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ABSTRACT

The impact of endemic parasitic infection on vaccine efficacy is an important
consideration for vaccine development and deployment. We have examined whether intestinal
infection with the natural murine helminth Heligmosomoides polygyrus bakeri alters antigen-
specific antibody and cellular immune responses to oral and parenteral vaccination in mice. We
found that oral vaccination of mice with a clinically relevant, live, attenuated, recombinant
Salmonella vaccine that expresses chicken egg ovalbumin (Salmonella-OVA) disrupts
ovalbumin-specific regulatory T cell networks in the gut associated lymphoid tissue and
promotes T-effector responses to OVA. Chronic intestinal helminth infection significantly
reduced Thl-skewed antibody responses to oral vaccination with Salmonella-OVA. Activated,
adoptively-transferred, OVA-specific CD4" T cells accumulated in draining mesenteric lymph
nodes (MLN) of vaccinated mice, irrespective of their helminth-infection status. However,
helminth infection increased the frequencies of adoptively-transferred OVA-specific CD4* T
cells producing IL-4 and IL-10 in the MLN. Chronic intestinal helminth infection also
significantly reduced Th2-skewed antibody responses to parenteral vaccination with OVA
adsorbed to alum. These findings suggest helminth-induced impairment of vaccine antibody
responses may be driven by the development of IL-10-secreting CD4" T regulatory cells. They
also underscore the potential need to treat parasitic infection before mass vaccination campaigns

in helminth-endemic areas.
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INTRODUCTION

Vaccination is one of the most effective public health measures against infection (1-4).
However, as the COVID-19 pandemic has highlighted, there are significant unmet needs for
vaccine coverage for adults and children across the world, particularly in low- and middle-
income countries where populations shoulder a significant portion of the world’s infectious
disease burden (3-5). The World Health Organization (WHQO) and other multinational, public-
private partnership organizations continue to advocate for strategies that address the availability,
affordability, storage and handling, ease of administration, and safety of vaccines, with the goal
of expanding vaccination coverage amongst underserved populations (4, 6, 7).

Mucosal vaccines, including oral vaccines, are potent inducers of local mucosal and
systemic cellular and humoral immune responses (8-10). Recombinant oral Salmonella vaccines,
for example, are used in veterinary medicine, especially in the context of poultry farming, to
improve fowl health and ensure food safety (11, 12). Oral vaccination with live-attenuated
Salmonella strains is also used to protect humans against typhoid (13, 14) and paratyphoid fever
(15). In humans, oral Salmonella vaccines activate circulating B and T cells, expand the number
of circulating CD4* Th1 cells, increase serum IFN-y and TNF-a, and induce Salmonella-specific
serum and fecal antibody responses (14). In mice, T and B cells are also critical for protective
immune responses to attenuated and virulent Salmonella (16). CD4* Th1 cells and robust IFN-y
production (17, 18) coupled with Salmonella-specific 1gG and IgA responses are critical for the
clearance of Salmonella and development of protective immunity against virulent Salmonella
strains (18, 19).

One challenge to vaccination is the impact that parasitic gastrointestinal helminth

infections can have on the immune response to vaccines (20-22). Greater than 50% of the
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world’s population lives in regions where helminth infections are endemic (23). Nearly 1.5
billion people are chronically infected with gastrointestinal helminths (23, 24). Three hundred
million of these individuals also suffer from malnutrition, stunted growth, anemia, and reduced
protective immunity to unrelated pathogens (25, 26). We and others have shown that preexisting
helminth infection is a potent modulator of the immune response to orally delivered dietary
antigens (27-29), gastrointestinal bacterial infection (30) and parenteral vaccination (22, 31, 32).
Epidemiological studies, clinical trials, and animal models suggest that helminth infection has
powerful immunosuppressive effects on the development of allergic, autoimmune, and
inflammatory diseases (33-35). Helminth infection promotes immune suppression by inducing
regulatory cells and cytokines that modulate Th1-, Th2-, and Th17-dependent immune responses
(36, 37) in part through interactions with endogenous microbiota (38, 39). Since the regions
where helminth infection is endemic overlap significantly with the regions of the world targeted
by global health organizations for improved vaccine coverage (1, 4, 40), the impact of helminth
infections on vaccine-induced protective immunity must be considered in vaccine design and
deployment.

We used a live attenuated oral Salmonella vaccine strain expressing chicken egg
ovalbumin (OVA) (41) to examine the impact of chronic intestinal helminth infection with the
natural mouse parasite Heligmosomoides polygyrus bakeri (H. polygyrus bakeri) on vaccine
antigen-specific cellular and antibody responses. We found that a live attenuated oral
Salmonella-OVA vaccine disrupts OVA-specific regulatory T cell expansion, promoting OVA-
specific T-effector responses. Chronic intestinal helminth infection significantly reduced Th1-
skewed antibody responses to oral vaccination with Salmonella-OVA even though activated

OVA-specific CD4™ T cells accumulated in draining mesenteric lymph nodes (MLNSs) of
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129  helminth-free and helminth-infected mice. Helminth infection also increased the frequencies of
130  adoptively-transferred, OVA-specific CD4" T cells producing IL-4 and IL-10 in the draining
131  MLN. This suggests that IL-10-secreting CD4" T regulatory cells may reduce vaccine-induced
132  antibody responses in helminth-infected mice and highlights the potential need to eliminate
133 immunosuppressive intestinal parasites prior to vaccination in regions where helminth infection

134 is endemic.
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MATERIALS AND METHODS

Mice. To evaluate peripheral conversion of OVA-specific CD4* T cells to Foxp3™ Treg cells,
Ly5.1* RAG-1 replete B6.SJL mice and C57BL/6 OT-II transgenic (Tg) RAG-1 KO Ly5.2*
mice were purchased from Taconic Farms. Foxp3 eGFP reporter mice (Foxp3©) were
originally obtained from M. Oukka (Brigham and Women's Hospital, Cambridge, MA (42)). OT-
Il Tg RAG-1 KO Ly5.2* Foxp3®©FP mice were generated by crossing the F1 progeny of C57BL/6
OT-1l Tg RAG-1 KO Ly5.2* x Foxp3 °*" breeders. These mice were maintained at an American
Association for the Accreditation of Laboratory Animal Care—accredited animal facility at the
National Institute for Allergy and Infectious Diseases (NIAID) and housed following procedures
outlined in the Guide for the Care and Use of Laboratory Animals under an animal study

proposal approved by the NIAID Animal Care and Use Committee.

For the helminth infection and oral and intramuscular vaccination experiments conducted at
Massachusetts General Hospital (MGH), six- to eight-week-old male and female C57BL/6 J
mice were purchased from the Jackson Laboratory (Bar Harbor, ME). OT-II (Thy1.1) mice on
the C57BL/6 background, transgenic for the TCR recognizing OVA peptide 323-339 were
provided by A. Luster (Massachusetts General Hospital (MGH), Charlestown, MA). Mice were
fed autoclaved food and water and maintained in a specific-pathogen-free facility at MGH. Al
experiments were conducted after approval and according to regulations of the Subcommittee on

Research Animal Care at MGH.

For helminth infection and intramuscular vaccination experiments conducted at University of
North Carolina at Chapel Hill (UNC), eight to sixteen-week-old male and female C57BL/6 J

mice were also purchased from the Jackson Laboratory (Bar Harbor, ME). Mice were fed
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autoclaved food and water and maintained in a specific-pathogen-free facility at the UNC. All
mouse experimental procedures were approved by the UNC Institutional Animal Care and Use

Committee.

In vivo cell transfer and dietary oral antigen administration. T lymphocytes were extracted
from the peripheral LNs (excluding the spleen) of OT-Il Tg RAG-1 KO Foxp3¢®™ mice (Ly5.2")
and adoptively transferred into B6.SJL recipient mice (Ly5.1%). Each mouse received 10° cells.
Recipient mice were split into two groups. Select groups received a 1.5% OVA solution in
drinking water replaced every 48 h (grade V; Sigma-Aldrich) for five consecutive days. The
other groups received normal drinking water. On day 6, mesenteric lymph nodes (MLNs —
pooled portal, duodenum, jejunum, and ileum LNs as previously described (43)) and intestinal
lamina propria (LP) were collected from B6.SJL hosts, and Foxp3-eGFP expression assessed in

transferred cells. LN and LP single-cell suspensions were prepared as previously described (44).

S. typhimurium vaccine strains and oral immunization. The recombinant attenuated vaccine
strain Salmonella typhimurium SL3261 (aroA, (45)) carrying either the plasmid pnirOVA
(Salmonella-OVA) or pnirBEM (Salmonella-BEM) were grown overnight shaking at 37°C in
Luria Bertani (LB) broth supplemented with 100ug/ml of ampicillin (Ap) as previously
described (41). An ODsoo of 0.5 was estimated to have 2 x 108 bacteria per ml of culture. In
experiments examining the peripheral conversion of OVA-specific CD4* T cells to Foxp3*
Tregs, subsets of mice were gavaged with 10*2 attenuated Salmonella in PBS one day after
congenic cell adoptive transfer. In the helminth-infection experiments, subsets of H. polygyrus
bakeri-infected and uninfected mice were given 2 to 6 x 10'° attenuated Salmonella in PBS

intragastrically using a 20-gauge ball-tipped feeding needle at different time points (14 and 21
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180  days after parasite inoculation for antibody production experiments, and 7 days after parasite
181  inoculation for cellular immune response experiments). To determine CFU Salmonella per gram
182  tissue, spleens were weighed, homogenized in Hanks Balanced Salt Solution and plated on LB

183  plates containing 100 pug/ml ampicillin.

184  Intramuscular immunizations. Mice were injected as previously described (46) with some
185 modifications. 25 pg OVA (Grade V, Sigma) in 1 mg alum or alum alone was suspended in 100
186  pL 1X PBS. 50 uL per limb was injected in the right and left hind leg ventral muscles 14 and 21

187  days after H. polygyrus bakeri inoculation.

188  Helminth infection. Heligmosomoides polygyrus bakeri (H. polygyrus bakeri) was propagated
189  as previously described (47) and stored at 4°C until used. C57BL/6J mice were inoculated
190 intragastrically with 200 third-stage larvae using a ball-tipped feeding needle. Adult worms in the

191 intestinal contents were determined at sacrifice as previously described (47).

192 OVA-TCR transgenic CD4* T cell enrichment and adoptive transfer in helminth-infected
193  and helminth-free mice. Spleens and MLN were harvested from OT-11 (Thy1.1) mice and T
194  lymphocytes were enriched using nylon wool fiber columns (Polysciences, Inc., Warrington,

195 PA). CD4" T cells were positively selected with CD4 (L3T4) magnetic microbeads (Miltenyi
196  Biotec, Auburn, CA), pooled and suspended in PBS, and 4 to 6 x 10° cells injected intravenously
197  into C57BL/6 mice.

198

199  Flow cytometric analysis. For the peripheral CD4" to Foxp3* Treg experiments,

200  single-cell suspensions from MLN were prepared by passing tissue through a 70-um cell strainer.

201  For lamina propria (LP) cells, small intestinal segments were incubated in medium containing

9
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3% FCS and 20 mM Hepes (HyClone) for 20 min at 37°C with continuous stirring. Tissue was
then digested with 250 mg/ml liberase CI (Roche) and 500 mg/ml DNase | (Sigma-Aldrich),
with continuous stirring at 37°C for 30 min. Digested tissue was forced through a Cellector
tissue sieve, (Bellco Glass, Inc.) and strained through 70- and 40-um cell strainers. To enrich for
lymphocytes, the suspension was centrifuged at room temperature at 500 g for 20 min in 30%
Percoll (GE Healthcare) in RPMI-1640. Cells were incubated with antibodies to Ly5.2 (clone
104), CD4 (clone RM4-5), CD25 (clone 7D4), CD103 (clone 2E7; all from eBioscience) and
assessed for the expression of these markers in addition to eGFP by flow cytometry using an
LSRII (BD Biosciences). Cells were also incubated with mAb against a4p7 (clone DATK32; BD
Biosciences), CD44 (IM7; eBioscience), and 7-amino-actinomycin D (7-AAD; BD Biosciences)
to detect dead cells. Cells were acquired with an LSR 11 flow cytometer (BD Biosciences) and

flow cytometry data analyzed with FlowJo software (Tree Star, Ashland, OR).

For helminth-infection experiments, Thy1.1 FITC (clone OX-7), CD69 PE (clone H1.2F3), CD4
PerCP (clone RM4-5) and CD25 APC (clone PC61) and isotype controls were purchased from
BD Biosciences. Non-specific binding was blocked with antibodies against CD16/CD32 (BD
Biosciences, San Jose, CA). For intracellular cytokine staining MLN cells were stimulated as
previously described (41) with some modifications. 2 x 108 cells/ml were incubated for 24 h with
200 pg/ml ovalbumin protein (OVA, Grade V, Sigma, St.Louis, MO). Prior to being added to
cultures, endotoxin levels in the OVA preparation were reduced to less than 0.7 EU/mg using a
Detoxi-Gel endotoxin removal column (Pierce, Rockford, IL). During the final 4 h of culture,
cells were pulsed with 12.5 ng/ml PMA (Sigma), 500 ng/ml ionomycin (Sigma), and 1 ug/ml

GolgiPlug (BD Biosciences). Cells were harvested, surface stained and permeabilized with

10
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Cytofix/Cytoperm Buffer (BD Biosciences), washed with Perm/Wash Buffer (BD Biosciences)
and stained with anti-IFN-y APC (clone XMG1.2) and anti-IL-4 PE (clone 11B11) or anti-1L-10
APC (clone JES5-16E3), and anti-IL-13 PE (clone eBio13A, eBioscience, San Diego, CA). Cells
were acquired using a FACScalibur (BD Biosciences) and data analyzed using FlowJo software

(Tree Star, Ashland, OR).

Measurement of serum and fecal antibody levels. Sera were collected weekly over the course
of each experiment and feces were collected at sacrifice. Sera from individual mice were assayed
for OVA-specific 1gG1, 1gG2b, 1gG2c, and IgA by ELISA as previously described (27). For
OVA-specific IgG1, 1gG2b, and 1gG2c, OD values were converted to ng/ml by comparison with
a standard curve of anti-OVA Abs affinity purified from the serum of immunized C57BL/6 J
mice using OVA conjugated to CNBr-activated Sepharose 4B (Amersham Biosciences, Uppsala,
Sweden). To obtain ng/ml values of each anti-OVA Ab isotype, known amounts of purified
mouse isotype control Abs from Southern Biotechnology Associates, Birmingham, AL (for IgG1
and 1gG2b) or Bethyl Laboratories, Montgomery, TX (for IgG2c) were used. For OVA-specific
IgA, OD values were converted to ng/ml of IgA by comparison with a purified IgA standard (BD
Biosciences, San Jose, CA). Fecal extracts from individual mice were obtained as previously

described (41) and OV A-specific IgA responses were determined by ELISA.

Statistical analysis. Results are expressed as the mean + standard error of the mean (SEM). One-
way ANOVA followed by Tukey’s multiple comparisons test, unpaired t tests, or the Mann
Whitney test were used to determine the significance of differences among helminth-free and

helminth-infected vaccinated and unvaccinated groups of mice. Statistical differences were

11
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247  determined using GraphPad Prism (GraphPad Software, Inc., San Diego, CA). A P value of

248  <0.05 was considered significant.

249  Figure design. Figures were created using BioRender (https://biorender.com).

12
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RESULTS
A live attenuated oral Salmonella-OVA vaccine disrupts antigen-specific regulatory networks
to promote T-effector responses to OVA in the gut-associated lymphoid tissue

To determine the impact of oral vaccination with Salmonella-OVA on the development
of OVA-specific regulatory T cells (Tregs) in the GALT, we introduced Salmonella-OVA into a
congenic adoptive transfer model previously used to show that oral consumption of dietary OVA
antigen drives conversion of OVA-specific T cells into Foxp3* Tregs in the small intestinal
lamina propria (LP) and gut-associated lymphoid tissue (GALT) (44). We adoptively transferred
Ly5.2" T cells from recombination-activating gene 1-deficient (RAG1 KO) OT-II transgenic
(OT-11 Tg) mice into Ly5.1" RAG-1-replete B6.SJL recipients. Some recipients were then fed
OVA antigen dissolved in drinking water (OVA-water) for five consecutive days. Others were
orally vaccinated once with 10'? Salmonella-OVA or a sham live attenuated Salmonella vaccine
strain that does not express OVA (Salmonella-BEM). Another subset received both OVA-water
for five days and one dose of Salmonella-OVA (Fig. 1A). All CD4" T cells in Ly5.2* RAG-1
KO OT-II transgenic mice are specific for OVA and nearly all these CD4" cells lack expression
of the Treg transcription factor Foxp3 (Foxp3-expressing cells <0.05%) (44).We found that oral
administration of OVA-water or one dose of Salmonella-OVA, but not the sham vaccine,
increased the proportions of OVA-specific T cells in the GALT, particularly in the MLN (Fig.
1B and C). While OVA-specific T cells accumulated in the intestinal LP of mice fed OVA-
water, whether or not they were vaccinated with Salmonella-OVA, oral vaccination with
Salmonella-OVA induced a significantly lower frequency of OVA-specific T cells accumulating

in the intestinal LP (Fig. 1D and E).

13
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272 As expected, soluble OVA (OVA-water) induced the conversion of OVA-specific CD4*
273 T cells to Foxp3* Tregs in MLN and intestinal LP ((44) and Fig. 2). However, oral vaccination
274 with Salmonella-OVA impaired soluble OVA-driven conversion of OVA-specific CD4™ T cells
275  to Foxp3* Tregs in both the MLN and intestinal LP (Fig. 2). Moreover, oral vaccination with
276  Salmonella-OVA increased the frequency of activated, OVA-specific, Foxp3 effector T cells
277  that expressed gut-homing surface molecules o437 and CD44 in both MLN (Fig. 3A-D) and LP
278  (Fig 3E-H). Salmonella-OVA attenuated the increase in the frequency of a4f37- and CD44-

279  expressing, OVA-specific, Foxp3* Tregs in the MLN and LP normally induced by soluble OVA
280  (Fig. 3). These data demonstrate that the GALT handles OVA expressed by a live attenuated oral
281  Salmonella vaccine in a manner distinct from soluble OVA in drinking water and suggests that
282  OVA acts as a vaccine antigen when introduced in the context of the Salmonella-OVA oral

283  vaccine.

284

285  Preexisting intestinal helminth infection reduces Thl-skewed OVA-specific antibody

286  responses to oral vaccination with Salmonella-OVA

287 Chronic helminth infection of at least two weeks duration results in significant

288  impairment of host immune responses to Th1/IFN-y inducing malaria infection (26), I1L-12 /IFN-
289 vy dependent trinitrobenzenesulfonic acid (TNBS)-induced colitis (48), and parenteral vaccination
290  against yellow fever virus YFV-17D (22). To determine whether chronic intestinal helminth
291 infection could alter antibody responses to oral immunization, C57BL/6 mice were infected or
292  not with the natural murine gastrointestinal helminth, H. polygyrus bakeri 14 days prior to oral
293  vaccination with Salmonella-OVA or the sham vaccine Salmonella-BEM (Fig. 4A). We

294  examined OVA-specific antibody responses to Salmonella-OVA or sham vaccine in sera and
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fecal extracts of helminth-infected and helminth-free mice (Fig. 4B-F). As expected, mice
vaccinated with Salmonella-BEM did not make OV A-specific antibody responses ((41) and Fig.
4). Helminth-free mice vaccinated with Salmonella-OVA made a highly Thl-skewed OVA-
specific serum IgG2c response, 10 to 15-fold greater than the OV A-specific serum 1gG2b and
IgG1 responses, respectively (Fig. 4B-D and (41)). OVA-specific IgG2b and 1gG2c levels were
significantly lower in vaccinated helminth-infected mice compared to vaccinated helminth-free
mice (Fig. 4C, D). Helminth infection delayed but did not eliminate the OV A-specific serum
IgA response to Salmonella-OVA (Fig. 4E). OVA-specific fecal IgA responses were reduced
two-fold in helminth-infected vaccinated mice compared to helminth-free mice although this did
not reach statistical significance (Fig. 4F).

Preexisting helminth infection did not enhance OVA-specific IgG1 responses in orally
vaccinated mice (Fig. 4B) despite the Th2 polarized helminth-induced polyclonal serum and
fecal 1gG1 and serum IgE responses in helminth-infected mice (Supplementary Fig. 1B-D). We
found significantly elevated levels of total serum IgE in helminth-infected mice vaccinated with
Salmonella compared to their unvaccinated, helminth-infected counterparts, perhaps due to
enhanced polyclonal B cell activation in the presence of Salmonella LPS, as reported in in vitro
studies by others (49). The mean number of parasites recovered at sacrifice from the intestinal
contents of mice given the sham vaccine Salmonella-BEM was lower than that recovered from
unvaccinated helminth-infected mice, although this did not reach statistical significance
(Supplementary Fig. 1E). There was no difference in mean number of parasites recovered from
mice vaccinated with Salmonella-OV A compared to unvaccinated helminth-infected mice

(Supplementary Fig. 1E).
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Intestinal helminth infection reduces OVA-specific 1gG responses to intramuscular
vaccination with OVA and the non-microbial adjuvant alum

To determine whether intestinal helminth infection could suppress vaccine antigen-
specific antibody responses to a parenterally-administered model OV A protein subunit vaccine,
we inoculated C57BL/6 mice with helminth 14 days prior to intramuscular (i.m.) vaccination
with OVA adsorbed to the vaccine adjuvant alum (OVA-alum, Fig. 5A). We observed that
helminth-free mice vaccinated i.m. with OVA-alum made a highly Th2-skewed OV A-specific
serum IgG1 response (Fig. 5B). Th1l-dependent OVA-specific serum IgG2c was not detected and
OVA-specific 1gG2b levels were 150-fold lower than the OVA-IgG1 levels (data not shown).
Notably, helminth-infected mice vaccinated i.m. with OVA-alum made significantly lower
OVA-specific IgG1 (Fig. 5B) and 1gG2b (data not shown) responses when compared to
helminth-free vaccinated mice despite elevated, Th2-skewed, polyclonal serum 1gG1 and IgE
levels (Fig. 5C, D). Comparable numbers of adult worms could be recovered from the intestinal
contents of both vaccinated and unvaccinated helminth-infected mice (Fig. 5E). Th2-skewed
antibody responses to i.m. OVA-alum vaccination remained significantly reduced in helminth-
infected mice, despite robust polyclonal 1IgG1 and IgE responses associated with helminth
infection, even when mice were housed in a specific pathogen free facility in a completely
different institution than in Fig. 5 (see Supplementary Fig. 2). Thus, chronic intestinal helminth
infection impaired immune responses to vaccines delivered via either mucosal or parenteral

routes.

Helminth infection does not reduce splenic bacterial titers and oral Salmonella does not alter

helminth-induced organomegaly.
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Since SL3261, the parent strain of Salmonella-BEM and Salmonella-OVA, is highly
attenuated, its ability to replicate in vivo is limited; however, after intragastric administration,
bacteria disseminate systemically and are recoverable from the spleens three days after
vaccination and up until four weeks later (data not shown). To determine whether helminth-
mediated suppression of antibody responses to oral Salmonella-OVA was due to alterations in
the systemic dissemination of the vaccine, we examined bacterial titers in the spleens of
helminth-infected and uninfected mice three days after oral vaccination (Supplementary Fig.
3A). We found no difference in CFU per gram tissue recovered from the spleens of helminth-
infected and helminth-free mice vaccinated with Salmonella-OVA or Salmonella-BEM
(Supplementary Fig. 3B), suggesting that intestinal helminth infection did not alter systemic
trafficking of the live attenuated vaccines. Conversely, ten days after H. polygyrus bakeri
infection (three days after oral vaccination), comparable numbers of adult worms could be
recovered from the intestinal contents of both vaccinated and unvaccinated mice
(Supplementary Fig. 3C). Both the draining MLN and spleens of helminth-infected mice were
enlarged compared to helminth-free mice and significantly greater in mass, regardless of whether
the mice were vaccinated with Salmonella-BEM or Salmonella-OVA (Supplementary Fig. 3D,
E). Taken together, these data suggest that helminth infection does not impair systemic spread of

the Salmonella vaccines.

Activated vaccine antigen-specific CD4" T cells accumulate in the draining MLN of both
helminth-free and helminth-infected mice vaccinated with Salmonella-OVA
Cytokines produced by antigen-activated CD4" helper T cells typically drive antibody

class switching and stimulate B cells to produce antibodies against T-cell dependent protein
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antigens (50). To determine if impaired antigen-specific humoral responses in helminth-infected
mice were due to a defect in the response to vaccine antigen by antigen-specific CD4" T helper
cells, we adoptively transferred C57BL/6 mice (whose T cells express the surface marker
Thy1.2) with CD4"Thy1.1* OVA-specific T cell receptor transgenic OT-II cells. Two days later,
a subset of mice were infected with helminth larvae. Following helminth infection, mice were
orally vaccinated with either Salmonella-OVA or the sham vaccine Salmonella-BEM (Fig. 6A).
Three days after vaccination, both the frequency and total number of OV A-specific
CD4"Thy1.1* OT-II cells in the MLN were higher in helminth-free and helminth-infected mice
vaccinated with Salmonella-OVA compared to Salmonella-BEM vaccinated mice (Fig. 6B-D).
The mean frequency, but not mean total number, of MLN OT-II cells was significantly lower in
helminth-infected, Salmonella-OVA vaccinated mice than in their uninfected, Salmonella-OVA
vaccinated counterparts (Fig. 6C, D). This was likely due to a helminth-induced influx of
helminth-specific effector cells into the MLN, reflected in the larger organ mass in helminth-
infected vaccinated mice (Supplementary Fig. 3D) and increased total cell numbers in the
draining MLN of helminth-infected mice (data not shown). However, the proportion and total
number of OT-11 cells that expressed CD69, a marker of early lymphocyte activation, were
higher in both helminth-free and helminth-infected mice vaccinated with Salmonella-OVA
compared to mice vaccinated with Salmonella-BEM (Fig. 6E, F).

Both activated T-effector and Treg populations can express IL-2Ra chain, CD25 (51).
We found a modest increase in the percentage, and a significant increase in the number, of
CD25" OT-II cells found in MLNs from helminth-free mice vaccinated with Salmonella-OVA
compared to helminth-free mice that received the sham vaccine (Fig. 6G, H). In addition, the

percentage of CD25" OT-II cells in helminth-infected, vaccinated mice was nearly 2-fold greater
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than in helminth-free mice (Fig. 6G). However, there was no significant difference in total
number of CD25* OT-II cells recovered from the MLNs of helminth-infected mice vaccinated
with Salmonella-OVA compared to helminth-free mice (Fig. 6H). By contrast, total numbers of
MLN, non-TCR transgenic, CD4*Thy1.1"CD25" cells were 2-fold greater in helminth-infected,
vaccinated mice than in helminth-free mice (Supplementary Fig. 4), suggesting that helminth
infection increased total numbers of activated effector and regulatory T cells in orally vaccinated

mice.

Helminth-induced Th2-polarized cytokine responses are intact in orally vaccinated mice
Intestinal helminth infection promotes the production of Th2 effector cytokines,
including IL-4 and IL-13 (52), and regulatory cytokines like IL-10 and TGF- (53) by CD4* T
cells. We examined cytokine responses in polyclonal and OVA-specific CD4* T cell populations

following oral vaccination in helminth-free and helminth-infected mice using intracellular
staining and flow cytometry (Fig. 7). Ten days after helminth infection and three days after oral
vaccination, we found comparable frequencies of IFN-y*CD4*Thy1.1" non-TCR transgenic Thl
cells in the draining MLN among helminth-infected and helminth-free mice (Fig. 7B and C).
However, a significantly greater percentage of CD4*Thy1.1" cells were IL-4 (Fig. 7D), IL-10*
(Fig. 7E), and IL-13" (Fig. 7F) in both vaccinated and unvaccinated, helminth-infected mice
compared to uninfected mice. Thus, oral vaccination with the Th1-polarizing attenuated
Salmonella vaccine did not prevent the generation of a robust cell-mediated Th2 and Treg

cytokine response to helminth infection.
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Vaccine antigen-specific CD4" T cells from the draining MLN of helminth-infected, orally
vaccinated mice produce Th2-type effector and regulatory cytokines

We next examined Thl (IFN-y), Th2 (IL-4, IL-13), and Treg (IL-10) cytokines in OVA-
specific CD4*Thy1.1" OT-11 MLN cells re-stimulated with OVA in vitro (Fig. 8). The
frequencies and total numbers of OT-II cells recovered from cultured MLN cells of helminth-
free and helminth-infected Salmonella-OV A vaccinated mice were significantly greater than in
helminth-free, Salmonella-BEM vaccinated mice (Fig. 8C, D). Although the percentage and total
numbers of IL-13" and IFN-y* OT-11 cells were not statistically significantly different between
helminth-free and helminth-infected vaccinated mice, the percentage and total numbers of OT-II
cells producing, IL-4, and I1L-10 was significantly increased in helminth-infected, vaccinated
mice compared to uninfected, vaccinated mice (Fig. 8E-L). The helminth-modified Th2
response is characterized by elevated antigen-specific Th2-type cytokine production in
conjunction with elevated antigen-specific IL-10 production to heterologous antigens
administered to helminth-infected mice (54). The increased frequency and total number of Th2-
type IL-4* OT-11 cells coupled with enhanced percentages and total numbers of OVA-specific
cells producing IL-10 was consistent with the development of a helminth-modified Th2 and Treg
response to oral vaccination with Salmonella-OVA. The increased frequency and total number of
OVA-specific CD4" IL-10-producing T cells and the drop in serum antibody responses to OVA
in helminth-infected, vaccinated mice suggests a role for 1L-10-secreting CD4* T regulatory cells

in reducing vaccine-induced humoral responses in helminth-infected mice.
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DISCUSSION

In humans and mice, protective immune responses against oral Salmonella vaccines
involve both T and B cell responses, including robust expansion of CD4* Th1 cells, IFN-

v production (17, 18), and Salmonella-specific 1gG and IgA responses that facilitate clearance of
the organism (18, 19). We and others have shown that the host immune response to heterologous
vaccine antigen produced within the recombinant attenuated oral Salmonella vaccine (RASV)
system is a CD4" Thl-biased immune response (41, 55) that depends on intact signaling via
MyD88 (41). The experiments presented here expand our current understanding of how the
RASYV system induces immunity to heterologous vaccine antigens. We show that the RASV
system disrupts vaccine antigen-specific regulatory T cell networks in the gut-associated
lymphoid tissue (GALT). It reduces the frequency of activated, vaccine-antigen specific, Foxp3*
regulatory T cells in the GALT that express gut-homing markers. The RASV system
concurrently promotes the accumulation of activated, vaccine antigen-specific, Foxp3 effector T
cells expressing gut-homing surface molecules in the GALT (Figs. 2 and 3).

Because they are versatile and reliably induce Thl-biased immune responses, live
attenuated oral Salmonella vaccine strains are widely used in agriculture, veterinary medicine,
and preventative care of humans to protect against salmonellosis (11, 12), typhoid (13, 14) and
paratyphoid fever (15). The recombinant attenuated oral Salmonella vaccine (RASV) system has
also been used as an experimental vaccine platform to develop oral vaccine candidates for
protection against food borne parasites (56, 57), human papilloma virus (58), streptococcal
pneumonia (55), and shigellosis (59), among many other pathogens. Yet, disparities in the

immunogenicity of oral Salmonella vaccines (60, 61) and other oral and parenteral vaccines in

21


https://doi.org/10.1101/2022.09.22.508369
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.22.508369; this version posted September 23, 2022. The copyright holder for this preprint

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

low- and middle-income countries compared to high-income countries have been repeatedly
described (62-65).

One compelling hypothesis for this disparity is that endemic helminth infection alters
immune responses to vaccination, and indeed, in human population studies, multiple reports
describe decreased vaccine efficacy in people with chronic helminth infections (60, 66-69). In
this study, we used a murine model to examine the impact of intestinal helminth infection on the
response to vaccination. We demonstrated that chronic infection with the intestinal helminth
Heligmosomoides polygyrus bakeri significantly suppressed Thl-skewed OVA-specific antibody
responses to our live attenuated oral Salmonella-OVA vaccine (Fig. 4). Strikingly, despite robust
helminth-induced Th2-biased total IgG1 and IgE responses in helminth-infected, vaccinated
mice (Supplementary Fig. 1), H. polygyrus bakeri infection failed to enhance the development
of a Th2-dependent OVA-specific IgG1 response to Salmonella-OVA (Fig. 4).

The reduced antibody responses to oral vaccination in helminth-infected mice were not
due to an impaired ability of the live attenuated Salmonella to traffic systemically and reach
immune organs like the spleen. By day 3 after oral vaccination, comparable CFU Salmonella per
gram tissue were recoverable from the spleens of helminth-free and helminth-infected mice
(Supplementary Fig. 3). The reduced antigen-specific humoral responses were also not due to
impaired ability of adaptive immune cells in helminth-infected mice to recognize and respond to
vaccine antigens. OVA-specific CD4" T cells expressing the activation marker CD69
accumulated in the draining MLN of both helminth-free and helminth-infected mice vaccinated
with the OVA-expressing Salmonella (Fig. 6). Moreover, similar numbers of OV A-specific
CD4* T cells in helminth-infected and helminth-free mice vaccinated with Salmonella-OVA

produced the Th1 effector cytokine IFN-y when re-stimulated in vitro with OVA (Fig. 8).
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Vaccination with Salmonella-OVA did not alter helminth-induced organomegaly
(Supplementary Fig. 3) nor did it hinder the development of Th2-polarized cytokine responses
in CD4* T cells from vaccinated mice (Fig. 7). Notably, helminth infection primed for a Th2-
biased and Treg-biased cytokine response to an ordinarily Th1-biasing vaccine, inducing greater
frequencies of 1L-4 and IL-10-producing vaccine antigen-specific CD4" T cells (Fig. 8).

The elevation in Th2 and Treg cytokines that we observed, in both polyclonal and vaccine
antigen-specific T cell populations, mirrors the helminth-modified Th2 response to heterologous
antigens previously reported by Mangan and colleagues in a mouse model of allergen-induced
airway disease with concomitant helminth infection (54). This signature cytokine pattern has
been observed in a variety of allergic and inflammatory disease models in our lab and others (29,
48). Helminth-induced IL-10 production in particular has been implicated in protecting against
both chemically-induced, colonic inflammation (48, 70) and allergic inflammation (29, 71).
While the helminth-modified, Th2 cytokine response is beneficial and protective in these
inflammatory disease models, our data suggest that it is detrimental for generating robust
immune responses in our helminth infection/vaccine model. IL-10-secreting, CD4" T cell
populations are associated with helminth-mediated immune suppression, as are CD4*CD25" T
cells, even in the absence of IL-10 secretion (72). Accordingly, we found an increased frequency
of polyclonal (Fig. 7) and vaccine-antigen specific (Fig. 8) CD4" IL-10-producing T cells and
higher numbers of polyclonal CD4*CD25" T cells (Supplementary Fig. 4) in helminth-infected
compared to helminth-free mice.

Helminth-induced alterations in vaccine antigen-induced cytokine production have been
previously described in both human studies and mouse models (31, 67, 69, 73). Elias et al.

observed reduced purified protein derivative (PPD)-specific IFN-y secretion by peripheral blood
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497  mononuclear cells isolated from bacilli Calmette-Guerin (BCG)-vaccinated Ethiopian subjects
498  with concomitant intestinal helminth infection when compared to anthelmintic-treated controls
499  (69). Su et al. and Nookala et al. both reported decreased vaccine antigen-induced IFN-y in their
500 models, with enhanced production of P. chabaudi antigen-specific IL-4, IL-13, and IL-10 in an
501 intestinal helminth infection/malaria vaccination model (31) and enhanced tetanus toxoid-

502  specific IL-10 in the human lymphatic filariasis/tetanus vaccination study (73). Surprisingly, we
503 found no difference in the frequencies of polyclonal IFN-y*CD4" T cells between helminth-free
504  and helminth-infected mice (Fig. 7). There were also comparable frequencies and total numbers
505  of vaccine antigen-specific IFN-y* CD4* T cells in helminth-infected and helminth-free

506  vaccinated mice (Fig. 8). This may reflect the potent Th1-inducing properties of our live

507  attenuated Salmonella vaccine compared to the protein subunit plus adjuvant vaccines employed
508 in the other studies.

509 Intestinal helminth infection induced OVA-specific, Th2 cytokine-producing CD4* T
510  cells after oral Salmonella-OVA vaccination, but this did not translate into enhanced vaccine
511  antigen-specific, Th2-dependent IgG1 antibody production in helminth-infected mice. Even in
512  the context of intramuscular vaccination with OV A adsorbed to the adjuvant alum, which

513  promotes Th2-skewed antibody responses to co-administered protein antigens (74, 75), intestinal
514  helminth infection suppressed Th2-dependent, antigen-specific IgG1 production (Fig. 5 and

515  Supplementary Fig. 2). Intestinal helminth infection has been shown to modulate cellular

516  immune responses to i.m. and intravenous vaccination in mice (31, 32). Chronic co-infection
517  with multiple viral pathogens in conjunction with the intestinal helminth H. polygyrus bakeri can

518  reduce serum antibody responses to subcutaneous injection of the yellow fever vaccine (22).
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Our study highlights the suppressive effect of intestinal helminth infection on vaccine antigen-
specific antibody responses to i.m. vaccination, even in the absence of any other infection.

The discordance of the impact of helminth-infection on vaccine-induced, T-effector cell
responses compared to humoral immune responses (76) may depend on worm burden and
chronicity of helminth infection, as has been shown in epidemiologic studies examining the
effects of helminth infection on allergic disease (33). Individuals with chronic helminth infection
and heavy worm burdens in a Venezuelan study were protected from atopic skin reactivity
against house dust mite antigen, whereas those with sporadic infection and light worm burdens
had elevated allergen-specific IgE responses and high skin reactivity (77). Su et al. have reported
a similar phenomenon in their malaria/intestinal helminth coinfection model; while H. polygyrus
bakeri infection of one week duration could suppress antimalarial immunity and increase levels
of parasitemia, infection of two weeks or longer exacerbated malaria-induced morbidity and
resulted in mortality in C57BL/6 mice (26). In our vaccination model, we found that chronic
nematode infection of at least two weeks duration suppressed anti-OVA antibody responses to
Salmonella-OVA (Fig. 4). Although H. polygyrus bakeri infection is confined to the small
intestines, infection with this helminth alters gut microbial communities across the small and
large intestines, and within the feces (39, 78, 79). These alterations in gut microbial
communities, including enrichment in members of the order Clostridiales (39, 79) and elevated
levels of their associated metabolic products, i.e. short chain fatty acids, have a significant
impact on heterologous systemic immune responses (39) and likely contribute to helminth-
mediated suppression of vaccine-antigen responses in our model.

We demonstrate that intestinal infection with H. polygyrus bakeri generated MLN-

resident, polyclonal and vaccine antigen-specific, CD4" T cells that produced the regulatory
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cytokine IL-10 (Figs. 7 and 8). Infection with H. polygyrus bakeri has been shown to promote
the expansion of Foxp3*CD4"CD25"IL-10 producing regulatory T cells by producing a TGF-

B mimic that can induce regulatory T cells in vitro even in the presence of inflammatory
cytokines (80, 81). Helminth glycans have also been shown to drive regulatory T cell expansion
in mixed type 2 / regulatory T cell responses characterized by the presence of IL-10-producing
regulatory T cells (82). Chronic parasitic infection in mice with the systemic, blood-borne,
filarial helminth Litmosomoides sigmodontis induces an expansion of splenic, Foxp3- IL-10%, T
regulatory 1 (Trl) cells and reduces the quantity and quality of influenza vaccine-specific
antibody responses (83). In an environmental enteric dysfunction model comprised of severely
malnourished mice chronically infected with adherent E. coli, LP-resident Foxp3*"RORyT " Tregs
were associated with impaired antibody responses to an oral heat labile toxin vaccine (84). Our
data demonstrate that neither a systemic chronic infection, nor severe malnutrition is required for
the expansion of infection-associated regulatory T cells and suppressed vaccine-specific antibody
responses. We show that in well-nourished hosts, a strictly enteric chronic helminth infection
promoted the expansion of IL-10-producing T cells and impaired antibody responses to both
injectable and live attenuated oral vaccines.

Our findings confirm that helminth-induced alteration of the intestinal microenvironment
has systemic consequences, in this case, down-modulating immune responses to parenteral and
oral vaccination. Antigen-specific antibody responses to different vaccine formulations (live
attenuated Salmonella vaccine and protein adsorbed to alum) administered via different routes
(oral and intramuscular) were suppressed by preexisting intestinal helminth infection. Our
findings suggest that the immune suppressive environment generated by intestinal helminths to

promote their survival impacts “third party” immune responses that may hinder the development
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565  of vaccine-induced protective immunity. Thus, the potential need to eliminate these parasites
566  prior to vaccination should be considered when targeting populations with endemic helminth
567 infection. In fact, large-scale clinical trials in a helminthic-endemic area (Uganda) have recently
568  been proposed to investigate whether anti-helminthic therapies will enhance antibody and T-

569 effector cytokine responses to both injectable and oral vaccines in school age children (61).

570  Future studies exploring CD4*T-cell independent mechanisms and their possible contributions to
571  helminth-induced suppression of vaccine-induced antibody responses is also warranted. Our data
572  make clear that the optimization of vaccine schedules in helminth-endemic regions must take
573  into account that even strictly enteric helminth infection alters local mucosal and systemic

574 immune responses to vaccination.

575
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FIGURE LEGENDS

Figure 1. Feeding with soluble OVA antigen and/or oral vaccination with Salmonella-OVA
induces accumulation of OVA-specific T cells in the GALT. (A) Experimental timeline. After
gating on CD4* T cells, transferred T cells in the MLN (B, C) or LP (D, E) of OVA antigen-fed
mice or mice vaccinated with Salmonella-OVA (Salm-OVA) or the sham vaccine Salmonella-
BEM (Salm-BEM) were identified by Ly5.2 expression. B and D are representative flow
cytometry plots while C and E are summary graphs of the percentage of Ly5.2" RAG1 KO OT-II
T cells in MLN and LP respectively. Each dot in C and E represents a single mouse, with three
to four mice per group. Experiment was repeated two times. Data shown are from one of two
independent experiments. Statistical Analyses: One-way ANOVA followed by Tukey’s multiple

comparisons test (****P<0.0001, ***P<0.001, **P<0.01).

Figure 2. Oral vaccination with Salmonella-OVA disrupts oral soluble OVA-driven
conversion of CD4* T cells to Foxp3* Tregs in the GALT. After gating on CD4" T cells,
transferred T cells in the MLN (A, B) or LP (C, D) of OVA antigen-fed or Salmonella-OVA
(Salm-OVA) vaccinated mice were identified by Ly5.2 expression. Ly5.2" cells were then
assessed for intracellular Foxp3 expression. A and C are representative flow cytometry plots
while B and D are summary graphs of the percentage of Foxp3*among Ly5.2" RAG1 KO OT-II
T cells in MLN and LP respectively. Each dot in B and D represents a single mouse with four
mice per group. Experiment was repeated two times. Data shown are from one of two
independent experiments. Statistical Analyses: One-way ANOVA followed by Tukey’s multiple

comparisons test (***P<0.001, **P<0.01, *P<0.05).
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Figure 3. Oral vaccination with Salmonella-OVA increases the frequency of activated,
OVA-specific Foxp3 T effectors and decreases the frequency of OVA-specific Foxp3*
Tregs expressing gut homing molecules in the MLN and lamina propria. After gating on
CD4" T cells, transferred T cells in the MLN of OVA antigen-fed or Salmonella-OVA
vaccinated mice were identified by Ly5.2 expression. Ly5.2* cells in the MLN (A-D) and LP (E-
H) were then assessed for intracellular Foxp3 expression and cell surface expression of a4p7 (A,
B, E,F) orCD44 (C, D, G, H). A, C, E, and G are representative flow cytometry plots while B,
D, F and H are summary graphs. Each dot represents a single mouse with four mice per group.
Experiment was repeated two times. Data shown are from one of two independent experiments.
Statistical Analyses: one-way ANOVA followed by Tukey’s multiple comparisons test

(***P<0.001, **P<0.01, *P<0.05).

Figure 4. Thl-skewed antibody responses to oral vaccination with Salmonella-OVA are
reduced in mice with preexisting helminth infection. (A) Experimental timeline; 14 days after
intragastric inoculation with 200 third-stage H. polygyrus bakeri larvae, helminth-free (B-E; No
Inf, black bars) and helminth-infected (B-E; Hp inf, white bars) C57BL/6 mice were given two
intragastric doses of 2 x 10'° Salmonella-BEM (SALM-BEM) or Salmonella-OVA (SALM-
OVA) and OVA-specific serum (B) 1gG1, (C) IgG2b, (D) IgG2c, and (E) IgA were measured
14, 21, and 28 days post vaccination by ELISA. OVA-specific IgA in fecal extracts was
measured 28 days post vaccination by ELISA (F). Pooled data from two independent
experiments (n=11-12 mice per group). Statistical Analyses: Unpaired t-test in B-E comparing
helminth-infected to helminth-free at same time point; One-way ANOVA in F followed by

Tukey’s multiple comparisons test. ***P<0.001, **P<0.01, *P<0.05.

37


https://doi.org/10.1101/2022.09.22.508369
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.22.508369; this version posted September 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

available under aCC-BY-NC 4.0 International license.

Figure 5. Th2-skewed antibody responses to intramuscular vaccination with OVA-alum are
significantly reduced while polyclonal 1gG1 and IgE responses are elevated in vaccinated,
helminth-infected mice. (A) Experimental timeline; 14 days after intragastric inoculation with
200 third-stage H. polygyrus bakeri larvae, helminth-free C57BL/6 mice (black bars) and
helminth-infected C57BL/6 mice (white bars), were given two intramuscular doses of 25 mg
OVA adsorbed to 1 mg alum or 1mg alum alone spaced one week apart. (B) OVA-specific 1gG1.
(C) Total Serum IgGL1. (D) Total serum IgE. (E) Worms recovered. Data in B-E are pooled from
two independent experiments; n=8-10 mice per group. Statistical Analyses: unpaired t-test in B;
One-way ANOVA followed by Tukey’s multiple comparisons test in C-E (****P<0.0001,

**P<0,01).

Figure 6. Activated vaccine antigen-specific CD4* T cells accumulate in the draining MLN
of both helminth-free and helminth-infected mice vaccinated with Salmonella-OVA. (A)
Experimental timeline. (B) Representative flow cytometry plots showing adoptively transferred
CD4*Thyl.1* OVA-TCR transgenic OT-II cells, percent CD69" and percent CD25" among OT-
Il cells in MLNs of helminth-free and helminth-infected mice. (C) Proportion of adoptively
transferred CD4"Thy1.1* OVA-TCR transgenic OT-II cells in MLNs of helminth-free (black
symbols) and helminth-infected (white symbols) mice. (D) Total number OT-II cells recovered
from MLN. (E) Percent CD69" among OT-II cells. (F) Total number CD69"OT-II cells (G)
Percent CD25" among OT-II cells (H) Total number CD25"OT-II cells. Salm-BEM (circles) =
Salmonella-BEM. Salm-OVA (squares) = Salmonella-OVA. Hp = H. polygyrus bakeri. Symbols

represent individual mice; lines represent mean percentages. Pooled data from three independent
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experiments; n=5 to 7 mice per group. Statistical Analyses: one-way ANOVA followed by

Tukey’s multiple comparisons test (****P<0.0001, ***P<0.001, **P<0.01, *P<0.05).

Figure 7. Intestinal helminth infection induces Th2-polarized cytokine responses in CD4* T
cell populations in both vaccinated and unvaccinated mice. (A) Experimental timeline; two
days after adoptive transfer of 4 to 6 x 10 CD4*Thy1.1* OVA-TCR transgenic OT-II cells, mice
were infected (white symbols) or not (black symbols) with 200 third-stage H. polygyrus bakeri
(Hp) larvae. Seven days after helminth infection, mice received one intragastric dose of ~5 x 10%°
Salmonella-BEM or Salmonella-OVA. 3 days later, MLN cells were harvested, cultured
overnight with OVA, pulsed for 4 h with PMA, ionomycin, and Golgiplug and surface labeled
with mADbs to CD4 and Thy1.1, fixed, permeabilized and intracellularly stained with Abs against
IFN-y, IL-4, IL-10, and IL-13. (B) Representative flow cytometry plots and summary graphs
showing (C) percent IFN-y* (D) percent IL-4" (E) percent IL-10" (F) percent IL-13" among non-
TCR transgenic CD4"Thy1.1- MLN cells. Salm-BEM (circles) = Salmonella-BEM. Salm-OVA
(squares) = Salmonella-OVA. Hp (triangles) = H. polygyrus bakeri only. Symbols represent
individual mice; lines represent mean percentages. Pooled data from 3 independent experiments;
n=3 to 7 mice per group. Statistical Analyses: One-way ANOVA followed by Tukey’s multiple

comparisons test (****P<0.0001, ***P<0.001, **P<0.01, *P<0.05).

Figure 8. OVA-specific CD4* T cells from the draining MLN of helminth-infected mice
vaccinated with Salmonella-OVA produce Th2 effector and regulatory cytokines (A)
Experimental timeline. (B) Representative flow cytometry plot and (C-L) summary graphs

showing (C) percent CD4*Thy1.1" and (D) total number of CD4*Thy1.1" among re-stimulated
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958  MLN cells (E) percent IFN-y* and (F) total number of IFN-y" (G) Percent IL-4" (H) total number
959  IL-4" (1) percent IL-10" and (J) total number IL-10" (K) percent IL-13" and (L) total number IL-
960 13" of adoptively transferred CD4"Thy1.1" OT-1I MLN cells. MLN cells were harvested,

961  cultured overnight with OVA, pulsed for 4 h with PMA, ionomycin, and Golgiplug and surface
962 labeled with mAbs to CD4 and Thyl.1, fixed, permeabilized and intracellularly stained with Abs
963  against IFN-y, IL-4, IL-10, and IL-13. Helminth-free (black symbols); helminth-infected (white
964  symbols). Salm-BEM (circles) = Salmonella-BEM. Salm-OVA (squares) = Salmonella-OVA.
965  Symbols represent individual mice; lines represent mean percentages. Pooled data from three
966 independent experiments; n=5 to 7 mice per group. Statistical Analyses: one-way ANOVA

967 followed by Tukey’s multiple comparisons test (C, D) and Mann Whitney test (E-L.

968  ***P<0.001, **P<0.01, *P<0.05).
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Figure 6
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Figure 7
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Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
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Supplementary Figure 4
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