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Abstract

Resting-state functional connectivity has generated great hopes as a potential brain biomarker for
improving prevention, diagnosis, and treatment in psychiatry. This neuroimaging protocol can
routinely be performed by patients and does not depend on the specificities of atask. Thus, it seems
ideal for big data approaches that require aggregating data across multiple studies and sites. However,
technical variability, diverging data analysis approaches, and differences in data acquisition protocols
might introduce heterogeneity to the aggregated data. Besides these technical aspects, the
psychological state of participants might also contribute to heterogeneity. In healthy participants,
studies have shown that behavioral tasks can influence resting-state measures, but such effects have
not yet been reported in clinical populations. Here, we fill this knowledge gap by comparing resting-
state functional connectivity before and after clinically relevant tasks in two clinical conditions,
namely substance use disorders and phobias. The tasks consisted of viewing craving-inducing and
spider anxiety provoking pictures that are frequently used in cue-reactivity studies and exposure
therapy. We found distinct pre- vs. post-task resting-state connectivity differences in each group, as
well as decreased thalamo-cortical and increased intra-thalamic connectivity which might be
associated with decreased vigilance in both groups. Notably, the pre- vs. post-task thalamus-amygdala
connectivity change within a patient cohort seems more pronounced than the difference of that
connection between the smoker vs. phobia clinical trait. Our results confirm that resting-state
measures can be strongly influenced by changes in psychological states that need to be taken into
account when pooling resting-state scans for clinical biomarker detection. This demands that resting-
state datasets should include a complete description of the experimental design, especially when atask
preceded data collection.
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1. Introduction

Resting-state functional brain connectivity is a promising tool for the development of potential
biomarkers for improving prevention, diagnosis, and treatment in psychiatry. It is a task-free
neuroimaging protocol that patients can generally perform easily irrespective of the type or the
severity of their condition. Indeed, in recent years, candidate resting-state biomarkers have been
reported in nearly all psychiatric conditions. For example, based on resting-state data, relatively high
levels (> 80%) of classification accuracy have been achieved for psychiatric conditions that include
depression (Drysdale et al., 2017), post-traumatic-stress disorder (Nicholson et al., 2019, 2020),
consciousness states (Campbell et al., 2020), or tobacco use disorder (Wetherill et a., 2019).

Another key advantage of resting-state biomarkers is that they do not depend on the specificities of a
task. Consequently, they appear ideal for between-study comparisons and for collapsing datasets from
multiple studies and multiple sites, which would improve generalizability and statistical power. This
is of critical importance, as correlation-based approaches are gradually replaced by predictive
machine-learning methods, which, although more powerful, require large amounts of data (Khoda et
al., 2019). Pooling multiple resting-state studies isincreasingly popular (Abraham et al., 2017; Tanaka
et a., 2021; Turner, 2013), but it is far from trivial, as shown by the modest success of recent
multisite studies. Classification algorithms of major depressive disorder (Xia et al., 2019) and
schizophrenia (Cai et al., 2020), for instance, poorly generalized from one study to another despite
high classification accuracy within single studies.

Importantly, one should not take for granted that the gain from increasing sample size will
systematically outweigh the introduction of heterogeneity (Bari et al., 2019). Heterogeneity can be
due to technical variability (e.g. scanner type, field strength, imaging sequences...) (Yamashita et a.,
2019), different data analysis approaches such as functional connectivity, amplitude of low frequency
fluctuations, graph theory, clustering algorithms and pattern classification, as well as differences in
data acquisition protocols. Despite being task-free, resting-state protocol variables such as acquisition
duration and whether or not the participants should fixate or close their eyes, were intensely
researched and discussed (Agcaoglu et al., 2019). However, heterogeneity can also be due to
differences in transient psychological states. Although many studies have tried to predict rather stable
traits, resting-state measures may not display the same level of within-subject stability. Indeed,
several studies on healthy participants reported resting-state functional connectivity changes to the
hippocampus after an associative memory task (Tambini et al., 2010), to the dorsal attention network,
default mode network, and visual networks after a perceptual learning task (Lewis et al., 2009), to
motor areas after a finger-tapping task (Sarabi et al., 2018), or to the olfactory piriform cortex after an
olfactory task (Cecchetto et a., 2019; Sarabi et al., 2018)). This indicates that the psychological state
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of the participants alters resting-states. A similar effect might be expected in patients, thus affecting

the biomarker quality of resting-state acquisitions for clinical purposes.

Because resting-state scans are sometimes acquired before and sometimes after other behavioral or
neuroimaging tasks, we — for the first time — compare systematically pre- vs. post-task resting-state
differences in clinical populations. Specifically, this study investigates how resting-state functional
connectivity changes in smokers and spider-fearful individuals from before to after a cue-reactivity
exposure task that consisted of presenting nicotine or spider cues, respectively. In patient populations,
cue-reactivity tasks are frequently used in neuroimaging paradigms to identify physiological and
neural correlates of craving or anxiety, respectively. The presentation of relevant cues is also key to
exposure-based interventions, which is one of the most prominent therapeutic approaches in
psychiatry. Being exposed to such cues changes the psychological state of the participant, as it will
increase craving in smokers or affect the anxiety levels in phobic populations. This change will likely
manifest in subsequent resting-state measures. We firs tested the hypothesis that regting-state
connectivity is atered in clinical populations by behavioral tasks in smokers. To test whether our
results were specific to smokers or whether they generalize to other clinical populations, we applied

the same analysis to an independent dataset of spider fearful individuals.

2. Material and methods
2.1. Participants

Nicotine use dataset

We recruited 32 participants with DSM-5 criteria for nicotine use disorder (age: 26.0+5.3; gender:
16F, 15M, 1 non-binary; sex: 17F, 15M; daily cigarette consumption: 11.5+5.6, smoking history:
7.4+4.8 years of smoking, Fagerstrom Test for Nicotine Dependence (FTND) score = 2.8+1.8). We
instructed participants to abstain from smoking for one hour before the experiment. Exclusion criteria
were the use of non-cigarette tobacco subgtitutes such as nicotine patches, mental or neurological
disorders, and MRI-incompatibility criteria (metal implants, pregnancy, etc.). The study was
conducted at the Psychiatric University Hospital of Zurich and was approved by the local ethics
committee of the Canton of Zurich. Three participants were excluded due to high scanner motion,

resulting in afinal analysis sasmple of N = 29.

Spider phobia dataset
This dataset is a subset of alarger study, of which the MRI acquisition was ill ongoing at the time

we performed this analysis (N = 38 as of June 15", 2022). Participants were individuals with sub-
clinical spider phobia, which we defined as having a Spider Anxiety Screening (SAS, Rinck et a.,
2002) score above or equal to 8 (age: 22.4 + 3.8; gender: 30F, 7M; sex: 30F, 7M); Fear of Spider
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Questionnaire (Szymanski & O’Donohue, 1995) score: 51.3+21.0). Exclusion criteria were MRI-
incompatibility and mental or neurological disorders. This sudy was conducted at the University of
Vienna and was approved by the ethics committee of the University of Vienna. One participant was
excluded due to motion, resulting in afinal sample of N = 37 for imaging analyses.

For both studies, participants gave informed written consent and received financial compensation.
2.2. Experimental design

Nicotine use dataset

We collected two 7 minutes long resting-state runs, for which we instructed the participants to let
their mind wander while looking at a fixation dot. Between the two resting-state runs, the participants
underwent a smoking cue-reactivity task, which consisted in viewing 330 craving-inducing pictures
from the Smoking Cue Database (Manoliu et al., 2021) and other smoking databases. In total, the pre-
task and the post-task resting-state runs were separated by a 20-minute-long cue-reactivity task. We
refer the reader to Haugg et a., 2022 for more details regarding the cue-reactivity task. We assessed
smoking urge levels with the German version of the Questionnaire on Smoking Urges (QSU-G, Toll
et al, 2006), once before the scanning session and a second time after the scanning session.

Spider phobia dataset

The experimental design of the spider cue-reactivity study was analogous to the nicotine use dataset

described previously. Spider phobics were passively exposed to 300 pictures of spiders or neutral
pictures, divided into 5 runs of about 7 minutes. 6 button-press catch trials were also randomly
included in each run to increase the attention and the engagement of the participant. After the first and
the last passive-viewing runs, we asked the participants how tired they felt on a scale of 1 to 10.
However, due to technical issues with the interphone (e.g., drop in sound quality), we collected pre-
post tiredness data for N = 26 participants only. Before and after the passive-viewing task, we
acquired resting-runs of about 9 minutes each for which we asked the participants to relax and look at
the fixation cross. Approximately 35 minutes elapsed between the end of first rest period and the start
of the second one. Of note, all the participants in this group performed a Behavioral Avoidance Test
(BAT) prior to being scanned, followed by a 15-minute walk to the scanning site.

2.3.  MRI acquisition parameters

Nicotine use dataset

MR scans were collected with a 3T Philips Achieva system (Philips Hedthcare, Best, The
Netherlands) using a 32 phased-array head coil at the Psychiatric University Hospital, Zurich. The
two resting-state functional scans were acquired with a T2*-weighted gradient-echo planar imaging
(EPI) sequence (repetition time (TR) = 2000ms, echo time (TE) = 35ms, flip angle (FA) = 82°, 33
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slices, no slice gap, voxel size = 3 x 3 x 3 mm?®, field of view (FoV) = 240 x 240 x 99 mm’, total scan
duration = 7:12 min per run). A high-resolution anatomical T1-weighted scan was acquired (FA = 8°,
237 dlices, voxel size = 0.76 x 0.76 x 0.76 mm®, FoV = 255 x 255 x 180 mm°) at the end of the
session.

Spider phobia dataset

The scans were acquired using a 3T Siemens Magnetom Skyra (Siemens, Erlangen, Germany) with a

320channel head coil at the University of Vienna. Reging-state scans were collected using a
multiband accelerated T2* Mweighted echo planar imaging (EPI) sequence (56 dices, no slice gap,
multiband acceleration factor = 4, TR = 1250 ms, TE = 36 ms, FA = 65°, FOV = 192 x 192 x 146
mm®, voxel size =2 x 2 x 2.6 mm°, total scan duration = 08:51 min). Structural images were acquired
with a magnetizationprepared rapid gradient Jecho (MPRAGE) sequence (FA = 8°, 208 dlices,
voxel size = 0.8 x 0.8 x 0.8 mm, FOV = 263 x 350 x 350 mm®) To decrease head motion, we taped
the forehead of the participant to each side of the MRI head coil, which works by providing tactile
feedback when moving (Krause et al., 2019). Additionally, we used an eye-tracker to verify that
participants were not falling asleep.

24. MRI preprocessing

Nicotine use dataset

All analyses were performed using the CONNZ20b toolbox (Whitfield-Gabrieli & Nieto-Castanon,
2012) which ran on MATLAB2018a (The MathWorks Inc, Natick, Massachusetts, USA) and SPM12
(Wellcome Trust Centre for Neuroimaging, London, United Kingdom). Reding-state data was

preprocessed using CONN' s default preprocessing pipeline (labeled as "default preprocessing pipeline
for volume-based analyses (direct normalization to MNI-space)) and included functional realignment
and unwarp, dicetiming correction, ART-outlier identification, functional and anatomical
normalization into standard MNI space and segmentation into grey meatter, white matter, and CSF.
Functional smoothing was performed with a 6 mm FWHM Gaussian kernel. Three participants with
high motion (defined as mean framewise displacement (Power et al., 2012) above 0.3 mm and/or less
than 5 minutes of valid scans for each resting-state run after outlier censoring) were excluded from

further analyses. Thisresulted in N = 29 participants.

Spider phobia dataset

This dataset was preprocessed using TMRIPrep 20.2.6 (Esteban et al., 2019), which is based on
Nipype 1.7.0 (Gorgolewski et al., 2011).

Anatomical T1-weighted (T1w) images were corrected for intensity non-uniformity (INU) and skull-

stripped. Anatomical segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter
(GM) was performed on the brain-extracted T1w using Fast (FSL 5.0.9, Zhang et al., 2001), and
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gpatial normalization to MNI152NLin6Asym was performed through nonlinear regidration
with antsRegidtration (ANTs 2.3.3), using brain-extracted versions of both Tlw reference and the
T1w template.

Functional preprocessing was performed as follows. generation of a reference volume and its skull-
stripped version using a custom methodology of fMRIPrep, distortion correction of the reference
based on a phase-difference fieldmap, co-registration of the reference volume to the subject’s T1w
space using FLIRT (FSL 5.0.9, Jenkinson & Smith, 2001), configured with nine degrees of freedom.
Next, head-motion parameters with respect to the reference volume (transformation matrices, and six
corresponding rotation and trandation parameters) were estimated using MCFLIRT (FSL 5.0.9,
Jenkinson, 2002), after which the BOLD time-series were dlice-time corrected using AFNI (Cox,
1996). The corrected BOLD time-series were then resampled to MNINLin6Asym space as a single
interpolation step that combines transformation parameters that were previously estimated (motion
corrected transformation, field distortion corrected warp, BOLD-to-T1w transformation, and T1w-to-
MNI template transformation) using antsApplyTransforms (ANTs 2.3.3), configured with Lanczos
interpolation.

Framewise Displacement and anatomical component-based noise regressors (aCompCor, Behzadi et
al., 2007, performed with fMRIprep’s custom thresholds) were also estimated from CSF and the WM
segmentation maps.

An additional spatial smoothing step with aGaussian kernel of 6 mm FWHM was performed in
CONN. One participant with high motion (mean FD > 0.3 mm) was excluded, resulting in a total

number of 37 participantsfor further analysis.
2.5. Denoising

While preprocessing pipelines differed, the time courses were denoised using the same pipeline in
CONN. Preprocessed data was denoised with a linear regression method, which included an
aCompCor noise correction procedure with thefirg five principal components of WM masks and CSF
masks as noise regressors as well as realignment parameters and ART-derived outliers regressors.
Following CONN’s standard denoising pipeline, we applied default band-pass filtering (0.008-0.09

Hz) and linear de-trending.
2.6. ROI-to-ROI functional connectivity analysis

ROI mask description
To test for pre-post resting-state changes, we performed an ROI-to-ROI functional connectivity

analysis of brain regions involved in substance-use disorders (Koob & Volkow, 2016) as ROIsfor the

smokers dataset. We used the same ROl s for the phobia dataset because our primary intention was to
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check for the generalizability of the findings, and aso because many of these regions are also
associated with anxiety disorders. Specifically, we included anatomical masks of the anterior
cingulate cortex (ACC), media prefrontal cortex (mPFC), bilateral amygdala, caudate, hippocampus,
insula, nucleus accumbens, and thalamus (8 ROIs in total). All the masks were provided by the
CONN toolbox and corresponded to regions of the Harvard-Oxford atlas, excepted for the mPFC,
which was derived from ICA analyses based on Human Connectome Project data (Van Essen et al.,
2013) (Figure 1) because we found no equivalent in the Harvard-Oxford atlas.

Dorsal
striatum  Thalamus

Insula

- Nucleus
Amygdala  Hippocampus accumbens

Figure 1 — Brain regions used as seeds in seed-based analyses and ROI-to-ROI analyses. Masks for
the hilateral amygdala, dorsal striatum (putamen and caudate), ventral striatum/nucleus accumbens,

thalamus, insula, hippocampus and anterior cingulate cortex (ACC) were taken from the Harvard-
Oxford atlas. A mask for the medial prefrontal cortex (mPFC) was derived from the Brain
Connectome Project dataset and provided by the CONN tool box.

First-level analysis

The signal was averaged across voxels within a mask, resulting in one time course per ROI. Pearson’s
r correlation values between time courses were then computed for each pair of ROIs, and Fischer-
transformed. We will refer to them as resting-state functional connectivity (rsFC) values.

Second-level analysis

We performed two-tailed paired t-tests comparing pre-task and post-task rsFC maps and applied
Bonferroni correction to control for multiple testing (28 tests).

2.7. Seed-based functional connectivity analysis

In addition to ROI-to-ROIl analyses, we performed seed-based analyses with each ROl as an
independent seed. Seed-based analysis differs from ROI-to-ROI as it alows probing for rsFC
between a seed and brain clusters outside of our selected brain regions without prior spatial averaging
over voxels inside predefined masks. Here, we averaged the time courses within a seed, and we
computed the correlation value between the seed and each voxel of the whole brain. We used paired t-
tests comparing pre-task and post-task rsFC maps, and used CONN'’s default significance threshold
criterion (uncorrected voxel-wise p < 0.001). To select clusters for which rsFC differs significantly at
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post-task compared to pre-task, we chose CONN'’s default False Discovery Rate (FDR) correction
with an additional Bonferroni correction at the cluster level to correct for multiple seeds testing
(cluster p-FDR-corrected < 0.05/8 = 0.00625).

2.8. Post hoc comparison between within-subject resting-state changes

vs. resting-state differences between clinical groups

The aim of this analysis serves to assess the magnitude of task-induced pre-post resting-state changes
within a clinical group in comparison to resting-state differences between the clinical groups (spider
phobia vs. smokers). For this, we selected the connectivity values that displayed significant pre-post
changes during the ROI-to-ROI analysis and fit a linear mixed-effects model with phobia vs. smokers
group (clinical trait) as a fixed effect, and pre vs. post (psychological state) as both a fixed effect and
repeated effect. The analysis was performed using the MIXED procedure in IBM SPSS Statistics,
version 28 (IBM Corp., Armonk, N.Y ., USA).

3. Results
3.1. Behavioral changes

Nicotine use dataset

Craving levels as assessed by the QSU right before scanning (pre-urge = 10 + 31) and right after
scanning (post-urge = 47 + 30) increased considerably (p < 0.0001, Wilcoxon's signed rank test).
Spider phobia dataset

Tiredness, as assessed orally after the first (pre-tiredness = 3.1 = 2.0) and after the last run of the
passive-viewing task (pod-tiredness = 5.7 + 1.6), also increased considerably (p < 0.0001,
Wilcoxon's signed rank test).

3.2. ROI-to-ROI analysisresults

In the nicotine use dataset, the ROI-to-ROI analysis showed a pre-post decrease of rsFC between the
following pairs of ROIs (Figure 2A): thalamus - insula (p-unc = 0.0040), thalamus - amygdala (p-unc
= 0.0206), as well as nucleus accumbens - mPFC (p-unc = 0.0285), and an increase of rsFC between:
hippocampus - amygdala (p-unc = 0.0073), and hippocampus - insula (p-unc = 0.0112) (Figure 2A).
However, no detected differences survived Bonferroni correction (p > 0.05/28 = 0.0018).

In the spider phobia dataset, we found a significant decrease of thalamus - amygdala rsFC (p-unc =
0.0003, p-corr = 0.009) and thalamus — hippocampus rsFC (p-unc = 0.0016, p-corr = 0.0448). There
was also a decrease of amygdala - mPFC rsFC (p-unc = 0.0053) and hippocampus - mPFC rsFC (p-
unc = 0.0480) but these two did not survive Bonferroni correction (Figure 2B).
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Figure 2 — ROI-t0-ROI pre-post functional connectivity matrix and bar plots. The upper part of the
matrix contains rsFC before the task, and post-task rsFC is mirrored on the lower half. (A) In the

nicotine use disorder dataset, paired-t-tests (°p-unc < 0.05, two-tailed) comparing pre and post task
rsFC showed a decrease in nucleus accumbens-mPFC, thalamus-amygdala, thalamus-insula, and an
increase in hippocampus-amygdala and insula-hippocampus, but none survived Bonferroni
correction. (B) In the spider phobia dataset, mPFC-amygdala, mPFC-hippocampus, thalamus-
amygdala, and thalamus-hippocampus rsFC significantly decreased, with the last two connections
being significant after Bonferroni correction (*p < 0.05/28 = 0.0018). Abbreviations. medial
prefrontal cortex (mPFC), anterior cingulate cortex (ACC). Error bars in bar plots correspond to
SEM. Namokers= 29. Npnovia= 37.

3.3. Seed-based analysisresults

In the nicotine use dataset, pre-post task rsFC changes comprised (1) decreased rsFC between the
insular seed to a cluster in the right thalamus, (2) decreased rsFC between the dorsal striatal seed and
a clugter in the lingual gyrus, and (3) increased rsFC between the mPFC seed to clusters in various

10
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cortical areas (e.g supramarginal gyrus, precentral gyrus) and a decreased rsFC to clusters in the
cerebellum.

In the spider phobia dataset, we found (1) decreased rsFC between the ACC seed and cortical regions,
and increased rsFC with a cerebellar clugter, (2) decreased rsFC between the amygdala seed and a
thalamic cluster, (3) increased rsFC between the dorsal striatal seed to clusters in the cerebellum and
decreased connectivity to several cortical areas, and (4) increased rsFC between the hippocampus and
cortical clustersincluding visual aress.

Finally, in both datasets, we found a large significant decrease in connectivity between the thalamic
seed and clugters in cortical regions, including the middle temporal gyrus, supplementary motor area,
anterior cingulate cortex, precuneus and insula. In addition, the spider phobia dataset showed
significantly increased thalamo-cerebellar connectivity and intra-thalamic connectivity during the
post run as compared to the pre run. We also found increased intra-thalamic connectivity in the
nicotine use dataset (albeit uncorrected for multiple seeds testing). All clusters are reported in Table 1
and Table 2 and illustrated in Figure 3.

11
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Pre-post changes in seed-based functional connectivity

Nicotine use disorder Spider phobia

- increased connectivity
- decreased connectivity

Figure 3 — Seed-based functional connectivity changes following a smoking cue-reactivity task and a
phobic cue-reactivity task in nicotine use disorder and spider phobia, respectively. Voxe-level p <
0.001 and cluster-level p-FDR < 0.05 without correction for multiple seeds were used here as
significance threshold for illustrative purposes. Clusters that survived an additional Bonferroni

correction for multiple seed testing are reported in Table 1 and 2.
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Seed Cluster Corresponding region (AAL Size Cluster Increase (+)
XY, 2) labelling) p-FDR Decrease (-)
Accumbens +12 +50 -02 Paracingulate Gyrus R 72 0.018065 -
+12 +44 +54 Frontal Pole R 59 0.018065 -
+02 +54 -16 Frontal Medial Cortex 58 0.018065 -
Frontal Pole R
Amygdala
ACC
Dorsal -16 -58 -02 Lingual GyrusL 104  0.003159* -
Striatum +16 -58 -06 Lingual GyrusR 90 0.004050* -
Hippocampus  +14 +38 +54 Superior Frontal gyrus R 59 0.044545 -
Frontal Pole R
-64 -08 +18 Postcentral Gyrus L 55 0.044545 +
Precentral Gyrus L
Insula +04 -18 +04 ThalamusR 91 0.003493* -
mPFC -56 -46 +52 Supramarginal GyrusL 311  <0.0000001* +
-38 -58 +46 Lateral Occipital Cortex L 81 0.006103* +
Superior Parietal Lobule L
Angular Gyrus L
+06 -46 -04 Lingual GyrusR 80 0.006103* -
Vermis45
Cerebdum 45
-04 -50 +00 Lingual GyrusL 56 0.027660 -
+58 -06 -16 Middle Tempora GyrusR 51 0.030029 -
-26 -50 +34 no AAL label 50 0.030029 +
-20 -54 +04 Precuneus 48 0.030412 -
Thalamus +56 -40 +04 Middle Temporal GyrusR 681  <0.0000001* -

Lateral Occipital Cortex R
Supramarginal GyrusR
Angular GyrusR
00 -10 +56 Supplementary Motor Area R/L 411  <0.0000001* -
Anterior Cingulate Cortex
Precentral Gyrus R/L
-04 -46 +54 Precuneus 193  0.000013* -
Postcentral GyrusL
Precentral GyrusR

+46 +08 -12 Temporal PoleR 175  0.000023* -
Planum Polare R

+44 -04 +06 Insular Cortex R 100  0.001397* -
Central Opercular Cortex R

+56 +14 +08 Inferior Frontal GyrusR 97 0.001397* -

+40 -08 +44 Precentral GyrusR 96 0.001397* -

-44 -18 +10 Heschl’'s Gyrus L 70 0.007211 -

Central Opercular Cortex L
Insular Cortex L

+56 -40 +04 Temporal Pole L 62 0.000928 -
+28 +42 -08 Frontal Pole R 59 0.001164 +
-36 -68 +04 Lateral Occipital Cortex L 55 0.001586 -
-44 -04 +08 Central Opercular Cortex L 52 0.002009 -
+16 -10 +08 ThalamusR 52 0.002009 +
+58 +02 +30 Precentral GyrusR 50 0.002358 -
-18-14+10 Thalamus R 45 0.001397 +
Thalamus L
-18 +14 +16 Caudate L 14 0.027058 +
+36 -44 -20 Temporal Occipital Fusiform 41 0.032880 -
Cortex R

Table 1 — Seed-based functional connectivity changes following a smoking cue-reactivity task.
Clugters were labelled using the Automated Anatomical Labeling (AAL) Atlas by the CONN toolbox.
The table reports all clusters with p-uncorrected < 0.001 at the voxel level and p-FDR < 0.05 at the

clugter level. *clugters that survive an additional Bonferroni correction to control for multiple seeds
testing at the cluster level (p-FDR < 0.05/8).
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Seed Cluster Corresponding region (AAL Size Cluster Increase (+)
XY, 2) labelling) p-FDR Decrease (-)
Accumbens
Amygdala +02 -24 +08 ThalamusR 174 0.002637* -
+32 +56 -08 Frontal PoleR 143 0.004492* +
-06 +34 +06 Cingulate Gyrus, anterior 114 0.010248 -
+38-72-28 Cerebelum 83 0.032384 +
ACC -10-24 +52 Precentral Gyrus R/L 1153 <0.000001* -

Postcentral Gyrus R/L
Superior Parietal Lobule L

Precuneous Cortex
+24 -40 +58 Postcentral GyrusR 213 0.000293* -
Superior Parietal LobuleR
+52 -14 -08 Middle Temporal Gyrus, 174 0.000707* -
posterior R
+30+16+50  Middle Frontal GyrusR 171 0.000707* +
+12 -52 -48 Cerebellum 164 0.000744* +
-12 -76 -26 Cerebellum 81 0.020264 +
+24 -22 +76 Precentral Gyrus R 78 0.020614 -
-30-78 +42 Lateral Occipital Cortex, 73 0.023657 +
superior L
Dorsal -62 +00 +26 Central Opercular Cortex L 1294 <0.000001* -
Striatum Precentral GyrusL

Planum Temporale L
Postcentral Gyrus L
Superior Temporal Gyrus,

posterior L
Supramarginal Gyrus,
posterior L
Planum Polare
+08 -24 +52 Precentral Gyrus R/L 862 <0.000001* -
Postcentral Gyrus R
-40 -12 +44 Postcentral Gyrus L 690 <0.000001* -
Precentral GyrusL
-14 -50 -52 Cerebelum 398 0.000001* +
-24 -30 +50 Precentral GyrusL 356 0.000002* -
Postcentral Gyrus L
+46 -16 +56 Postcentral Gyrus R 273 0.000022* -
Precentral GyrusR
+26 -52 -54 Cerebelum 188 0.000372* +
+40 -36 +10 Planum Temporale R 156 0.001114* -
+50 -10 +18 Central Opercular Cortex R 152 0.001162* -
+16 -54 -46 Cerebdlum 111 0.005882* +
Hippocampus +08 -80 +32 Cuneal Cortex R/L 333 0.000011* +

Frontal Pole L
Lateral Occipital Cortex,

Superior L
-08 +60 +18 Frontal Pole L 124 0.006988 -
-14 -86 +48 Lateral Occipital Cortex, 119 0.006988 +
Superior L
Insula
mPFC
Thalamus +08 -24 +52 Postcentral Gyrus R/L 8880 <0.000001* -

Precentral Gyrus R/L
Superior Temporal Gyrus,
posterior L

Superior Parietal Lobule R
Superior Temporal Gyrus,
anterior L

Superior Parietal Lobule L
Planum TemporaleL
Middle Temporal Gyrus,
temporoccipital part L
Supramarginal Gyrus,
posterior L
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Middle Temporal Gyrus,
posterior L

Central Opercular Cortex L
Temporal Pole L

-02 -20 +08 Thalamus R/L 1183 <0.000001* +
+58 -12 -02 Middle Temporal Gyrus, 844 <0.000001* -
posterior R

Superior Temporal Gyrus,
anterior/posterior R

+44 -50 -30 Cerebellum 799 <0.000001* +
-20-34 -44 Cerebellum 680 <0.000001* +
-02 +34 +24 Cingulate Gyrus, 301 0.000014* +
anterior
Paracingulate Gyrus R
-54 -68 +08 Lateral Occipital Cortex, 223 0.000390* -
inferior L
-06 -84 +32 Cuneal Cortex L 140 0.002637* -
+06 -74 +26 Cuneal Cortex R 137 0.002642* -
+00 -56 -36 Vermis 106 0.008652 +
+10 -56 -02 Lingua GyrusR 99 0.009813 -
-16 -58 -08 Lingual Gyrus L 99 0.009813 -
+62 +00 +14  Precentral Gyrus R 84 0.017996 -
-12-76 -22 Cerebelum 61 0.045306 +
+48 +22 -28 Temporal Pole R 58 0.047569 -

Table 2 — Seed-based functional connectivity changes following exposure to spider stimuli. Clusters
were labelled using the Automated Anatomical Labeling (AAL) Atlas by the CONN toolbox. The table
reports all clusters with p-uncorrected < 0.001 at the voxel level and p-FDR < 0.05 at the cluster

level. *clusters that survive an additional Bonferroni correction (p-FDR < 0.05/8) to control for
multiple seedstesting at the cluster level.

3.4. Post hoc comparison between within-subject resting-state changes

vs. resting-state differ ences between clinical groups

In the ROI-to-ROI analysis, we found significant pre-post changes in thalamus-amygdala rsFC (p-unc
= 0.0003; p-corr = 0.009) and in thalamus-hippocampus rsFC (p-unc = 0.0016, p-corr = 0.0448) in the
spider phobia group using paired-t-tests. For the thalamus-hippocampus connection, a linear mixed-
effects model revealed a significant main effect of both clinical group (F = 13.6; p < 0.001) and state
(F = 11.6; p = 0.001). For the thalamus-amygdala connection, however, there was a significant main
effect of the psychological state (i.e. pre vs. post task) (F = 20.1; p < 0.001) but no significant effect
of the clinical trait (i.e. smokersvs. phobics) (F = 0.451; p = 0.504), indicating that pre-post changes

were even greater than differences between groups for this pair.
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Figure 4 - Comparison between within-subject changes (pre vs. post task) and between-group

differences (phobics vs. smokers). Pre-post change of thalamus-amygdala rsFC exceeded the

difference between groups.

4. Discussion

Previous studies have shown that behavioral tasks (Cecchetto et al., 2019; Sarabi et al., 2018) can
affect fMRI regting-state functional connectivity of healthy populations, but such alterations have
never been investigated in clinical populations. Here, we compared resting-state functional
connectivity before and after a smoking cue-reactivity task in smokers and a spider cue-reactivity task
in spider phobics. We found significant rsFC alterations in the nicotine use disorder dataset when the
mPFC, insula, dorsal striastum and thalamus were defined as seeds, and in the spider phobia dataset,
when the amygdala, ACC, dorsal striatum, hippocampus, and thalamus were defined as seeds. Of
note, in both datasets, we found a decreased rsFC between the thalamic seed and cortical areas, as
well as increased rsFC with a cluster within the thalamus itself, which indirectly reflects an increase in
thalamic regional homogeneity. Finally, thalamus-amygdala and thalamus-hippocampus ROI-to-ROI
rsFC were significantly reduced for spider phobics, and this thalamus-amygdala rsFC reduction in

spider phobics was even greater than the difference with rsFC of smokers.

Resting-state data has long been a potential candidate for identifying clinical biomarkers of mental
disorders, including tobacco use disorder (John R. Fedota & Stein, 2015), with the hope that tracking
treatment outcome and dtratifying disorders into subtypes would help designing personalized
treatment plans. However, the field suffers from important drawbacks: uncertainty of machine-
learning target labelling (e.g. psychiatrists can disagree when assigning a diagnosis to a patient),
unclear boundaries between psychiatric disorders, mismatch between disorder definition, symptoms
and neural underpinnings, etc. (Parkes et a., 2020; Yamada et al., 2017). Further, single-study
findings tend to poorly generalize across multiple studies, an issue that has been partly attributed to
site-specific technical characteristics (imaging sequence, scanner type, field strength...) or differences
in data acquisition protocols (Y amashita et ., 2019). Besides these technical aspects, differences in
psychological states can also contribute to data heterogeneity. Our results in two different clinical or
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subclinical populations corroborate this view, as task-induced increase of craving and phobic alertness
were accompanied with large resting-state changes in disorder-relevant brain regions. In particular,
for the thalamus-amygdala rsFC, within-subject pre-post alterations even exceeded the difference
between clinical groups during pre-rest periods. This is remarkable since, between these two groups,
there were mgjor differences in scanner type, acquisition parameters, and preprocessing pipeline. This
indicates that this connection, known for being highly relevant for addiction (Rich et al., 2019) and
fear processes (Silva et al., 2021), may be more sensitive to psychological states than to clinical traits.

In the spider phobia group, other alterations include a decreased hippocampus-thalamus ROI-to-ROI
rsFC, as well as an increase of hippocampal seed connectivity with visual areas, which could reflect
hippocampal reorganization related to stress, fear retrieval or fear extinction due to being exposed to
aversive stimuli (Chang & Yu, 2019). The dorsal striatum also becomes connected to somatosensory
cortical areas (postcentral gyrus), and motor control areas (precentral gyrus), which might be linked to
fight-or-flight mechanisms or inhibitory control mechanisms following fear exposure (Stanley et al.,
2021). In the smokers group, other seed-based connectivity alterations include a decreased
connectivity between the thalamus and regions such as the precunous, the ACC and theinsula. Thisis
in line with previous studies that contrasted smokers and non-smokers (Chaoyan Wang et al., 2018),
or relapsers vs. non-relapsers (Chao Wang et a., 2020), which indicates that these brain changes
might be related to psychological changes in the nicotine use disorder patients (e.g. increased

craving).

However, the pre-post changes of psychological and neural states are not uniquely driven by the
clinical specificities of the task, and the change of connectivity does not exclusively have to be
attributed to changes of urge to smoke or fear states. Many other psychological states vary from pre to
post periods, among which cognitive fatigue, tiredness, or deepiness at the end of a scanning session,
as well as hyper-vigilance and hyper-attention to sensory bottom-up information at the beginning of
the session are not uncommon. This is notably illustrated by an increase of self-reported tiredness
scores over the course of scanning. The similarity between changes in thalamic-based connectivity in
both datasets, namely increase of intra-thalamic connectivity and decrease of cortico-thalamic
connectivity, is quite remarkable. Among many other processes, the thalamus is known for playing a
key role in regulating deep-wake cycles (Scammell et al., 2017). Akin to our study, human (Hale et
a., 2016) and animal studies (Sysoev et al., 2021) aso found both decreased thalamo-cortical and
increased intra-thalamic connection when tracking participants or mice during the process of falling
asleep. Further, decreased thalamo-cortical connectivity has been associated with unconsciousness
induced by anesthesia (Akeju et al., 2014) and being deep-deprived (Shao et al., 2013), whereas
symmetrically, increased thalamo-cortical functional connectivity has been linked to chronic
insomnia (Kim et al., 2021). Considering the consisency of the results across a wide range of

consciousness/sleep-related operationalizations, this decrease of thalamo-cortical connectivity has
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been proposed as a solid hallmark for changes of consciousness states (Picchioni et al., 2014). This
indicates that our thalamic connectivity change likely reflects a reduction of vigilance (using an eye
tracker, we did not see any of the participants of the spider phobia study fall asleep) which may
further confound biomarker detection. However, the current data is not conclusive if the vigilance
reduction is due to patients having been in a hyper-vigilant state during pre-task resting-state scans,
due to vigilance reducing below baseline levels during post-task resting-state scans, or both.

Limitations:

Fird, the clinical interpretability of our disorder-specific findings is limited by the lack of additional
control groups. For ingtance, to find rsFC changes that are specific to the smoking task or the
smoking population, a control group of smokers exposed to non-smoking related pictures would be
required. Second, to firmly establish the interpretation of the thalamus-related changes that we
observed in both groups are associated with changes in vigilance, more rigorous measures on
vigilance and tiredness would be beneficial. Third, the comparability between the spider phobia group
and the nicotine use group also needs to take into account the technical differences in fMRI
acquisition (e.g. MR-scanner, imaging sequence), paradigm (e.g. duration of the resting-state scans,
eyes closed or open), and data preprocessing (e.g. SPM12 vs. AFNI). On the other hand, the finding
that the pre- vs. pod-task resting-state changes are more pronounced than the resting-state
connectivity differences between the two clinical groups is even more remarkable given the data
acquisition, paradigm, and data analysis differences. Finally, our study included two clinical
populations to generalize beyond substance use disorder. While it islikely that similar effects that are
specific to the clinical condition and more general effects (such as vigilance changes) will also be

found in other clinical conditions, this will need to be demonstrated in further studies.
Conclusion:

In all, this study confirms that resting-state measures in clinical populations can be substantially
altered by task-induced psychological states. Hence, pooling pre-task and post-task resting-state scans
for biomarker detection of stable clinical traits should consider the psychological state of the patients.
This implies that when publishing and making resting-state data publicly available (Tanaka et al.,
2021; Van Essen et al., 2013), the complete experimental design should be reported as standard
practice. This includes a detailed description of the resting-state acquisition, and whether or not other
tasks were performed before the resting-state acquisition, no matter if inside or outside the MR
scanner. Even though task-free resting-state acquisitions are very suitable for pooling of data in search
for potential biomarkers in psychiatry, data aggregation and interpretation of results needs to consider
not just technical differences but also the psychological states of the patients.
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