate immune
17 response to LSDV is limited, hampering the development of tools to control the disease. This study
18 provides an in-depth analysis of the immune responses of calves experimentally inoculated with
19 LSDV via either needle-inoculation or arthropod-inoculation using virus-positive *Stomoxys*
20 *calcitrans* and *Aedes aegypti* vectors. Seven out of seventeen needle-inoculated calves (41%)
21 developed clinical disease characterised by multifocal necrotic cutaneous nodules. In comparison
22 8/10 (80%) of the arthropod-inoculated calves developed clinical disease. A variable LSDV-specific
23 IFN- γ immune response was detected in the needle-inoculated calves from 5 days post inoculation
24 (dpi) onwards, with no difference between clinical calves (developed cutaneous lesions) and
25 nonclinical calves (did not develop cutaneous lesions). In contrast a robust and uniform cell-mediated
26 immune response was detected in all eight clinical arthropod-inoculated calves, with little response
27 detected in the two nonclinical arthropod-inoculated calves. Neutralising antibodies against LSDV
28 were detected in all inoculated cattle from 5-7 dpi. Comparison of the production of anti-LSDV IgM
29 and IgG antibodies revealed no difference between clinical and nonclinical needle-inoculated calves,
30 however a strong IgM response was evident in the nonclinical arthropod-inoculated calves but absent
31 in the clinical arthropod-inoculated calves. This suggests that early IgM production is a correlate of
32 protection in LSD. This study presents the first evidence of differences in the immune response
33 between clinical and nonclinical cattle and highlights the importance of using a relevant transmission
34 model when studying LSD.

35 Keywords

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

36 Virus, poxvirus, bovine immunity, lumpy skin disease, LSDV, neutralising antibodies, humoral
37 immunity, cell-mediated immunity

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

38 1 Introduction

39 Lumpy skin disease (LSD) is a high consequence disease of cattle and water buffalo caused by lumpy
40 skin disease virus (LSDV), a large double-stranded DNA poxvirus within the *Capripoxvirus* genus
41 (1, 2). Since it was first described in southern Africa in 1929 LSDV has progressively spread
42 throughout Africa where it is now endemic, and more recently into the Middle East, Russia, and
43 Europe (3, 4). Since 2019 LSDV has spread throughout Asia establishing itself as a major emerging
44 transboundary pathogen (5-9).

45 LSD is characterised by multifocal necrotic cutaneous lesions accompanied by lymphadenopathy,
46 lethargy, pyrexia, weight loss and reduced milk production (10-12). The morbidity and mortality
47 rates in outbreaks of LSD vary from approximately 10-20% morbidity and 1-10% mortality (13-15).
48 The pathology is focused on the skin as a multifocal dermatitis with vasculitis of dermal blood
49 vessels, resulting in full-thickness necrosis of the dermis and epidermis (11). Unusually for a
50 poxvirus, direct transmission of LSDV is rarely documented however LSDV can be transmitted by
51 hematophagous arthropods including *Aedes aegypti* mosquitoes, *Rhipicephalus microplus* ticks and
52 *Stomoxys calcitrans* stable flies (14, 16-20). The main methods for the control and prevention of
53 LSDV are effective surveillance programmes to detect outbreaks, widespread use of live attenuated
54 vaccines, and ‘stamping out’ of infected herds (20-22). LSD has significant socioeconomic
55 implications, particularly in low- and middle-income countries, due to the drop in milk yield, reduced
56 meat production, poor hide quality, cost of control measures and trade restrictions (2, 11, 23). Efforts
57 to develop better tools for the detection, control and prevention of LSD are hampered by a poor
58 understanding of the immune response to LSDV (24, 25).

59 Characterisation of the adaptive immune response to LSDV is limited. The three species of
60 capripoxviruses (LSDV, goatpox virus and sheeppox virus) are genetically very similar and

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

61 serologically indistinct. Previous studies examining immune responses to capripoxvirus vaccination
62 indicate both a cell-mediated and humoral immune response is generated (26-32). Strong antibody
63 responses are produced by cattle that are vaccinated with live attenuated strains of LSDV. Both
64 binding antibodies (bAbs) and neutralising antibodies (nAbs) are detected and titres can vary
65 markedly between clinical and nonclinical animals (26, 31, 33-35). Neutralising antibodies play a
66 role in long-term protection post-vaccination, similar to other poxviruses (36, 37), and have been
67 shown to be long-lasting in follow-up studies in goats and sheep vaccinated against sheeppox virus
68 (28, 30, 31).

69 The role of cell-mediated immunity (CMI) in LSD is particularly poorly understood (2, 38, 39).
70 Primarily driven by T lymphocytes, this immune response results in the production of key cytokines
71 including type II IFN (IFN- γ) which is produced by CD4 $^{+}$ helper T cells, CD8 $^{+}$ cytotoxic T cells, γ
72 T cells, natural killer T cells, and NK cells (40). IFN- γ and other cytokines induced by the CMI
73 response have a range of functions including the activation of NK cells and macrophages and
74 inducing the class switching of immunoglobulins from activated plasma B cells (41-44).

75 Previous literature reports the detection of a CMI response following inoculation with wildtype or
76 attenuated strains of LSDV. The first evidence of a CMI response to LSDV was reported in 1995
77 with description of a delayed-type hypersensitivity (DTH) reaction following virus inoculation (45).
78 Recently more complex immune assays have quantified IFN- γ , a key biomarker of the CMI response,
79 in cattle that had been vaccinated or challenged, or both (46-48), with evidence to suggest the
80 involvement of CD4 $^{+}$ and CD8 $^{+}$ T cells in the production of IFN- γ (46). However, the kinetics and
81 magnitude of CMI response against LSDV, and the role it plays in protection against disease, is not
82 yet understood.

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

83 Following experimental infection with LSDV, a proportion of cattle develop clinical disease
84 characterised by cutaneous lesions whilst other animals remain nonclinical (11, 18). It remains
85 unknown what mechanisms drive these differences and if the elicited immune response to infection
86 plays a role in the presentation of clinical disease. In this study, we have evaluated the humoral and
87 CMI responses in cattle experimentally inoculated by two different routes, either by needle
88 inoculation as described previously (11, 19) or by LSDV-positive blood-feeding arthropods (*S.*
89 *calcitrans* and *Ae. aegypti*), a route which is more representative of virus transmission in the field
90 (18). In-depth data was obtained that characterises the adaptive immune response to LSDV,
91 correlates differences with clinical outcome, and provides critical insight into the progression of
92 disease in the host. The information obtained provides highly relevant detail that can be applied to
93 developing improved disease control measures for an increasingly important transboundary disease.

94 2 Materials and Methods

95 Ethical Statement

96 This work was conducted under license P2137C5BC from the UK Home Office at The Pirbright
97 Institute according to the Animals (Scientific Procedures) Act 1986, and approved by The Pirbright
98 Institute Animal Welfare and Ethical Review Board.

99 Viruses

100 The LSDV strain used for inoculation of all animals was sourced from the WOAH Capripoxvirus
101 Reference Laboratory at The Pirbright Institute and originated from a LSD outbreak in eastern
102 Europe in 2016. The Neethling (35) and Cameroon strain of LSDV were sourced from the WOAH
103 Capripoxvirus Reference Laboratory at The Pirbright Institute. Viruses were grown and titred on

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

104 MDBK cells as described previously (49). Mock virus preparations were produced in an identical
105 manner from uninfected MDBK cells for use as a negative control in immunological assays

106 Experimental infection of calves with LSDV

107 Male castrated Holstein-Friesian calves were included in the study. Median age and weight in group
108 A were 104 days old and 145 kg, in group B 124 days old and 176 kg, in group C 140 days and 157
109 kg, in group D 97 days and 126 kg, in group RA and RS 96 days and 120 kg (Table 1). The animals
110 were sourced from a commercial high health herd and confirmed as negative for BVDV via PCR
111 prior to study commencement. The animals were housed in the high-containment animal facility
112 (SAPO4) at The Pirbright Institute. Up to five calves were housed in one room (22m²) with
113 appropriate bedding material (Mayo Horse Comfort) and environmental enrichment, such as rubber
114 toys and hollow containers filled with hay, provided. Light/dark cycle was 12:12 h, temperature was
115 held between 10°C to 24°C, and humidity 40% to 70%. Animals were fed concentrated rations twice
116 daily and given *ad lib* access to hay and water.

117 Four experimental studies are reported in this manuscript. The design, clinical outcomes, and
118 pathology from the first three studies (A-C) have been reported previously (11, 18, 50). Briefly, in
119 each of these studies a group of 5 calves were randomly assigned to treatment (n=4) or non-treatment
120 (n=1) groups. The 4 treated calves were inoculated by needle injection with 3 mL of LSDV at a
121 concentration of 1×10^6 PFU/mL. Two mL (2×10^6 PFU) of virus was inoculated intravenously (IV)
122 into the jugular vein, and 1 mL (1×10^6 PFU) of virus injected intradermally (ID) into 2 sites on each
123 side of the neck (0.25 mL in each site). The untreated animal in each experiment was not inoculated.
124 In all three experiments blood-feeding arthropods were fed on the skin of some of the inoculated
125 calves as described previously (11, 18, 50).

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

126 In the fourth experimental study fifteen calves were assigned into three groups of 5 (groups D, RA
127 and RS). The 5 calves in group D were inoculated as described above with 3×10^6 PFU/mL
128 intravenously and intradermally. One calf in group D (D5) developed over 100 cutaneous lesions and
129 was then used as a “donor” animal. *Stomoxys calcitrans* and *Aedes aegypti* insects were bred at The
130 Pirbright Institute as described previously (18, 50). Adult insects were fed on the cutaneous lesions of
131 calf D5 for a maximum of 40 sec before being interrupted and within a maximum of 1 h fed on the
132 calves in group RA (n=5) and RS (n=5), as described in Table 1.

133 **Peripheral blood mononuclear cell isolation**

134 Heparinised blood was diluted with PBS at a ratio of 1:1 and overlaid onto Histopaque 1083 (Sigma-
135 Aldrich, Merck) density gradient medium using SepMateTM-50 centrifugation tubes (Stem Cell
136 Technologies). Samples were centrifuged at 1500 x g for 30 min at 20°C with the brake off.
137 Peripheral blood mononuclear cells (PBMCs) were aspirated from the interface and washed twice
138 with PBS centrifuging at 1000 x g for 10 min at 20°C. After the final wash, PBMCs for T-cell
139 ELISpot analysis were resuspended in 3mL in RPMI 1640 medium GlutaMAXTM (ThermoFisher
140 Scientific) only and those for B-cell ELISpot analysis were resuspended in 3mL RPMI 1640 medium
141 GlutaMAXTM (ThermoFisher Scientific) supplemented with 10% heat-inactivated horse serum
142 (GibcoTM) and 100IU/mL penicillin and 100µg/mL streptomycin (ThermoFisher Scientific). Viable
143 cells were counted using a Cellometer cell counter (Nexcelom Bioscience).

144 **Short-wave UV inactivation of LSDV**

145 Live LSDV Neethling was placed in a 6-well plate on ice. A hand-held UV lamp emitting shortwaves
146 (245 nm) was placed approximately 4 inches above the lidless 6-well plate and the virus irradiated
147 for 5 minutes. Any residual viral infectivity was determined by plaque assay.

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

148 **Bovine Type I IFN Mx/CAT reporter assay**

149 To determine the levels of biologically active bovine type I IFN, a Mx/chloramphenicol
150 acetyltransferase (Mx/CAT) reporter assay was used as described previously (51). MDBK-t2 cells
151 (gifted by Veronica Carr, The Pirbright Institute) were cultured in MEM (Sigma) containing 10%
152 FBS, 100 IU/mL penicillin, 100µg/mL streptomycin, and 10 µg/mL of blasticidin (InvivoGen).
153 MDBK-t2 cells were seeded into 24-well plates at 1×10^5 / well and incubated at 37°C in a 5% CO₂
154 incubator overnight. Serum samples (500 µL) were heat-inactivated at 56°C for 30 mins using a heat
155 block. Heat-inactivated sera samples (250 µL / sample) were incubated on MDBK-t2 cells in media
156 and recombinant bovine IFN- α standards (15.6-500 IU/mL;) were added to MDBK-t2 cells at a 1:1
157 ratio to form a standard curve. MDBK-t2 cells were incubated with the sera and recombinant bovine
158 IFN α standards overnight at 37°C in a 5% CO₂ incubator. CAT expression was determined using an
159 ELISA kit in accordance with the manufacturer's instructions (Roche). Bovine IFN- α standards were
160 used to construct a type I IFN standard curve to interpolate sera sample IFN levels.

161 **PBMC Interferon Gamma Release Assay (IGRA)**

162 PBMCs were seeded at 5×10^5 cells per well in 96-well round bottom plates and stimulated with
163 either the positive controls (pokeweed mitogen (PWM) or concanavalin A (Con A)), negative
164 controls (cell culture media or mock infected cells) or SW-UV inactivated LSDV (diluted 1:10).
165 These cells were incubated for 24 h at 37°C in a 5% CO₂ incubator after which the PBMCs were
166 centrifuged at $300 \times g$ for 5 min and the supernatants were harvested and stored at -80°C.
167 ELISA plates were coated with 50 µL/well of 5 µg/mL of mouse anti-bovine IFN- γ monoclonal
168 antibody (mAb) (CC330, Bio-Rad Antibodies) by overnight incubation at 4°C. Plates were washed
169 five times with washing buffer (PBS and 0.05% Tween20 (Thermo Fisher Scientific). 100 µL/well of

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

170 blocking buffer (PBS, 0.05% Tween-20, 0.5% BSA) was added and plates incubated for 1 hour at
171 37°C. Blocking buffer was removed and 100 µL/well of samples and IFN- γ standards (recombinant
172 bovine IFN- γ ; Bio-Rad Antibodies) starting at 300 ng/mL followed by two-fold dilutions added.
173 Samples were diluted at 1:2 in carrier buffer (PBS, 0.05% Tween 20, 0.5% BSA). Plates were
174 incubated for 1 hour at 37°C and then washed five times with washing buffer. Biotinylated mouse
175 anti-bovine IFN- γ mAb (CC302; Bio-Rad Antibodies) diluted to 0.5µg/mL in carrier buffer was
176 added (100 µL/well) and plates incubated for 1 hour at 37°C. After five washes with washing buffer,
177 streptavidin-HRP conjugate (N-100, Thermo Fisher Scientific) diluted 1:1500 in carrier buffer was
178 added (50 µL/well) and incubated for 30 min at 37°C. After five final washes, 50 µL/well of
179 3,3',5,5'-tetramethylbenzidine (TMB) substrate (Thermo Fisher Scientific) was added and incubated
180 at RT for 5 min. Substrate development was followed by the addition of stop solution (1N sulfuric
181 acid). Optical densities were immediately read in a spectrophotometer at 450 nm.

182 Whole Blood Interferon Gamma Release Assay (IGRA)

183 Heparinised whole blood was collected at selected timepoints and stimulated with 20 µL of live
184 LSDV Neethling (4×10^7 PFU/mL) overnight at 37°C in a 5% CO₂ incubator. PWM was used a
185 positive control and PBS as a negative control. The following day, plasma was collected and used to
186 test for secretory IFN- γ using the ID Screen® Ruminant IFN-g ELISA following the manufacturer's
187 guidelines (Innovative Diagnostics).

188 Quantification of LSDV in blood

189 Whole blood (EDTA) was collected to investigate viremia. Blood was collected 3 days before needle
190 inoculation, on day 5 post-infection (dpi), and every second day until day 21 dpi. For the insect
191 inoculated recipient calves, blood was taken a day before insect feeding and every second day until

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

192 day 28 dpi. Viral DNA was extracted from blood samples using the KingFisher Flex extraction
193 instrument (Thermo Fisher Scientific) and MagMax Core Extraction kit (A32700; Thermo Fisher
194 Scientific) using Workflow A for DNA extraction from whole blood. The
195 MagMAX_CORE_No_Heat protocol was used as per the manufacturer's guidelines, with minimal
196 modifications. DNA was eluted in 50 µL of elution buffer. Plasmids containing LSDV ORF068
197 (19AEL6VP; Thermo Fisher Scientific) and bovine cytochrome B (19AEL7QP; Thermo Fisher
198 Scientific) were linearised and used to generate standards. To determine viral load in the skin, 2mm
199 punch biopsies from recipient calves were collected on each day of insect feeding on donor calves
200 and at days 9 and 15 days post infection on insect inoculated calves. The biopsies were digested by
201 adding 90 µL of proteinase K buffer (4489111, Thermo Fisher Scientific) and 10 µL proteinase K
202 (25530049, Thermo Fisher Scientific) to the skin biopsy. The sample was incubated for 2 hours at
203 55°C. Tubes were lightly vortexed during incubation and centrifuged briefly. 20 µL of MagMAX
204 Core magnetic beads (Thermo Fisher Scientific) were added to the lysate and mixed. 100 µL of the
205 bead and lysate mixture was transferred to the KingFisher deep well plates (Thermo Fisher
206 Scientific) containing 350 µL of lysis solution and 350 µL of binding solution. Extraction was done
207 as outlined in the MagMAX core extraction kit and the MagMAX_CORE_No_Heat protocol was
208 used to extract DNA from the samples. DNA was eluted in 50 µL of elution buffer. A TaqMan
209 multiplex PCR assay designed to amplify LSDV068 using forward and reverse primers 5'
210 GGCGATGTCCATTCCCTG 3' and 5' AGCATTTCATTTCCGTGAGGA 3' respectively and a
211 probe - ABY 5' CAA TGG GTA AAA GAT TTC TA3' QSY was used to detect LSDV. A forward
212 primer - GTAGACAAAGCAACCCTTAC and a reverse primer -GGAGGAATAGTAGGTGGAC
213 for bovine Cytochrome B and a probe - FAM 5' TTA TCA TCA TAG CAA TTG CC 3' MGBNQF
214 was used for the detection of bovine cytochrome B. TaqMan Multiplex master mix (4461884,
215 Thermo Fisher Scientific) was used with MUSTANG PURPLE as the passive reference dye. In brief,

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

216 the reaction setup was as follows; 5 μ L of template was used in a total of 20 μ L reaction. Final
217 primer concentrations were 500 nM and 250nM for probes. An initial denaturation at 95°C for 20
218 seconds was carried out and 50 cycles of denaturation at 95°C for 15 seconds, annealing and signal
219 acquisition at 58°C for 1 min were done. Viremia was expressed as genome copies per/mL using the
220 equation below.

$$221 \quad \text{Copy number/ml} = \frac{\text{copy per } \mu\text{L} * \text{elution volume}}{\text{sample or extraction volume}}$$

222 A lower detection limit of 500 copies/mL was set. Viremia was analysed in duplicate and results
223 presented as mean copies per/mL.

224 Flow cytometric analysis of LSDV-specific T-cell responses

225 PBMCs were seeded at a density of 5×10^5 cells/well in 96-well round-bottom tissue culture plates.
226 Each treatment condition i.e., positive control (PMA/Ionomycin), negative control (media), LSDV
227 Neethling (live virus), or UV-inactivated LSDV Neethling, was tested in triplicate wells. Once the
228 cells were seeded, wells were stimulated with LSDV Neethling (live virus) at MOI =1, or an
229 equivalent dose of UV-inactivated LSDV Neethling virus followed by overnight incubation at 37°C
230 in a 5 % CO₂ incubator. After the addition of 10 μ g/mL Brefeldin A (BFA) (Merck) to all wells, and
231 10 μ g/mL phorbol 12-myristate 13-acetate (PMA) and Ionomycin (Merck) to corresponding positive
232 control wells, cells were incubated for a further 4 hours at 37°C in a 5 % CO₂ incubator. After
233 centrifugation at $300 \times g$ for 5 min and removal of the supernatant, cells were washed once in FACS
234 buffer (PBS and 1% BSA) and then surface labelled by incubation with anti-bovine CD8 β -RPE mAb
235 [CC58; Bio-Rad Antibodies], anti-bovine CD4: FITC mAb [CC8; Bio-Rad Antibodies] diluted in
236 FACS buffer for 10 min at RT in the dark. Dead cell staining was performed using a LIVE/DEADTM
237 Fixable Violet Dead Cell Stain Kit following manufacturer guidelines (Thermo Fisher Scientific).

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

238 Cells were then washed twice in FACS buffer and then fixed in BD CytofixCytoPerm (BD
239 Biosciences) for 20 min at RT in the dark. Cells were then washed twice in BD PermWash solution
240 (BD Biosciences). Permeabilised cells were immediately labelled by incubation with anti-bovine
241 IFN- γ -APC mAb (CC302; Bio-Rad Antibodies) diluted in BD PermWash solution, for 30 min at 4°C
242 in the dark. After washing twice in BD PermWash solution, cells were resuspended in PBS and
243 immediately analysed. Data was collected using the MACSQuant10 Analyzer flow cytometer
244 (Miltenyi Biotec) equipped with a 405nm (violet), 488nm (blue) and 640nm (red) laser. Data was
245 analysed with FCsexpress7 software (DeNovo) and samples were gated on cells (SSC-A vs FSC-A),
246 singlets (SSC-A vs SSC-H) and then CD4 $^{+}$ cells were determined as FITC positive (blue: 525/50),
247 CD8 $^{+}$ cells were determined as RPE positive (blue: 585/40) and IFN- γ positive cells were determined
248 as APC positive (red: 655-730; Supplementary Figure 1).

249 **IFN- γ ELISpot assay**

250 Multiscreen-IP 0.45 μ M multiwell filter plates (#MAIPS4510, Merck) were coated with 50 μ L/well
251 of 2 μ g/mL of mouse anti-bovine IFN- γ mAb (CC330 Bio-Rad Antibodies) diluted in carbonate
252 coating buffer (pH 9.6) for 2 hours at RT . Plates were washed 5 X with 200 μ L PBS/well and then
253 blocked with 50 μ L/well of 4% semi-skimmed powdered milk (Marvel) in PBS for 2 hours at RT.
254 Plates were washed 5 times with 200 μ L PBS, 100 μ L of PBS/well added, plates sealed and stored at
255 4°C overnight. PBMCs were resuspended to a concentration of 5×10^5 cells/mL in RPMI 1640
256 medium GlutaMAX™ (Thermo Fisher Scientific). In a separate plate, two-fold dilutions of the cells
257 were prepared from this at 1:2 and 1:4 and 50 μ L added to corresponding wells of the coated
258 multiscreen plate. Negative control wells containing PBS only and positive control wells containing 2
259 μ g/mL of PWM; Sigma-Aldrich) were included for each timepoint. Plates were incubated at 37°C in
260 a 5% CO₂ incubator overnight. The following day plates were washed 5 times with 200 μ L/well of

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

261 PBS containing 0.05 % Tween20 (Thermo Fisher Scientific). To each well 50 μ L of 2 μ g/mL of
262 biotin-conjugated mouse anti-bovine IFN- γ mAb (CC302, Bio-Rad Antibodies) diluted in PBS was
263 added and plates incubated for 2 hours at RT. Plates were then washed as previously and 50 μ L/well
264 of streptavidin AP (Southern Biotech) diluted 1:1000 in PBS was added and plates incubated at RT
265 for 1 hour. Plates were washed as previously. To each well 50 μ L/well of alkaline phosphatase
266 substrate (Bio-Rad) was added and incubated at RT for approximately 15 min or until spots
267 developed. The reaction was stopped by immersing plates in tap water. Plates were left to dry
268 overnight at RT, face down before enumeration of spots using the ImmunoSpot 7.0 reader and
269 ImmunoSpot SC suite (Cellular Technology Limited). Results were expressed as the mean number of
270 spot-forming cells/million PBMC.

271 **LSDV antibody ELISA**

272 LSDV-specific antibodies were detected using the commercial ELISA kit ID Screen[®] Capripox
273 Double Antigen Multi-species ELISA kit following manufacturer instructions (Innovative
274 Diagnostics).

275 **LSDV Fluorescent Virus Neutralisation Test (FVNT)**

276 To measure nAb titres a FVNT was used to test serum samples collected at each time point following
277 the protocol described by previously (31). nAb titres were determined as the highest reciprocal
278 dilution at which no foci were identified, indicative of complete neutralisation. Partial neutralisation
279 was determined by counting the number of fluorescent foci at each dilution using a cut-off of 50 foci
280 per well and converting this into a neutralisation percentage.

281 **Antibody secreting cell (ASC) B cell ELISpot**

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

282 Multiscreen-IP 0.45 μ M multiwell filter plates (#MAIPS4510, Merch) were activated with 50
283 μ L/well of 35% ethanol for 30 seconds. Plates were washed 5 times with 200 μ L/well sterile water.
284 Plates were coated with 50 μ L/well of LSDV Cameroon (4×10^8 PFU/mL) diluted 1:120 in 0.1 M
285 carbonate bicarbonate buffer (pH 9.6) and incubated at 4°C overnight. The following day, plates
286 were washed 5 times with 200 μ L/well with PBS and blocked with 100 μ L/well of PBS containing
287 4% powdered skimmed milk (Marvel) and incubated at RT for 1 hour. Plates were washed as
288 previously. Isolated PBMCs were resuspended in RPMI 1640 medium GlutaMAX™ supplemented
289 with 10% heat-inactivated horse serum and 100IU/mL penicillin and 100 μ g/mL streptomycin (all
290 supplied by Thermo Fisher Scientific) to a density of 5×10^5 cells/mL. In a separate round bottom
291 96-well tissue culture plate, two-fold dilutions of the cells were prepared from this at 1:2 and 1:4 and
292 50 μ L added to corresponding wells of the coated multiscreen plate including a negative control of
293 uninfected cell lysate and incubated at 37°C in a 5 % CO₂ incubator overnight. Plates were washed
294 with 200 μ L/well of PBS containing 0.05% Tween-20. To corresponding wells, 100 μ L/well of
295 biotinylated goat anti-bovine IgG-heavy and light chain antibody or sheep anti-bovine IgM antibody
296 (Bethyl Laboratories) diluted 1:1500 in PBS was added and plates incubated at RT for 2.5 hours.
297 Plates were washed as previously and 100 μ L/well of streptavidin-AP (Southern Biotech) diluted
298 1:1000 was added, and plates incubated at RT for 1 hour. Plates were washed as previously and to
299 each well 50 μ L/well of colorimetric alkaline phosphatase (AP) substrate (BioRad) was added
300 followed by incubation at RT for approximately 15 min or until spots first develop. The reaction was
301 stopped by immersing plates in tap water. Plates were left to dry overnight at RT, face down before
302 enumeration of spots using the ImmunoSpot 7.0 reader and ImmunoSpot SC suite (Cellular
303 Technology Limited). Results were manually validated for false-positive results and expressed as the
304 mean number of ASCs/million.

305 **Statistical Analysis**

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

306 Statistical significance for differences was performed using a two-way analysis of variance
307 (ANOVA) followed by Sidak's multiple comparison test using GraphPad Prism software version
308 8.2.0 for Windows.

309 **3 Results**

310 **A combined intravenous and intradermal challenge with LSDV results in clinical and**
311 **nonclinical disease in calves.**

312 A total of 17 calves in groups A-D were needle inoculated with LSDV via both intravenous and
313 intradermal routes and then monitored for clinical disease. In total, 7 calves (41%) developed clinical
314 disease. Clinical findings for groups A - C have been described previously (11, 18, 50). The clinical
315 outcomes in group D are summarised in Figure 1 and were consistent with those seen previously in
316 groups A - C. Three of the 5 calves in group D developed clinical disease (D2, D4 and D5), defined
317 as cutaneous lesions distant from the inoculation site. These lesions were first detected on calves D2
318 and D4 at 5 days post-infection (dpi) and on D5 at 6 dpi (Figure 1A). The two remaining calves (D1
319 and D3) did not develop clinical disease and were classified as nonclinical (Figure 1B). Calf D5
320 developed the most severe disease with over 100 cutaneous lesions present from 13 dpi until the end
321 of the study period (21 dpi). A rise in rectal temperature was observed from 3dpi in the clinical calves
322 and remained elevated until 10, 13 or 16 dpi in D2, D4 and D5 respectively (Figure 1C). No increase
323 in rectal temperature was detected in the nonclinical calf D1, however D3 exhibited a temperature
324 spike of 39.8°C at 4 dpi (Figure 1D). A brief period of pyrexia in nonclinical animals has been noted
325 in previous studies by ourselves and others (19).

326 Lymphadenopathy of the prescapular lymph nodes was noted in all inoculated calves from 2-3 dpi
327 onwards and was more pronounced in the clinical calves. Lymphadenopathy of both left and right
328 prefemoral lymph nodes was also noted in calf D5 from 11 dpi. Calf D5 exhibited lethargy on 12-16

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

329 dpi and loss of body condition from around 10 dpi onwards. The gross and microscopic pathology in
330 the calves was consistent with that reported previously (11, 29).

331 A PCR was used to detect and quantify LSDV genomic DNA in venous blood samples collected
332 from clinical and nonclinical calves. The viraemia of calves from groups A-C have been described
333 previously (18, 50). The viraemia detected in calves from group D is shown in Figures 1E and F.
334 Virus was detected in the blood at 5 dpi in all five inoculated cattle at low levels (approximately 10^2
335 genome copies/mL of blood). Virus was detected in the blood of the two nonclinical cattle (D1 and
336 D3) intermittently over the rest of the study period at low levels. In contrast the three clinical calves
337 demonstrated a classic viraemia curve, peaking at between 10^4 and 10^5 genome copies/mL at 9 dpi
338 (D2), 13 dpi (D4) or 14 dpi (D5), that decreased by 21 dpi.

339 These results are consistent with previous studies using this model and showed that a combined
340 intravenous/intradermal inoculation of LSDV results in clinical disease similar to that described in
341 field outbreaks of LSD, characterised by lymphadenopathy, pyrexia, multiple cutaneous lesions and a
342 viraemic curve. Following experimental challenge, only a subset of the challenged calves (41%)
343 developed clinical disease. The nonclinical calves developed a local lymphadenopathy and
344 occasionally a fever spike but did not develop cutaneous lesions distant from the inoculation site and
345 exhibited a low and intermittent viraemia post-inoculation. In order to better characterise the
346 difference between these clinical and nonclinical outcomes we studied the immune response of the
347 intravenous/intradermal inoculated calves.

348 **LSD is not associated with consistently detectable levels of cytokines in the serum.**

349 The immune response of the calves to LSDV inoculation was initially studied by measuring the
350 levels of the pro-inflammatory cytokine IFN- γ and the anti-inflammatory cytokine IL-10 in sera

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

351 using an ELISA. No IFN- γ or IL-10 were detected in the serum of any of the 17 inoculated calves
352 from studies A-D at any timepoint (data not shown), demonstrating that LSDV challenge does not
353 induce high systemic levels of these cytokines in either clinical or nonclinical presentations.

354 Type I IFNs (IFN- α and IFN- β) are key anti-viral cytokines (52) therefore the level of type I IFN in
355 the serum of the five calves in group D was measured using a cell-based reporter system. This
356 system uses a modified MDBK cell line (MDBK-t2) containing a MxA promoter driving a
357 chloramphenicol acetyltransferase (CAT) reporter gene (51). Serum samples from 0 to 15 dpi from
358 all five calves in study D were tested. A single peak of type I IFN (75 IU/mL) was detected at 5 dpi
359 in the serum of calf D5, the most severely affected calf in the clinical group (Figure 2A). Type I IFN
360 was not detected in serum samples from nonclinical calves (Figure 2B).

361 **Calves inoculated intravenously and intradermally with LSDV develop a cell-mediated immune
362 response characterised by IFN- γ production by PBMCs following *in vitro* restimulation.**

363 In order to measure the CMI response of calves to LSDV, PBMCs from the five group D calves were
364 isolated from whole blood collected at 0, 5, 7, 11, 15 and 21 dpi, and stimulated with UV-inactivated
365 LSDV overnight or PBS as a mock stimulant. The supernatant was then collected and analysed using
366 an in-house ELISA to detect IFN- γ (Figure 2C). No IFN- γ was secreted by the PBMCs in response
367 to LSDV stimulation prior to inoculation at 0 dpi however moderate (100-250 ng/mL) to high (over
368 250 ng/mL) amounts of IFN- γ were secreted by the PBMCs from calves D2-D5 post-inoculation,
369 indicating a CMI response to intravenous/intradermal LSDV inoculation. This response was first
370 detected 5 or 7 dpi and continued to be expressed inconsistently throughout the study period to 21
371 dpi. Calf D1 had a lower response with around 100ng/mL IFN- γ detected at 5 and 21 dpi. No clear
372 trend was discerned across the time course of the study, and no difference between the three clinical
373 and two non-clinical calves was observed (Figures 2C and D).

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

374 In addition to studying IFN- γ release from purified and stimulated PBMCs, the IFN- γ release assay
375 (IGRA) was also performed on heparinised whole blood in order to assess the potential of this
376 simpler method for detecting the CMI response as a diagnostic test for LSD (Figures 2E and F).
377 Blood collected on 0, 7, 11, 15, 17 and 21 dpi was stimulated overnight with live LSDV, the plasma
378 collected, and IFN- γ quantified using a commercially available ELISA (ID Screen® Ruminant IFN-g
379 ELISA, Innovative Diagnostics) following the manufacturer guidelines. Early peaks in IFN- γ at 7 and
380 11 dpi were detected in the clinical cattle and decreased by 15 dpi. A similar trend was observed in
381 the nonclinical calf D3 whilst D1 peaked at 21 dpi. No difference was observed between the clinical
382 and nonclinical animals in group D. While both the PBMC and whole blood IGRAs demonstrated the
383 presence of a robust and specific CMI response in all five calves after inoculation with LSDV, there
384 were substantial differences between the IGRA results carried out on PBMCs and whole blood. For
385 example, at 11 dpi, only calf D2 had a strong IFN- γ response when tested using the PBMC IGRA,
386 however calves D2, D3, D4 and D5 all had a strong IFN- γ response at 11 dpi when tested using the
387 whole blood IGRA.
388 The CMI response was explored further using a bovine IFN- γ ELISpot assay which measures the
389 number of cells producing IFN- γ in response to stimulation. Freshly harvested bovine PBMCs
390 collected from the group D calves at timepoints between 0 and 21 dpi were stimulated overnight with
391 UV-inactivated LSDV. No IFN- γ -producing cells were detected from blood samples collected prior
392 to inoculation. A small number of cells (≤ 100) producing IFN- γ in response to LSDV stimulation
393 were detected in all calves, with the exception of calf D1, as early as 5 dpi, increasing slightly by 7
394 and 11 dpi (Figures 3A and B). However, the strongest response was seen at 15 and 17 dpi, when up
395 to 2000 spot forming cell (SFC)/ 10^6 were detected. This pattern of an increasing frequency of IFN γ
396 producing cells over time was consistent in four of the five calves (D1 and D3-D5) however calf D2
397 exhibited a different response, with peak IFN- γ producing cells seen at 11 dpi. Similar to the IGRA

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

398 findings above, there was no obvious difference seen in the results of ELISpot assay between clinical
399 and nonclinical calves in group D.

400 In order to determine which subpopulation of PBMCs was responsible for the IFN- γ release seen in
401 the IGRA and ELISpot assays, an intracellular cytokine staining (ICS) assay was performed on
402 PBMCs freshly isolated from the five inoculated calves on 0, 7, 11, 15 and 21 dpi. The PBMCs were
403 stimulated overnight with UV-inactivated LSDV followed by surface labelling of cell surface
404 markers CD4 and CD8 β and intracellular labelling of IFN- γ . Flow cytometry was used to determine
405 the percentage of CD4 $^+$ CD8 $^-$, CD4 $^-$ CD8 $^+$ or CD4 $^-$ CD8 $^-$ cell populations producing IFN- γ in response
406 to LSDV stimulation (Figure 4A - F). At 0 dpi, IFN- γ was not detected in any of the cell types
407 investigated. In all the cattle, irrespective of their clinical status, low levels (< 0.6 %) of CD4 $^-$ CD8 $^-$
408 cells produced IFN- γ at any of the subsequent timepoints investigated (Figure 4E-F). The CD4 $^-$ CD8 $^+$
409 populations of the two non-clinical calves (D1 and D3) and one clinical calf (D2) generated weak
410 IFN- γ responses, not exceeding 0.5 % of the population, throughout the study. In contrast, IFN- γ
411 responses were detected in the CD4 $^-$ CD8 $^+$ populations of two of the clinical calves (D4 and D5) at 15
412 dpi, when 1.7 % and 0.5 % of the CD4 $^-$ CD8 $^+$ populations produced IFN- γ in response to LSDV
413 stimulation. In the CD4 $^+$ CD8 $^-$ population, low to moderate level responses were observed from 7 dpi
414 onwards in D1, D2, and D3, with the strongest response in the nonclinical calves D1 and D3 detected
415 at 21 dpi. Very low responses were detected in the CD4 $^+$ CD8 $^-$ population in the clinical calves (D4
416 and D5) prior to 15 dpi, with the strongest IFN- γ response of 3.65% and 3.8 % of the CD4 $^+$ CD8 $^-$
417 population detected at 21 dpi in calves D4 and D5 respectively. Overall, production of IFN- γ by both
418 CD4 $^+$ CD8 $^-$ and CD4 $^-$ CD8 $^+$ T cells in response to stimulation with LSDV was detected in calves D1,
419 D3, D4 and D5, with the CD4 $^+$ CD8 $^-$ cell population having a stronger response at later time points.
420 Inter-calf variation was present, with calf D2 producing a more muted response in both CD4 $^+$ CD8 $^-$

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

421 and CD4⁺CD8⁺ cell populations. Very weak responses were observed in the CD4⁺CD8⁻ cell
422 population across all five cattle at all five time points.

423 In summary, the IGRA, ELISpot and ICS assays indicate that calves inoculated with LSDV
424 intravenously and intradermally develop an IFN- γ response by 5-7 dpi. Both clinical and nonclinical
425 calves developed a CMI with no distinguishing features particular to either group identified.

426 **Clinical and nonclinical calves inoculated with LSDV develop a detectable humoral immune
427 response.**

428 The antibody response to intravenous/intradermal LSDV challenge in calves from groups A-D was
429 initially studied using a commercial ELISA. Six of the 7 clinical calves from groups A to D (A3, A5,
430 B9, C12, D2, and D4) were positive by ELISA for bAbs by 21 dpi (Figure 5A). Animals A5, B9 and
431 C12 were the first to reach the positive cut-off point at 15 dpi. The seventh clinical animal, calf D5,
432 remained negative but a rising antibody level below the cut-off S/P % was detected at 17 and 21 dpi.
433 There were 10 nonclinical calves in Groups A to D (including 3 negative control animals A1, B6 and
434 C11). Calf B7 was the only to develop a positive ELISA result, on days 15 and 17 dpi (Figure 5B)
435 with calves D1 and D3 borderline positive by 21 dpi. These results suggest that clinical calves
436 develop a more rapid and robust humoral immune response compared to nonclinical calves following
437 intravenous/intradermal inoculation.

438 In order to quantify functional antibodies, a FVNT was performed to detect neutralising antibodies
439 (nAbs) to LSDV. This assay takes advantage of the “foci” formed by LSDV on MDBK cells (49).
440 Monitoring the reduction in the number of foci at each dilution was used as an indicator of
441 neutralising activity (using a cut-off of 50 foci/well), enabling partial neutralisation to be quantified
442 over the duration of each study. Evidence of neutralising activity was detected in the serum of all 7

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

443 clinical calves at 5 dpi, with values between 10.37 – 34.50 % (Supplementary Table 1). The degree of
444 neutralisation then increased over time until all clinical animals had antibodies that were able to
445 neutralise 100% of LSDV at 17 and 21 dpi (Figure 5C). There was moderate variation between
446 individual animals with calf C12, for example, exhibiting a slower rate of increase over time. In
447 contrast, pronounced variation existed in the partial neutralisation activity of serum from the calves in
448 the nonclinical group (Figure 5D). At 5 dpi, antibodies from 4 of the 10 nonclinical calves did not
449 exhibit any detectable neutralisation (B7, B10, C12 and C14), while antibodies present in the
450 remaining calves neutralised between 9.25 and 50.88% (Supplementary Table 2). of LSDV. Different
451 rates of increase in partial neutralisation over time were evident between all nonclinical calves. At 11
452 dpi antibodies from calves A2, A4, C15, D1 and D3 neutralised 68 – 88% of LSDV and with
453 antibodies present in the remaining calves neutralised 16 – 47%. At 21 dpi calves, A2 and C14
454 neutralised 54 – 61% of LSDV whilst antibodies in the remaining animals neutralised 95 – 100%.

455 Complete neutralisation determined by FVNT₁₀₀ based on the gold standard test for nAbs, as
456 described in the WOAH Terrestrial Guide for capripoxviruses (53), was observed in all clinical and
457 nonclinical animals except for nonclinical calf C14. The clinical calves generated higher titres of
458 nAbs by 21 dpi (120 – 2560; Figure 5E, Supplementary Table 2) compared to the nonclinical calves
459 (10 – 160 except for calf D3 with a titre of 640; Figure 5F; Supplementary Table 2). Moderate
460 variation in nAb titres between individual clinical calves was evident.

461 In conclusion, detailed analysis of the immune response of calves inoculated via the
462 intravenous/intradermal route identified a rapid (5-7 dpi) cell-mediated and humoral immune
463 response to LSDV. There were no consistent differences in the cell-mediated immune response
464 between the clinical and nonclinical calves, however a stronger and more rapid humoral immune
465 response was detected in clinical animals compared to the nonclinical animals.

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

466 **Arthropod inoculation**

467 **Inoculation of calves with virus-positive insects results in development of clinical disease.**

468 The predominant means of LSDV transmission in the field is via haematogenous arthropods
469 including flies and mosquitoes (17, 19, 20). In order to determine whether the method of inoculation
470 influences the immune response of calves to LSDV, *S. calcitrans* flies and *Ae. Aegypti* mosquitoes
471 were partially fed on cutaneous nodules from a clinical calf (calf D5), and allowed to immediately
472 (within 1 h) re-feed on naive calves in group RS and RA respectively (Table 1). The feeding (from
473 donor group D calves) and refeeding (on recipient RS and RA calves) occurred on five consecutive
474 days (0-4 dpi), with 20 *S. calcitrans* flies or *Ae. Aegypti* mosquitoes fed on each calf in the RS and
475 RA groups each day, to give a total of 100 arthropods feeding on each RS and RA calf. Arthropods
476 were fed on the paravertebral dorsum of the RS and RA calves, on either side of the vertebral column
477 between the scapula and tail. Animals in groups RS and RA were monitored for clinical signs of LSD
478 throughout the study period.

479 Four of the five RS calves (RS1, RS2, RS4 and RS5) and four of the five RA calves (RA1, RA3,
480 RA4 and RA5) developed clinical LSD (cutaneous lesions) following arthropod inoculation. Severe
481 disease (>100 cutaneous lesions per animal) was evident in calves RA1, RA3, RA5, RS1, RS2 and
482 RS4 (Figure 6A), moderate disease in calf RA4 (50 lesions) and mild disease was observed in RS5 (1
483 lesion). Lesions were first noted on 11 (RA1, RA3, RA4 and RA5), 12 (RS1, RS2 and RS4) or 13
484 (RS5) dpi. No cutaneous lesions were detected in the nonclinical calves (Figure 6B). An increase in
485 body temperature was detected in all eight clinical calves from 11 dpi (Figure 6C), persisting for
486 between 1-12 days. A single day of raised temperature was observed in nonclinical calf RA2 at 13
487 dpi. No temperature increase was detected in nonclinical calf RS3 (Figure 6D). Reddened and
488 swollen inoculation sites, progressing to necrosis of the skin, were noted in the clinical calves with

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

489 the exception of RS5. Increased size of the prefemoral and prescapular lymph nodes was present in
490 all ten calves from 10-14 dpi onwards, lasting in some calves to the end of the study. This
491 lymphadenopathy was more marked in the clinical calves. Loss of body condition score was noted in
492 all clinical calves except RS5. Lethargy was noted in calf RA1 from 15-16 dpi, RA3 on 18 dpi, and
493 RS4 15-20 dpi. Calves RA1, RA3 and RS4 were euthanised at 21 dpi, RS1, RS2, RA4 and RA5 at 25
494 dpi and calves RS3, RS5 and RA2 at 29 dpi.

495 LSDV viraemia (genome copies/mL detected by qPCR) was detected as early as 3 dpi in arthropod
496 inoculated calves (Figure 6E). Seven clinical calves with moderate or severe disease (RA1, RA3,
497 RA4, RA5, RS1, RS2, and RS4) exhibited a similar viraemia curve with peak viraemia occurring at
498 17-19 dpi. Calves RA3 and RA5 had the highest viraemia levels at 3.7×10^5 and 1.7×10^5 genome
499 copies/mL. Calf RA4 which developed moderate disease had a shorter and lower magnitude viraemia
500 when compared to the severely affected calves. Calf RS5 developed mild clinical disease with only a
501 single cutaneous lesion. The nodule contained high levels of LSDV genomic DNA (1.4×10^5 genome
502 copies of LSDV/mL of skin microbiopsy extract), confirming the pathology was caused by LSDV.
503 This calf remained viraemia negative throughout the study across all 17 time points that were blood
504 sampled. It was clinically inapparent on other parameters scored throughout the study apart from 13
505 dpi when it had a rise of 1.3°C in temperature to 40.9°C , and a high heart rate of 90 beats per minute.
506 These parameters had returned to normal by 14 dpi. The nonclinical calves RA2 and RS3 were
507 negative for LSDV viraemia throughout the study.

508 In summary, the clinical signs, gross pathology noted in the arthropod-inoculated calves was
509 consistent with that reported in “needle inoculated” calves including those challenged via the
510 intravenous/intradermal route. The magnitude and length of viraemia was also similar, however the

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

511 preclinical or latent period was longer in the arthropod-inoculated calves (11-13 dpi in groups RS and
512 RA compared to 5-6 dpi in groups A-D).

513 **Type I IFN can be detected intermittently in the serum of calves inoculated with virus-positive**
514 **insects.**

515 We measured IFN- γ and IL-10 in the sera of the RS and RA calves but, similar to the calves in group
516 D, no cytokine expression was detected at any of the timepoints tested (data not shown). We then
517 used the MxCAT assay to look for type I IFN in the sera and detected this cytokine in both RS and
518 RA groups across the time course of the study (Figure 7A). Seven clinical recipient animals exhibited
519 a type I IFN response. Five of these calves were characterised as severely diseased (RA1, RA3, RA5,
520 RS1, RS2), one as moderate (RA4), and one (RS5) exhibited only mild signs of LSDV infection.
521 Most of these calves demonstrated a single peak of type I IFN between 9 and 15dpi, ranging between
522 4.3-191 IU/mL, except calf RS5 which had 191 IU/mL of type I IFN at 13dpi and 16.5 IU/mL at
523 15dpi. No type I IFN was detected in the serum of the two nonclinical calves RA2 and RS3 or the
524 severely affected calf RS4 at any time point tested.

525 **A CMI response to LSDV can be detected in clinical but not nonclinical calves after inoculation**
526 **with virus-positive arthropods.**

527 PBMCs isolated from blood collected from recipient calves on 0, 7, 11, 15 and 21 dpi were
528 stimulated with UV-inactivated LSDV and an IGRA performed as described above. A strong peak in
529 IFN- γ secretion (250 – 380 ng/mL) was detected at 11 dpi in all eight clinical recipient calves (RS1,
530 RS2, RS4, RS5, RA1, RA3, RA4, RA5), with lower levels at 15 and 21 dpi (Figures 7C and D). In
531 contrast very low levels of IFN- γ (<50 ng/mL) were produced in response to LSDV stimulation in the
532 two nonclinical calves RS3 and RA2 at all time points. Both the RA and RS group show a consistent

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

533 trend amongst the clinical cattle with a peak of CMI at 11 dpi, in contrast to the very low levels of
534 IFN- γ produced by the two nonclinical calves.

535 The IGRA assay was also carried out on whole blood, using live LSDV as overnight stimulant.
536 Lower levels of IFN- γ secretion were detected using this method in all clinical animals compared to
537 the response seen in stimulated PBMCs with convincing responses detected only in calf RA3 at 5 and
538 11 dpi and RA5 and RS5 at 15 dpi (Figure 7E). Low or no IFN- γ was detected in the two nonclinical
539 calves RS3 and RA2 at any timepoint. The lack of consistency between the PBMC and whole blood
540 IGRA results reflects that seen in the analysis of the group D responses.

541 Overall, these data indicate that there is a strong anti-LSDV CMI response present in all eight
542 arthropod inoculated calves at 11 dpi, at or prior to the time they develop cutaneous lesions. The
543 absence of a detectable CMI response in the two nonclinical calves suggest early local antiviral
544 defences were sufficient to control the virus in these animals, avoiding the need for a systemic
545 response.

546 **Clinical but not nonclinical calves develop strongly neutralising antibody titres after
547 inoculation with virus-positive arthropods.**

548 Serum samples were evaluated for bAbs specific to LSDV by commercial ELISA. Clinical calves
549 RS4 and RA1 showed the presence of bAbs at 21 dpi, and calves RS2 and RA5 were positive at 25
550 dpi (Figure 8A). The remaining clinical calves RS1, RS5, RA3 and RA4 were negative as were the
551 three nonclinical calves (RS3 and RA2; Figure 8B), although rising titres of bAbs were visible at
552 later time points.

553 The FVNT was used to detect and quantify neutralising antibodies against LSDV in the sera of the
554 arthropod challenged calves. No nAbs were detected in the sera of any of the calves at 0 dpi,

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

555 however, partially nAbs were generated by all ten calves during the study. Seven of the eight clinical
556 calves exhibited a rapid increase in partial nAbs from 11 dpi onwards (24.87 – 68%; Supplementary
557 Table 3) until 100 % neutralisation was observed from 15 dpi (Figures 8C). Mildly affected calf RS5
558 had a slower increase in nAbs first detected at 7 dpi, to peak just below 100% at 25 dpi before
559 declining at 29 dpi. Nonclinical calves RS3 and RA2 had low-level partial nAbs detected at 7 dpi
560 (27.25 – 44.50%) that increased to peak first at 17 dpi or 25 dpi before declining by 29 dpi (Figure
561 8D; Supplementary Table 3).

562 Complete neutralisation titres were detected in all clinical calves (with the exception of RS5) starting
563 from 15 dpi for calf RA2 with an FVNT₁₀₀ titre of 20 (Figure 8E; Supplementary Table 4). Final
564 titres generated at individual animal endpoints were between 320 – 1280. No complete neutralisation
565 titres were detected in the two nonclinical calves (Figures 8F; Supplementary Table 4).

566 In summary, all 10 arthropod inoculated calves developed a detectable antibody response to LSDV.
567 This indicates that the arthropod challenge was successful at exposing all ten calves to LSDV. The
568 magnitude of the humoral response correlated well with the severity of disease, with the severe and
569 moderately affected calves rapidly developing neutralising antibodies capable of completely
570 neutralising the input virus. The mildly affected calf RS5 and the two nonclinical calves developed
571 lower titres of nAbs.

572 **The B cell response of nonclinical calves post-challenge with virus-positive insects is**
573 **characterised by a strong IgM response and delayed class switching.**

574 In order to investigate the humoral immune response to LSDV in more detail, the expression of
575 LSDV-specific IgM and IgG antibodies was examined using a B cell ELISpot. This was performed
576 on PBMCs to quantify the number of LSDV-specific antibody secreting cells (ASCs). In group D

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

577 (needle inoculated calves) an initial peak in IgM ASCs (247.4 ± 36.96 ASCs/ 10^6 PBMCs) was
578 detected in both clinical and nonclinical calves at 5 dpi, around the onset of the development of skin
579 lesions. The number of IgM ASCs decreased slightly at 7 dpi and peaked again at 15 dpi ($466.30 \pm$
580 53.56 ASCs/ 10^6 PBMCs; Figures 9A and B). The predominant isotype detected at 21 dpi was IgG
581 suggesting a class switch to IgG. In the clinical calves an average of 224.3 ± 130.9 ASCs/ 10^6 PBMCs
582 was determined. A similar pattern of LSDV-specific ASC quantification was seen in the two
583 nonclinical calves, with an increase in IgG and a decrease in IgM at 21 dpi. There was no clear
584 difference in the clinical and nonclinical calves in group D with respect to the ratios of IgG and IgM
585 and potential class switching.

586 In comparison, the pattern of detection of IgM and IgG secreting ASCs in arthropod inoculated
587 calves was very different. When compared to the calves in group D, a much lower number of LSDV-
588 specific IgM producing ASCs were present in the PBMCs from clinical recipient calves over the
589 entire sampling period (compare Figure 9A to 9C). A slow increase over the first 11 dpi reached a
590 plateau between 11 and 17 dpi (151.8 ± 9.14 ASCs/ 10^6 PBMCs) and then reduced until 23 dpi when
591 no LSDV-specific IgM ASCs were detected in calves RS1, RS2, RA4 and RA5 (Figure 8C). There
592 was a rapid increase in LSDV-specific IgG ASCs from 7-15 dpi to a peak of 405.4 ± 42.4 ASCs/ 10^6
593 PBMCs at 15 dpi in the clinical calves. This resulted in a significant change from a predominance of IgM
594 to IgG at 15 dpi ($P = 0.0356$) and 17 dpi ($P = 0.0367$). The number of IgG ASCs specific for LSDV
595 then decreased over the subsequent sampling time points until the end of the study. The IgM and IgG
596 secreting ASC profiles from the nonclinical recipient calves were very different to the clinical calves.
597 The PBMCs from these two calves (RA2 and RS3) contained numerous LSDV-ASCs secreting
598 LSDV-specific IgM by 11 dpi (575 ± 115.20 ASCs/ 10^6 PBMCs). The number of ASCs secreting
599 LSDV-specific IgM then declined by 21 dpi (Figure 8D), with a concurrent slow increase in LSDV-
600 specific IgG-secreting ASCs leading to a predominance of IgG ASCs by 23 dpi.

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

601 Overall, these data have shown the rapid (by 5 dpi) appearance of IgM-secreting LSDV-specific
602 ASCs in calves inoculated via the intravenous/intradermal route, followed by a slower increase in
603 IgG-secreting LSDV-specific ASCs. This profile of ASC is not influenced by the clinical outcome of
604 inoculation. However, the timing and magnitude of LSDV-specific ASC production in arthropod
605 challenged calves is dependent on clinical outcome. Nonclinical calves contain more LSDV-specific
606 IgM ASCs than clinical calves, especially at 11 and 15 dpi when multifocal cutaneous nodules were
607 first appearing on calves in the clinical cohort. Fewer IgM-secreting and more IgG-secreting LSDV-
608 specific ASCs in the clinical calves led to an earlier change in the ratio of IgM to IgG suggesting
609 class switching occurs more rapidly in clinical calves (by 15 dpi) when compared to the nonclinical
610 calves (23 dpi).

611 4 Discussion

612 This study characterises and integrates the clinical, virological, and immunological response of
613 calves following inoculation with LSDV using a needle-inoculation method or via virus-positive
614 arthropods. The use of arthropods to inoculate calves with LSDV was particularly important as this
615 is a clinically relevant route of transmission. Both routes of inoculation produced clinical disease
616 similar to that observed in the field, characterised by pyrexia, lymphadenopathy, and multiple
617 cutaneous nodules, however there were differences noted between the two inoculation methods
618 including the length of the incubation period preceding disease onset, the kinetics of the cell-
619 mediated and humoral immune responses, and the ability to discriminate between clinical and
620 nonclinical calves using immune signatures.

621 The two inoculation routes deliver very different doses of virus to different compartments of the
622 immune system which may explain the differences. The ID/IV needle inoculation delivered 1×10^6
623 PFU of LSDV into the skin and 2×10^6 PFU directly into the vein where it would have direct access

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

624 to the splenic immune compartments, bypassing lymph nodes. In comparison the maximum
625 estimated dose delivered by the arthropods to calves in the RS and RA groups was 3×10^3 PFU per
626 calf. This dose would have been delivered into the dermis, activating local dermal immune responses
627 before draining to regional lymph nodes. The arthropod delivery was also extended over 5 days in
628 order to mimic a field situation more accurately, rather than being delivered via needle inoculation in
629 a single dose. The blood-feeding arthropods would also have delivered virus accompanied by biting
630 trauma and saliva inoculation. The feeding behaviour of arthropods has been shown previously to
631 influence the outcome of virus inoculation (17, 54, 55), although no work has been published on the
632 impact of arthropod feeding on LSD.

633 Research into other poxvirus models has shown that dose can impact the latent period. Mice
634 inoculated with 10^3 PFU of vaccinia virus via an intradermal route developed lesions at 6 dpi but
635 later (8 dpi) when the dose was lowered (56). The influence of viral dose was studied in cattle
636 inoculated intravenously with four different doses of LSDV (approximately 3×10^2 , 3×10^4 , 3×10^6
637 or 3×10^7 cell culture infectious dose₅₀ (CCID₅₀)). One animal that was inoculated with the lowest
638 dose displayed a delayed onset of clinical signs (19 dpi) compared to other cattle in the study (7-9
639 dpi) (57). The incubation period of 11-12 dpi seen in our study in the RS and RA groups is consistent
640 with previous studies which reported incubation periods following arthropod inoculation of LSDV of
641 12-26 dpi (19), and 10-14 dpi (20). This data suggests that the incubation period of LSD in the field
642 is longer than the 5-7 days reported in experimental studies using needle inoculation, and more likely
643 to be 10-14 days and possibly longer.

644 The immune response of calves to LSDV inoculation was initially studied by examining the levels of
645 cytokines IFN- γ and IL-10 in the serum using ELISA. Neither of these two cytokines were detected
646 in calves following either needle or arthropod inoculation, suggesting that the levels of systemic

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

647 cytokines are not substantially raised in LSD, and that detection of a cytokine signature is unlikely to
648 be of diagnostic value in the field. Interestingly, type I IFN was detected in the serum of cattle
649 following LSDV inoculation. In group D only calf D5 had detectable type I IFN, and only at one time
650 point (5 dpi), while type I IFN was detected in the serum of mild and severely affected calves in the
651 RS and RA groups between 9-15 days after arthropod inoculation. No type I IFN was detected in the
652 nonclinical calves. The pattern of type I IFN in LSD was unusual, as a single strong peak of up to
653 191 IU/mL, with the timing of the peak closely associated with an increase in levels of virus in the
654 blood and the appearance of the cutaneous lesions (5 dpi for calf D5, and between 9-13 dpi for the
655 calves in groups RS and RA). In comparison, the production of type I IFN response to BVDV and
656 FMDV has been shown to be more rapid, of lower magnitude and longer lived. BVDV inoculation
657 resulted in a gradual increase then decrease in levels of type I IFN in the serum from 0-7dpi in
658 animals infected with type 1 and type 2 BVDV (58), with the levels of type I IFN ranging from 5-75
659 IU/mL. Cattle infected with FMDV showed a peak of serum type I IFN at around 2dpi estimated
660 between 3-6 IU/mL, decreasing to low levels at 7dpi (58). Our study reveals that LSD causes a brief
661 spike in systemic type I IFN closely associated with the onset of skin lesions in clinical calves. This
662 suggests that LSDV is able to suppress the type I IFN response very effectively throughout the course
663 of disease, except at the onset of systemic pathology.

664 A cell-mediated immune response specific to LSDV was consistently seen in both clinical and
665 nonclinical needle-inoculated calves in group D from the earliest timepoints examined (3 or 5 dpi).
666 This response was studied using IGRAs, ELISpot and ICS which collectively built a picture of a
667 small population of PBMCs producing a high amount of IFN- γ at 5 and 7 dpi, and a larger population
668 of cells generating IFN- γ later in the course of the disease. Both CD4 $^{+}$ and CD8 $^{+}$ T lymphocytes
669 produced IFN- γ in response to LSDV stimulation, particularly at the later time points (15 and 21 dpi),
670 but the CD4 $^{-}$ CD8 $^{-}$ population of T lymphocytes did not. These results are consistent with previous

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

671 experimental studies describing the CMI response to LSDV (22, 32, 45). We found that the CMI
672 response of calves following intradermal and intravenous inoculation varied substantially between
673 animals with calf D2 in particular showing a different timing and magnitude of response across
674 IGRA, ELISpot and ICS when compared to the other four calves in the group. It may be that the
675 large intravenous LSDV bolus generated an exaggerated, non-specific, and poorly controlled CMI
676 response in the needle-inoculated calves. Crucially, even though we used multiple methods to
677 characterise the CMI response and examined timepoints through the course of disease, we were
678 unable to differentiate between the CMI response of clinical and non-clinical calves.

679 In contrast, examination of the CMI response in arthropod-inoculated calves using the IGRA
680 revealed a clear and consistent difference between the clinical and non-clinical cattle. All 8 clinical
681 calves generated a strong and remarkably uniform CMI responses at 11 dpi, with increasing and
682 decreasing amounts of IFN- γ detected at 7 and 15 dpi, respectively. No CMI response was detected
683 in the two nonclinical calves. This may be because the nonclinical calves were able to control the
684 virus at a local level and therefore did not need to activate a systemic CMI response. The very
685 consistent CMI response seen in the arthropod-inoculated calves was surprisingly given the variable
686 dose most likely received by each animal from the virus-positive arthropods, and the 5-day period
687 over which the dose was given. Despite these variables, the calves developed a very uniform
688 response. Interestingly, a number of the clinical arthropod-inoculated calves had a moderate to strong
689 CMI response at 7 dpi (Figure 7C) but went on to develop multiple cutaneous lesions at 11-13 dpi
690 (Figure 6C). This indicates that a strong pre-existing CMI response, as measured by an IGRA, does
691 not always bestow protection against clinical disease.

692 The IGRA was used on both purified PBMCs and whole blood collected from all 15 calves in group
693 D and groups RS and RA in order to determine if diagnosis of LSD, and particularly diagnosis of

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

694 preclinical or subclinical LSD, could be improved by using a whole blood IGRA, similar to IFN- γ
695 blood testing of cattle to detect latent tuberculosis (59). However, there were substantial differences
696 in the timing and magnitude of the immune response detected by the whole blood IGRA when
697 compared to the IGRA carried out on PBMCs. This difference was apparent following either needle-
698 inoculation or arthropod-inoculation, with the whole blood IGRA detecting in general fewer positive
699 samples and, in the arthropod inoculated calves, a lower magnitude response. The reason for this
700 difference could be the absence of granulocytes and other blood components such as neutralising
701 antibodies from the purified PBMCs and the stimulation of different immune response pathways by
702 live and SW-UV inactivated LSDV. Overall, the results do not support the development of a whole
703 blood IGRA for LSD diagnosis and, despite the additional time and expense required, this study
704 encourages the use of PBMCs rather than whole blood when carrying out research into the CMI
705 response to LSDV.

706 The humoral immune response to LSDV has been characterised in numerous experimental studies
707 using both a commercially available ELISA and the virus neutralisation test (VNT). The VNT in
708 these studies often uses tissue culture infectious dose₅₀ (TCID₅₀) or similar as a readout. In this study
709 we used two new methods which provided more granularity to our assessment of the LSDV humoral
710 immune response – the FVNT, which used number of viral foci rather than TCID₅₀ as a read-out, and
711 the B cell ELISpot.

712 The use of the FVNT to elucidate partial neutralisation provided more in-depth analysis of the
713 humoral immune response in response to needle (n=17) or arthropod (n=10) inoculation. A strong
714 humoral immune response was seen in all clinical calves from 5 dpi onwards with the subsequent
715 increase in neutralising antibodies in the arthropod-challenged calves lagging 6-7 days behind the
716 needle challenged calves, in line with their extended latent period. Both neutralising and binding

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

717 antibody responses were stronger and more rapid in the clinical calves than the nonclinical calves,
718 regardless of the method of inoculation. This was most obvious at later timepoints (from 15 dpi). A
719 similar pattern of responses has been observed in previous studies (22, 60, 61), and is likely due to
720 the higher virus load in the clinical calves providing more antigenic-stimulation.

721 This analysis revealed that although the majority of nonclinical calves did not develop antibodies that
722 afforded complete neutralisation by FVNT₁₀₀, there was clear evidence of partially neutralising
723 antibodies in these individual animals from as early as 5 dpi. These partially neutralising antibodies
724 increased gradually over the course of the studies but varied between individual nonclinical animals.
725 Interestingly, two of the nonclinical calves in group D that did not develop completely neutralising
726 antibodies did develop antibodies that neutralised 50 % of LSDV by 21 dpi. A similar pattern was
727 also detected for the two recipient nonclinical calves (RA2 and RS3). This highlights that animals
728 that were negative on the classical VNT₁₀₀ assay that has been used previously for quantifying the
729 humoral immune response to LSDV still have functionally active antibodies present in their sera.

730 The identification of rapidly appearing partially neutralising antibodies in the two nonclinical
731 arthropod inoculated calves RA2 and RS3 at 7 dpi encouraged us to look more closely at the
732 development of the humoral immune response by developing a B cell ELISpot to monitor the
733 progression of IgM and IgG antibody production. No distinct differences were observed in the IgM
734 and IgG responses from the needle-inoculated animals. However, strong IgM responses were evident
735 in the arthropod-inoculated nonclinical cattle, with a distinct peak at 11 dpi (correlating with the
736 onset of lesions in the clinical animals). This strong IgM response was not observed in the clinical
737 arthropod-inoculated animals. A prominent class switch at 15 dpi was observed in the clinical
738 arthropod-inoculated cattle but occurred later in the nonclinical arthropod-inoculated animals at 23
739 dpi. These results suggest that early IgM production is a correlate of protection and warrants further

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

740 analysis. Measuring B-cell antibody responses together with antibody detection determines an earlier
741 immune response and duration of immunity imperative to vaccine surveillance (62).

742 The role of plasma B cells and antibodies in the primary response to LSDV infection is important for
743 the determination of correlates of protection in infected animals and the development of effective
744 vaccines. Experimental studies investigating the role of neutralising IgG antibodies in mice against
745 vaccinia virus and monkeypox virus identified this antibody isotype developed later in primary
746 infection and after the onset of lesions (63). Similar studies to investigate the role of neutralising IgM
747 in mice challenged with vaccinia virus found that neutralising IgM was detected early in infection
748 and initiated a complement-dependent cascade in the immune response to challenge that could
749 indicate an important role in clinical outcome (63, 64).

750 This study provides in depth analysis of the adaptive immune response to LSDV through inoculation
751 by intravenous and intradermal inoculation and via the use of arthropod vectors *Stomoxys calcitrans*
752 and *Aedes aegypti* under experimental conditions. The study presents the first evidence of differences
753 in the immune response between clinical and nonclinical cattle, and highlights the importance of
754 using the most relevant model possible when studying disease under experimental conditions. These
755 results will influence the development of improved diagnostic and vaccines for LSDV and for post-
756 vaccination monitoring.

757 **Conflict of Interest**

758 The authors declare that the research was conducted in the absence of any commercial or financial
759 relationships that could be construed as a potential conflict of interest.

760 **Author Contributions**

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

761 PCF, NW, BSB, BC and PMB contributed to the conceptualisation of the study. PCF, NW, HM,
762 BSB, IL, KM, JH, SG and PMB contributed to the study methodology. PCF, NW, IL, KM performed
763 the study validation. PCF, NW, HM and IL performed experimental analysis. PCF, NW, HM, BSB,
764 IL, KM and PMB conducted study investigation. KM provided resource support. BSB and PMB
765 contributed to data curation. PCF, NW, HM, IL and PMB wrote the original draft manuscript and all
766 authors contributed to the final review and editing. IH, KM, AVV, JH, SG and PMB provided
767 supervision and leadership. IH and PMB contributed to project administration. BSB and PMB
768 secured funding and PMB provided the study visualisation.

769 **Funding**

770 This project received funding and support from BBSRC responsive mode projects BB/R002606,
771 BB/R008833 and BB/T005173/1, and BBSRC strategic funding to the Pirbright Institute
772 BBS/E/I/00007030, BBS/E/I/00007031, BBS/E/I/00007033, BBS/E/I/00007036, BBS/E/I/00007037,
773 BBS/E/I/00007039. The project received funding from MSD Animal Health, and from the European
774 Union's Horizon 2020 research and innovation programme under grant agreement No 773701.

775 **Acknowledgements**

776 The authors are grateful to the Animal Services Unit at The Pirbright Institute for their assistance in the
777 husbandry and sampling of cattle over the study period.

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

778 1. Kitching RP, Bhat PP, Black DN. The characterization of African strains of capripoxvirus.
779 Epidemiol Infect. 1989;102(2):335-43.

780 2. Tuppurainen ESM, Venter EH, Shisler JL, Gari G, Mekonnen GA, Juleff N, et al. Review:
781 Capripoxvirus Diseases: Current Status and Opportunities for Control. Transboundary and Emerging
782 Diseases. 2017;64(3):729-45.

783 3. Khan YR, Ali A, Hussain K, Ijaz M, Rabbani AH, Khan RL, et al. A review: Surveillance of
784 lumpy skin disease (LSD) a growing problem in Asia. Microbial Pathogenesis. 2021;158:105050.

785 4. Tuppurainen ES, Oura CA. Review: lumpy skin disease: an emerging threat to Europe, the
786 Middle East and Asia. Transbound Emerg Dis. 2012;59(1):40-8.

787 5. Beard PM. Lumpy skin disease: a direct threat to Europe. Vet Rec. 2016;178(22):557-8.

788 6. Namazi F, Khodakaram Tafti A. Lumpy skin disease, an emerging transboundary viral
789 disease: A review. Vet Med Sci. 2021.

790 7. Lu G, Xie JX, Luo JL, Shao R, Jia K, Li SJ. Lumpy skin disease outbreaks in China, since 3
791 August 2019. Transboundary and Emerging Diseases. 2020.

792 8. Acharya KP, Subedi D. First outbreak of lumpy skin disease in Nepal. Transbound Emerg
793 Dis. 2020;67(6):2280-1.

794 9. Casal J, Allepuz A, Miteva A, Pite L, Tabakovska B, Terzievski D, et al. Economic cost of
795 lumpy skin disease outbreaks in three Balkan countries: Albania, Bulgaria and the Former Yugoslav
796 Republic of Macedonia (2016-2017). Transbound Emerg Dis. 2018;65(6):1680-8.

797 10. Aerts L, Haegeman A, De Leeuw I, Philips W, Van Campe W, Behaeghel I, et al. Detection
798 of Clinical and Subclinical Lumpy Skin Disease Using Ear Notch Testing and Skin Biopsies.
799 Microorganisms. 2021;9(10):2171.

800 11. Sanz-Bernardo B, Haga IR, Wijesiriwardana N, Hawes PC, Simpson J, Morrison LR, et al.
801 Lumpy Skin Disease Is Characterized by Severe Multifocal Dermatitis With Necrotizing Fibrinoid
802 Vasculitis Following Experimental Infection. Vet Pathol. 2020;57(3):388-96.

803 12. Sariya L, Paungpin W, Chaiwattanarungruengpaisan S, Thongdee M, Nakthong C,
804 Jitwongwai A, et al. Molecular detection and characterization of lumpy skin disease viruses from
805 outbreaks in Thailand in 2021. Transbound Emerg Dis. 2022.

806 13. Arjkumpa O, Suwannaboon M, Boonrod M, Punyawan I, Liangchaisiri S, Laobannue P, et al.
807 The First Lumpy Skin Disease Outbreak in Thailand (2021): Epidemiological Features and Spatio-
808 Temporal Analysis. Front Vet Sci. 2022;8.

809 14. Sevik M, Dogan M. Epidemiological and Molecular Studies on Lumpy Skin Disease
810 Outbreaks in Turkey during 2014-2015. Transbound Emerg Dis. 2017;64(4):1268-79.

811 15. Abutarbush SM, Ababneh MM, Al Zoubi IG, Al Sheyab OM, Al Zoubi MG, Alekish MO, et
812 al. Lumpy Skin Disease in Jordan: Disease Emergence, Clinical Signs, Complications and
813 Preliminary-associated Economic Losses. Transboundary and Emerging Diseases. 2015;62(5):549-
814 54.

815 16. Lubinga JC, Tuppurainen ES, Coetzer JA, Stoltz WH, Venter EH. Transovarial passage and
816 transmission of LSDV by Amblyomma hebraeum, Rhipicephalus appendiculatus and Rhipicephalus
817 decoloratus. Exp Appl Acarol. 2014;62(1):67-75.

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

818 17. Chihota CM, Rennie LF, Kitching RP, Mellor PS. Mechanical transmission of lumpy skin
819 disease virus by *Aedes aegypti* (Diptera: Culicidae). *Epidemiology and infection*. 2001;126(2):317-
820 21.

821 18. Sanz-Bernardo B, Haga IR, Wijesiriwardana N, Basu S, Larner W, Diaz AV, et al.
822 Quantifying and modelling the acquisition and retention of lumpy skin disease virus by
823 haematophagous insects reveals clinically but not subclinically-affected cattle are promoters of viral
824 transmission and key targets for control of disease outbreaks. *J Virol*. 2021.

825 19. Sohier C, Haegeman A, Mostin L, De Leeuw I, Campe WV, De Vleeschauwer A, et al.
826 Experimental evidence of mechanical lumpy skin disease virus transmission by *Stomoxys calcitrans*
827 biting flies and *Haematopota* spp. horseflies. *Sci Rep*. 2019;9(1):20076.

828 20. Issimov A, Taylor DB, Shalmenov M, Nurgaliyev B, Zhubantayev I, Abekeshev N, et al.
829 Retention of lumpy skin disease virus in *Stomoxys* spp (*Stomoxys calcitrans*, *Stomoxys sitiens*,
830 *Stomoxys indica*) following intrathoracic inoculation, Diptera: Muscidae. *PLoS One*.
831 2021;16(2):e0238210.

832 21. Kononov A, Byadovskaya O, Kononova S, Yashin R, Zinyakov N, Mischenko V, et al.
833 Detection of vaccine-like strains of lumpy skin disease virus in outbreaks in Russia in 2017. *Arch
834 Virol*. 2019;164(6):1575-85.

835 22. Haegeman A, De Leeuw I, Mostin L, Campe WV, Aerts L, Venter E, et al. Comparative
836 Evaluation of Lumpy Skin Disease Virus-Based Live Attenuated Vaccines. *Vaccines*. 2021;9(5):473.

837 23. Al-Salihi KA, Hassan IQ. Lumpy Skin Disease in Iraq: Study of the Disease Emergence.
838 *Transboundary and emerging diseases*. 2015;62(5):457-62.

839 24. Agianniotaki EI, Babiuk S, Katsoulos PD, Chaintoutis SC, Praxitelous A, Quizon K, et al.
840 Colostrum transfer of neutralizing antibodies against lumpy skin disease virus from vaccinated cows
841 to their calves. *Transbound Emerg Dis*. 2018;65(6):2043-8.

842 25. Mathijs E, Vandenbussche F, Haegeman A, King A, Nthangeni B, Potgieter C, et al.
843 Correction for Mathijs et al., Complete Genome Sequences of the Neethling-Like Lumpy Skin
844 Disease Virus Strains Obtained Directly from Three Commercial Live Attenuated Vaccines. *Genome
845 Announc*. 2017;5(6).

846 26. Milovanovic M, Dietze K, Milicevic V, Radojicic S, Valcic M, Moritz T, et al. Humoral
847 immune response to repeated lumpy skin disease virus vaccination and performance of serological
848 tests. *BMC Vet Res*. 2019;15(1):80.

849 27. Ochwo S, VanderWaal K, Munsey A, Nkamwesiga J, Ndekezi C, Auma E, et al.
850 Seroprevalence and risk factors for lumpy skin disease virus seropositivity in cattle in Uganda. *BMC
851 Vet Res*. 2019;15(1):236.

852 28. Hamdi J, Bamouh Z, Jazouli M, Boumart Z, Tadlaoui KO, Fihri OF, et al. Experimental
853 evaluation of the cross-protection between Sheeppox and bovine Lumpy skin vaccines. *Sci Rep-Uk*.
854 2020;10(1).

855 29. Moller J, Moritz T, Schlottau K, Krstevski K, Hoffmann D, Beer M, et al. Experimental
856 lumpy skin disease virus infection of cattle: comparison of a field strain and a vaccine strain. *Arch
857 Virol*. 2019;164(12):2931-41.

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

858 30. Babiuk S, Wallace DB, Smith SJ, Bowden TR, Dalman B, Parkyn G, et al. Detection of
859 Antibodies Against Capripoxviruses Using an Inactivated Sheppox Virus ELISA. Transboundary
860 and Emerging Diseases. 2009;56(4):132-41.

861 31. Fay P, Limon G, Ulziibat G, Khanui B, Myagmarsuren O, Tore G, et al. A field study
862 evaluating the humoral immune response in Mongolian sheep vaccinated against sheppox virus.
863 Transboundary and Emerging Diseases.n/a(n/a).

864 32. Boshra H, Truong T, Nfon C, Bowden TR, Gerdts V, Tikoo S, et al. A lumpy skin disease
865 virus deficient of an IL-10 gene homologue provides protective immunity against virulent
866 capripoxvirus challenge in sheep and goats. Antiviral Res. 2015;123:39-49.

867 33. Kitching RP, Hammond JM, Taylor WP. A single vaccine for the control of capripox
868 infection in sheep and goats. Research in veterinary science. 1987;42(1):53-60.

869 34. Samojlovic M, Polacek V, Gurjanov V, Lupulovic D, Lazic G, Petrovic T, et al. Detection of
870 Antibodies against Lumpy Skin Disease Virus by Virus Neutralization Test and Elisa Methods. Acta
871 Vet-Beograd. 2019;69(1):47-60.

872 35. Weiss KE. Lumpy skin disease. In: FAO, editor. Emerging diseases of Animals, FAO
873 Agricultural Studies 61. Rome: FAO; 1963. p. 179-201.

874 36. Mack TM, Noble J, Jr., Thomas DB. A prospective study of serum antibody and protection
875 against smallpox. Am J Trop Med Hyg. 1972;21(2):214-8.

876 37. Gilchuk I, Gilchuk P, Sapparapu G, Lampley R, Singh V, Kose N, et al. Cross-Neutralizing
877 and Protective Human Antibody Specificities to Poxvirus Infections. Cell. 2016;167(3):684-94.e9.

878 38. Xu R, Johnson AJ, Liggitt D, Bevan MJ. Cellular and humoral immunity against vaccinia
879 virus infection of mice. J Immunol. 2004;172(10):6265-71.

880 39. Kennedy RB, Ovsyannikova IG, Jacobson RM, Poland GA. The immunology of smallpox
881 vaccines. Curr Opin Immunol. 2009;21(3):314-20.

882 40. Smith GL, Talbot-Cooper C, Lu Y. How Does Vaccinia Virus Interfere With Interferon? Adv
883 Virus Res. 2018;100:355-78.

884 41. Chesler DA, Reiss CS. The role of IFN-gamma in immune responses to viral infections of the
885 central nervous system. Cytokine Growth Factor Rev. 2002;13(6):441-54.

886 42. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4⁺T cells: differentiation and functions. Clin
887 Dev Immunol. 2012;2012:925135.

888 43. Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG. Follicular helper T
889 cells: lineage and location. Immunity. 2009;30(3):324-35.

890 44. Zhang N, Bevan MJ. CD8(+) T cells: foot soldiers of the immune system. Immunity.
891 2011;35(2):161-8.

892 45. Carn VM, Kitching RP. The clinical response of cattle experimentally infected with lumpy
893 skin disease (Neethling) virus. Arch Virol. 1995;140(3):503-13.

894 46. Kara PD, Mather AS, Pretorius A, Chetty T, Babiuk S, Wallace DB. Characterisation of
895 putative immunomodulatory gene knockouts of lumpy skin disease virus in cattle towards an
896 improved vaccine. Vaccine. 2018;36(31):4708-15.

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

897 47. Safini N, Bamouh Z, Hamdi J, Jazouli M, Tadlaoui KO, El Harrak M. In-vitro and in-vivo
898 study of the interference between Rift Valley fever virus (clone 13) and Sheeppox/Lumpy Skin
899 disease viruses. *Sci Rep.* 2021;11(1):12395.

900 48. Haegeman A, De Leeuw I, Mostin L, Campe WV, Aerts L, Venter E, et al. Comparative
901 Evaluation of Lumpy Skin Disease Virus-Based Live Attenuated Vaccines. *Vaccines (Basel).*
902 2021;9(5).

903 49. Fay PC, Cook CG, Wijesiriwardana N, Tore G, Comtet L, Carpentier A, et al. Madin-Darby
904 bovine kidney (MDBK) cells are a suitable cell line for the propagation and study of the bovine
905 poxvirus lumpy skin disease virus. *J Virol Methods.* 2020;285:113943.

906 50. Sanz-Bernardo B, Suckoo R, Haga IR, Wijesiriwardana N, Harvey A, Basu S, et al. The
907 Acquisition and Retention of Lumpy Skin Disease Virus by Blood-Feeding Insects Is Influenced by
908 the Source of Virus, the Insect Body Part, and the Time since Feeding. *Journal of*
909 *Virology.* 0(0):e00751-22.

910 51. Fray MD, Mann GE, Charleston B. Validation of an Mx/CAT reporter gene assay for the
911 quantification of bovine type-I interferon. *J Immunol Methods.* 2001;249(1-2):235-44.

912 52. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious
913 disease. *Nat Rev Immunol.* 2015;15(2):87-103.

914 53. OIE Terrestrial Manual; Lumpy Skin Disease [Internet]. OIE. 2021 [cited 26th May 2022].
915 Available from: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.04.12_LSD.pdf

916 54. Schmid MA, Glasner DR, Shah S, Michlmayr D, Kramer LD, Harris E. Mosquito Saliva
917 Increases Endothelial Permeability in the Skin, Immune Cell Migration, and Dengue Pathogenesis
918 during Antibody-Dependent Enhancement. *PLoS Pathog.* 2016;12(6):e1005676-e.

919 55. Brackney DE, LaReau JC, Smith RC. Frequency matters: How successive feeding episodes
920 by blood-feeding insect vectors influences disease transmission. *PLoS Pathog.* 2021;17(6):e1009590.

921 56. Tscharke DC, Reading PC, Smith GL. Dermal infection with vaccinia virus reveals roles for
922 virus proteins not seen using other inoculation routes. *J Gen Virol.* 2002;83(Pt 8):1977-86.

923 57. Wolff J, Krstevski K, Beer M, Hoffmann B. Minimum Infective Dose of a Lumpy Skin
924 Disease Virus Field Strain from North Macedonia. *Viruses.* 2020;12(7):768.

925 58. Reid E, Juleff N, Windsor M, Gubbins S, Roberts L, Morgan S, et al. Type I and III IFNs
926 Produced by Plasmacytoid Dendritic Cells in Response to a Member of the Flaviviridae Suppress
927 Cellular Immune Responses. *J Immunol.* 2016;196(10):4214-26.

928 59. de la Rua-Domenech R, Goodchild AT, Vordermeier HM, Hewinson RG, Christiansen KH,
929 Clifton-Hadley RS. Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests,
930 gamma-interferon assay and other ancillary diagnostic techniques. *Res Vet Sci.* 2006;81(2):190-210.

931 60. Wolff J, Tuppurainen E, Adedeji A, Meseke C, Asala O, Adole J, et al. Characterization of a
932 Nigerian Lumpy Skin Disease Virus Isolate after Experimental Infection of Cattle. *Pathogens.*
933 2021;11(1).

934 61. Bamouh Z, Hamdi J, Fellahi S, Khayi S, Jazouli M, Tadlaoui KO, et al. Investigation of Post
935 Vaccination Reactions of Two Live Attenuated Vaccines against Lumpy Skin Disease of Cattle.
936 *Vaccines.* 2021;9(6):621.

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

937 62. Lefevre EA, Carr BV, Prentice H, Charleston B. A quantitative assessment of primary and
938 secondary immune responses in cattle using a B cell ELISPOT assay. Veterinary Research.
939 2009;40(1).

940 63. Moyron-Quiroz JE, McCausland MM, Kageyama R, Sette A, Crotty S. The smallpox vaccine
941 induces an early neutralizing IgM response. Vaccine. 2009;28(1):140-7.

942 64. Gong S, Ruprecht RM. Immunoglobulin M: An Ancient Antiviral Weapon – Rediscovered.
943 Frontiers in Immunology. 2020;11.

944

945

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

946 **Table 1 Cattle study experimental design**

Cattle Study Groups and Animal Numbers						
	A	B	C	D 'Donors'	RA 'Recipients'	RS 'Recipients'
Uninfected	A1	B6	C11	none	none	none
Inoculated	A2, A3, A4, A5	B7, B8, B9, B10	C12, C13, C14, C15	D1, D2, D3, D4, D5	RA1, RA2, RA3, RA4, RA5	RS1, RS2, RS3, RS4, RS5
Inoculation Route	Intravenous and intradermal	Intravenous and intradermal	Intravenous and intradermal	Intravenous and intradermal	<i>Stomoxys calcitrans</i>	<i>Aedes aegypti</i>

947 *Study duration for the intravenous and intradermal cattle groups was 21 days and recipients 29 days.

948

949 **Figure 1. Clinical and virological outcomes of clinical and nonclinical calves after needle-
950 inoculation with LSDV.** The number of cutaneous lesions (**A** and **B**) were recorded each day, up to
951 a maximum of 100 lesions. The rectal temperature of clinical and nonclinical calves (**C** and **D**) was
952 recorded daily. The number of LSDV genome copies in the blood of each calf was quantified by
953 qPCR. A vertical dotted line represents the first day cutaneous lesions were noted in the clinical
954 calves.

955 **Figure 2. Needle-inoculated clinical and nonclinical calves produce IFN- γ but not type I IFN in
956 response to stimulation of PBMCs or blood by UV-inactivated LSDV. (A and B)** The amount of
957 type I IFN in the sera of needle-inoculated cattle at indicated timepoints post infection was quantified
958 using a cellular reporter system (MxCAT assay). IGAs were performed on PBMC purified from
959 heparinised blood collected at indicated timepoints from clinical (**C**) and nonclinical (**D**) calves.
960 PBMCs were stimulated overnight with UV-inactivated LSDV, supernatant collected, and IFN- γ
961 quantified using an in-house ELISA. The error bars represent the SEM. An IGRA was also

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

962 performed on stimulated whole blood from clinical (**E**) and nonclinical (**F**) calves at the timepoints
963 indicated. Whole blood was stimulated with live LSDV overnight, then IFN- γ present in the plasma
964 quantified using a commercially available ELISA. The error bars represent the SEM. The dotted
965 horizontal line represents a 15 S/P % positive cut-off. The dotted vertical line represents the first day
966 cutaneous lesions occurred in the clinical animals. Data corrected to mock PBS stimulation.

967 **Figure 3. Needle-inoculated clinical (A) and nonclinical (B) calves produce IFN- γ in response to**
968 **stimulation of PBMCs by UV-inactivated LSDV as measured by ELISpot assay.** The number of
969 IFN- γ producing PBMCs stimulated with SW-UV inactivated LSDV was determined by IFN- γ
970 ELISpot and presented as spot forming cells/million (SFC/10⁶). The error bars represent the SEM.
971 The dotted line represents the first day of the onset of cutaneous lesions in the clinical animals. Data
972 corrected to mock PBS stimulation.

973 **Figure 4. CD4⁺CD8⁻ and CD8⁺CD4⁻ but not CD4⁻CD8⁻ T cells are responsible for the**
974 **production of IFN- γ in response to stimulation with UV-inactivated LSDV in needle-inoculated**
975 **calves.** Flow cytometric analysis was used to determine the % of IFN- γ ⁺ T cells expressing
976 CD4⁺CD8⁻ (**A** and **B**), CD8⁺CD4⁻ (**C** and **D**) and CD4⁻CD8⁻ (**E** and **F**) in response to stimulation with
977 SW-UV inactivated LSDV. Samples were tested in triplicate and normalised to the mock control.
978 The error bars represent the SEM. The dotted vertical line represents the first day lesions occurred in
979 clinical animals. Data corrected to mock PBS stimulation.

980 **Figure 5. Calves that develop clinical disease following needle-inoculation with LSDV also**
981 **develop a more rapid and robust humoral immune response as measured either by ELISA or**
982 **FVNT.** The antibody responses in calves after needle-inoculation with LSDV was measured using
983 the ID Screen® Capripox Double Antigen Multi-species ELISA kit (Innovative Diagnostics) (**A** and
984 **B**). The horizontal line represents the 30 S/P% cut-off. The production of neutralising antibodies was

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

985 measured using a fluorescent virus neutralisation test. The percentage of viral foci-forming units
986 neutralised by the sera was measured over time in clinical (**C**) and nonclinical (**D**) calves. Complete
987 neutralisation of the virus (FVNT₁₀₀) was also calculated in clinical (**E**) and nonclinical (**F**) calves.
988 The dotted line represents the first day of the onset of cutaneous lesions in the clinical animals.

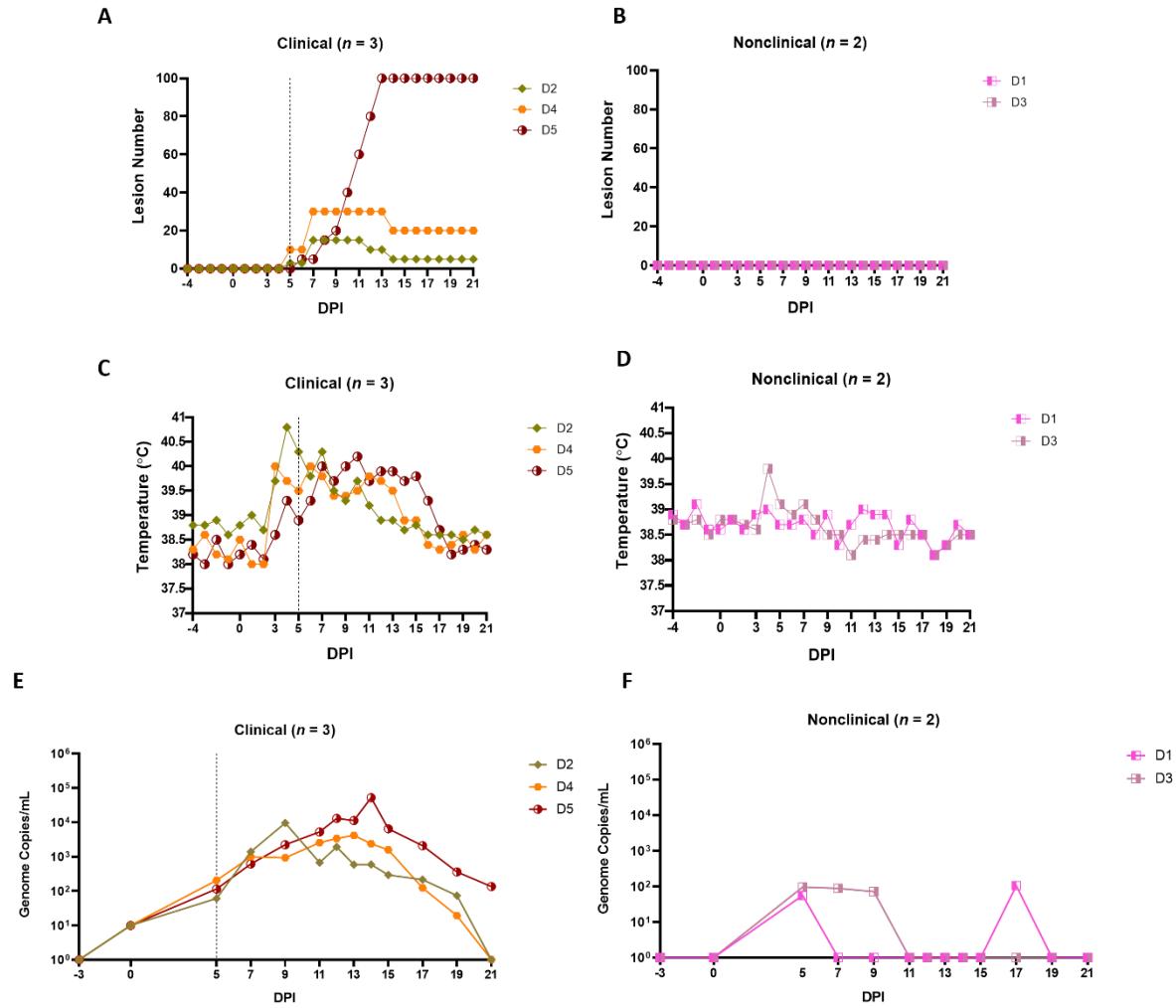
989 **Figure 6. Eight out of ten arthropod-inoculated calves developed clinical signs consistent with**
990 **LSD approximately 11 days after the start of inoculation.** The number of cutaneous lesions in the
991 clinical (**A**) and nonclinical (**B**) calves were recorded each day, up to a maximum of 100 lesions. The
992 rectal temperature of clinical and nonclinical calves (**C** and **D**) was recorded daily. The number of
993 LSDV genome copies in the blood of each calf was quantified by qPCR. The red dotted line
994 represents the onset of cutaneous lesions for group RS cattle and the blue dotted line the onset of
995 cutaneous lesions for group RA cattle.

996 **Figure 7. Arthropod-inoculated clinical calves but not nonclinical calves develop a uniform and**
997 **robust LSDV-specific CMI response as measured by IGRA on purified PBMCs.** The amount of
998 type I IFN in the sera of needle-inoculated cattle at indicated timepoints post infection (**A** and **B**) was
999 quantified using a cellular reporter system (MxCAT assay). IGRAAs were performed on PBMC
1000 purified from heparinised blood collected at indicated timepoints from clinical (**C**) and nonclinical
1001 (**D**) calves. PBMCs were stimulated overnight with UV-inactivated LSDV, supernatant collected, and
1002 IFN- γ quantified using an in-house ELISA. The error bars represent the SEM. An IGRA was also
1003 performed on stimulated whole blood from clinical (**E**) and nonclinical (**F**) calves at the timepoints
1004 indicated. Whole blood was stimulated with live LSDV overnight, then IFN- γ present in the plasma
1005 quantified using a commercially available ELISA. The error bars represent the SEM. The dotted
1006 horizontal line represents a 15 S/P % positive cut-off. Red dotted line represents the onset of lesions

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1007 for group RS cattle and the blue dotted line for group RA cattle. Data corrected to mock PBS
1008 stimulation.

1009 **Figure 8. Calves that develop clinical disease following arthropod inoculation with LSDV**
1010 **develop a rapid and robust humoral immune response as measured either by ELISA or FVNT.**
1011 The antibody responses in calves after needle-inoculation with LSDV was measured using the ID
1012 Screen® Capripox Double Antigen Multi-species ELISA kit (Innovative Diagnostics) following
1013 manufacturer instructions (**A** and **B**). The error bars represent the SEM. The production of
1014 neutralising antibodies was measured using a fluorescent virus neutralisation test. The percentage of
1015 viral foci-forming units neutralised by the sera was measured over time in clinical (**C**) and
1016 nonclinical (**D**) calves. Complete neutralisation of the virus (FVNT₁₀₀) was also calculated in clinical
1017 (**E**) and nonclinical (**F**) calves. Red dotted line represents the onset of lesions for group RS cattle and
1018 the blue dotted line for group RA cattle.

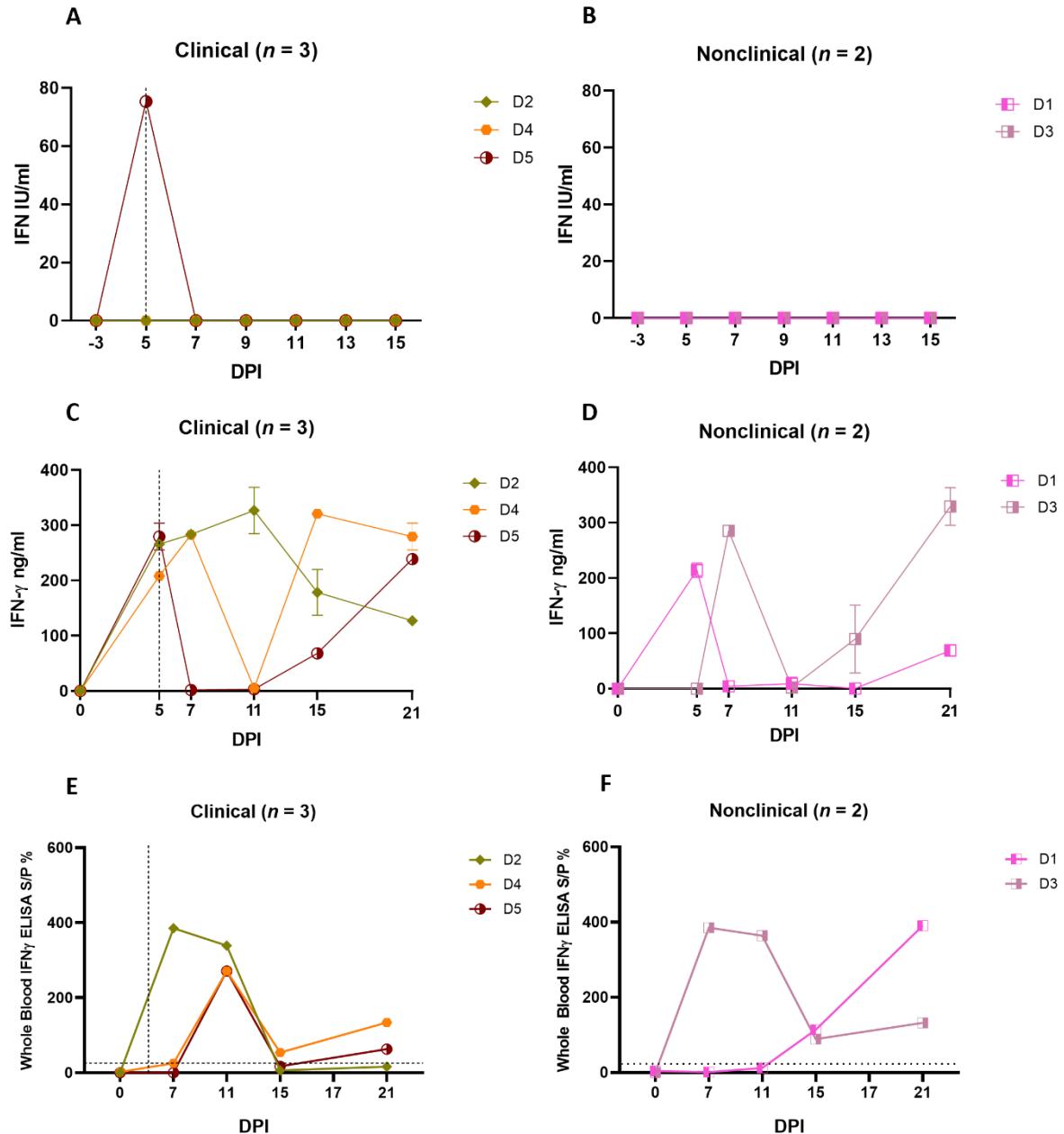

1019 **Figure 9. Protection against LSD is associated with a robust LSDV-specific IgM response**
1020 **following arthropod-inoculation but not needle-inoculation.** PBMCs were isolated from
1021 heparinised blood from needle-inoculated (**A** and **B**) and arthropod-inoculated (**C** and **D**) calves at
1022 the time points shown, and stimulated overnight with live LSDV. Antibody secreting cells were then
1023 labelled with bovine anti-IgM or bovine anti-IgG antibodies. Spots were read using an ImmunoSpot
1024 7.0 reader and ImmunoSpot SC suite (Cellular Technology Limited). Results were manually
1025 validated for false-positive results and expressed as the mean number of ASCs/million. Results are
1026 expressed as group mean ASCs/10⁶ PBMCs \pm standard error of the mean. Red dotted line represents
1027 the onset of lesions for group RS cattle and the blue dotted line for group RA cattle. Data corrected to
1028 mock uninfected cell lysate stimulation.

1029

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1030

1031 Figure 1

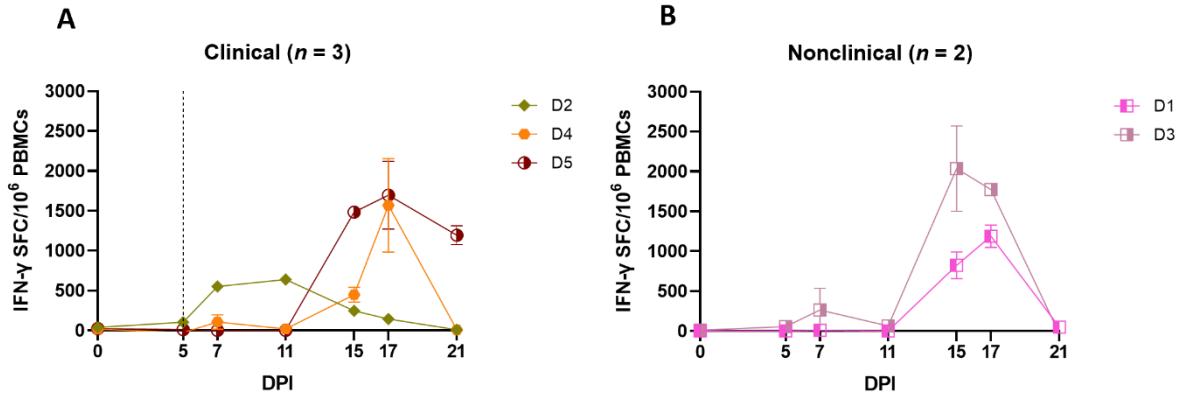


1032

1033

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1034 Figure 2

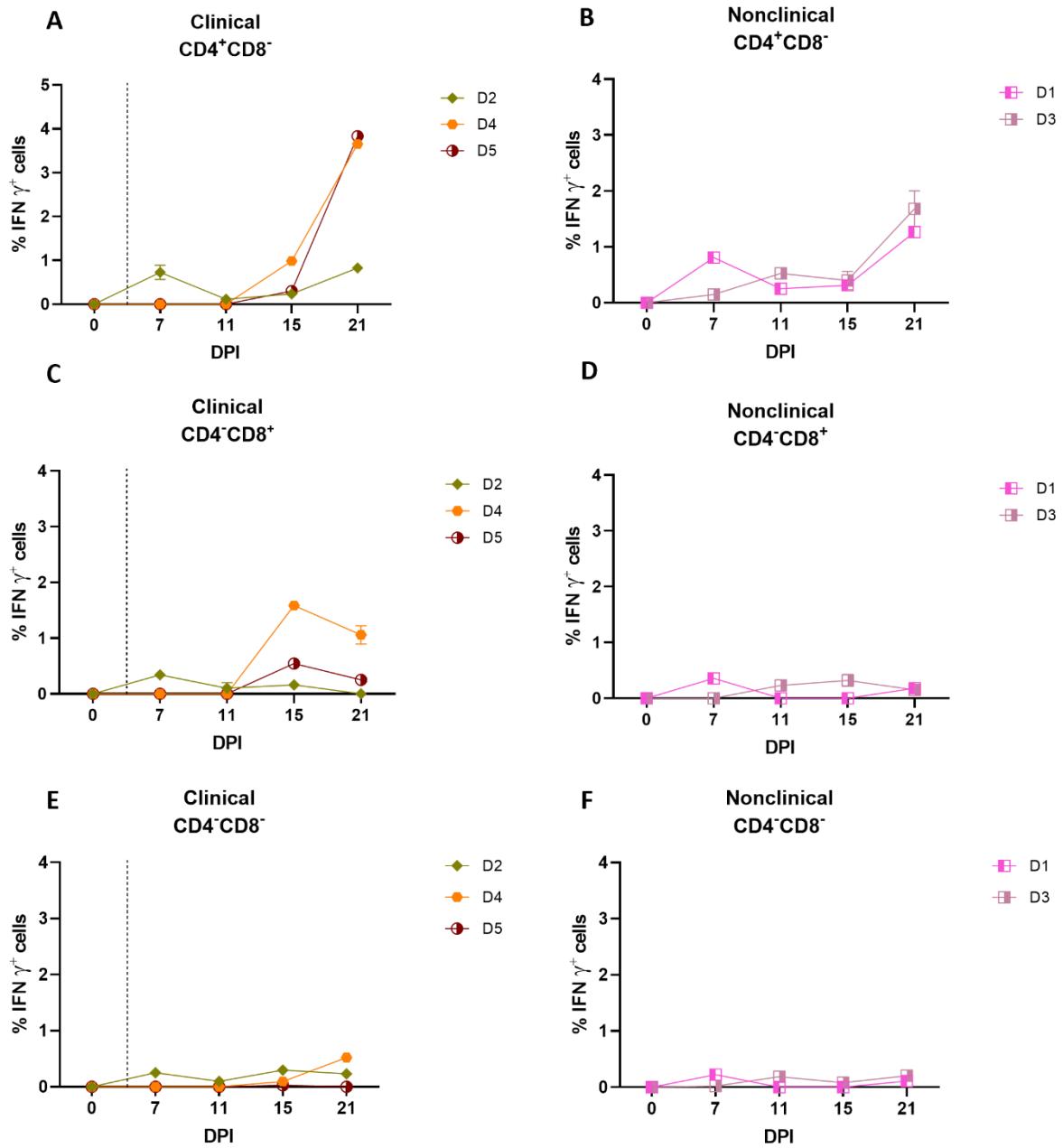


1035

1036

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1037 Figure 3

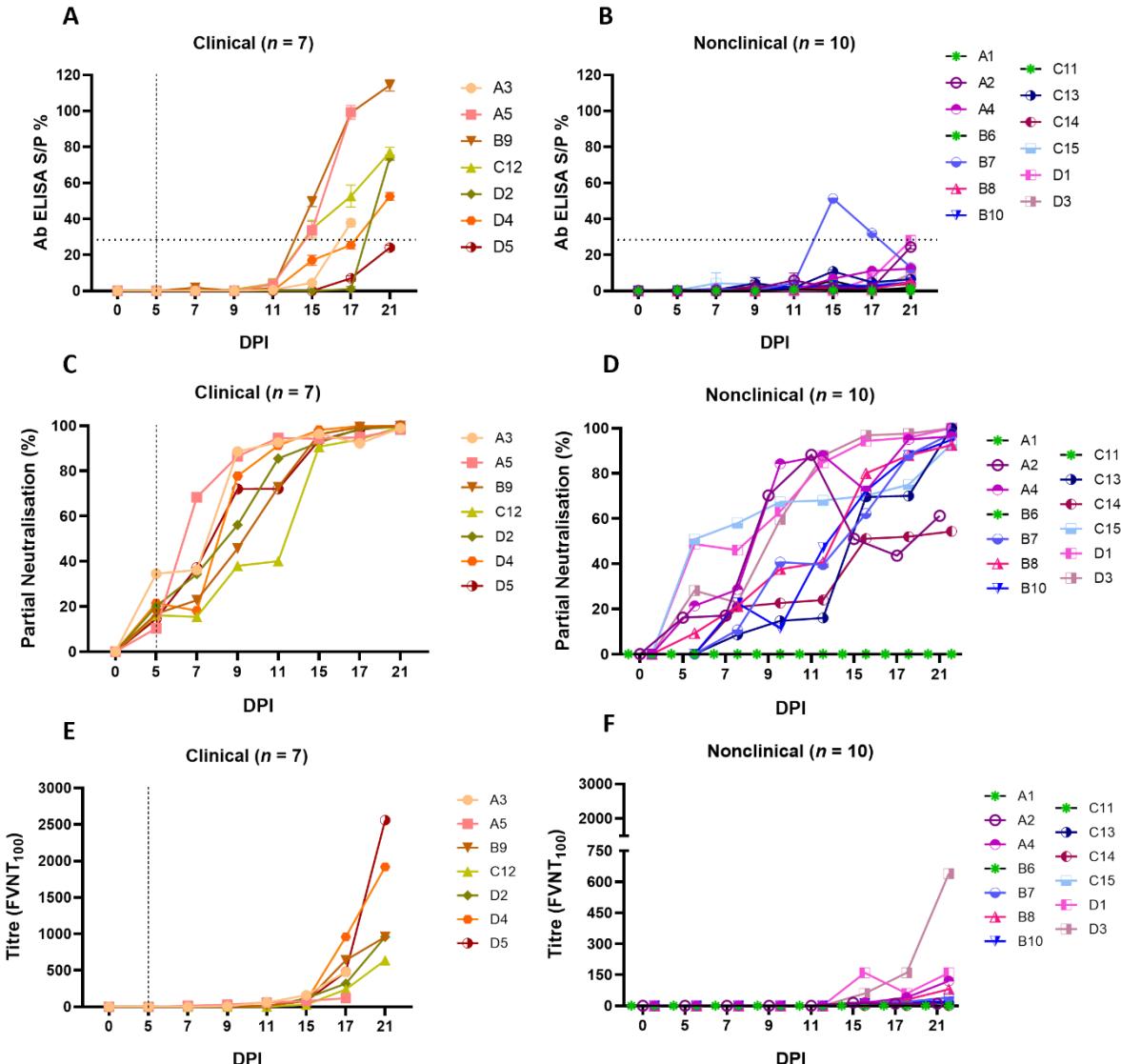


1038

1039

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1040 Figure 4

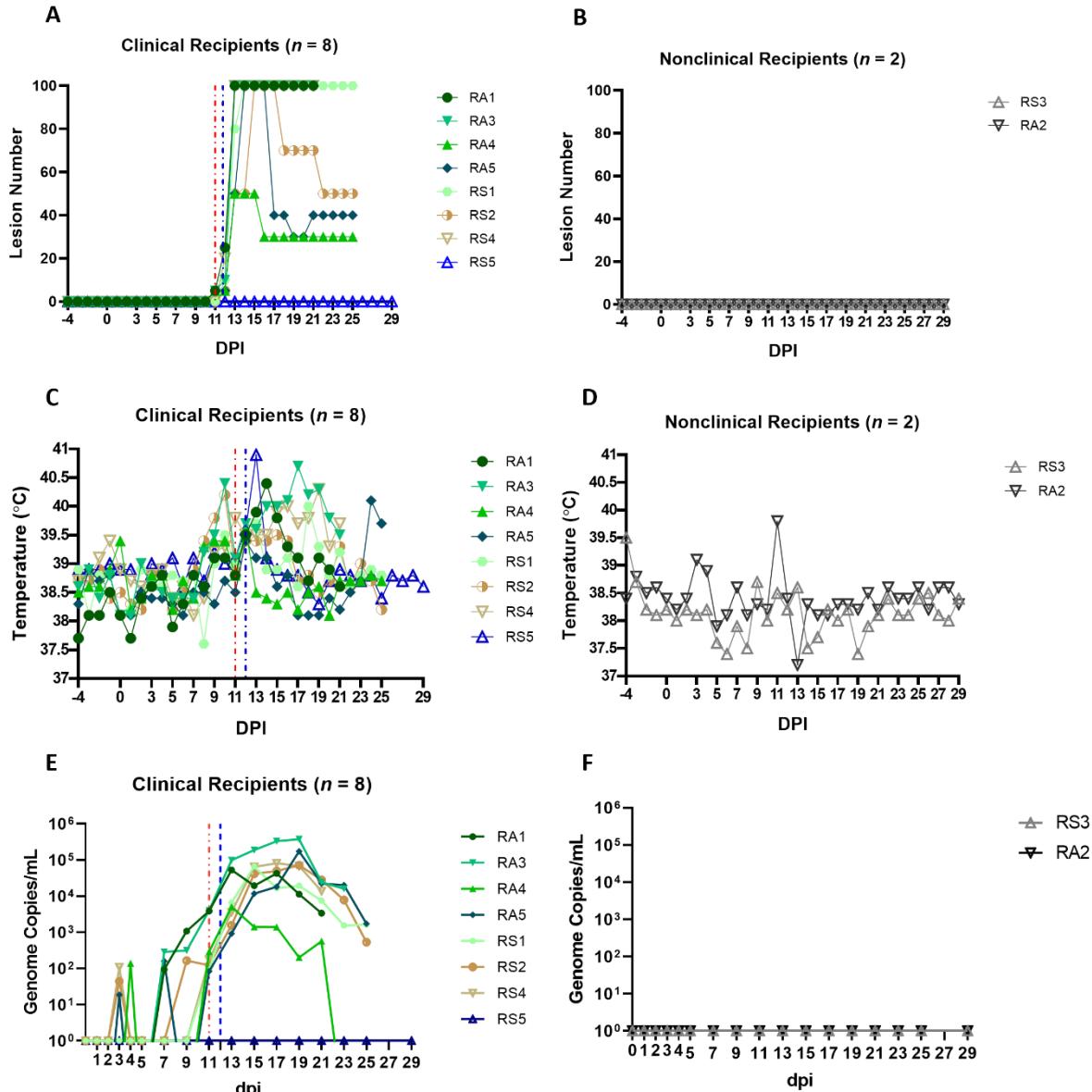


1041

1042

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1043 Figure 5

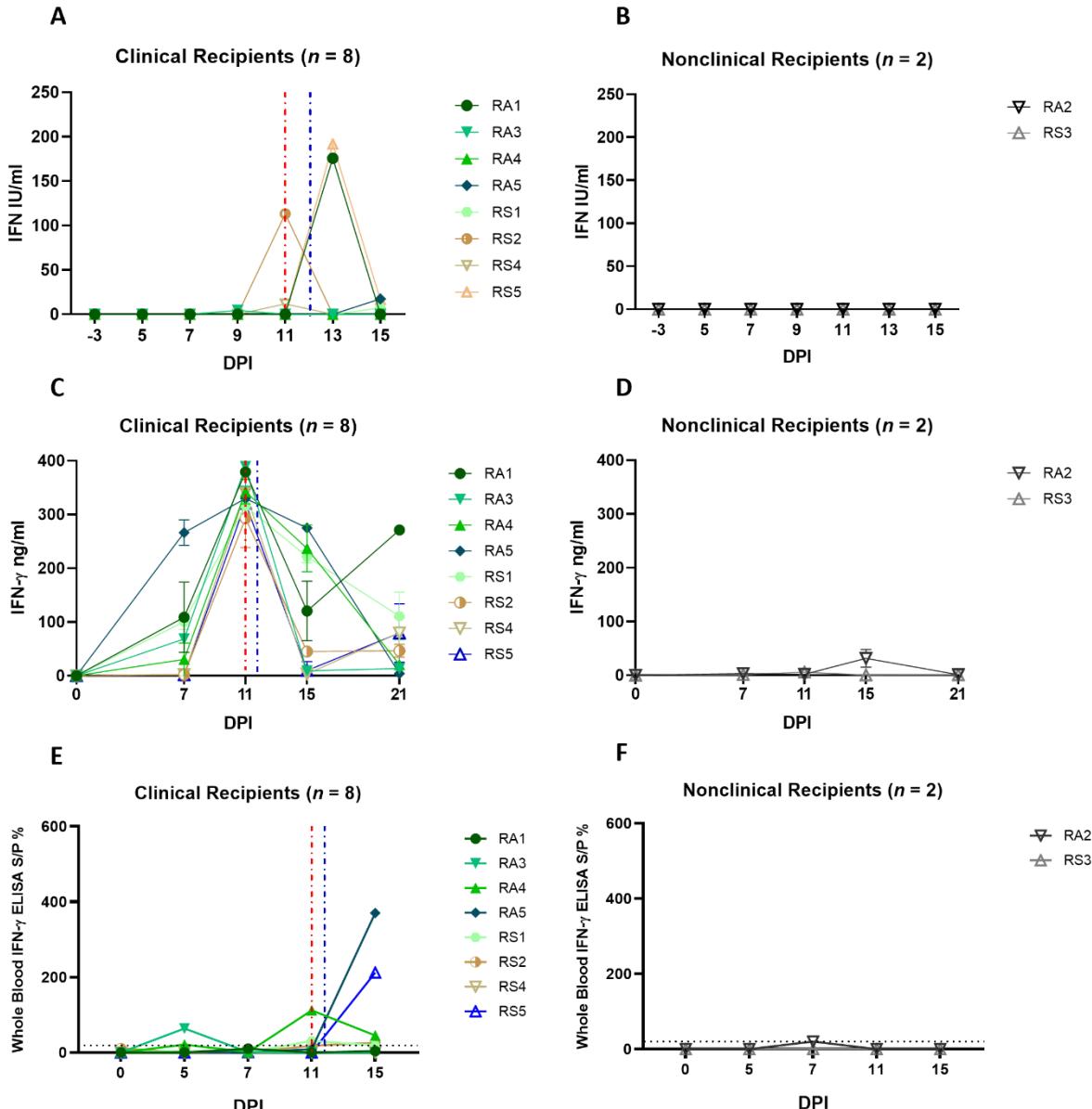


1044

1045

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1046 Figure 6

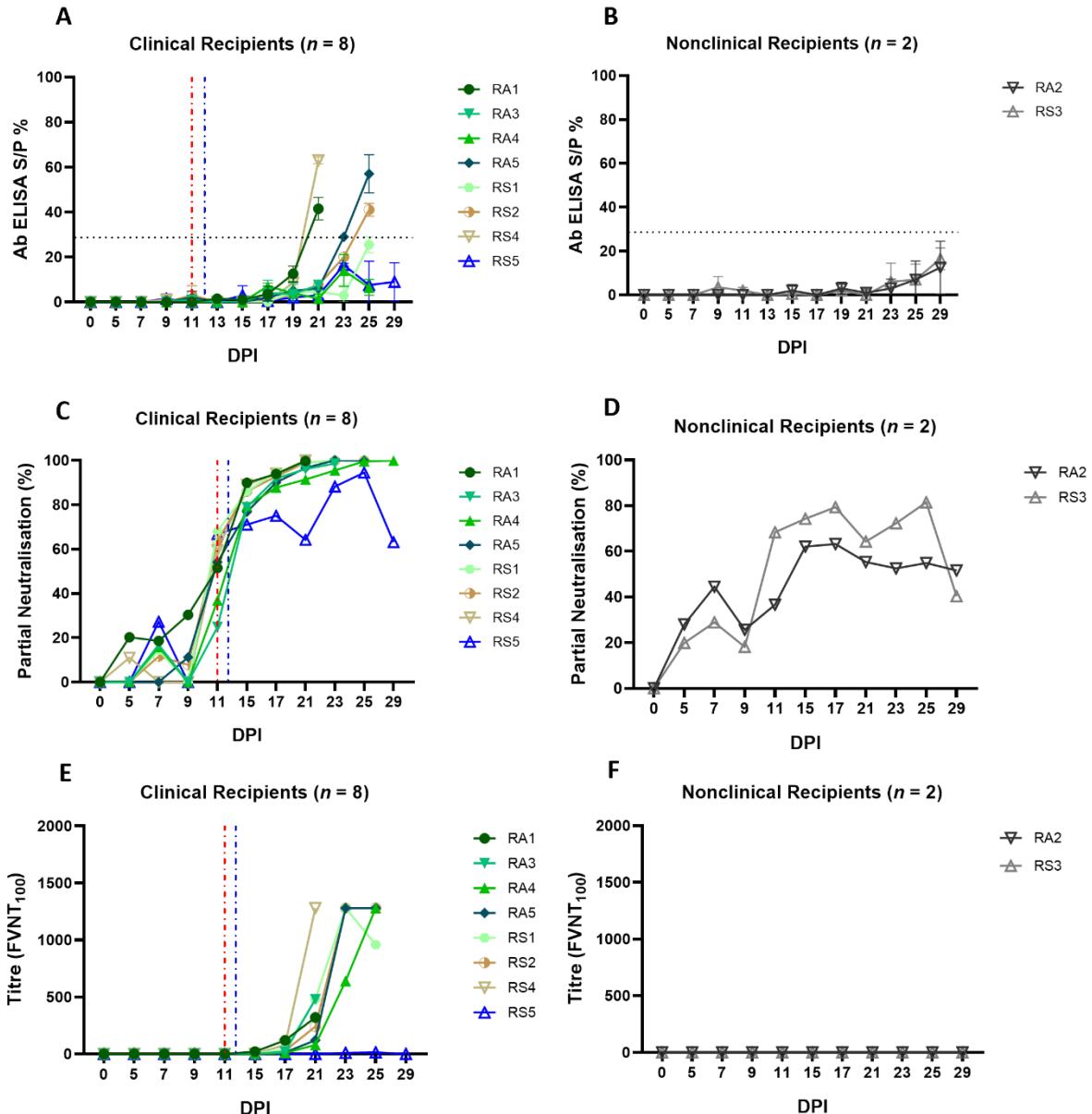


1047

1048

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1049 Figure 7

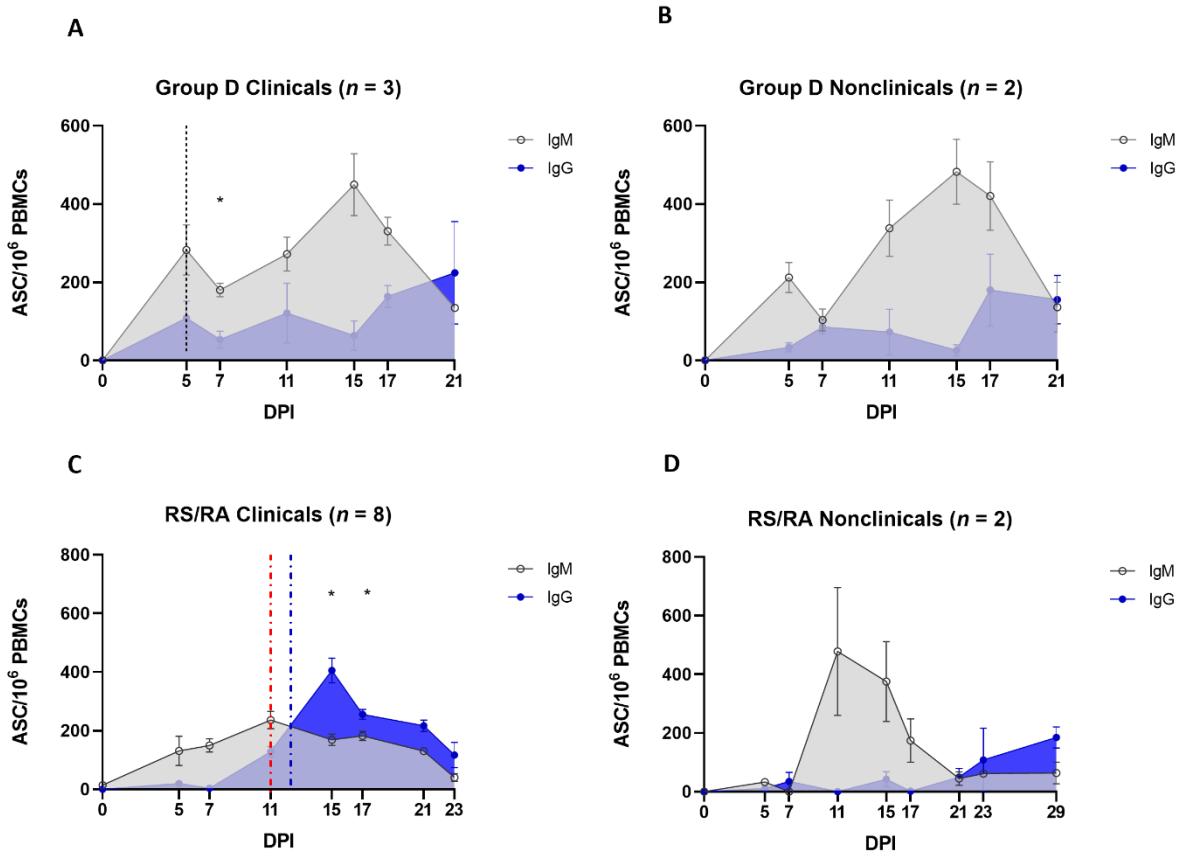


1050

1051

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1052 Figure 8



1053

1054

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

1055 Figure 9

1056

1057