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Abstract

Social groups exist because individuals within the group accrue a net benefit from sharing space.
The profitability of sociality, however, varies with ecological context. As ecological context
varies, tension emerges among the costs and benefits of social grouping. Fission-fusion societies
are fluid in their group dynamics across spatial and temporal contexts, permitting insights into
how context affects whether animals choose to join or depart a group. We tested four non-
mutually exclusive hypotheses driving variation in fission and fusion in caribou: the risky places,
environment heterogeneity, activity budget, and social familiarity hypotheses. The risky places
hypothesis predicts animals are unlikely to diffuse when habitats are open and risk of predation
is elevated. The habitat heterogeneity hypothesis predicts that fission is more likely in a
heterogeneous landscape due to the rising conflicts of interest between group members. The
activity budget hypothesis predicts dyads associate by body size due to similar food passage
rates. The social cohesion hypothesis predicts that familiar individuals are less likely to fission.
We tested the hypotheses using time-to-event (time before fission) analyses and a linear model
that assesses spatial, social, and body size relationships among female caribou (n = 22) on Fogo
Island, Newfoundland, Canada. Contrary to our prediction for risky places, probability of fission
was not influenced by habitat openness. The hypothesis of environmental heterogeneity was
partially supported, as caribou remained less cohesive in environments with a higher richness of
habitats. No direct evidence emerged to support the activity budget hypothesis. However, it
appears that caribou maintain the strongest social bonds among variably sized individuals and
these social bonds do decrease the propensity to split. Collectively, our findings showed that
social interactions may depend not only on individual identity and characteristics, but also the

spatial context in which these interactions occur.
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Introduction

Changing ecological contexts influence the costs and benefits of animal social behaviours
(Webber & Vander Wal, 2018). For gregarious species that experience rapid or ongoing changes
in ecological contexts, social groups can range from stable with limited inter-group movement to
dynamic fission-fusion societies with frequent merging and splitting (Aureli et al., 2008). Animal
groups are predicted to reach an optimal size that maximizes fitness within a given context
(Carter et al., 2009; Webber & Vander Wal, 2018; Webber & Vander Wal, 2021). For example,
risky habitat constitutes a key ecological context that can result in group fusion to dilute
predation risk (Moll et al., 2016). Alternately, complex habitats provide cover from predators,
can result in predator confusion, and are thus predicted to result in group fission (Fortin et al.,
2008). Furthermore, within social groups, conflicts can also arise between individuals, affecting
fission (Conradt & Roper, 2000). For example, according to their body size, some ungulate
species allocate time differently to foraging based on size-specific digestion efficiency
(Ruckstuhl, 2007). As a result, there is a mismatch between group members in the time required
for foraging and digestion (Ruckstuhl & Neuhaus, 2002). Consequently, variation in intrinsic
requirements of individuals in the group drives fission into subgroups (Conradt & Roper, 2000).
Moreover, pre-existing social relationships may also affect fission. For example, familiarity
between individuals may minimize fission of social groups (Carter et al., 2013). Here, we
consider the variation in the ecological (i.e., perceived predation risk and habitat heterogeneity),
morphological (i.e., body size), and social (i.e., familiarity) contexts of a gregarious ungulate and

the implications of these contexts on fission-fusion dynamics.

Predation risk related to habitat openness influences group size of prey species and drives

fission-fusion dynamics (Fortin et al., 2009). Group living offers anti-predator benefits (Krause
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et al., 2002) such as higher detection of predators (Leuthold, 1977) and predator harassment
(Berger, 1979). Foraging animals aggregate in groups and use collective defenses in risky
habitats to mitigate predation risk (Molvar & Bowyer, 1994). The risky places hypothesis
suggests that such anti-predator behaviour differs based on the long-term background risk
associated with different environments, irrespective of short-term pulses of risk or safety (Moll et
al., 2017). Indeed, predation risk is often associated with habitat openness, as it visually exposes
prey to predators (Ebensperger & Wallem, 2002; Mao et al., 2005). As such, groups of prey can
have different strategies to reduce predation risk. In some species, individuals may forage in
large groups in areas where food is more profitable, but the risk of being predated is high, i.e.,
open habitat. Meanwhile, individuals of other species may forage in smaller groups in safer areas
where the food is less profitable, but the risk of predation is lower, i.e. in closed habitat or next to
cover (Lima & Dill, 1990). For example, spider monkeys (Ateles fusciceps) fuse into larger
groups when occupying open habitats perceived to be high-risk, e.g., mineral licks (Link & Di
Fiore, 2013). Under high predation risk, large groups also tend to have higher overall rates of
vigilance so that on a per capita basis individuals spend more time feeding while reducing the
group-level predation risk (Lima, 1995). Animals therefore adopt a range of behavioural

strategies to reduce the perceived risk of predation through space and time (Gaynor et al., 2019).

Landscape heterogeneity also affects decision-making, group movement, and variation in
predation risk. An uneven distribution of resources and predators increases the potential for a
conflict of interest within a group (Sueur et al., 2011). For example, conflict of interest can arise
from a preference in a foraging direction, e.g., move toward food patch A or B. In this case,
fission into two groups is likely, since the average direction between A and B will not profit

either sub-group (Sueur et al., 2011). Individuals that are unable to synchronize their activities
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(e.g., foraging, travelling, resting) are predicted to fission into separate groups (Ruckstuhl &
Neuhaus, 2002). The environmental heterogeneity hypothesis predicts a higher probability of
fission in heterogeneous environments due to a broader range of options for the different needs
and motivations of individuals in groups. Winnie et al. (2008) found that heterogeneity in quality
and quantity of forage explained fission-fusion dynamics in buffalo (Syncerus caffer). In addition
to the external drivers of fission-fusion such as predation pressure and habitat heterogeneity,

intrinsic traits can play a role in fission-fusion dynamics.

The activity budget hypothesis has specific predictions for ungulates where variation in
body size affects synchronization of behaviour. Body size is an important intrinsic trait that
generates conflict among ruminant group members and alters group cohesion. For an individual
to synchronize their activities with other group members, they may have to compromise their
own activity budget, which can be costly in groups that include members of different age, sex, or
body size (Bon et al., 2006). The allocation of time to different activities is more likely to vary
between individuals with different nutritional requirements. In particular, individuals of different
body sizes can have varying digestion efficiency in ruminants, which could result in subgroups
of similar-sized individuals (Bon et al., 2006; Ruckstuhl, 2007). In sexually dimorphic ungulates,
smaller individuals are less efficient at digesting fibrous food and as a result, smaller individuals
forage for longer and more selectively than larger individuals. This results in a segregation of
individuals where some spend more sedentary time ruminating (Ruckstuhl & Neuhaus, 2002).
According to the activity budget hypothesis, differences in activity budgets could explain sexual
segregation in size-dimorphic ungulates (Ruckstuhl & Neuhaus, 2002; Bon et al., 2006).
Although not as common, the tendency to synchronize activities by size can also occur within

groups of males or females. For example, pairs of female Gasconne beef cows (Bos taurus) of
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113 similar weight, and thus size, were more synchronized than pairs of dissimilarly sized females
114 (Sarova, Spinka, & Panama, 2007). Among male bighorn sheep (Ovis canadensis), groups

115  composed of similar-sized individuals are more synchronous than groups composed of

116  individuals of varying sizes, presumably because individuals of different sizes must pay a

117  metabolic cost if they want to stay in cohesive groups (Ruckstuhl, 1999). Assortment by size

118  allows individuals of similar needs to stay cohesive, without having to pay the cost of synchrony,

119  which can impair foraging efficiency (Meldrum & Ruckstuhl, 2009; Aivaz & Ruckstuhl, 2011).

120 Another factor likely to affect fission and fusion is social familiarity among individuals.
121 Social familiarity occurs when two individuals engage in affiliative interactions, e.g., spending
122 time together, huddling, cooperatively foraging, considerably more often and over greater

123 periods than other individuals (Brent et al., 2014). For example, social familiarity influences
124  fission-fusion dynamics in giraffes (Giraffa camelopardalis), where adult females giraffe spend
125  more time with preferred individuals (Malyjurkova et al., 2014), that are not necessarily kin

126  (Carter et al., 2013). Over longer periods of time, close associations facilitate social learning of
127  foraging tasks (Benskin et al., 2002; Figueroa et al., 2013) or anti-predator behaviours

128  (Kavaliers, Colwell, & Choleris, 2005). The use of social information can therefore be an asset in
129  heterogeneous landscapes, which are increasing in frequency as anthropogenic disturbances are
130  generating fragmentation of natural landscapes; social information is thus particularly beneficial

131  in these areas (Fletcher & Sieving, 2010).

132 Woodland caribou (Rangifer tarandus), hereafter caribou, are gregarious ungulates that
133 live in loose fission-fusion societies (Lesmerises, Johnson, & St-Laurent, 2018) and form groups
134  whose abundance (Edmonds, 1998) and strength of social associations vary seasonally, i.e.,

135  smaller groups in summer and larger groups in winter (Robitaille et al., 2021; Webber & Vander
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136  Wal, 2021). Female caribou forage in larger groups in risky habitats and increase their vigilance
137  compared to safer habitats (Beving & Post, 1997). Moreover, caribou tend to select habitats that
138  reduce their predation risk (Basille et al., 2015; Bastille-Rousseau et al., 2016), especially during

139  calving (Bonar et al., 2020).

140 Our objective was to determine how predation risk, environmental heterogeneity, body
141  size, and social familiarity among female caribou affect fission-fusion dynamics. We tested four

142 hypotheses, which beget four non-mutually exclusive predictions of fission events (Figure 1):

143 1. The risky places hypothesis suggests that groups of prey fuse in risky habitats and split in
144 safer habitats as an anti-predator strategy associated with variation in the inherent risks of
145 different environments (Moll et al., 2017). Therefore, we predicted that caribou groups
146 would split less in open habitats where predation risk is assumed to be higher (P1).

147 2. The environmental heterogeneity hypothesis predicts that complex environments make it
148 more difficult to remain in cohesive groups because members of a social group have

149 different foraging needs and requirements, which can lead to conflicts in decision-making
150 (Fortin et al., 2008). We therefore predict that groups of caribou will be more likely to
151 split in heterogeneous environments (P2).

152 3. The activity budget hypothesis predicts that individuals with similar energetic needs, and
153 therefore similar body sizes, form cohesive groups and separate from animals with

154 different needs because synchronizing their behaviour can be costly (Ruckstuhl, 1999).
155 Thus, we predict that individuals that are more similar in their body size will be more

156 likely to stay fused longer than individuals that are more dissimilar in their body size

157 (P3).
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158 4. The social familiarity hypothesis predicts the probability of fission decreases for dyads
159 with stronger social familiarity because remaining together can provide them with a
160 fitness benefit (Brent et al., 2014). We predict that dyads with higher pairwise simple
161 ratio index (SRI), a metric of social association, will be less likely to split than dyads of
162 less familiar individuals (P4).
163

Habitat type Social association Fission risk

11 317

vor ki DA 4

165  Figure 1: Schema of the predictions associated with fission probability tested in our study.
166  Different habitat types are represented by a forest (closed habitat), a mosaic of habitats

167  (heterogeneous landscape) and a meadow (open habitat). Solid lines represent dyad steps and
168  dashed lines individual paths taken after fission. Lines are thicker with increasing fission risk.
169  The degree of attachment of circles refers to the degree of association between caribou. The

170  more circles overlap, the stronger the social association.

171

172 In addition to our models of fission events, we also tested how space use and home range overlap

173  may influence social associations. By definition, animals that aggregate together must share at
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least some of the same home range, and there is no opportunity for fission events to occur if
animals have not already fused, i.e. coexistence is space is a prerequisite for these social
associations. Moreover, based on the activity budget hypothesis, familiarity ought to be
explained by similarity in size, with greater familiarity between individuals of similar size. We
thus predicted that SRI between caribou pairs will increase with greater home range overlap, and

decrease as the difference in body sizes increases (P5).

Methods

Study area and subjects

We studied the social behaviour of caribou on Fogo Island, located off the Northeastern coast of
Newfoundland, Canada (Latitude: 49° 39°29.39” N; Longitude: 54° 10°7.80” W). Caribou were
introduced to Fogo Island in the 1960s as part of a series of introductions throughout
Newfoundland (Bergerud & Mercer, 1989) and the population currently consists of ~300
individuals (Newfoundland and Labrador Wildlife Division, unpublished data). Although
caribou are predated by black bears (Ursus americanus) and coyotes (Canis latrans) on the
island of Newfoundland (Bastille-Rousseau et al., 2016), only coyotes are present on Fogo Island
(Huang et al., 2021). Caribou in Newfoundland generally favour open habitats (Bergerud, 1974)
for their abundant forage and avoid forested habitats that are difficult to access and offer few
forage opportunities (Fortin et al., 2008). Caribou diet changes seasonally based on the
accessibility of resources. During summer, caribou are generalists, foraging on shrubs, lichens,
sedges, and herbaceous plants (Bergerud & Nolan, 1970; Webber et al., 2022). During winter,

they either dig holes in the snow termed craters and consume terrestrial lichens, or forage on
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196  arboreal lichens when access to terrestrial lichens is hindered by the snow depth or its hardness
197  (Johnson, Parker, & Heard, 2001). We focused our study on winter (2017-2019), defined as 1
198  January to 16 March, which corresponds to previous models of caribou social behaviour,

199 movement, and habitat selection (Bastille-Rousseau et al., 2016; Peignier et al., 2019).

200  Caribou capture and collar data

201  Newfoundland and Labrador Wildlife Division carried out the capture of adult female caribou (n
202 =31) between 26 March and 20 April 2016-2018 using the immobilizing agent Carfentanil,

203  administered via dart gun. All animal captures and handling procedures were consistent with the
204  American Society of Mammologists guidelines and were approved by Memorial University

205  Animal Use Protocol No. 20152067. Caribou were fitted with global positioning system (GPS)
206  collars (Lotek Wireless Inc., Newmarket, ON, Canada, GPS4400M collars, 1.250 kg), which
207  collected location fixes every two hours. Of the original 31 caribou, 9 were removed from

208  subsequent analyses either due to collar failure or death. Prior to analyses, we removed the

209  erroneous GPS fixes resulting from malfunctioning collars following the screening method of
210  Bjerneraas et al. (2010). This method relies on previous knowledge of the study species and

211 excludes implausible fixes like those further than a predefined maximum distance an animal

212 could travel, and fixes representing spikes in the movement trajectory. We assumed the sample
213 of collared females was random among adult females and the measures of social familiarity (see
214  below) between caribou were an unbiased representation of associations in the broader

215  population. Overall, we used the locations of 11 caribou in 2017, 16 in 2018 and 13 in 2019.

216 Body measurements were recorded upon capture. Specifically, we measured total length
217  from the end of the upper lip to the last vertebra of the tail, heart girth as the circumference

218  behind the forelegs, and neck girth as the circumference where the GPS collar is fitted. Heart
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girth and total body length are common measurements used to assess body size in ungulates
(McElligott et al., 2001; Cook, Cook, & Irwin, 2003). Body size along with body condition are
two components of body mass. Heavier individuals are typically larger than lighter individuals
and among similar-sized individuals, heavy individuals have better body condition (Toigo et al.,
2006). In our study we did not have access to body mass or body condition data, so we used
body size as a proxy for body condition and weight. For subsequent analyses, we used the total
body length (range: 174-216 cm) as a proxy for body size instead of heart girth (range: 110—
131cm) because total body length was more variable. For individuals with multiple
measurements of body length, we calculated the average length for subsequent analyses. All the

statistical analyses were performed with R (R Core Team, 2021).

Calculating dyads

We used the spatsoc package (Robitaille, Webber, & Vander Wal, 2019) to group GPS locations
in time (within 5 minutes) to account for temporal variation between GPS fixes of different
animals in the same time step. We defined dyads as times when individuals were located within a
50m buffer of one another for at least two relocations, following Lesmerises et al. (2018). The
same individuals could therefore be a part of different dyads at different times. We used the
median location of the two individual’s GPS fixes as the dyad location at a given time, to

calculate subsequent landscape measures (see below) and as a unit for subsequent analyses.

To delineate fission and fusion events, following Lesmerises et al. (2018), we used the dyadic
centroid to represent the combined dyadic step. We first defined fusion as events where two
individuals were within 50m for at least two consecutive time steps. We then defined fission as
events where individuals previously in a dyad were more than 50 meters apart for at least two

consecutive time steps. In cases where dyads were together before and after one missing GPS
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242  relocation (from one individual in the dyad), we assumed the dyad remained together (see Figure
243 S1). Our analyses primarily focused on fission events, whereas fusion events were not the

244 explicit response variable in any of our models.

245 We described the strength of association between two caribou through years using the
246  simple ratio index (Cairns & Schwager, 1987):

247

248  where x is the number of times individuals A and B were within the 50 meters threshold and y.4s
249  is the number of simultaneous fixes from individuals A and B that were separated by more than
250 50 meters (Farine & Whitehead, 2015). Higher values of SRI reflect stronger associations, and

251  thus social familiarity, between individuals.

252 Home range area and overlap

253  We estimated each individual’s home range in each year using 95% kernel density estimates

254  from the adehabitatHR package (Calenge, 2006). To calculate home range overlap, we extracted
255  each individuals’ kernel and calculated the utilization distribution (i.e. probability distribution
256  defining the animal’s space use) overlap index (UDOI) between dyads to quantify overlap in
257  terms of space-use sharing (Fieberg & Kochanny, 2005). UDOI values in our analyses ranged

258  from 0 (no overlap) to 1.46 (high degree of overlap).

259  Habitat and land cover classification

260  The land cover data of Fogo Island consisted of nine habitat types at 30 m spatial resolution
261  (Integrated Informatics Inc., 2014). Habitats included wetland, broadleaf forest, conifer forest,
262  conifer scrub, mixed wood forest, rocky barrens, water/ice, lichen barrens, and anthropogenic

263  areas. We used all nine habitats types for the subsequent calculations of heterogeneity metrics
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(P2), but we grouped habitats into two categories for our analysis of predation risk (P1): closed
habitat (broadleaf forest, conifer forest, conifer scrub, and mixed wood forests), and open habitat
(wetland, water/ice, rocky barrens, lichen barrens, and anthropogenic areas). We used habitat
openness as a proxy for perceived predation risk with open habitat representing riskier areas than
forested ones. The proportion of open habitat was calculated at the beginning of each dyad step

in a 200 m buffer around the centroid of the locations of the dyad.

To account for habitat heterogeneity, we described two aspects of a landscape: spatial
configuration and spatial composition (Li & Reynolds, 1993). We calculated the contagion
index, which is an aggregation metric to describe habitat configuration, the arrangement of the
different land cover types. We also calculated the Shannon index to describe habitat
composition. The contagion index is a measure of spatial distribution and intermixing of patches,
which describes the probability that two randomly chosen adjacent pixels belong to two different
habitat classes. Hence, it can be perceived as a measure of habitat fragmentation (Ricotta,

Corona, & Marchetti, 2003). The contagion index (McGarigal et al., 2002) is calculated as:

CONTAG=1+ *

with pq the adjacency table (i.e., matrix showing the frequency with which different pairs of
habitat class appear side-by-side on the map) for all habitat classes divided by the sum of that
table and ¢ is the number of habitat classes in the landscape. Values range between 0 and 1 with
values close to 1 associated with homogeneous landscape, with few large contiguous patches of
the same habitat class, whereas values close to 0 characterize heterogeneous landscapes with

many small patches, highly dispersed (McGarigal et al., 2002).
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The Shannon index (Shannon, 1948) is a common measure of habitat diversity that

accounts for both abundance and evenness of habitats and is calculated as:

H=-

where § is the number of habitat classes and pi the proportion of pixels belonging to the ith cover
class. Diversity increases with increasing values of H. We computed both the contagion and

Shannon’s indices within a 200m buffer around the centroid of each caribou dyad location.

Statistical analyses

To assess our predictions, we conducted two separate model sets. First, we modelled the
probability of dyad fission based on habitat openness (P1), habitat heterogeneity (P2), difference
in body size (P3) and social association (P4). Specifically, we used a time-dependent Cox
proportional hazards model using the package coxme that account for mixed effects (Therneau,
2020). In our Cox proportional hazards model, each time interval was represented by a time step
for a dyad and the covariates included, the proportion of open habitat within a 200m buffer of the
dyad, the Shannon index and the contagion index within a 200m buffer of the dyad, the
difference in body size and the dyadic SRI. For each time step, the status (i.e., survival) of a dyad
was assessed, i.e., either together or split. Landscape metrics were specific to each unique dyad
step, whereas the SRI for dyads was constant through time within each year. Since the same dyad
could be associated at different occasions throughout the three years of study, we included dyad

ID and year as random effects.

Second, we modelled pairwise association strength as a function of home range overlap
and similarities in body size (P5) to test whether female caribou preferentially associate with

similar-sized individuals. Data for this model set was based on aggregate annual measures of
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association (i.e., SRI), body size, and home range overlap. Specifically, we used a linear mixed
model using /me4 with pairwise SRI as the response variable, the difference in body size and
home range overlap between dyads as fixed effects, the interaction of body size difference and
home range overlap, and dyad ID and year as random effects (Bates et al., 2015). We removed
dyads with no home range overlap because these individuals did not have an opportunity to
associate and therefore no home range overlap automatically results in a shared SRI of zero. We

square-root transformed SRI to improve the requirements of normality and homoscedasticity.

For all analyses, we used the Akaike information criterion (AIC) to select the most

parsimonious model (Akaike, 1981) and set the threshold for significant effects to p < 0.05.

Results

The Fogo Island caribou population displayed characteristics of a fission-fusion system, with
fusion events lasting from hours to weeks (median = 6 h; range =4 h - 17.6 days). We recorded
1617 fission-fusion events during the study period, with an average of 549 + 137 (range = 457—
705) events per winter. In total, 93% of fission events occurred in open habitats, while 7% of
fission events occurred in closed habitats. On average, 56 + 26 (range = 40—85) unique dyads per

year were formed.

The Cox proportional hazards model highlighted potential environmental and social
factors that influence fission. Of the models considered, the most supported using AIC model
selection included social familiarity (i.e., the SRI), difference in body size between individuals in
the dyad, Shannon index, contagion index, and habitat openness (for model selection results see
Table S1). There were several other highly ranked candidate models (AAIC < 3), all of which

comprised the same fixed effects as our most supported model while including additional
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interaction terms between these predictors. None of the interaction terms had significant effects,
and the main effect estimates of our top model were unchanged until those variables were
included in an interaction, at which time the effect disappeared. We have thus chosen to focus
our interpretation on this top model, as these additional interactions do not provide any

additional insight in our analyses.

The probability of fission increased with increasing Shannon index but was not
influenced by habitat openness, contagion index, or difference in body size (Table 1). The
probability of fission decreased with higher dyad SRI (Table 1). Together, these results suggest
that caribou were more likely to fission in landscapes with various land cover types regardless of
their configuration, while dyads stayed together for longer when they were more familiar with

one another.

In our linear mixed model of social association strength, the difference in body size in a
dyad of caribou and their home range overlap explained their shared dyad SRI (Table S2). The
interaction between difference in body size and home range overlap suggests that caribou that
shared a larger portion of their home range were more closely associated when they had a greater
difference in body size (LMM; p < 0.01; z=2.85; 8 £ se = 0.007 + 0.003; Rm?= 0.61; Figure 2,

Table S2).
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Figure 2: Changes in simple ratio index (SRI), measuring strength of social association, as a

function of home range overlap (Utilization Distribution Overlap Index, UDOI) and difference in

body size (cm) in caribou dyads, following the linear mixed model. UDOI was analysed as a

continuous measure in the linear model, but is split into three values here for graphical purposes.

Different colors represent the 5w (blue), 50t (yellow) and 95 (blue) percentiles of UDOI to

better visualize the change in SRI with its associated explanatory variables. Shading around each

solid line is 95% confidence interval.
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355  Table 1: Results from the most parsimonious Cox proportional hazards model with hazard ratios
356  (HR) and their 95% confidence interval (CI) explaining the fission probability of dyads between
357 2017 and 2019 (n=1617). HR >1 implies an increasing risk of fission, while HR <I implies a
358  lesser risk of fission. If the CI includes 1, then the HR is not significant. Significant results are

359  presented in bold. Model selection results are presented in Table S1.

Variable B SE HR 95% CI p-value
Habitat openness 0.400 0.217 1.495 [0.976 - 2.283] 0.06
Difference in body size ~ 0.004  0.007 1.004 [0.99 - 1.019] 0.58
Shannon Index 0.517  0.222 1.677 [1.085-2.591] 0.002
Contagion Index 0.401  0.426 1.493 [0.648-3.444] 0.35
SRI -1.703  0.639 0.182 [0.052-0.637] 0.01

360
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361 Discussion

362  Factors driving fission-fusion dynamics are related to the social and ecological environments
363  (Sueuretal., 2011). We tested the effects of habitat openness as a proxy for perceived predation
364  risk, landscape heterogeneity, social familiarity among individuals, and similarity of body size
365  on fission-fusion dynamics in caribou. In contrast to predictions from the risky places

366  hypothesis, the probability of dyad fission was not greater in open habitats. We found no direct
367  support for the activity budget hypothesis. Body size did not influence the risk of fission.

368  However, dissimilar body size and home range overlap collectively explained the strength of
369  social association. Risk of fission decreased with increasing social association and increased in

370  more heterogeneous landscapes.

371 Based on the risky places hypothesis, we predicted predation risk to drive fission-fusion
372 dynamics by promoting fission in closed habitats (P1). Contrary to our prediction, the probability
373  of fission was similar in open and closed habitats. Habitat openness influences group size for
374  caribou such that larger groups tend to form in more open habitats (Webber & Vander Wal,

375  2021). While groups may indeed be larger in open habitats, the probability of fission is not

376  associated with habitat openness. A potential explanation is that more open habitats facilitate
377  groups to remain fused to exchange information about foraging sites (Peignier et al. 2019) and
378  maintain high predator vigilance (Lima, 1995). In addition, dyads in winter rarely enter closed
379  habitats (only 7% of fission events occurred in closed habitat); if caribou select closed habitats
380  when they are either alone or in smaller groups (Webber et al., 2021), then there is little

381  opportunity for fission events to occur in these habitats when there are fewer groups from which

382  to split. The probability of fission and group size are two distinct aspects of grouping behavior.
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Our results, in combination with past work in our system (Webber & Vander Wal, 2021), suggest

that habitat openness affects group size, but not the individual probability of leaving a group.

We predicted landscape heterogeneity to induce a conflict of interest in dyads and
increase the probability of fission. We used two measures of heterogeneity: composition (i.e.,
Shannon index: the diversity of habitat types in an area) and configuration (i.e., the contagion
index: the distribution of habitat types in an area). High Shannon indices indicate landscapes
with a greater diversity of land cover types, whereas a location with a higher contagion index
indicates a greater number of small and disconnected patches. Landscape composition increased
fission probability, while configuration had no effect, a pattern observed elsewhere (e.g. Bélisle,
Desrochers, & Fortin, 2001). Taken together we submit that variable habitat types, regardless of
spatial arrangement, lead to conflict of interest between group members (P2). When dyads travel
through heterogeneous landscapes, the complexity of decisions about where to go next increases,
thereby increasing the likelihood of disagreement between individuals regarding personal needs

and motivations.

The activity budget hypothesis predicts that individuals of similar size have similar
energetic requirements and more synchronous patterns of activity, which results in reduced
likelihood of fission (Conradt, 1998). We did not find support for this hypothesis in our analysis,
where body size difference (differences in chest girth range = 0 — 26 cm) had no effect on fission
rates (P3). Furthermore, we found a contradictory pattern in social association strength for
female caribou (P5), where individuals associated more closely with more differently sized
conspecifics. Although we do not have relatedness or dominance hierarchy data for our
population, the unexpected size-specific pattern of association we found may emerge from either

kin based patterns of grouping (Djakovi¢ et al. 2012) or it could be the result of larger females
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associating with smaller females as a means to assert dominance (Barrette & Vandal, 1986).
Indeed, caribou often form groups of loosely related kin (Djakovi¢ et al. 2012), while larger body
size is often associated with dominance (Barrette & Vandal, 1986). For smaller individuals,
associating with dominant individuals may provide access to higher food quality (Barrette &
Vandal, 1986) via social information transfer about the location and quality of food (i.e., the
conspecific attraction hypothesis: Peignier et al., 2019). This may be particularly important in the
winter when snow covers lichen and lichen distribution and availability is heterogeneous

(Bergerud, 1974).

As we predicted, social familiarity among females influenced dyad fission. The
probability of fission decreased for dyads with stronger social preference (P4). Similarly, in
domestic female sheep (Ovis aries), familiar individuals remain in foraging groups for longer
than with unfamiliar individuals (Boissy & Dumont, 2002). Grey kangaroos (Macropus
giganteus) also spend more time foraging with conspecifics when they are familiar rather than
unfamiliar (Carter et al., 2009). Strong social bonds can result in fitness benefits. For example,
social bonding enhances the life expectancy of female baboons (Papio hamadryas ursinus: Silk
et al., 2010), and increases the reproductive success of female feral horses (Cameron, Setsaas, &
Linklater, 2009). Such social bonds can also enhance anti-predatory behaviour by allowing
groups to divert attention from intra-specific aggression to predator vigilance and feeding

(Griffiths et al., 2004).

We examined four non-mutually exclusive ecological and behavioural factors that
influence fission-fusion dynamics: perceived predation risk, habitat heterogeneity, body size, and
social familiarity. Fission-fusion dynamics allow for flexibility of group sizes in animal societies,

which individuals use to modulate the costs and benefits of sociality in variable environments.
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429  Our results suggest the probability of fission increased with increasing habitat heterogeneity,

430  while more socially familiar dyads stayed together for longer. Drivers of fission-fusion dynamics
431  notably parallel those identified as threatening caribou population persistence. Woodland caribou
432  are currently listed as threatened in Canada and the primary reasons for their decline are

433  increased predation and habitat loss, which are caused by a combination of anthropogenic and
434  natural disturbance known to fragment habitats (Festa-Bianchet et al., 2011). As a result of

435  habitat loss, forage availability is reduced, which in turn influences caribou body condition and
436  consequently birth rates and calf survival (Créte & Huot, 1993). Moreover, during population
437  declines, animal social environments can change, and familiar social connections may be

438  replaced by more ephemeral or anonymous social connections (Caro & Sherman, 2011). The

439  effects of perceived predation risk, habitat heterogeneity, body size, and social familiarity not
440  only have potential to affect the probability of fission, but are also among the most important
441  causes and consequences of caribou population declines. Our work addresses the effects of these
442  four factors on the probability of fission and falls within the mandate of the conservation

443  behaviour framework (Berger-Tal et al., 2016); that is, to conduct behavioural research that

444  informs conservation efforts. In a broader context, caribou conservation in Canada aims to

445  reduce mortality (Festa-Bianchet et al., 2011). We provide evidence for how two key factors

446  (i.e., predation and habitat heterogeneity) influence fission-fusion dynamics, a behaviour known
447  to influence fitness outcomes in ungulates (e.g., Cameron, Setsaas, & Linklater, 2009; Vander

448  Waletal., 2015).

449
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687  Supplementary information

688  Table S1: Candidate Cox proportional hazards models explaining the fission probability of

689  caribou dyads on Fogo Island between 2017 and 2019, ranked in order of support based on AIC.

Model

SRI + Body Size + Shannon Index + Contagion Index + Open

0
Habitat
SRI + Body Size + Shannon Index + Contagion Index + Open
0.762
Habitat + Body Size*Contagion Index
SRI +Body Size + Shannon Index + Contagion Index + Open
Habitat + Body Size * Shannon Index + Body Size*Contagion 1.184

Index

SRI+Body Size + Shannon Index + Contagion Index + Open
Habitat + SRI*Open Habitat + Body Size*Shannon Index + Body 2.506

Size*Contagion Index

SRI +Body Size + Shannon Index + Contagion Index + Open
Habitat + SRI*Body Size + SRI*Open Habitat + Body 2.98

Size*Shannon Index + Body Size * Contagion Index

SRI+ Body Size + Shannon Index + Contagion Index + Open 4843

Habitat + SRI*Body Size + SRI*Contagion Index + SRI*Open
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Habitat + Body Size*Shannon Index +Body Size* Contagion

Index

SRI + Body Size + Shannon Index + Contagion Index + Open
Habitat + SRI*Body Size + SRI * Shannon Index + SRI *

6.709
Contagion Index + sri*Open Habitat+*Body Size * Shannon

Index + Body Size * Contagion Index
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691  Table S2: Summary of our model testing the effects of home range overlap and difference in

692  body size on the simple ratio index, that represent social familiarity of caribou in Fogo

693  Island, Canada. Results with p < 0.05 are presented in bold.

Simple ratio index B SE t-value p-value
Intercept 0.096 0.022 4.333 0
Home range overlap 0.198 0.020 9.815 <0.0001
Difference in body size -0.003 0.002 -1.446 0.148
Home range overlap x 0.007 0.003 2.855 0.004

Difference in body size

Random variables Variance SD

Dyad ID 0.003 0.062
Year 0.001 0.023
Residual 0.002 0.054

694


https://doi.org/10.1101/2022.09.22.508899
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.22.508899; this version posted September 23, 2022. The copyright holder for this preprint

695

696

697

698

699

700

701

702

703

704

705

706

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

QO
H e
O' - -
z ®
7 %‘ — e X o
# t o 1 i ts
o - 1 t4 ts

-t
58
cexe

to

Figure S1: Descriptive schema of dyad fission-fusion. Black and blue points represent two
different caribou moving through space and time. Each X represents the centroid of locations
between the dyad and dyad steps are represented with solid orange lines. Dashed grey lines
represent steps for each individual of the dyad. Our analyses of dyad space use and movement
considered the shared dyad centroids and steps, not the individual paths during the dyad’s
duration. Dashed orange lines represent individual paths taken by each caribou before merging in
a dyad or after splitting and open circles represent caribou outside a dyad. In this schema, the
dyad is created, i.e. fusion, at t1 because the two caribou stayed within 50m during two
consecutive time-steps, t1 and t2. The dyad separates, i.e. fission, at t4 because the two caribou
were in a dyad before t4 but were apart during two time-steps after, ts and te. Green circles

represent the buffers in which time-dependent landscape metrics were calculated.
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