

1 **Cell wall carbohydrate dynamics during the differentiation of infection structures by the**
2 **apple scab fungus, *Venturia inaequalis***

3
4 Mercedes Rocafort¹, Vaibhav Srivastava², Joanna K. Bowen³, Sara M. Díaz-Moreno², Vincent
5 Bulone^{2,4,§}, Kim M. Plummer⁵, Paul W. Sutherland³, Marilyn A. Anderson⁶, Rosie E. Bradshaw⁷
6 and Carl H. Mesarich^{1,*}

7
8 ¹Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and
9 Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.

10 ²Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in
11 Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova
12 University Centre, Stockholm 10691, Sweden.

13 ³The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research
14 Centre, Auckland 1025, New Zealand.

15 ⁴School of Food, Agriculture and Wine, The University of Adelaide, Waite Campus, Adelaide
16 South Australia 5064, Australia.

17 ⁵Department of Animal, Plant and Soil Sciences, La Trobe University, AgriBio, Centre for
18 AgriBiosciences, La Trobe University, Bundoora, Victoria 3086, Australia.

19 ⁶Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe
20 University, Bundoora, Victoria 3086, Australia.

21 ⁷Bioprotection Aotearoa, School of Natural Sciences, Massey University, Private Bag 11222,
22 Palmerston North 4442, New Zealand.

23
24 [§]Present address: College of Medicine and Public Health, Flinders University, Bedford Park,
25 South Australia 5042, Australia.

26
27 *Corresponding author: Carl H. Mesarich (c.mesarich@massey.ac.nz). Postal address: School
28 of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North
29 4442, New Zealand.

30
31
32

33 **Abstract**

34 Scab, caused by the biotrophic fungal pathogen *Venturia inaequalis*, is the most economically
35 important disease of apples. During infection, *V. inaequalis* colonizes the subcuticular host
36 environment, where it develops specialized infection structures called runner hyphae and
37 stromata. These structures are thought to be involved in nutrient acquisition and effector
38 (virulence factor) delivery, but also give rise to conidia that further the infection cycle. Despite
39 their importance, very little is known about how these structures are differentiated. Likewise,
40 nothing is known about how these structures are protected from host defences or recognition
41 by the host immune system. To better understand these processes, we first performed a
42 glycosidic linkage analysis of sporulating tubular hyphae from *V. inaequalis* developed in
43 culture. This analysis revealed that the *V. inaequalis* cell wall is mostly composed of glucans
44 (44%) and mannans (37%), whereas chitin represents a much smaller proportion (4%). Next,
45 we used transcriptomics and confocal laser scanning microscopy to provide insights into the
46 cell wall carbohydrate composition of runner hyphae and stromata. These analyses revealed
47 that, during subcuticular host colonization, genes of *V. inaequalis* putatively associated with
48 the biosynthesis of immunogenic carbohydrates, such as chitin and β -1,6-glucan, are down-
49 regulated relative to growth in culture, while on the surface of runner hyphae and stromata,
50 chitin is deacetylated to the less immunogenic carbohydrate, chitosan. These changes are
51 anticipated to enable the subcuticular differentiation of runner hyphae and stromata by *V.*
52 *inaequalis*, as well as to protect these structures from host defences and recognition by the
53 host immune system.

54

55 **Importance**

56 Plant-pathogenic fungi are a major threat to food security. Among these are subcuticular
57 pathogens, which often cause latent asymptomatic infections, making them difficult to
58 control. A key feature of these pathogens is their ability to differentiate specialized
59 subcuticular infection structures that, to date, remain largely understudied. This is typified by
60 *Venturia inaequalis*, which causes scab, the most economically important disease of apples.
61 In this study, we show that, during subcuticular host colonization, *V. inaequalis* down-
62 regulates genes associated with the biosynthesis of two immunogenic cell wall carbohydrates,
63 chitin and β -1,6-glucan, and coats its infection structures with a less-immunogenic
64 carbohydrate, chitosan. These changes are anticipated to enable subcuticular host

65 colonization by *V. inaequalis* and provide a foundation for understanding subcuticular host
66 colonization by other plant-pathogenic fungi. Such an understanding is important, as it may
67 inform the development of novel control strategies against subcuticular plant-pathogenic
68 fungi.

69

70 **Keywords**

71 *Venturia inaequalis*, apple scab, cell wall, morphological differentiation, subcuticular infection
72 structures.

73

74 **Introduction**

75 Scab, caused by the fungus *Venturia inaequalis*, is one of the most devastating diseases of
76 apples worldwide (1, 2). Under favourable conditions, disease symptoms emerge as brown-
77 green lesions on leaves, buds and fruit, rendering the fruit unmarketable and reducing crop
78 yield by up to 70% (3, 4). Scab is also the most expensive disease of apples to control, with up
79 to 20 fungicide treatments required each year (4, 5). This intensive fungicide use has
80 accelerated the development of fungicide resistance in *V. inaequalis* and has increased
81 production costs for growers (6). While some disease-resistant apple cultivars have been
82 developed, their use has been limited due to the rapid emergence of resistance-breaking
83 strains of *V. inaequalis* in the field (7). Thus, there is an urgent need to develop durable control
84 strategies against scab.

85 *V. inaequalis* is a biotrophic pathogen that colonizes the subcuticular (apoplastic) host
86 environment located between the cuticle and underlying epidermal cells of apple tissues (1,
87 4). During colonization, *V. inaequalis* develops specialized subcuticular infection structures
88 called runner hyphae and stromata (8-10). These structures are non-melanized and are
89 different from regular tubular hyphae developed on the host surface (9). Indeed, runner
90 hyphae are wider and flatter than regular tubular hyphae and are often fused along their
91 length to form ‘hyphal superhighways’ (9), while stromata are multi-layered
92 pseudoparenchymatous structures that are the result of a switch from polar tip extension to
93 non-polar lateral division (9). In terms of functionality, stromata give rise to asexual conidia
94 that further the infection cycle but are also thought to be involved in nutrient acquisition and
95 effector (virulence factor) delivery. Runner hyphae, on the other hand, enable the fungus to

96 radiate out from the initial site of host penetration, acting as a base from which additional
97 stromata can be differentiated (9).

98 Notably, subcuticular infection structures are also produced by other crop-infecting
99 members of the *Venturia* genus (11-14), as well as several other species of plant-pathogenic
100 fungi. The latter include *Diplodcarpon rosae*, which causes black spot disease of roses (15), and
101 *Rhynchosporium secalis*, which causes barley and rye scald (16, 17). Despite these
102 observations, very little is known about how these structures are differentiated or how the
103 fungal cell wall is remodelled during this process. Strikingly, *V. inaequalis* can develop
104 infection-like structures inside cellophane membranes (CMs) that are reminiscent of those
105 formed *in planta* (9). This contrasts with growth on the CM surface, where the fungus
106 develops tubular hyphae like those formed on the surface of apple tissues (9). This finding
107 suggests that CMs can be used as an in culture model for studying the differentiation of
108 subcuticular infection structures and the dynamics of cell wall remodelling.

109 The fungal cell wall is an external barrier that plays an essential role in fungal growth
110 and morphogenesis (18, 19). For plant-pathogenic fungi, the cell wall also has an important
111 role in protection, as it is the first structure to encounter the hostile apoplastic environment
112 of the host (20). Despite this importance, its composition and biosynthesis are still poorly
113 understood, especially for non-model filamentous pathogens (19). While the structure and
114 composition of the fungal cell wall differs between species, it is typically comprised of a
115 polysaccharide and protein matrix, with glucans, chitin and mannans the main components
116 (18). Crucially, some of these carbohydrates, such as chitin and β -glucan, are strong elicitors
117 of the plant immune system, with defence responses initiated upon their recognition as
118 microbe-associated molecular patterns (MAMPs) by cell surface-localized plant immune
119 receptors (21, 22).

120 Chitin, a linear polymer of β -1,4-linked N-acetylglucosaminyl residues, is synthesized
121 by membrane-bound glycosyltransferase (GT) family 2 enzymes called chitin synthases (CHSs)
122 (18, 23). In terms of glucans, the majority is of the β -1,3-linked type, which in some instances
123 is cross-linked with chitin to form the core structure of the fungal cell wall. Additionally,
124 different proportions of branched β -1,6-glucan can be found in some fungi, usually extending
125 to the cell wall surface where it forms connections to mannoproteins (19, 24, 25). β -1,3-glucan
126 is synthesized by a membrane-bound enzyme from GT family 48 (GT48) (25, 26). The enzymes
127 required for β -1,6-glucan biosynthesis have not been described in any filamentous fungal

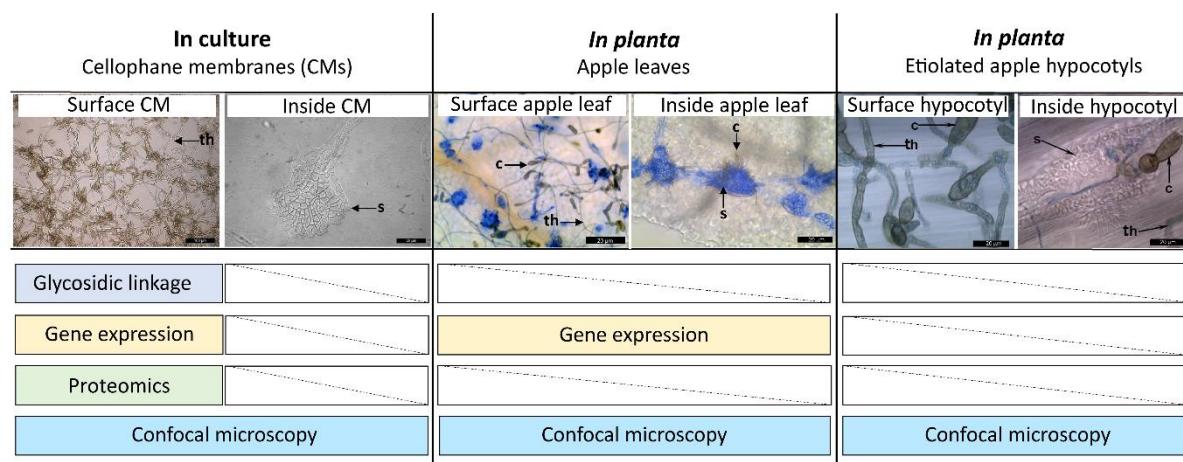
128 species (27). However, multiple enzymes associated with β -1,6-glucan biosynthesis and β -1,3-
129 glucan modification have been described in the yeast *Saccharomyces cerevisiae* (18, 27, 28).

130 Given the immunogenic nature of some cell wall carbohydrates, plant-associated fungi
131 must modify their cell wall during host colonization to avoid detection (29, 30). Likewise, as
132 the apoplast is rich in plant-derived glucanases and chitinases (29), fungi must also actively
133 prevent the hydrolytic release of chitin and β -glucan oligomers from their cell walls (31). One
134 proposed strategy used by fungi is to deacetylate chitin to chitosan (32-35), which is a poor
135 elicitor of plant defences (36-38) and a weak substrate of plant chitinases (39, 40). Another
136 strategy is to accumulate α -1,3-glucan on the cell surface, which shields it from the action of
137 plant hydrolases and, in doing so, prevents the release of carbohydrate-based MAMPs (41-
138 44).

139 In line with the importance of the fungal cell wall, its structure and the enzymes
140 required for its biosynthesis are common targets for antifungal compounds (24, 45). As such,
141 knowledge of fungal cell wall carbohydrate composition is important for the development of
142 novel fungicides and, therefore, control strategies. To date, a detailed analysis of the cell wall
143 carbohydrate composition in a *Venturia* species has not been published, with only one study
144 in 1965 reporting that the cell wall of *V. inaequalis* grown in culture is made up of 28%
145 hemicellulose, 13% β (γ)-cellulose, 20% α -cellulose and 7% chitin (46). As cellulose is generally
146 accepted to be absent from fungal cell walls (47), a more thorough investigation of the cell
147 wall carbohydrate composition in *V. inaequalis* using state-of-the-art techniques is now
148 needed. Here, using a glycosidic linkage analysis, with support from gene expression and
149 proteomic data, we report the cell wall carbohydrate composition of sporulating tubular
150 hyphae from *V. inaequalis* developed on the surface of CMs. Then, using confocal laser
151 scanning microscopy (CLSM), again in conjunction with gene expression data, we provide
152 insights into the cell wall carbohydrate composition of infection structures developed by *V.*
153 *inaequalis in planta* and compare these to the infection-like structures developed in CMs.

154

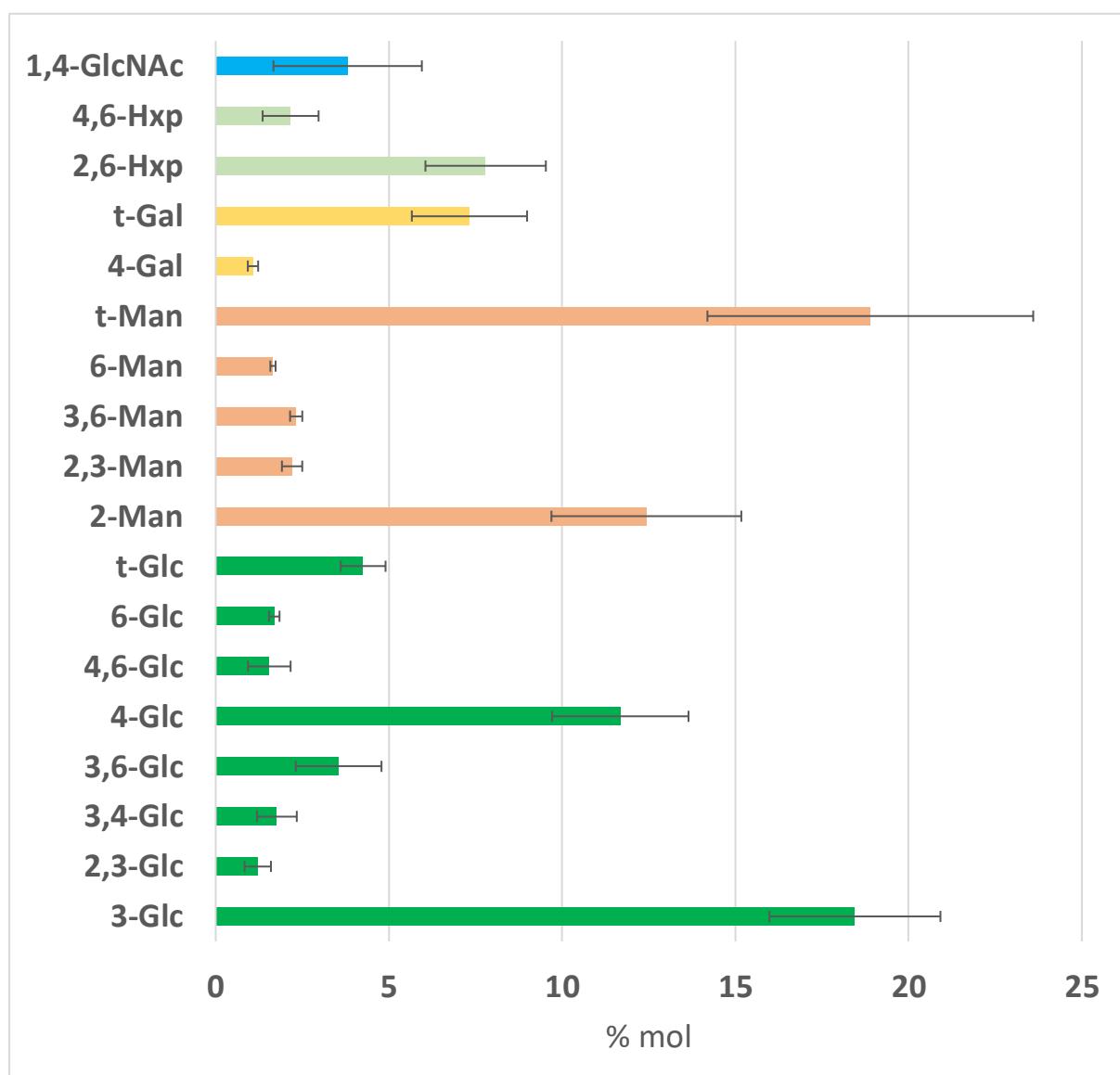
155 **Results**


156 **The major cell wall polysaccharides of sporulating tubular hyphae formed by *V. inaequalis* 157 in culture are glucans and mannans**

158 To investigate the carbohydrate composition of the *V. inaequalis* cell wall during growth in
159 culture, a glycosidic linkage analysis was performed on cell walls harvested from sporulating

Running title: Subcuticular *Venturia inaequalis* infection structures

160 tubular hyphae developed on CMs overlaying potato dextrose agar (PDA) (**Figure 1**). The
161 fungal material was extensively washed to avoid contamination from the underlying PDA. The
162 glycosidic linkage analysis revealed that most polysaccharides present in the *V. inaequalis* cell
163 wall were composed of glucosyl (Glc) (~44%) and mannosyl (Man) (~37%) residues, followed
164 by unidentified hexopyranosyl (Hxp) (~10%), galactosyl (Gal) (~8 %) and N-
165 acetylglucosaminosyl (GlcNAc) (~4%) residues (**Figure 2**). This analysis also revealed that the
166 most dominant Glc linkage was 1,3-Glc (41.7%), followed by 1,4-Glc (26%), terminal (t)-Glc
167 (9.63%), 1,3,6-Glc (8.03%), 1,6-Glc (3.8%) and 1,4,6-Glc (3.5%) (**Figure 2**). The entire GlcNAc
168 fraction consisted of 1,4-GlcNAc residues, while the most dominant Man linkage was t-Man
169 (50.4%), followed by 1,2-Man (33.1%). Finally, the Hxp fraction consisted of only two linkages,
170 2,6-Hxp (78.3%) and 4,6-Hxp (21.7%), while the Gal fraction was mostly t-Gal (87.2%) and 1,4-
171 Gal (12.8%) (**Figure 2**).


172

173
174 **Figure 1. Summary of *Venturia inaequalis* samples used in this study.** Tubular hyphae growing on the surface
175 of cellophane membranes (CMs) overlaying potato dextrose agar were used for the glycosidic linkage analysis,
176 proteomic analysis, gene expression (RNA-seq) analysis, as well as confocal laser scanning microscopy (CLSM).
177 Infection-like structures formed inside CMs were used for CLSM. Infected apple leaves were used for the gene
178 expression analysis and CLSM. Infected etiolated apple hypocotyls (a model *in planta* infection system) were
179 used for CLSM. All scale bars: 20 μ m. c, conidium; s, stroma; th, tubular hypha.

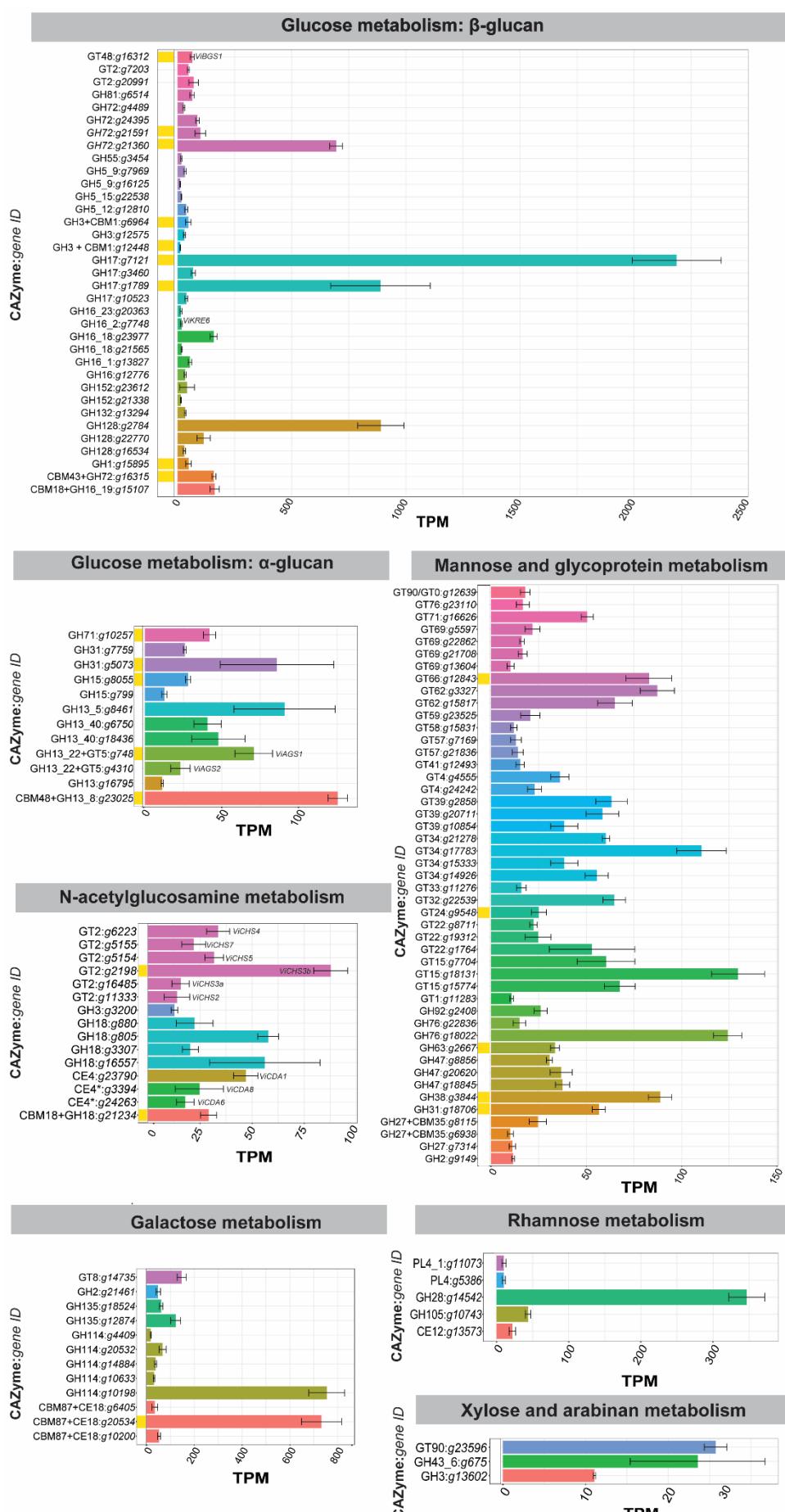
180

181

182

183 **Figure 2.** Glycosidic linkage analysis (mole percentage, % mol) of the cell wall carbohydrate fraction from
184 sporulating tubular hyphae of *Venturia inaequalis* developed on the surface of cellophane membranes (CMs)
185 overlaying potato dextrose agar at 5 days post-inoculation. Man, mannose; Glc, glucose; Gal, galactose; Hxp,
186 hexopyranose; GlcNAc, N-acetylglucosamine. Error bars represent standard deviation across three technical
187 replicates.

188

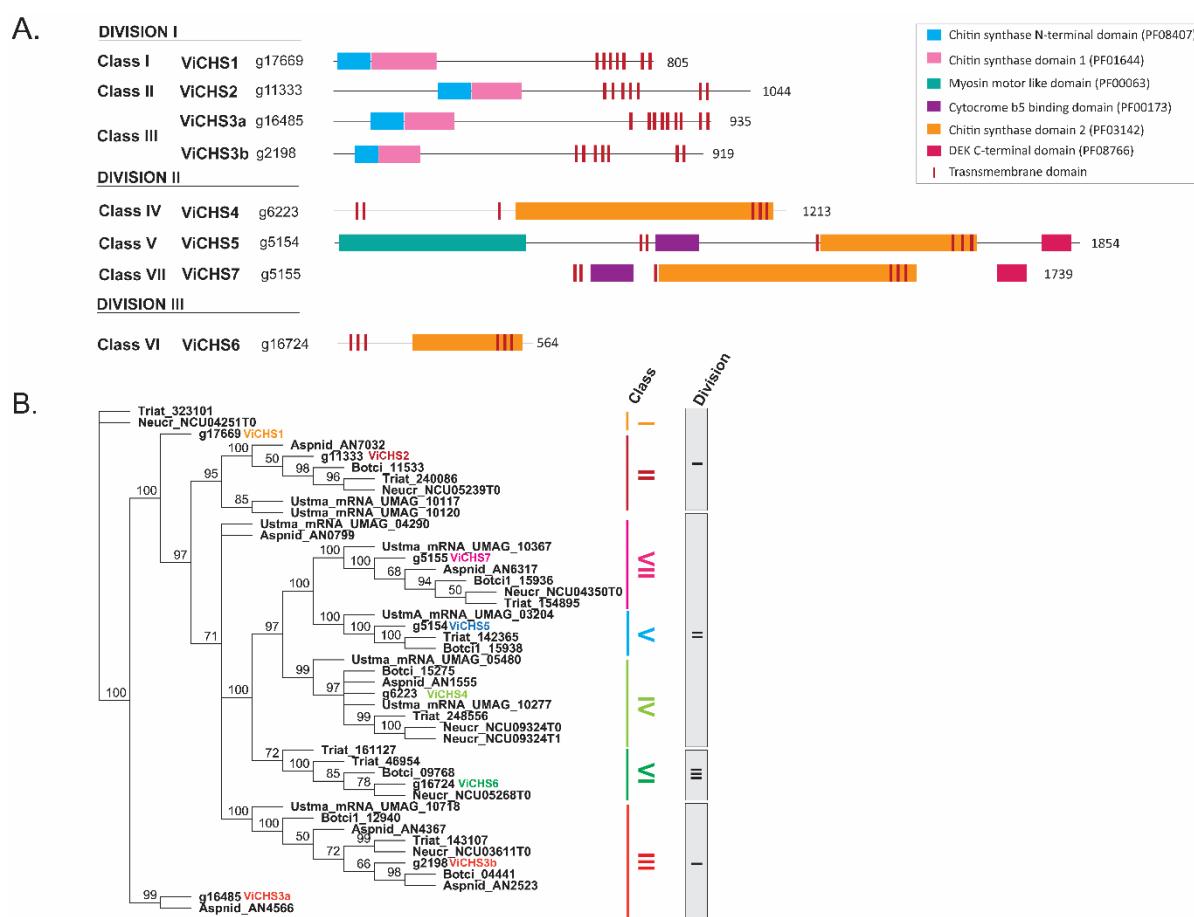

189 **Identification and expression of genes putatively associated with cell wall polysaccharide
190 biosynthesis in sporulating tubular hyphae of *V. inaequalis***

191 To determine which cell wall carbohydrate biosynthetic genes are expressed during growth
192 of *V. inaequalis* on the surface of CMs, we used a combination of bioinformatic, proteomic
193 and transcriptomics approaches (Figure 1). As a starting point, the most recently predicted

194 gene catalogue for *V. inaequalis* (48) was inspected to identify genes putatively associated
195 with cell wall biosynthesis (**Table S1, Supplementary file 1**). Based on this analysis, 231 genes
196 were identified (**Supplementary file 1**). Next, the expression of these genes was investigated
197 using pre-existing RNA-seq data from sporulating tubular hyphae of *V. inaequalis* grown on
198 CMs at 7 dpi (48). This analysis revealed that, of the 231 predicted cell wall biogenesis genes,
199 135 were expressed with a transcripts per million (TPM) value >10 (**Figure 3**). Finally, a
200 proteomic analysis of total protein from sporulating tubular hyphae of *V. inaequalis* grown on
201 CMs at 5 dpi was performed. Based on this analysis, 24 of the 231 putative cell wall
202 biosynthetic genes were found to encode proteins with proteomic support (**Supplementary**
203 **file 3 and 4**), confirming that they were indeed produced. Of these, 17 had a TPM expression
204 value >10 (**Figure 3**).

205 Among the glycosyltransferases (GTs) identified, 13 were putative family 2 enzymes
206 and, of these, eight were annotated as CHSs. These were named ViCHS1–7 according to the
207 previously established CHS classification scheme (49), based on both their CHS domain (**Figure**
208 **4.A**) and phylogenetic distribution (**Figure 4.B**). *V. inaequalis* had at least one representative
209 from each CHS class (class I–VI), and two CHSs from class III (**Figure 4.A**). Four CHSs were from
210 division I, having a simple ‘amino (N)-terminus CHS domain 1’ plus ‘CHS domain 1’ structure
211 (**Figure 4.A**). All division I CHSs, except ViCHS1, were encoded by genes that had a TPM
212 expression value >10, with *ViCHS3b* being the most highly expressed and the only CHS with
213 proteomic support (**Figure 3**). Three CHSs were from division II and, of these, ViCHS4 only had
214 a single ‘CHS domain 2’ module (**Figure 4.A**). In contrast, ViCHS5 and ViCHS7 both had a
215 ‘cytochrome b5-binding domain’ and a ‘Dek domain’ at their carboxyl (C)-terminus, while
216 ViCHS5 also had an N-terminal ‘myosin motor-like’ domain (**Figure 4.A**). Finally, ViCHS6 was
217 from division III and had a single C-terminal ‘CHS domain 2’ module (**Figure 4.A**). The gene
218 encoding this CHS, however, was not highly expressed in culture (<10 TPM). All CHSs
219 contained both a QxxRW motif required for catalytic activity, as well as QxxEY and EDRxL
220 domains of unknown function (**Figure S1**) (23).

221



Running title: Subcuticular *Venturia inaequalis* infection structures

223 **Figure 3.** Expression of carbohydrate-active enzyme (CAZyme)-encoding genes from *Venturia inaequalis*
224 putatively associated with cell wall biosynthesis during growth as sporulating tubular hyphae on the surface of
225 cellophane membranes overlying potato dextrose agar at 7 days post-inoculation. Gene expression data are
226 transcripts per million (TPM), averaged from four biological replicates, with error bars representing standard
227 deviation. Only genes with TPM values >10 are shown and are grouped into families by colour. Enzymes labelled
228 with an asterisk (*) were identified by Protein family (Pfam) search. Yellow blocks indicate proteins that have
229 proteomic support by mass spectrometry. AGS, α -1,3-glucan synthase; BGS, β -1,3-glucan synthase; CBM,
230 carbohydrate-binding module; CDA, chitin deacetylase; CE, carbohydrate esterase; CHS, chitin synthase; GH,
231 glycoside hydrolase; GT, glycosyltransferase; PL, polysaccharide lyase.

232

233

234

235 **Figure 4.** Chitin synthase (CHS) proteins of *Venturia inaequalis*. **A.** Predicted classification and domain
 236 organization of CHS proteins. **B.** Phylogenetic classification of the eight predicted CHSs. CHSs from *Aspergillus*
 237 *nidulans* (Asnid), *Neurospora crassa* (Neucr), *Botrytis cinerea* (Botci) and *Ustilago maydis* (Ustma) were
 238 included for reference. *V. inaequalis* CHS proteins are highlighted in bold and coloured letters. Phylogenetic tree
 239 was generated from a MUSCLE alignment and end-joining method using Geneious v9.0.5, with node values
 240 indicating consensus support (%) from 100 replicates.

241

242 Multiple enzymes putatively associated with chitin modification were encoded by
243 genes expressed during growth of *V. inaequalis* in culture, including five glycoside hydrolase
244 (GH) family 18 chitinases, and one β -N-acetyl hexosaminidase of GH family 3 (**Figure 3**,
245 **Supplementary file 1**). However, only one chitinase had proteomic support (**Figure 3**). In total,
246 eight putative chitin deacetylase (*CDA*) genes were identified (**Supplementary file 1**). Of those
247 (**Figure S2.A**), a sequence alignment revealed that only *ViCDA1* and *ViCDA7* possessed all
248 previously described conserved residues for catalytic activity and metal-binding and were
249 likely functional (50, 51) (**Figure S2.B**). *ViCDA4* had all metal-binding and catalytic site
250 residues, except one, as the second conserved aspartic acid for catalytic activity was
251 substituted by a similar negatively charged amino acid, glutamic acid. Therefore, it is likely
252 that *ViCDA4* is functional. *ViCDA5* and *ViCDA6* had all catalytic site residues, except the last
253 histidine, and an amino substitution in the first metal-binding position (**Figure S2.B**). As such,
254 these two proteins might not be functional. *ViCDA3* had two amino acid substitutions at the
255 first and third metal-binding positions which are characteristic of allantoinases; enzymes that
256 hydrolyse allantoin, a nitrogen-rich organic compound (52) (**Figure S2.B**). Therefore, *ViCDA3*
257 might function as an allantoinase instead of a CDA. Finally, due to a C-terminal truncation,
258 *ViCDA8* was missing the last two catalytic site residues and, therefore, is likely to be non-
259 functional (**Figure S2.B**). None of the CDAs had a predicted transmembrane domain or
260 glycosylphosphatidylinositol (GPI) anchor, while only *ViCDA1* and *ViCDA4* had a predicted N-
261 terminal signal peptide for secretion (**Figure S2.A**). *ViCDA1* was the only potentially active
262 CDA-encoding gene with a high level of expression during growth of *V. inaequalis* in culture;
263 however, this enzyme did not have proteomic support (**Figure 3 and Figure S2.C**).

264 Only one gene encoding a putative β -1,3-glucan synthase of GT family 48, *ViBGS1*, was
265 identified in the *V. inaequalis* genome (**Supplementary file 1**). This gene was expressed in
266 culture and the resulting enzyme was detected by the proteomic analysis (**Figure 3**).
267 Additionally, many genes encoding β -1,3-glucan-modifying enzymes were identified, such as
268 members of the GH17 and GH72 families (**Supplementary file 1**), which are anticipated to
269 assist in either the elongation or branching of β -1,3-glucans (28, 53). Of these, four GH17 and
270 four GH72 genes were expressed during growth of *V. inaequalis* in culture and half of these
271 had proteomic support (**Figure 3**). This included the GH17 gene *g7121*, which was the most
272 highly expressed carbohydrate-active enzyme (CAZyme)-encoding gene.

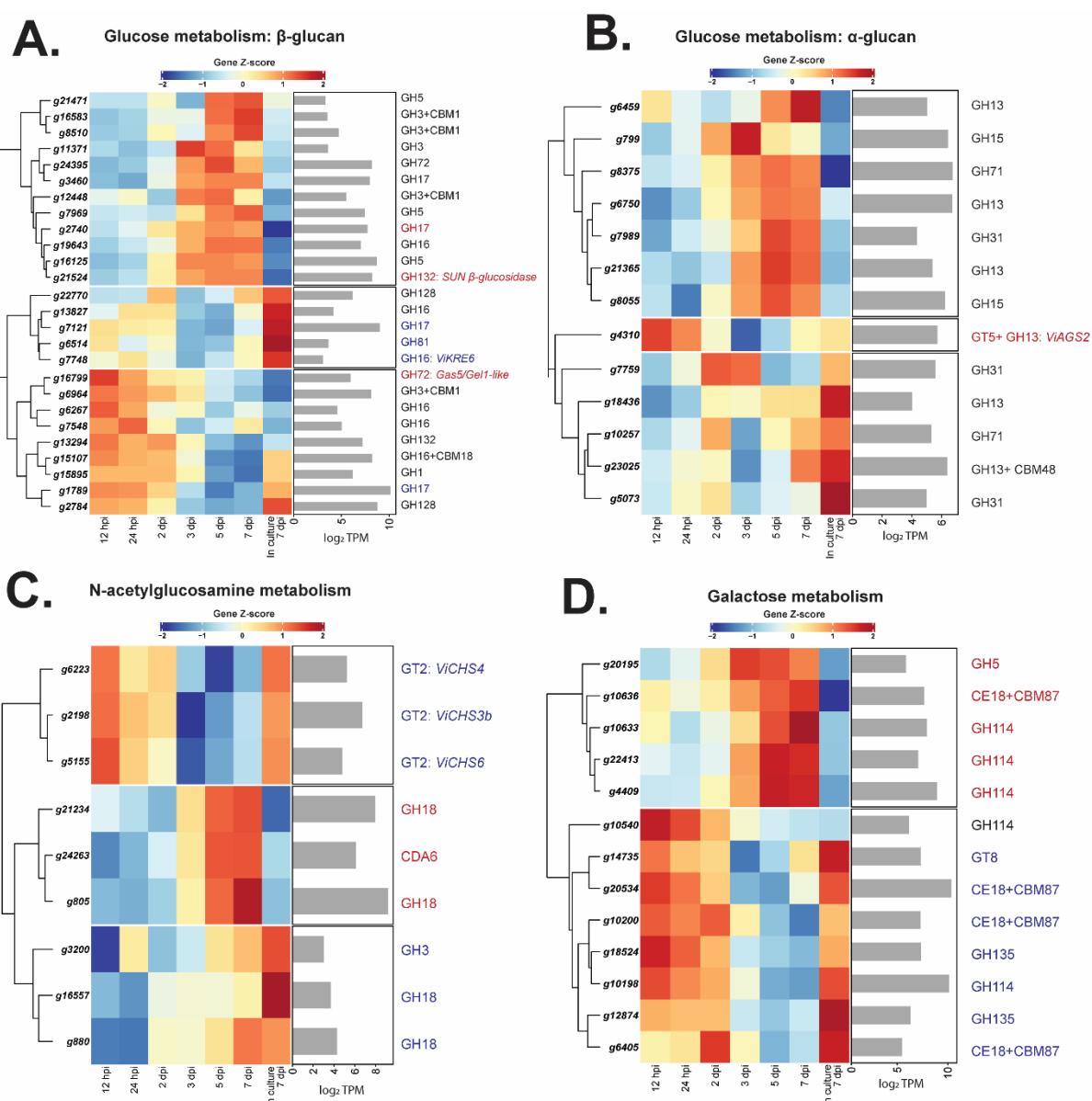
273 A further 13 genes encoding putative GH family 16 enzymes were also identified
274 (**Supplementary file 1**), with four of these found to be expressed during growth in culture
275 (**Figure 3**). Three of these possibly encode chitin transglycosylases required to cross-link chitin
276 with glucan (54), while the fourth encodes a KRE6-like enzyme (ViKRE6) that is possibly
277 associated with β -1,6-glucan biosynthesis (55, 56). None of the four GH16 enzymes were
278 identified in the proteomic analysis.

279 The genome of *V. inaequalis* also carried two genes encoding putative α -1,3-glucan
280 synthases, named *ViAGS1* and *ViAGS2* (**Supplementary file 1**). Both were expressed in culture;
281 however, only *ViAGS1* had proteomic support (**Figure 3**). Finally, the *V. inaequalis* genome
282 possessed 71 genes involved in the biosynthesis of mannan (**Supplementary file 1**). Of these,
283 six encoded mannan polymerases and 25 encoded mannosyltransferases expressed with a
284 TPM value >10 in culture. However, none of these enzymes had proteomic support (**Figure**
285 **3**).

286

287 **Genes putatively associated with the biogenesis of carbohydrate-based MAMPs from *V.***
288 ***inaequalis* are down-regulated during host colonization**

289 A glycosidic linkage analysis could not be performed to determine the carbohydrate
290 composition of infection structures produced by *V. inaequalis* during infection of apple tissue.
291 This was due to the paucity of fungal material generated during subcuticular growth. Thus, to
292 make inferences about how the *V. inaequalis* cell wall carbohydrate composition changes
293 during host infection, relative to growth in culture, the expression of the 231 putative cell wall
294 biosynthesis genes identified above was investigated using pre-existing *in planta*
295 transcriptomic data (48) (**Figure 1**). These data were collected from apple leaves infected with
296 *V. inaequalis* at six time points: 12 and 24 hours post-inoculation, as well as 2, 3, 5 and 7 dpi
297 (48). Using these data, a total of 68 genes putatively associated with fungal cell wall
298 biosynthesis were found to be up-regulated, and 43 down-regulated, at one or more *in planta*
299 time points compared to growth in culture (**Supplementary file 2**). Interestingly, most
300 differentially expressed genes were associated with β -glucan metabolism (**Figure 5.A** and
301 **Figure S3**). More specifically, during early infection (12–24 hpi), the *Gas5/Gel1-like* gene,
302 which encodes a GH72 1,3- β -glucanosyltransferase with sequence similarity to Gas5 enzymes
303 from yeast and Gel1 from *Aspergillus* spp. (57, 58), was up-regulated. Later, during mid-late
304 infection (5 and 7 dpi), several β -glucosidase-encoding genes were up-regulated. Only a few


Running title: Subcuticular *Venturia inaequalis* infection structures

305 genes associated with β -glucan metabolism were down-regulated during host colonization,
306 such as two genes encoding GH17 proteins and the KRE6-like enzyme (**Figure 5.A** and **Figure**
307 **S3**). Regarding α -1,3-glucan metabolism, *ViAGS2* was up-regulated during early (12 and 24
308 hpi) host infection (**Figure 5.B**).

309 Genes involved in chitin metabolism were, in general, down-regulated during host
310 colonization (**Figure 5.C** and **Figure S4**). During early infection, two genes encoding putative
311 GH18 chitinases and one gene encoding a GH3 enzyme of unknown function, were down-
312 regulated. Later, during mid-late infection, the *CHS* genes *ViCHS3b*, *ViCHS4* and *ViCHS7* were
313 down-regulated. Interestingly, from 3 dpi, two chitinase-encoding genes, as well as the gene
314 encoding the putatively inactive *ViCDA6* were up-regulated (**Figure 5.C** and **Figure S4**).
315 Additionally, *ViCDA1*, which encodes the putatively secreted and active CDA, was
316 constitutively expressed both in culture and *in planta* (**Figure S2.C**).

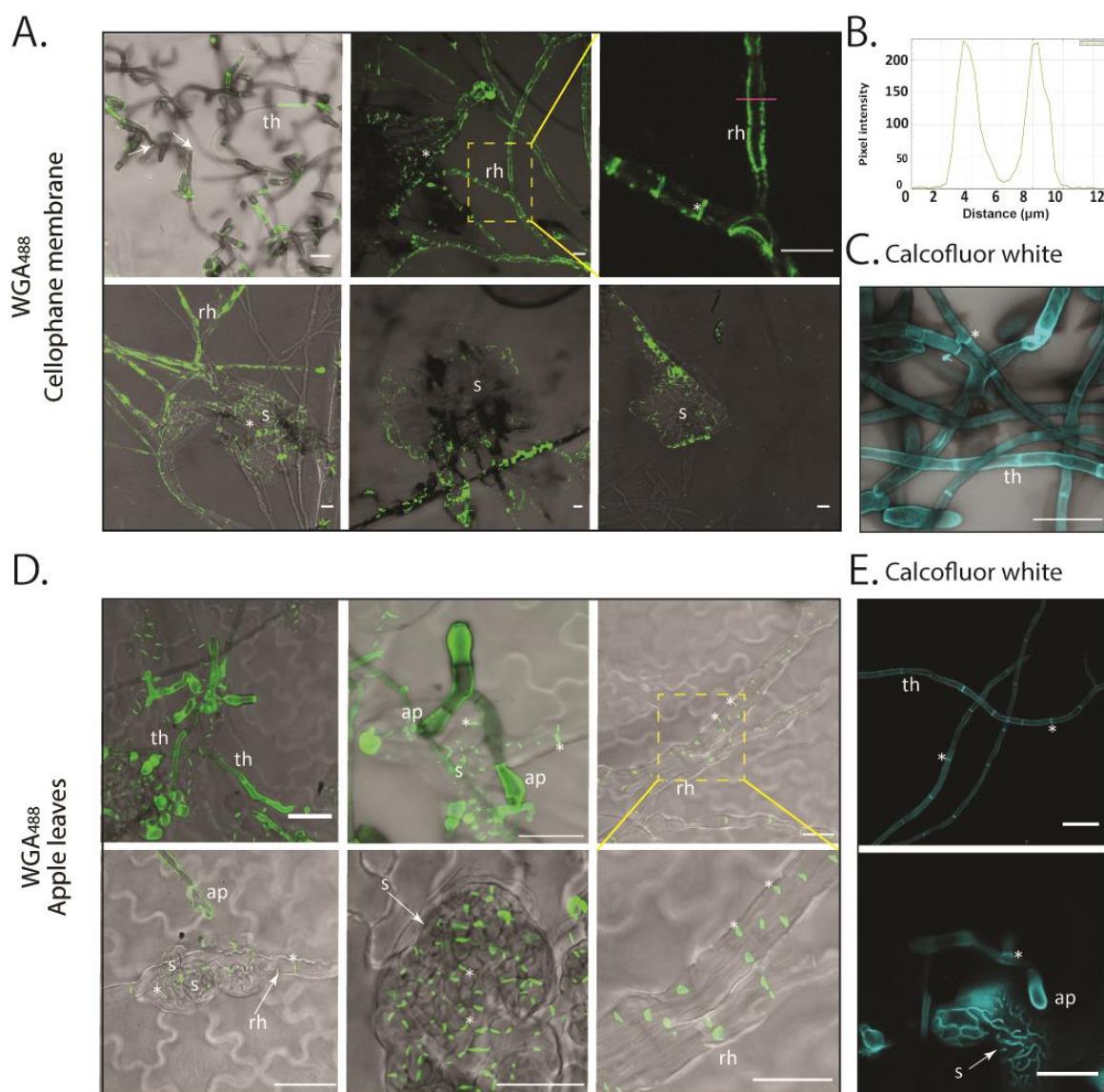
317 Several genes associated with galactose metabolism were down-regulated during
318 mid-late infection. However, others were up-regulated over this infection stage, especially
319 three genes encoding GH114 proteins (**Figure 5.D**). Finally, most genes associated with
320 mannose and glycoprotein metabolism were up-regulated, especially those genes encoding
321 putative mannosidases (**Supplementary file 2**).

322

323

324 **Figure 5. Heatmaps showing the expression profiles of genes from *Venturia inaequalis* that are both putatively**
 325 **associated with cell wall biosynthesis and differentially expressed during host colonization, relative to growth**
 326 **in culture.** Only differentially expressed genes putatively associated with **A.** glucose (β -glucan), **B.** glucose (α -
 327 glucan), **C.** N-acetylglucosamine, and **D.** galactose metabolism at one or more *in planta* time points when
 328 compared to growth on cellophane membranes overlying potato dextrose agar, and with a minimum expression
 329 of 10 transcripts per million (TPM) are shown. Heatmaps are rlog-normalized counts across all samples (Z-score),
 330 averaged from four biological replicates. Bar plots depict the maximum log₂ TPM count value across all *in planta*
 331 time points. hpi, hours post-inoculation; dpi, days post-inoculation; CBM, carbohydrate-binding module; CDA,
 332 chitin deacetylase; CE, carbohydrate esterase; CHS, chitin synthase; GH, glycoside hydrolase; GT,
 333 glycosyltransferase. Blue colour highlights genes down-regulated and red colour highlights genes up-regulated
 334 during host-colonization, relative to growth in culture.

335


336 **Chitosan is present on the surface of *V. inaequalis* infection structures formed *in planta*,**
337 **while chitin is restricted to septa**

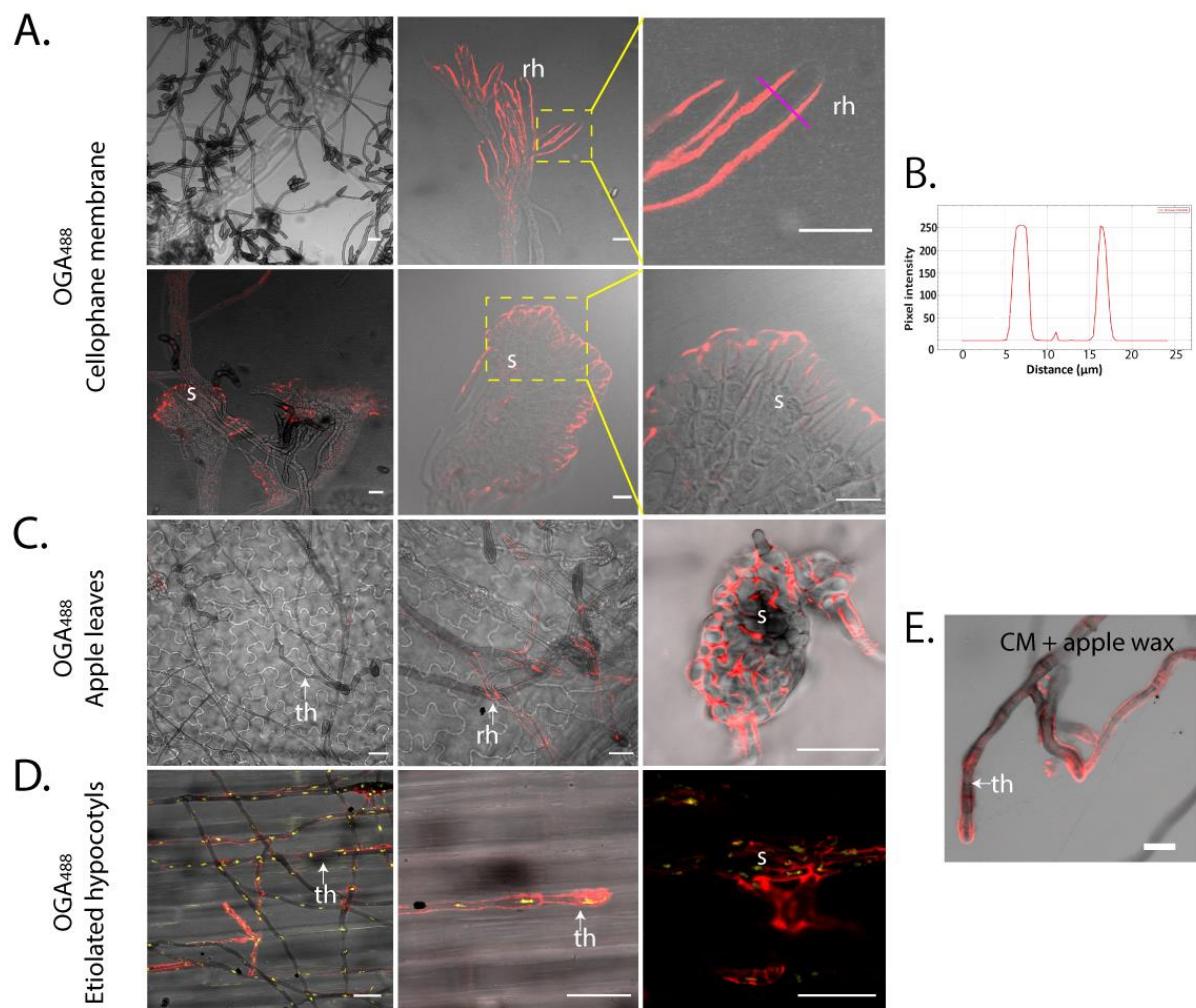
338 To further investigate the cell wall carbohydrate composition of the cellular morphotypes
339 formed by *V. inaequalis*, we used CLSM in conjunction with different carbohydrate-specific
340 probes and antibodies to label chitin, chitosan, β -1,3-glucan, and α -1,3-glucan. CLSM was
341 performed on *V. inaequalis* growing in culture on the surface and inside CMs, as well as during
342 host colonization on the surface and inside living host tissue (Figure 1). For host colonization,
343 two approaches were taken, with the first involving detached apple leaves, and the second
344 involving detached etiolated apple hypocotyls (Figure 1). Here, etiolated apple hypocotyls
345 were included as they have previously been shown to be a good system for visualising
346 infection by *V. inaequalis* due to their reduced tissue thickness, as well as their lower levels
347 of chlorophyll, other pigments and phenolic compounds, when compared to apple leaves
348 (59). However, it is important to note that hypocotyl infection does not occur in orchards, as
349 these apples are cultivated from clonal bud wood, not seed. Hypocotyl infection may, though,
350 occur in natural apple forests.

351 To monitor the distribution of chitin on the surface of the fungal cell wall, all samples
352 were labelled with wheat germ agglutinin (WGA) conjugated to the fluorophore AlexaFluor
353 (AF) 488 (WGA⁴⁸⁸) (Figure 6 and Figure S6). Tubular hyphae formed on the surface of CMs
354 (Figure 6.A), infected apple leaves (Figure 6.D,E) and etiolated hypocotyls (Figure S6)
355 presented limited amounts of surface-exposed chitin, with labelling mainly restricted to
356 hyphal breakage points and, sometimes, septa. The maximum fluorescence intensity occurred
357 at the cell periphery, indicating that the labelling signal was derived from the cell wall (Figure
358 6.B). To label the total chitin present in the cell wall, fungal material was first permeabilized
359 with NaOH and then labelled with the chitin stain calcofluor white. By doing so, faint labelling
360 was observed around the periphery of tubular hyphae, with stronger labelling found at septa
361 (Figure 6.C). On the infection-like structures developed inside CMs, chitin labelling was
362 observed around the periphery of runner hyphae, as well as at the septa of runner hyphae
363 and stromata (Figure 6.A). In contrast, following host penetration, chitin was exclusively
364 restricted to septa (Figure 6 and Figure S6).

365

366

367


368 **Figure 6. Labelling of chitin on *Venturia inaequalis* cellular morphotypes developed in culture and *in planta*.**
369 **A.** Cellular morphotypes developed in culture in and on cellophane membranes (CMs) overlaying potato
370 dextrose agar labelled with wheat germ agglutinin-AlexaFluor 488 (WGA⁴⁸⁸) (green pseudocolour). **B.** Plot profile
371 of pixel intensity along a line (magenta) in A (top right-hand image) made with ImageJ 1.x. **C.** Tubular hyphae
372 developed on a CM labelled with calcofluor white (cyan pseudocolour) after permeabilization with NaOH. **D.**
373 Cellular morphotypes developed in and on 'Royal Gala' apple leaves labelled with WGA⁴⁸⁸ (green pseudocolour).
374 **E.** Tubular hyphae developed on 'Royal Gala' apple leaves labelled with calcofluor white (cyan pseudocolour)
375 after permeabilization with NaOH. Dashed yellow squares indicate zoomed-in areas. ap, appressorium; rh,
376 runner hyphae; s, stroma; th, tubular hypha; arrow, hyphal breakage; *, septum. All scale bars: 20 μm.

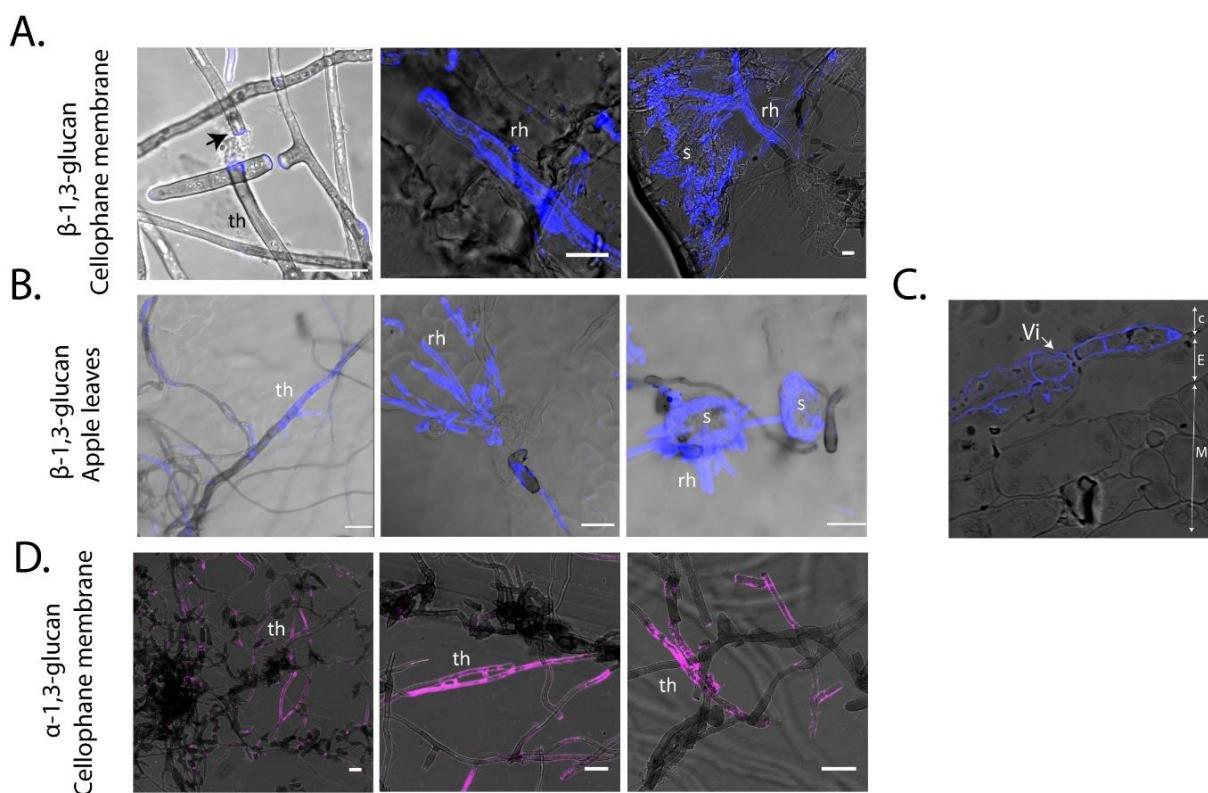
377

378 Next, as *V. inaequalis* has eight putative CDA genes (**Figure 5**) and, of these, *ViCDA6* is
379 up-regulated during infection, while *ViCDA1* is constitutively expressed in culture and *in*

380 *planta*, it was hypothesized that *V. inaequalis* deacetylates chitin to chitosan during host
381 colonization. Therefore, the tubular hyphae and infection structures of *V. inaequalis*
382 developed in culture and *in planta* were probed using the oligogalacturonate (OGA) probe
383 conjugated with AF488 (OGA⁴⁸⁸) (60).

384

385


386 **Figure 7. Label-accessible chitosan on the surface of *Venturia inaequalis* cellular morphotypes developed in**
387 **culture and *in planta*.** The fluorophore-labelled oligosaccharide OGA⁴⁸⁸ was used to visualize chitosan (red
388 pseudocolour). **A.** *V. inaequalis* cellular morphotypes developed in culture in and on cellophane membranes
389 (CMs) overlying potato dextrose agar. **B.** Plot profile of pixel intensity along a line (magenta) in A (top right-hand
390 image) made with ImageJ 1.x. **C.** Cellular morphotypes developed in and on apple leaves. **D.** Cellular
391 morphotypes developed in and on etiolated hypocotyls, fungal nuclei labelled with propidium iodide (PI, yellow
392 pseudocolour). **E.** Surface hyphae developed on a CM covered with apple wax. All scale bars: 20 μm. ap,
393 appressorium; rh, runner hyphae; th, tubular hypha; s, stroma. Dashed yellow squares indicate zoomed-in areas.

394

395 Chitosan labelling was not detected on tubular hyphae developed on the surface of
396 CMs or apple leaves (**Figure 7.A, C**). In contrast, tubular hyphae developed on etiolated
397 hypocotyls had surface-exposed chitosan (**Figure 7.D**), highlighting a key difference among
398 these host infection systems. The reason behind chitosan induction on the surface of etiolated
399 hypocotyls is not clear, but we hypothesize that *V. inaequalis* may grow more intimately with
400 the cutin layer and, as part of this, there might be some plant-derived trigger (e.g. cutin
401 monomers) inducing chitosan production. With this in mind, we tested if chitosan production
402 could be induced in culture. For this purpose, wax was extracted from apple fruit and added
403 to the surface of CMs before inoculation with *V. inaequalis* conidia. Remarkably, following
404 germination, apple wax triggered chitosan production on tubular hyphae developed in culture
405 (**Figure 7.E**). The maximum fluorescence intensity from chitosan labelling occurred at the cell
406 periphery, indicating that the labelling signal was derived from the cell wall (**Figure 7.B**).
407 Regarding the infection structures developed *in planta*, as well as the infection-like structures
408 developed in CMs, chitosan labelling was also observed at the periphery (**Figure 7.C, D**).

409 Next, we investigated the distribution of β -1,3-glucan during growth of *V. inaequalis*
410 in culture and *in planta*, as β -1,3-glucan is known to be an elicitor of plant defences (61). For
411 this purpose, β -1,3-glucan localization was investigated with a primary mouse antibody
412 specific to β -1,3-glucan in conjunction with the anti-mouse secondary antibody CF-488. β -1,3-
413 glucan-specific labelling was rarely observed around tubular hyphae developed on the surface
414 of CMs, with labelling mostly observed at hyphal breakage points (**Figure 8.A**). To label β -1,3-
415 glucan present on the surface of infection-like structures formed inside CMs, sandpaper had
416 to be used to create antibody entry points. In doing so, we observed an intense but patchy
417 labelling at the periphery of the infection-like structures (**Figure 8.A**). A similar patchy
418 distribution was observed on tubular hyphae developed on the surface of apple leaves and
419 etiolated hypocotyls (**Figure 8.B and Figure S6.B**). Interestingly, labelling of β -1,3-glucan was
420 not observed on young infection structures developed in leaves (**Figure 8.B**) or hypocotyls
421 (**Figure S6.B**). Instead, labelling of β -1,3-glucan could only be observed on mature stromata
422 that had ruptured the apple cuticle upon sporulation (**Figure 8.B**).

423

425 **Figure 8. Label-accessible β -1,3-glucan and α -1,3-glucan of *Venturia inaequalis* (Vi) cellular morphotypes**
426 **developed in culture and *in planta*.** The monoclonal anti β -1,3-glucan primary antibody and CF-488 secondary
427 antibody were used to label β -1,3-glucan (blue pseudocolour), while the monoclonal MOPC-104E primary
428 antibody and CF-488 secondary antibody were used to label α -1,3-glucan (pink pseudocolour).
429 **A.** β -1,3-glucan labelling of *V. inaequalis* cellular morphotypes developed in culture in and on cellophane
430 membranes (CMs). **B.** β -1,3-glucan labelling of *V. inaequalis* cellular morphotypes developed in and on detached
431 apple leaves. **C.** β -1,3-glucan labelling of a cross-section of a detached leaf infected with *V. inaequalis*. C: apple
432 cuticle, E: apple epidermal cells, M: apple mesophyll cells. **D.** α -1,3-glucan labelling of *V. inaequalis* cellular
433 morphotypes developed in culture in and on CMs. All scale bars: 20 μ m. Rh, runner hyphae; s, stroma; th, tubular
434 hyphae; arrow: hyphal breakage points.

435

436 As *V. inaequalis* has two putative α -1,3-glucan synthase genes and, of these, *ViAGS2*
437 is up-regulated during early host colonization (Figure 5), we attempted to label α -1,3-glucan
438 using the primary antibody MOPC-104E in conjunction with the secondary antibody anti-
439 mouse CF-488. Labelling of α -1,3-glucan was observed on tubular hyphae developed on the
440 surface of CMs (Figure 8.D), but not on tubular hyphae developed on the surface of apple
441 tissue (data not shown). Likewise, no labelling of α -1,3-glucan was observed on the surface of
442 infection-like structures formed in culture or on the infection structures developed *in planta*
443 (data not shown).

444

445 **Discussion**

446 Even though the cell wall plays a crucial role in viability and pathogenesis (20, 30, 62), few
447 studies have focused on the cell wall of plant-pathogenic fungi. Here, we examined the cell
448 wall carbohydrate composition of sporulating tubular hyphae from *V. inaequalis* developed
449 on the surface of CMs using glycosidic linkage analysis. As observed in other fungi, the most
450 abundant glucosyl linkages found in *V. inaequalis* were 1,3-Glc, with the proportion identified
451 similar to that found in the subcuticular plant pathogen, *R. secalis* (**Table 1**) (63). Glycosidic
452 linkage analysis does not allow discrimination between α - and β -linkages. However, using
453 CLSM, we were able to show that α -1,3-glucan was present on surface hyphae developed in
454 culture. Therefore, a fraction of the identified 1,3-Glc could be from α -1,3-glucan, which coats
455 the surface of the *V. inaequalis* cell wall.

456 Surprisingly, α -1,3-glucan could not be detected on the surface of *V. inaequalis*
457 infection-like structures developed inside CMs or on the infection structures developed *in*
458 *planta*, even though the α -1,3-glucan synthase gene, *ViAGS2*, was up-regulated during early
459 host colonization. The lack of α -1,3-glucan labelling *in planta* could indicate that this
460 carbohydrate is not label-accessible on the cell wall surface during host colonization.
461 However, it is more plausible that this is due to the problem we encountered with antibody
462 penetration inside host tissue. Interestingly, in some human fungal pathogens, such as
463 *Histoplasma capsulatum* and *Aspergillus fumigatus*, as well as the fungal plant pathogen
464 *Magnaporthe oryzae*, α -1,3-glucan accumulates on the surface of the fungal cell wall to
465 conceal cell wall-derived MAMPs and, thus, prevents the induction of host defence responses
466 during host infection (41-44, 64). Additionally, in *A. fumigatus*, α -1,3-glucan is important for
467 hyphal and conidial aggregation (65, 66). With this research in mind, additional experiments
468 are now needed to investigate whether α -1,3-glucan is present on the surface of *V. inaequalis*
469 infection structures.

470

471

472

473

474

Running title: Subcuticular *Venturia inaequalis* infection structures

475 **Table 1.** Carbohydrate composition (%) of the *Venturia inaequalis* cell wall, determined in this study using
476 glycosidic linkage analysis, compared to other fungal species for which carbohydrate composition is known. This
477 comparison was made for the filamentous fungi *Blumeria graminis* f. sp. *hordei* (67), *Rhynchosporium secalis*
478 (63), *Neurospora crassa* (68), *Aspergillus fumigatus* (69) (alkali-insoluble fraction of the cell wall), and the yeast
479 *Saccharomyces cerevisiae* (70). This table was extracted and modified from (67). Gal, galactose; Glc, glucose;
480 GlcNAc, N-acetylglucosamine; Man, mannose; Hxp, hexopyranose.

	<i>V. inaequalis</i>	<i>B. graminis f.sp. hordei</i>	<i>R. secalis</i>	<i>N. crassa</i>	<i>A. fumigatus</i>	<i>S. cerevisiae</i>
t-Man	18.9	1.7	3.1	1.5	0.1	15.7
t-Glc	4.3	5.7	13.9	13	0.3	5.5
t-Gal	7.3	2.2	0	1	2.2	0
3-Glc	18.5	35.6	11.6	54	43.3	26.9
2-Man	12.4	4.3	4.3	3	2.4	7.9
6-Man	1.7	3.8	4.4	0	1.2	1.2
6-Glc	1.7	2	0.5	0	0.3	0.7
4-Gal	1.1	6.8	0	0	0	0
4-Glc	11.7	6.3	17.2	4	14.2	0
2,3-Man	2.2	0	0.9	0	0	0
3,4-Glc	1.8	2.1	0.5	0	0.3	0.7
2,3-Glc	1.2	7.5	1.5	0	0	7
3,6-Glc	3.5	1.6	2.7	5	1.6	2
3,6-Man	2.3	0.6	0.6	0	0	0.4
2,6-Hxp	7.8	0	0	0	0	0
4,6-Glc	1.5	2.3	0.5	0	0	0
4,6-Hxp	2.2	0	0	0	0	0
1,4-GlcNAc	3.8	8.7	6.3	10	17.65	0.6
3,6-Gal	0.0	0	0	0	0	0

481
482 Another abundant glucosyl linkage identified as part of our glycosidic linkage analysis
483 was 1,4-Glc. It cannot be ruled out that a portion of this 1,4-Glc arose from cellulose
484 contamination from the CM itself, or an intracellular form of a glycogen/starch-like
485 polysaccharide that co-purifies with the cell wall during sample preparation. Nevertheless,
486 the low amount of 1,4,6-Glc identified suggests that not all of the 1,4-Glc originated from
487 glycogen/starch-like polymers. Notably, there is very little evidence for the presence of β -1,4-
488 linked glucosyl residues in fungal cell walls although, interestingly, these residues were
489 recently reported in the cell wall of *A. fumigatus* by solid-state nuclear magnetic resonance
490 (47, 71). Hence, it cannot be ruled out that a small fraction of the reported 1,4-Glc from *V.*
491 *inaequalis* originates from β -1,4-glucan. Another more likely possibility is that a portion of the
492 identified 1,4-Glc forms part of nigeran, a polymer commonly found in Ascomycota fungal cell
493 walls that are composed of α -1,3- and α -1,4-glucans (72).

494 The presence of 1,3,6-Glc suggests that a fraction of the identified 1,3-Glc is branched.
495 A set of *GH17* and *GH72* genes found to be highly expressed in culture likely encode the
496 enzymes responsible for the presence of 1,3,6-linked glucosyl residues in the *V. inaequalis* cell
497 wall, as these enzymes are putative β -1,3-glucan transglycosylases involved in cross-linking β -
498 1,3-glucans through β -1,6-linkages (28, 53, 54, 73). Interestingly, during mid-late infection, *V.*
499 *inaequalis* was observed to down-regulate a gene encoding a KRE6 enzyme, *ViKRE6*, which is
500 putatively associated with β -1,6-glucan biosynthesis (55, 56, 74). We suggest that, as reported
501 in *Colletotrichum graminicola* (74), *V. inaequalis* down-regulates *ViKRE6* to reduce surface-
502 exposed β -1,3-6-glucans that would otherwise elicit plant immune responses.

503 The glycosidic linkage analysis also revealed a relatively large proportion of Man
504 (~37%) and Gal (~8%) residues in the cell wall of *V. inaequalis*, with the majority being
505 terminal. Due to this terminal nature, we cannot conclude from which polymer these residues
506 are derived. The large amount of t-Man (18.9%), however, is similar to the amount of t-Man
507 reported in *S. cerevisiae* (15.7%) (70) and drastically more than other filamentous fungi (1–
508 3%) (63, 67, 68).

509 Following glycosidic linkage analysis, we attempted to investigate the presence and
510 location of β -1,3- and branched β -1,3-6-glucans on the fungal cell wall surface using a specific
511 antibody that labels β -1,3-glucan. Regarding the infection structures developed inside the
512 host, we only observed strong labelling on the surface of mature stromata that were rupturing
513 through the apple cuticle as part of the sporulation process. It is unclear whether these
514 infection structures were labelled because the mature stromata were more accessible to the
515 β -1,3-glucan antibody, or because the β -1,3-glucan is masked during early host colonization
516 and is only surface-exposed upon sporulation.

517 The glycosidic linkage analysis also revealed that the cell wall of sporulating tubular
518 hyphae from *V. inaequalis* is comprised of 3.8% chitin, which is relatively low for a filamentous
519 fungus. Indeed, chitin usually makes up around 10–15% of the fungal cell wall (18, 25, 27)
520 (Table 1). This result is in line with the labelling profile of chitin present on the surface of
521 tubular hyphae formed on CMs using the WGA⁴⁸⁸ probe and calcofluor white, where chitin
522 was mostly restricted to septa. Transcriptomic and proteomic data obtained in our study
523 suggest that *ViCHS3b*, a class III CHS enzyme, might be responsible for the bulk of chitin
524 biosynthesis in *V. inaequalis* tubular hyphae.

525 Interestingly, on the plant surface, chitin was exclusively observed on tubular hyphae
526 and appressoria, while on the infection structures produced after host penetration, chitin was
527 found to be restricted to the septa. Furthermore, genes encoding CHSs and some chitinases
528 were down-regulated during early host colonization. These findings suggest that, in addition
529 to transcriptionally regulating chitin production, *V. inaequalis* also restricts the amount of
530 chitin it exposes on its surface to prevent activation of chitin-triggered host defences. Another
531 possibility is that *V. inaequalis* masks chitin on the cell wall surface through the secretion of
532 chitin-binding effectors, similar to that shown for the Avr4 effector protein of *Fulvia fulva* (75).
533 Alternatively, *V. inaequalis* may produce chitin-binding effectors that sequester chitin
534 oligomers during the process of cell wall remodelling to prevent their detection by the apple
535 immune system. Notably, during *in planta* host colonization, the lysin motif (LysM) domain-
536 containing effector candidate, ViEcp6, which has sequence similarity to the chitin-binding
537 Ecp6 effector of *F. fulva* (76, 77), was found to be up-regulated (48) and had proteomic
538 support in culture (**Supplementary file 3** and **4**). Although Ecp6 from *F. fulva* is known to
539 sequester chitin oligomers to evade host defence responses in tomato (78), other LysM
540 domain-containing effectors, such as Mg3LysM from *Zymoseptoria tritici*, have been shown
541 to protect the hyphal cell wall from hydrolysis by plant chitinases (79). It is therefore possible
542 that ViEcp6 plays a role in chitin protection and/or sequestration during subcuticular host
543 colonization.

544 Another possibility could be that *V. inaequalis* deacetylates chitin to chitosan during
545 host colonization to avoid activation of plant defences, as reported for other plant-associated
546 fungal pathogens (33, 35, 80, 81) and endophytes (34). In line with this, we observed that
547 runner hyphae and stromata developed in culture and *in planta* were completely covered
548 with chitosan. This indicates that chitosan is the main surface-exposed carbohydrate present
549 on these structures. Interestingly, chitosan was also observed on tubular hyphae developed
550 on the surface of hypocotyls and chitosan production could be induced during growth on the
551 surface of CMs coated with apple wax. These results suggest that chitosan induction is
552 triggered by a plant-derived cue present in the apple wax. Additionally, chitosan labelling was
553 observed at the periphery of infection-like structures developed inside CMs, indicating that
554 another trigger, such as pressure, might be involved. It is important to note here, however,
555 that although the OGA⁴⁸⁸ probe is specific for chitosan (60), binding to the positively charged

Running title: Subcuticular *Venturia inaequalis* infection structures

556 groups of the carbohydrate, it cannot be ruled out that it also binds to positively charged
557 proteins present on the surface of infection structures.

558 In addition to preventing activation of the plant immune system, chitosan has also
559 been reported to be important for cell adhesion and morphogenesis in fungi (81-84).
560 Therefore, chitosan may play other functions in *V. inaequalis*. The deacetylation of chitin to
561 chitosan is catalysed by CDAs, and an inspection of the *V. inaequalis* genome revealed that
562 this fungus has eight predicted CDA-encoding genes, three of which (*ViCDA1*, *ViCDA4*,
563 *ViCDA7*) are predicted to be functional. One of these, *ViCDA1*, encodes a protein with a
564 predicted N-terminal signal peptide, and is constitutively expressed in culture and during host
565 colonization. Secreted CDAs are usually assumed to deacetylate chitin to chitosan to prevent
566 activation of the plant immune system (50, 85). Therefore, it seems plausible that *ViCDA1* is
567 the main enzyme responsible for deacetylating chitin to chitosan on the surface of *V.*
568 *inaequalis* infection structures. In any case, the recently developed CRISPR-Cas9 method for
569 reverse genetics in this fungus (86) will serve to investigate the putative role of *ViCDA1* and
570 other CDAs in *V. inaequalis*.

571 In conclusion, we have detailed, for the first time, the cell wall carbohydrate
572 composition of *V. inaequalis* during growth in culture. Furthermore, by assessing the
573 expression profile of genes putatively associated with cell wall biogenesis, as well as by
574 monitoring the localization of cell surface-associated carbohydrates using CLSM, we have also
575 provided new insights into how this fungus differentiates and protects its infection structures
576 during host colonization. Importantly, as the first study of its kind for a subcuticular pathogen,
577 our research provides a foundation for understanding not only how this class of plant-
578 pathogenic fungi causes disease, but also how they can potentially be controlled.

579

580 **Materials and methods**

581 ***V. inaequalis* isolate**

582 *V. inaequalis* isolate MNH120, also known as ICMP 13258 and Vi1 (77, 87), derived from a
583 monospore culture, was used in this study.

584

585 **Preparation of fungal material for glycosidic linkage analysis and proteomics**

586 Fungal material for glycosidic linkage analysis and proteomics was prepared by inoculating
587 100 µl of 10⁵–10⁶ conidia from *V. inaequalis* on CMs (Waugh Rubber Bands; Wellington, New

588 Zealand) overlaying PDA (Scharlab, S.L; Senmanat, Spain) and culturing for 5 days at 22°C
589 under a 16 h light/8 h dark cycle. Following culturing, fungal biomass, comprising a mix of
590 tubular hyphae and asexual conidia was harvested from the surface of the CMs using an L-
591 shaped spreader, washed three times by centrifugation at 4,000 g for 15 min, frozen at –20°C,
592 freeze-dried, and then ground to a fine powder using liquid nitrogen.

593

594 **Glycosidic linkage analysis**

595 Cell wall material from *V. inaequalis* grown in culture on the surface of CMs overlaying PDA
596 at 5 dpi was prepared in triplicate (i.e. as three technical replicates) using a previously
597 described protocol (88). The cell wall preparations were subjected to permethylation and
598 GC/EI-MS analysis (88). Partially methylated alditol acetate (PMAA) derivatives were
599 separated and analysed by gas chromatography (GC) on a SP-2380 capillary column (30 m x
600 0.25 mm [inner diameter]; Supelco) using an HP-6890 GC system with an HP-5973 electron-
601 impact mass spectrometer (EI-MS) as a detector (Agilent Technologies; CA, US). The
602 temperature was programmed to increase from 180°C to 230°C at a rate of 1.5°C/min. The
603 mass spectra of the fragments obtained from the PMAA derivatives were compared with
604 reference derivatives.

605

606 **Proteomic analysis**

607 Approximately 10 mg of powdered fungal material from *V. inaequalis* grown in culture on the
608 surface of CMs overlaying PDA at 5 dpi in triplicate (i.e. as three technical replicates) was
609 boiled in SDS buffer (75 mM Tris-HCl buffer pH 6.8 containing 3% (w/v) SDS, 100 mM DTT,
610 15% (w/v) glycerol and 0.002% bromophenol blue) for 5 min at 95°C. Insoluble material was
611 then removed by centrifugation at 14,000 x g for 10 min and the supernatant was loaded on
612 a 12% Mini-Protean TGX SDS-PAGE system (Bio-Rad; CA, USA). After staining with Coomassie
613 Blue (ThermoScientific, MA, USA), the gel lane was cut into 10 bands and the proteins were
614 subjected to in-gel digestion with trypsin (Promega, Madison, WI, United States) as previously
615 described (Leijon et al., 2016).

616 Peptide analysis was performed with reverse-phase liquid chromatography
617 electrospray ionization–tandem mass spectrometry (LC–ESI–MS/MS) using a nanoACQUITY
618 Ultra Performance Liquid Chromatography system coupled to a Q-TOF mass spectrometer
619 (Xevo Q-TOF, Waters; MA, USA). The in-gel tryptic peptides were resuspended in 0.1%

620 trifluoroacetic acid (TFA) and loaded on a C18 trap column (Symmetry 180 μ m \times 20 mm, 5
621 μ m, Waters) that was then washed with 0.1% (v/v) formic acid at 10 μ l/min for 5 min. The
622 samples eluted from the trap column were separated on a C18 analytical column (75 μ m \times
623 150 mm, 1.7 μ m, Waters) at 250 nl/min using 0.1% formic acid as solvent A and 0.1% formic
624 acid in acetonitrile as solvent B in a stepwise gradient: 0–10% B (0–5 min), 10–30% B (5–70
625 min), 30–40% B (70–72 min), 40–90% B (72–75 min), 90% B (75–80 min), and 90–0.1% B (80–
626 85 min). The eluting peptides were sprayed in the mass spectrometer (capillary and cone
627 voltages set to 2.1 kV and 45 V, respectively), and MS/MS spectra were acquired using
628 automated data-directed switching between the MS and MS/MS modes using the instrument
629 software (MassLynx v4.0 SP4). The five most abundant signals of a survey scan (400–1300 m/z
630 range, 1 sec scan time) were selected by charge state, and collision energy was applied
631 accordingly for sequential MS/MS fragmentation scanning (100–1800 m/z range, 1 sec scan
632 time).

633 The resulting MS raw data files were processed using Mascot Distiller (v2.4.3.2, Matrix
634 Science, London, UK), and the resulting files were submitted to a local Mascot (Matrix Science,
635 v2.3.1) server using the *Venturia* protein database (25,153 sequences) (48). The following
636 settings were used for database search: trypsin-specific digestion with two missed cleavages,
637 ethanolated cysteine as fixed and oxidized methionine as variable modifications, peptide
638 tolerance of 200 ppm and fragment tolerance of 0.2 Da. Only those peptides with mascot
639 scores exceeding the threshold for statistical significance ($p < 0.05$) were retained. The peak
640 list files generated from the mass spectrometry raw data have been deposited to the MassIVE
641 database (accession number MSV000090342 (doi:10.25345/C56M3379F)).

642

643 **Plant growth conditions and infection of apple material**

644 Open-pollinated *Malus x domestica* cultivar 'Royal Gala' apple seeds (Hawke's Bay, New
645 Zealand) were germinated at 4°C in moist vermiculite containing 100 mg/ml Thiram fungicide
646 (KiwiCare Corporation Limited; Christchurch, New Zealand) for approximately two months in
647 the dark. Once germinated, apple seedlings were planted in potting mix (Daltons™ premium
648 potting mix; Daltons, Matamata, New Zealand) and grown under a 16 h light/8 h dark cycle
649 with a Philips SON-T AGRO 400 Sodium lamp, at 20°C with ambient humidity for 4-to-6 weeks.
650 For the growth of etiolated hypocotyls, a fast-germination method was used. Seeds were
651 sterilized with 5% ethanol for 5 min, rinsed five times with sterile MilliQ water, and soaked in

652 MilliQ water overnight. The next morning, the testa of the apple seeds were peeled away with
653 sterile forceps until the underlying white embryo was uncovered. Then, the white embryo
654 was placed in Murashige and Skoog (MS) agar medium (2. 25 g/L MS (Sigma-Aldrich; Castle
655 Hill, Australia), 10 g/L agar, pH 5.8 (KOH)) inside 50 ml Falcon™ tubes, with the tip of the
656 radical submerged in the agar. Once the apple seeds had germinated and the cotyledons were
657 fully expanded, the seedlings were transferred to potting mix soil and grown at 20°C with
658 ambient humidity in the dark for two weeks. *V. inaequalis* infection of detached apple leaves
659 and hypocotyls was performed as described by Rocafort et al. (2022) and Shiller et al. (2015),
660 respectively.

661

662 **Extraction of apple wax and coating of cellophane membranes**

663 Approximately ten fruit from apple cultivar 'Royal Gala', acquired from a local supermarket in
664 New Zealand, were used for wax extraction. To extract the wax, each apple was dipped a total
665 of five times, each for 10 sec, in 200 ml chloroform contained within a glass beaker. Following
666 this step, the chloroform in the beaker was evaporated off at room temperature (RT) until the
667 extracted wax had completely dried out. To coat the CMs with apple wax, a Kimwipe (Kimtech;
668 Milsons Point, Australia) was dipped in chloroform, wiped over the surface of the wax in the
669 beaker, and then transferred by wiping onto the surface of CMs until an homogeneous white
670 coating was observed. Coating of the CMs with apple wax was performed under sterile
671 conditions as much as possible, with coated CMs subsequently subjected to 15 min of UV
672 exposure to ensure sterility.

673

674 **Confocal laser scanning microscopy**

675 Cross-sections of detached apple leaves infected with *V. inaequalis* at 7 dpi were prepared
676 for labelling as described previously (9). Briefly, leaf tissue was fixed in paraformaldehyde and
677 2.5% (v/v) glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) and then embedded in LR White
678 resin (London Resin, Reading, UK), with samples subsequently cross-sectioned from the resin-
679 embedded material.

680 All the other samples (non-cross-sectioned), CMs associated with *V. inaequalis* at 6-7
681 dpi, as well as detached apple leaves and etiolated hypocotyls infected with *V. inaequalis* at
682 7 dpi, were fixed in 95% ethanol and stored at 4°C until required. Additionally, to enhance the
683 penetrability of the carbohydrate-specific probes and antibodies used for labelling (see

Running title: Subcuticular *Venturia inaequalis* infection structures

684 below), *in planta* samples were macerated with 10% KOH at RT for 4 h. For α -1,3-glucan and
685 β -1,3-glucan labelling, non-cross section CM samples were gently scratched with sandpaper
686 (200 grit) to generate entry points for the antibody. All samples were washed 3 times with 1
687 ml phosphate-buffered saline (PBS) buffer (pH 7.4) prior to labelling.

688 To facilitate the visualization of *V. inaequalis* infection structures in apple hypocotyls,
689 fungal nuclei were stained with 0.002% (w/v) propidium iodide (PI) in PBS buffer (pH 7.4)
690 containing 0.02% Tween 20. For the labelling of chitin and chitosan, carbohydrate-specific
691 probes were used. More specifically, for WGA⁴⁸⁸ labelling of chitin, samples were vacuum-
692 infiltrated in the dark for 30 min in a solution containing 0.1 mg/ml of WGA⁴⁸⁸ probe and
693 0.02% Tween 20 in PBS buffer (pH 7.4). For calcofluor white labelling of chitin, samples were
694 incubated in 300 mM sodium hydroxide (NaOH) for 1 h prior to incubation with 0.01%
695 calcofluor white (Sigma-Aldrich) in PBS (pH 7.4). For OGA⁴⁸⁸ labelling of chitosan, samples
696 were vacuum-infiltrated in the dark for 30 min with a solution of 0.1% (w/v) OGA⁴⁸⁸ and 0.02%
697 Tween 20 in PBS buffer (pH 7.4). For this purpose, a 1 mg/ml stock solution of OGA⁴⁸⁸ in 0.1
698 M sodium acetate buffer (pH 4.9) was kindly provided by Jozef Mravec from the University of
699 Copenhagen (60). In all cases, the probe used for labelling was vacuum-infiltrated into
700 samples for 20 min, twice, in the dark.

701 For the labelling of β -1,3-glucan in cross-sectioned and non-cross-sectioned samples,
702 and α -1,3-glucan in non-cross-sectioned samples, carbohydrate-specific antibodies were
703 used. More specifically, samples were first washed three times with 1 ml PBS buffer (pH 7.4)
704 and blocked with 3% bovine serum albumin (BSA, Gibco; Maryland, USA) in PBS buffer for 1 h
705 at RT in a rotatory shaker (John Morris Scientific; Palmerston North, New Zealand). Then,
706 samples were washed with 1 ml PBS buffer three times and vacuum-infiltrated for 20 min
707 with 0.1 mg/ml of primary mouse anti-1,3- β -glucan antibody (Biosupplies; Sydney, Australia)
708 for β -1,3-glucan labelling or 0.1 mg/ml mouse MOPC-104E primary antibody (Sigma-Aldrich)
709 for α -1,3-glucan labelling, and then incubated overnight with shaking (30 rpm) at 4°C. The
710 next day, samples were washed three times with 1 ml PBS buffer (pH 7.4) and vacuum-
711 infiltrated for 20 min with 0.1 mg/ml anti-mouse CF-488 secondary antibody (Biotum;
712 California, USA) in PBS buffer (pH 7.4) and incubated with shaking at 30 rpm, at RT in the dark.
713 Finally, samples were washed three times with 1ml PBS buffer.

714 CLSM was performed on labelled samples using a Leica SP5 DM6000B confocal
715 microscope (488 nm argon and 405 nm UV laser) (Leica Microsystems, Manheim, Germany),

716 with images produced using ImageJ 1.x software (NIH) (89). Here, multiple optical sections (z-
717 stacks) were projected into a single image as maximum or average intensity projections. PI
718 was excited at 561 nm using a DPSS laser with an emission spectrum of 561–600 nm. WGA⁴⁸⁸,
719 and OGA⁴⁸⁸ and CF-488 were excited using a 488 nm Argon laser (power ~30%) with an
720 emission spectrum of 498–551 nm. Calcofluor white was excited using a 405 nm UV laser with
721 an emission spectrum of 445–455 nm. For all samples, an appropriate non-stained control was
722 performed (**Figure S5**).

723

724 **Annotation of fungal cell wall enzymes**

725 The predicted *V. inaequalis* isolate MNH120 protein catalogue from Rocafort et al. (2022)
726 ([10.5281/zenodo.6233646](https://doi.org/10.5281/zenodo.6233646)) was used in this study. Proteins that were putatively associated
727 with fungal cell wall biogenesis were identified based on CAZyme annotation and KEGG
728 classification, and decisions about the potential classification of enzymes involved in cell wall
729 biosynthesis were further assessed by InterProScan scan annotation (in conjunction with the
730 Pfam, HAMAP, MOBIDB, PIRSF, PROSITE and SUPERFAMILY tools). Here, all InterProScan and
731 CAZyme annotations, as well as KEGG classifications, were provided by Rocafort et al. (2022).

732 To identify CDAs, proteins with a CE4 CAZyme annotation or with 'polysaccharide
733 deacetylase domain' (PF01522) were annotated as CDAs. To further investigate other putative
734 CDAs in the genome a BLASTp (90) search was performed against the *V. inaequalis* MNH120
735 genome (77) using the protein sequence of CDAs from pathogens whose activity has been
736 experimentally shown: *P. graminis* (GMQ_17027) (91), *Colletotrichum lindemuthianum*
737 (CICDA) (AAT68493) (50), *Pestalotiopsis* sp. (PesCDA) (KY024221) (85) and *M. oryzae*
738 (MGG_12939, 14966, 09159, 04172, 08774, 01868, 08356, 05023, 04704 and 03461) (81).
739 Although the enzymatic activity of the *M. oryzae* CDAs has not been experimentally shown,
740 their function as potential CDAs has been reported by gene deletion studies (31, 33, 81). The
741 E-value cut-off used for all BLASTp searches was 1E-02. To investigate whether the putative
742 CDAs had the conserved amino acid residues required for catalytic activity and metal binding,
743 an alignment was performed between all of the predicted *V. inaequalis* CDAs and the
744 functionally characterized CDAs from above, CICDA and PesCDA (92), using the MUSCLE plugin
745 of Geneious v9.0.5.

746 To classify CHSs, the InterProScan domain annotation from Rocafort et al. 2022 was
747 used and an alignment of all *V. inaequalis* CHSs was performed using the MUSCLE plugin of

748 Geneious v9.0.5 (92). The CHSs from the *Aspergillus nidulans* (93), *Neurospora crassa* (94),
749 *Botrytis cinerea* (95) and *Ustilago maydis* were included in this alignment as a reference. To
750 determine if the predicted CHSs of *V. inaequalis* had the conserved motifs required for CHS
751 activity, a protein sequence alignment was performed with the functionally characterized CHS
752 from *N. crassa* (94) as a reference.

753

754 **Gene expression analysis**

755 Pre-existing *V. inaequalis* gene expression data from Rocafort et al. (2022) (GEO Series
756 accession: [GSE198244](https://www.ncbi.nlm.nih.gov/geo/study/GSE198244)) were used for the gene expression analysis, and DEGs were identified
757 using DESeq2 package v1.32.0 (96). Genes up- or down-regulated at one or more *in planta*
758 infection time points, relative to growth in culture, with a \log_2 fold change of $+/-1.5$ and a *p*
759 value of 0.01 were considered differentially expressed. Volcano plots were generated using
760 ggplots2 v3.3.5 (97), while gene expression heatmaps were generated using
761 Complexheatmap v2.9.1 (98).

762

763 **Funding**

764 MRF and CHM were supported by the Marsden Fund Council from Government funding
765 (project ID 17-MAU-100), managed by Royal Society Te Apārangī.

766

767 **Author Contributions Statement**

768 CM, MR, JB, VB, MA and KP conceived the project. MR, VS, SM and PS conducted the
769 experiments. MR performed the bioinformatic analyses. MR, CM, VS, VB, JB, KP and RB
770 provided critical input in experimental design or data analysis. MR, CM, VS and VB wrote the
771 manuscript. All authors read, revised, and approved the final manuscript.

772

773 **Conflicts of Interest Statement**

774 The authors declare no conflicts of interest.

775

776 **References**

- 777 1. Bowen JK, Mesarich CH, Bus VG, Beresford RM, Plummer KM, Templeton MD. 2011.
778 *Venturia inaequalis*: the causal agent of apple scab. Molecular Plant Pathology 12:105-
779 22.

Running title: Subcuticular *Venturia inaequalis* infection structures

780 2. Carisse O, Bernier J. 2002. Effect of environmental factors on growth, pycnidial
781 production and spore germination of *Microsphaeropsis* isolates with biocontrol
782 potential against apple scab. *Mycological Research* 106:1455-1462.

783 3. Jha G, Thakur K, Thakur P. 2009. The *Venturia* apple pathosystem: pathogenicity
784 mechanisms and plant defense responses. *Journal of Biomedicine and Biotechnology*
785 2009:680160.

786 4. MacHardy WE. 1996. Apple Scab, Biology, Epidemiology, and Management, vol 33.
787 The Amercian Phytopathological Society

788 5. Le Cam B, Sargent D, Gouzy J, Amselem J, Bellanger M-N, Bouchez O, Brown S, Caffier
789 V, De Gracia M, Debuchy R, Duvaux L, Payen T, Sannier M, Shiller J, Collemare J,
790 Lemaire C. 2019. Population genome sequencing of the scab fungal species *Venturia*
791 *inaequalis*, *Venturia pirina*, *Venturia aucupariae* and *Venturia asperata*. *G3: Genes,*
792 *Genomes, Genetics* 9:2405-2414.

793 6. Manktelow D, Beresford R, Batchelor T, Walker J. Use patterns and economics of
794 fungicides for disease control in New Zealand apples, p 187-192.

795 7. Patocchi A, Wehrli A, Dubuis PH, Auwerkerken A, Leida C, Cipriani G, Passey T, Staples
796 M, Didelot F, Phlion V, Peil A, Laszakovits H, Rühmer T, Boeck K, Baniulis D, Strasser K,
797 Vávra R, Guerra W, Masny S, Ruess F, Le Berre F, Nybom H, Tartarini S, Spornberger A,
798 Pikunova A, Bus VGM. 2020. Ten years of VINQUEST: first insight for breeding new
799 apple cultivars with durable apple scab resistance. *Plant Disease* 104:2074-2081.

800 8. Gessler C, Stumm D. 1984. Infection and stroma formation by *Venturia inaequalis* on
801 apple leaves with different degrees of susceptibility to scab. *Journal of Phytopathology*
802 110:119-126.

803 9. Kucheryava N, Bowen JK, Sutherland PW, Conolly JJ, Mesarich CH, Rikkerink EH,
804 Kemen E, Plummer KM, Hahn M, Templeton MD. 2008. Two novel *Venturia inaequalis*
805 genes induced upon morphogenetic differentiation during infection and *in vitro*
806 growth on cellophane. *Fungal Genetics and Biology* 45:1329-39.

807 10. Nusbaum CJ, Keitt GW. 1938. A cytological study of host-parasite relations of *Venturia*
808 *inaequalis* on apple leaves. *Journal of Agricultural Research* 56:595-618.

809 11. Caffier V, Le Cam B, Expert P, Tellier M, Devaux M, Giraud M, Chevalier M. 2012. A
810 new scab-like disease on apple caused by the formerly saprotrophic fungus *Venturia*
811 *asperata*. *Plant Pathology* 61:915-924.

812 12. Latham AJR, A. E. 1988. Development of *Cladosporium caryigenum* in pecan leaves.
813 *Phytopathology* 78:1104-1108.

814 13. Lanza B, Ragnelli AM, Priore M, Aimola P. 2017. Morphological and histochemical
815 investigation of the response of *Olea europaea* leaves to fungal attack by *Spilocaea*
816 *oleagina*. *Plant Pathology* 66:1239-1247.

817 14. Hunter GC, Zeil-Rolfe I, Jourdan M, Morin L. 2021. Exploring the host range and
818 infection process of *Venturia paralias* isolated from *Euphorbia paralias* in France.
819 *European Journal of Plant Pathology* 159:811-823.

820 15. Blechert O, Debener T. 2005. Morphological characterization of the interaction
821 between *Diplocarpon rosae* and various rose species. *Plant Pathology* 54:82-90.

822 16. Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC. 2008. Resistance,
823 epidemiology and sustainable management of *Rhynchosporium secalis* populations on
824 barley. *Plant Pathology* 57:1-14.

825 17. Linsell KJ, Keiper FJ, Forgan A, Oldach KH. 2011. New insights into the infection process
826 of *Rhynchosporium secalis* in barley using GFP. *Fungal Genetics and Biology* 48:124-
827 31.

828 18. Free SJ. 2013. Chapter two - Fungal cell wall organization and biosynthesis, p 33-82. *In*
829 Friedmann T, Dunlap JC, Goodwin SF (ed), *Advances in Genetics*, vol 81. Academic
830 Press.

831 19. Latgé J-P. 2007. The cell wall: a carbohydrate armour for the fungal cell. *Molecular*
832 *Microbiology* 66:279-290.

833 20. Sánchez-Vallet A, Mesters JR, Thomma BP. 2015. The battle for chitin recognition in
834 plant-microbe interactions. *FEMS Microbiology Reviews* 39:171-83.

835 21. Zhang J, Zhou J-M. 2010. Plant immunity triggered by microbial molecular signatures.
836 *Molecular Plant* 3:783-793.

837 22. Saijo Y, Loo EPi, Yasuda S. 2018. Pattern recognition receptors and signaling in plant-
838 microbe interactions. *The Plant Journal* 93:592-613.

839 23. Gonçalves IR, Brouillet S, Soulié M-C, Gribaldo S, Sirven C, Charron N, Boccara M,
840 Choquer M. 2016. Genome-wide analyses of chitin synthases identify horizontal gene
841 transfers towards bacteria and allow a robust and unifying classification into fungi.
842 *BMC Evolutionary Biology* 16:252.

843 24. Gow NAR, Latge JP, Munro CA. 2017. The fungal cell wall: structure, biosynthesis, and
844 function. *Microbiology Spectrum* 5.

845 25. Osherov N, Yarden O. 2010. The cell wall of filamentous fungi. *Cellular and Molecular*
846 *Biology of Filamentous Fungi* doi:<https://doi.org/10.1128/9781555816636.ch17:224-237>.

847 26. Mouyna I, Henry C, Doering TL, Latgé J-P. 2004. Gene silencing with RNA interference
848 in the human pathogenic fungus *Aspergillus fumigatus*. *FEMS Microbiology Letters*
849 237:317-324.

850 27. Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. 2020. The fungal cell
851 wall: *Candida*, *Cryptococcus*, and *Aspergillus* species. *Frontiers in Microbiology* 10.

852 28. Mouyna I, Hartl L, Latgé J. 2013. β -1,3-glucan modifying enzymes in *Aspergillus*
853 *fumigatus*. *Frontiers in Microbiology* 4.

854 29. Rovenich H, Zuccaro A, Thomma BPHJ. 2016. Convergent evolution of filamentous
855 microbes towards evasion of glycan-triggered immunity. *New Phytologist* 212:896-
856 901.

857 30. Oliveira Silva A-SL, Wirsel Stefan, Deising Holger. 2022. Pathogenesis-related cell wall
858 biogenesis with emphasis on the maize anthracnose fungus *Colletotrichum*
859 *graminicola*. *Plants*. 11(7):849.

860 31. Geoghegan I, Steinberg G, Gurr S. 2017. The role of the fungal cell wall in the infection
861 of plants. *Trends in Microbiology* 25:957-967.

862 32. Gao F, Zhang B-S, Zhao J-H, Huang J-F, Jia P-S, Wang S, Zhang J, Zhou J-M, Guo H-S.
863 2019. Deacetylation of chitin oligomers increases virulence in soil-borne fungal
864 pathogens. *Nature Plants* 5:1167-1176.

865 33. Geoghegan IA, Gurr SJ. 2017. Investigating chitin deacetylation and chitosan hydrolysis
866 during vegetative growth in *Magnaporthe oryzae*. *Cellular Microbiology* 19:e12743.

867 34. Noorifar N, Savoian MS, Ram A, Lukito Y, Hassing B, Weikert TW, Moerschbacher BM,
868 Scott B. 2021. Chitin deacetylases are required for *Epichloë festucae* endophytic cell
869 wall remodeling during establishment of a mutualistic symbiotic interaction with
870 *Lolium perenne*. *Molecular Plant-Microbe Interactions* 34(10):1181-1192.

871 35. Rizzi YS, Happel P, Lenz S, Urs M J, Bonin M, Cord-Landwehr S, Singh R, Moerschbacher
872 B M, Kahmann R. 2021. Chitosan and chitin deacetylase activity are necessary for
873 development and virulence of *Ustilago maydis*. *mBio* 12:e03419-20.

874

Running title: Subcuticular *Venturia inaequalis* infection structures

875 36. Iriti M, Faoro F. 2009. Chitosan as a MAMP, searching for a PRR. *Plant Signaling and*
876 *Behavior* 4:66-68.

877 37. Gubaeva E, Gubaev A, Melcher RLJ, Cord-Landwehr S, Singh R, El Gueddari NE,
878 Moerschbacher BM. 2018. 'Slipped Sandwich' model for chitin and chitosan
879 perception in *Arabidopsis*. *Molecular Plant-Microbe Interactions* 31:1145-1153.

880 38. Vander P, KM Vr, Domard A, Eddine El Gueddari N, Moerschbacher BM. 1998.
881 Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides
882 to elicit resistance reactions in wheat leaves. *Plant Physiology* 118:1353-9.

883 39. Ride JP, Barber MS. 1990. Purification and characterization of multiple forms of
884 endochitinase from wheat leaves. *Plant Science* 71:185-197.

885 40. Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV. 2019. Molecular mechanisms of
886 chitosan interactions with fungi and plants. *International Journal of Molecular*
887 *Sciences* 20:332.

888 41. Rappleye CA, Engle JT, Goldman WE. 2004. RNA interference in *Histoplasma*
889 *capsulatum* demonstrates a role for α -(1,3)-glucan in virulence. *Molecular*
890 *Microbiology* 53:153-165.

891 42. Rappleye CA, Eissenberg LG, Goldman WE. 2007. *Histoplasma capsulatum* alpha-(1,3)-
892 glucan blocks innate immune recognition by the beta-glucan receptor. *Proceedings of*
893 *the National Academy of Sciences* 104:1366-70.

894 43. Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E, Yano S, Koga H, Meshi T,
895 Nishimura M. 2012. Surface α -1,3-glucan facilitates fungal stealth infection by
896 interfering with innate immunity in plants. *PLoS Pathogens* 8:e1002882.

897 44. Fujikawa T, Kuga Y, Yano S, Yoshimi A, Tachiki T, Abe K, Nishimura M. 2009. Dynamics
898 of cell wall components of *Magnaporthe grisea* during infectious structure
899 development. *Molecular Microbiology* 73:553-70.

900 45. Ibe C, Munro CA. 2021. Fungal cell wall: An underexploited target for antifungal
901 therapies. *PLOS Pathogens* 17:e1009470.

902 46. Jaworski C, Wang L. 1965. Gross cell wall composition of *V. inaequalis* cell wall.
903 *Phytopathology* 55:401-403.

904 47. Ruiz-Herrera J, Ortiz-Castellanos L. 2019. Cell wall glucans of fungi. A review. *The Cell*
905 *Surface* 5:100022.

Running title: Subcuticular *Venturia inaequalis* infection structures

906 48. Rocafort M, Bowen JK, Hassing B, Cox MP, McGreal B, de la Rosa S, Plummer KM,
907 Bradshaw RE, Mesarich CH. 2022. The *Venturia inaequalis* effector repertoire is
908 expressed in waves, and is dominated by expanded families with predicted structural
909 similarity to avirulence proteins from other fungi. bioRxiv 2022.03.22.482717;
910 doi:10.1101/2022.03.22.482717:2022.03.22.482717.

911 49. Mandel AM, Galgiani JN, Scott K, Orbach MJ. 2006. *Coccidioides posadasii* contains
912 single chitin synthase genes corresponding to classes I to VII. Fungal Genetics and
913 Biology 43:775-788.

914 50. Blair DE, Hekmat O, Schüttelkopf AW, Shrestha B, Tokuyasu K, Withers SG, van Aalten
915 DM. 2006. Structure and mechanism of chitin deacetylase from the fungal pathogen
916 *Colletotrichum lindemuthianum*. Biochemistry 45:9416-26.

917 51. Hekmat O, Tokuyasu K, Withers SG. 2003. Subsite structure of the endo-type chitin
918 deacetylase from a deuteromycete, *Colletotrichum lindemuthianum*: an investigation
919 using steady-state kinetic analysis and MS. Biochemistry Journal 374:369-80.

920 52. Ramazzina I, Cendron, L., Folli, C., Berni, R., Monteverdi, D., Zanotti, G., & Percudani,
921 R. 2008. Logical identification of an allantoinase analog (*puuE*) recruited from
922 polysaccharide deacetylases. Journal of Biological Chemistry 283:23295-23304.

923 53. Mouyna I, Hartland RP, Fontaine T, Diaquin M, Simenel C, Delepierre M, Henrissat B,
924 Latgé J. 1998. A 1,3-beta-glucanosyltransferase isolated from the cell wall of
925 *Aspergillus fumigatus* is a homologue of the yeast *Bgl2p*. Microbiology 144 (Pt
926 11):3171-80.

927 54. Patel P, Free SJ. 2022. Characterization of *Neurospora crassa* GH16, GH17, and GH72
928 gene families of cell wall crosslinking enzymes. The Cell Surface 8:100073.

929 55. Gilbert NM, Donlin MJ, Gerik KJ, Specht CA, Djordjevic JT, Wilson CF, Sorrell TC, Lodge
930 JK. 2010. KRE genes are required for β -1,6-glucan synthesis, maintenance of capsule
931 architecture and cell wall protein anchoring in *Cryptococcus neoformans*. Molecular
932 Microbiology 76:517-534.

933 56. Levinson JN, Shahinian S, Sdicu A-M, Tessier DC, Bussey H. 2002. Functional,
934 comparative and cell biological analysis of *Saccharomyces cerevisiae* Kre5p. Yeast
935 19:1243-1259.

Running title: Subcuticular *Venturia inaequalis* infection structures

936 57. Mouyna I, Monod M, Fontaine T, Henrissat B, Léchenne B, Latgé JP. 2000.
937 Identification of the catalytic residues of the first family of β (1-
938 3)glucanosyltransferases identified in fungi. The Biochemical journal 347 Pt 3:741-747.

939 58. Ragni E, Fontaine T, Gissi C, Latgè JP, Popolo L. 2007. The Gas family of proteins of
940 *Saccharomyces cerevisiae*: characterization and evolutionary analysis. Yeast 24:297-
941 308.

942 59. Nicholson RL, Van Scyoc S, Williams EB, Kuc J. 1972. Etiolated apple hypocotyls: a
943 useful host tissue in apple scab research. Phytopathology 63:363-366.

944 60. Mravec J, Kračun SK, Rydahl MG, Westereng B, Miart F, Clausen MH, Fangel JU,
945 Daugaard M, Van Cutsem P, De Fine Licht HH, Höfte H, Malinovsky FG, Domozych DS,
946 Willats WGT. 2014. Tracking developmentally regulated post-synthetic processing of
947 homogalacturonan and chitin using reciprocal oligosaccharide probes. Development
948 141:4841-4850.

949 61. Fesel PH, Zuccaro A. 2016. β -glucan: crucial component of the fungal cell wall and
950 elusive MAMP in plants. Fungal Genetics and Biology 90:53-60.

951 62. Verdín J, Sánchez-León E, Rico-Ramírez AM, Martínez-Núñez L, Fajardo-Somera RA,
952 Riquelme M. 2019. Off the wall: The rhyme and reason of *Neurospora crassa* hyphal
953 morphogenesis. The Cell Surface 5:100020.

954 63. Pettolino F, Sasaki I, Turbic A, Wilson SM, Bacic A, Hrmova M, Fincher GB. 2009. Hyphal
955 cell walls from the plant pathogen *Rhynchosporium secalis* contain (1,3/1,6)- β -d-
956 glucans, galacto- and rhamnomannans, (1,3;1,4)- β -d-glucans and chitin. The FEBS
957 Journal 276:3698-3709.

958 64. Beauvais A, Bozza S, Kniemeyer O, Formosa C, Balloy V, Henry C, Roberson RW, Dague
959 E, Chignard M, Brakhage AA, Romani L, Latgé J-P. 2013. Deletion of the α -(1,3)-glucan
960 synthase genes induces a restructuring of the conidial cell wall responsible for the
961 avirulence of *Aspergillus fumigatus*. PLoS Pathogens 9:e1003716.

962 65. Yoshimi A, Miyazawa K, Abe K. 2017. Function and biosynthesis of cell wall α -1,3-
963 glucan in fungi. Journal of Fungi 3:63.

964 66. Fontaine T, Beauvais A, Loussert C, Thevenard B, Fulgsang CC, Ohno N, Clavaud C,
965 Prevost M-C, Latgé J-P. 2010. Cell wall α 1-3glucans induce the aggregation of
966 germinating conidia of *Aspergillus fumigatus*. Fungal Genetics and Biology 47:707-712.

Running title: Subcuticular *Venturia inaequalis* infection structures

967 67. Pham TAT, Kyriacou BA, Schwerdt JG, Shirley NJ, Xing X, Bulone V, Little A. 2019.
968 Composition and biosynthetic machinery of the *Blumeria graminis* f. sp. *hordei* conidia
969 cell wall. *The Cell Surface* 5:100029.

970 68. Mélida H, Sain D, Stajich JE, Bulone V. 2015. Deciphering the uniqueness of
971 Mucoromycotina cell walls by combining biochemical and phylogenomic approaches.
972 *Environmental Microbiology* 17:1649-1662.

973 69. Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J, Vorgias CE,
974 Diaquin M, Latgé J-P. 2000. Molecular organization of the alkali-insoluble fraction of
975 *Aspergillus fumigatus* cell wall. *Journal of Biological Chemistry* 275:27594-27607.

976 70. Fleet GH. 1985. Composition and structure of yeast cell walls, p 24-56. *In* McGinnis MR
977 (ed), *Current Topics in Medical Mycology* doi:10.1007/978-1-4613-9547-8_2. Springer
978 New York, New York, NY.

979 71. Kang X, Kirui A, Muszyński A, Widanage MCD, Chen A, Azadi P, Wang P, Mentink-Vigier
980 F, Wang T. 2018. Molecular architecture of fungal cell walls revealed by solid-state
981 NMR. *Nature Communications* 9:2747.

982 72. Ruiz-Herrera J. 1991. Fungal cell wall: structure, synthesis, and assembly. CRC press.

983 73. Gastebois A, Mouyna I, Simenel C, Clavaud C, Coddeville B, Delepierre M, Latgé J-P,
984 Fontaine T. 2010. Characterization of a new β (1-3)-glucan branching activity of
985 *Aspergillus fumigatus*. *Journal of Biological Chemistry* 285:2386-2396.

986 74. Oliveira-Garcia E, Deising HB. 2016. Attenuation of PAMP-triggered immunity in maize
987 requires down-regulation of the key β -1,6-glucan synthesis genes *KRE5* and *KRE6* in
988 biotrophic hyphae of *Colletotrichum graminicola*. *The Plant Journal* 87:355-375.

989 75. van den Burg HA, Harrison SJ, Joosten MH, Vervoort J, de Wit PJ. 2006. *Cladosporium*
990 *fulvum* Avr4 protects fungal cell walls against hydrolysis by plant chitinases
991 accumulating during infection. *Molecular Plant-Microbe Interactions* 19:1420-30.

992 76. Bolton MD, Van Esse HP, Vossen JH, De Jonge R, Stergiopoulos I, Stulemeijer IJE, Van
993 Den Berg GCM, Borrás-Hidalgo O, Dekker HL, De Koster CG, De Wit PJGM, Joosten
994 MHAJ, Thomma BPHJ. 2008. The novel *Cladosporium fulvum* lysin motif effector Ecp6
995 is a virulence factor with orthologues in other fungal species. *Molecular Microbiology*
996 69:119-136.

997 77. Deng CH, Plummer KM, Jones DAB, Mesarich CH, Shiller J, Taranto AP, Robinson AJ,
998 Kastner P, Hall NE, Templeton MD, Bowen JK. 2017. Comparative analysis of the

999 predicted secretomes of Rosaceae scab pathogens *Venturia inaequalis* and *V. pirina*
1000 reveals expanded effector families and putative determinants of host range. BMC
1001 Genomics 18:339.

1002 78. de Jonge R, Peter van Esse H, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S,
1003 Shibuya N, Joosten Matthieu HAJ, Thomma Bart PHJ. 2010. Conserved fungal LysM
1004 effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953-955.

1005 79. Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack KE,
1006 Thomma BPHJ, Rudd JJ. 2011. Analysis of two *in planta* expressed LysM effector
1007 homologs from the fungus *Mycosphaerella graminicola* reveals novel functional
1008 properties and varying contributions to virulence on wheat. Plant Physiology 156:756-
1009 769.

1010 80. El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB. 2002. Developmentally
1011 regulated conversion of surface-exposed chitin to chitosan in cell walls of plant
1012 pathogenic fungi. New Phytologist 156:103-112.

1013 81. Geoghegan IA, Gurr SJ. 2016. Chitosan mediates germling adhesion in *Magnaporthe*
1014 *oryzae* and is required for surface sensing and germling morphogenesis. PLoS
1015 Pathogens 12:e1005703-e1005703.

1016 82. Kamakura T, Yamaguchi S, Saitoh K, Teraoka T, Yamaguchi I. 2002. A novel gene, *CBP1*,
1017 encoding a putative extracellular chitin-binding protein, may play an important role in
1018 the hydrophobic surface sensing of *Magnaporthe grisea* during appressorium
1019 differentiation. Molecular Plant-Microbe Interactions 15:437-44.

1020 83. Kuroki M, Okauchi K, Yoshida S, Ohno Y, Murata S, Nakajima Y, Nozaka A, Tanaka N,
1021 Nakajima M, Taguchi H, Saitoh K-I, Teraoka T, Narukawa M, Kamakura T. 2017. Chitin-
1022 deacetylase activity induces appressorium differentiation in the rice blast fungus
1023 *Magnaporthe oryzae*. Scientific Reports 7:9697-9697.

1024 84. Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, Lodge JK. 2005. A chitin synthase
1025 and its regulator protein are critical for chitosan production and growth of the fungal
1026 pathogen *Cryptococcus neoformans*. Eukaryotic Cell 4:1902-1912.

1027 85. Cord-Landwehr S, Melcher RLJ, Kolkenbrock S, Moerschbacher BM. 2016. A chitin
1028 deacetylase from the endophytic fungus *Pestalotiopsis* sp. efficiently inactivates the
1029 elicitor activity of chitin oligomers in rice cells. Scientific Reports 6:38018.

Running title: Subcuticular *Venturia inaequalis* infection structures

1030 86. Rocafort M, Arshed S, Hudson D, Sidhu JS, Bowen JK, Plummer KM, Bradshaw RE,
1031 Johnson RD, Johnson LJ, Mesarich CH. 2021. CRISPR-Cas9 gene editing and rapid
1032 detection of gene-edited mutants using high-resolution melting in the apple scab
1033 fungus, *Venturia inaequalis*. *Fungal Biology* 126:35-46.

1034 87. Stehmann C, Pennycook S, Plummer KM. 2001. Molecular identification of a sexual
1035 interloper: The pear pathogen, *Venturia pirina*, has sex on apple. *Phytopathology*
1036 91:633-641.

1037 88. Mélida H, Sandoval-Sierra JV, Diéguez-Uribeondo J, Bulone V. 2013. Analyses of
1038 extracellular carbohydrates in oomycetes unveil the existence of three different cell
1039 wall types. *Eukaryotic Cell* 12:194-203.

1040 89. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image
1041 analysis. *Nature Methods* 9:671-675.

1042 90. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997.
1043 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
1044 *Nucleic Acids Research* 25:3389-3402.

1045 91. Naqvi S, Cord-Landwehr S, Singh R, Bernard F, Kolkenbrock S, El Gueddari NE,
1046 Moerschbacher BM. 2016. A recombinant fungal chitin deacetylase produces fully
1047 defined chitosan oligomers with novel patterns of acetylation. *Applied and
1048 Environmental Microbiology* 82:6645-6655.

1049 92. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper
1050 A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012.
1051 Geneious Basic: an integrated and extendable desktop software platform for the
1052 organization and analysis of sequence data. *Bioinformatics* 28:1647-9.

1053 93. Mouyna I, Delli  re S, Beauvais A, Gravelat F, Snarr B, Lehoux M, Zacharias C, Sun Y, de
1054 Jesus Carrion S, Pearlman E, Sheppard DC, Latg   J-P. 2020. What are the functions of
1055 chitin deacetylases in *Aspergillus fumigatus*? *Frontiers in Cellular and Infection
1056 Microbiology* 10.

1057 94. Fajardo-Somera RA, J  hnk B, Bayram   , Valerius O, Braus GH, Riquelme M. 2015.
1058 Dissecting the function of the different chitin synthases in vegetative growth and
1059 sexual development in *Neurospora crassa*. *Fungal Genetics and Biology* 75:30-45.

Running title: Subcuticular *Venturia inaequalis* infection structures

1060 95. Choquer M, Bocvara M, Gonçalves IR, Soulié MC, Vidal-Cros A. 2004. Survey of the
1061 *Botrytis cinerea* chitin synthase multigenic family through the analysis of six
1062 euascomycetes genomes. European Journal of Biochemistry 271:2153-64.

1063 96. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and
1064 dispersion for RNA-seq data with DESeq2. Genome Biology 15:550.

1065 97. Wickham H. 2016. *ggplot2: Elegant graphics for data analysis*. Springer-Verlag New
1066 York.

1067 98. Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in
1068 multidimensional genomic data. Bioinformatics 32:2847-2849.

1069