

1 **Title**

2 mRNA-based generation of marmoset PGCLCs capable of differentiation into gonocyte-like
3 cells

4

5 Musashi Kubiura-Ichimaru^{1,2}, Christopher Penfold³, Kazuaki Kojima^{1,4}, Constance Dollet^{1,4},
6 Haruka Yabukami⁵, Katsunori Semi⁶, Yasuhiro Takashima⁶, Thorsten Boroviak³, Hideya
7 Kawai^{7,8}, Knut Woltjen⁶, Aki Minoda⁵, Erika Sasaki¹, Toshiaki Watanabe^{1,4,*}

8

9 ¹Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821,
10 Japan

11 ²Division of Molecular Genetics & Epigenetics, Department of Biomolecular Science, Faculty of
12 Medicine, Saga University, 5-1-1 Nabeshima Saga 849-8501, Japan

13 ³Department of Physiology, Development and Neuroscience, University of Cambridge, Downing
14 Site, Cambridge, UK

15 ⁴National Center for Child Health and Development, Tokyo 157-8535, Japan

16 ⁵Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Kanagawa
17 230-0045, Japan

18 ⁶Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto

19 University, Kyoto 606-8507, Japan

20 ⁷Research Center for Genome & Medical SciencesTokyo Metropolitan Institute of Medical Science,

21 Tokyo 156-8506, Japan

22 ⁸Preventive medicine and applied genomics unit, RIKEN Center for Integrative Medical Sciences,

23 Kanagawa, 230-0045, Japan

24

25 ***Correspondance**

26 Toshiaki Watanabe, watanabe-tos@ncchd.go.jp

27

28 **Summary**

29 Primate germ cell development remains largely unexplored due to limitations in sample

30 collection and the long duration of development. In mice, primordial germ cell-like cells

31 (PGCLCs) derived from pluripotent stem cells (PSCs) can develop into functional gametes by *in*

32 *vitro* culture or *in vivo* transplantation. Such PGCLC-mediated induction of mature gametes in

33 primates is highly useful for understanding human germ cell development. Since marmosets

34 generate functional sperm earlier than other species, recapitulating the whole male germ cell

35 development process is technically more feasible. Here, we induced the differentiation of iPSCs

36 into gonocyte-like cells via PGCLCs in marmosets. First, we developed an mRNA

37 transfection-based method to efficiently generate PGCLC. Subsequently, to promote PGCLC
38 differentiation, xenoreconstituted testes (xrtestes) were generated in the mouse kidney capsule.
39 PGCLCs show progressive DNA demethylation and stepwise expression of developmental
40 marker genes. This study provides an efficient platform for the study of marmoset germ cell
41 development.

42

43 **Highlights**

44 1. An mRNA transfection-based PGCLC induction method is developed
45 2. Marmoset PGCLCs are efficiently induced from iPSCs
46 3. Marmoset PGCLCs differentiate into gonocyte-like cells in mouse kidneys
47 4. Developmentally regulated expression and demethylation are recapitulated

48

49 **eTOC blurb**

50 Watanabe et al. efficiently induced marmoset primordial germ cell-like cells (PGCLCs) using an
51 mRNA transfection-based approach. PGCLCs further develop into gonocyte-like cells in the
52 xenoreconstituted testes constructed under mouse kidney capsules. This system faithfully
53 reproduced *in vivo* developmental processes (e.g., stage-specific expression of developmentally
54 regulated genes and DNA demethylation).

55

56 **Introduction**

57 The testis is known to be among the fastest evolving tissue in terms of change to gene
58 expression (Brawand et al., 2011; Khaitovich et al., 2006; Swanson and Vacquier, 2002). This is
59 due to the selection pressure acting on spermatogenic cells, only a small portion of which leads
60 to fertilization. Despite large differences across species, both in terms of embryo development
61 and germ cell-specific transcriptional programs, studies of mammalian spermatogenic cells have
62 been largely restricted to mice. Therefore, developing appropriate primate models and
63 understanding the mechanisms of primate germ cell development is paramount of importance
64 for the treatment of infertility arising from gametogenesis defects.

65

66 Marmosets (*Callithrix jacchus*) are new world monkeys native to Brazil that are often used in
67 biomedical research, particularly in brain science, owing to their small size, relative ease of
68 handling, high reproductive ability, and close evolutionary relationship to humans. In addition to
69 these characteristics, marmosets reach puberty within 1 year of birth. This relatively short
70 period of sexual maturation makes marmosets an ideal model organism for studying primate
71 germ cell development. However, the high cost of studies using marmosets limits the number of
72 animal experiments. Therefore, to complement *in vivo* studies, it is important to develop a

73 tractable marmoset germ cell developmental system using pluripotent stem cells (PSCs).

74

75 Several studies have reported the induction of primordial germ cell-like cells (PGCLCs) from

76 PSCs in primates (humans, macaques, and marmosets)(Irie et al., 2015; Sakai et al., 2020;

77 Sasaki et al., 2015; Sosa et al., 2018; Yoshimatsu et al., 2021). Although complete

78 differentiation of PGCLCs into sperm or eggs has been successful in mice, it has not yet been

79 achieved in any primate species. In humans, PGCLCs differentiate into gonocytes after a few

80 months of the *in vitro* culture of xenoreconstituted testes (xrtestes) generated from human

81 PGCLCs and mouse embryonic gonadal somatic cells (Hwang et al., 2020). Furthermore, in

82 rhesus macaques, male PGCLCs differentiate into MAGEA4-positive gonocytes by homologous

83 transplantation into adult testes and xenotransplantation into seminiferous tubules of mouse

84 testes (Sosa *et al.*, 2018). Because both extrinsic and intrinsic factors determine developmental

85 speed, the duration of germ cell development in the PGCLC system is likely to be influenced by

86 the *in vivo* development timetable. Although early embryonic development is delayed in

87 marmosets (Phillips, 1976), they reach sexual maturation earlier than other primates. Therefore,

88 the marmoset PGCLC system may be more feasible for recapitulating the entire primate germ

89 cell development process. Although PGCLCs have been generated in marmosets, the reported

90 method requires *a priori* transgene integration for the forced expression of *SOX17* and *PRDM1*

91 (Yoshimatsu et al., 2021). Furthermore, there are no reports on the differentiation of PGCLCs

92 into MAGEA4-positive gonocytes in marmosets.

93

94 In addition to examining germ cell development, this PGCLC-initiated germ cell

95 developmental system is useful for generating genetically modified animals. This is enabled by

96 gamete production using this system from genetically modified PSCs. All genetically modified

97 marmosets generated to date have been produced from zygotes (Park and Sasaki, 2020).

98 Cultured cell-based systems, like PGCLC-mediated system, enable the creation of animals with

99 complex genetic modifications such as reporter gene knock-in and multiple modifications.

100 Furthermore, a cell-based system ensures the production of the expected genetic modifications.

101 Thus, establishing a germ cell developmental system from PGCLCs to produce functional

102 gametes may accelerate primate research.

103

104 In this study, to develop a PGCLC-initiated germ cell developmental system in marmosets, we

105 developed a novel mRNA transfection-based method to convert PSCs into PGCLCs.

106 Furthermore, these PGCLCs were differentiated into a gonocyte-like state using a

107 transplantation approach. Our results provide the basis for studying marmoset gametogenesis

108 using PGCLCs.

109

110 **Results**

111 **mRNA transfection-based induction of marmoset PGCLCs**

112 We have previously reported mRNA transfection-based methods for marmoset iPS cell

113 induction (Watanabe et al., 2019). To generate PGCLCs from iPSCs, we performed mRNA

114 transfection. Because *SOX17* has been reported to have critical functions in PGCLC induction

115 in humans (Irie et al., 2015; Kobayashi et al., 2017), we selected this mRNA for transfection. To

116 alleviate the damage caused by mRNA transfection in cells, we transfected cells with interferon

117 suppressors (vaccinia virus *E3*, *K3*, and *B18R* mRNAs)(Poleganov et al., 2015) and an apoptosis

118 suppressor (mouse P53DD mRNA)(Hong et al., 2009). To monitor the differentiation state,

119 IRES-mCherry was knocked into the 3'-UTR of marmoset *NANOS3*, a highly conserved

120 germline-specific gene (Figure 1B). This genetic modifications were performed using an female

121 iPSC line (mRNA iPSC) previously induced in adult liver cells (Watanabe et al., 2019).

122

123 After two successive days of transfection, the transfected cells were seeded onto

124 low-attachment 96-well plates to form aggregates in medium containing LIF, EGF, SCF, and

125 BMP4 based on the procedures for human PGCLC induction (Figure 1A)(Hwang et al., 2020;

126 Irie et al., 2015; Kojima et al., 2017; Sasaki et al., 2015; Yamashiro et al., 2018). Four days after

127 making the aggregate, C-KIT expression was observed in many cells (>80%) in the aggregates

128 (Figure 1B). These C-KIT-positive cells exhibited a *NANOS3*-mCherry signal. In contrast, when

129 mRNA transfection was omitted, neither C-KIT nor *NANOS3*-mCherry expression was

130 observed (Figure 1B), indicating that mRNA transfection plays a critical role in PGCLC

131 induction.

132 Since the *NANOS3*-mCherry signal was weak for microscopic observation (Figure 1C). We

133 inserted T2A-tdTomato into the C-terminus of *SOX17* gene (*SOX17*-tdTomato (ST)) of two

134 male iPS lines harboring CAG-EGFP (CE) transgenes (971 STCE and 972 STCE). Both iPSCs

135 were originally derived from ear fibroblasts, and our mRNA transfection-based method

136 converted these iPSCs into PGCLCs with high efficiency (>80%) (Figure 1D and S1). Since ST

137 showed stronger fluorescent signals (Figure 1D and S1), we used this transgene for the

138 following experiments.

139

140 To examine the time-course change, aggregate culture was continued with medium change

141 every four days using a male iPS line harboring *SOX17*-tdTomato transgene (971 STCE). ST

142 expression was first observed 24 h after PGCLC aggregate formation (Figure 1D). Initially,

143 most cells expressed ST fluorescence; however, the number of cells negative for fluorescence

144 gradually increased over time (Figure 1D). Despite this increase in negative cells, a significant

145 portion of cells still expressed ST, even on day 16. Thus, PGCLCs can be maintained in
146 aggregate culture for at least a few weeks.

147

148 The optimal number of mRNA transfections was determined to be two. Two successive days of
149 transfections resulted in higher *NANOS3* expression in day 4 aggregates (d4_PGCLC) than did
150 single transfection, but three successive day transfections did not result in increased *NANOS3*
151 expression (Figure S2A). The optimal number of transfected cells was determined to be 50,000
152 cells per well in a 6-well plate (Figure S2B). Using an increased number of cells (100,000 cells)
153 resulted in a decreased PGCLC induction efficiency, likely due to an insufficient number of
154 mRNAs distributed into each cell when a larger quantity was used.

155

156 **Single-cell analysis of iPSCs and PGCLCs**

157 To examine whether induced cells showed gene expression typical of PGCs, single-cell (sc)
158 RNA-seq libraries were generated from iPSCs (mRNA iPSCs) and d4_PGCLC aggregates
159 (derived from mRNA iPSCs). Principle component analysis (PCA) clearly separated the iPSC
160 and PGCLC populations (Figure 2A), which were located on opposite sides of PC1.
161 Well-characterized iPSC (*SOX2* and *ZIC2*) and PGC markers (*SOX17*, *NANOS3*, *KIT*, and
162 *DND1*) were identified in the genes contributing to PC1 (Figure 2B). This suggests the

163 successful generation of PGCLCs. In addition, this analysis revealed the presence of
164 mesoendoderm-like cells (*NODAL* and *MIXL1*), a small number of endoderm-like cells (*SOX17*
165 and *FOXA2*), mesenchymal-like cells (*HAND1*, *ANXA1*, and *VIM*), and amnion-like cells
166 (*HAND1*, *TFA2PC*, and *GABRP*). Although mesoendoderm-like cells were found only in the
167 iPSC library, amnion-like cells were found only in the PGCLC library (Figure 2C).

168

169 **Single-cell analysis of developing gonads**

170 Before setting out to advance the development of PGCLCs, we collected information on *in*
171 *vivo* developing germ cells as a reference. We thus prepared scRNA-seq libraries from
172 developing marmoset gonads. Ovaries from embryonic day 74 (E74), E82, and newborn
173 marmosets and testes from E74, E87, 22 day-olds (22d), and 3-year and 10-month-old
174 marmosets were subjected to single-cell analyses. After tSNE plotting, the germ cells of interest
175 were extracted from each library (Figure S3). PGCs marked by *POU5F1* expression were
176 extracted from fetal ovaries (E74 and E82) and testes (E87) (Figure S3). In E74 fetal testes, only
177 a small number of PGCs were present, and they did not form a distinct cluster (Figure S3).
178 Therefore, we did not extract the PGCs from this library. This small number is probably because
179 many PGCs are still migrating and have not yet arrived at this stage (Aeckerle et al., 2015). In
180 the somatic cells of this E74 testis and its sibling E74 ovary, the expression of genes involved in

181 initial sex differentiation was observed (*SRY*, *SOX9*, *AMH* in testes, and *FOXL2* in ovaries)

182 (Figure S4), suggesting that sex differentiation is already initiated. Consistent with a previous

183 report (Fereydouni et al., 2014), a wide range of cells (PGCs, oogonia, and early oocytes) were

184 found in newborn ovaries. In 22d testes, germ cells were already differentiated into gonocytes,

185 as shown by the decreased expression of *POU5F1* and elevated expression of *DDX4*. These

186 expression patterns in 22d testis germ cells align with previously published studies (Albert et al.,

187 2010; McKinnell et al., 2013; Mitchell et al., 2008).

188

189 **PGCLCs align with *in vivo* PGCs**

190 To examine whether our induced PGCLCs showed similar gene expression patterns to *in vivo*

191 PGCs, we compared the expression of representative marker genes between *in vivo* germ cells

192 and our PGCLCs . A similar pattern was observed between *in vivo* PGCs and PGCLCs for the

193 key marker genes (Figure 2D). Both *in vivo* PGCs and PGCLCs showed the expression common

194 marker genes for PSCs and PGCs (e.g., *POU5F1*, *NANOG*, *LIN28A*, *DPPA4*, and *KLF4*) and

195 PGC marker genes (*PRDM1*, *SOX17*, *TFAP2C*, *NANOS3*, *KIT*, *DND1*, and *SOX15*). However,

196 none of the PSC marker genes (e.g., *SOX2*), gonocyte/oogonium genes (e.g., *DAZL* and

197 *SOHLH1*), oocyte genes (e.g., *FIGLA* and *NOBOX*), or meiotic genes (e.g., *STRA8* and *SPO11*)

198 were expressed in both *in vivo* PGCs and PGCLCs.

199 To obtain further evidence that our PGCLCs were indeed PGC-like, PCA was conducted using
200 marmoset iPSCs, PGCLCs, and *in vivo* germ cells (PGCs, gonocytes, oogonia, and oocytes). As
201 expected, marmoset PGCLCs clustered together with *in vivo* PGCs (Figure 2E, right panel).
202 Furthermore, we added human data to this analysis (Chen et al., 2019; Kojima et al., 2017; Li et
203 al., 2017; Sohni et al., 2019) to obtain additional supporting evidence. Human PSC, PGCLCs,
204 and germ cells from various developmental stages aligned well with their corresponding cells in
205 marmosets (Figure 2E). These results suggest that human and marmoset early germ cell
206 development is overall conserved and that our PGCLCs were indeed reminiscent of *in vivo*
207 PGCs.

208

209 **Generation of xrtestes in mouse kidneys**

210 To advance the development of marmoset PGCLCs, we used the xrtestis system that has been
211 used to differentiate human PGCLCs (Hwang et al., 2020). However, instead of the *in vitro*
212 air-liquid interface culture used in humans (Hwang et al., 2020; Yamashiro et al., 2018), we
213 employed mouse kidney transplantation, as this system develops mouse reconstituted testes well
214 (Matoba and Ogura, 2011). To recapitulate the male *in vivo* developmental process, we used two
215 male iPS cell lines harboring the ST and CAG-EGFP (CE) transgenes (971-STCE and
216 972-STCE) (Figure S1). To prepare xrtestes, FACS-purified d4_PGCLCs were mixed with

217 E13.5 testis somatic cells for floating aggregate culture. The next day, the aggregates were

218 transplanted into kidney capsules (Figure 3A).

219

220 Ten days after transplantation (day 10), the transplanted aggregates formed a testicular

221 cord-like structure (Figure 3B, C, D). This structure was maintained for over 100 days (Figure

222 3C, D) unless cancer developed. In the xrtestes, PGCLC-derived cells (EGFP- and

223 tdTomato-positive) and Sertoli cells (WT1-positive) were found within the cord structure

224 (marked by LAMININ). In contrast, cells expressing the Leydig cell marker HSDB were found

225 in interstitial regions (Figure 3C). Only a small number of PGCLC-derived cells was observed

226 in the xrtestes until day 30 after transplantation. However, by day 30, the number of

227 PGCLC-derived cells dramatically increased, occupying the entire circumference of each tubule

228 (Figure 3E). Consistent with this massive increase in cell number, MKI67 signals were observed

229 in many PGCLC-derived cells from day 30 xrtestes (d30_xrtestes) (Figure 3E). Thus, PGCLCs

230 are incorporated into the tubules of the xrtestes, and these PGCLC-derived cells actively

231 proliferate within the tubules.

232

233 **Differentiation of PGCLCs in xrtestes**

234 Human PGCLCs develop into gonocyte-like cells over ~80 days (Hwang *et al.*, 2020). We

235 examined the expression of four well-characterized developmentally regulated marker genes
236 (TFAP2C, DDX4, MAGEA4, and PIWIL4) in the xrtestes from several developmental points.
237 The results for the two iPSC lines, 972-STCE and 971-STCE, are shown in Figures 4 and S5,
238 respectively. TFAP2C (PGC marker) expression was observed in all PGCLC-derived cells
239 before day 40 (Figure 4A, S5). Subsequently, the number of PGCLC-derived cells expressing
240 TFAP2C decreased dramatically. On day 81, none of the cells expressed this gene. No cells
241 expressed gonocyte markers (DDX4, MAGEA4, and PIWIL4) on day 14. Almost all
242 PGCLC-derived cells showed DDX4 expression on day 28 (Figure 4B and S5). On day 28, the
243 expression of MAGEA4 was also detected in only a small number of cells. As development
244 progressed, the proportion of cells expressing MAGEA4 increased, and all PGCLC-derived
245 cells exhibited expression on day 81 (Figure 4C, S5). PIWIL4 was first observed in a small
246 number of cells on day 81 (Figure 4D and S5). Thus, these analyses revealed stepwise
247 (in)activation of gonocyte (PGC) markers during xrtestis development, and the *in vivo*
248 developmental pattern was recapitulated in our xrtestis system (Albert *et al.*, 2010; Mitchell *et*
249 *al.*, 2008). RT-qPCR analyses also revealed the upregulation of these and some other
250 gonocyte-expressed genes (*CREM*, *DMRT1*, *DMRT1B*, *DAZL*, *ZBTB16*, *FOXR1*, *RHOXF1*,
251 *SOHLH1*, *SOHLH2*, and *RBM46*) in d56, d81, and d104_xrtestes (Figure S6).

252

253 **Demethylation of PGCLCs in xenoreconstituted testes**

254 PGC development is accompanied by progressive loss of DNA methylation (Shirane et al.,
255 2016). To determine DNA methylation status, we conducted single-cell bisulfite-sequencing
256 (scBS-seq) analyses in PGCLCs and PGCLC-derived cells in the xrtestes. Simultaneously, RNA
257 expression was analyzed in the same single cells using the cytoplasmic fraction. In d4_PGCLCs,
258 The average DNA methylation level was 61.1% (Figure 5A). Interestingly, the level decreased
259 to 45.7% in d12_PGCLCs, suggesting the occurrence of demethylation during long floating
260 aggregate culture. The xrtestes were generated using d4_PGCLCs. DNA methylation levels
261 decreased gradually in xrtestes (Figure 5A). Although we still detected some residual
262 methylation in d30_xrtestes (9.4%), this level is close to the minimum level in d104_xrtestes
263 (4.3%). Thus, DNA demethylation was recapitulated in our xrtestis system. However, the
264 establishment of DNA methylation was likely not initiated, even in d104_xrtestes.

265

266 DNA methylation plays a critical role in the repression of retrotransposons in germline cells. In
267 both mice and humans, active and young retrotransposons (e.g., IAP and LINE1 in mice, Alu
268 and LINE1 in humans) show relatively high levels of residual DNA methylation in
269 demethylated PGC genomes (Guo et al., 2015; Kobayashi et al., 2013; Seisenberger et al., 2012).
270 Two types of potentially active retrotransposons exist in the marmoset genome. One is the

271 LINE1 element, and the other is a very short ~100-bp SINE element named Platy-1 (Konkel et
272 al., 2016). The DNA methylation dynamics of these two active retrotransposons (LINE1 and
273 Platy-1) and three major classes of retrotransposons sequences (LINE, LTR, and SINE) were
274 examined. In d4_PGCLCs, all three major retrotransposon sequences (LINE, 76.6%; LTR,
275 70.6%; SINE, 74.1%) showed higher levels than the genome average (61.1%), and the two
276 active retrotransposons (LINE1: 78.7%, Platy-1: 82.9 %) showed the highest levels. As PGCLC
277 development progressed, all retrotransposons lost DNA methylation with dynamics similar to
278 those of the genomic average. In d104_xrtestes, DNA methylation levels of all the examined
279 retrotransposons were decreased more than five-fold (LINE1, 15.2% from 76.6%) to 17-fold
280 (Platy-1, 4.7% from 82.9%). LINE1 (15.2%) and LINE (11.8%) still showed much higher levels
281 than the genomic average (4.3%). On the other hands, other retrotransposons (LTR, 4.5%; SINE,
282 3.3%; Platy-1, 4.7%) showed similar levels to the genomic average. Thus, a higher level of
283 residual methylation was retained in LINE1 but not in Platy-1.

284
285 To correlate germ cell development in xrtestes with *in vivo* germ cell development, we
286 analyzed the RNA expression of PGCLC-derived germ cells, in which we analyzed DNA
287 methylation. Upon differentiation of iPSCs into PGCLCs, the expression of *UHRF1* (involved
288 in DNA methylation maintenance) and *de novo* DNA methyltransferase *DNMT3A/3B/3L*

289 decreased (Figure 5C). This decrease may be involved in the demethylation of the PGCLC
290 genome. In d104_xrtestes, *DNMT3L*, *PIWIL4*, and *MORC1* were highly upregulated,
291 establishing the stage for *de novo* methylation of retrotransposons. In addition, the expression of
292 gonocyte genes (*CREM*, *DAZL*, *DMRT1*, *DMRTB1*, *DMRTC2*, *SOHLH1*, *SOHLH2*, *RHOXF1*,
293 *DDX4*, and *MAGEA4*) was observed in d104_xrtestes as well as in gonocytes from *in vivo* d22
294 testes (Figure 5C). Some of them (*CREM*, *DMRT1*, *DMRTB1*, and *DDX4*) are expressed from
295 earlier stage of xrtestis development. These genes were also detected in *in vivo* PGCs from E87
296 testes (Figure 5C), suggesting that developmentally regulated gene expression is recapitulated in
297 the xrtestis system. PCA revealed that PGCLC-derived cells, except those from d104_xrtestes,
298 closely aligned with E87 testis germ cells (Figure 5D). On the other hand, PGCLC-derived
299 germ cells from d104_xrtestes clustered together with 22d testis germ cells. PGCLCs
300 differentiate into gonocyte-like cells in the xrtestis.

301

302 **Discussion**

303 In this study, marmoset PGCLCs were generated from iPSCs using an
304 mRNA-transfection-based method. This is the first report of PGCLC generation using mRNAs.
305 Since this method is simple and efficient, it may also be useful for other species. Furthermore,
306 the generated PGCLCs differentiated into gonocyte-like cells in the xrtestes that were

307 transplanted under the kidney capsules of immunodeficient mice. Stepwise expression of PGC
308 and gonocyte marker genes was observed. DNA methylation was progressively lost and almost
309 completely erased in the gonocyte-like cells. Thus, early germ cell development *in vivo* was
310 recapitulated by our PGCLC-initiated system. This study provides a platform for developmental
311 studies on marmoset germ cells and the generation of genetically modified marmosets.

312

313 We induced PGCLCs from iPSCs using a combination of *SOX17* mRNA transfection and
314 subsequent floating aggregate culture. Our method was based on a report on PGCLC generation
315 by *SOX17* overexpression using an inducible system (Irie *et al.*, 2015; Kobayashi *et al.*, 2017),
316 which requires prior transgene integration. To omit this step, we used mRNA transfection-based
317 overexpression. Although the induction rate was highly dependent on the iPSC lines (data not
318 shown), as in humans (Chen *et al.*, 2017), our induction efficiency usually reached >80% when
319 highly competent lines were used (Figure 1B, S1). Since this efficiency is comparable to or
320 higher than those of existing methods (Irie *et al.*, 2015; Jo *et al.*, 2022; Kobayashi *et al.*, 2017;
321 Sakai *et al.*, 2020; Sasaki *et al.*, 2015; Sosa *et al.*, 2018; Yoshimatsu *et al.*, 2021), we believe
322 that the mRNA transfection method reported here serves as an alternative method.

323

324 After developing a solid foundation for PGCLC induction, we aimed to differentiate PGCLCs

325 into a more advanced state. Matoba et al. reported that *in vivo* mouse PGCs developed into
326 spermatids in reconstituted testes transplanted under the kidney capsule (Matoba and Ogura,
327 2011). This led us to examine whether immunodeficient mouse kidneys serve as suitable sites to
328 develop xrtestes. The xrtestes developed well under the kidney capsule. Using this technique,
329 PGCLCs in the xrtestes were found to differentiate into gonocyte-like cells. All gonocyte-like
330 cells from the d82_xrtestes were negative for the PGC marker TFAP2C (Figure 4). Given that
331 half of the germ cells still express TFAP2C in newborn testes (Mitchell *et al.*, 2008),
332 gonocyte-like cells in d82_xrtestes are more developmentally advanced than newborn testis
333 germ cells. However, our bisulfite-seq analyses showed that PGCLC-derived cells in d82_ and
334 d104_xrtestes did not undergo *de novo* DNA methylation (Figure 5). In marmoset testes, *de*
335 *novo* DNA methylation is initiated at 4 months old at the latest (Langenstroth-Rower et al.,
336 2017), although the precise timing has not yet been determined. Therefore, gonocyte-like cells
337 in d82_ and d104_xrtestes likely correspond to *in vivo* gonocytes in newborn and 4-month-old
338 animals. The kidney transplantation method reported here will be a robust *in vivo* method for
339 male PGCLC differentiation in other species as well. Reconstituted embryonic ovaries from
340 mice and cynomolgus monkeys develop well in mouse kidneys (Matoba and Ogura, 2011;
341 Mizuta et al., 2022). Therefore, the kidney transplantation of (xeno)reconstituted ovaries may be
342 also useful for advancement of female PGCLC development in marmosets and other species.

343

344 Successful marmoset PGCLC induction has been previously reported by Yoshimatsu et al.

345 (Yoshimatsu *et al.*, 2021). However, their induction efficiency (~40% for the two ESC lines and

346 1–2% for the two iPSC lines) seemed to be not as high as ours. In addition, their study did not

347 test the developmental potential of these PGCLCs. By contrast, PGCLCs were differentiated

348 into gonocyte-like cells in our study. Their methods involved both transgene (*SOX17* and

349 *BLIMPI1*) overexpression and pre-ME/iMeLC induction steps, and it took 10 days (+prior

350 transgene integration) for the procedure. Our method required only 6 days, and no prior

351 transgene integration is required. Furthermore, we did not use *BLIMPI1*, because the addition of

352 *BLIMPI1* mRNAs to *SOX17* mRNAs did not have any positive effect on PGCLC induction in

353 our system (Figure S7). Combinatorial expression of *BLIMPI1* and *SOX17* has been reported to

354 promote PGCLC in humans (Kobayashi *et al.*, 2017). Species difference or different methods

355 used likely account for the discrepancy of the effect of *BLIMPI1*. Recently, another group

356 reported marmoset PGCLC induction from PSCs (Seita *et al.*, 2022). Their induction efficiency

357 was 40% at the highest using a similar method reported in Cynomolgus monkeys and rabbits

358 (Kobayashi *et al.*, 2021; Sakai *et al.*, 2020). They cultured PSCs in the presence of the WNT

359 inhibitor IWR-1, and PGCLCs were directly induced from PSCs without undergoing

360 Pre-ME/iMeLC. Although their PGCLCs differentiated into DDX4-positive cells

361 (corresponding to late PGCs or gonocytes), complete DNA demethylation and the potential for
362 differentiation into MAGEA4-positive gonocyte-like cells were not examined. Thus, our study
363 provides two efficient and useful systems associated with marmoset PGCLCs: (1) an
364 mRNA-transfection-based PGCLC induction system and (2) a kidney transplantation-based
365 PGCLC to gonocyte-like cell differentiation system.

366

367 The gonocyte-like cells generated in this study require further development for the generation
368 of functional gametes. The next step is further differentiation into late gonocyte-like cells that
369 undergo *de novo* DNA methylation. It is important to understand the cues that initiate *de novo*
370 DNA methylation. Furthermore, the current protocol requires a long time to differentiate
371 gonocyte-like cells from PGCLCs. Shortening this time is also an important next step. However,
372 undertaking the normal demethylation process in PGCs is likely important for generating
373 functional gametes. In fact, bypassing this resulted in abnormal DNA methylation patterns in
374 mouse oocytes (Hamazaki et al., 2021). Furthermore, *in vitro* PGCLC culture and the resultant
375 prior erasure of DNA methylation have been reported to be essential for the spermatogenic
376 potential of PGCLC-derived spermatogonial stem cells (Ishikura et al., 2021). DNA methylation
377 dynamics revealed in this study are, in part, useful for determining which developmental stage
378 can be bypassed without affecting the DNA demethylation process. Our study provides a solid

379 foundation for complete generation of gametes from pluripotent stem cells.

380

381 **Marmoset housing and samplings**

382 All animal experiments using marmosets and mice were approved by the Animal Committee of

383 the Central Institute for Experimental Animals (Approval number; 17029A, 18031A, 19033A,

384 21002A, 21012A, and 21052A). Marmosets (CLEA Japan) were housed in Central Institute for

385 Experimental Animals. The marmosets were housed in stainless steel cages (W436 x D750 x

386 H765 mm to W910 x D750 x H2050 mm) under the following conditions: temperature, 27 °C,

387 humidity 40%, room pressure, +20 hPa, light 12 h per day, and basic food CMS-1 (CLEA

388 Japan).

389

390 To obtain fetal gonads (E74 and E82 ovaries and E87 testes), frozen or fresh early embryos

391 (8-cell to morula) were transferred into recipient uteri (Takahashi et al., 2014). The

392 developmental days were determined based on the day of ovulation when the serum

393 progesterone of the recipient animals exceeded 10 ng/ml. Fetuses were obtained by C-sections.

394 The pregnant female marmosets were pre-anesthetized with 0.04 mg/kg medetomidine (Domitor,

395 Nippon Zenyaku Kogyo), 0.40 mg/kg midazolam (Dormicam, Astellas Pharma), and 0.40

396 mg/kg butorphanol (Vetorphale, Meiji Seika Pharma), then sedated by isoflurane (Isoflurane

397 inhalation solution, Viatris) inhalation. While C-section, the animals were warmed on a warmer
398 pad on the surgery table. The uterus was exteriorized via a midline laparotomy and lifted from
399 the abdominal cavity, and the fetus was removed from the uterus. After C-section, the female
400 marmoset's abdominal wall and skin were sutured and kept warm in the intensive care unit until
401 awakened from anesthesia.

402 Testis from 22d marmosets was obtained by hemicastration under anesthesia by inhalation of
403 1–3% isoflurane. Newborn ovaries and adult testes were obtained from animals sacrificed for
404 use in other experiments and for illnesses that could not be cured, respectively. The list of
405 animals and cell lines used in this study is shown in Table S1.

406

407 **Cell culture**

408 Marmoset iPSCs were cultured in MEF-conditioned primate ES cell medium (RCHEMD001;
409 REPROCELL) containing bFGF (RCHEOT003; REPROCELL) and 1× antibiotic-antimycotic
410 (0289-54; Nacalai Tesque)(Watanabe *et al.*, 2019). Thereafter, the iPSCs were dissociated into
411 single cells and passaged by treatment using Accumax (17087-54; Nacalai Tesque) at 37 °C and
412 then plated 5.0×10^4 cells in one well of 6-well cell culture plates with conditioned medium
413 containing iMatrix (892021; FUJIFILM) and 10 μ M Y-27632 (08945-42; Nacalai Tesque).

414

415 **Induction of PGCLCs**

416 iPSCs (lines 971 and 972) were induced from ear fibroblast cells as described previously

417 (Watanabe *et al.*, 2019). Lipofection-based mRNA transfection was performed to generate

418 PGCLCs from iPSCs. The day before transfection (day 0), 5.0×10^4 marmoset iPSCs were

419 plated in 12-well cell culture plates. The next day (day 1), the medium was replaced with 500

420 μL of the new conditioned medium. For transfection, two tubes containing 62.5 μL of

421 OPTI-MEM (A4124801; Invitrogen) were prepared. In one tube, RNAs [0.2 μg of SOX17

422 mRNA, 0.05 μg of P53DD mRNA, 0.075 μg of the mixture of E3, K3, B18R mRNAs (00-0076;

423 Reprocell)] were added. In the other tube, 1.5 μL of Lipofectamine RNAiMax Transfection

424 Reagent (13778150; Invitrogen) was added. After mixing well, the solutions in the two tubes

425 were mixed, and the mixture was allowed to stand for 10 min. Next, the mixture was added

426 dropwise into one well of a 12-well plate. The next day (day 2), the medium was replaced with

427 500 μL of new conditioned medium, and RNA transfection was performed again, after which

428 the medium was changed, and RNA transfection was performed at 10 am and 4 pm.

429

430 On the morning of day 3 (~10 am), cells were dissociated using Accumax. Subsequently, ~5,000

431 cells were plated in each well of a Nunclon Spher 96-Well plate (174929; Thermo Fisher

432 Scientific) in 100 μL of aRB27 (1% B27/2 mM L-glutamine/1 \times non-essential amino acids/1 \times

433 antibiotic-antimycotic in advanced RPMI medium) containing 50 ng/mL EGF (236-EG-200;

434 R&D Systems), 100 ng/mL SCF (455-MC-050; R&D Systems), 1,000 U/mL LIF (LIF1010;

435 Merck), 400 ng/mL BMP4 (314-BP-500; R&D Systems), and 10 μ M Y-27632. The medium

436 was changed every 4 days.

437

438 **sc library generation and data analyses**

439 The iPS cells were dissociated using Accutase, while PGCLCs, ovaries (E74, E82, and

440 newborn), and testes (E87 and 22d) were dissociated using 0.25% trypsin EDTA, and adult

441 testes (3 years 10 months) were digested by stepwise treatment with collagenase 1 (1mg/mL)

442 and 0.25% trypsin EDTA. For iPS cells, PGCLCs, and E82 ovaries, libraries were constructed

443 using a Chromium Next GEM Single Cell 3' GEM Library & Gel Bead Kit v3 (10x Genomics).

444 Other libraries were constructed using a Chromium Single Cell 3' Library and Gel Bead Kit v2

445 (10x Genomics), and sequencing was performed using a HiSeq4000 system (Illumina). The

446 sample information is summarized in Table S1. See supplementary information for the

447 scRNA-seq and scBS-seq library generation.

448

449 To analyze the 10x data, datasets were mapped to the common marmoset genome, calJac4

450 (calJac3 for Fig. 2C and D), using CellRanger. For annotation of the calJac4 genome, NCBI

451 Callithrix jacchus Annotation Release 105 was used, and UMI count data were analyzed using

452 Seurat. Normalization and standardization were performed using *NormalizeData* and *ScaleData*

453 functions. Principal component analysis was performed using the inbuilt *RunPCA* function.

454 Dimensionality reduction was visualized in 2D using *DimPlot*. See supplementary information

455 for the details on Fig. 2C, D, 5C, and D.

456

457 10x single cell data were deposited to ArrayExpress (Accession No. E-MTAB-12123) and

458 scRNA-seq/scBS-seq data were registered to DDBJ (Accession No. DRA014666 and

459 DRA014672).

460

461 **Karyotype analysis**

462 The iPSCs were cultured for 3 h in a medium containing 0.1 µg/mL colcemid (15212012;

463 Gibco) and dissociated into single cells by treatment with Accutase. After collection, the cells

464 were treated with 0.075 M KCl for 30 min at 25°C. Subsequently, the cells were fixed using a

465 fixing solution (70% methanol/30% acetic acid). The fixed cells were then spread onto a glass

466 slide using HANABI and stained with Hoechst 33342 (H1399; Invitrogen). Karyotype images

467 were obtained using a Leica 6000B microscope.

468

469 ***In vivo* differentiation**

470 To isolate fetal testicular somatic cells, pregnant ICR females were sacrificed, and embryos
471 were collected at E13.5. Fetal male testes were distinguished from ovaries by their appearance,
472 and the mesonephros attached to the testes were removed using a tungsten needle. Thereafter,
473 the isolated testes were treated with 0.25% trypsin EDTA (25200056; Nacalai Tesque) for 10
474 min at 37 °C for dissociation into single cells. To remove endogenous mouse PGCs, cells were
475 plated in a cell culture plate in MEM α (12571063; Gibco) containing 10% KSR (10828-028;
476 Gibco) and cultured for 6 h (Ohinata et al., 2009). PGCs usually do not attach to plates; the
477 attached cells were removed from the culture plate using 0.25% trypsin/EDTA and collected as
478 fetal testicular somatic cells.

479

480 Marmoset d4_PGCLCs were purified using *SOX17*-T2A-tdTomato fluorescence and FACS.
481 The collected d4_PGCLCs (5.0×10^3 cells) were mixed with E13.5 fetal testicular somatic cells
482 (5.0×10^4 cells) and plated in an ultra-low attachment 96-well plate (174929; Thermo Fisher
483 Scientific) with MEM α containing 10% KSR, 1× antibiotic-antimycotic and 10 μM Y27632.
484 The next day, cell aggregates were transplanted under the kidney capsule of NOG
485 (NOD/Shi-scid, IL-2RγKO) mice to promote differentiation (Ito et al., 2002). Thereafter, NOG
486 mice were anesthetized using medetomidine, midazolam, and butorphanol, and an incision was

487 made in the peritoneum to expose the kidney capsule. Next, the kidney capsule was carefully
488 incised using an injection needle under an inverted microscope, and cell aggregates were picked
489 up using a glass capillary and transplanted into the kidney capsule.

490

491 **Immunofluorescence**

492 Xrtestes were collected from kidneys, fixed in 4% PFA (09154-56; Nacalai Tesque), and then
493 embedded into paraffin blocks. Afterward, xrtestes sections (4 μ m) were deparaffinized and
494 rehydrated using a xylene and ethanol series. For antigen retrieval, slides were heated to 95 °C
495 for 10 min in 0.01 M citrate buffer (pH 6.0). The sections were blocked using a primary
496 antibody diluent (AR9352; Leica Biosystems) and incubated overnight at 4 °C with the
497 following primary antibodies: anti-GFP (308SS; 1:1,000; Novus Biologicals), anti-GFP
498 (ab5450; 1:3,000; Abcam), anti-LAMININ (L9393; 1:200; Sigma-Aldrich), anti- 3 β -HSD
499 (sc-515120; 1:1,500; Santa Cruz Biotechnology Inc), anti-WT1 (ab89901; 1:500; Abcam),
500 anti-MKI67 (NCL-ki67p; 1:50; Leica Biosystems), anti-TFAP2C (sc-12762; 1:100; Santa Cruz
501 Biotechnology Inc), anti-DDX4 (AF2030; 1:500; R&D Systems), anti-MAGEA3/4
502 (MABC1150; 1:250; Merck), and anti-PIWIL4 (GP1831 produced in a guinea pig;
503 AHSSFRATEVGRTQD-Cys; 1:200). Subsequently, the sections were incubated with
504 species-specific secondary antibodies for 60 min at room temperature.

505

506 **RT-qPCR**

507 Purified RNA was extracted from undifferentiated marmoset iPSCs, sorted d4_PGCLCs, and
508 xrtestes using TRIzol Reagent (15596026; Invitrogen). RNA was converted to cDNA using
509 Superscript IV Reverse Transcriptase (11766050; Invitrogen), and gene expression analysis was
510 performed using the primers listed in Table S2.

511

512

513 **Acknowledgments**

514 We thank Akihiro Umezawa and Hidenobu Soejima for their encouragement and Yasufumi
515 Sakakibara and Kengo Sato for their support with computational resources and Fuchou Tang,
516 Rui Wang, and Shin-ichi Tomizawa for single cell bisulfite-seq protocols and Akiyumi Tashiro
517 for making comments on our manuscript and Kenji Kawai for making paraffin blocks and
518 Haruka Shinohara for advice on karyotyping and veterinarians and animal technicians in CIEA
519 for marmoset and mouse housing. This research was supported by AMED and KAKENHI under
520 the grant numbers JP19gm6310010, JP20gm6310010, JP21gm6310010, JP22gm6310010
521 (AMED T.W.), JP18dm020765 (AMED E.S.), 20H05764, 20H03177, and 22K18356
522 (KAKENHI T.W.).

523

524 **Author contributions**

525 M.I., C.D., and TW performed the experiments. C.P., T.B., M.I., and T.W. performed informatics

526 analyses. M.I. and T.W. conceived of the study, designed the experiments, and wrote the

527 manuscript. K.K., K.S., Y.T., and K.W. provided materials and information. E.S. shared the

528 equipment and samples. H.Y., H.K., A.M., KK, M.I., and T.W. generated sequencing libraries.

529 All authors read and approved the final manuscripts.

530

531 **Declaration of interest**

532 The authors have no competing financial interests to declare.

533

534 **Figure Legends**

535 **Figure 1. mRNA-based generation of PGCLCs from iPSCs**

536 **A** Schematic diagram for the generation of PGCLCs from iPSCs. **B** mRNA-mediated induction

537 of PGCLCs. An IRES-mCherry cassette was inserted into the 3'-UTR of the *NANOS3* gene to

538 monitor differentiation into PGCLCs. The two charts represent the results of the normal

539 induction procedure (left) or mRNA transfection step omission from it (right). **C** Microscopic

540 observation of mCherry fluorescence of PGCLCs. PGCLCs were generated using the same

541 conditions as B. **D** Time course examination of *SOX17*-tdTomato fluorescence.

542

543 **Figure 2. Gene expression analyses of marmoset PGCLCs induced from iPSCs**

544 **A** Single-cell analyses of iPSCs and PGCLCs. **B** Well-characterized iPSC markers (*SOX2* and

545 *ZIC2*) and PGC markers (*SOX17*, *NANOS3*, *KIT*, and *DND1*) were found in the genes

546 contributing to PC1. **C** In addition to the iPSCs and PGCLCs, mesoendoderm-like cells

547 (*NODAL* and *MIXL1*), a small number of endoderm-like cells (*SOX17* and *FOXA2*),

548 mesenchymal-like cells (*HAND1*, *ANXA1*, and *VIM*), and amnion-like cells (*HAND1*, *TFA2PC*,

549 and *GABRP*) were present. **D** Heatmap analyses of marker genes. iPSCs, PGCLCs, and

550 marmoset endogenous developmental germ cells were examined. **E** PCA of PSCs, PGCLCs,

551 and developing germ cells from humans (left and center) and marmosets (right). Published

552 human data were downloaded(Chen *et al.*, 2019; Kojima *et al.*, 2017; Li *et al.*, 2017; Sohni *et*

553 *al.*, 2019) and analyzed together with marmoset data. Human data are shown in two separate

554 panels according to the scRNA-seq platform. The anchoring function was used to integrate

555 datasets of different platforms.

556

557 **Figure 3. Proliferation of PGCLCs in xrtestis formed in mouse kidneys**

558 **A** Scheme for differentiation of PGCLCs. **B** d28_xrtestes formed under the kidney capsule.

559 PGCLC (972-STCE)-derived cells express GFP and tdTomato. Scale bar: 2 mm. **C**

560 Reconstitution of testis structure (d104_xrtestes). Immunohistochemical analyses of the

561 transplanted tissues. Markers: LAMININ (basement membrane), HSD3B (Leydig cells), and

562 WT1 (Sertoli cells). PGCLC (971-STCE)-derived cells express GFP. Scale bars: 100 μ m (top)

563 and 20 μ m (bottom). **D** Time course change in the number of PGCLC (971-STCE)-derived cells

564 during xrtestis development. Days after transplantation are indicated on the left side of the

565 pictures. Scale bar: 20 μ m. **E** Many PGCLC (971-STCE)-derived cells express MKI67 in

566 d30_xrtestes. Scale bar: 20 μ m.

567

568 **Figure 4. Differentiation of marmoset PGCLCs into Gonocyte-like cells**

569 Immunofluorescence analyses of marker gene expression in developing xrtestes (972-STCE)

570 and d5_PGCLC aggregates. TFAP2C (**A**), DDX4 (**B**), MAGEA4 (**C**), and PIWIL4 (**D**). White

571 arrows indicate nuclear PIWIL4 staining. These staining patterns were different from those of

572 cytoplasmic EGFP staining. Scale bar: 20 μ m.

573

574 **Figure 5. DNA methylation analyses during germ cell development from PGCLCs**

575 **A** Single cell analysis of DNA methylation during PGCLC development. PGCLCs_d4 and

576 PGCLCs_d12 correspond to 4-days and 12-days of floating aggregate culture respectively.

577 d5-d104 represent duration (days) after transplantation into mouse kidneys. **B** Developmental

578 dynamics of DNA methylation levels of retrotransposons. The average values are shown. **C**

579 Heatmap analyses of marker genes. **D** The data obtained by 10x and scRNA-seq/scBS-seq are

580 shown together (left) or separately (center and right). The anchoring function was not used to

581 integrate datasets of different platforms. There is a small displacement between the iPSCs of the

582 10x platform and iPSCs of the scRNA-seq/scBS-seq platform.

583

584 **References**

585 Aeckerle, N., Drummer, C., Debowski, K., Viebahn, C., and Behr, R. (2015). Primordial germ
586 cell development in the marmoset monkey as revealed by pluripotency factor expression:
587 suggestion of a novel model of embryonic germ cell translocation. *Mol Hum Reprod* *21*, 66–80.
588 10.1093/molehr/gau088.

589 Albert, S., Ehmcke, J., Wistuba, J., Eildermann, K., Behr, R., Schlatt, S., and Gromoll,
590 J. (2010). Germ cell dynamics in the testis of the postnatal common marmoset monkey
591 (*Callithrix jacchus*). *Reproduction* *140*, 733–742. 10.1530/REP-10-0235.

592 Brawand, D., Soumillon, M., Necsulea, A., Julien, P., Csardi, G., Harrigan, P., Weier,
593 M., Liechti, A., Aximu-Petri, A., Kircher, M., et al. (2011). The evolution of gene
594 expression levels in mammalian organs. *Nature* *478*, 343–348. 10.1038/nature10532.

595 Chen, D., Liu, W., Lukianchikov, A., Hancock, G.V., Zimmerman, J., Lowe, M.G., Kim, R.,
596 Galic, Z., Irie, N., Surani, M.A., et al. (2017). Germline competency of human embryonic
597 stem cells depends on eomesodermin. *Biol Reprod* *97*, 850–861. 10.1093/biolre/iox138.

598 Chen, D., Sun, N., Hou, L., Kim, R., Faith, J., Aslanyan, M., Tao, Y., Zheng, Y., Fu, J.,
599 Liu, W., et al. (2019). Human Primordial Germ Cells Are Specified from Lineage-Primed
600 Progenitors. *Cell Rep* *29*, 4568–4582 e4565. 10.1016/j.celrep.2019.11.083.

601 Fereydouni, B., Drummer, C., Aeckerle, N., Schlatt, S., and Behr, R. (2014). The neonatal
602 marmoset monkey ovary is very primitive exhibiting many oogonia. *Reproduction* *148*, 237–247.
603 10.1530/REP-14-0068.

604 Guo, F., Yan, L., Guo, H., Li, L., Hu, B., Zhao, Y., Yong, J., Hu, Y., Wang, X., Wei, Y.,
605 et al. (2015). The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ
606 Cells. *Cell* *161*, 1437–1452. 10.1016/j.cell.2015.05.015.

607 Hamazaki, N., Kyogoku, H., Araki, H., Miura, F., Horikawa, C., Hamada, N., Shimamoto, S.,
608 Hikabe, O., Nakashima, K., Kitajima, T.S., et al. (2021). Reconstitution of the oocyte
609 transcriptional network with transcription factors. *Nature* *589*, 264–269.
610 10.1038/s41586-020-3027-9.

611 Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K.,
612 and Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the
613 p53-p21 pathway. *Nature* *460*, 1132–1135. 10.1038/nature08235.

614 Hwang, Y.S., Suzuki, S., Seita, Y., Ito, J., Sakata, Y., Aso, H., Sato, K., Hermann, B.P.,
615 and Sasaki, K. (2020). Reconstitution of prospermatogonial specification in vitro from
616 human induced pluripotent stem cells. *Nat Commun* *11*, 5656. 10.1038/s41467-020-19350-3.

617 Irie, N., Weinberger, L., Tang, W.W., Kobayashi, T., Viukov, S., Manor, Y.S., Dietmann,
618 S., Hanna, J.H., and Surani, M.A. (2015). SOX17 is a critical specifier of human primordial
619 germ cell fate. *Cell* *160*, 253–268. 10.1016/j.cell.2014.12.013.

620 Ishikura, Y., Ohta, H., Sato, T., Murase, Y., Yabuta, Y., Kojima, Y., Yamashiro, C.,
621 Nakamura, T., Yamamoto, T., Ogawa, T., and Saitou, M. (2021). In vitro reconstitution of
622 the whole male germ-cell development from mouse pluripotent stem cells. *Cell Stem Cell*
623 28, 2167–2179 e2169. 10.1016/j.stem.2021.08.005.

624 Ito, M., Hiramatsu, H., Kobayashi, K., Suzue, K., Kawahata, M., Hioki, K., Ueyama, Y.,
625 Koyanagi, Y., Sugamura, K., Tsuji, K., et al. (2002). NOD/SCID/gamma(c)(null) mouse: an
626 excellent recipient mouse model for engraftment of human cells. *Blood* 100, 3175–3182.
627 10.1182/blood-2001-12-0207.

628 Jo, K., Teague, S., Chen, B., Khan, H.A., Freeburne, E., Li, H., Li, B., Ran, R., Spence,
629 J.R., and Heemskerk, I. (2022). Efficient differentiation of human primordial germ cells
630 through geometric control reveals a key role for Nodal signaling. *eLife* 11.
631 10.7554/eLife.72811.

632 Khaitovich, P., Enard, W., Lachmann, M., and Paabo, S. (2006). Evolution of primate gene
633 expression. *Nat Rev Genet* 7, 693–702. 10.1038/nrg1940.

634 Kobayashi, H., Sakurai, T., Miura, F., Imai, M., Mochiduki, K., Yanagisawa, E., Sakashita,
635 A., Wakai, T., Suzuki, Y., Ito, T., et al. (2013). High-resolution DNA methylome analysis
636 of primordial germ cells identifies gender-specific reprogramming in mice. *Genome Res* 23,
637 616–627. 10.1101/gr.148023.112.

638 Kobayashi, T., Castillo-Venzor, A., Penfold, C.A., Morgan, M., Mizuno, N., Tang, W.W.C.,
639 Osada, Y., Hirao, M., Yoshida, F., Sato, H., et al. (2021). Tracing the emergence of
640 primordial germ cells from bilaminar disc rabbit embryos and pluripotent stem cells. *Cell*
641 *Rep* 37, 109812. 10.1016/j.celrep.2021.109812.

642 Kobayashi, T., Zhang, H., Tang, W.W.C., Irie, N., Withey, S., Klisch, D., Sybirna, A.,
643 Dietmann, S., Contreras, D.A., Webb, R., et al. (2017). Principles of early human
644 development and germ cell program from conserved model systems. *Nature* 546, 416–420.
645 10.1038/nature22812.

646 Kojima, Y., Sasaki, K., Yokobayashi, S., Sakai, Y., Nakamura, T., Yabuta, Y., Nakaki, F.,
647 Nagaoka, S., Woltjen, K., Hotta, A., et al. (2017). Evolutionarily Distinctive
648 Transcriptional and Signaling Programs Drive Human Germ Cell Lineage Specification from
649 Pluripotent Stem Cells. *Cell Stem Cell* 21, 517–532 e515. 10.1016/j.stem.2017.09.005.

650 Konkel, M.K., Ullmer, B., Arceneaux, E.L., Sanampudi, S., Brantley, S.A., Hubley, R., Smit,
651 A.F., and Batzer, M.A. (2016). Discovery of a new repeat family in the *Callithrix jacchus*
652 genome. *Genome Res* 26, 649–659. 10.1101/gr.199075.115.

653 Langenstroth-Rower, D., Gromoll, J., Wistuba, J., Trondle, I., Laurentino, S., Schlatt,
654 S., and Neuhaus, N. (2017). De novo methylation in male germ cells of the common marmoset
655 monkey occurs during postnatal development and is maintained in vitro. *Epigenetics* 12,

656 527–539. 10.1080/15592294.2016.1248007.

657 Li, L., Dong, J., Yan, L., Yong, J., Liu, X., Hu, Y., Fan, X., Wu, X., Guo, H., Wang, X.,
658 et al. (2017). Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and
659 Gonadal Niche Interactions. *Cell Stem Cell* *20*, 858–873 e854. 10.1016/j.stem.2017.03.007.

660 Matoba, S., and Ogura, A. (2011). Generation of functional oocytes and spermatids from
661 fetal primordial germ cells after ectopic transplantation in adult mice. *Biol Reprod* *84*,
662 631–638. 10.1093/biolreprod.110.087122.

663 McKinnell, C., Mitchell, R.T., Morris, K., Anderson, R.A., Kelnar, C.J., Wallace, W.H.,
664 and Sharpe, R.M. (2013). Perinatal germ cell development and differentiation in the male
665 marmoset (*Callithrix jacchus*): similarities with the human and differences from the rat.
666 *Hum Reprod* *28*, 886–896. 10.1093/humrep/des465.

667 Mitchell, R.T., Cowan, G., Morris, K.D., Anderson, R.A., Fraser, H.M., McKenzie, K.J.,
668 Wallace, W.H., Kelnar, C.J., Saunders, P.T., and Sharpe, R.M. (2008). Germ cell
669 differentiation in the marmoset (*Callithrix jacchus*) during fetal and neonatal life
670 closely parallels that in the human. *Hum Reprod* *23*, 2755–2765. 10.1093/humrep/den295.

671 Mizuta, K., Katou, Y., Nakakita, B., Kishine, A., Nosaka, Y., Saito, S., Iwatani, C.,
672 Tsuchiya, H., Kawamoto, I., Nakaya, M., et al. (2022). Ex vivo reconstitution of fetal
673 oocyte development in humans and cynomolgus monkeys. *EMBO J*, e110815.
674 10.15252/embj.2022110815.

675 Ohinata, Y., Ohta, H., Shigeta, M., Yamanaka, K., Wakayama, T., and Saitou, M. (2009).
676 A signaling principle for the specification of the germ cell lineage in mice. *Cell* *137*,
677 571–584. 10.1016/j.cell.2009.03.014.

678 Park, J.E., and Sasaki, E. (2020). Assisted Reproductive Techniques and Genetic
679 Manipulation in the Common Marmoset. *ILAR J* *61*, 286–303. 10.1093/ilar/ilab002.

680 Phillips, I.R. (1976). The embryology of the common marmoset (*Callithrix jacchus*). *Adv
681 Anat Embryol Cell Biol* *52*, 3–47.

682 Poleganov, M.A., Eminli, S., Beissert, T., Herz, S., Moon, J.I., Goldmann, J., Beyer, A.,
683 Heck, R., Burkhardt, I., Barea Roldan, D., et al. (2015). Efficient Reprogramming of Human
684 Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for
685 Reprogramming and Immune Evasion. *Hum Gene Ther* *26*, 751–766. 10.1089/hum.2015.045.

686 Sakai, Y., Nakamura, T., Okamoto, I., Gyobu-Motani, S., Ohta, H., Yabuta, Y., Tsukiyama,
687 T., Iwatani, C., Tsuchiya, H., Ema, M., et al. (2020). Induction of the germ cell fate
688 from pluripotent stem cells in cynomolgus monkeysdagger. *Biol Reprod* *102*, 620–638.
689 10.1093/biolre/izz205.

690 Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K., Ohta,
691 H., Moritoki, Y., Iwatani, C., Tsuchiya, H., et al. (2015). Robust In Vitro Induction of

692 Human Germ Cell Fate from Pluripotent Stem Cells. *Cell Stem Cell* *17*, 178–194.
693 10.1016/j.stem.2015.06.014.

694 Seisenberger, S., Andrews, S., Krueger, F., Arand, J., Walter, J., Santos, F., Popp, C.,
695 Thienpont, B., Dean, W., and Reik, W. (2012). The dynamics of genome-wide DNA methylation
696 reprogramming in mouse primordial germ cells. *Mol Cell* *48*, 849–862.
697 10.1016/j.molcel.2012.11.001.

698 Seita, Y., Cheng, K., McCarrey, J.R., Yadu, N., Cheeseman, I., Bagwell, A., Ross, C.N.,
699 Santana-Toro, I., Yen, L.-H., Vargas, S., et al. (2022). Efficient generation of marmoset
700 primordial germ cell-like cells using induced pluripotent stem cells. *bioRxiv*,
701 2022.2007.2025.501382. 10.1101/2022.07.25.501382.

702 Shirane, K., Kurimoto, K., Yabuta, Y., Yamaji, M., Satoh, J., Ito, S., Watanabe, A., Hayashi,
703 K., Saitou, M., and Sasaki, H. (2016). Global Landscape and Regulatory Principles of DNA
704 Methylation Reprogramming for Germ Cell Specification by Mouse Pluripotent Stem Cells.
705 *Dev Cell* *39*, 87–103. 10.1016/j.devcel.2016.08.008.

706 Sohni, A., Tan, K., Song, H.W., Burow, D., de Rooij, D.G., Laurent, L., Hsieh, T.C., Rabah,
707 R., Hammoud, S.S., Vicini, E., and Wilkinson, M.F. (2019). The Neonatal and Adult Human
708 Testis Defined at the Single-Cell Level. *Cell Rep* *26*, 1501–1517 e1504.
709 10.1016/j.celrep.2019.01.045.

710 Sosa, E., Chen, D., Rojas, E.J., Hennebold, J.D., Peters, K.A., Wu, Z., Lam, T.N., Mitchell,
711 J.M., Sukhwani, M., Tailor, R.C., et al. (2018). Differentiation of primate primordial
712 germ cell-like cells following transplantation into the adult gonadal niche. *Nat Commun*
713 *9*, 5339. 10.1038/s41467-018-07740-7.

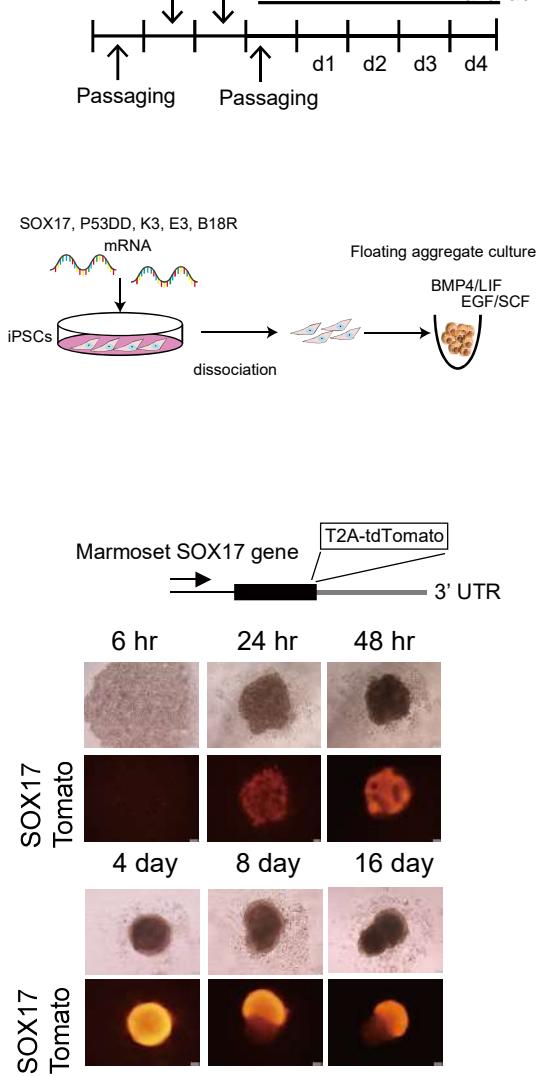
714 Swanson, W.J., and Vacquier, V.D. (2002). The rapid evolution of reproductive proteins.
715 *Nat Rev Genet* *3*, 137–144. 10.1038/nrg733.

716 Takahashi, T., Hanazawa, K., Inoue, T., Sato, K., Sedohara, A., Okahara, J., Suemizu, H.,
717 Yagihashi, C., Yamamoto, M., Eto, T., et al. (2014). Birth of healthy offspring following
718 ICSI in in vitro-matured common marmoset (*Callithrix jacchus*) oocytes. *PLoS One* *9*, e95560.
719 10.1371/journal.pone.0095560.

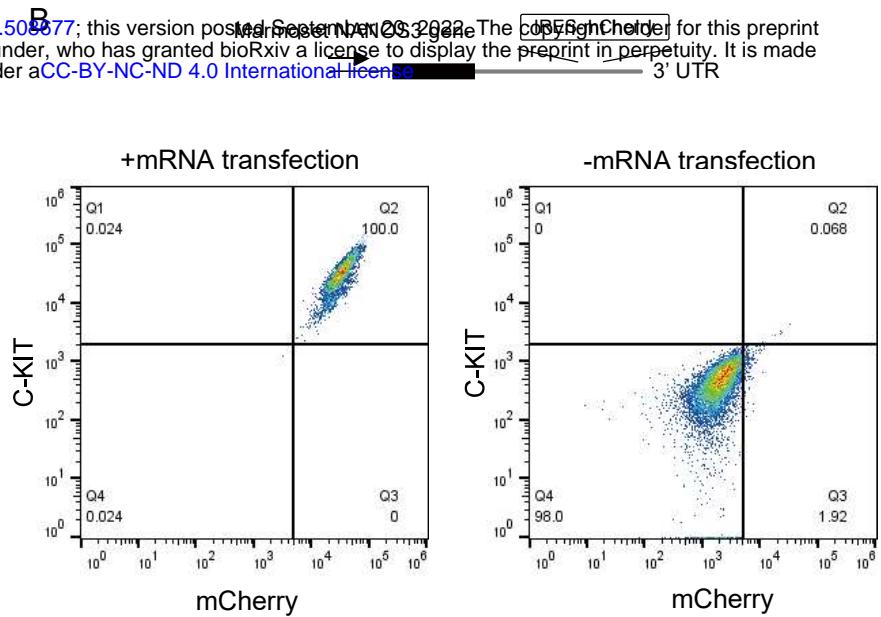
720 Watanabe, T., Yamazaki, S., Yoneda, N., Shinohara, H., Tomioka, I., Higuchi, Y., Yagoto,
721 M., Ema, M., Suemizu, H., Kawai, K., and Sasaki, E. (2019). Highly efficient induction
722 of primate iPS cells by combining RNA transfection and chemical compounds. *Genes Cells*
723 *24*, 473–484. 10.1111/gtc.12702.

724 Yamashiro, C., Sasaki, K., Yabuta, Y., Kojima, Y., Nakamura, T., Okamoto, I., Yokobayashi,
725 S., Murase, Y., Ishikura, Y., Shirane, K., et al. (2018). Generation of human oogonia from
726 induced pluripotent stem cells in vitro. *Science* *362*, 356–360. 10.1126/science.aat1674.

727 Yoshimatsu, S., Nakajima, M., Iguchi, A., Sanosaka, T., Sato, T., Nakamura, M., Nakajima,


728 R., Arai, E., Ishikawa, M., Imaizumi, K., et al. (2021). Non-viral Induction of
729 Transgene-free iPSCs from Somatic Fibroblasts of Multiple Mammalian Species. *Stem Cell*
730 *Reports* *16*, 754–770. [10.1016/j.stemcr.2021.03.002](https://doi.org/10.1016/j.stemcr.2021.03.002).

731


Figure 1

A

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.20.508677>; this version posted September 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B

C

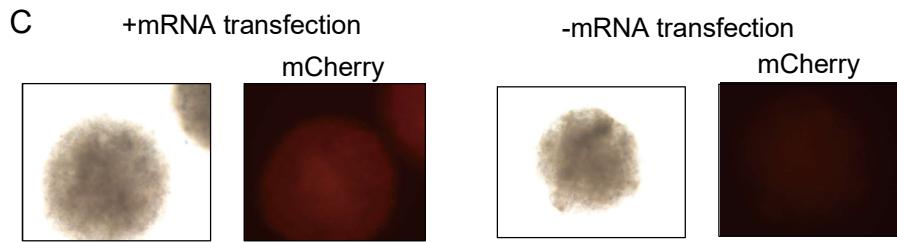
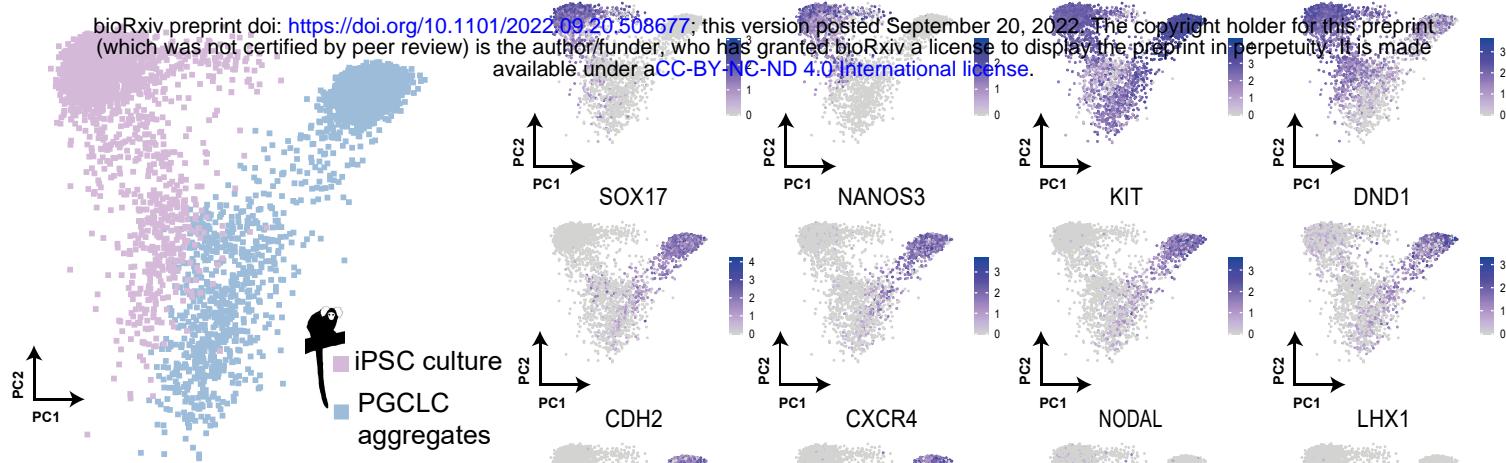
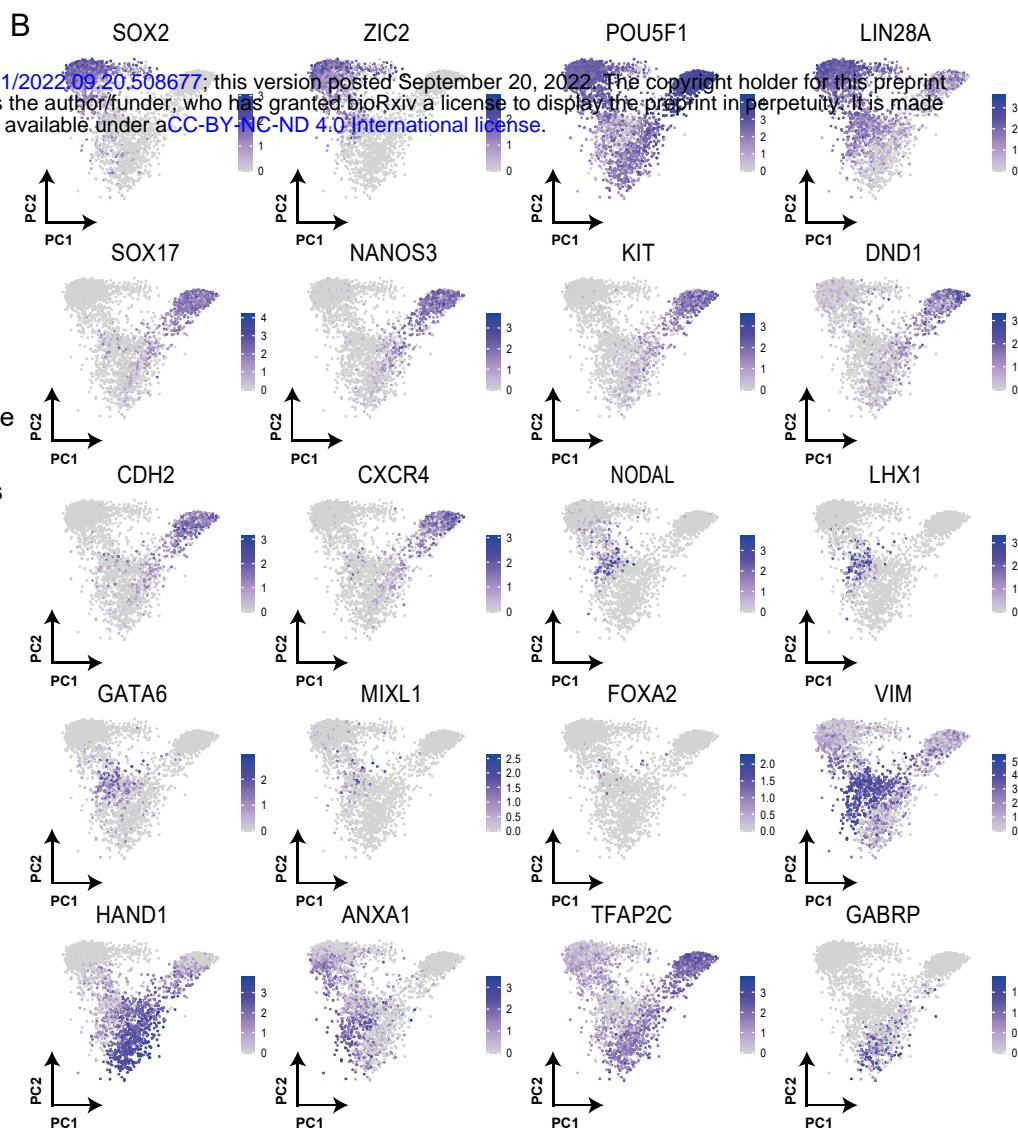
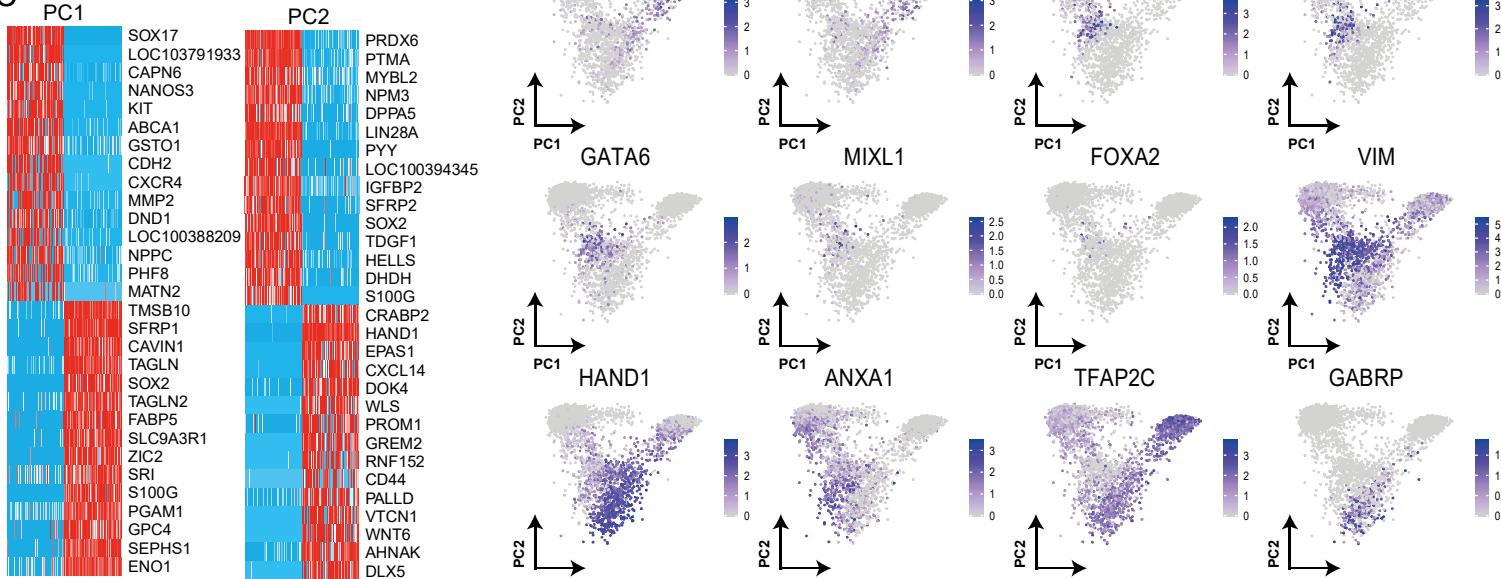
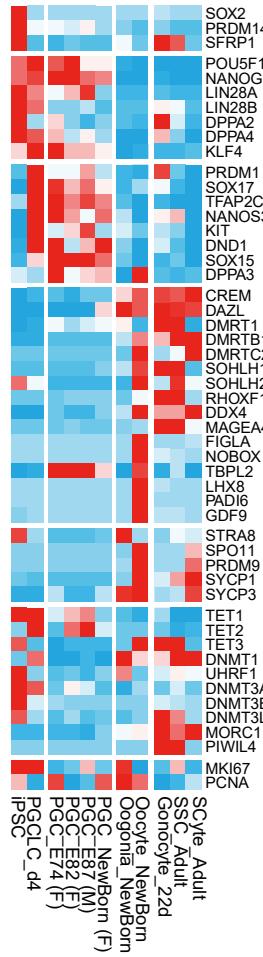




Figure2


A


B

C

D

E

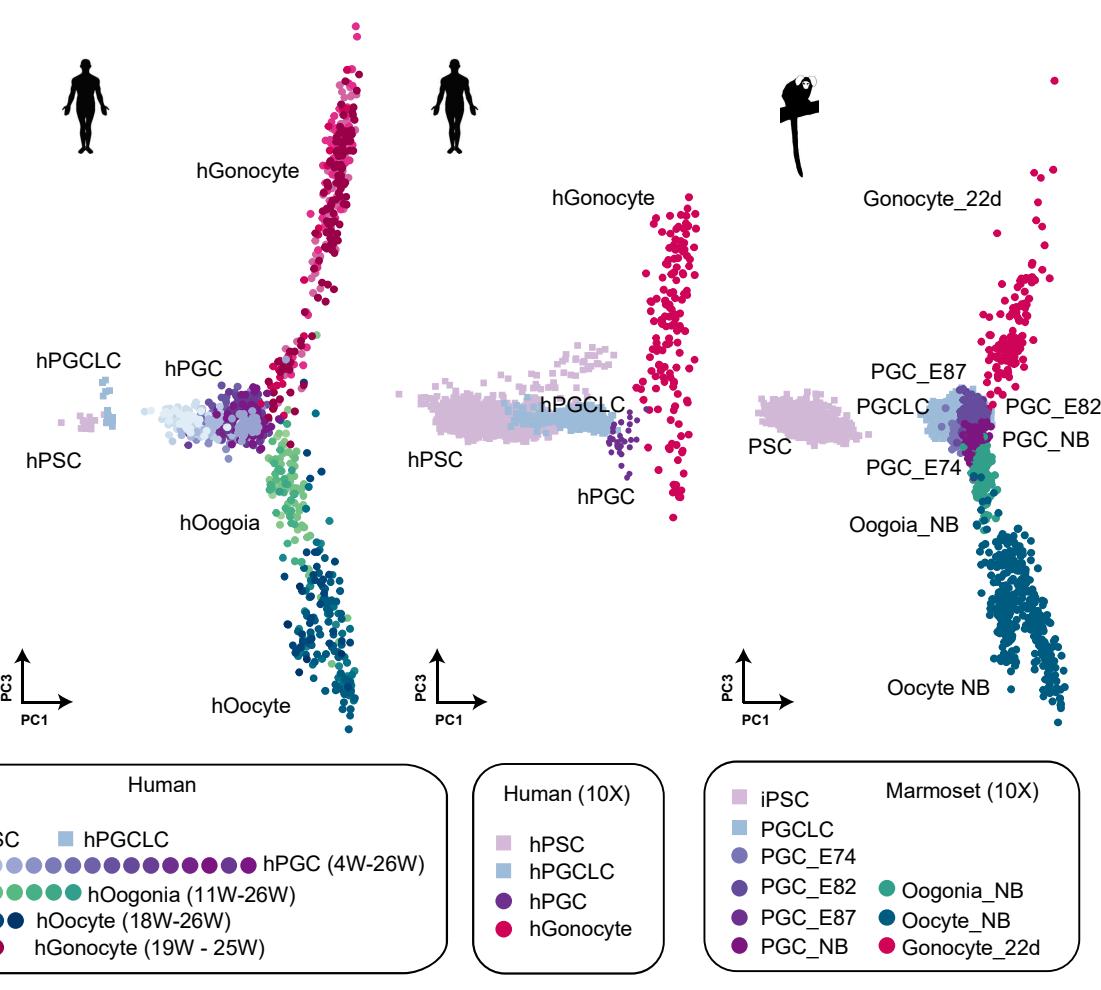


Figure3

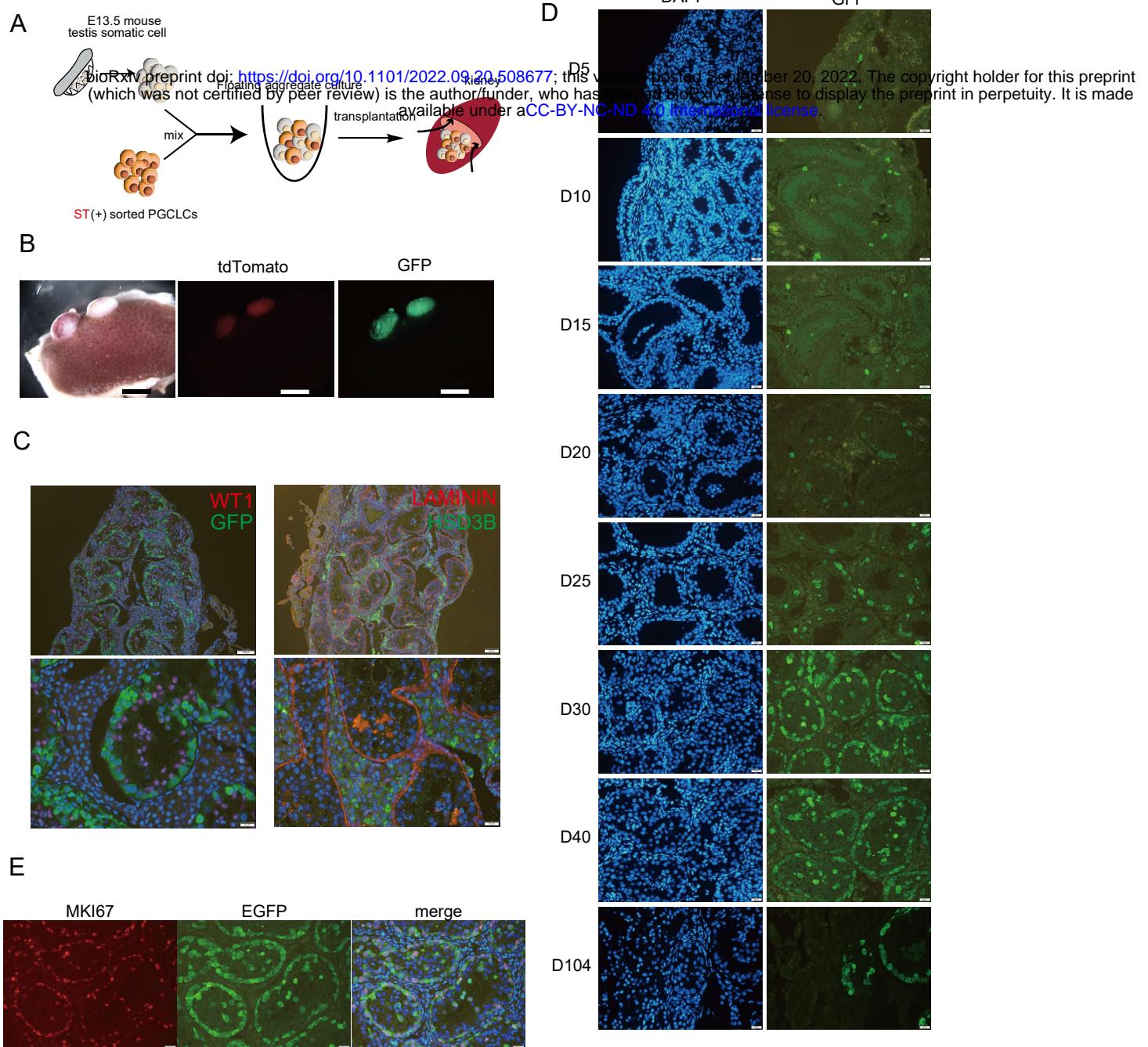
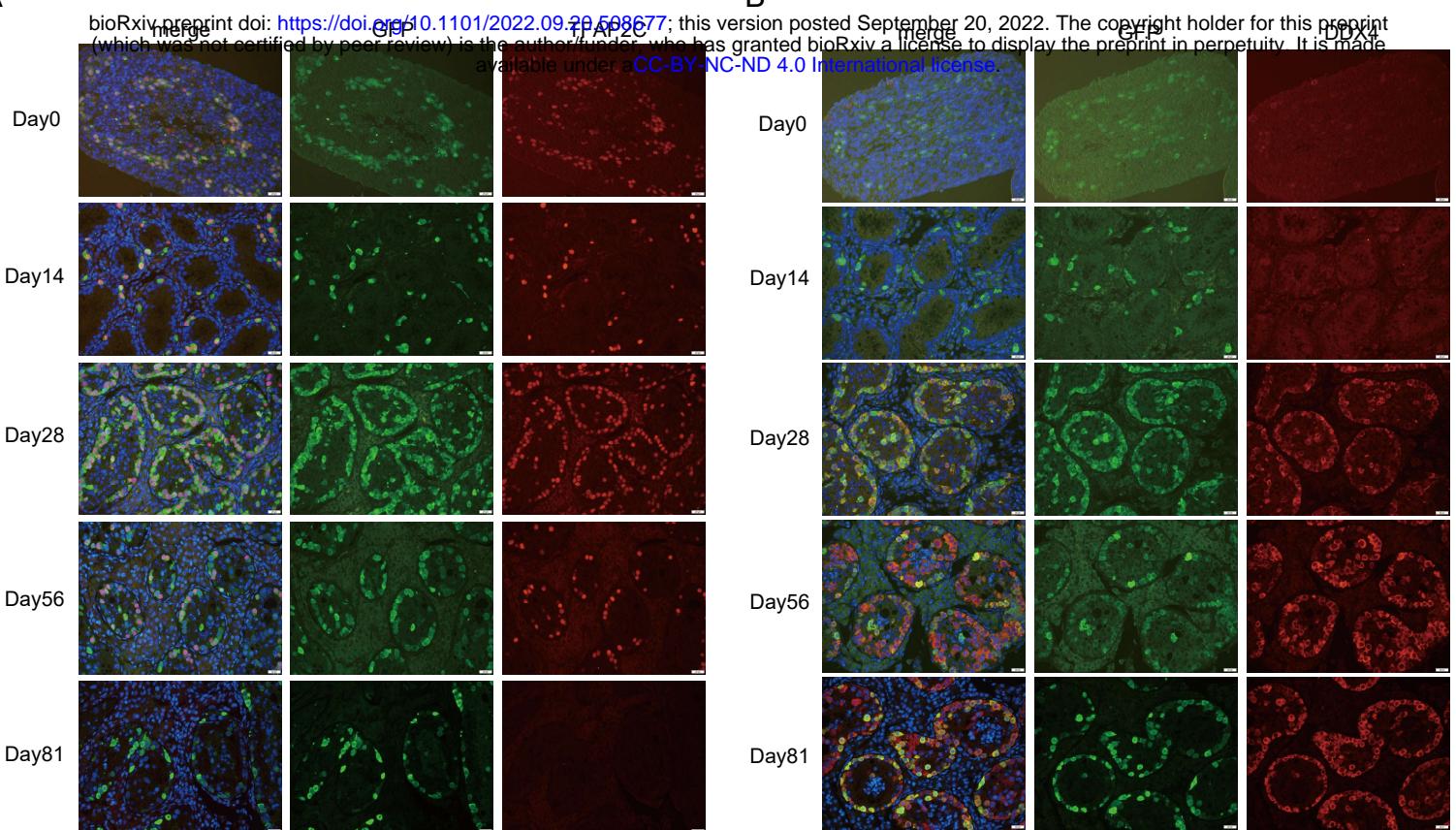
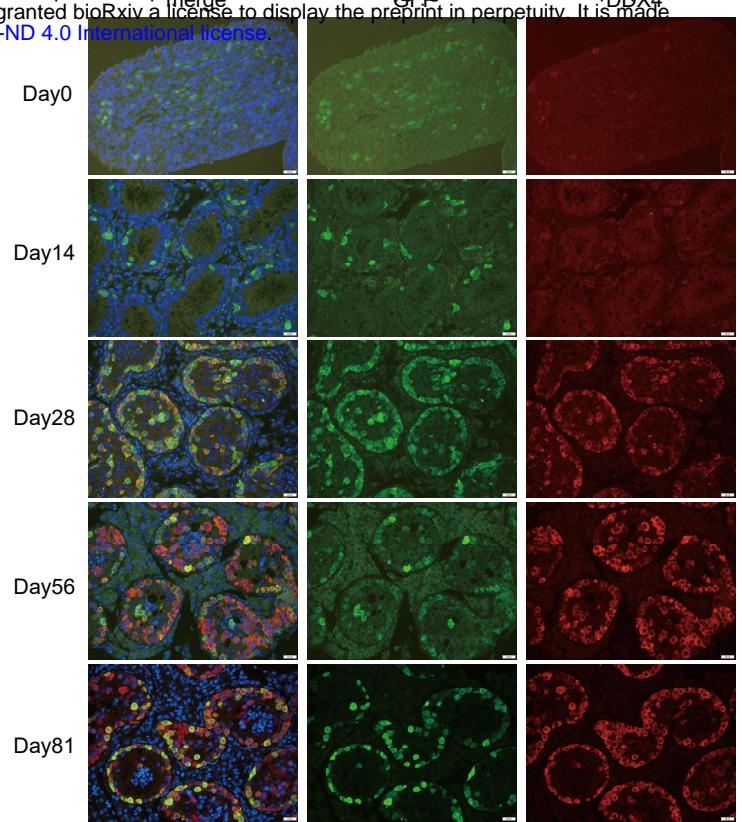
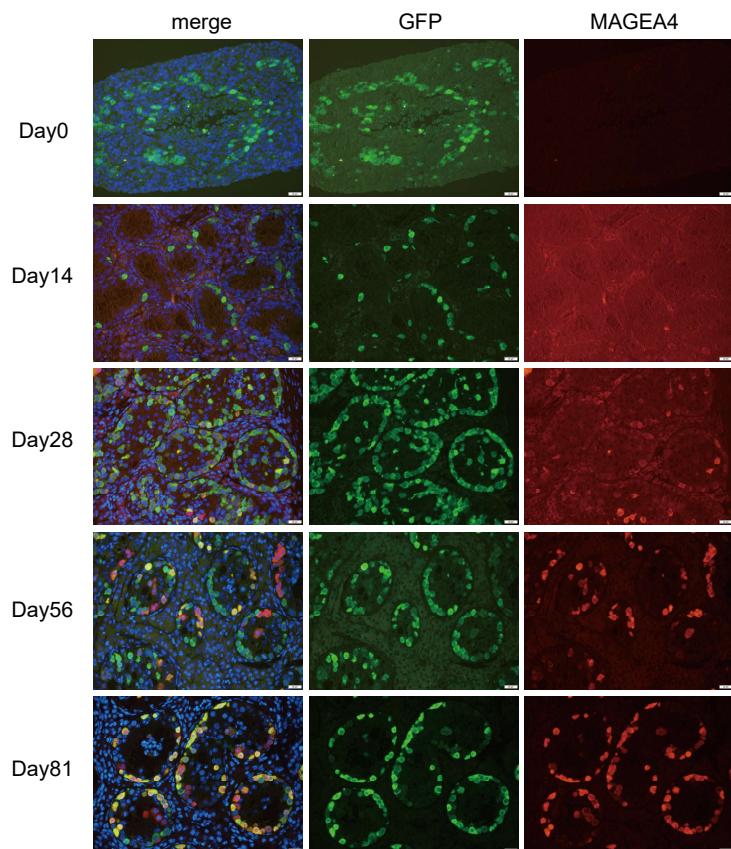




Figure 4


A

B

C

D

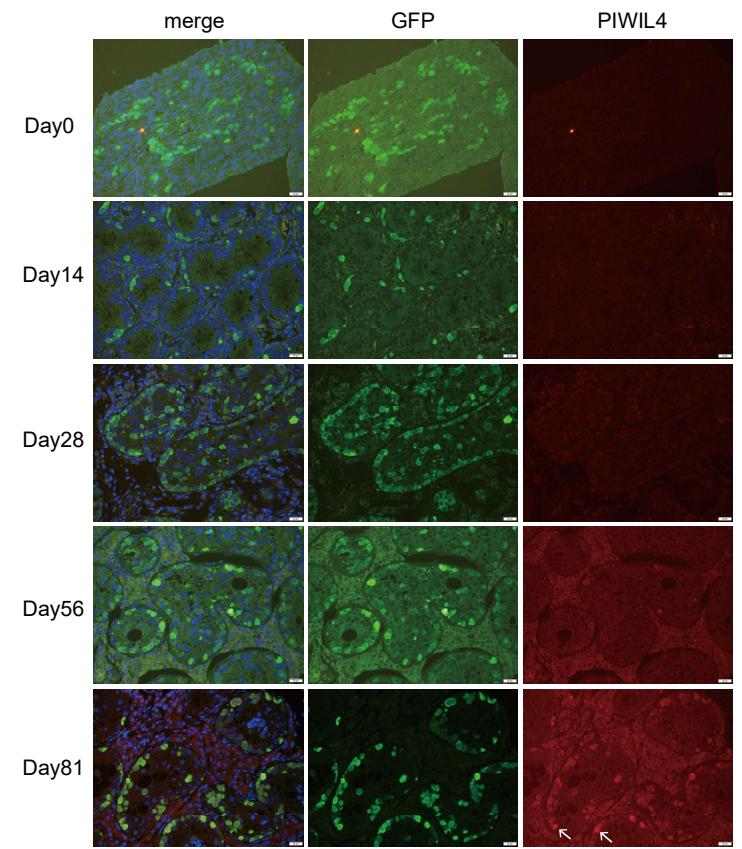
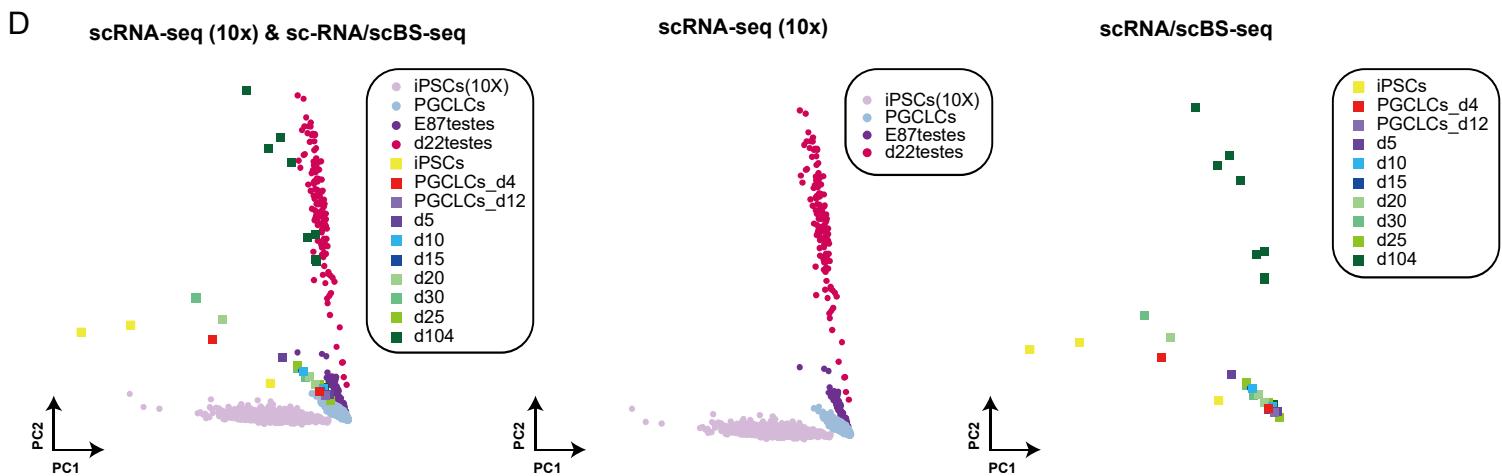
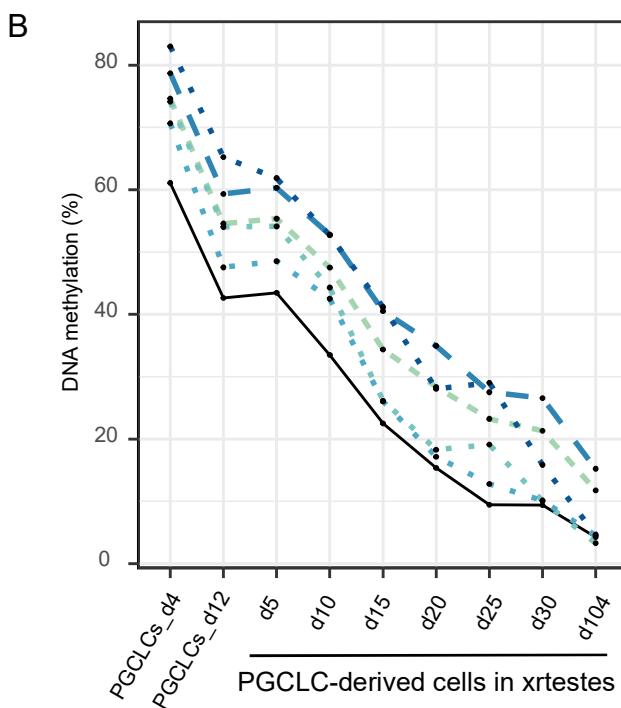
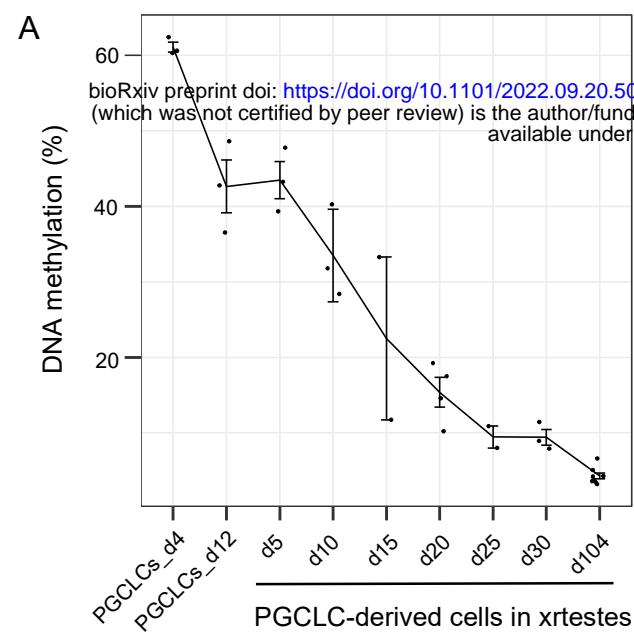





Figure 5

