

1 **Manuscript Title: Intestinal helminth infection impairs oral and parenteral vaccine**
2 **efficacy^{1,2,3}**

3
4 **Running Title: Intestinal helminth infection impairs vaccine efficacy**

5
6 LaKeya C. Hardy^{*,†}, Camille M. Kapita^{*}, Evelyn Campbell[‡], Jason A. Hall[¶], Joseph F. Urban,
7 Jr.[†], Yasmine Belkaid[¶], Cathryn R. Nagler^{‡,§, #}, Onyinye I. Iweala^{*,†, #}

8
9 *Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology,
10 Allergy, and Immunology and [†]Department of Pediatrics, University of North Carolina Food
11 Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of
12 Medicine, Chapel Hill, NC, 27599

13
14 [‡]Biological Sciences Division, and [§]Pritzker School of Molecular Engineering, University of
15 Chicago, Chicago, IL, 60637

16
17 [¶]National Institute of Allergy and Infectious Diseases Microbiome Program and Metaorganism
18 Immunity Section, Laboratory of Host Immunity and Microbiome, Center for Human
19 Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health,
20 Bethesda, MD 20892.

21
22 [†]United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural
23 Research Center, Animal Parasitic Diseases Laboratory and Beltsville Human Nutrition
24 Research Center, Diet, Genomics, and Immunology Laboratory, 10300 Baltimore Avenue BLDG
25 307-C BARC-East, Beltsville, MD, 20705

26
27 [#]Center for Immunology and Inflammatory Disease, Division of Rheumatology, Allergy and
28 Immunology, Massachusetts General Hospital, Charlestown, MA 02129

29
30 **1Address correspondence to:**

31 Onyinye I. Iweala
32 Division of Rheumatology, Allergy, and Immunology
33 UNC Food Allergy Initiative | Thurston Arthritis Research Center
34 The University of North Carolina at Chapel Hill
35 3300 Thurston Building, CB#7280
36 Chapel Hill, NC 27599-7280
37 Phone: 984-974-2645
38 Fax: 984-974-2660
39 onyinye.iweala@med.unc.edu

40
41 **2Funding :** This work was supported by the NIH (DK55678 (CRN); F31AI054229 (OII), and
42 K08AI141691 (OII)), the Center for the Study of Inflammatory Bowel Disease (CSIBD) at
43 MGH, a 2020 American Association of Allergy, Asthma, and Immunology Foundation Faculty
44 Development Award (OII), and the Thurston Arthritis Research Center (TARC) at UNC-Chapel
45 Hill. The project was also supported by the National Center for Advancing Translational
46 Sciences (NCATS), National Institutes of Health, through Grant Award Number

47 UL1TR002489. The funders had no role in the analysis, decision to prepare or to publish, the
48 manuscript. The content is solely the responsibility of the authors and does not necessarily
49 represent the official views of the National Institutes of Health.

50
51 **³Abbreviations:** GALT, gut-associated lymphoid tissue; LP, lamina propria, MLN, mesenteric
52 lymph node; OT-II Tg, OT-II transgenic; RAG1 KO, recombination-activating gene 1–
53 deficient; Treg, regulatory T cell; Teff, T-effector cell ; WHO, World Health Organization

54

55 **Manuscript Information:**

56 *40 text pages (including references and figure legends)*

57 *8 figures*

58 *4 supplementary figures*

59

60

61 **ABSTRACT**

62

63

64

The impact of endemic parasitic infection on vaccine efficacy is an important consideration for vaccine development and deployment. We have examined whether intestinal infection with the natural murine helminth *Heligmosomoides polygyrus bakeri* alters antigen-specific antibody and cellular immune responses to oral and parenteral vaccination in mice. We found that oral vaccination of mice with a clinically relevant, live, attenuated, recombinant *Salmonella* vaccine that expresses chicken egg ovalbumin (*Salmonella*-OVA) disrupts ovalbumin-specific regulatory T cell networks in the gut associated lymphoid tissue and promotes T-effector responses to OVA. Chronic intestinal helminth infection significantly reduced Th1-skewed antibody responses to oral vaccination with *Salmonella*-OVA. Activated, adoptively-transferred, OVA-specific CD4⁺ T cells accumulated in draining mesenteric lymph nodes (MLN) of vaccinated mice, irrespective of their helminth-infection status. However, helminth infection increased the frequencies of adoptively-transferred OVA-specific CD4⁺ T cells producing IL-4 and IL-10 in the MLN. Chronic intestinal helminth infection also significantly reduced Th2-skewed antibody responses to parenteral vaccination with OVA adsorbed to alum. These findings suggest helminth-induced impairment of vaccine antibody responses may be driven by the development of IL-10-secreting CD4⁺ T regulatory cells. They also underscore the potential need to treat parasitic infection before mass vaccination campaigns in helminth-endemic areas.

82 **INTRODUCTION**

83
84 Vaccination is one of the most effective public health measures against infection (1-4).
85 However, as the COVID-19 pandemic has highlighted, there are significant unmet needs for
86 vaccine coverage for adults and children across the world, particularly in low- and middle-
87 income countries where populations shoulder a significant portion of the world's infectious
88 disease burden (3-5). The World Health Organization (WHO) and other multinational, public-
89 private partnership organizations continue to advocate for strategies that address the availability,
90 affordability, storage and handling, ease of administration, and safety of vaccines, with the goal
91 of expanding vaccination coverage amongst underserved populations (4, 6, 7).

92 Mucosal vaccines, including oral vaccines, are potent inducers of local mucosal and
93 systemic cellular and humoral immune responses (8-10). Recombinant oral *Salmonella* vaccines,
94 for example, are used in veterinary medicine, especially in the context of poultry farming, to
95 improve fowl health and ensure food safety (11, 12). Oral vaccination with live-attenuated
96 *Salmonella* strains is also used to protect humans against typhoid (13, 14) and paratyphoid fever
97 (15). In humans, oral *Salmonella* vaccines activate circulating B and T cells, expand the number
98 of circulating CD4⁺ Th1 cells, increase serum IFN- γ and TNF- α , and induce *Salmonella*-specific
99 serum and fecal antibody responses (14). In mice, T and B cells are also critical for protective
100 immune responses to attenuated and virulent *Salmonella* (16). CD4⁺ Th1 cells and robust IFN- γ
101 production (17, 18) coupled with *Salmonella*-specific IgG and IgA responses are critical for the
102 clearance of *Salmonella* and development of protective immunity against virulent *Salmonella*
103 strains (18, 19).

104 One challenge to vaccination is the impact that parasitic gastrointestinal helminth
105 infections can have on the immune response to vaccines (20-22). Greater than 50% of the

106 world's population lives in regions where helminth infections are endemic (23). Nearly 1.5
107 billion people are chronically infected with gastrointestinal helminths (23, 24). Three hundred
108 million of these individuals also suffer from malnutrition, stunted growth, anemia, and reduced
109 protective immunity to unrelated pathogens (25, 26). We and others have shown that preexisting
110 helminth infection is a potent modulator of the immune response to orally delivered dietary
111 antigens (27-29), gastrointestinal bacterial infection (30) and parenteral vaccination (22, 31, 32).
112 Epidemiological studies, clinical trials, and animal models suggest that helminth infection has
113 powerful immunosuppressive effects on the development of allergic, autoimmune, and
114 inflammatory diseases (33-35). Helminth infection promotes immune suppression by inducing
115 regulatory cells and cytokines that modulate Th1-, Th2-, and Th17-dependent immune responses
116 (36, 37) in part through interactions with endogenous microbiota (38, 39). Since the regions
117 where helminth infection is endemic overlap significantly with the regions of the world targeted
118 by global health organizations for improved vaccine coverage (1, 4, 40), the impact of helminth
119 infections on vaccine-induced protective immunity must be considered in vaccine design and
120 deployment.

121 We used a live attenuated oral *Salmonella* vaccine strain expressing chicken egg
122 ovalbumin (OVA) (41) to examine the impact of chronic intestinal helminth infection with the
123 natural mouse parasite *Heligmosomoides polygyrus bakeri* (*H. polygyrus bakeri*) on vaccine
124 antigen-specific cellular and antibody responses. We found that a live attenuated oral
125 *Salmonella*-OVA vaccine disrupts OVA-specific regulatory T cell expansion, promoting OVA-
126 specific T-effector responses. Chronic intestinal helminth infection significantly reduced Th1-
127 skewed antibody responses to oral vaccination with *Salmonella*-OVA even though activated
128 OVA-specific CD4⁺ T cells accumulated in draining mesenteric lymph nodes (MLNs) of

129 helminth-free and helminth-infected mice. Helminth infection also increased the frequencies of
130 adoptively-transferred, OVA-specific CD4⁺ T cells producing IL-4 and IL-10 in the draining
131 MLN. This suggests that IL-10-secreting CD4⁺ T regulatory cells may reduce vaccine-induced
132 antibody responses in helminth-infected mice and highlights the potential need to eliminate
133 immunosuppressive intestinal parasites prior to vaccination in regions where helminth infection
134 is endemic.

135 **MATERIALS AND METHODS**

136 **Mice.** To evaluate peripheral conversion of OVA-specific CD4⁺ T cells to Foxp3⁺ Treg cells,
137 Ly5.1⁺ RAG-1 replete B6.SJL mice and C57BL/6 OT-II transgenic (Tg) RAG-1 KO Ly5.2⁺
138 mice were purchased from Taconic Farms. Foxp3 eGFP reporter mice (Foxp3^{eGFP}) were
139 originally obtained from M. Oukka (Brigham and Women's Hospital, Cambridge, MA (42)). OT-
140 II Tg RAG-1 KO Ly5.2⁺ Foxp3^{eGFP} mice were generated by crossing the F1 progeny of C57BL/6
141 OT-II Tg RAG-1 KO Ly5.2⁺ x Foxp3^{eGFP} breeders. These mice were maintained at an American
142 Association for the Accreditation of Laboratory Animal Care–accredited animal facility at the
143 National Institute for Allergy and Infectious Diseases (NIAID) and housed following procedures
144 outlined in the Guide for the Care and Use of Laboratory Animals under an animal study
145 proposal approved by the NIAID Animal Care and Use Committee.

146 For the helminth infection and oral and intramuscular vaccination experiments conducted at
147 Massachusetts General Hospital (MGH), six- to eight-week-old male and female C57BL/6 J
148 mice were purchased from the Jackson Laboratory (Bar Harbor, ME). OT-II (Thy1.1) mice on
149 the C57BL/6 background, transgenic for the TCR recognizing OVA peptide 323-339 were
150 provided by A. Luster (Massachusetts General Hospital (MGH), Charlestown, MA). Mice were
151 fed autoclaved food and water and maintained in a specific-pathogen-free facility at MGH. All
152 experiments were conducted after approval and according to regulations of the Subcommittee on
153 Research Animal Care at MGH.

154

155 For helminth infection and intramuscular vaccination experiments conducted at University of
156 North Carolina at Chapel Hill (UNC), eight to sixteen-week-old male and female C57BL/6 J
157 mice were also purchased from the Jackson Laboratory (Bar Harbor, ME). Mice were fed

158 autoclaved food and water and maintained in a specific-pathogen-free facility at the UNC. All
159 mouse experimental procedures were approved by the UNC Institutional Animal Care and Use
160 Committee.

161 ***In vivo* cell transfer and dietary oral antigen administration.** T lymphocytes were extracted
162 from the peripheral LNs (excluding the spleen) of OT-II Tg RAG-1 KO Foxp3^{eGFP} mice (Ly5.2⁺)
163 and adoptively transferred into B6.SJL recipient mice (Ly5.1⁺). Each mouse received 10⁶ cells.
164 Recipient mice were split into two groups. Select groups received a 1.5% OVA solution in
165 drinking water replaced every 48 h (grade V; Sigma-Aldrich) for five consecutive days. The
166 other groups received normal drinking water. On day 6, mesenteric lymph nodes (MLNs –
167 pooled portal, duodenum, jejunum, and ileum LNs as previously described (43)) and intestinal
168 lamina propria (LP) were collected from B6.SJL hosts, and Foxp3-eGFP expression assessed in
169 transferred cells. LN and LP single-cell suspensions were prepared as previously described (44).

170 ***S. typhimurium* vaccine strains and oral immunization.** The recombinant attenuated vaccine
171 strain *Salmonella typhimurium* SL3261 (*aroA*, (45)) carrying either the plasmid pnirOVA
172 (*Salmonella*-OVA) or pnirBEM (*Salmonella*-BEM) were grown overnight shaking at 37°C in
173 Luria Bertani (LB) broth supplemented with 100µg/ml of ampicillin (Ap) as previously
174 described (41). An OD₆₀₀ of 0.5 was estimated to have 2 x 10⁸ bacteria per ml of culture. In
175 experiments examining the peripheral conversion of OVA-specific CD4⁺ T cells to Foxp3⁺
176 Tregs, subsets of mice were gavaged with 10¹² attenuated *Salmonella* in PBS one day after
177 congenic cell adoptive transfer. In the helminth-infection experiments, subsets of *H. polygyrus*
178 *bakeri*-infected and uninfected mice were given 2 to 6 x 10¹⁰ attenuated *Salmonella* in PBS
179 intragastrically using a 20-gauge ball-tipped feeding needle at different time points (14 and 21

180 days after parasite inoculation for antibody production experiments, and 7 days after parasite
181 inoculation for cellular immune response experiments). To determine CFU *Salmonella* per gram
182 tissue, spleens were weighed, homogenized in Hanks Balanced Salt Solution and plated on LB
183 plates containing 100 µg/ml ampicillin.

184 **Intramuscular immunizations.** Mice were injected as previously described (46) with some
185 modifications. 25 µg OVA (Grade V, Sigma) in 1 mg alum or alum alone was suspended in 100
186 µL 1X PBS. 50 µL per limb was injected in the right and left hind leg ventral muscles 14 and 21
187 days after *H. polygyrus bakeri* inoculation.

188 **Helminth infection.** *Heligmosomoides polygyrus bakeri* (*H. polygyrus bakeri*) was propagated
189 as previously described (47) and stored at 4°C until used. C57BL/6J mice were inoculated
190 intragastrically with 200 third-stage larvae using a ball-tipped feeding needle. Adult worms in the
191 intestinal contents were determined at sacrifice as previously described (47).

192 **OVA-TCR transgenic CD4⁺ T cell enrichment and adoptive transfer in helminth-infected
193 and helminth-free mice.** Spleens and MLN were harvested from OT-II (Thy1.1) mice and T
194 lymphocytes were enriched using nylon wool fiber columns (Polysciences, Inc., Warrington,
195 PA). CD4⁺ T cells were positively selected with CD4 (L3T4) magnetic microbeads (Miltenyi
196 Biotec, Auburn, CA), pooled and suspended in PBS, and 4 to 6 x 10⁶ cells injected intravenously
197 into C57BL/6 mice.

198
199 **Flow cytometric analysis.** For the peripheral CD4⁺ to Foxp3⁺ Treg experiments,
200 single-cell suspensions from MLN were prepared by passing tissue through a 70-µm cell strainer.
201 For lamina propria (LP) cells, small intestinal segments were incubated in medium containing

202 3% FCS and 20 mM Hepes (HyClone) for 20 min at 37°C with continuous stirring. Tissue was
203 then digested with 250 mg/ml liberase CI (Roche) and 500 mg/ml DNase I (Sigma-Aldrich),
204 with continuous stirring at 37°C for 30 min. Digested tissue was forced through a Collector
205 tissue sieve, (Bellco Glass, Inc.) and strained through 70- and 40-µm cell strainers. To enrich for
206 lymphocytes, the suspension was centrifuged at room temperature at 500 g for 20 min in 30%
207 Percoll (GE Healthcare) in RPMI-1640. Cells were incubated with antibodies to Ly5.2 (clone
208 104), CD4 (clone RM4-5), CD25 (clone 7D4), CD103 (clone 2E7; all from eBioscience) and
209 assessed for the expression of these markers in addition to eGFP by flow cytometry using an
210 LSRII (BD Biosciences). Cells were also incubated with mAb against $\alpha_4\beta_7$ (clone DATK32; BD
211 Biosciences), CD44 (IM7; eBioscience), and 7-amino-actinomycin D (7-AAD; BD Biosciences)
212 to detect dead cells. Cells were acquired with an LSR II flow cytometer (BD Biosciences) and
213 flow cytometry data analyzed with FlowJo software (Tree Star, Ashland, OR).

214
215 For helminth-infection experiments, Thy1.1 FITC (clone OX-7), CD69 PE (clone H1.2F3), CD4
216 PerCP (clone RM4-5) and CD25 APC (clone PC61) and isotype controls were purchased from
217 BD Biosciences. Non-specific binding was blocked with antibodies against CD16/CD32 (BD
218 Biosciences, San Jose, CA). For intracellular cytokine staining MLN cells were stimulated as
219 previously described (41) with some modifications. 2×10^6 cells/ml were incubated for 24 h with
220 200 µg/ml ovalbumin protein (OVA, Grade V, Sigma, St.Louis, MO). Prior to being added to
221 cultures, endotoxin levels in the OVA preparation were reduced to less than 0.7 EU/mg using a
222 Detoxi-Gel endotoxin removal column (Pierce, Rockford, IL). During the final 4 h of culture,
223 cells were pulsed with 12.5 ng/ml PMA (Sigma), 500 ng/ml ionomycin (Sigma), and 1 µg/ml
224 GolgiPlug (BD Biosciences). Cells were harvested, surface stained and permeabilized with

225 Cytofix/Cytoperm Buffer (BD Biosciences), washed with Perm/Wash Buffer (BD Biosciences)
226 and stained with anti-IFN- γ APC (clone XMG1.2) and anti-IL-4 PE (clone 11B11) or anti-IL-10
227 APC (clone JES5-16E3), and anti-IL-13 PE (clone eBio13A, eBioscience, San Diego, CA). Cells
228 were acquired using a FACScalibur (BD Biosciences) and data analyzed using FlowJo software
229 (Tree Star, Ashland, OR).

230

231 **Measurement of serum and fecal antibody levels.** Sera were collected weekly over the course
232 of each experiment and feces were collected at sacrifice. Sera from individual mice were assayed
233 for OVA-specific IgG1, IgG2b, IgG2c, and IgA by ELISA as previously described (27). For
234 OVA-specific IgG1, IgG2b, and IgG2c, OD values were converted to ng/ml by comparison with
235 a standard curve of anti-OVA Abs affinity purified from the serum of immunized C57BL/6 J
236 mice using OVA conjugated to CNBr-activated Sepharose 4B (Amersham Biosciences, Uppsala,
237 Sweden). To obtain ng/ml values of each anti-OVA Ab isotype, known amounts of purified
238 mouse isotype control Abs from Southern Biotechnology Associates, Birmingham, AL (for IgG1
239 and IgG2b) or Bethyl Laboratories, Montgomery, TX (for IgG2c) were used. For OVA-specific
240 IgA, OD values were converted to ng/ml of IgA by comparison with a purified IgA standard (BD
241 Biosciences, San Jose, CA). Fecal extracts from individual mice were obtained as previously
242 described (41) and OVA-specific IgA responses were determined by ELISA.

243 **Statistical analysis.** Results are expressed as the mean \pm standard error of the mean (SEM). One-
244 way ANOVA followed by Tukey's multiple comparisons test, unpaired t tests, or the Mann
245 Whitney test were used to determine the significance of differences among helminth-free and
246 helminth-infected vaccinated and unvaccinated groups of mice. Statistical differences were

247 determined using GraphPad Prism (GraphPad Software, Inc., San Diego, CA). A *P* value of
248 <0.05 was considered significant.

249 **Figure design.** Figures were created using BioRender (<https://biorender.com>).

250 **RESULTS**

251 ***A live attenuated oral *Salmonella*-OVA vaccine disrupts antigen-specific regulatory networks***
252 ***to promote T-effector responses to OVA in the gut-associated lymphoid tissue***

253 To determine the impact of oral vaccination with *Salmonella*-OVA on the development
254 of OVA-specific regulatory T cells (Tregs) in the GALT, we introduced *Salmonella*-OVA into a
255 congenic adoptive transfer model previously used to show that oral consumption of dietary OVA
256 antigen drives conversion of OVA-specific T cells into Foxp3⁺ Tregs in the small intestinal
257 lamina propria (LP) and gut-associated lymphoid tissue (GALT) (44). We adoptively transferred
258 Ly5.2⁺ T cells from recombination-activating gene 1-deficient (RAG1 KO) OT-II transgenic
259 (OT-II Tg) mice into Ly5.1⁺ RAG-1-replete B6.SJL recipients. Some recipients were then fed
260 OVA antigen dissolved in drinking water (OVA-water) for five consecutive days. Others were
261 orally vaccinated once with 10¹² *Salmonella*-OVA or a sham live attenuated *Salmonella* vaccine
262 strain that does not express OVA (*Salmonella*-BEM). Another subset received both OVA-water
263 for five days and one dose of *Salmonella*-OVA (Fig. 1A). All CD4⁺ T cells in Ly5.2⁺ RAG-1
264 KO OT-II transgenic mice are specific for OVA and nearly all these CD4⁺ cells lack expression
265 of the Treg transcription factor Foxp3 (Foxp3-expressing cells <0.05%) (44). We found that oral
266 administration of OVA-water or one dose of *Salmonella*-OVA, but not the sham vaccine,
267 increased the proportions of OVA-specific T cells in the GALT, particularly in the MLN (Fig.
268 **1B and C**). While OVA-specific T cells accumulated in the intestinal LP of mice fed OVA-
269 water, whether or not they were vaccinated with *Salmonella*-OVA, oral vaccination with
270 *Salmonella*-OVA induced a significantly lower frequency of OVA-specific T cells accumulating
271 in the intestinal LP (Fig. **1D and E**).

272 As expected, soluble OVA (OVA-water) induced the conversion of OVA-specific CD4⁺
273 T cells to Foxp3⁺ Tregs in MLN and intestinal LP ((44) and **Fig. 2**). However, oral vaccination
274 with *Salmonella*-OVA impaired soluble OVA-driven conversion of OVA-specific CD4⁺ T cells
275 to Foxp3⁺ Tregs in both the MLN and intestinal LP (**Fig. 2**). Moreover, oral vaccination with
276 *Salmonella*-OVA increased the frequency of activated, OVA-specific, Foxp3⁻ effector T cells
277 that expressed gut-homing surface molecules α 4 β 7 and CD44 in both MLN (**Fig. 3A-D**) and LP
278 (**Fig 3E-H**). *Salmonella*-OVA attenuated the increase in the frequency of α 4 β 7- and CD44-
279 expressing, OVA-specific, Foxp3⁺ Tregs in the MLN and LP normally induced by soluble OVA
280 (**Fig. 3**). These data demonstrate that the GALT handles OVA expressed by a live attenuated oral
281 *Salmonella* vaccine in a manner distinct from soluble OVA in drinking water and suggests that
282 OVA acts as a vaccine antigen when introduced in the context of the *Salmonella*-OVA oral
283 vaccine.

284

285 ***Preexisting intestinal helminth infection reduces Th1-skewed OVA-specific antibody***
286 ***responses to oral vaccination with Salmonella-OVA***

287 Chronic helminth infection of at least two weeks duration results in significant
288 impairment of host immune responses to Th1/IFN- γ inducing malaria infection (26), IL-12 /IFN-
289 γ dependent trinitrobenzenesulfonic acid (TNBS)-induced colitis (48), and parenteral vaccination
290 against yellow fever virus YFV-17D (22). To determine whether chronic intestinal helminth
291 infection could alter antibody responses to oral immunization, C57BL/6 mice were infected or
292 not with the natural murine gastrointestinal helminth, *H. polygyrus bakeri* 14 days prior to oral
293 vaccination with *Salmonella*-OVA or the sham vaccine *Salmonella*-BEM (**Fig. 4A**). We
294 examined OVA-specific antibody responses to *Salmonella*-OVA or sham vaccine in sera and

295 fecal extracts of helminth-infected and helminth-free mice (**Fig. 4B-F**). As expected, mice
296 vaccinated with *Salmonella*-BEM did not make OVA-specific antibody responses ((41) and **Fig.**
297 **4**). Helminth-free mice vaccinated with *Salmonella*-OVA made a highly Th1-skewed OVA-
298 specific serum IgG2c response, 10 to 15-fold greater than the OVA-specific serum IgG2b and
299 IgG1 responses, respectively (**Fig. 4B-D** and (41)). OVA-specific IgG2b and IgG2c levels were
300 significantly lower in vaccinated helminth-infected mice compared to vaccinated helminth-free
301 mice (**Fig. 4C, D**). Helminth infection delayed but did not eliminate the OVA-specific serum
302 IgA response to *Salmonella*-OVA (**Fig. 4E**). OVA-specific fecal IgA responses were reduced
303 two-fold in helminth-infected vaccinated mice compared to helminth-free mice although this did
304 not reach statistical significance (**Fig. 4F**).

305 Preexisting helminth infection did not enhance OVA-specific IgG1 responses in orally
306 vaccinated mice (**Fig. 4B**) despite the Th2 polarized helminth-induced polyclonal serum and
307 fecal IgG1 and serum IgE responses in helminth-infected mice (**Supplementary Fig. 1B-D**). We
308 found significantly elevated levels of total serum IgE in helminth-infected mice vaccinated with
309 *Salmonella* compared to their unvaccinated, helminth-infected counterparts, perhaps due to
310 enhanced polyclonal B cell activation in the presence of *Salmonella* LPS, as reported in *in vitro*
311 studies by others (49). The mean number of parasites recovered at sacrifice from the intestinal
312 contents of mice given the sham vaccine *Salmonella*-BEM was lower than that recovered from
313 unvaccinated helminth-infected mice, although this did not reach statistical significance
314 (**Supplementary Fig. 1E**). There was no difference in mean number of parasites recovered from
315 mice vaccinated with *Salmonella*-OVA compared to unvaccinated helminth-infected mice
316 (**Supplementary Fig. 1E**).

317 ***Intestinal helminth infection reduces OVA-specific IgG responses to intramuscular***
318 ***vaccination with OVA and the non-microbial adjuvant alum***

319 To determine whether intestinal helminth infection could suppress vaccine antigen-
320 specific antibody responses to a parenterally-administered model OVA protein subunit vaccine,
321 we inoculated C57BL/6 mice with helminth 14 days prior to intramuscular (i.m.) vaccination
322 with OVA adsorbed to the vaccine adjuvant alum (OVA-alum, **Fig. 5A**). We observed that
323 helminth-free mice vaccinated i.m. with OVA-alum made a highly Th2-skewed OVA-specific
324 serum IgG1 response (**Fig. 5B**). Th1-dependent OVA-specific serum IgG2c was not detected and
325 OVA-specific IgG2b levels were 150-fold lower than the OVA-IgG1 levels (data not shown).
326 Notably, helminth-infected mice vaccinated i.m. with OVA-alum made significantly lower
327 OVA-specific IgG1 (**Fig. 5B**) and IgG2b (data not shown) responses when compared to
328 helminth-free vaccinated mice despite elevated, Th2-skewed, polyclonal serum IgG1 and IgE
329 levels (**Fig. 5C, D**). Comparable numbers of adult worms could be recovered from the intestinal
330 contents of both vaccinated and unvaccinated helminth-infected mice (**Fig. 5E**). Th2-skewed
331 antibody responses to i.m. OVA-alum vaccination remained significantly reduced in helminth-
332 infected mice, despite robust polyclonal IgG1 and IgE responses associated with helminth
333 infection, even when mice were housed in a specific pathogen free facility in a completely
334 different institution than in **Fig. 5** (see **Supplementary Fig. 2**). Thus, chronic intestinal helminth
335 infection impaired immune responses to vaccines delivered via either mucosal or parenteral
336 routes.

337

338 ***Helminth infection does not reduce splenic bacterial titers and oral Salmonella does not alter***
339 ***helminth-induced organomegaly.***

340 Since SL3261, the parent strain of *Salmonella*-BEM and *Salmonella*-OVA, is highly
341 attenuated, its ability to replicate *in vivo* is limited; however, after intragastric administration,
342 bacteria disseminate systemically and are recoverable from the spleens three days after
343 vaccination and up until four weeks later (data not shown). To determine whether helminth-
344 mediated suppression of antibody responses to oral *Salmonella*-OVA was due to alterations in
345 the systemic dissemination of the vaccine, we examined bacterial titers in the spleens of
346 helminth-infected and uninfected mice three days after oral vaccination (**Supplementary Fig.**
347 **3A**). We found no difference in CFU per gram tissue recovered from the spleens of helminth-
348 infected and helminth-free mice vaccinated with *Salmonella*-OVA or *Salmonella*-BEM
349 (**Supplementary Fig. 3B**), suggesting that intestinal helminth infection did not alter systemic
350 trafficking of the live attenuated vaccines. Conversely, ten days after *H. polygyrus bakeri*
351 infection (three days after oral vaccination), comparable numbers of adult worms could be
352 recovered from the intestinal contents of both vaccinated and unvaccinated mice
353 (**Supplementary Fig. 3C**). Both the draining MLN and spleens of helminth-infected mice were
354 enlarged compared to helminth-free mice and significantly greater in mass, regardless of whether
355 the mice were vaccinated with *Salmonella*-BEM or *Salmonella*-OVA (**Supplementary Fig. 3D,**
356 **E**). Taken together, these data suggest that helminth infection does not impair systemic spread of
357 the *Salmonella* vaccines.

358

359 ***Activated vaccine antigen-specific CD4⁺ T cells accumulate in the draining MLN of both***
360 ***helminth-free and helminth-infected mice vaccinated with Salmonella-OVA***

361 Cytokines produced by antigen-activated CD4⁺ helper T cells typically drive antibody
362 class switching and stimulate B cells to produce antibodies against T-cell dependent protein

363 antigens (50). To determine if impaired antigen-specific humoral responses in helminth-infected
364 mice were due to a defect in the response to vaccine antigen by antigen-specific CD4⁺ T helper
365 cells, we adoptively transferred C57BL/6 mice (whose T cells express the surface marker
366 Thy1.2) with CD4⁺Thy1.1⁺ OVA-specific T cell receptor transgenic OT-II cells. Two days later,
367 a subset of mice were infected with helminth larvae. Following helminth infection, mice were
368 orally vaccinated with either *Salmonella*-OVA or the sham vaccine *Salmonella*-BEM (**Fig. 6A**).
369 Three days after vaccination, both the frequency and total number of OVA-specific
370 CD4⁺Thy1.1⁺ OT-II cells in the MLN were higher in helminth-free and helminth-infected mice
371 vaccinated with *Salmonella*-OVA compared to *Salmonella*-BEM vaccinated mice (**Fig. 6B-D**).
372 The mean frequency, but not mean total number, of MLN OT-II cells was significantly lower in
373 helminth-infected, *Salmonella*-OVA vaccinated mice than in their uninfected, *Salmonella*-OVA
374 vaccinated counterparts (**Fig. 6C, D**). This was likely due to a helminth-induced influx of
375 helminth-specific effector cells into the MLN, reflected in the larger organ mass in helminth-
376 infected vaccinated mice (**Supplementary Fig. 3D**) and increased total cell numbers in the
377 draining MLN of helminth-infected mice (data not shown). However, the proportion and total
378 number of OT-II cells that expressed CD69, a marker of early lymphocyte activation, were
379 higher in both helminth-free and helminth-infected mice vaccinated with *Salmonella*-OVA
380 compared to mice vaccinated with *Salmonella*-BEM (**Fig. 6E, F**).

381 Both activated T-effector and Treg populations can express IL-2R α chain, CD25 (51).
382 We found a modest increase in the percentage, and a significant increase in the number, of
383 CD25⁺ OT-II cells found in MLNs from helminth-free mice vaccinated with *Salmonella*-OVA
384 compared to helminth-free mice that received the sham vaccine (**Fig. 6G, H**). In addition, the
385 percentage of CD25⁺ OT-II cells in helminth-infected, vaccinated mice was nearly 2-fold greater

386 than in helminth-free mice (**Fig. 6G**). However, there was no significant difference in total
387 number of CD25⁺ OT-II cells recovered from the MLNs of helminth-infected mice vaccinated
388 with *Salmonella*-OVA compared to helminth-free mice (**Fig. 6H**). By contrast, total numbers of
389 MLN, non-TCR transgenic, CD4⁺Thy1.1⁻CD25⁺ cells were 2-fold greater in helminth-infected,
390 vaccinated mice than in helminth-free mice (**Supplementary Fig. 4**), suggesting that helminth
391 infection increased total numbers of activated effector and regulatory T cells in orally vaccinated
392 mice.

393

394 ***Helminth-induced Th2-polarized cytokine responses are intact in orally vaccinated mice***

395 Intestinal helminth infection promotes the production of Th2 effector cytokines,
396 including IL-4 and IL-13 (52), and regulatory cytokines like IL-10 and TGF- β (53) by CD4⁺ T
397 cells. We examined cytokine responses in polyclonal and OVA-specific CD4⁺ T cell populations
398 following oral vaccination in helminth-free and helminth-infected mice using intracellular
399 staining and flow cytometry (**Fig. 7**). Ten days after helminth infection and three days after oral
400 vaccination, we found comparable frequencies of IFN- γ ⁺CD4⁺Thy1.1⁻ non-TCR transgenic Th1
401 cells in the draining MLN among helminth-infected and helminth-free mice (**Fig. 7B and C**).
402 However, a significantly greater percentage of CD4⁺Thy1.1⁻ cells were IL-4⁺ (**Fig. 7D**), IL-10⁺
403 (**Fig. 7E**), and IL-13⁺ (**Fig. 7F**) in both vaccinated and unvaccinated, helminth-infected mice
404 compared to uninfected mice. Thus, oral vaccination with the Th1-polarizing attenuated
405 *Salmonella* vaccine did not prevent the generation of a robust cell-mediated Th2 and Treg
406 cytokine response to helminth infection.

407

408 **Vaccine antigen-specific CD4⁺ T cells from the draining MLN of helminth-infected, orally
409 vaccinated mice produce Th2-type effector and regulatory cytokines**

410 We next examined Th1 (IFN- γ), Th2 (IL-4, IL-13), and Treg (IL-10) cytokines in OVA-
411 specific CD4⁺Thy1.1⁺ OT-II MLN cells re-stimulated with OVA *in vitro* (**Fig. 8**). The
412 frequencies and total numbers of OT-II cells recovered from cultured MLN cells of helminth-
413 free and helminth-infected *Salmonella*-OVA vaccinated mice were significantly greater than in
414 helminth-free, *Salmonella*-BEM vaccinated mice (**Fig. 8C, D**). Although the percentage and total
415 numbers of IL-13⁺ and IFN- γ ⁺ OT-II cells were not statistically significantly different between
416 helminth-free and helminth-infected vaccinated mice, the percentage and total numbers of OT-II
417 cells producing, IL-4, and IL-10 was significantly increased in helminth-infected, vaccinated
418 mice compared to uninfected, vaccinated mice (**Fig. 8E-L**). The helminth-modified Th2
419 response is characterized by elevated antigen-specific Th2-type cytokine production in
420 conjunction with elevated antigen-specific IL-10 production to heterologous antigens
421 administered to helminth-infected mice (54). The increased frequency and total number of Th2-
422 type IL-4⁺ OT-II cells coupled with enhanced percentages and total numbers of OVA-specific
423 cells producing IL-10 was consistent with the development of a helminth-modified Th2 and Treg
424 response to oral vaccination with *Salmonella*-OVA. The increased frequency and total number of
425 OVA-specific CD4⁺ IL-10-producing T cells and the drop in serum antibody responses to OVA
426 in helminth-infected, vaccinated mice suggests a role for IL-10-secreting CD4⁺ T regulatory cells
427 in reducing vaccine-induced humoral responses in helminth-infected mice.

428

429 **DISCUSSION**

430 In humans and mice, protective immune responses against oral *Salmonella* vaccines
431 involve both T and B cell responses, including robust expansion of CD4⁺ Th1 cells, IFN-
432 γ production (17, 18), and *Salmonella*-specific IgG and IgA responses that facilitate clearance of
433 the organism (18, 19). We and others have shown that the host immune response to heterologous
434 vaccine antigen produced within the recombinant attenuated oral *Salmonella* vaccine (RASV)
435 system is a CD4⁺ Th1-biased immune response (41, 55) that depends on intact signaling via
436 MyD88 (41). The experiments presented here expand our current understanding of how the
437 RASV system induces immunity to heterologous vaccine antigens. We show that the RASV
438 system disrupts vaccine antigen-specific regulatory T cell networks in the gut-associated
439 lymphoid tissue (GALT). It reduces the frequency of activated, vaccine-antigen specific, Foxp3⁺
440 regulatory T cells in the GALT that express gut-homing markers. The RASV system
441 concurrently promotes the accumulation of activated, vaccine antigen-specific, Foxp3⁻ effector T
442 cells expressing gut-homing surface molecules in the GALT (**Figs. 2 and 3**).

443 Because they are versatile and reliably induce Th1-biased immune responses, live
444 attenuated oral *Salmonella* vaccine strains are widely used in agriculture, veterinary medicine,
445 and preventative care of humans to protect against salmonellosis (11, 12), typhoid (13, 14) and
446 paratyphoid fever (15). The recombinant attenuated oral *Salmonella* vaccine (RASV) system has
447 also been used as an experimental vaccine platform to develop oral vaccine candidates for
448 protection against food borne parasites (56, 57), human papilloma virus (58), streptococcal
449 pneumonia (55), and shigellosis (59), among many other pathogens. Yet, disparities in the
450 immunogenicity of oral *Salmonella* vaccines (60, 61) and other oral and parenteral vaccines in

451 low- and middle-income countries compared to high-income countries have been repeatedly
452 described (62-65).

453 One compelling hypothesis for this disparity is that endemic helminth infection alters
454 immune responses to vaccination, and indeed, in human population studies, multiple reports
455 describe decreased vaccine efficacy in people with chronic helminth infections (60, 66-69). In
456 this study, we used a murine model to examine the impact of intestinal helminth infection on the
457 response to vaccination. We demonstrated that chronic infection with the intestinal helminth
458 *Heligmosomoides polygyrus bakeri* significantly suppressed Th1-skewed OVA-specific antibody
459 responses to our live attenuated oral *Salmonella*-OVA vaccine (**Fig. 4**). Strikingly, despite robust
460 helminth-induced Th2-biased total IgG1 and IgE responses in helminth-infected, vaccinated
461 mice (**Supplementary Fig. 1**), *H. polygyrus bakeri* infection failed to enhance the development
462 of a Th2-dependent OVA-specific IgG1 response to *Salmonella*-OVA (**Fig. 4**).

463 The reduced antibody responses to oral vaccination in helminth-infected mice were not
464 due to an impaired ability of the live attenuated *Salmonella* to traffic systemically and reach
465 immune organs like the spleen. By day 3 after oral vaccination, comparable CFU *Salmonella* per
466 gram tissue were recoverable from the spleens of helminth-free and helminth-infected mice
467 (**Supplementary Fig. 3**). The reduced antigen-specific humoral responses were also not due to
468 impaired ability of adaptive immune cells in helminth-infected mice to recognize and respond to
469 vaccine antigens. OVA-specific CD4⁺ T cells expressing the activation marker CD69
470 accumulated in the draining MLN of both helminth-free and helminth-infected mice vaccinated
471 with the OVA-expressing *Salmonella* (**Fig. 6**). Moreover, similar numbers of OVA-specific
472 CD4⁺ T cells in helminth-infected and helminth-free mice vaccinated with *Salmonella*-OVA
473 produced the Th1 effector cytokine IFN- γ when re-stimulated *in vitro* with OVA (**Fig. 8**).

474 Vaccination with *Salmonella*-OVA did not alter helminth-induced organomegaly

475 (**Supplementary Fig. 3**) nor did it hinder the development of Th2-polarized cytokine responses

476 in CD4⁺ T cells from vaccinated mice (**Fig. 7**). Notably, helminth infection primed for a Th2-

477 biased and Treg-biased cytokine response to an ordinarily Th1-biasing vaccine, inducing greater

478 frequencies of IL-4 and IL-10-producing vaccine antigen-specific CD4⁺ T cells (**Fig. 8**).

479 The elevation in Th2 and Treg cytokines that we observed, in both polyclonal and vaccine

480 antigen-specific T cell populations, mirrors the helminth-modified Th2 response to heterologous

481 antigens previously reported by Mangan and colleagues in a mouse model of allergen-induced

482 airway disease with concomitant helminth infection (54). This signature cytokine pattern has

483 been observed in a variety of allergic and inflammatory disease models in our lab and others (29,

484 48). Helminth-induced IL-10 production in particular has been implicated in protecting against

485 both chemically-induced, colonic inflammation (48, 70) and allergic inflammation (29, 71).

486 While the helminth-modified, Th2 cytokine response is beneficial and protective in these

487 inflammatory disease models, our data suggest that it is detrimental for generating robust

488 immune responses in our helminth infection/vaccine model. IL-10-secreting, CD4⁺ T cell

489 populations are associated with helminth-mediated immune suppression, as are CD4⁺CD25⁺ T

490 cells, even in the absence of IL-10 secretion (72). Accordingly, we found an increased frequency

491 of polyclonal (**Fig. 7**) and vaccine-antigen specific (**Fig. 8**) CD4⁺ IL-10-producing T cells and

492 higher numbers of polyclonal CD4⁺CD25⁺ T cells (**Supplementary Fig. 4**) in helminth-infected

493 compared to helminth-free mice.

494 Helminth-induced alterations in vaccine antigen-induced cytokine production have been

495 previously described in both human studies and mouse models (31, 67, 69, 73). Elias et al.

496 observed reduced purified protein derivative (PPD)-specific IFN- γ secretion by peripheral blood

497 mononuclear cells isolated from bacilli Calmette-Guerin (BCG)-vaccinated Ethiopian subjects
498 with concomitant intestinal helminth infection when compared to anthelmintic-treated controls
499 (69). Su et al. and Nookala et al. both reported decreased vaccine antigen-induced IFN- γ in their
500 models, with enhanced production of *P. chabaudi* antigen-specific IL-4, IL-13, and IL-10 in an
501 intestinal helminth infection/malaria vaccination model (31) and enhanced tetanus toxoid-
502 specific IL-10 in the human lymphatic filariasis/tetanus vaccination study (73). Surprisingly, we
503 found no difference in the frequencies of polyclonal IFN- γ ⁺CD4⁺ T cells between helminth-free
504 and helminth-infected mice (**Fig. 7**). There were also comparable frequencies and total numbers
505 of vaccine antigen-specific IFN- γ ⁺CD4⁺ T cells in helminth-infected and helminth-free
506 vaccinated mice (**Fig. 8**). This may reflect the potent Th1-inducing properties of our live
507 attenuated *Salmonella* vaccine compared to the protein subunit plus adjuvant vaccines employed
508 in the other studies.

509 Intestinal helminth infection induced OVA-specific, Th2 cytokine-producing CD4⁺ T
510 cells after oral *Salmonella*-OVA vaccination, but this did not translate into enhanced vaccine
511 antigen-specific, Th2-dependent IgG1 antibody production in helminth-infected mice. Even in
512 the context of intramuscular vaccination with OVA adsorbed to the adjuvant alum, which
513 promotes Th2-skewed antibody responses to co-administered protein antigens (74, 75), intestinal
514 helminth infection suppressed Th2-dependent, antigen-specific IgG1 production (**Fig. 5** and
515 **Supplementary Fig. 2**). Intestinal helminth infection has been shown to modulate cellular
516 immune responses to i.m. and intravenous vaccination in mice (31, 32). Chronic co-infection
517 with multiple viral pathogens in conjunction with the intestinal helminth *H. polygyrus bakeri* can
518 reduce serum antibody responses to subcutaneous injection of the yellow fever vaccine (22).

519 Our study highlights the suppressive effect of intestinal helminth infection on vaccine antigen-
520 specific antibody responses to i.m. vaccination, even in the absence of any other infection.

521 The discordance of the impact of helminth-infection on vaccine-induced, T-effector cell
522 responses compared to humoral immune responses (76) may depend on worm burden and
523 chronicity of helminth infection, as has been shown in epidemiologic studies examining the
524 effects of helminth infection on allergic disease (33). Individuals with chronic helminth infection
525 and heavy worm burdens in a Venezuelan study were protected from atopic skin reactivity
526 against house dust mite antigen, whereas those with sporadic infection and light worm burdens
527 had elevated allergen-specific IgE responses and high skin reactivity (77). Su et al. have reported
528 a similar phenomenon in their malaria/intestinal helminth coinfection model; while *H. polygyrus*
529 *bakeri* infection of one week duration could suppress antimalarial immunity and increase levels
530 of parasitemia, infection of two weeks or longer exacerbated malaria-induced morbidity and
531 resulted in mortality in C57BL/6 mice (26). In our vaccination model, we found that chronic
532 nematode infection of at least two weeks duration suppressed anti-OVA antibody responses to
533 *Salmonella*-OVA (**Fig. 4**). Although *H. polygyrus bakeri* infection is confined to the small
534 intestines, infection with this helminth alters gut microbial communities across the small and
535 large intestines, and within the feces (39, 78, 79). These alterations in gut microbial
536 communities, including enrichment in members of the order Clostridiales (39, 79) and elevated
537 levels of their associated metabolic products, i.e. short chain fatty acids, have a significant
538 impact on heterologous systemic immune responses (39) and likely contribute to helminth-
539 mediated suppression of vaccine-antigen responses in our model.

540 We demonstrate that intestinal infection with *H. polygyrus bakeri* generated MLN-
541 resident, polyclonal and vaccine antigen-specific, CD4⁺ T cells that produced the regulatory

542 cytokine IL-10 (**Figs. 7 and 8**). Infection with *H. polygyrus bakeri* has been shown to promote
543 the expansion of Foxp3⁺CD4⁺CD25⁺IL-10 producing regulatory T cells by producing a TGF-
544 β mimic that can induce regulatory T cells *in vitro* even in the presence of inflammatory
545 cytokines (80, 81). Helminth glycans have also been shown to drive regulatory T cell expansion
546 in mixed type 2 / regulatory T cell responses characterized by the presence of IL-10-producing
547 regulatory T cells (82). Chronic parasitic infection in mice with the systemic, blood-borne,
548 filarial helminth *Litmosomoides sigmodontis* induces an expansion of splenic, Foxp3⁻ IL-10⁺, T
549 regulatory 1 (Tr1) cells and reduces the quantity and quality of influenza vaccine-specific
550 antibody responses (83). In an environmental enteric dysfunction model comprised of severely
551 malnourished mice chronically infected with adherent *E. coli*, LP-resident Foxp3⁺ROR γ T⁺Tregs
552 were associated with impaired antibody responses to an oral heat labile toxin vaccine (84). Our
553 data demonstrate that neither a systemic chronic infection, nor severe malnutrition is required for
554 the expansion of infection-associated regulatory T cells and suppressed vaccine-specific antibody
555 responses. We show that in well-nourished hosts, a strictly enteric chronic helminth infection
556 promoted the expansion of IL-10-producing T cells and impaired antibody responses to both
557 injectable and live attenuated oral vaccines.

558 Our findings confirm that helminth-induced alteration of the intestinal microenvironment
559 has systemic consequences, in this case, down-modulating immune responses to parenteral and
560 oral vaccination. Antigen-specific antibody responses to different vaccine formulations (live
561 attenuated *Salmonella* vaccine and protein adsorbed to alum) administered via different routes
562 (oral and intramuscular) were suppressed by preexisting intestinal helminth infection. Our
563 findings suggest that the immune suppressive environment generated by intestinal helminths to
564 promote their survival impacts “third party” immune responses that may hinder the development

565 of vaccine-induced protective immunity. Thus, the potential need to eliminate these parasites
566 prior to vaccination should be considered when targeting populations with endemic helminth
567 infection. In fact, large-scale clinical trials in a helminthic-endemic area (Uganda) have recently
568 been proposed to investigate whether anti-helminthic therapies will enhance antibody and T-
569 effector cytokine responses to both injectable and oral vaccines in school age children (61).
570 Future studies exploring CD4⁺T-cell independent mechanisms and their possible contributions to
571 helminth-induced suppression of vaccine-induced antibody responses is also warranted. Our data
572 make clear that the optimization of vaccine schedules in helminth-endemic regions must take
573 into account that even strictly enteric helminth infection alters local mucosal and systemic
574 immune responses to vaccination.

575

576 **ACKNOWLEDGMENTS**

577 We thank Eveline Wu, Adam Kimple, Laura Raffield, Tessa-Jonne Ropp, and Morika Williams
578 for critical review of this manuscript. We thank Michele Ahl and the MGH Center for
579 Comparative Medicine, Natalia Riddick and the UNC Colony Management Core in the UNC
580 Department of Comparative Medicine, Donald W. Smith, Kabir S. Matharu, Bethany Mingle,
581 Christian Bauer and Nikhil Milind for technical assistance.

582

583 **CONFLICT OF INTEREST**

584 Cathryn R. Nagler is the President and Co-Founder of ClostraBio, Inc. Onyinye Iweala is a
585 consultant for Blueprint Medicines and Novartis. The other authors declare no conflicts of
586 interest.

587

588

589 **REFERENCES**

590

591 1. Centers for Disease, C., and Prevention. 2006. Vaccine preventable deaths and the Global
592 Immunization Vision and Strategy, 2006-2015. *MMWR Morb Mortal Wkly Rep* 55: 511-
593 515.

594 2. Pulendran, B. 2007. Tolls and beyond--many roads to vaccine immunity. *N Engl J Med*
595 356: 1776-1778.

596 3. Piot, P., H. J. Larson, K. L. O'Brien, J. N'Kengasong, E. Ng, S. Sow, and B. Kampmann.
597 2019. Immunization: vital progress, unfinished agenda. *Nature* 575: 119-129.

598 4. World Health Organization. 2020. *Immunization agenda 2030: a global strategy to leave*
599 *no one behind*. World Health Organization, Geneva, Switzerland. p. 1-60.

600 5. Andre, F. E., R. Booy, H. L. Bock, J. Clemens, S. K. Datta, T. J. John, B. W. Lee, S.
601 Lolekha, H. Peltola, T. A. Ruff, M. Santosham, and H. J. Schmitt. 2008. Vaccination
602 greatly reduces disease, disability, death and inequity worldwide. *Bull World Health*
603 *Organ* 86: 140-146.

604 6. Berkley, S. 2019. The Power of Vaccines and How Gavi Has Helped Make the World
605 Healthier: 2019 Lasker-Bloomberg Public Service Award. *Jama* 322: 1251-1252.

606 7. Abbas, K., S. R. Procter, K. van Zandvoort, A. Clark, S. Funk, T. Mengistu, D. Hogan, E.
607 Dansereau, M. Jit, and S. Flasche. 2020. Routine childhood immunisation during the
608 COVID-19 pandemic in Africa: a benefit-risk analysis of health benefits versus excess
609 risk of SARS-CoV-2 infection. *Lancet Glob Health* 8: e1264-e1272.

610 8. Curtiss, R., 3rd. 2002. Bacterial infectious disease control by vaccine development. *J Clin*
611 *Invest* 110: 1061-1066.

612 9. Holmgren, J., and C. Czerkinsky. 2005. Mucosal immunity and vaccines. *Nat Med* 11:
613 S45-53.

614 10. Pascual, D. W. 2007. Vaccines are for dinner. *Proc Natl Acad Sci U S A* 104: 10757-
615 10758.

616 11. Redweik, G. A. J., K. Daniels, A. J. Severin, M. Lyte, and M. Mellata. 2019. Oral
617 Treatments With Probiotics and Live *Salmonella* Vaccine Induce Unique Changes in Gut
618 Neurochemicals and Microbiome in Chickens. *Front Microbiol* 10: 3064.

619 12. Redweik, G. A. J., Z. R. Stromberg, A. Van Goor, and M. Mellata. 2020. Protection
620 against avian pathogenic *Escherichia coli* and *Salmonella Kentucky* exhibited in chickens
621 given both probiotics and live *Salmonella* vaccine. *Poult Sci* 99: 752-762.

622 13. Pennington, S. H., A. L. Thompson, A. K. Wright, D. M. Ferreira, K. C. Jambo, A. D.
623 Wright, B. Faragher, J. W. Gilmour, S. B. Gordon, and M. A. Gordon. 2016. Oral
624 Typhoid Vaccination With Live-Attenuated *Salmonella Typhi* Strain Ty21a Generates
625 Ty21a-Responsive and Heterologous Influenza Virus-Responsive CD4+ and CD8+ T
626 Cells at the Human Intestinal Mucosa. *J Infect Dis* 213: 1809-1819.

627 14. Carreno, J. M., C. Perez-Shibayama, C. Gil-Cruz, C. Lopez-Macias, P. Vernazza, B.
628 Ludewig, and W. C. Albrich. 2017. Evolution of *Salmonella Typhi* outer membrane
629 protein-specific T and B cell responses in humans following oral Ty21a vaccination: A
630 randomized clinical trial. *PLoS One* 12: e0178669.

631 15. Wahid, R., K. L. Kotloff, M. M. Levine, and M. B. Sztein. 2019. Cell mediated immune
632 responses elicited in volunteers following immunization with candidate live oral

633 *Salmonella enterica* serovar Paratyphi A attenuated vaccine strain CVD 1902. *Clin*
634 *Immunol* 201: 61-69.

635 16. Mastroeni, P., B. Villarreal-Ramos, and C. E. Hormaeche. 1993. Adoptive transfer of
636 immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c
637 mice requires both immune serum and T cells. *Infect Immun* 61: 3981-3984.

638 17. Hess, J., C. Ladel, D. Miko, and S. H. Kaufmann. 1996. *Salmonella typhimurium* aroA-
639 infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta
640 cells and IFN-gamma in bacterial clearance independent of intracellular location. *J*
641 *Immunol* 156: 3321-3326.

642 18. Wroblewska, J. A., Y. Zhang, H. Tang, X. Guo, C. Nagler, and Y. X. Fu. 2017. Cutting
643 Edge: Lymphotoxin Signaling Is Essential for Clearance of *Salmonella* from the Gut
644 Lumen and Generation of Anti-*Salmonella* Protective Immunity. *J Immunol* 198: 55-60.

645 19. Mittrucker, H. W., and S. H. Kaufmann. 2000. Immune response to infection with
646 *Salmonella typhimurium* in mice. *J Leukoc Biol* 67: 457-463.

647 20. Borkow, G., and Z. Bentwich. 2008. Chronic parasite infections cause immune changes
648 that could affect successful vaccination. *Trends Parasitol* 24: 243-245.

649 21. Urban, J. F., Jr., N. R. Steenhard, G. I. Solano-Aguilar, H. D. Dawson, O. I. Iweala, C. R.
650 Nagler, G. S. Noland, N. Kumar, R. M. Anthony, T. Shea-Donohue, J. Weinstock, and
651 W. C. Gause. 2007. Infection with parasitic nematodes confounds vaccination efficacy.
652 *Vet Parasitol* 148: 14-20.

653 22. Reese, T. A., K. Bi, A. Kambal, A. Filali-Mouhim, L. K. Beura, M. C. Burger, B.
654 Pulendran, R. P. Sekaly, S. C. Jameson, D. Masopust, W. N. Haining, and H. W. Virgin.
655 2016. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene
656 Expression and Altered Vaccine Response. *Cell Host Microbe* 19: 713-719.

657 23. Freeman, M. C., O. Akogun, V. Belizario, Jr., S. J. Brooker, T. W. Gyorkos, R. Imtiaz,
658 A. Krolewiecki, S. Lee, S. H. Matendechero, R. L. Pullan, and J. Utzinger. 2019.
659 Challenges and opportunities for control and elimination of soil-transmitted helminth
660 infection beyond 2020. *PLoS Negl Trop Dis* 13: e0007201.

661 24. Pullan, R. L., J. L. Smith, R. Jasrasaria, and S. J. Brooker. 2014. Global numbers of
662 infection and disease burden of soil transmitted helminth infections in 2010. *Parasit*
663 *Vectors* 7: 37.

664 25. Elias, D., S. Britton, A. Kassu, and H. Akuffo. 2007. Chronic helminth infections may
665 negatively influence immunity against tuberculosis and other diseases of public health
666 importance. *Expert Rev Anti Infect Ther* 5: 475-484.

667 26. Su, Z., M. Segura, K. Morgan, J. C. Loredo-Osti, and M. M. Stevenson. 2005.
668 Impairment of protective immunity to blood-stage malaria by concurrent nematode
669 infection. *Infect Immun* 73: 3531-3539.

670 27. Shi, H. N., C. J. Ingui, I. Dodge, and C. Nagler-Anderson. 1998. A helminth-induced
671 mucosal Th2 response alters nonresponsiveness to oral administration of a soluble
672 antigen. *J. Immunol.* 160: 2449-2455.

673 28. Shi, H. N., H. Y. Liu, and C. Nagler-Anderson. 2000. Enteric infection acts as an
674 adjuvant for the response to a model food antigen. *J. Immunol.* 165: 6174-6182.

675 29. Bashir, M. E. H., P. Andersen, I. J. Fuss, H. N. Shi, and C. Nagler-Anderson. 2002. An
676 enteric helminth infection protects against an allergic response to dietary antigen. *J.*
677 *Immunol.* 169: 3284-3292.

678 30. Fox, J. G., P. Beck, C. A. Dangler, M. T. Whary, T. C. Wang, H. N. Shi, and C. Nagler-
679 Anderson. 2000. Concurrent enteric helminth infection modulates inflammation and
680 gastric immune responses and reduces helicobacter-induced gastric atrophy. *Nature
681 Medicine* 6: 536-542.

682 31. Su, Z., M. Segura, and M. M. Stevenson. 2006. Reduced protective efficacy of a blood-
683 stage malaria vaccine by concurrent nematode infection. *Infect Immun* 74: 2138-2144.

684 32. Da'Dara, A. A., P. J. Skelly, C. M. Walker, and D. A. Harn. 2003. A DNA-prime/protein-
685 boost vaccination regimen enhances Th2 immune responses but not protection following
686 *Schistosoma mansoni* infection. *Parasite Immunol* 25: 429-437.

687 33. Yazdanbakhsh, M., P. G. Kremsner, and R. v. Ree. 2002. Allergy, parasites and the
688 hygiene hypothesis. *Science* 296: 490-494.

689 34. Radford-Smith, G. L. 2005. Will worms really cure Crohn's disease? *Gut* 54: 6-8.

690 35. Maizels, R. M., and H. J. McSorley. 2016. Regulation of the host immune system by
691 helminth parasites. *J Allergy Clin Immunol* 138: 666-675.

692 36. Yazdanbakhsh, M., A. v. d. Biggelar, and R. M. Maizels. 2001. Th2 responses without
693 atopy: immunoregulation in chronic helminth infections and reduced allergic disease.
694 *Trends in Immunology* 22: 372-377.

695 37. Elliott, D. E., A. Metwali, J. Leung, T. Setiawan, A. M. Blum, M. N. Ince, L. E. Bazzone,
696 M. J. Stadecker, J. F. Urban, Jr., and J. V. Weinstock. 2008. Colonization with
697 *Heligmosomoides polygyrus* suppresses mucosal IL-17 production. *J Immunol* 181:
698 2414-2419.

699 38. Osborne, L. C., L. A. Monticelli, T. J. Nice, T. E. Sutherland, M. C. Siracusa, M. R.
700 Hepworth, V. T. Tomov, D. Kobuley, S. V. Tran, K. Bittinger, A. G. Bailey, A. L.
701 Laughlin, J. L. Boucher, E. J. Wherry, F. D. Bushman, J. E. Allen, H. W. Virgin, and D.
702 Artis. 2014. Coinfection. Virus-helminth coinfection reveals a microbiota-independent
703 mechanism of immunomodulation. *Science* 345: 578-582.

704 39. Zaiss, M. M., A. Rapin, L. Lebon, L. K. Dubey, I. Mosconi, K. Sarter, A. Piersigilli, L.
705 Menin, A. W. Walker, J. Rougemont, O. Paerewijck, P. Geldhof, K. D. McCoy, A. J.
706 Macpherson, J. Croese, P. R. Giacomin, A. Loukas, T. Junt, B. J. Marsland, and N. L.
707 Harris. 2015. The Intestinal Microbiota Contributes to the Ability of Helminths to
708 Modulate Allergic Inflammation. *Immunity* 43: 998-1010.

709 40. Mahoney, R. T., A. Krattiger, J. D. Clemens, and R. Curtiss, 3rd. 2007. The introduction
710 of new vaccines into developing countries. IV: Global Access Strategies. *Vaccine* 25:
711 4003-4011.

712 41. Iweala, O. I., D. W. Smith, K. S. Matharu, I. Sada-Ovalle, D. D. Nguyen, R. H. Dekruyff,
713 D. T. Umetsu, S. M. Behar, and C. R. Nagler. 2009. Vaccine-induced antibody isotypes
714 are skewed by impaired CD4 T cell and invariant NKT cell effector responses in MyD88-
715 deficient mice. *J Immunol* 183: 2252-2260.

716 42. Bettelli, E., Y. Carrier, W. Gao, T. Korn, T. B. Strom, M. Oukka, H. L. Weiner, and V.
717 Kuchroo. 2006. Reciprocal developmental pathways for the generation of pathogenic
718 effector TH17 and regulatory T cells. *Nature* 441: 235-238.

719 43. Esterhazy, D., M. C. C. Canesso, L. Mesin, P. A. Muller, T. B. R. de Castro, A. Lockhart,
720 M. ElJalby, A. M. C. Faria, and D. Mucida. 2019. Compartmentalized gut lymph node
721 drainage dictates adaptive immune responses. *Nature* 569: 126-130.

722 44. Sun, C. M., J. A. Hall, R. B. Blank, N. Bouladoux, M. Oukka, J. R. Mora, and Y. Belkaid. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. *J Exp Med* 204: 1775-1785.

723 45. Hoiseth, S. K., and B. A. Stocker. 1981. Aromatic-dependent *Salmonella typhimurium* are non-virulent and effective as live vaccines. *Nature* 291: 238-239.

724 46. Bryce, P. J., C. B. Mathias, K. L. Harrison, T. Watanabe, R. S. Geha, and H. C. Oettgen. 2006. The H1 histamine receptor regulates allergic lung responses. *J Clin Invest* 116: 1624-1632.

725 47. Urban, J. F., I. M. Katona, W. E. Paul, and F. D. Finkelman. 1991. Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. *Proc. Natl. Acad. Sci., USA* 83: 5513-5517.

726 48. Setiawan, T., A. Metwali, A. M. Blum, M. N. Ince, J. F. Urban, Jr., D. E. Elliott, and J. V. Weinstock. 2007. *Heligmosomoides polygyrus* promotes regulatory T-cell cytokine production in the murine normal distal intestine. *Infect Immun* 75: 4655-4663.

727 49. Kaji, H., M. Kawada, A. Tai, H. Kanzaki, and I. Yamamoto. 2003. Augmentation by *Bursaphelenchus xylophilus*, a pine wood nematode, of polyclonal IgE production induced by lipopolysaccharide plus interleukin-4 in murine splenocytes. *J Pharmacol Sci* 91: 158-162.

728 50. Cerutti, A. 2008. The regulation of IgA class switching. *Nat Rev Immunol* 8: 421-434.

729 51. Shevach, E. M. 2002. CD4+CD25+ suppressor T cells: more questions than answers. *Nat. Rev. Immunol.* 2: 389-400.

730 52. Finney, C. A., M. D. Taylor, M. S. Wilson, and R. M. Maizels. 2007. Expansion and activation of CD4(+)CD25(+) regulatory T cells in *Heligmosomoides polygyrus* infection. *Eur J Immunol* 37: 1874-1886.

731 53. Hang, L., S. Kumar, A. M. Blum, J. F. Urban, Jr., M. C. Fantini, and J. V. Weinstock. 2019. *Heligmosomoides polygyrus bakeri* Infection Decreases Smad7 Expression in Intestinal CD4(+) T Cells, Which Allows TGF-beta to Induce IL-10-Producing Regulatory T Cells That Block Colitis. *J Immunol* 202: 2473-2481.

732 54. Mangan, N. E., N. van Rooijen, A. N. McKenzie, and P. G. Fallon. 2006. Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. *J Immunol* 176: 138-147.

733 55. Su, H., Q. Liu, X. Bian, S. Wang, R. Curtiss, 3rd, and Q. Kong. 2021. Synthesis and delivery of *Streptococcus pneumoniae* capsular polysaccharides by recombinant attenuated *Salmonella* vaccines. *Proc Natl Acad Sci U S A* 118.

734 56. Lin, Z., H. Sun, Y. Ma, X. Zhou, H. Jiang, X. Wang, J. Song, Z. Tang, Q. Bian, Z. Zhang, Y. Huang, and X. Yu. 2020. Evaluation of immune response to *Bacillus subtilis* spores expressing *Clonorchis sinensis* serpin3. *Parasitology* 147: 1080-1087.

735 57. Wang, L., X. Wang, K. Bi, X. Sun, J. Yang, Y. Gu, J. Huang, B. Zhan, and X. Zhu. 2016. Oral Vaccination with Attenuated *Salmonella typhimurium*-Delivered TsPmy DNA Vaccine Elicits Protective Immunity against *Trichinella spiralis* in BALB/c Mice. *PLoS Negl Trop Dis* 10: e0004952.

736 58. Srinivasa Reddy, Y., K. Narendra Babu, P. Uday Kumar, N. Harishankar, S. Qadri, M. V. Surekha, R. Hemalatha, and B. Dinesh Kumar. 2021. Nonclinical safety evaluation of oral recombinant anti-human papilloma virus vaccine (RHPV 16 & 18): Regulatory toxicology studies in mice, rats and rabbits - An innovative approach. *Vaccine* 39: 853-863.

768 59. Liu, Q., H. Su, X. Bian, S. Wang, and Q. Kong. 2020. Live attenuated *Salmonella*
769 *Typhimurium* with monophosphoryl lipid A retains ability to induce T-cell and humoral
770 immune responses against heterologous polysaccharide of *Shigella flexneri* 2a. *Int J Med*
771 *Microbiol* 310: 151427.

772 60. Kabagenyi, J., A. Natukunda, J. Nassuuna, R. E. Sanya, M. Nampijja, E. L. Webb, A. M.
773 Elliott, and G. Nkurunungi. 2020. Urban-rural differences in immune responses to
774 mycobacterial and tetanus vaccine antigens in a tropical setting: A role for helminths?
775 *Parasitol Int* 78: 102132.

776 61. Nkurunungi, G., L. Zirimanya, J. Nassuuna, A. Natukunda, P. N. Kabuubi, E. Niwagaba,
777 G. Oduru, G. Kabami, R. Amongin, A. Mutebe, M. Namutebi, C. Zziwa, S. Amongi, C.
778 Ninsiima, C. Onen, F. Akello, M. Sewankambo, S. Kiwanuka, R. Kizindo, J. Kaweesa, S.
779 Cose, E. Webb, A. M. Elliott, P. t. team, and P. t. t. p. investigator. 2021. Effect of
780 intensive treatment for schistosomiasis on immune responses to vaccines among rural
781 Ugandan island adolescents: randomised controlled trial protocol A for the 'POPulation
782 differences in VACCine responses' (POPVAC) programme. *BMJ Open* 11: e040426.

783 62. Clark, C. E., M. P. Fay, M. E. Chico, C. A. Sandoval, M. G. Vaca, A. Boyd, P. J. Cooper,
784 and T. B. Nutman. 2016. Maternal Helminth Infection Is Associated With Higher Infant
785 Immunoglobulin A Titers to Antigen in Orally Administered Vaccines. *J Infect Dis* 213:
786 1996-2004.

787 63. Hallander, H. O., M. Paniagua, F. Espinoza, P. Askelof, E. Corrales, M. Ringman, and J.
788 Storsaeter. 2002. Calibrated serological techniques demonstrate significant different
789 serum response rates to an oral killed cholera vaccine between Swedish and Nicaraguan
790 children. *Vaccine* 21: 138-145.

791 64. Jiang, V., B. Jiang, J. Tate, U. D. Parashar, and M. M. Patel. 2010. Performance of
792 rotavirus vaccines in developed and developing countries. *Hum Vaccin* 6: 532-542.

793 65. Patriarca, P. A., P. F. Wright, and T. J. John. 1991. Factors affecting the immunogenicity
794 of oral poliovirus vaccine in developing countries: review. *Rev Infect Dis* 13: 926-939.

795 66. Sabin, E. A., M. I. Araujo, E. M. Carvalho, and E. J. Pearce. 1996. Impairment of tetanus
796 toxoid-specific Th1-like immune responses in humans infected with *Schistosoma*
797 *mansi*. *J Infect Dis* 173: 269-272.

798 67. Cooper, P. J., M. Chico, C. Sandoval, I. Espinel, A. Guevara, M. M. Levine, G. E.
799 Griffin, and T. B. Nutman. 2001. Human infection with *Ascaris lumbricoides* is
800 associated with suppression of the interleukin-2 response to recombinant cholera toxin B
801 subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. *Infect*
802 *Immun* 69: 1574-1580.

803 68. Elias, D., S. Britton, A. Aseffa, H. Engers, and H. Akuffo. 2008. Poor immunogenicity of
804 BCG in helminth infected population is associated with increased in vitro TGF-beta
805 production. *Vaccine* 26: 3897-3902.

806 69. Elias, D., D. Wolday, H. Akuffo, B. Petros, U. Bronner, and S. Britton. 2001. Effect of
807 deworming on human T cell responses to mycobacterial antigens in helminth-exposed
808 individuals before and after bacille Calmette-Guerin (BCG) vaccination. *Clin Exp*
809 *Immunol* 123: 219-225.

810 70. Hunter, M. M., A. Wang, C. L. Hirota, and D. M. McKay. 2005. Neutralizing anti-IL-10
811 antibody blocks the protective effect of tapeworm infection in a murine model of
812 chemically induced colitis. *J Immunol* 174: 7368-7375.

813 71. McConchie, B. W., H. H. Norris, V. G. Bundoc, S. Trivedi, A. Boesen, J. F. Urban, Jr.,
814 and A. M. Keane-Myers. 2006. *Ascaris suum*-derived products suppress mucosal allergic
815 inflammation in an interleukin-10-independent manner via interference with dendritic
816 cell function. *Infect Immun* 74: 6632-6641.

817 72. Wilson, M. S., M. D. Taylor, A. Balic, C. A. Finney, J. R. Lamb, and R. M. Maizels.
818 2005. Suppression of allergic airway inflammation by helminth-induced regulatory T
819 cells. *J Exp Med* 202: 1199-1212.

820 73. Nookala, S., S. Srinivasan, P. Kaliraj, R. B. Narayanan, and T. B. Nutman. 2004.
821 Impairment of tetanus-specific cellular and humoral responses following tetanus
822 vaccination in human lymphatic filariasis. *Infect Immun* 72: 2598-2604.

823 74. Jordan, M. B., D. M. Mills, J. Kappler, P. Marrack, and J. C. Cambier. 2004. Promotion
824 of B cell immune responses via an alum-induced myeloid cell population. *Science* 304:
825 1808-1810.

826 75. Serre, K., E. Mohr, K. M. Toellner, A. F. Cunningham, S. Granjeaud, R. Bird, and I. C.
827 MacLennan. 2008. Molecular differences between the divergent responses of ovalbumin-
828 specific CD4 T cells to alum-precipitated ovalbumin compared to ovalbumin expressed
829 by *Salmonella*. *Mol Immunol* 45: 3558-3566.

830 76. Kilian, H. D., and G. Nielsen. 1989. Cell-mediated and humoral immune response to
831 tetanus vaccinations in onchocerciasis patients. *Trop Med Parasitol* 40: 285-291.

832 77. Lynch, N. R., R. I. Lopez, M. C. Di Prisco-Fuenmayor, I. Hagel, L. Medouze, G. Viana,
833 C. Ortega, and G. Prato. 1987. Allergic reactivity and socio-economic level in a tropical
834 environment. *Clin Allergy* 17: 199-207.

835 78. Rapin, A., and N. L. Harris. 2018. Helminth-Bacterial Interactions: Cause and
836 Consequence. *Trends Immunol* 39: 724-733.

837 79. Ramanan, D., R. Bowcutt, S. C. Lee, M. S. Tang, Z. D. Kurtz, Y. Ding, K. Honda, W. C.
838 Gause, M. J. Blaser, R. A. Bonneau, Y. A. Lim, P. Loke, and K. Cadwell. 2016.
839 Helminth infection promotes colonization resistance via type 2 immunity. *Science* 352:
840 608-612.

841 80. Rausch, S., J. Huehn, D. Kirchhoff, J. Rzepecka, C. Schnoeller, S. Pillai, C.
842 Loddenkemper, A. Scheffold, A. Hamann, R. Lucius, and S. Hartmann. 2008. Functional
843 analysis of effector and regulatory T cells in a parasitic nematode infection. *Infect Immun*
844 76: 1908-1919.

845 81. Grainger, J. R., K. A. Smith, J. P. Hewitson, H. J. McSorley, Y. Harcus, K. J. Filbey, C.
846 A. Finney, E. J. Greenwood, D. P. Knox, M. S. Wilson, Y. Belkaid, A. Y. Rudensky, and
847 R. M. Maizels. 2010. Helminth secretions induce de novo T cell Foxp3 expression and
848 regulatory function through the TGF-beta pathway. *J Exp Med* 207: 2331-2341.

849 82. Rodriguez, E., P. Carasi, S. Frigerio, V. da Costa, S. van Vliet, V. Noya, N. Brossard, Y.
850 van Kooyk, J. J. Garcia-Vallejo, and T. Freire. 2017. *Fasciola hepatica* Immune
851 Regulates CD11c(+) Cells by Interacting with the Macrophage Gal/GalNAc Lectin.
852 *Front Immunol* 8: 264.

853 83. Hartmann, W., M. L. Brunn, N. Stetter, N. Gagliani, F. Muscate, S. Stanelle-Bertram, G.
854 Gabriel, and M. Breloer. 2019. Helminth Infections Suppress the Efficacy of Vaccination
855 against Seasonal Influenza. *Cell Rep* 29: 2243-2256 e2244.

856 84. Bhattacharjee, A., A. H. P. Burr, A. E. Overacre-Delgoffe, J. T. Tometich, D. Yang, B. R.
857 Huckestein, J. L. Linehan, S. P. Spencer, J. A. Hall, O. J. Harrison, D. Morais da
858 Fonseca, E. B. Norton, Y. Belkaid, and T. W. Hand. 2021. Environmental enteric

859 dysfunction induces regulatory T cells that inhibit local CD4+ T cell responses and
860 impair oral vaccine efficacy. *Immunity* 54: 1745-1757 e1747.
861

862

863

864

865

866

867 **FIGURE LEGENDS**

868 **Figure 1. Feeding with soluble OVA antigen and/or oral vaccination with *Salmonella*-OVA**
869 **induces accumulation of OVA-specific T cells in the GALT.** (A) Experimental timeline. After
870 gating on CD4⁺ T cells, transferred T cells in the MLN (B, C) or LP (D, E) of OVA antigen-fed
871 mice or mice vaccinated with *Salmonella*-OVA (*Salm*-OVA) or the sham vaccine *Salmonella*-
872 BEM (*Salm*-BEM) were identified by Ly5.2 expression. B and D are representative flow
873 cytometry plots while C and E are summary graphs of the percentage of Ly5.2⁺ RAG1 KO OT-II
874 T cells in MLN and LP respectively. Each dot in C and E represents a single mouse, with three
875 to four mice per group. Experiment was repeated two times. Data shown are from one of two
876 independent experiments. Statistical Analyses: One-way ANOVA followed by Tukey's multiple
877 comparisons test (**** $P<0.0001$, *** $P<0.001$, ** $P<0.01$).

878

879 **Figure 2. Oral vaccination with *Salmonella*-OVA disrupts oral soluble OVA-driven**
880 **conversion of CD4⁺ T cells to Foxp3⁺ Tregs in the GALT.** After gating on CD4⁺ T cells,
881 transferred T cells in the MLN (A, B) or LP (C, D) of OVA antigen-fed or *Salmonella*-OVA
882 (*Salm*-OVA) vaccinated mice were identified by Ly5.2 expression. Ly5.2⁺ cells were then
883 assessed for intracellular Foxp3 expression. A and C are representative flow cytometry plots
884 while B and D are summary graphs of the percentage of Foxp3⁺ among Ly5.2⁺ RAG1 KO OT-II
885 T cells in MLN and LP respectively. Each dot in B and D represents a single mouse with four
886 mice per group. Experiment was repeated two times. Data shown are from one of two
887 independent experiments. Statistical Analyses: One-way ANOVA followed by Tukey's multiple
888 comparisons test (*** $P<0.001$, ** $P<0.01$, * $P<0.05$).

889

890 **Figure 3. Oral vaccination with *Salmonella*-OVA increases the frequency of activated,**
891 **OVA-specific Foxp3⁻ T effectors and decreases the frequency of OVA-specific Foxp3⁺**
892 **Tregs expressing gut homing molecules in the MLN and lamina propria.** After gating on
893 CD4⁺ T cells, transferred T cells in the MLN of OVA antigen-fed or *Salmonella*-OVA
894 vaccinated mice were identified by Ly5.2 expression. Ly5.2⁺ cells in the MLN (A-D) and LP (E-
895 H) were then assessed for intracellular Foxp3 expression and cell surface expression of α 4 β 7 (A,
896 B, E, F) or CD44 (C, D, G, H). A, C, E, and G are representative flow cytometry plots while B,
897 D, F and H are summary graphs. Each dot represents a single mouse with four mice per group.
898 Experiment was repeated two times. Data shown are from one of two independent experiments.
899 Statistical Analyses: one-way ANOVA followed by Tukey's multiple comparisons test
900 (***(P <0.001, **(P <0.01, * P <0.05).

901

902 **Figure 4. Th1-skewed antibody responses to oral vaccination with *Salmonella*-OVA are**
903 **reduced in mice with preexisting helminth infection.** (A) Experimental timeline; 14 days after
904 intragastric inoculation with 200 third-stage *H. polygyrus bakeri* larvae, helminth-free (B-E; No
905 Inf, black bars) and helminth-infected (B-E; Hp inf, white bars) C57BL/6 mice were given two
906 intragastric doses of 2×10^{10} *Salmonella*-BEM (SALM-BEM) or *Salmonella*-OVA (SALM-
907 OVA) and OVA-specific serum (B) IgG1, (C) IgG2b, (D) IgG2c, and (E) IgA were measured
908 14, 21, and 28 days post vaccination by ELISA. OVA-specific IgA in fecal extracts was
909 measured 28 days post vaccination by ELISA (F). Pooled data from two independent
910 experiments (n=11-12 mice per group). Statistical Analyses: Unpaired t-test in B-E comparing
911 helminth-infected to helminth-free at same time point; One-way ANOVA in F followed by
912 Tukey's multiple comparisons test. ***(P <0.001, **(P <0.01, * P <0.05.

913 **Figure 5. Th2-skewed antibody responses to intramuscular vaccination with OVA-alum are**
914 **significantly reduced while polyclonal IgG1 and IgE responses are elevated in vaccinated,**
915 **helminth-infected mice.** (A) Experimental timeline; 14 days after intragastric inoculation with
916 200 third-stage *H. polygyrus bakeri* larvae, helminth-free C57BL/6 mice (black bars) and
917 helminth-infected C57BL/6 mice (white bars), were given two intramuscular doses of 25 mg
918 OVA adsorbed to 1 mg alum or 1mg alum alone spaced one week apart. (B) OVA-specific IgG1.
919 (C) Total Serum IgG1. (D) Total serum IgE. (E) Worms recovered. Data in B-E are pooled from
920 two independent experiments; n=8-10 mice per group. Statistical Analyses: unpaired t-test in B;
921 One-way ANOVA followed by Tukey's multiple comparisons test in C-E (****P<0.0001,
922 **P<0.01).

923
924 **Figure 6. Activated vaccine antigen-specific CD4⁺ T cells accumulate in the draining MLN**
925 **of both helminth-free and helminth-infected mice vaccinated with *Salmonella*-OVA.** (A)

926 Experimental timeline. (B) Representative flow cytometry plots showing adoptively transferred
927 CD4⁺Thy1.1⁺ OVA-TCR transgenic OT-II cells, percent CD69⁺ and percent CD25⁺ among OT-
928 II cells in MLNs of helminth-free and helminth-infected mice. (C) Proportion of adoptively
929 transferred CD4⁺Thy1.1⁺ OVA-TCR transgenic OT-II cells in MLNs of helminth-free (black
930 symbols) and helminth-infected (white symbols) mice. (D) Total number OT-II cells recovered
931 from MLN. (E) Percent CD69⁺ among OT-II cells. (F) Total number CD69⁺OT-II cells (G)
932 Percent CD25⁺ among OT-II cells (H) Total number CD25⁺OT-II cells. Salm-BEM (circles) =
933 *Salmonella*-BEM. Salm-OVA (squares) = *Salmonella*-OVA. Hp = *H. polygyrus bakeri*. Symbols
934 represent individual mice; lines represent mean percentages. Pooled data from three independent

935 experiments; n=5 to 7 mice per group. Statistical Analyses: one-way ANOVA followed by
936 Tukey's multiple comparisons test (****P<0.0001, ***P<0.001, **P<0.01, *P<0.05).

937

938 **Figure 7. Intestinal helminth infection induces Th2-polarized cytokine responses in CD4⁺ T**
939 **cell populations in both vaccinated and unvaccinated mice.** (A) Experimental timeline; two
940 days after adoptive transfer of 4 to 6 x 10⁶ CD4⁺Thy1.1⁺ OVA-TCR transgenic OT-II cells, mice
941 were infected (white symbols) or not (black symbols) with 200 third-stage *H. polygyrus bakeri*
942 (Hp) larvae. Seven days after helminth infection, mice received one intragastric dose of ~5 x 10¹⁰
943 *Salmonella*-BEM or *Salmonella*-OVA. 3 days later, MLN cells were harvested, cultured
944 overnight with OVA, pulsed for 4 h with PMA, ionomycin, and Golgiplug and surface labeled
945 with mAbs to CD4 and Thy1.1, fixed, permeabilized and intracellularly stained with Abs against
946 IFN- γ , IL-4, IL-10, and IL-13. (B) Representative flow cytometry plots and summary graphs
947 showing (C) percent IFN- γ ⁺ (D) percent IL-4⁺ (E) percent IL-10⁺ (F) percent IL-13⁺ among non-
948 TCR transgenic CD4⁺Thy1.1⁻ MLN cells. Salm-BEM (circles) = *Salmonella*-BEM. Salm-OVA
949 (squares) = *Salmonella*-OVA. Hp (triangles) = *H. polygyrus bakeri* only. Symbols represent
950 individual mice; lines represent mean percentages. Pooled data from 3 independent experiments;
951 n=3 to 7 mice per group. Statistical Analyses: One-way ANOVA followed by Tukey's multiple
952 comparisons test (****P<0.0001, ***P<0.001, **P<0.01, *P<0.05).

953

954 **Figure 8. OVA-specific CD4⁺ T cells from the draining MLN of helminth-infected mice**
955 **vaccinated with *Salmonella*-OVA produce Th2 effector and regulatory cytokines (A)**
956 Experimental timeline. (B) Representative flow cytometry plot and (C-L) summary graphs
957 showing (C) percent CD4⁺Thy1.1⁺ and (D) total number of CD4⁺Thy1.1⁺ among re-stimulated

958 MLN cells (E) percent IFN- γ^+ and (F) total number of IFN- γ^+ (G) Percent IL-4 $^+$ (H) total number
959 IL-4 $^+$ (I) percent IL-10 $^+$ and (J) total number IL-10 $^+$ (K) percent IL-13 $^+$ and (L) total number IL-
960 13 $^+$ of adoptively transferred CD4 $^+$ Thy1.1 $^+$ OT-II MLN cells. MLN cells were harvested,
961 cultured overnight with OVA, pulsed for 4 h with PMA, ionomycin, and Golgiplug and surface
962 labeled with mAbs to CD4 and Thy1.1, fixed, permeabilized and intracellularly stained with Abs
963 against IFN- γ , IL-4, IL-10, and IL-13. Helminth-free (black symbols); helminth-infected (white
964 symbols). Salm-BEM (circles) = *Salmonella*-BEM. Salm-OVA (squares) = *Salmonella*-OVA.
965 Symbols represent individual mice; lines represent mean percentages. Pooled data from three
966 independent experiments; n=5 to 7 mice per group. Statistical Analyses: one-way ANOVA
967 followed by Tukey's multiple comparisons test (C, D) and Mann Whitney test (E-L.
968 ***P<0.001, **P<0.01, *P<0.05).

969

Chronic Helminth Infection Impairs Vaccine Immunity

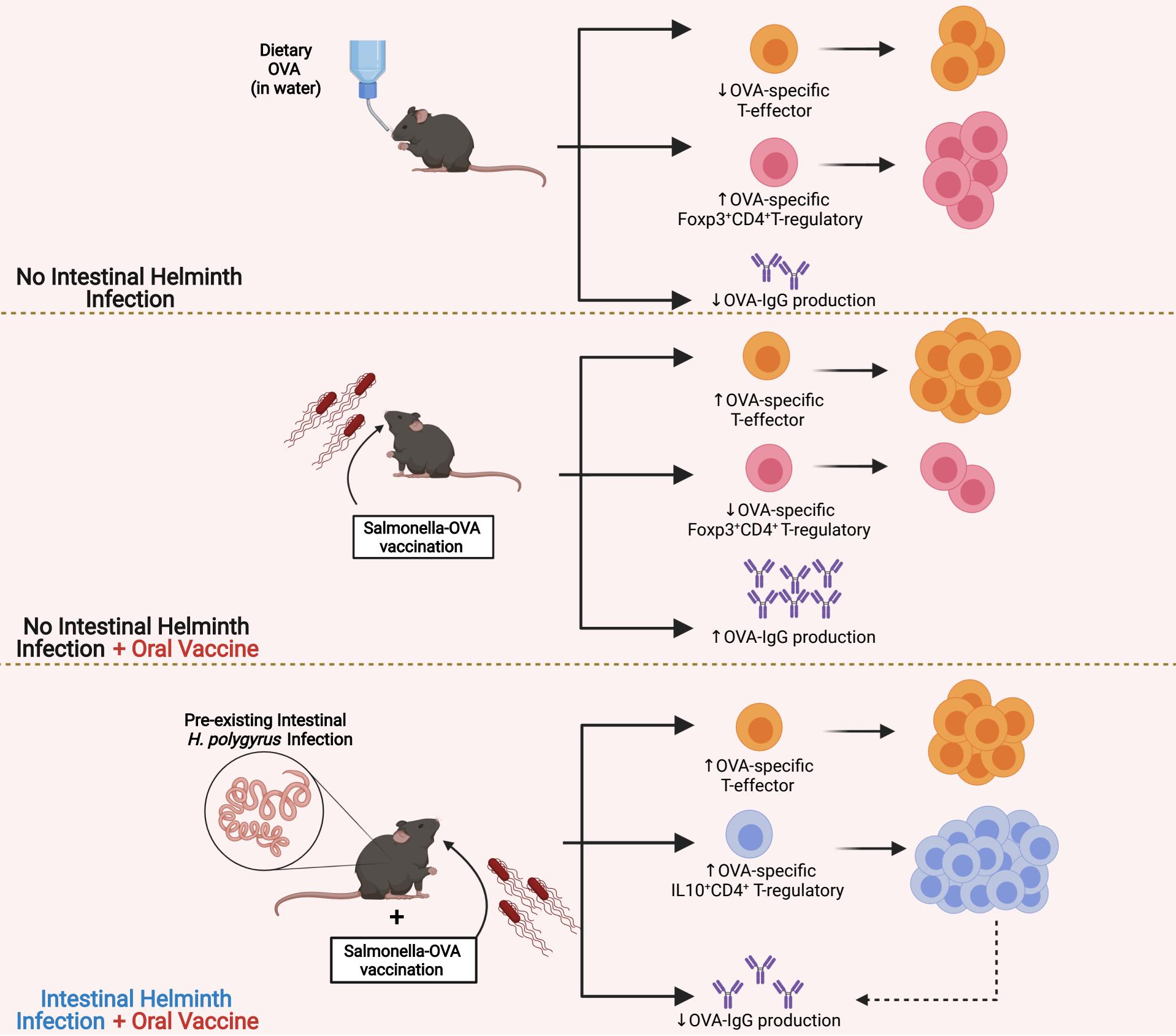


Figure 1

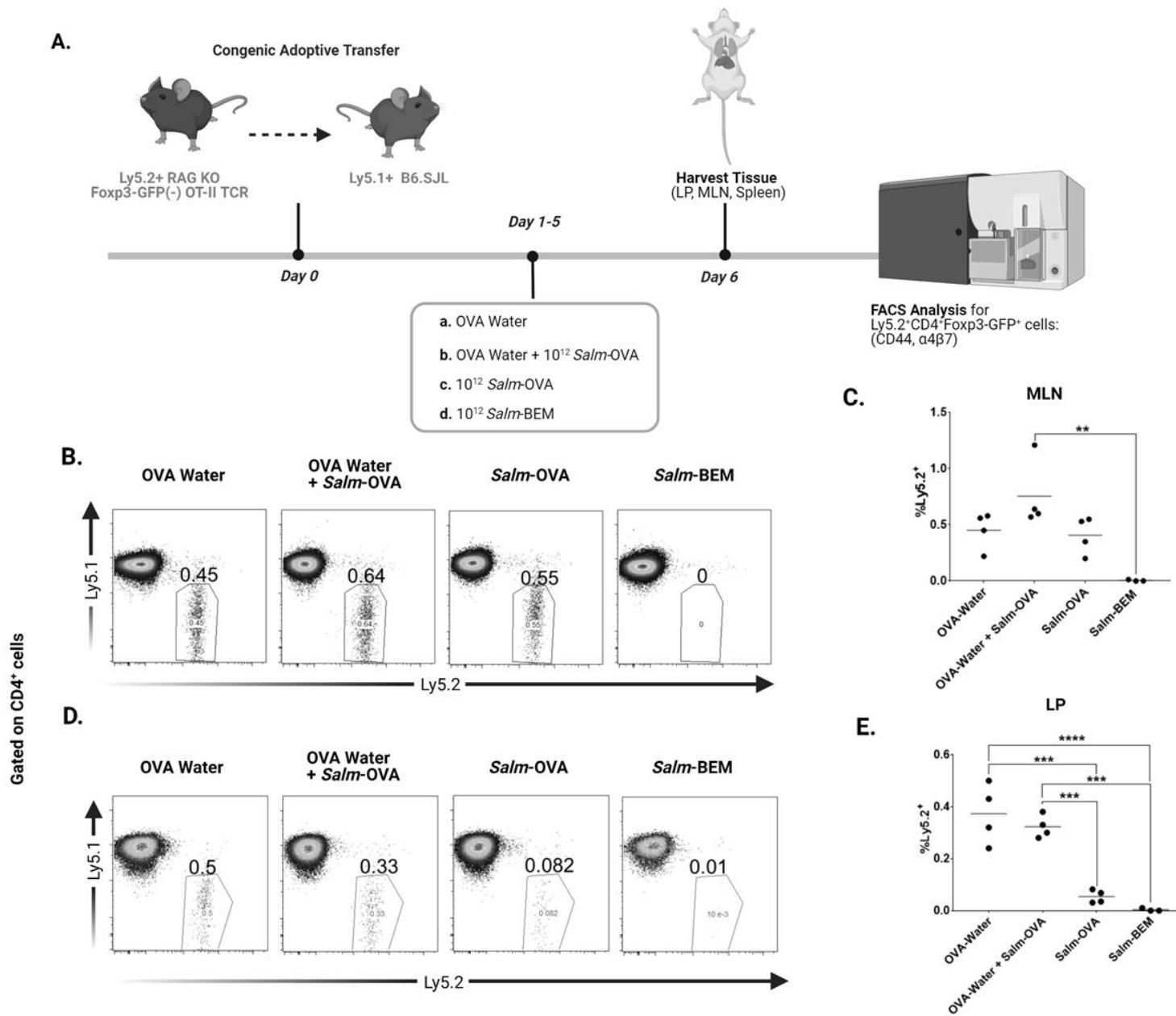


Figure 2

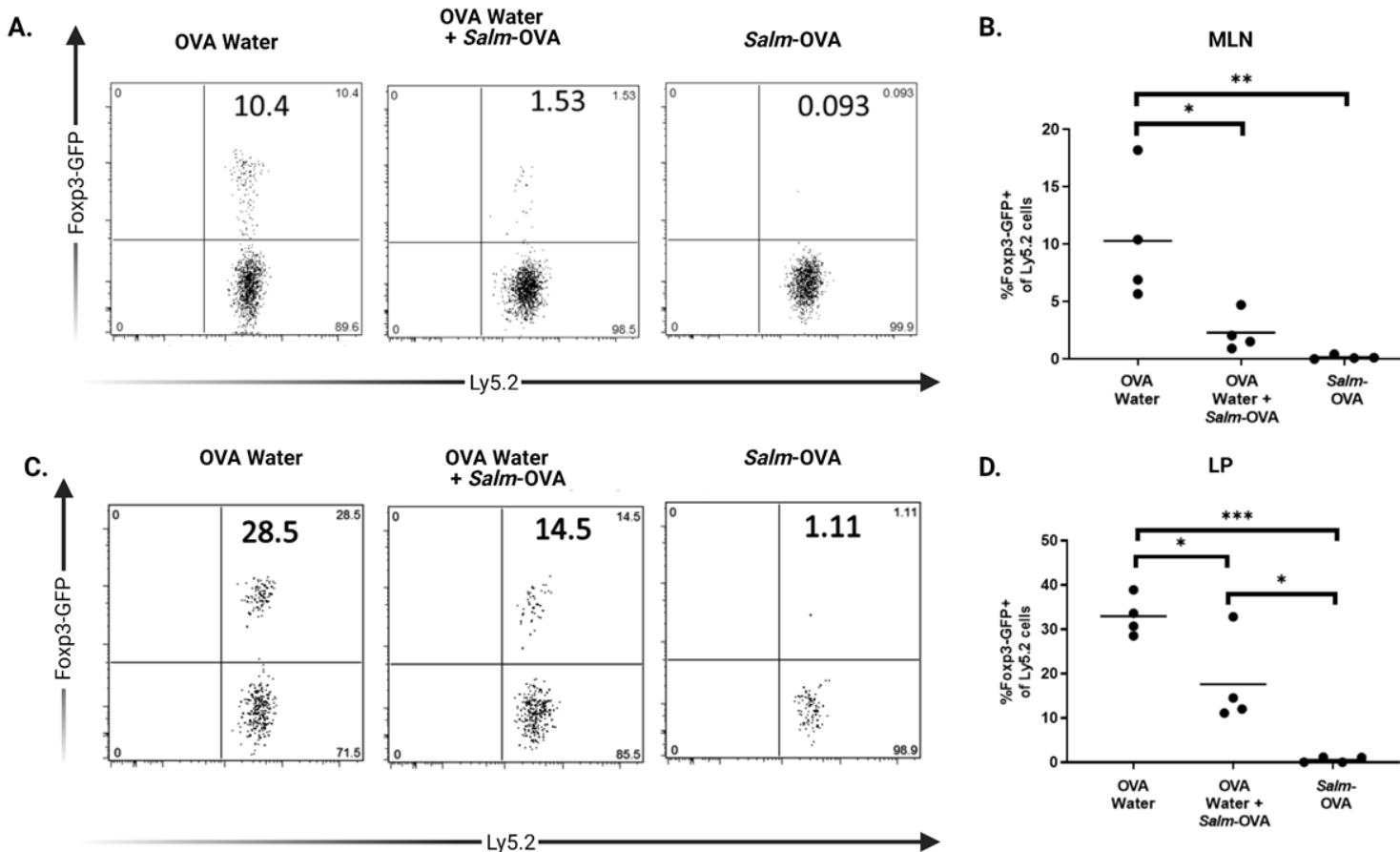
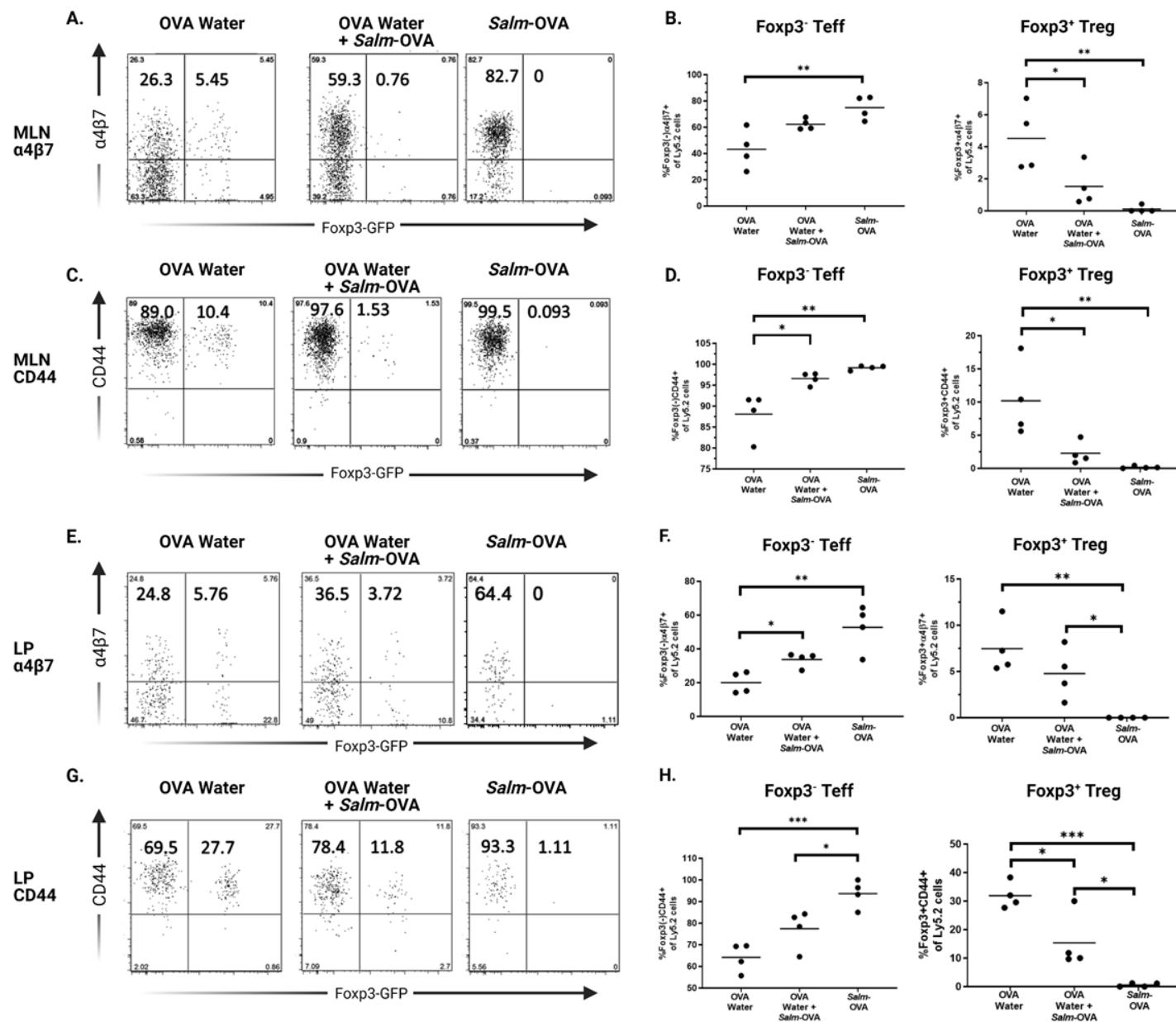
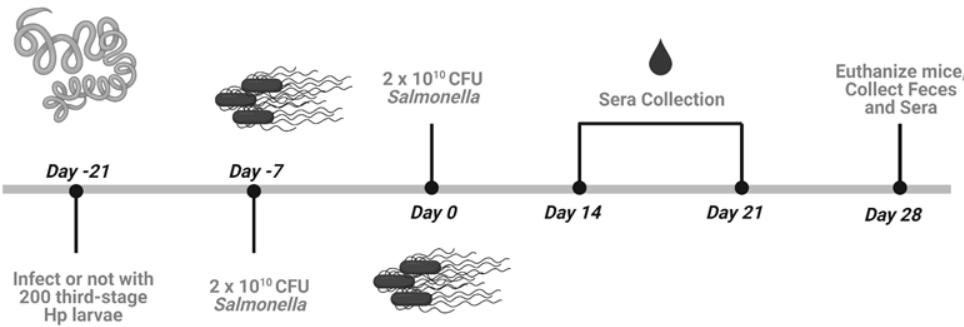




Figure 3

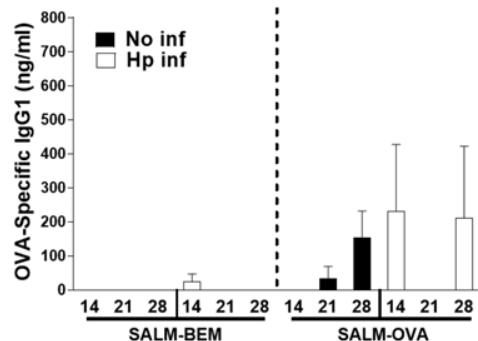
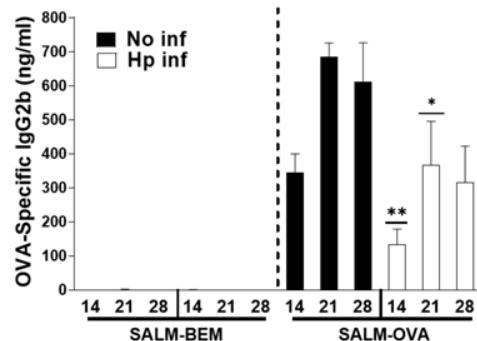
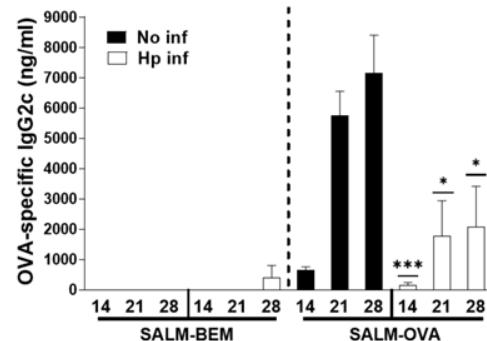
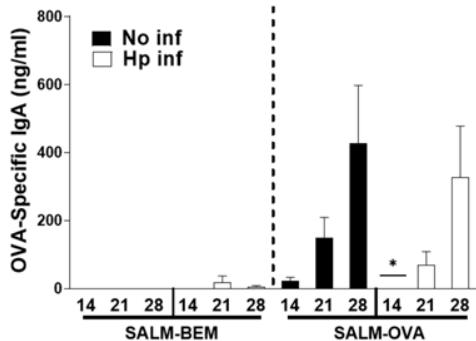


Figure 4


A.


B.


C.

D.

E.

F.

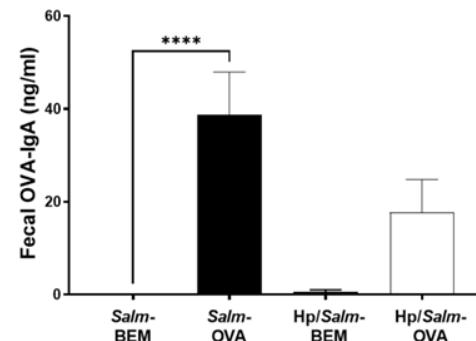
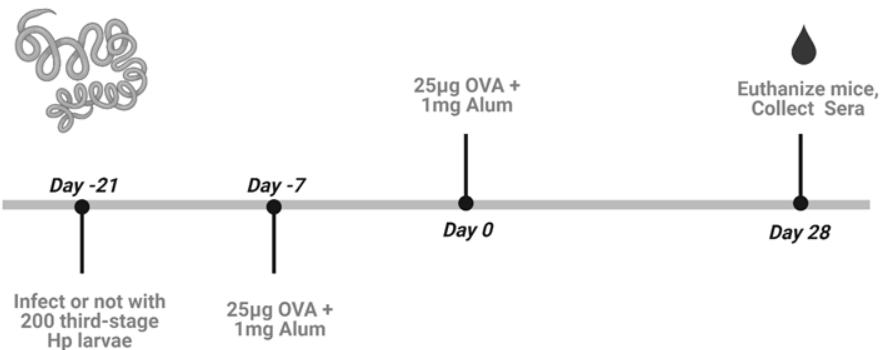
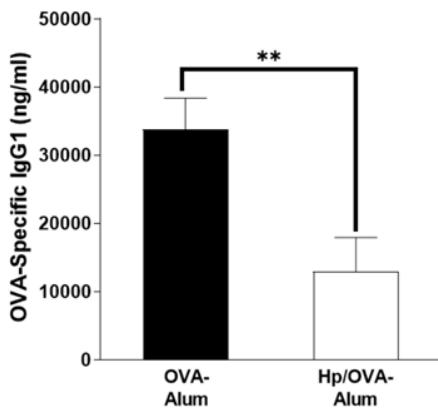
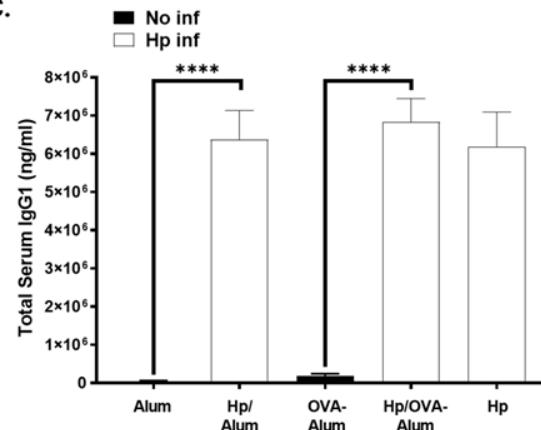
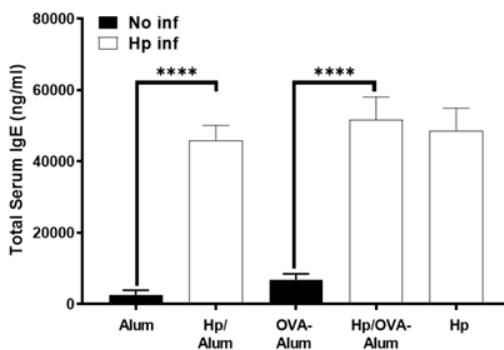




Figure 5


A.


B.

C.

D.

E.

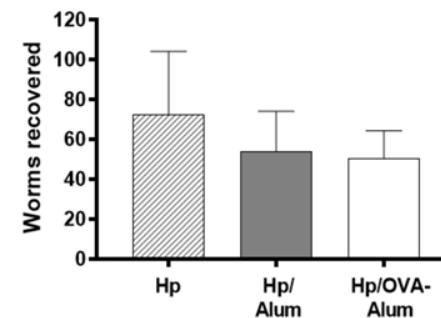
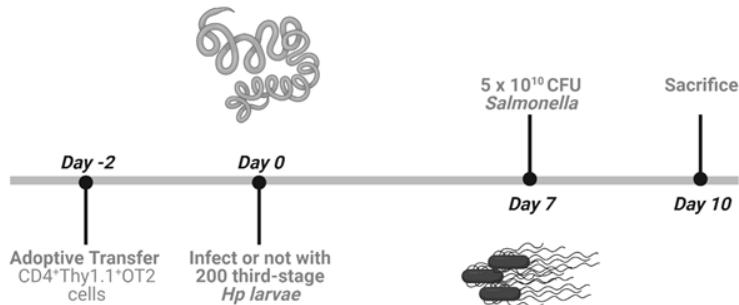
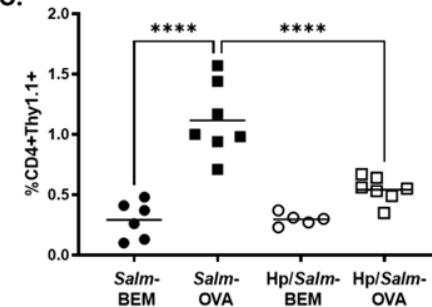
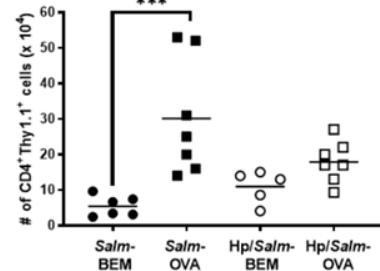
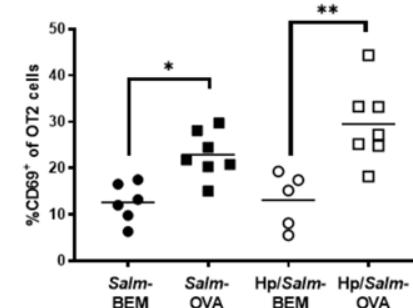
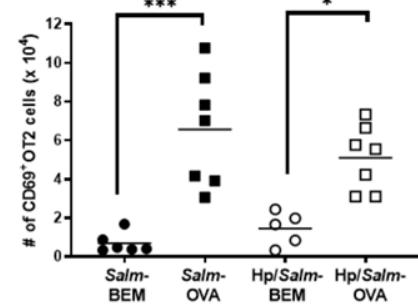



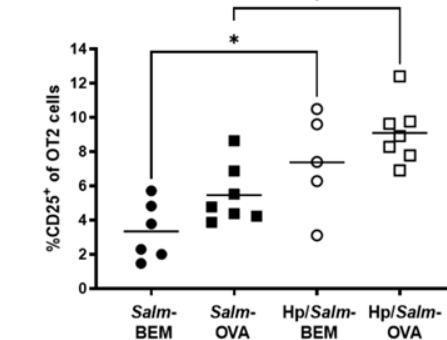
Figure 6


A.

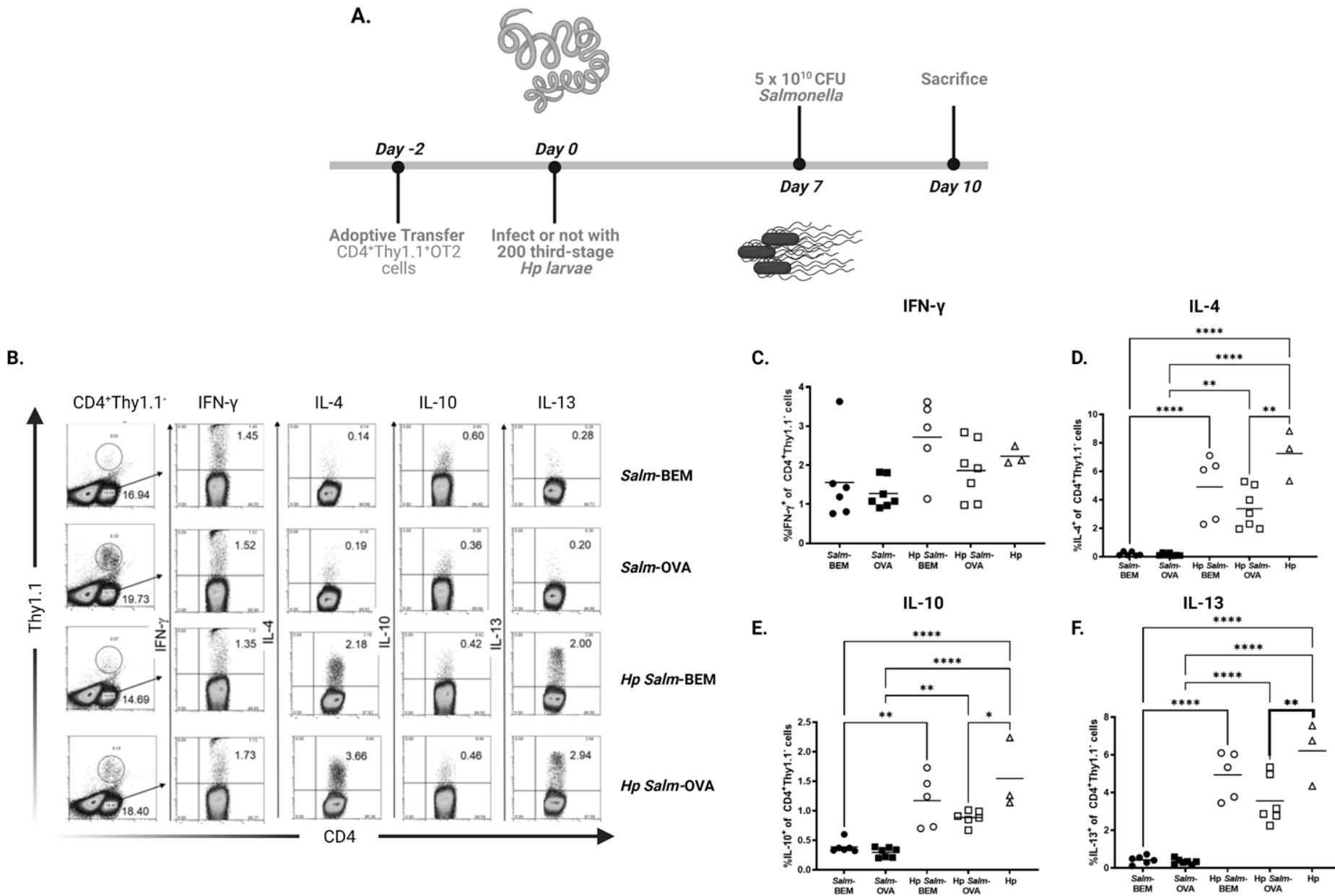

B.

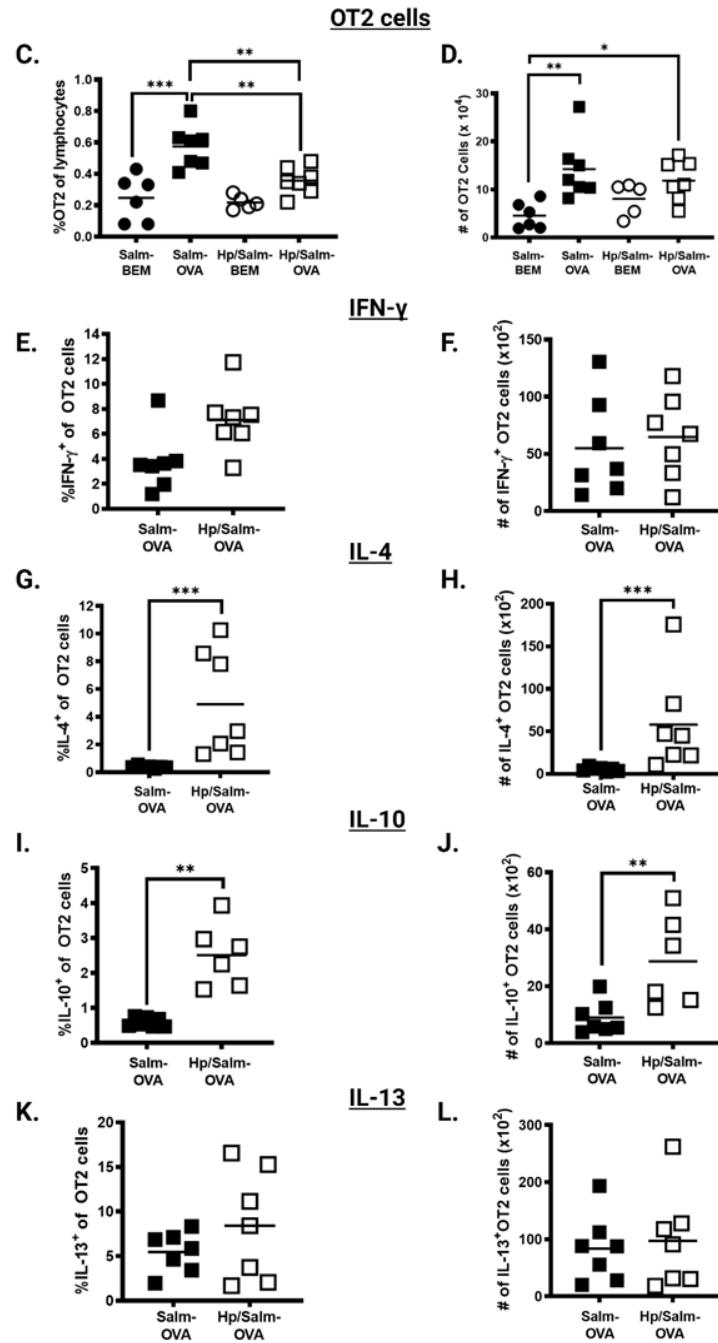
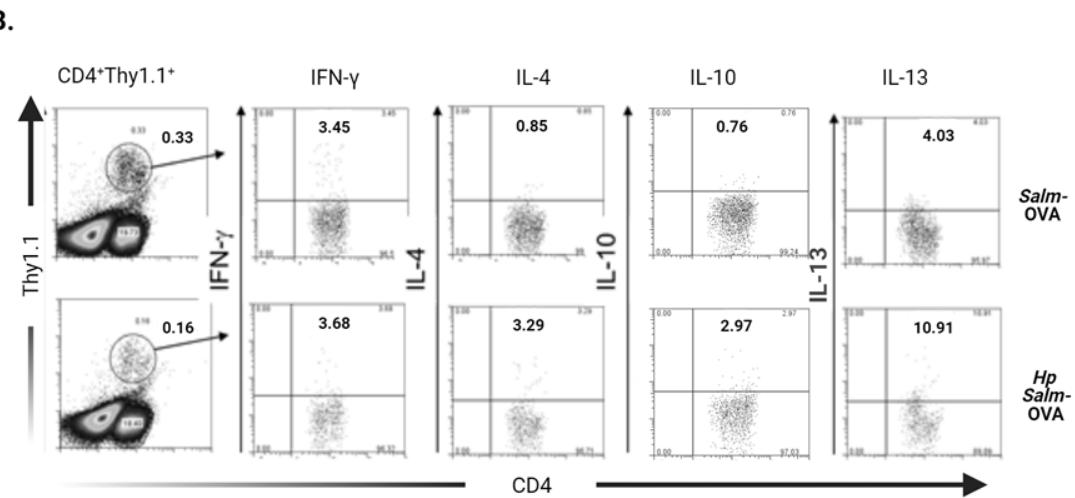
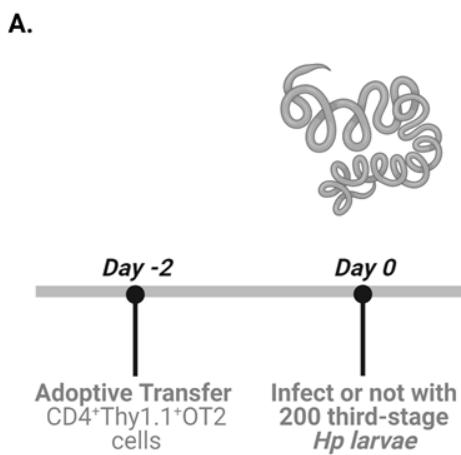

C.


D.


E.

F.


G.




H.

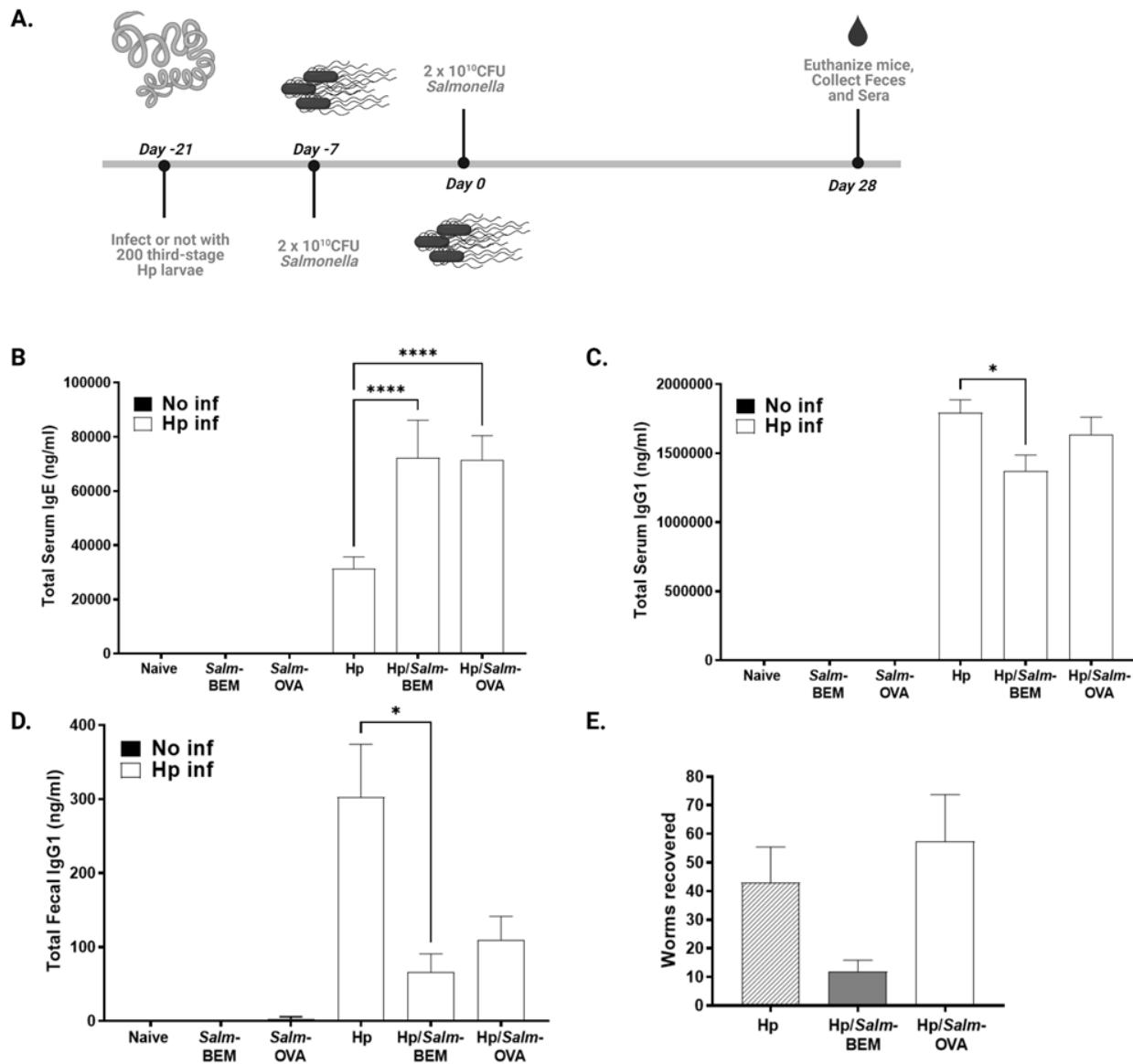
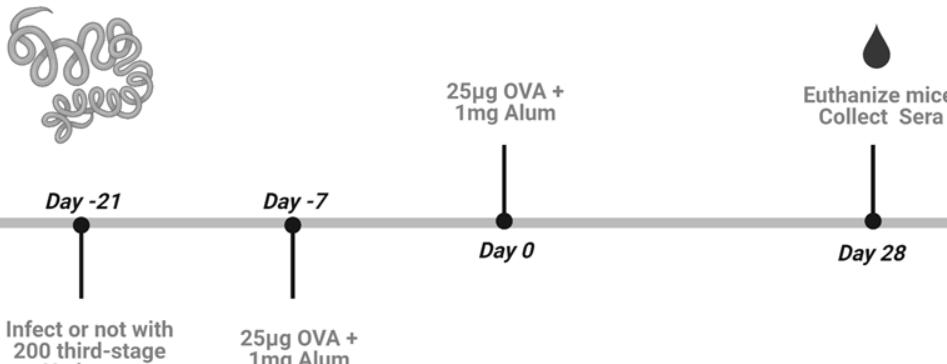
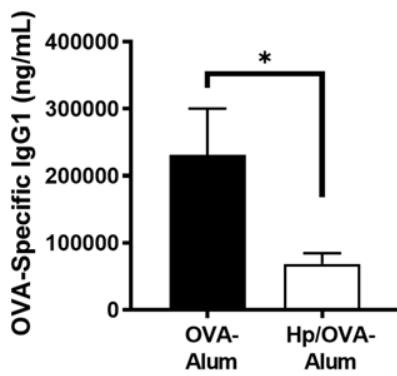

Figure 7

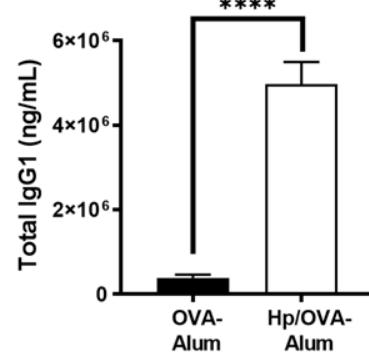
Figure 8

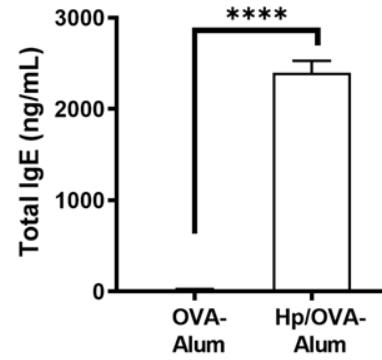


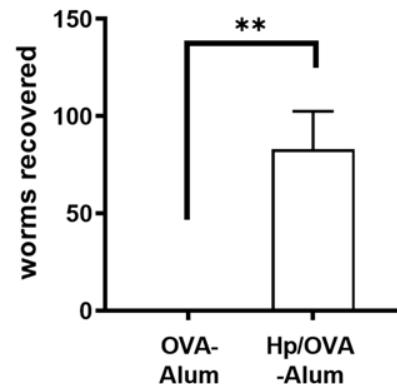
Supplementary Figure 1

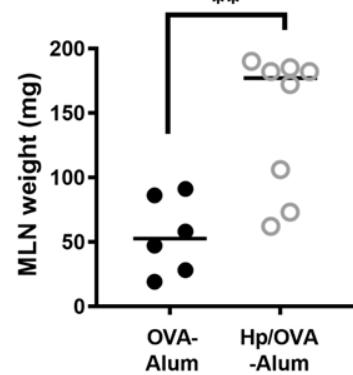


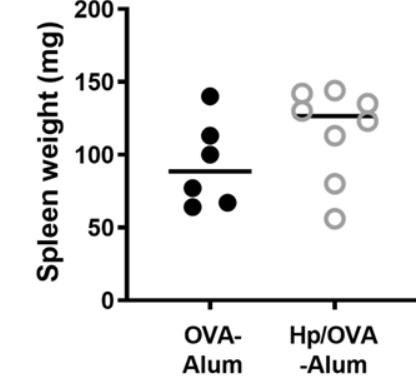
Supplementary Figure 2

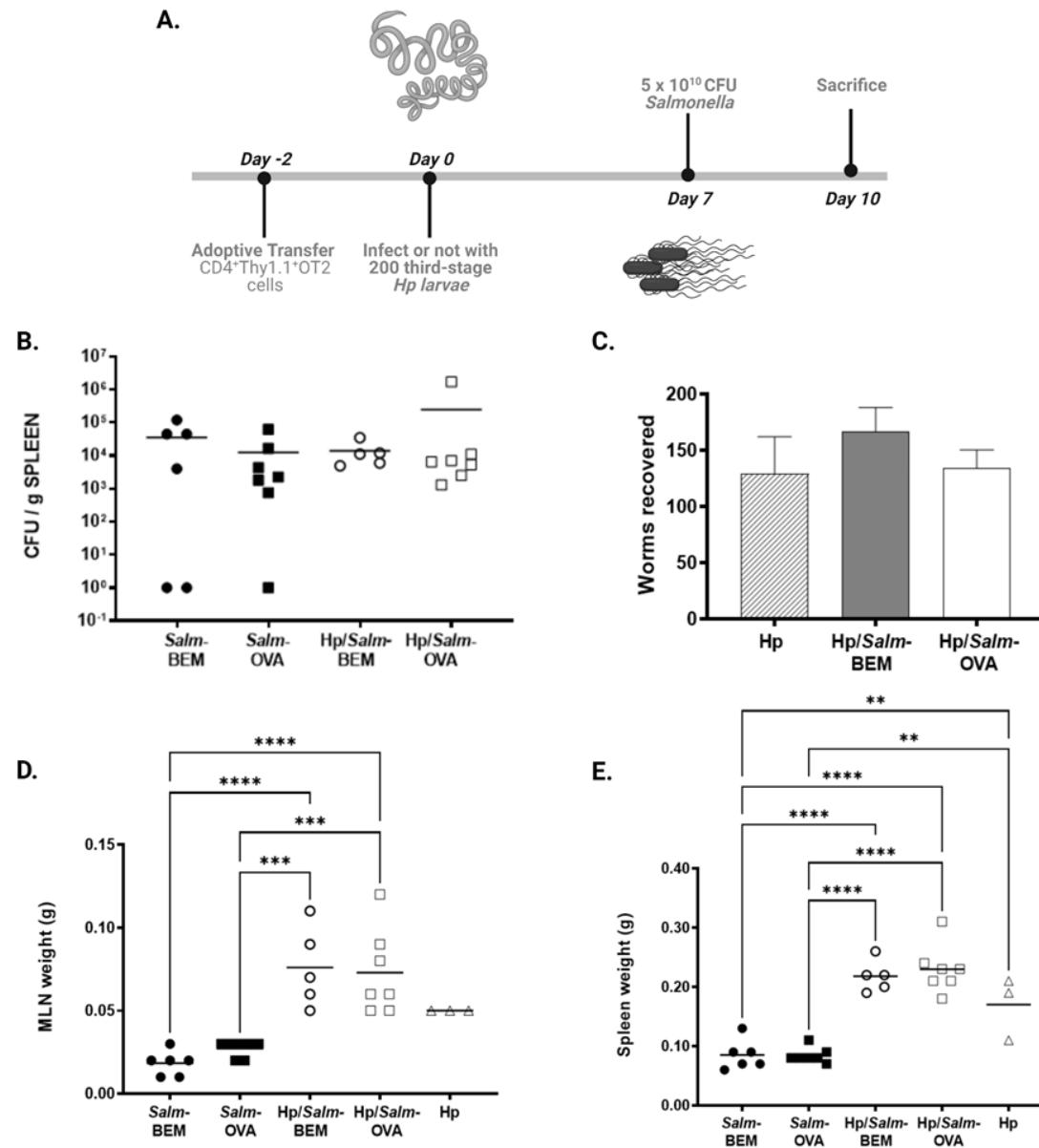

A.

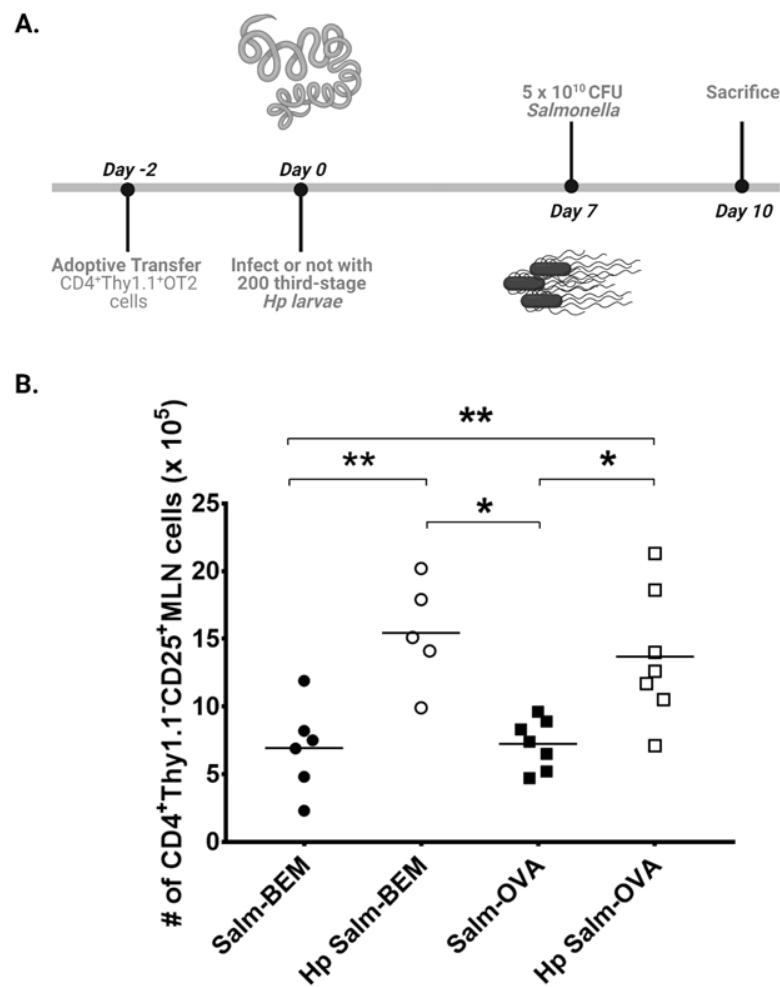

B.


C.


D.


E.


F.


G.

Supplementary Figure 3

Supplementary Figure 4

