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Abstract 

The mutation accumulation theory predicts that aging is caused by accumulation of 
late-acting deleterious variants in the germ-line, due to weak purifying selection at old age. In 
accordance with this model, we and others have shown that sequence conservation among 
old-biased genes (with higher expression in old versus young adults) is weaker than among 
young-biased genes across a number of mammalian and insect species. However, 
questions remained regarding the source and generality of this observation. It was especially 
unclear whether the observed patterns were driven by tissue and cell type composition shifts 
or by cell-autonomous expression changes during aging. How wide this trend would extend 
to non-mammalian metazoan aging was also uncertain. Here we analyzed bulk tissue as 
well as cell type-specific RNA sequencing data from diverse animal taxa across six different 
datasets from five species. We show that the previously reported age-related decrease in 
transcriptome conservation (ADICT) is commonly found in aging tissues of non-mammalian 
species, including non-mammalian vertebrates (chicken brain, killifish liver and skin) and 
invertebrates (fruit fly brain). Analyzing cell type-specific transcriptomes of adult mice, we 
further detect the same ADICT trend at the single cell type level. Old-biased genes are less 
conserved across the majority of cell types analyzed in the lung, brain, liver, muscle, kidney, 
and skin, and these include both tissue-specific cell types, and also ubiquitous immune cell 
types. Overall, our results support the notion that aging in metazoan tissues may be at least 
partly shaped by the mutation accumulation process. 
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Introduction 

Aging is defined as progressive decline in fitness with increasing age (Kirkwood & Austad, 
2000; López-Otín et al., 2013). The mutation accumulation theory provides a simple and 
powerful explanation of how aging could evolve (Medawar, 1952). This is based on the 
premise that in many natural populations, the number of individuals contributing to the next 
generation declines with age by extrinsic mortality, even without invoking the intrinsic effects 
of aging. Consequently, phenotypically deleterious variants that show their deleterious 
effects only at old ages, when the residual effective population size is low, can drift to 
fixation, creating the so-called “selection shadow” at late ages [reviewed in (Flatt & Partridge, 
2018)]. The accumulation of such late-acting deleterious variants could then explain the 
prevalence of aging phenotypes, leading to Gompertzian mortality curves at old ages. 
Conversely, aging could be absent in species in which the probability of extrinsic mortality 
decreases with age, e.g. in species where individuals can constantly grow in size. This 
prediction is supported by empirical evidence: in diverse animal species, mortality can be 
stable or even decline through lifetime (Jones et al., 2014; Cohen, 2018). 

Testing the role of the mutation accumulation mechanism on aging initially relied on studying 
inter-individual heterogeneity of age-related fitness reduction, a prediction of the model 
(Charlesworth & Hughes, 1996; Shaw et al., 1999; Wilson et al., 2007; Escobar et al., 2008). 
More recently, researchers have also begun employing molecular data to test the idea. For 
instance, Rodriguez and colleagues used genetic disease and polymorphism data in 
humans to show that late-acting disease variants segregate at higher frequencies than 
early-expressed variants (Rodríguez et al., 2017).  

Yet another line of studies has combined sequence divergence data (dN/dS ratios; ratio of 
rate of non-synonymous mutations to synonymous mutations) and transcriptome data, under 
the assumption that late-expressed genes will carry late-acting variants. These studies 
showed that genes with increased expression levels in old versus young adults (old-biased 
genes) tend to be less conserved than young-biased genes in human brain aging (Somel et 
al., 2010), and across human bulk tissues (Jia et al., 2018). Recently, we systematically 
investigated the pattern of lower evolutionary conservation of genes expressed at late age 
using 66 transcriptome datasets representing human, macaque, mouse and rat bulk tissue 
samples (Turan et al., 2019). We identified the same trend, which we termed age-related 
decrease in transcriptome conservation (ADICT), in 76% of these datasets. Interestingly, 
although some tissues, such as brain, lung and liver, showed conspicuous ADICT 
signatures, other tissues, such as muscle and heart, revealed no consistent pattern. We 
further found old-biased and weakly conserved mammalian genes to be enriched in 
apoptosis and inflammation-related processes.  

More recently, Cheng and Kirkpatrick reported low conservation of old-biased genes across 
human, mouse, fruit fly and mosquito transcriptomes (Cheng & Kirkpatrick, 2021), also 
showing that old-biased genes carry higher levels of functional polymorphism (pN/pS) and 
tend to be evolutionarily younger. Meanwhile, Harrison and colleagues studied sequence 
conservation of young- and old-biased genes identified in whole-body transcriptomes in 
relatively long-lived ant queens (Cardiocondyla obscurior) (Harrison et al., 2021). Intriguingly, 
they found higher conservation of old-biased genes, a result which would be consistent with 
the reported absence of reproductive senescence in these ant queens. 
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This growing body of evidence suggests a role for Medawar’s mutation accumulation 
process, and specifically, a role for higher drift on late-expressed genes in metazoan aging. 
Still, caution is warranted. First, the diversity of taxa studied is limited to five species of 
mammals and three species of insects. Second, studies conducted hitherto have analyzed 
either bulk tissue (mammals) or whole-body samples (insects). It therefore remains possible 
that the observed expression trends, and expression-conservation correlations, may in fact 
be driven by aging-related changes in tissue composition and/or cell type composition within 
tissues. Indeed, aging causes apparent shifts in cell type composition, including 
tissue-specific cells and immune cells, as shown in mouse tissues (The Tabula Muris 
Consortium, 2020), in the human brain (Soreq et al., 2017) and in the fruit fly brain (Davie et 
al., 2018). Shifts in a tissue’s cell type composition with age will likewise shift expression 
patterns measured at the bulk tissue level, even in the absence of cell-autonomous 
expression change. Furthermore, tissues are known to vary in the average conservation 
levels of the genes they express (Khaitovich et al., 2005), and we may reasonably expect 
that cell type transcriptomes likewise vary in their average conservation levels. Accordingly, 
the observed ADICT pattern can have two, non-mutually exclusive explanations: (a) 
late-expressed genes at the cell-autonomous level being subject to stronger drift, (b) weakly 
conserved cell types increasing their representation within tissues at late age.  

Here we address these issues, first by studying the prevalence of ADICT across a diverse 
range of organisms using published bulk tissue transcriptome profiles (as opposed to whole 
organism transcriptomes). Second, we investigate conservation level differences among 
mouse cell types, and we test whether ADICT can be observed at the cell type-specific level.  

 

Methods 

Conservation metric 

When available, dN (nonsynonymous substitution rate) and dS (synonymous substitution 
rate) values were downloaded from the Ensembl BioMart using the most recent Ensembl 
releases that included these metrics (Ensembl v.99 for dN and dS values between 
G.gallus-M.gallopavo and M.musculus-R.norvegicus; Ensembl Metazoa v.45 for dN and dS 
values between D.melanogaster-D.simulans) (Yates et al., 2019). Only one-to-one orthologs, 
estimated by Ensembl, were included in the study. The conservation metric was calculated 
as -ln(dN/dS), with higher values corresponding to higher sequence conservation. Genes 
with dN/dS ≥ 0.8 were excluded to limit the influence of positively selected genes on 
downstream analysis. Genes with dN = 0 and dS = 0 were also excluded to avoid zero and 
infinite dN/dS values, respectively. dN and dS values for killifish gene orthologs were not 
available in BioMart and we used dN/dS values calculated for the “FKK-branch” by Sahm 
and colleagues (Sahm et al., 2017). Statistics related to the conservation metric data (mean 
and median dN/dS values, gene numbers, divergence between species pairs) are provided 
in Table S1. We also ignored genes with paralogs in this analysis in order to limit uncertainty 
and ambiguity when calculating dN/dS ratios. 

Relative conservation score  
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To simplify interpreting and comparing the conservation score values when visualizing, we 
scaled these using the conservation scores of constantly expressed genes (defined below). 
For this, in each dataset, we calculated a “relative conservation score” for each gene i as: 

RCSi = CSi - MCSconstant 

where CSi is the protein sequence conservation score for that gene (as described above), 
and MCSconstant is the arithmetic mean conservation score for all genes classified as 
constantly expressed in that dataset.  

 

Bulk RNA-seq data analyses 

Pre-processing. Raw FASTQ files for the mice brain (SRP108790, GSE99791) (Boisvert et 
al., 2018), chicken brain (SRP144776, GSE114129) (Xu et al., 2018), and naked-mole-rat 
brain (SRP007398, GSE30337) (Kim et al., 2011) transcriptomes were downloaded from the 
European Nucleotide Archive (ENA) repository. The dataset contents are listed in Table 1. 
FASTQ files were assessed for quality using FastQC tool (v0.11.9) and trimmed for low 
quality and adapter contamination using Trimmomatic (v0.39) (Bolger et al., 2014) with the 
options SLIDINGWINDOW:4:15, MINLEN:25 & <adapter fasta>:2:30:10:8:TRUE. Trimmed 
reads were aligned to the reference genome (chicken GRCg6a, mouse GRCm38.p6, NMR 
HetGla_female_1.0) and counted using STAR (v2.7.6a) (Dobin et al., 2013) with the 
parameter --quantMode GeneCounts. If present, drug-treated and non-adult samples were 
discarded from the datasets, along with genes not expressed in any of the remaining 
samples in each dataset. Resulting count data were normalized using the median ratios 
method implemented in the DESeq2 (v1.26.0; Love et al., 2014) package. Briefy, we used 
the DESeqDataSetFromMatrix function from the DESeq2  package, with the arguments 
“design = ~age” to construct a DESeqDataSet object, and used the estimateSizeFactors 
function to estimate size factors for normalizing raw counts. For the killifish liver and skin 
transcriptomes (Reichwald et al., 2015) and the fruit fly brain transcriptomes (Pacifico et al., 
2018), gene count data were used instead of the raw FASTQ files. Count data for these 
datasets were normalized as before. We studied the pre-processed datasets by performing 
principal components analyses and plotting the first four principal components 
(Supplementary Figure 1 & 2). 

Differential gene expression analysis. Genes that show aging-related expression changes 
were identified using Spearman correlation: a gene was classified as age-related if the 
expression of the gene showed a statistically significant correlation with age after multiple 
testing correction (Benjamini-Hochberg corrected p < 0.1), and an absolute expression vs. 
age correlation coefficient (rho) higher than 0.5. Note that we only used data from adult 
individuals and excluded pre-adults (Table 1). Among age-related genes, genes with positive 
expression-age correlation were classified as “old-biased”, and the genes with negative 
expression-age correlation were classified as “young-biased”. Genes outside either class 
were classified as “constantly expressed”. Genes assigned to each gene class are shown in 
Table S2. For the naked-mole-rat, due to lack of biological replicates in this dataset, genes 
with positive Spearman correlations between expression vs. age were classified as 
old-biased genes and the ones with negative correlation were classified as young-biased 
genes, without reference to statistical significance.  
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Transcriptome conservation. Here we followed the approach outlined by Turan and 
colleagues (Turan et al., 2019). For each individual sample in a dataset, we calculated a 
single expression-conservation correlation measure, reflecting the correlation between 
normalized gene expression values and the conservation metric across all genes, using the 
Spearman correlation test via the cor function in R (v. 3.6.3) stats package, with the 
arguments “method = spearman”. We then calculated the correlation between individual age 
and expression-conservation correlations across all individuals in a dataset, again using 
Spearman correlation. This latter correlation was treated as a measure of age-related 
change in overall transcriptome conservation.  

Conservation difference between old-biased and young-biased genes. To test whether 
the distribution of conservation scores differs between old-biased and young-biased genes 
we used the Welch’s t-test (two sided) on conservation scores of old and young-biased 
genes separately for each tissue in each dataset, as implemented by the t.test function in the 
stats package of R with default parameters. As a non-parametric alternative, we also used 
the Mann-Whitney U test as implemented by the wilcox.test function in the R stats package, 
using default parameters.  

 

Single cell RNA-seq data analyses 

Pre-processing. Single cell expression data for six different tissues (lung, liver, muscle, 
brain, skin, and kidney) were downloaded from the Tabula Muris Senis dataset (The Tabula 
Muris Consortium, 2020) and processed following Izgi and co-authors (Izgi et al., 2022). For 
each cell type, the gene expression levels per individual were calculated as the mean 
expression value across cells of that cell type from a given individual, calculated separately 
for each gene, and separately in each tissue. We removed cell types absent in any of the 
three age groups (3-month-old, 18-month-old, 24-month-old). To minimize the individual 
effect in downstream analyses, we limited our analysis to include only individuals that had 
expression data for >70% of all cell types present within a given tissue for a given age group 
(irrespective of the number of cells measured for that cell type). The final number of cell 
types and individuals are presented in Table S3. 

Cell type-specific differences in transcriptome conservation. To evaluate the cell 
type-specific differences in transcriptome conservation, in each tissue we calculated the 
Spearman correlation coefficient between expression levels and conservation scores as 
above, only using the three-months old individuals for every cell type. We excluded cell 
types represented by less than three individuals. We then tested the cell type difference in 
expression-conservation correlation using ANOVA as implemented in the aov function in the 
R stats package with the model “rho ~ tissue + cell type”. We additionally tested the effect of 
immune status of cell types on transcriptome conservation levels using a mixed model 
ANOVA via the lme function of the R nlme package (v.3.1-144) with transcriptome 
conservation set as the response variable, immune status as the explanatory variable and 
tissue as a random effect.  
 
Differential gene expression analysis. For each cell type in each tissue, genes that 
showed aging-related differential expression were identified using Spearman correlation 
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between the expression level of the gene vs. individual age (as implemented on bulk 
RNA-seq datasets). Due to higher noise in the scRNA-seq dataset compared to bulk 
RNA-seq datasets, a cut-off of rho (⍴) > 0.5 was used to define age-related genes, instead of 
using both rho and p-value cut-offs. Age-related genes with rho < -0.5 were classified as 
young-biased genes and those with rho > 0.5 were classified as old-biased genes.  

Transcriptome conservation. Expression-conservation correlations and related analyses 
were conducted identically to those conducted on bulk RNA-seq data. 

Conservation difference between old and young-biased genes. To test whether the 
distribution of relative conservation scores differs between old-biased genes and 
young-biased genes, we calculated the mean relative conservation score (MRCS) of these 
gene sets identified per cell type in each tissue (i.e. one estimate per gene set per cell type). 
Then, across all cell types in each tissue, we applied the Wilcoxon signed rank test on the 
distributions of MRCS of old-biased and young-biased genes using the wilcox.test function 
with the parameter “paired = TRUE '' in the R stats package.  

Immune cells. To test whether immune cells behave differently in terms of age-related 
changes in sequence conservation than non-immune cells, we calculated the difference 
between mean relative conservation scores of old-biased and young-biased genes for each 
cell type in the dataset by subtracting the mean relative conservation scores of old-biased 
genes from the mean relative conservation scores of young-biased genes.  The list of cells 
used and their immune status is shown in Table S4. Next, we tested whether the 
distributions of MRCS differences and ADICT signals (Spearman correlation between 
expression-conservation correlation vs. age) differed between immune and non-immune 
cells. For cell types that are present in multiple tissues, we used the mean of MRCS 
differences calculated in each tissue as the MRCS difference score for the cell type. We 
similarly used  the mean rho scores across different tissues for repeating cell types when 
comparing ADICT signals. For the statistical comparison, we used the Mann-Whitney U test 
as implemented by the wilcox.test function with default parameters in the R stats package. 
Additionally we calculated effect sizes for the differences using Cohen’s d, for both the 
MRCS differences and differences in ADICT signals (Spearman correlation distributions).  
 

Results 

Age-related decrease in transcriptome conservation is observed across diverse 
metazoan species 
 
We first asked whether the previously described pattern of age-related decrease in 
evolutionary transcriptome conservation (ADICT) (Turan et al., 2019) can also be observed 
in tissue-specific transcriptomes of non-mammalian organisms. To this end, we collected 
published aging transcriptome datasets from diverse taxa, including a G. gallus (chicken) 
brain aging dataset, a N. furzeri (turquoise killifish) liver and skin aging dataset, and a D. 
melanogaster (fruit fly) brain aging dataset (Table 1).  
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Table 1. Summary of datasets used in this study. Age groups and tissue sample sizes refer 
to only those individuals analyzed within this study, i.e. healthy adults (no drug treatment, 
etc.). (*): each sample represents a pool of 18 individuals.   

Organism Age groups  Tissue  
(sample size) 

RNA-seq  
type 

Accession Reference 

Drosophila 
melanogaster 

5-days-old to 
40-days-old 

Brain (n = 23)* Bulk DOI : 
https://doi.org/1
0.1371/journal.
pone.0209405  

Pacifico et 
al., 2018 

Nothobranchius 
furzeri 

5-weeks-old to 
39-weeks-old 

Liver (n = 25), 
Skin (n = 25) 

Bulk GSE:  
https://www.ncb
i.nlm.nih.gov/ge
o/query/acc.cgi
?acc=GSE6671
2  

Reichwald 
et al., 2015 

Gallus gallus 100-days-old to 
5-years-old 

Brain (n = 13)  Bulk GSE:  
https://www.ncb
i.nlm.nih.gov/ge
o/query/acc.cgi
?acc=GSE1141
29  

Xu et al., 
2018 

Heterocephalus 
glaber 

4-years-old and 
20-years old 

Brain (n = 2), 
Liver (n = 2), 
Kidney (n = 2) 

Bulk GSE:  
https://www.ncb
i.nlm.nih.gov/ge
o/query/acc.cgi
?acc=GSE3033
7  

Kim et al., 
2011 

Mus musculus 4 months-old 
and 2-years-old 

Astrocyte 
enriched from 
cerebellum(n = 
6), hypothalamus 
(n = 6), motor 
cortex (n = 6), 
and visual cortex 
(n = 6) 

Bulk GSE:  
https://www.ncb
i.nlm.nih.gov/ge
o/query/acc.cgi
?acc=GSE9979
1  

Boisvert et 
al., 2017 

Mus musculus 3-months-old to 
24-months-old  

Lung (n = 14), 
Liver (n = 9), 
Muscle (n = 14), 
Brain (n = 14), 
Skin (n = 14), 
Kidney (n = 14) 

Single cell GSE:  
https://www.ncb
i.nlm.nih.gov/ge
o/query/acc.cgi
?acc=GSE1320
42  

The Tabula 
Muris 
Consortium
, 2020 

 
 
Using the same framework used by Turan and colleagues (Turan et al., 2019), we calculated 
the correlation between protein sequence conservation metrics (based on dN/dS; see 
Methods) and expression levels across genes for each individual. We used this correlation 
value as a metric of transcriptome conservation which integrates expression levels of genes 
in the transcriptome. We then looked at how transcriptome conservation changes with age 
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by studying the relationship between the expression-conservation correlation scores and 
individual age (Figure 1A, showing the G. gallus brain dataset as example). The results for 
the whole transcriptome revealed moderate ADICT patterns in all four datasets, i.e. negative 
correlations between expression-conservation correlation and age (Figure 1B, summarized 
in Table S5). The ADICT signal became more conspicuous when we limited the analysis to 
differentially expressed genes (Figure 1A-B). 
 
 
 

 
Figure 1. Age-related changes in expression-conservation correlation in diverse metazoa. 
(A) Age-related changes in expression-conservation correlation in the G. gallus brain. The 
y-axis shows the Spearman correlation coefficient between expression level and the protein 
sequence conservation metric across genes for each individual in this dataset. Each dot 
corresponds to an individual (n = 13). The x-axis shows the individual age. The left panel 
shows the analysis result using genes differentially expressed with age (n = 1930), and the 
right panel shows the result using the whole transcriptome (n = 11,333). Spearman 
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correlation rho and p-values in the inset are calculated between the expression-conservation 
correlation and individual age. (B) Barplot of Spearman correlation values between the 
expression-conservation correlation vs. age, (***): p < 0.001. Tissues are illustrated in 
different colors (key shown on the right hand side). 
 
We then asked whether the overall negative correlations are driven by highly conserved 
genes decreasing in expression with age or by weakly conserved genes increasing in 
expression with age, or both. To this end, we examined conservation levels of young-biased 
genes (that show significant negative expression vs. age correlation with rho < -0.5) and 
old-biased genes (that show significant positive expression vs. age correlation with rho > 
0.5) for each data set. Old-biased gene sets showed consistently lower average 
conservation than young-biased genes in all four datasets (Welch’s t-test p<0.003 across all 
four tests, Figure 2A). Old-biased and young-biased gene sets also respectively showed 
trends of lower and higher conservation compared to constantly expressed genes (Figure 
2B). Turan and colleagues had also observed similar trends, with some degree of variability 
across mammalian tissues (Turan et al., 2019).  
 
In addition, we analyzed published transcriptome data from naked mole rats (NMR) H. 
glaber, an exceptionally long-lived eusocial rodent, which can survive more than 30 years in 
captivity (Kim et al., 2011). Both breeding and non-breeding NMR were recently reported not 
to show increasing age-specific hazard of mortality (Ruby et al., 2018), consistent with the 
case of long-lived ant queens described earlier (Harrison et al., 2021). The dataset consists 
of tissue samples from brain, kidney and liver of a single 4-year-old and another 20-year-old 
female NMR. Consequently, we could only classify genes into old-biased and young-biased 
groups based on expression trends. In all three tissues, old-biased genes showed weaker 
conservation than young-biased genes, although we note that the lack of biological 
replicates does not allow generalizing the result (Supplementary Figure 3). 
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Figure 2.  (A) Density plots of conservation scores of old- (blue) and young-biased (gray) 
genes, relative to constantly expressed genes. P-values indicate the results of Welch’s t-test 
(two-sided) between the distributions of old-biased and young-biased genes. (B) Mean 
conservation scores of old-biased and young-biased genes, relative to constantly expressed 
genes. Error bars indicate 95% confidence intervals calculated using 1,000 bootstraps (D. 
melanogaster brain nold-b.= 792 genes, nyoung-b.= 831 genes; G. gallus brain nold-b.= 1066 
genes, nyoung-b.= 864 genes; N. furzeri skin nold-b.= 1468 genes, nyoung-b.= 1405 genes; N. furzeri 
liver nold-b.= 537 genes, nyoung-b.= 618 genes). 

 

Cell type transcriptomes vary dramatically in average conservation levels 

We reasoned that ADICT patterns (lower conservation of late-expressed genes) we 
observed on bulk-tissue transcriptomes could be driven by (a) cell type composition 
changes, such that cell types with weakly conserved transcriptomes become more abundant 
in tissues or (b) cell type specific changes, such that late-expressed genes in each specific 
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cell type tends to be weakly conserved, or both. Notably, scenario (a) assumes the presence 
of significant differences among specific cell types with respect to average conservation 
levels of their transcriptomes. To investigate such possible conservation differences among 
cell-types, we used published single cell transcriptome data from 44 cell types across lung, 
skeletal muscle, brain, skin, and kidney (The Tabula Muris Consortium, 2020). We estimated 
a transcriptome conservation level for each cell type, calculated as the correlation between 
conservation scores and the mean gene expression levels of all cells assigned to that cell 
type in a given individual, using young adult mice (Methods).  

The results shown in Figure 3 demonstrate salient variation among specific cell types in their 
average transcriptome conservation levels. There was a significant cell type effect along with 
a tissue effect in a two-way ANOVA (Ftissue= 134.22, d.ftissue= 4, FcellType= 33.03, d.fcellType= 43, 
p<1x10-15 for both factors; Table S6). In general, neural cells, oligodendrocytes and 
astrocytes showed the highest transcriptome conservation, parallel to earlier observations 
indicating high protein sequence conservation of brain-specific genes (Khaitovich et al., 
2005). Certain specialized and proliferative cells in other tissue types, such as keratinocytes, 
skeletal muscle satellite cells and mesenchymal stem cells also showed higher-than-average 
transcriptome conservation. Immune cells showed the opposite trend, with various types 
(including B-cells, T-cells, neutrophils, myeloid dendritic cells) on the lowest end of the 
transcriptome conservation distribution in our sample. A mixed model ANOVA with immune 
status as the explanatory variable and tissue as random effect also revealed a negative 
significant effect of immune status on transcriptome conservation (FimmuneStatus= 95.79, d.f = 1, 
p<0.0001). However, immune cells were not alone in low transcriptome conservation 
patterns; some tissue-specific cell types, such as the epithelial cell of the proximal tubule 
(kidney) and the club cell of the bronchiole (lung) also displayed low transcriptome 
conservation. We also repeated the same analysis using cell type transcriptomes of 
18-month-old and 24-month-old mice, which revealed similar results (Figure S4).    
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Figure 3. Variability of expression-conservation correlation levels across cell-type 
transcriptomes of young-adult (3-month-old) individuals. Each data point within bar plots 
represents Spearman’s correlation values for an individual, calculated using gene 
expression values averaged across cells belonging to that individual. Panel A and B show 
cell-types only sampled in one tissue and cell-types sampled from multiple tissues, 
respectively. Color-coding indicates the tissues which the cell-types were sampled from (see 
key at the top of the figure). Cell types with less than three correlation values (i.e. 
individuals) are excluded.   

 

Cell type-specific changes in transcriptome conservation with age 

The strong variation in transcriptome conservation observed among mammalian cell types 
raises the possibility that cell type composition changes might be the sole driver behind 
ADICT. If true, we should observe no ADICT signal within cell type-specific transcriptomes. 
To address this, we leveraged upon two cell type-specific aging transcriptome datasets. The 
first was an aging transcriptome dataset (Table 1) consisting of young (4-month-old, n = 3) 
and old (24-month-old, n = 3) mouse tissue samples from cerebellum, hypothalamus, motor 
cortex, and visual cortex; enriched for astrocytes using astrocyte-ribotagging, which is  able 
to differentially capture actively translated portions of the transcriptome from tagged 
astrocytes (Boisvert et al., 2018). From four different brain regions, we identified significant 
age-related expression changes (see Methods) in the cerebellum and hypothalamus, which 
we investigated further. Analyzing the data using the same framework described earlier, we 
found a negative correlation between expression-conservation and age using differentially 
expressed genes in astrocyte transcriptomes of the cerebellum and hypothalamus (Figure 4 
and S5; Table S5).  

 

 

Figure 4. Age-related changes in expression-conservation correlation in M. musculus 
astrocyte transcriptome from the cerebellum. The y-axis shows the Spearman correlation 
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coefficient between expression level and protein sequence conservation metric across 
genes for each individual in this dataset (n = 6). The x-axis shows individual age. The left 
panel shows the analysis results using genes differentially expressed with age (n = 4,331), 
and the right panel shows the analysis results using the whole transcriptome (n = 14,389). 
rho and p-values in the inset indicate the results of the Spearman correlation between the 
expression-conservation correlation and age. A Mann-Whitney U test on the same data 
yields a p-value of 0.1. 
 

We next analyzed single-cell transcriptomes from the Tabula Muris Senis dataset, 
comprising a total of 23,538 cells across 53 cell types from 14 different individuals, covering  
3-months to 24-months of age (nlung = 12, nliver = 7, nmuscle = 14, nbrain = 9, nskin = 10, nkidney = 
14) (The Tabula Muris Consortium, 2020) (Table S3). Among the cell types that are not 
shared between tissues, 32 out of 44 showed the ADICT pattern, i.e. negative correlations 
between expression-conservation correlation and age, of which six cell types were 
significant at Spearman correlation test q<0.05, and eight were significant at q<0.1. Among 
the nine cell types that were detected in more than one tissue, five (CD4-positive alpha-beta 
T cell, CD8-positive alpha-beta T cell, mature NK T cell, macrophage, and endothelial cell) 
showed consistent ADICT signal across the tissues, three (T cell, NK cell, and B cell) 
showed inconsistent signals, while one (neutrophil) showed a positive correlation (Figure 5). 
Only in the skin did no cell type reach this significance threshold (Figure 5). Across all 
tissues, only one cell type, lung neutrophil, showed positive correlation that reached 
statistical significance at q<0.1 (Figure 5, Table S7).   

 

 

Figure 5. Spearman correlation results for expression-conservation correlation (for 
differentially expressed genes) vs. age in six different tissues from the Tabula Muris Senis 
dataset. (*) marks indicate statistical significance at BH corrected p-value <0.1.  
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We further compared average conservation between old-biased and young-biased gene sets 
identified in each of the cell types separately for each tissue. Across cell types in all six 
tissues we observed a trend towards lower conservation among old-biased genes relative to 
young-biased genes identified in each cell type; this was significant in four tissues (two-sided 
Wilcoxon signed rank test p<0.05) (Figure 6). ADICT can thus be observed at the cell type 
specific transcriptome level, at least in the mouse and for a substantial number of cell types. 
Meanwhile, the signal is heterogeneous both among tissues and also among cell types 
within a tissue. 

 

 

Figure 6. Conservation differences between old- and young-biased genes per cell type. The 
y-axis shows the mean relative conservation score (relative to constantly expressed genes; 
see Methods) for old-biased and young-biased genes in each cell type, in each tissue 
(sample sizes for cell types are nbrain = 15, nkidney = 9, nliver = 10, nlung = 23, nmuscle = 6, nskin = 5 
respectively). The lines connect the mean relative conservation values calculated for 
old-biased and young-biased gene sets for the same cell type. The p-values indicate 
Wilcoxon signed rank test results for the difference between the distribution of per cell type 
mean conservation values of old-biased and young-biased genes in that tissue (no 
correction for multiple testing).   

 

ADICT propensities of immune versus non-immune cells 

Dysregulated immune responses and inflammation are among the most common hallmarks 
of aging (López-Otín et al., 2013). Aging-related chronic inflammation is known to result in 
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an increase in immune cell types within inflamed tissues. Immune cell types were also 
ubiquitous across the mouse tissues we analyzed here. We have earlier shown that immune 
cells have lower conservation levels than average. Here we further asked whether stronger 
ADICT propensity among immune cell types might be a contributor of ADICT patterns at the 
bulk-tissue level. Specifically, we tested whether immune cell types show a difference in 
ADICT propensity compared to other cell types using 16 immune and 37 non-immune cell 
types from the Tabula Muris Senis dataset (Table S4). For this, (a) we compared ADICT 
signals between immune and non-immune cell types using Spearman’s rho values between 
conservation-correlation vs. age, and (b) calculated the mean relative conservation score 
(MRCS) differences between young-biased and old-biased genes for immune and 
non-immune cell types, and compared the two (see Methods). Neither analysis revealed a 
significant difference between immune and non-immune cell types (Mann-Whitney U test 
p-values = 0.83 and 0.69, Cohen’s d = 0.105 and 0.177 for (a) and (b), respectively) (Figure 
7).  

 

 

Figure 7. Distributions of (A) mean relative conservation score differences between 
decreasing and increasing genes and (B) Spearman’s correlation values for 
expression-conservation correlation vs. age for immune and non-immune cell types. 
P-values indicate results of a Mann-Whitney U test.  

 

Discussion 

Our results indicate ADICT as a common phenomenon across diverse metazoan taxa with 
classical senescence patterns, i.e. increased mortality with age. Lower conservation of 
old-biased genes was previously reported in primate and rodent tissues (Somel et al., 2010; 
Jia et al., 2018; Turan et al., 2019), as well as whole body transcriptomes of Diptera (Cheng 
and Kirkpatrick, 2021). We now add fish, birds and fruit flies to the list of taxa in which 
ADICT has been observed at the tissue level. Interestingly, we also observe low sequence 
conservation among old-biased genes in three tissues of the extreme long-lived naked mole 
rat, although the lack of biological replication in this dataset limits our ability to interpret this 
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result. This supports a widespread role of the selection shadow in shaping organismal 
senescence. 
 
We further show that average transcriptome conservation levels are highly variable between 
different cell types, at least in the mouse. This result echoes observations on varying 
conservation levels among mammalian tissues (Khaitovich et al., 2005; 
Kryuchkova-Mostacci & Robinson-Rechavi, 2015). Neurons show highest transcriptome 
conservation among the 44 mouse cell types analyzed here, which parallels strong 
conservation of brain-expressed genes observed in these earlier studies, possibly due to 
sensitivity of neural cells to proteotoxicity (Drummond & Wilke, 2008). Immune cells tend to 
show weak conservation, which may be partly attributable to the relatively high rates of 
positive selection pressure on immune-related genes [e.g. Chimpanzee Genome 2005]. 
Although these results are not surprising, they point to the difficulty in interpreting 
aging-related transcriptome changes and ADICT signals at the bulk tissue and/or whole 
body level, given aging-related changes in cell type composition with age [e.g. (The Tabula 
Muris Consortium, 2020)].  
 
Our third main finding is that ADICT may prevail at the cell type level at least as widely as at 
the bulk tissue level. This we show using enriched astrocyte transcriptomes, as well as 
single-cell RNA sequencing data from six tissues in mice. Importantly, here we are assuming 
that cell type identities are accurately defined and not affected by aging. With this note of 
caution, and the fact that we have analyzed single cell data from only a single species, our 
results suggest that previously identified ADICT patterns are not solely driven by cell type 
composition changes. We thus believe that the evidence we present here, together with 
earlier work, marks a major presence of ADICT in metazoan aging. However, two main 
questions remain.  
 
The first involves the causal role of ADICT in organismal senescence. This can be 
addressed by selection experiments, by comparing species pairs which have recently 
evolved differences in lifespan, as well as by studying species with constant or decreasing 
mortality with age (Jones et al., 2014; Cohen, 2018). We predict that the evolution of a 
constant or decreasing mortality curve, or longevity, should lead to increasing purifying 
selection on late-expressed genes, which should be measurable using standard 
transcriptome experiments.  
 
This has been exactly what Harrison and colleagues have observed: higher protein 
sequence conservation among old-biased genes in ant queens (Harrison et al., 2021). 
However, it remains possible that age-related changes in cell type composition (e.g. 
increasing proportion of reproductive tissue) could underlie the observed signal. Intriguingly, 
three tissues of the NMR that we analyze here show expression patterns consistent with 
ADICT, but the data suffers from lack of biological replication. We believe that continuing this 
line of work with improved sampling could be highly illuminating with respect to the causal 
role of mutation accumulation in the evolution of aging. We also note that the presence of 
ADICT in model organisms in aging research, including the mouse, killifish and fruit fly, 
opens up the possibility of studying ADICT in longevity selection experiments. 
 
The second question relates to the nature of old-biased and low conserved genes, which 
needs systematic dissection. This is especially interesting in light of the results by Jia and 
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colleagues (Jia et al., 2018) and by Cheng and Kirkpatrick (Cheng & Kirkpatrick, 2021), who 
showed that late-expressed genes tend also to be evolutionarily younger genes. This brings 
up the possibility of two distinct mechanisms behind ADICT:  
 
1) ADICT by regulatory drift: Part of metazoan proteomes consists of genes that have 
relatively recently evolved, are expressed at low levels, and which may be less optimized in 
their structure and functions, including a propensity towards proteotoxicity. Genetic drift on 
regulatory sequences and regulatory interactions may drive late-expression among such low 
conserved genes, as their early expression would not be tolerated. Recruitment of such 
genes in late adult transcriptomes could drive ADICT and shape the aging phenotype. This 
would be in line with “early-life inertia” model of aging (e.g. de Magalhaes and Church 2005; 
Carlsson et al. 2021), as well as empirical evidence for faster evolution of promoter 
sequences in late-expressed genes in mammals (Turan et al., 2019). 
 
2) ADICT by drift on coding sequences: Old-biased genes may have critical roles at old age 
(e.g. protection against accumulating somatic damage). However, drift on their coding 
sequences may prevent them from functioning at the highest efficiency. This would then 
allow processes such as somatic damage accumulation, and consequent aging phenotypes. 
This latter model would predict some degree of conservation of late age expression patterns. 
 
Noting that the two models are non-mutually exclusive, we believe that uncovering their 
exact contributions to the selection shadow in aging would be an attractive endeavor.  
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Supplementary Figures 
 
 

Figure S1. Principal component analysis (PCA) using expression levels of each dataset (n = 
[22405, 12344, 23064, 23178] genes for G. gallus, D. melanogaster, N. furzeri liver and N. 
furzeri skin, respectively). Only the first four PCs are plotted. Numbers in the parentheses 
show the percentage of variation explained by each PC. Age and sex (exist only for D. 
melanogaster) labels are indicated on the right of the plots. 
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Figure S2. Principal component analysis (PCA) using expression levels of 
astrocyte-enriched M. musculus brain region samples from GSE99791 dataset (n = [28572, 
28516, 27649, 27580] genes for cerebellum, hypothalamus, motor cortex and visual cortex, 
respectively). Only the first four PCs are plotted. Numbers in the parentheses show the 
percentage of variation explained by each PC. Age labels are indicated on the right of the 
plots. 
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Figure S3. Distribution of the conservation scores (dN/dS) for young-biased (gray) and 
old-biased (blue) genes in brain, kidney and liver of H. glaber. Old-biased genes have 
consistently lower conservation scores compared to young-biased genes across tissues. 
P-values indicate Welch's t-test results between young- and old-biased genes. 
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Figure S4. Variability of expression-conservation correlation levels across cell-type 
transcriptomes of 18-month-old (A, B) and 24-months-old (C, D) individuals. Each data point 
within bar plots represents Spearman’s correlation values for an individual, calculated using 
gene expression values averaged across cells belonging to that individual. Panels A, C and 
B, D show cell-types only sampled in one tissue and cell-types sampled from multiple 
tissues, respectively. Color-coding indicates the tissues which the cell-types were sampled 
from (see key at the top of the figure). Cell types with less than three correlation values (i.e. 
individuals) are excluded.  
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Figure S5. Age-related changes in expression-conservation correlation in M. musculus 
astrocyte transcriptome from the hypothalamus. The y-axis shows the Spearman correlation 
coefficient between expression level and protein sequence conservation metric across 
genes for each individual in this dataset (n = 6). The x-axis shows individual age. The left 
panel shows the analysis results using genes differentially expressed with age (n = 4,530), 
and the right panel shows the analysis results using the whole transcriptome (n = 14,644). 
rho and p-values in the inset indicate the results of the Spearman correlation between the 
expression-conservation correlation and age.  
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