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Abstract  

Resting-state functional connectivity has generated great hopes as a potential brain biomarker for 

improving prevention, diagnosis, and treatment in psychiatry. This neuroimaging protocol can 

routinely be performed by patients and does not depend on the specificities of a task. Thus, it seems 

ideal for big data approaches that require aggregating data across multiple studies and sites. However, 

technical variability, diverging data analysis approaches, and differences in data acquisition protocols 

might introduce heterogeneity to the aggregated data. Besides these technical aspects, the 

psychological state of participants might also contribute to heterogeneity. In healthy participants, 

studies have shown that behavioral tasks can influence resting-state measures, but such effects have 

not yet been reported in clinical populations. Here, we fill this knowledge gap by comparing resting-

state functional connectivity before and after clinically relevant tasks in two clinical conditions, 

namely substance use disorders and phobias. The tasks consisted of viewing craving-inducing and 

spider anxiety provoking pictures that are frequently used in cue-reactivity studies and exposure 

therapy. We found distinct pre- vs. post-task resting-state connectivity differences in each group, as 

well as decreased thalamo-cortical and increased intra-thalamic connectivity which might be 

associated with decreased vigilance in both groups. Notably, the pre- vs. post-task thalamus-amygdala 

connectivity change within a patient cohort seems more pronounced than the difference of that 

connection between the smoker vs. phobia clinical trait. Our results confirm that resting-state 

measures can be strongly influenced by changes in psychological states that need to be taken into 

account when pooling resting-state scans for clinical biomarker detection. This demands that resting-

state datasets should include a complete description of the experimental design, especially when a task 

preceded data collection.  

Keywords  

clinical biomarkers, functional connectivity, nicotine addiction, pre-post changes, resting-state, specific phobia 
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1. Introduction 

Resting-state functional brain connectivity is a promising tool for the development of potential 

biomarkers for improving prevention, diagnosis, and treatment in psychiatry. It is a task-free 

neuroimaging protocol that patients can generally perform easily irrespective of the type or the 

severity of their condition. Indeed, in recent years, candidate resting-state biomarkers have been 

reported in nearly all psychiatric conditions. For example, based on resting-state data, relatively high 

levels (> 80%) of classification accuracy have been achieved for psychiatric conditions that include 

depression (Drysdale et al., 2017), post-traumatic-stress disorder (Nicholson et al., 2019, 2020), 

consciousness states (Campbell et al., 2020), or tobacco use disorder (Wetherill et al., 2019).  

Another key advantage of resting-state biomarkers is that they do not depend on the specificities of a 

task. Consequently, they appear ideal for between-study comparisons and for collapsing datasets from 

multiple studies and multiple sites, which would improve generalizability and statistical power. This 

is of critical importance, as correlation-based approaches are gradually replaced by predictive 

machine-learning methods, which, although more powerful, require large amounts of data (Khosla et 

al., 2019). Pooling multiple resting-state studies is increasingly popular (Abraham et al., 2017; Tanaka 

et al., 2021; Turner, 2013), but it is far from trivial, as shown by the modest success of recent 

multisite studies. Classification algorithms of major depressive disorder (Xia et al., 2019) and 

schizophrenia (Cai et al., 2020), for instance, poorly generalized from one study to another despite 

high classification accuracy within single studies.  

Importantly, one should not take for granted that the gain from increasing sample size will 

systematically outweigh the introduction of heterogeneity (Bari et al., 2019). Heterogeneity can be 

due to technical variability (e.g. scanner type, field strength, imaging sequences…) (Yamashita et al., 

2019), different data analysis approaches such as functional connectivity, amplitude of low frequency 

fluctuations, graph theory, clustering algorithms and pattern classification, as well as differences in 

data acquisition protocols. Despite being task-free, resting-state protocol variables such as acquisition 

duration and whether or not the participants should fixate or close their eyes, were intensely 

researched and discussed (Agcaoglu et al., 2019). However, heterogeneity can also be due to 

differences in transient psychological states. Although many studies have tried to predict rather stable 

traits, resting-state measures may not display the same level of within-subject stability. Indeed, 

several studies on healthy participants reported resting-state functional connectivity changes to the 

hippocampus after an associative memory task (Tambini et al., 2010), to the dorsal attention network, 

default mode network, and visual networks after a perceptual learning task (Lewis et al., 2009), to 

motor areas after a finger-tapping task (Sarabi et al., 2018), or to the olfactory piriform cortex after an 

olfactory task (Cecchetto et al., 2019; Sarabi et al., 2018)). This indicates that the psychological state 
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of the participants alters resting-states. A similar effect might be expected in patients, thus affecting 

the biomarker quality of resting-state acquisitions for clinical purposes.  

Because resting-state scans are sometimes acquired before and sometimes after other behavioral or 

neuroimaging tasks, we – for the first time – compare systematically pre- vs. post-task resting-state 

differences in clinical populations. Specifically, this study investigates how resting-state functional 

connectivity changes in smokers and spider-fearful individuals from before to after a cue-reactivity 

exposure task that consisted of presenting nicotine or spider cues, respectively. In patient populations, 

cue-reactivity tasks are frequently used in neuroimaging paradigms to identify physiological and 

neural correlates of craving or anxiety, respectively. The presentation of relevant cues is also key to 

exposure-based interventions, which is one of the most prominent therapeutic approaches in 

psychiatry. Being exposed to such cues changes the psychological state of the participant, as it will 

increase craving in smokers or affect the anxiety levels in phobic populations. This change will likely 

manifest in subsequent resting-state measures. We first tested the hypothesis that resting-state 

connectivity is altered in clinical populations by behavioral tasks in smokers. To test whether our 

results were specific to smokers or whether they generalize to other clinical populations, we applied 

the same analysis to an independent dataset of spider fearful individuals.  

2. Material and methods 

2.1. Participants  

Nicotine use dataset  

We recruited 32 participants with DSM-5 criteria for nicotine use disorder (age: 26.0±5.3; gender: 

16F, 15M, 1 non-binary; sex: 17F, 15M; daily cigarette consumption: 11.5±5.6, smoking history: 

7.4±4.8 years of smoking, Fagerström Test for Nicotine Dependence (FTND) score = 2.8±1.8). We 

instructed participants to abstain from smoking for one hour before the experiment. Exclusion criteria 

were the use of non-cigarette tobacco substitutes such as nicotine patches, mental or neurological 

disorders, and MRI-incompatibility criteria (metal implants, pregnancy, etc.). The study was 

conducted at the Psychiatric University Hospital of Zurich and was approved by the local ethics 

committee of the Canton of Zurich. Three participants were excluded due to high scanner motion, 

resulting in a final analysis sample of N = 29.  

Spider phobia dataset 

This dataset is a subset of a larger study, of which the MRI acquisition was still ongoing at the time 

we performed this analysis (N = 38 as of June 15th, 2022). Participants were individuals with sub-

clinical spider phobia, which we defined as having a Spider Anxiety Screening (SAS, Rinck et al., 

2002) score above or equal to 8 (age: 22.4 ± 3.8; gender: 30F, 7M; sex: 30F, 7M); Fear of Spider 
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Questionnaire (Szymanski & O’Donohue, 1995) score: 51.3±21.0). Exclusion criteria were MRI-

incompatibility and mental or neurological disorders. This study was conducted at the University of 

Vienna and was approved by the ethics committee of the University of Vienna. One participant was 

excluded due to motion, resulting in a final sample of N = 37 for imaging analyses.  

For both studies, participants gave informed written consent and received financial compensation. 

2.2. Experimental design  

Nicotine use dataset 

We collected two 7 minutes long resting-state runs, for which we instructed the participants to let 

their mind wander while looking at a fixation dot. Between the two resting-state runs, the participants 

underwent a smoking cue-reactivity task, which consisted in viewing 330 craving-inducing pictures 

from the Smoking Cue Database (Manoliu et al., 2021) and other smoking databases. In total, the pre-

task and the post-task resting-state runs were separated by a 20-minute-long cue-reactivity task. We 

refer the reader to Haugg et al., 2022 for more details regarding the cue-reactivity task. We assessed 

smoking urge levels with the German version of the Questionnaire on Smoking Urges (QSU-G, Toll 

et al, 2006), once before the scanning session and a second time after the scanning session.   

Spider phobia dataset 

The experimental design of the spider cue-reactivity study was analogous to the nicotine use dataset 

described previously. Spider phobics were passively exposed to 300 pictures of spiders or neutral 

pictures, divided into 5 runs of about 7 minutes. 6 button-press catch trials were also randomly 

included in each run to increase the attention and the engagement of the participant. After the first and 

the last passive-viewing runs, we asked the participants how tired they felt on a scale of 1 to 10. 

However, due to technical issues with the interphone (e.g., drop in sound quality), we collected pre-

post tiredness data for N = 26 participants only. Before and after the passive-viewing task, we 

acquired resting-runs of about 9 minutes each for which we asked the participants to relax and look at 

the fixation cross. Approximately 35 minutes elapsed between the end of first rest period and the start 

of the second one. Of note, all the participants in this group performed a Behavioral Avoidance Test 

(BAT) prior to being scanned, followed by a 15-minute walk to the scanning site.  

2.3. MRI acquisition parameters  

Nicotine use dataset 

MR scans were collected with a 3T Philips Achieva system (Philips Healthcare, Best, The 

Netherlands) using a 32 phased-array head coil at the Psychiatric University Hospital, Zurich. The 

two resting-state functional scans were acquired with a T2*-weighted gradient-echo planar imaging 

(EPI) sequence (repetition time (TR) = 2000ms, echo time (TE) = 35ms, flip angle (FA) = 82°, 33 
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slices, no slice gap, voxel size = 3 x 3 x 3 mm3, field of view (FoV) = 240 x 240 x 99 mm3, total scan 

duration = 7:12 min per run). A high-resolution anatomical T1-weighted scan was acquired (FA = 8°, 

237 slices, voxel size = 0.76 x 0.76 x 0.76 mm3, FoV = 255 x 255 x 180 mm3) at the end of the 

session.  

Spider phobia dataset 

The scans were acquired using a 3T Siemens Magnetom Skyra (Siemens, Erlangen, Germany) with a 

32�channel head coil at the University of Vienna. Resting-state scans were collected using a 

multiband accelerated T2*�weighted echo planar imaging (EPI) sequence (56 slices, no slice gap, 

multiband acceleration factor = 4, TR = 1250 ms, TE = 36 ms, FA = 65°, FOV = 192 x 192 x 146 

mm3, voxel size = 2 × 2 × 2.6 mm3, total scan duration = 08:51 min). Structural images were acquired 

with a magnetization�prepared rapid gradient�echo (MPRAGE) sequence (FA = 8°, 208 slices, 

voxel size = 0.8 × 0.8 × 0.8 mm, FOV = 263 × 350 x 350 mm3) To decrease head motion, we taped 

the forehead of the participant to each side of the MRI head coil, which works by providing tactile 

feedback when moving (Krause et al., 2019). Additionally, we used an eye-tracker to verify that 

participants were not falling asleep.   

2.4. MRI preprocessing  

Nicotine use dataset 

All analyses were performed using the CONN20b toolbox (Whitfield-Gabrieli & Nieto-Castanon, 

2012) which ran on MATLAB2018a (The MathWorks Inc, Natick, Massachusetts, USA) and SPM12 

(Wellcome Trust Centre for Neuroimaging, London, United Kingdom). Resting-state data was 

preprocessed using CONN’s default preprocessing pipeline (labeled as "default preprocessing pipeline 

for volume-based analyses (direct normalization to MNI-space)) and included functional realignment 

and unwarp, slice-timing correction, ART-outlier identification, functional and anatomical 

normalization into standard MNI space and segmentation into grey matter, white matter, and CSF. 

Functional smoothing was performed with a 6 mm FWHM Gaussian kernel. Three participants with 

high motion (defined as mean framewise displacement (Power et al., 2012) above 0.3 mm and/or less 

than 5 minutes of valid scans for each resting-state run after outlier censoring) were excluded from 

further analyses. This resulted in N = 29 participants. 

Spider phobia dataset 

This dataset was preprocessed using fMRIPrep 20.2.6 (Esteban et al., 2019), which is based on 

Nipype 1.7.0 (Gorgolewski et al., 2011).  

Anatomical T1-weighted (T1w) images were corrected for intensity non-uniformity (INU) and skull-

stripped. Anatomical segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter 

(GM) was performed on the brain-extracted T1w using Fast (FSL 5.0.9, Zhang et al., 2001), and 
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spatial normalization to MNI152NLin6Asym was performed through nonlinear registration 

with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the 

T1w template. 

Functional preprocessing was performed as follows: generation of a reference volume and its skull-

stripped version using a custom methodology of fMRIPrep, distortion correction of the reference 

based on a phase-difference fieldmap, co-registration of the reference volume to the subject’s T1w 

space using FLIRT (FSL 5.0.9, Jenkinson & Smith, 2001), configured with nine degrees of freedom. 

Next, head-motion parameters with respect to the reference volume (transformation matrices, and six 

corresponding rotation and translation parameters) were estimated using MCFLIRT (FSL 5.0.9, 

Jenkinson, 2002), after which the BOLD time-series were slice-time corrected using AFNI (Cox, 

1996). The corrected BOLD time-series were then resampled to MNINLin6Asym space as a single 

interpolation step that combines transformation parameters that were previously estimated (motion 

corrected transformation, field distortion corrected warp, BOLD-to-T1w transformation, and T1w-to-

MNI template transformation) using antsApplyTransforms (ANTs 2.3.3), configured with Lanczos 

interpolation.  

Framewise Displacement and anatomical component-based noise regressors (aCompCor, Behzadi et 

al., 2007, performed with fMRIprep’s custom thresholds) were also estimated from CSF and the WM 

segmentation maps. 

An additional spatial smoothing step with a Gaussian kernel of 6 mm FWHM was performed in 

CONN. One participant with high motion (mean FD > 0.3 mm) was excluded, resulting in a total 

number of 37 participants for further analysis. 

2.5. Denoising 

While preprocessing pipelines differed, the time courses were denoised using the same pipeline in 

CONN. Preprocessed data was denoised with a linear regression method, which included an 

aCompCor noise correction procedure with the first five principal components of WM masks and CSF 

masks as noise regressors as well as realignment parameters and ART-derived outliers regressors. 

Following CONN’s standard denoising pipeline, we applied default band-pass filtering (0.008-0.09 

Hz) and linear de-trending.  

2.6. ROI-to-ROI functional connectivity analysis  

ROI mask description 

To test for pre-post resting-state changes, we performed an ROI-to-ROI functional connectivity 

analysis of brain regions involved in substance-use disorders (Koob & Volkow, 2016) as ROIs for the 

smokers dataset. We used the same ROIs for the phobia dataset because our primary intention was to 
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check for the generalizability of the findings, and also because many of these regions are also 

associated with anxiety disorders. Specifically, we included anatomical masks of the anterior 

cingulate cortex (ACC), medial prefrontal cortex (mPFC), bilateral amygdala, caudate, hippocampus, 

insula, nucleus accumbens, and thalamus (8 ROIs in total). All the masks were provided by the 

CONN toolbox and corresponded to regions of the Harvard-Oxford atlas, excepted for the mPFC, 

which was derived from ICA analyses based on Human Connectome Project data (Van Essen et al., 

2013) (Figure 1) because we found no equivalent in the Harvard-Oxford atlas.  

 

Figure 1 – Brain regions used as seeds in seed-based analyses and ROI-to-ROI analyses. Masks for 

the bilateral amygdala, dorsal striatum (putamen and caudate), ventral striatum/nucleus accumbens, 

thalamus, insula, hippocampus and anterior cingulate cortex (ACC) were taken from the Harvard-

Oxford atlas. A mask for the medial prefrontal cortex (mPFC) was derived from the Brain 

Connectome Project dataset and provided by the CONN toolbox.  

First-level analysis 

The signal was averaged across voxels within a mask, resulting in one time course per ROI. Pearson’s 

r correlation values between time courses were then computed for each pair of ROIs, and Fischer-

transformed. We will refer to them as resting-state functional connectivity (rsFC) values.  

Second-level analysis 

We performed two-tailed paired t-tests comparing pre-task and post-task rsFC maps and applied 

Bonferroni correction to control for multiple testing (28 tests).  

2.7. Seed-based functional connectivity analysis 

In addition to ROI-to-ROI analyses, we performed seed-based analyses with each ROI as an 

independent seed. Seed-based analysis differs from ROI-to-ROI as it allows probing for rsFC 

between a seed and brain clusters outside of our selected brain regions without prior spatial averaging 

over voxels inside predefined masks. Here, we averaged the time courses within a seed, and we 

computed the correlation value between the seed and each voxel of the whole brain. We used paired t-

tests comparing pre-task and post-task rsFC maps, and used CONN’s default significance threshold 

criterion (uncorrected voxel-wise p < 0.001). To select clusters for which rsFC differs significantly at 

mPFCInsula
Thalamus ACC

HippocampusAmygdala

Dorsal
striatum

Nucleus
accumbens
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post-task compared to pre-task, we chose CONN’s default False Discovery Rate (FDR) correction 

with an additional Bonferroni correction at the cluster level to correct for multiple seeds testing 

(cluster p-FDR-corrected < 0.05/8 = 0.00625).  

2.8. Post hoc comparison between within-subject resting-state changes 

vs. resting-state differences between clinical groups 

The aim of this analysis serves to assess the magnitude of task-induced pre-post resting-state changes 

within a clinical group in comparison to resting-state differences between the clinical groups (spider 

phobia vs. smokers). For this, we selected the connectivity values that displayed significant pre-post 

changes during the ROI-to-ROI analysis and fit a linear mixed-effects model with phobia vs. smokers 

group (clinical trait) as a fixed effect, and pre vs. post (psychological state) as both a fixed effect and 

repeated effect. The analysis was performed using the MIXED procedure in IBM SPSS Statistics, 

version 28 (IBM Corp., Armonk, N.Y., USA).  

3. Results 

3.1. Behavioral changes  

Nicotine use dataset 

Craving levels as assessed by the QSU right before scanning (pre-urge = 10 ± 31) and right after 

scanning (post-urge = 47 ± 30) increased considerably (p < 0.0001, Wilcoxon’s signed rank test).  

Spider phobia dataset 

Tiredness, as assessed orally after the first (pre-tiredness = 3.1 ± 2.0) and after the last run of the 

passive-viewing task (post-tiredness = 5.7 ± 1.6), also increased considerably (p < 0.0001, 

Wilcoxon’s signed rank test). 

3.2. ROI-to-ROI analysis results  

In the nicotine use dataset, the ROI-to-ROI analysis showed a pre-post decrease of rsFC between the 

following pairs of ROIs (Figure 2A): thalamus - insula (p-unc = 0.0040), thalamus - amygdala (p-unc 

= 0.0206), as well as nucleus accumbens - mPFC (p-unc = 0.0285), and an increase of rsFC between: 

hippocampus - amygdala (p-unc = 0.0073), and hippocampus - insula (p-unc = 0.0112) (Figure 2A). 

However, no detected differences survived Bonferroni correction (p > 0.05/28 = 0.0018).  

In the spider phobia dataset, we found a significant decrease of thalamus - amygdala rsFC (p-unc = 

0.0003, p-corr = 0.009) and thalamus – hippocampus rsFC (p-unc = 0.0016, p-corr = 0.0448). There 

was also a decrease of amygdala - mPFC rsFC (p-unc = 0.0053) and hippocampus - mPFC rsFC (p-

unc = 0.0480) but these two did not survive Bonferroni correction (Figure 2B).  
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Figure 2 – ROI-to-ROI pre-post functional connectivity matrix and bar plots. The upper part of the 

matrix contains rsFC before the task, and post-task rsFC is mirrored on the lower half. (A) In the 

nicotine use disorder dataset, paired-t-tests (°p-unc < 0.05, two-tailed) comparing pre and post task 

rsFC showed a decrease in nucleus accumbens–mPFC, thalamus-amygdala, thalamus-insula, and an 

increase in hippocampus-amygdala and insula-hippocampus, but none survived Bonferroni 

correction. (B) In the spider phobia dataset, mPFC-amygdala, mPFC-hippocampus, thalamus-

amygdala, and thalamus-hippocampus rsFC significantly decreased, with the last two connections 

being significant after Bonferroni correction (*p < 0.05/28 = 0.0018). Abbreviations: medial 

prefrontal cortex (mPFC), anterior cingulate cortex (ACC). Error bars in bar plots correspond to 

SEM. Nsmokers = 29. Nphobia = 37. 

3.3. Seed-based analysis results 

In the nicotine use dataset, pre-post task rsFC changes comprised (1) decreased rsFC between the 

insular seed to a cluster in the right thalamus, (2) decreased rsFC between the dorsal striatal seed and 

a cluster in the lingual gyrus, and (3) increased rsFC between the mPFC seed to clusters in various 
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cortical areas (e.g supramarginal gyrus, precentral gyrus) and a decreased rsFC to clusters in the 

cerebellum.  

In the spider phobia dataset, we found (1) decreased rsFC between the ACC seed and cortical regions, 

and increased rsFC with a cerebellar cluster, (2) decreased rsFC between the amygdala seed and a 

thalamic cluster, (3) increased rsFC between the dorsal striatal seed to clusters in the cerebellum and 

decreased connectivity to several cortical areas, and (4) increased rsFC between the hippocampus and 

cortical clusters including visual areas.  

Finally, in both datasets, we found a large significant decrease in connectivity between the thalamic 

seed and clusters in cortical regions, including the middle temporal gyrus, supplementary motor area, 

anterior cingulate cortex, precuneus and insula. In addition, the spider phobia dataset showed 

significantly increased thalamo-cerebellar connectivity and intra-thalamic connectivity during the 

post run as compared to the pre run. We also found increased intra-thalamic connectivity in the 

nicotine use dataset (albeit uncorrected for multiple seeds testing). All clusters are reported in Table 1 

and Table 2 and illustrated in Figure 3. 
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Figure 3 – Seed-based functional connectivity changes following a smoking cue-reactivity task and a 

phobic cue-reactivity task in nicotine use disorder and spider phobia, respectively. Voxel-level p < 

0.001 and cluster-level p-FDR < 0.05 without correction for multiple seeds were used here as 

significance threshold for illustrative purposes. Clusters that survived an additional Bonferroni 

correction for multiple seed testing are reported in Table 1 and 2.  
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Seed Cluster 
(X,Y,Z) 

Corresponding region (AAL 
labelling)  

Size Cluster 
p-FDR 

Increase (+) 
Decrease (-) 

Accumbens +12 +50 -02 Paracingulate Gyrus R 72 0.018065 - 
+12 +44 +54 Frontal Pole R 59 0.018065 - 
+02 +54 -16 Frontal Medial Cortex 

Frontal Pole R 
58 0.018065 - 

Amygdala      
ACC      
Dorsal 
Striatum 

-16 -58 -02 Lingual Gyrus L 104 0.003159* - 
+16 -58 -06 Lingual Gyrus R 90 0.004050* - 

Hippocampus +14 +38 +54 Superior Frontal gyrus R 
Frontal Pole R 

59 0.044545 - 

-64 -08 +18 Postcentral Gyrus L 
Precentral Gyrus L 

55 0.044545 + 

Insula +04 -18 +04 Thalamus R 91 0.003493* - 
mPFC -56 -46 +52 Supramarginal Gyrus L 311 <0.0000001* + 

-38 -58 +46 Lateral Occipital Cortex L 
Superior Parietal Lobule L 
Angular Gyrus L 

81 0.006103* + 

+06 -46 -04 Lingual Gyrus R 
Vermis 4 5  
Cerebelum 4 5 

80 0.006103* - 

-04 -50 +00 Lingual Gyrus L 56 0.027660 - 
+58 -06 -16 Middle Temporal Gyrus R 51 0.030029 - 
-26 -50 +34 no AAL label 50 0.030029 + 
-20 -54 +04 Precuneus 48 0.030412 - 

Thalamus +56 -40 +04 Middle Temporal Gyrus R 
Lateral Occipital Cortex R 
Supramarginal Gyrus R 
Angular Gyrus R 

681 <0.0000001* - 

00 -10 +56 Supplementary Motor Area R/L 
Anterior Cingulate Cortex 
Precentral Gyrus R/L 

411 <0.0000001* - 

-04 -46 +54 Precuneus 
Postcentral Gyrus L 
Precentral Gyrus R 

193 0.000013* - 

+46 +08 -12 Temporal Pole R 
Planum Polare R 

175 0.000023* - 

+44 -04 +06 Insular Cortex R 
Central Opercular Cortex R 

100 0.001397* - 

+56 +14 +08 Inferior Frontal Gyrus R 97 0.001397* - 
+40 -08 +44 Precentral Gyrus R 96 0.001397* - 
-44 -18 +10 Heschl’s Gyrus L 

Central Opercular Cortex L 
Insular Cortex L 

70 0.007211 - 

+56 -40 +04 Temporal Pole L 62 0.000928 - 
+28 +42 -08 Frontal Pole R 59 0.001164 + 
-36 -68 +04 Lateral Occipital Cortex L 55 0.001586 - 
-44 -04 +08 Central Opercular Cortex L 52 0.002009 - 
+16 -10 +08 Thalamus R 52 0.002009 + 
+58 +02 +30 Precentral Gyrus R 50 0.002358 - 
-18 -14 +10 Thalamus R 

Thalamus L 
45 0.001397 + 

-18 +14 +16 Caudate L 44 0.027058 + 
+36 -44 -20 Temporal Occipital Fusiform 

Cortex R 
41 0.032880 - 

Table 1 – Seed-based functional connectivity changes following a smoking cue-reactivity task. 

Clusters were labelled using the Automated Anatomical Labeling (AAL) Atlas by the CONN toolbox. 

The table reports all clusters with p-uncorrected < 0.001 at the voxel level and p-FDR < 0.05 at the 

cluster level. *clusters that survive an additional Bonferroni correction to control for multiple seeds 

testing at the cluster level (p-FDR < 0.05/8).  
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Seed Cluster 
(X,Y,Z) 

Corresponding region (AAL 
labelling)   

Size Cluster 
p-FDR 

Increase (+) 
Decrease (-) 

Accumbens      
Amygdala +02 -24 +08 Thalamus R 174 0.002637* - 

+32 +56 -08 Frontal Pole R 143 0.004492* + 
-06 +34 +06 Cingulate Gyrus, anterior 114 0.010248 - 
+38 -72 -28 Cerebelum 83 0.032384 + 

ACC -10 -24 +52 Precentral Gyrus R/L 
Postcentral Gyrus R/L 
Superior Parietal Lobule L 
Precuneous Cortex 

1153 <0.000001* - 

+24 -40 +58 Postcentral Gyrus R 
Superior Parietal Lobule R 

213 0.000293* - 

+52 -14 -08 Middle Temporal Gyrus,  
posterior R 

174 0.000707* - 

+30 +16 +50 Middle Frontal Gyrus R 171 0.000707* + 
+12 -52 -48 Cerebellum 164 0.000744* + 
-12 -76 -26 Cerebellum 81 0.020264 + 
+24 -22 +76 Precentral Gyrus R 78 0.020614 - 
-30 -78 +42 Lateral Occipital Cortex,  

superior L 
73 0.023657 + 

Dorsal 
Striatum 
 

-62 +00 +26 Central Opercular Cortex L 
Precentral Gyrus L 
Planum Temporale L 
Postcentral Gyrus L 
Superior Temporal Gyrus, 
posterior L 
Supramarginal Gyrus, 
 posterior L 
Planum Polare 

1294 <0.000001* - 

+08 -24 +52 Precentral Gyrus R/L 
Postcentral Gyrus R 

862 <0.000001* - 

-40 -12 +44 Postcentral Gyrus L 
Precentral Gyrus L 

690 <0.000001* - 

-14 -50 -52 Cerebellum 398 0.000001* + 
-24 -30 +50 Precentral Gyrus L 

Postcentral Gyrus L 
356 0.000002* - 

+46 -16 +56 Postcentral Gyrus R 
Precentral Gyrus R 

273 0.000022* - 

+26 -52 -54 Cerebelum 188 0.000372* + 
+40 -36 +10 Planum Temporale R 156 0.001114* - 
+50 -10 +18  Central Opercular Cortex R 152 0.001162* - 
+16 -54 -46 Cerebelum 111 0.005882* + 

Hippocampus +08 -80 +32 Cuneal Cortex R/L 
Frontal Pole L 
Lateral Occipital Cortex, 
Superior L 

333 0.000011* + 

-08 +60 +18 Frontal Pole L 124 0.006988 - 
-14 -86 +48 Lateral Occipital Cortex, 

Superior L 
119 0.006988 + 

Insula      
mPFC      
Thalamus +08 -24 +52 Postcentral Gyrus R/L 

Precentral Gyrus R/L 
Superior Temporal Gyrus, 
posterior L 
Superior Parietal Lobule R 
Superior Temporal Gyrus, 
anterior L 
Superior Parietal Lobule L 
Planum Temporale L 
Middle Temporal Gyrus, 
temporoccipital part L 
Supramarginal Gyrus,  
posterior L 

8880 <0.000001* - 
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Middle Temporal Gyrus,  
posterior L 
Central Opercular Cortex L 
Temporal Pole L 

-02 -20 +08 Thalamus R/L 1183 <0.000001* + 
+58 -12 -02 Middle Temporal Gyrus,  

posterior R 
Superior Temporal Gyrus,  
anterior/posterior R 

844 <0.000001* - 

+44 -50 -30 Cerebellum 799 <0.000001* + 
-20 -34 -44 Cerebellum 680 <0.000001* + 
-02 +34 +24 Cingulate Gyrus, 

anterior  
Paracingulate Gyrus R 

301 0.000014* + 

-54 -68 +08 Lateral Occipital Cortex,  
inferior L 

223 0.000390* - 

-06 -84 +32 Cuneal Cortex L 140 0.002637* - 
+06 -74 +26 Cuneal Cortex R 137 0.002642* - 
+00 -56 -36 Vermis 106 0.008652 + 
+10 -56 -02 Lingual Gyrus R 99 0.009813 - 
-16 -58 -08 Lingual Gyrus L 99 0.009813 - 
+62 +00 +14 Precentral Gyrus R 84 0.017996 - 
-12 -76 -22 Cerebelum 61 0.045306 + 
+48 +22 -28 Temporal Pole R 58 0.047569 - 

Table 2 – Seed-based functional connectivity changes following exposure to spider stimuli. Clusters 

were labelled using the Automated Anatomical Labeling (AAL) Atlas by the CONN toolbox. The table 

reports all clusters with p-uncorrected < 0.001 at the voxel level and p-FDR < 0.05 at the cluster 

level. *clusters that survive an additional Bonferroni correction (p-FDR < 0.05/8) to control for 

multiple seeds testing at the cluster level.  

3.4. Post hoc comparison between within-subject resting-state changes 

vs. resting-state differences between clinical groups 

In the ROI-to-ROI analysis, we found significant pre-post changes in thalamus-amygdala rsFC (p-unc 

= 0.0003; p-corr = 0.009) and in thalamus-hippocampus rsFC (p-unc = 0.0016, p-corr = 0.0448) in the 

spider phobia group using paired-t-tests. For the thalamus-hippocampus connection, a linear mixed-

effects model revealed a significant main effect of both clinical group (F = 13.6; p < 0.001) and state 

(F = 11.6; p = 0.001). For the thalamus-amygdala connection, however, there was a significant main 

effect of the psychological state (i.e. pre vs. post task) (F = 20.1; p < 0.001) but no significant effect 

of the clinical trait (i.e. smokers vs. phobics) (F = 0.451; p = 0.504), indicating that pre-post changes 

were even greater than differences between groups for this pair.  
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Figure 4 - Comparison between within-subject changes (pre vs. post task) and between-group 

differences (phobics vs. smokers). Pre-post change of thalamus-amygdala rsFC exceeded the 

difference between groups.  

4. Discussion 

Previous studies have shown that behavioral tasks (Cecchetto et al., 2019; Sarabi et al., 2018) can 

affect fMRI resting-state functional connectivity of healthy populations, but such alterations have 

never been investigated in clinical populations. Here, we compared resting-state functional 

connectivity before and after a smoking cue-reactivity task in smokers and a spider cue-reactivity task 

in spider phobics. We found significant rsFC alterations in the nicotine use disorder dataset when the 

mPFC, insula, dorsal striatum and thalamus were defined as seeds, and in the spider phobia dataset, 

when the amygdala, ACC, dorsal striatum, hippocampus, and thalamus were defined as seeds. Of 

note, in both datasets, we found a decreased rsFC between the thalamic seed and cortical areas, as 

well as increased rsFC with a cluster within the thalamus itself, which indirectly reflects an increase in 

thalamic regional homogeneity. Finally, thalamus-amygdala and thalamus-hippocampus ROI-to-ROI 

rsFC were significantly reduced for spider phobics, and this thalamus-amygdala rsFC reduction in 

spider phobics was even greater than the difference with rsFC of smokers.  

Resting-state data has long been a potential candidate for identifying clinical biomarkers of mental 

disorders, including tobacco use disorder (John R. Fedota & Stein, 2015), with the hope that tracking 

treatment outcome and stratifying disorders into subtypes would help designing personalized 

treatment plans. However, the field suffers from important drawbacks: uncertainty of machine-

learning target labelling (e.g. psychiatrists can disagree when assigning a diagnosis to a patient), 

unclear boundaries between psychiatric disorders, mismatch between disorder definition, symptoms 

and neural underpinnings, etc. (Parkes et al., 2020; Yamada et al., 2017). Further, single-study 

findings tend to poorly generalize across multiple studies, an issue that has been partly attributed to 

site-specific technical characteristics (imaging sequence, scanner type, field strength…) or differences 

in data acquisition protocols (Yamashita et al., 2019). Besides these technical aspects, differences in 

psychological states can also contribute to data heterogeneity. Our results in two different clinical or 
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subclinical populations corroborate this view, as task-induced increase of craving and phobic alertness 

were accompanied with large resting-state changes in disorder-relevant brain regions. In particular, 

for the thalamus-amygdala rsFC, within-subject pre-post alterations even exceeded the difference 

between clinical groups during pre-rest periods. This is remarkable since, between these two groups, 

there were major differences in scanner type, acquisition parameters, and preprocessing pipeline. This 

indicates that this connection, known for being highly relevant for addiction (Rich et al., 2019) and 

fear processes (Silva et al., 2021), may be more sensitive to psychological states than to clinical traits.  

In the spider phobia group, other alterations include a decreased hippocampus-thalamus ROI-to-ROI 

rsFC, as well as an increase of hippocampal seed connectivity with visual areas, which could reflect 

hippocampal reorganization related to stress, fear retrieval or fear extinction due to being exposed to 

aversive stimuli (Chang & Yu, 2019).  The dorsal striatum also becomes connected to somatosensory 

cortical areas (postcentral gyrus), and motor control areas (precentral gyrus), which might be linked to 

fight-or-flight mechanisms or inhibitory control mechanisms following fear exposure (Stanley et al., 

2021). In the smokers group, other seed-based connectivity alterations include a decreased 

connectivity between the thalamus and regions such as the precunous, the ACC and the insula. This is 

in line with previous studies that contrasted smokers and non-smokers (Chaoyan Wang et al., 2018), 

or relapsers vs. non-relapsers (Chao Wang et al., 2020), which indicates that these brain changes 

might be related to psychological changes in the nicotine use disorder patients (e.g. increased 

craving).  

However, the pre-post changes of psychological and neural states are not uniquely driven by the 

clinical specificities of the task, and the change of connectivity does not exclusively have to be 

attributed to changes of urge to smoke or fear states. Many other psychological states vary from pre to 

post periods, among which cognitive fatigue, tiredness, or sleepiness at the end of a scanning session, 

as well as hyper-vigilance and hyper-attention to sensory bottom-up information at the beginning of 

the session are not uncommon. This is notably illustrated by an increase of self-reported tiredness 

scores over the course of scanning. The similarity between changes in thalamic-based connectivity in 

both datasets, namely increase of intra-thalamic connectivity and decrease of cortico-thalamic 

connectivity, is quite remarkable. Among many other processes, the thalamus is known for playing a 

key role in regulating sleep-wake cycles (Scammell et al., 2017). Akin to our study, human (Hale et 

al., 2016) and animal studies (Sysoev et al., 2021) also found both decreased thalamo-cortical and 

increased intra-thalamic connection when tracking participants or mice during the process of falling 

asleep. Further, decreased thalamo-cortical connectivity has been associated with unconsciousness 

induced by anesthesia (Akeju et al., 2014) and being sleep-deprived (Shao et al., 2013), whereas 

symmetrically, increased thalamo-cortical functional connectivity has been linked to chronic 

insomnia (Kim et al., 2021). Considering the consistency of the results across a wide range of 

consciousness/sleep-related operationalizations, this decrease of thalamo-cortical connectivity has 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.20.508750doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.20.508750
http://creativecommons.org/licenses/by-nc/4.0/


 18

been proposed as a solid hallmark for changes of consciousness states (Picchioni et al., 2014). This 

indicates that our thalamic connectivity change likely reflects a reduction of vigilance (using an eye 

tracker, we did not see any of the participants of the spider phobia study fall asleep) which may 

further confound biomarker detection. However, the current data is not conclusive if the vigilance 

reduction is due to patients having been in a hyper-vigilant state during pre-task resting-state scans, 

due to vigilance reducing below baseline levels during post-task resting-state scans, or both. 

Limitations:  

First, the clinical interpretability of our disorder-specific findings is limited by the lack of additional 

control groups. For instance, to find rsFC changes that are specific to the smoking task or the 

smoking population, a control group of smokers exposed to non-smoking related pictures would be 

required. Second, to firmly establish the interpretation of the thalamus-related changes that we 

observed in both groups are associated with changes in vigilance, more rigorous measures on 

vigilance and tiredness would be beneficial. Third, the comparability between the spider phobia group 

and the nicotine use group also needs to take into account the technical differences in fMRI 

acquisition (e.g. MR-scanner, imaging sequence), paradigm (e.g. duration of the resting-state scans, 

eyes closed or open), and data preprocessing (e.g. SPM12 vs. AFNI). On the other hand, the finding 

that the pre- vs. post-task resting-state changes are more pronounced than the resting-state 

connectivity differences between the two clinical groups is even more remarkable given the data 

acquisition, paradigm, and data analysis differences. Finally, our study included two clinical 

populations to generalize beyond substance use disorder. While it is likely that similar effects that are 

specific to the clinical condition and more general effects (such as vigilance changes) will also be 

found in other clinical conditions, this will need to be demonstrated in further studies.  

Conclusion:  

In all, this study confirms that resting-state measures in clinical populations can be substantially 

altered by task-induced psychological states. Hence, pooling pre-task and post-task resting-state scans 

for biomarker detection of stable clinical traits should consider the psychological state of the patients. 

This implies that when publishing and making resting-state data publicly available (Tanaka et al., 

2021; Van Essen et al., 2013), the complete experimental design should be reported as standard 

practice. This includes a detailed description of the resting-state acquisition, and whether or not other 

tasks were performed before the resting-state acquisition, no matter if inside or outside the MR 

scanner. Even though task-free resting-state acquisitions are very suitable for pooling of data in search 

for potential biomarkers in psychiatry, data aggregation and interpretation of results needs to consider 

not just technical differences but also the psychological states of the patients. 
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